1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 #include <linux/execmem.h>
11
12 #include <asm/set_memory.h>
13 #include <asm/cpu_device_id.h>
14 #include <asm/e820/api.h>
15 #include <asm/init.h>
16 #include <asm/page.h>
17 #include <asm/page_types.h>
18 #include <asm/sections.h>
19 #include <asm/setup.h>
20 #include <asm/tlbflush.h>
21 #include <asm/tlb.h>
22 #include <asm/proto.h>
23 #include <asm/dma.h> /* for MAX_DMA_PFN */
24 #include <asm/kaslr.h>
25 #include <asm/hypervisor.h>
26 #include <asm/cpufeature.h>
27 #include <asm/pti.h>
28 #include <asm/text-patching.h>
29 #include <asm/memtype.h>
30 #include <asm/paravirt.h>
31
32 /*
33 * We need to define the tracepoints somewhere, and tlb.c
34 * is only compiled when SMP=y.
35 */
36 #include <trace/events/tlb.h>
37
38 #include "mm_internal.h"
39
40 /*
41 * Tables translating between page_cache_type_t and pte encoding.
42 *
43 * The default values are defined statically as minimal supported mode;
44 * WC and WT fall back to UC-. pat_init() updates these values to support
45 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
46 * for the details. Note, __early_ioremap() used during early boot-time
47 * takes pgprot_t (pte encoding) and does not use these tables.
48 *
49 * Index into __cachemode2pte_tbl[] is the cachemode.
50 *
51 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
52 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
53 */
54 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
55 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
56 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
57 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
58 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
59 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
60 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
61 };
62
cachemode2protval(enum page_cache_mode pcm)63 unsigned long cachemode2protval(enum page_cache_mode pcm)
64 {
65 if (likely(pcm == 0))
66 return 0;
67 return __cachemode2pte_tbl[pcm];
68 }
69 EXPORT_SYMBOL(cachemode2protval);
70
71 static uint8_t __pte2cachemode_tbl[8] = {
72 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
73 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
74 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
75 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
76 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
77 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
79 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
80 };
81
82 /*
83 * Check that the write-protect PAT entry is set for write-protect.
84 * To do this without making assumptions how PAT has been set up (Xen has
85 * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
86 * mode via the __cachemode2pte_tbl[] into protection bits (those protection
87 * bits will select a cache mode of WP or better), and then translate the
88 * protection bits back into the cache mode using __pte2cm_idx() and the
89 * __pte2cachemode_tbl[] array. This will return the really used cache mode.
90 */
x86_has_pat_wp(void)91 bool x86_has_pat_wp(void)
92 {
93 uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
94
95 return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
96 }
97
pgprot2cachemode(pgprot_t pgprot)98 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
99 {
100 unsigned long masked;
101
102 masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
103 if (likely(masked == 0))
104 return 0;
105 return __pte2cachemode_tbl[__pte2cm_idx(masked)];
106 }
107
108 static unsigned long __initdata pgt_buf_start;
109 static unsigned long __initdata pgt_buf_end;
110 static unsigned long __initdata pgt_buf_top;
111
112 static unsigned long min_pfn_mapped;
113
114 static bool __initdata can_use_brk_pgt = true;
115
116 /*
117 * Pages returned are already directly mapped.
118 *
119 * Changing that is likely to break Xen, see commit:
120 *
121 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
122 *
123 * for detailed information.
124 */
alloc_low_pages(unsigned int num)125 __ref void *alloc_low_pages(unsigned int num)
126 {
127 unsigned long pfn;
128 int i;
129
130 if (after_bootmem) {
131 unsigned int order;
132
133 order = get_order((unsigned long)num << PAGE_SHIFT);
134 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
135 }
136
137 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
138 unsigned long ret = 0;
139
140 if (min_pfn_mapped < max_pfn_mapped) {
141 ret = memblock_phys_alloc_range(
142 PAGE_SIZE * num, PAGE_SIZE,
143 min_pfn_mapped << PAGE_SHIFT,
144 max_pfn_mapped << PAGE_SHIFT);
145 }
146 if (!ret && can_use_brk_pgt)
147 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
148
149 if (!ret)
150 panic("alloc_low_pages: can not alloc memory");
151
152 pfn = ret >> PAGE_SHIFT;
153 } else {
154 pfn = pgt_buf_end;
155 pgt_buf_end += num;
156 }
157
158 for (i = 0; i < num; i++) {
159 void *adr;
160
161 adr = __va((pfn + i) << PAGE_SHIFT);
162 clear_page(adr);
163 }
164
165 return __va(pfn << PAGE_SHIFT);
166 }
167
168 /*
169 * By default need to be able to allocate page tables below PGD firstly for
170 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
171 * With KASLR memory randomization, depending on the machine e820 memory and the
172 * PUD alignment, twice that many pages may be needed when KASLR memory
173 * randomization is enabled.
174 */
175
176 #ifndef CONFIG_X86_5LEVEL
177 #define INIT_PGD_PAGE_TABLES 3
178 #else
179 #define INIT_PGD_PAGE_TABLES 4
180 #endif
181
182 #ifndef CONFIG_RANDOMIZE_MEMORY
183 #define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
184 #else
185 #define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES)
186 #endif
187
188 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
189 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)190 void __init early_alloc_pgt_buf(void)
191 {
192 unsigned long tables = INIT_PGT_BUF_SIZE;
193 phys_addr_t base;
194
195 base = __pa(extend_brk(tables, PAGE_SIZE));
196
197 pgt_buf_start = base >> PAGE_SHIFT;
198 pgt_buf_end = pgt_buf_start;
199 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
200 }
201
202 int after_bootmem;
203
204 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
205
206 struct map_range {
207 unsigned long start;
208 unsigned long end;
209 unsigned page_size_mask;
210 };
211
212 static int page_size_mask;
213
214 /*
215 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
216 * enable and PPro Global page enable), so that any CPU's that boot
217 * up after us can get the correct flags. Invoked on the boot CPU.
218 */
cr4_set_bits_and_update_boot(unsigned long mask)219 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
220 {
221 mmu_cr4_features |= mask;
222 if (trampoline_cr4_features)
223 *trampoline_cr4_features = mmu_cr4_features;
224 cr4_set_bits(mask);
225 }
226
probe_page_size_mask(void)227 static void __init probe_page_size_mask(void)
228 {
229 /*
230 * For pagealloc debugging, identity mapping will use small pages.
231 * This will simplify cpa(), which otherwise needs to support splitting
232 * large pages into small in interrupt context, etc.
233 */
234 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
235 page_size_mask |= 1 << PG_LEVEL_2M;
236 else
237 direct_gbpages = 0;
238
239 /* Enable PSE if available */
240 if (boot_cpu_has(X86_FEATURE_PSE))
241 cr4_set_bits_and_update_boot(X86_CR4_PSE);
242
243 /* Enable PGE if available */
244 __supported_pte_mask &= ~_PAGE_GLOBAL;
245 if (boot_cpu_has(X86_FEATURE_PGE)) {
246 cr4_set_bits_and_update_boot(X86_CR4_PGE);
247 __supported_pte_mask |= _PAGE_GLOBAL;
248 }
249
250 /* By the default is everything supported: */
251 __default_kernel_pte_mask = __supported_pte_mask;
252 /* Except when with PTI where the kernel is mostly non-Global: */
253 if (cpu_feature_enabled(X86_FEATURE_PTI))
254 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
255
256 /* Enable 1 GB linear kernel mappings if available: */
257 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
258 printk(KERN_INFO "Using GB pages for direct mapping\n");
259 page_size_mask |= 1 << PG_LEVEL_1G;
260 } else {
261 direct_gbpages = 0;
262 }
263 }
264
265 /*
266 * INVLPG may not properly flush Global entries
267 * on these CPUs when PCIDs are enabled.
268 */
269 static const struct x86_cpu_id invlpg_miss_ids[] = {
270 X86_MATCH_VFM(INTEL_ALDERLAKE, 0),
271 X86_MATCH_VFM(INTEL_ALDERLAKE_L, 0),
272 X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, 0),
273 X86_MATCH_VFM(INTEL_RAPTORLAKE, 0),
274 X86_MATCH_VFM(INTEL_RAPTORLAKE_P, 0),
275 X86_MATCH_VFM(INTEL_RAPTORLAKE_S, 0),
276 {}
277 };
278
setup_pcid(void)279 static void setup_pcid(void)
280 {
281 if (!IS_ENABLED(CONFIG_X86_64))
282 return;
283
284 if (!boot_cpu_has(X86_FEATURE_PCID))
285 return;
286
287 if (x86_match_cpu(invlpg_miss_ids)) {
288 pr_info("Incomplete global flushes, disabling PCID");
289 setup_clear_cpu_cap(X86_FEATURE_PCID);
290 return;
291 }
292
293 if (boot_cpu_has(X86_FEATURE_PGE)) {
294 /*
295 * This can't be cr4_set_bits_and_update_boot() -- the
296 * trampoline code can't handle CR4.PCIDE and it wouldn't
297 * do any good anyway. Despite the name,
298 * cr4_set_bits_and_update_boot() doesn't actually cause
299 * the bits in question to remain set all the way through
300 * the secondary boot asm.
301 *
302 * Instead, we brute-force it and set CR4.PCIDE manually in
303 * start_secondary().
304 */
305 cr4_set_bits(X86_CR4_PCIDE);
306 } else {
307 /*
308 * flush_tlb_all(), as currently implemented, won't work if
309 * PCID is on but PGE is not. Since that combination
310 * doesn't exist on real hardware, there's no reason to try
311 * to fully support it, but it's polite to avoid corrupting
312 * data if we're on an improperly configured VM.
313 */
314 setup_clear_cpu_cap(X86_FEATURE_PCID);
315 }
316 }
317
318 #ifdef CONFIG_X86_32
319 #define NR_RANGE_MR 3
320 #else /* CONFIG_X86_64 */
321 #define NR_RANGE_MR 5
322 #endif
323
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)324 static int __meminit save_mr(struct map_range *mr, int nr_range,
325 unsigned long start_pfn, unsigned long end_pfn,
326 unsigned long page_size_mask)
327 {
328 if (start_pfn < end_pfn) {
329 if (nr_range >= NR_RANGE_MR)
330 panic("run out of range for init_memory_mapping\n");
331 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
332 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
333 mr[nr_range].page_size_mask = page_size_mask;
334 nr_range++;
335 }
336
337 return nr_range;
338 }
339
340 /*
341 * adjust the page_size_mask for small range to go with
342 * big page size instead small one if nearby are ram too.
343 */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)344 static void __ref adjust_range_page_size_mask(struct map_range *mr,
345 int nr_range)
346 {
347 int i;
348
349 for (i = 0; i < nr_range; i++) {
350 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
351 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
352 unsigned long start = round_down(mr[i].start, PMD_SIZE);
353 unsigned long end = round_up(mr[i].end, PMD_SIZE);
354
355 #ifdef CONFIG_X86_32
356 if ((end >> PAGE_SHIFT) > max_low_pfn)
357 continue;
358 #endif
359
360 if (memblock_is_region_memory(start, end - start))
361 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
362 }
363 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
364 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
365 unsigned long start = round_down(mr[i].start, PUD_SIZE);
366 unsigned long end = round_up(mr[i].end, PUD_SIZE);
367
368 if (memblock_is_region_memory(start, end - start))
369 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
370 }
371 }
372 }
373
page_size_string(struct map_range * mr)374 static const char *page_size_string(struct map_range *mr)
375 {
376 static const char str_1g[] = "1G";
377 static const char str_2m[] = "2M";
378 static const char str_4m[] = "4M";
379 static const char str_4k[] = "4k";
380
381 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
382 return str_1g;
383 /*
384 * 32-bit without PAE has a 4M large page size.
385 * PG_LEVEL_2M is misnamed, but we can at least
386 * print out the right size in the string.
387 */
388 if (IS_ENABLED(CONFIG_X86_32) &&
389 !IS_ENABLED(CONFIG_X86_PAE) &&
390 mr->page_size_mask & (1<<PG_LEVEL_2M))
391 return str_4m;
392
393 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
394 return str_2m;
395
396 return str_4k;
397 }
398
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)399 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
400 unsigned long start,
401 unsigned long end)
402 {
403 unsigned long start_pfn, end_pfn, limit_pfn;
404 unsigned long pfn;
405 int i;
406
407 limit_pfn = PFN_DOWN(end);
408
409 /* head if not big page alignment ? */
410 pfn = start_pfn = PFN_DOWN(start);
411 #ifdef CONFIG_X86_32
412 /*
413 * Don't use a large page for the first 2/4MB of memory
414 * because there are often fixed size MTRRs in there
415 * and overlapping MTRRs into large pages can cause
416 * slowdowns.
417 */
418 if (pfn == 0)
419 end_pfn = PFN_DOWN(PMD_SIZE);
420 else
421 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
422 #else /* CONFIG_X86_64 */
423 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
424 #endif
425 if (end_pfn > limit_pfn)
426 end_pfn = limit_pfn;
427 if (start_pfn < end_pfn) {
428 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
429 pfn = end_pfn;
430 }
431
432 /* big page (2M) range */
433 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
434 #ifdef CONFIG_X86_32
435 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
436 #else /* CONFIG_X86_64 */
437 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
438 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
439 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
440 #endif
441
442 if (start_pfn < end_pfn) {
443 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
444 page_size_mask & (1<<PG_LEVEL_2M));
445 pfn = end_pfn;
446 }
447
448 #ifdef CONFIG_X86_64
449 /* big page (1G) range */
450 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
451 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
452 if (start_pfn < end_pfn) {
453 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
454 page_size_mask &
455 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
456 pfn = end_pfn;
457 }
458
459 /* tail is not big page (1G) alignment */
460 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
461 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
462 if (start_pfn < end_pfn) {
463 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
464 page_size_mask & (1<<PG_LEVEL_2M));
465 pfn = end_pfn;
466 }
467 #endif
468
469 /* tail is not big page (2M) alignment */
470 start_pfn = pfn;
471 end_pfn = limit_pfn;
472 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
473
474 if (!after_bootmem)
475 adjust_range_page_size_mask(mr, nr_range);
476
477 /* try to merge same page size and continuous */
478 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
479 unsigned long old_start;
480 if (mr[i].end != mr[i+1].start ||
481 mr[i].page_size_mask != mr[i+1].page_size_mask)
482 continue;
483 /* move it */
484 old_start = mr[i].start;
485 memmove(&mr[i], &mr[i+1],
486 (nr_range - 1 - i) * sizeof(struct map_range));
487 mr[i--].start = old_start;
488 nr_range--;
489 }
490
491 for (i = 0; i < nr_range; i++)
492 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
493 mr[i].start, mr[i].end - 1,
494 page_size_string(&mr[i]));
495
496 return nr_range;
497 }
498
499 struct range pfn_mapped[E820_MAX_ENTRIES];
500 int nr_pfn_mapped;
501
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)502 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
503 {
504 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
505 nr_pfn_mapped, start_pfn, end_pfn);
506 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
507
508 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
509
510 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
511 max_low_pfn_mapped = max(max_low_pfn_mapped,
512 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
513 }
514
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)515 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
516 {
517 int i;
518
519 for (i = 0; i < nr_pfn_mapped; i++)
520 if ((start_pfn >= pfn_mapped[i].start) &&
521 (end_pfn <= pfn_mapped[i].end))
522 return true;
523
524 return false;
525 }
526
527 /*
528 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
529 * This runs before bootmem is initialized and gets pages directly from
530 * the physical memory. To access them they are temporarily mapped.
531 */
init_memory_mapping(unsigned long start,unsigned long end,pgprot_t prot)532 unsigned long __ref init_memory_mapping(unsigned long start,
533 unsigned long end, pgprot_t prot)
534 {
535 struct map_range mr[NR_RANGE_MR];
536 unsigned long ret = 0;
537 int nr_range, i;
538
539 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
540 start, end - 1);
541
542 memset(mr, 0, sizeof(mr));
543 nr_range = split_mem_range(mr, 0, start, end);
544
545 for (i = 0; i < nr_range; i++)
546 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
547 mr[i].page_size_mask,
548 prot);
549
550 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
551
552 return ret >> PAGE_SHIFT;
553 }
554
555 /*
556 * We need to iterate through the E820 memory map and create direct mappings
557 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
558 * create direct mappings for all pfns from [0 to max_low_pfn) and
559 * [4GB to max_pfn) because of possible memory holes in high addresses
560 * that cannot be marked as UC by fixed/variable range MTRRs.
561 * Depending on the alignment of E820 ranges, this may possibly result
562 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
563 *
564 * init_mem_mapping() calls init_range_memory_mapping() with big range.
565 * That range would have hole in the middle or ends, and only ram parts
566 * will be mapped in init_range_memory_mapping().
567 */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)568 static unsigned long __init init_range_memory_mapping(
569 unsigned long r_start,
570 unsigned long r_end)
571 {
572 unsigned long start_pfn, end_pfn;
573 unsigned long mapped_ram_size = 0;
574 int i;
575
576 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
577 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
578 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
579 if (start >= end)
580 continue;
581
582 /*
583 * if it is overlapping with brk pgt, we need to
584 * alloc pgt buf from memblock instead.
585 */
586 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
587 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
588 init_memory_mapping(start, end, PAGE_KERNEL);
589 mapped_ram_size += end - start;
590 can_use_brk_pgt = true;
591 }
592
593 return mapped_ram_size;
594 }
595
get_new_step_size(unsigned long step_size)596 static unsigned long __init get_new_step_size(unsigned long step_size)
597 {
598 /*
599 * Initial mapped size is PMD_SIZE (2M).
600 * We can not set step_size to be PUD_SIZE (1G) yet.
601 * In worse case, when we cross the 1G boundary, and
602 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
603 * to map 1G range with PTE. Hence we use one less than the
604 * difference of page table level shifts.
605 *
606 * Don't need to worry about overflow in the top-down case, on 32bit,
607 * when step_size is 0, round_down() returns 0 for start, and that
608 * turns it into 0x100000000ULL.
609 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
610 * needs to be taken into consideration by the code below.
611 */
612 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
613 }
614
615 /**
616 * memory_map_top_down - Map [map_start, map_end) top down
617 * @map_start: start address of the target memory range
618 * @map_end: end address of the target memory range
619 *
620 * This function will setup direct mapping for memory range
621 * [map_start, map_end) in top-down. That said, the page tables
622 * will be allocated at the end of the memory, and we map the
623 * memory in top-down.
624 */
memory_map_top_down(unsigned long map_start,unsigned long map_end)625 static void __init memory_map_top_down(unsigned long map_start,
626 unsigned long map_end)
627 {
628 unsigned long real_end, last_start;
629 unsigned long step_size;
630 unsigned long addr;
631 unsigned long mapped_ram_size = 0;
632
633 /*
634 * Systems that have many reserved areas near top of the memory,
635 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
636 * require lots of 4K mappings which may exhaust pgt_buf.
637 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
638 * there is enough mapped memory that can be allocated from
639 * memblock.
640 */
641 addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
642 map_end);
643 memblock_phys_free(addr, PMD_SIZE);
644 real_end = addr + PMD_SIZE;
645
646 /* step_size need to be small so pgt_buf from BRK could cover it */
647 step_size = PMD_SIZE;
648 max_pfn_mapped = 0; /* will get exact value next */
649 min_pfn_mapped = real_end >> PAGE_SHIFT;
650 last_start = real_end;
651
652 /*
653 * We start from the top (end of memory) and go to the bottom.
654 * The memblock_find_in_range() gets us a block of RAM from the
655 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
656 * for page table.
657 */
658 while (last_start > map_start) {
659 unsigned long start;
660
661 if (last_start > step_size) {
662 start = round_down(last_start - 1, step_size);
663 if (start < map_start)
664 start = map_start;
665 } else
666 start = map_start;
667 mapped_ram_size += init_range_memory_mapping(start,
668 last_start);
669 last_start = start;
670 min_pfn_mapped = last_start >> PAGE_SHIFT;
671 if (mapped_ram_size >= step_size)
672 step_size = get_new_step_size(step_size);
673 }
674
675 if (real_end < map_end)
676 init_range_memory_mapping(real_end, map_end);
677 }
678
679 /**
680 * memory_map_bottom_up - Map [map_start, map_end) bottom up
681 * @map_start: start address of the target memory range
682 * @map_end: end address of the target memory range
683 *
684 * This function will setup direct mapping for memory range
685 * [map_start, map_end) in bottom-up. Since we have limited the
686 * bottom-up allocation above the kernel, the page tables will
687 * be allocated just above the kernel and we map the memory
688 * in [map_start, map_end) in bottom-up.
689 */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)690 static void __init memory_map_bottom_up(unsigned long map_start,
691 unsigned long map_end)
692 {
693 unsigned long next, start;
694 unsigned long mapped_ram_size = 0;
695 /* step_size need to be small so pgt_buf from BRK could cover it */
696 unsigned long step_size = PMD_SIZE;
697
698 start = map_start;
699 min_pfn_mapped = start >> PAGE_SHIFT;
700
701 /*
702 * We start from the bottom (@map_start) and go to the top (@map_end).
703 * The memblock_find_in_range() gets us a block of RAM from the
704 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
705 * for page table.
706 */
707 while (start < map_end) {
708 if (step_size && map_end - start > step_size) {
709 next = round_up(start + 1, step_size);
710 if (next > map_end)
711 next = map_end;
712 } else {
713 next = map_end;
714 }
715
716 mapped_ram_size += init_range_memory_mapping(start, next);
717 start = next;
718
719 if (mapped_ram_size >= step_size)
720 step_size = get_new_step_size(step_size);
721 }
722 }
723
724 /*
725 * The real mode trampoline, which is required for bootstrapping CPUs
726 * occupies only a small area under the low 1MB. See reserve_real_mode()
727 * for details.
728 *
729 * If KASLR is disabled the first PGD entry of the direct mapping is copied
730 * to map the real mode trampoline.
731 *
732 * If KASLR is enabled, copy only the PUD which covers the low 1MB
733 * area. This limits the randomization granularity to 1GB for both 4-level
734 * and 5-level paging.
735 */
init_trampoline(void)736 static void __init init_trampoline(void)
737 {
738 #ifdef CONFIG_X86_64
739 /*
740 * The code below will alias kernel page-tables in the user-range of the
741 * address space, including the Global bit. So global TLB entries will
742 * be created when using the trampoline page-table.
743 */
744 if (!kaslr_memory_enabled())
745 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
746 else
747 init_trampoline_kaslr();
748 #endif
749 }
750
init_mem_mapping(void)751 void __init init_mem_mapping(void)
752 {
753 unsigned long end;
754
755 pti_check_boottime_disable();
756 probe_page_size_mask();
757 setup_pcid();
758
759 #ifdef CONFIG_X86_64
760 end = max_pfn << PAGE_SHIFT;
761 #else
762 end = max_low_pfn << PAGE_SHIFT;
763 #endif
764
765 /* the ISA range is always mapped regardless of memory holes */
766 init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
767
768 /* Init the trampoline, possibly with KASLR memory offset */
769 init_trampoline();
770
771 /*
772 * If the allocation is in bottom-up direction, we setup direct mapping
773 * in bottom-up, otherwise we setup direct mapping in top-down.
774 */
775 if (memblock_bottom_up()) {
776 unsigned long kernel_end = __pa_symbol(_end);
777
778 /*
779 * we need two separate calls here. This is because we want to
780 * allocate page tables above the kernel. So we first map
781 * [kernel_end, end) to make memory above the kernel be mapped
782 * as soon as possible. And then use page tables allocated above
783 * the kernel to map [ISA_END_ADDRESS, kernel_end).
784 */
785 memory_map_bottom_up(kernel_end, end);
786 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
787 } else {
788 memory_map_top_down(ISA_END_ADDRESS, end);
789 }
790
791 #ifdef CONFIG_X86_64
792 if (max_pfn > max_low_pfn) {
793 /* can we preserve max_low_pfn ?*/
794 max_low_pfn = max_pfn;
795 }
796 #else
797 early_ioremap_page_table_range_init();
798 #endif
799
800 load_cr3(swapper_pg_dir);
801 __flush_tlb_all();
802
803 x86_init.hyper.init_mem_mapping();
804
805 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
806 }
807
808 /*
809 * Initialize an mm_struct to be used during poking and a pointer to be used
810 * during patching.
811 */
poking_init(void)812 void __init poking_init(void)
813 {
814 spinlock_t *ptl;
815 pte_t *ptep;
816
817 poking_mm = mm_alloc();
818 BUG_ON(!poking_mm);
819
820 /* Xen PV guests need the PGD to be pinned. */
821 paravirt_enter_mmap(poking_mm);
822
823 /*
824 * Randomize the poking address, but make sure that the following page
825 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
826 * and adjust the address if the PMD ends after the first one.
827 */
828 poking_addr = TASK_UNMAPPED_BASE;
829 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
830 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
831 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
832
833 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
834 poking_addr += PAGE_SIZE;
835
836 /*
837 * We need to trigger the allocation of the page-tables that will be
838 * needed for poking now. Later, poking may be performed in an atomic
839 * section, which might cause allocation to fail.
840 */
841 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
842 BUG_ON(!ptep);
843 pte_unmap_unlock(ptep, ptl);
844 }
845
846 /*
847 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
848 * is valid. The argument is a physical page number.
849 *
850 * On x86, access has to be given to the first megabyte of RAM because that
851 * area traditionally contains BIOS code and data regions used by X, dosemu,
852 * and similar apps. Since they map the entire memory range, the whole range
853 * must be allowed (for mapping), but any areas that would otherwise be
854 * disallowed are flagged as being "zero filled" instead of rejected.
855 * Access has to be given to non-kernel-ram areas as well, these contain the
856 * PCI mmio resources as well as potential bios/acpi data regions.
857 */
devmem_is_allowed(unsigned long pagenr)858 int devmem_is_allowed(unsigned long pagenr)
859 {
860 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
861 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
862 != REGION_DISJOINT) {
863 /*
864 * For disallowed memory regions in the low 1MB range,
865 * request that the page be shown as all zeros.
866 */
867 if (pagenr < 256)
868 return 2;
869
870 return 0;
871 }
872
873 /*
874 * This must follow RAM test, since System RAM is considered a
875 * restricted resource under CONFIG_STRICT_DEVMEM.
876 */
877 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
878 /* Low 1MB bypasses iomem restrictions. */
879 if (pagenr < 256)
880 return 1;
881
882 return 0;
883 }
884
885 return 1;
886 }
887
free_init_pages(const char * what,unsigned long begin,unsigned long end)888 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
889 {
890 unsigned long begin_aligned, end_aligned;
891
892 /* Make sure boundaries are page aligned */
893 begin_aligned = PAGE_ALIGN(begin);
894 end_aligned = end & PAGE_MASK;
895
896 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
897 begin = begin_aligned;
898 end = end_aligned;
899 }
900
901 if (begin >= end)
902 return;
903
904 /*
905 * If debugging page accesses then do not free this memory but
906 * mark them not present - any buggy init-section access will
907 * create a kernel page fault:
908 */
909 if (debug_pagealloc_enabled()) {
910 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
911 begin, end - 1);
912 /*
913 * Inform kmemleak about the hole in the memory since the
914 * corresponding pages will be unmapped.
915 */
916 kmemleak_free_part((void *)begin, end - begin);
917 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
918 } else {
919 /*
920 * We just marked the kernel text read only above, now that
921 * we are going to free part of that, we need to make that
922 * writeable and non-executable first.
923 */
924 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
925 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
926
927 free_reserved_area((void *)begin, (void *)end,
928 POISON_FREE_INITMEM, what);
929 }
930 }
931
932 /*
933 * begin/end can be in the direct map or the "high kernel mapping"
934 * used for the kernel image only. free_init_pages() will do the
935 * right thing for either kind of address.
936 */
free_kernel_image_pages(const char * what,void * begin,void * end)937 void free_kernel_image_pages(const char *what, void *begin, void *end)
938 {
939 unsigned long begin_ul = (unsigned long)begin;
940 unsigned long end_ul = (unsigned long)end;
941 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
942
943 free_init_pages(what, begin_ul, end_ul);
944
945 /*
946 * PTI maps some of the kernel into userspace. For performance,
947 * this includes some kernel areas that do not contain secrets.
948 * Those areas might be adjacent to the parts of the kernel image
949 * being freed, which may contain secrets. Remove the "high kernel
950 * image mapping" for these freed areas, ensuring they are not even
951 * potentially vulnerable to Meltdown regardless of the specific
952 * optimizations PTI is currently using.
953 *
954 * The "noalias" prevents unmapping the direct map alias which is
955 * needed to access the freed pages.
956 *
957 * This is only valid for 64bit kernels. 32bit has only one mapping
958 * which can't be treated in this way for obvious reasons.
959 */
960 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
961 set_memory_np_noalias(begin_ul, len_pages);
962 }
963
free_initmem(void)964 void __ref free_initmem(void)
965 {
966 e820__reallocate_tables();
967
968 mem_encrypt_free_decrypted_mem();
969
970 free_kernel_image_pages("unused kernel image (initmem)",
971 &__init_begin, &__init_end);
972 }
973
974 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)975 void __init free_initrd_mem(unsigned long start, unsigned long end)
976 {
977 /*
978 * end could be not aligned, and We can not align that,
979 * decompressor could be confused by aligned initrd_end
980 * We already reserve the end partial page before in
981 * - i386_start_kernel()
982 * - x86_64_start_kernel()
983 * - relocate_initrd()
984 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
985 */
986 free_init_pages("initrd", start, PAGE_ALIGN(end));
987 }
988 #endif
989
zone_sizes_init(void)990 void __init zone_sizes_init(void)
991 {
992 unsigned long max_zone_pfns[MAX_NR_ZONES];
993
994 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
995
996 #ifdef CONFIG_ZONE_DMA
997 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
998 #endif
999 #ifdef CONFIG_ZONE_DMA32
1000 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
1001 #endif
1002 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
1003 #ifdef CONFIG_HIGHMEM
1004 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
1005 #endif
1006
1007 free_area_init(max_zone_pfns);
1008 }
1009
1010 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1011 .loaded_mm = &init_mm,
1012 .next_asid = 1,
1013 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
1014 };
1015
1016 #ifdef CONFIG_ADDRESS_MASKING
1017 DEFINE_PER_CPU(u64, tlbstate_untag_mask);
1018 EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
1019 #endif
1020
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)1021 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1022 {
1023 /* entry 0 MUST be WB (hardwired to speed up translations) */
1024 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1025
1026 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1027 __pte2cachemode_tbl[entry] = cache;
1028 }
1029
1030 #ifdef CONFIG_SWAP
arch_max_swapfile_size(void)1031 unsigned long arch_max_swapfile_size(void)
1032 {
1033 unsigned long pages;
1034
1035 pages = generic_max_swapfile_size();
1036
1037 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1038 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1039 unsigned long long l1tf_limit = l1tf_pfn_limit();
1040 /*
1041 * We encode swap offsets also with 3 bits below those for pfn
1042 * which makes the usable limit higher.
1043 */
1044 #if CONFIG_PGTABLE_LEVELS > 2
1045 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1046 #endif
1047 pages = min_t(unsigned long long, l1tf_limit, pages);
1048 }
1049 return pages;
1050 }
1051 #endif
1052
1053 #ifdef CONFIG_EXECMEM
1054 static struct execmem_info execmem_info __ro_after_init;
1055
execmem_arch_setup(void)1056 struct execmem_info __init *execmem_arch_setup(void)
1057 {
1058 unsigned long start, offset = 0;
1059
1060 if (kaslr_enabled())
1061 offset = get_random_u32_inclusive(1, 1024) * PAGE_SIZE;
1062
1063 start = MODULES_VADDR + offset;
1064
1065 execmem_info = (struct execmem_info){
1066 .ranges = {
1067 [EXECMEM_DEFAULT] = {
1068 .flags = EXECMEM_KASAN_SHADOW,
1069 .start = start,
1070 .end = MODULES_END,
1071 .pgprot = PAGE_KERNEL,
1072 .alignment = MODULE_ALIGN,
1073 },
1074 },
1075 };
1076
1077 return &execmem_info;
1078 }
1079 #endif /* CONFIG_EXECMEM */
1080