1  // SPDX-License-Identifier: GPL-2.0
2  #include <errno.h>
3  #include <inttypes.h>
4  #include "string2.h"
5  #include <sys/param.h>
6  #include <sys/types.h>
7  #include <byteswap.h>
8  #include <unistd.h>
9  #include <regex.h>
10  #include <stdio.h>
11  #include <stdlib.h>
12  #include <linux/compiler.h>
13  #include <linux/list.h>
14  #include <linux/kernel.h>
15  #include <linux/bitops.h>
16  #include <linux/string.h>
17  #include <linux/stringify.h>
18  #include <linux/zalloc.h>
19  #include <sys/stat.h>
20  #include <sys/utsname.h>
21  #include <linux/time64.h>
22  #include <dirent.h>
23  #ifdef HAVE_LIBBPF_SUPPORT
24  #include <bpf/libbpf.h>
25  #endif
26  #include <perf/cpumap.h>
27  #include <tools/libc_compat.h> // reallocarray
28  
29  #include "dso.h"
30  #include "evlist.h"
31  #include "evsel.h"
32  #include "util/evsel_fprintf.h"
33  #include "header.h"
34  #include "memswap.h"
35  #include "trace-event.h"
36  #include "session.h"
37  #include "symbol.h"
38  #include "debug.h"
39  #include "cpumap.h"
40  #include "pmu.h"
41  #include "pmus.h"
42  #include "vdso.h"
43  #include "strbuf.h"
44  #include "build-id.h"
45  #include "data.h"
46  #include <api/fs/fs.h>
47  #include "asm/bug.h"
48  #include "tool.h"
49  #include "time-utils.h"
50  #include "units.h"
51  #include "util/util.h" // perf_exe()
52  #include "cputopo.h"
53  #include "bpf-event.h"
54  #include "bpf-utils.h"
55  #include "clockid.h"
56  
57  #include <linux/ctype.h>
58  #include <internal/lib.h>
59  
60  #ifdef HAVE_LIBTRACEEVENT
61  #include <traceevent/event-parse.h>
62  #endif
63  
64  /*
65   * magic2 = "PERFILE2"
66   * must be a numerical value to let the endianness
67   * determine the memory layout. That way we are able
68   * to detect endianness when reading the perf.data file
69   * back.
70   *
71   * we check for legacy (PERFFILE) format.
72   */
73  static const char *__perf_magic1 = "PERFFILE";
74  static const u64 __perf_magic2    = 0x32454c4946524550ULL;
75  static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
76  
77  #define PERF_MAGIC	__perf_magic2
78  
79  const char perf_version_string[] = PERF_VERSION;
80  
81  struct perf_file_attr {
82  	struct perf_event_attr	attr;
83  	struct perf_file_section	ids;
84  };
85  
perf_header__set_feat(struct perf_header * header,int feat)86  void perf_header__set_feat(struct perf_header *header, int feat)
87  {
88  	__set_bit(feat, header->adds_features);
89  }
90  
perf_header__clear_feat(struct perf_header * header,int feat)91  void perf_header__clear_feat(struct perf_header *header, int feat)
92  {
93  	__clear_bit(feat, header->adds_features);
94  }
95  
perf_header__has_feat(const struct perf_header * header,int feat)96  bool perf_header__has_feat(const struct perf_header *header, int feat)
97  {
98  	return test_bit(feat, header->adds_features);
99  }
100  
__do_write_fd(struct feat_fd * ff,const void * buf,size_t size)101  static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
102  {
103  	ssize_t ret = writen(ff->fd, buf, size);
104  
105  	if (ret != (ssize_t)size)
106  		return ret < 0 ? (int)ret : -1;
107  	return 0;
108  }
109  
__do_write_buf(struct feat_fd * ff,const void * buf,size_t size)110  static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
111  {
112  	/* struct perf_event_header::size is u16 */
113  	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
114  	size_t new_size = ff->size;
115  	void *addr;
116  
117  	if (size + ff->offset > max_size)
118  		return -E2BIG;
119  
120  	while (size > (new_size - ff->offset))
121  		new_size <<= 1;
122  	new_size = min(max_size, new_size);
123  
124  	if (ff->size < new_size) {
125  		addr = realloc(ff->buf, new_size);
126  		if (!addr)
127  			return -ENOMEM;
128  		ff->buf = addr;
129  		ff->size = new_size;
130  	}
131  
132  	memcpy(ff->buf + ff->offset, buf, size);
133  	ff->offset += size;
134  
135  	return 0;
136  }
137  
138  /* Return: 0 if succeeded, -ERR if failed. */
do_write(struct feat_fd * ff,const void * buf,size_t size)139  int do_write(struct feat_fd *ff, const void *buf, size_t size)
140  {
141  	if (!ff->buf)
142  		return __do_write_fd(ff, buf, size);
143  	return __do_write_buf(ff, buf, size);
144  }
145  
146  /* Return: 0 if succeeded, -ERR if failed. */
do_write_bitmap(struct feat_fd * ff,unsigned long * set,u64 size)147  static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
148  {
149  	u64 *p = (u64 *) set;
150  	int i, ret;
151  
152  	ret = do_write(ff, &size, sizeof(size));
153  	if (ret < 0)
154  		return ret;
155  
156  	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
157  		ret = do_write(ff, p + i, sizeof(*p));
158  		if (ret < 0)
159  			return ret;
160  	}
161  
162  	return 0;
163  }
164  
165  /* Return: 0 if succeeded, -ERR if failed. */
write_padded(struct feat_fd * ff,const void * bf,size_t count,size_t count_aligned)166  int write_padded(struct feat_fd *ff, const void *bf,
167  		 size_t count, size_t count_aligned)
168  {
169  	static const char zero_buf[NAME_ALIGN];
170  	int err = do_write(ff, bf, count);
171  
172  	if (!err)
173  		err = do_write(ff, zero_buf, count_aligned - count);
174  
175  	return err;
176  }
177  
178  #define string_size(str)						\
179  	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
180  
181  /* Return: 0 if succeeded, -ERR if failed. */
do_write_string(struct feat_fd * ff,const char * str)182  static int do_write_string(struct feat_fd *ff, const char *str)
183  {
184  	u32 len, olen;
185  	int ret;
186  
187  	olen = strlen(str) + 1;
188  	len = PERF_ALIGN(olen, NAME_ALIGN);
189  
190  	/* write len, incl. \0 */
191  	ret = do_write(ff, &len, sizeof(len));
192  	if (ret < 0)
193  		return ret;
194  
195  	return write_padded(ff, str, olen, len);
196  }
197  
__do_read_fd(struct feat_fd * ff,void * addr,ssize_t size)198  static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
199  {
200  	ssize_t ret = readn(ff->fd, addr, size);
201  
202  	if (ret != size)
203  		return ret < 0 ? (int)ret : -1;
204  	return 0;
205  }
206  
__do_read_buf(struct feat_fd * ff,void * addr,ssize_t size)207  static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
208  {
209  	if (size > (ssize_t)ff->size - ff->offset)
210  		return -1;
211  
212  	memcpy(addr, ff->buf + ff->offset, size);
213  	ff->offset += size;
214  
215  	return 0;
216  
217  }
218  
__do_read(struct feat_fd * ff,void * addr,ssize_t size)219  static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
220  {
221  	if (!ff->buf)
222  		return __do_read_fd(ff, addr, size);
223  	return __do_read_buf(ff, addr, size);
224  }
225  
do_read_u32(struct feat_fd * ff,u32 * addr)226  static int do_read_u32(struct feat_fd *ff, u32 *addr)
227  {
228  	int ret;
229  
230  	ret = __do_read(ff, addr, sizeof(*addr));
231  	if (ret)
232  		return ret;
233  
234  	if (ff->ph->needs_swap)
235  		*addr = bswap_32(*addr);
236  	return 0;
237  }
238  
do_read_u64(struct feat_fd * ff,u64 * addr)239  static int do_read_u64(struct feat_fd *ff, u64 *addr)
240  {
241  	int ret;
242  
243  	ret = __do_read(ff, addr, sizeof(*addr));
244  	if (ret)
245  		return ret;
246  
247  	if (ff->ph->needs_swap)
248  		*addr = bswap_64(*addr);
249  	return 0;
250  }
251  
do_read_string(struct feat_fd * ff)252  static char *do_read_string(struct feat_fd *ff)
253  {
254  	u32 len;
255  	char *buf;
256  
257  	if (do_read_u32(ff, &len))
258  		return NULL;
259  
260  	buf = malloc(len);
261  	if (!buf)
262  		return NULL;
263  
264  	if (!__do_read(ff, buf, len)) {
265  		/*
266  		 * strings are padded by zeroes
267  		 * thus the actual strlen of buf
268  		 * may be less than len
269  		 */
270  		return buf;
271  	}
272  
273  	free(buf);
274  	return NULL;
275  }
276  
277  /* Return: 0 if succeeded, -ERR if failed. */
do_read_bitmap(struct feat_fd * ff,unsigned long ** pset,u64 * psize)278  static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
279  {
280  	unsigned long *set;
281  	u64 size, *p;
282  	int i, ret;
283  
284  	ret = do_read_u64(ff, &size);
285  	if (ret)
286  		return ret;
287  
288  	set = bitmap_zalloc(size);
289  	if (!set)
290  		return -ENOMEM;
291  
292  	p = (u64 *) set;
293  
294  	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
295  		ret = do_read_u64(ff, p + i);
296  		if (ret < 0) {
297  			free(set);
298  			return ret;
299  		}
300  	}
301  
302  	*pset  = set;
303  	*psize = size;
304  	return 0;
305  }
306  
307  #ifdef HAVE_LIBTRACEEVENT
write_tracing_data(struct feat_fd * ff,struct evlist * evlist)308  static int write_tracing_data(struct feat_fd *ff,
309  			      struct evlist *evlist)
310  {
311  	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
312  		return -1;
313  
314  	return read_tracing_data(ff->fd, &evlist->core.entries);
315  }
316  #endif
317  
write_build_id(struct feat_fd * ff,struct evlist * evlist __maybe_unused)318  static int write_build_id(struct feat_fd *ff,
319  			  struct evlist *evlist __maybe_unused)
320  {
321  	struct perf_session *session;
322  	int err;
323  
324  	session = container_of(ff->ph, struct perf_session, header);
325  
326  	if (!perf_session__read_build_ids(session, true))
327  		return -1;
328  
329  	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
330  		return -1;
331  
332  	err = perf_session__write_buildid_table(session, ff);
333  	if (err < 0) {
334  		pr_debug("failed to write buildid table\n");
335  		return err;
336  	}
337  	perf_session__cache_build_ids(session);
338  
339  	return 0;
340  }
341  
write_hostname(struct feat_fd * ff,struct evlist * evlist __maybe_unused)342  static int write_hostname(struct feat_fd *ff,
343  			  struct evlist *evlist __maybe_unused)
344  {
345  	struct utsname uts;
346  	int ret;
347  
348  	ret = uname(&uts);
349  	if (ret < 0)
350  		return -1;
351  
352  	return do_write_string(ff, uts.nodename);
353  }
354  
write_osrelease(struct feat_fd * ff,struct evlist * evlist __maybe_unused)355  static int write_osrelease(struct feat_fd *ff,
356  			   struct evlist *evlist __maybe_unused)
357  {
358  	struct utsname uts;
359  	int ret;
360  
361  	ret = uname(&uts);
362  	if (ret < 0)
363  		return -1;
364  
365  	return do_write_string(ff, uts.release);
366  }
367  
write_arch(struct feat_fd * ff,struct evlist * evlist __maybe_unused)368  static int write_arch(struct feat_fd *ff,
369  		      struct evlist *evlist __maybe_unused)
370  {
371  	struct utsname uts;
372  	int ret;
373  
374  	ret = uname(&uts);
375  	if (ret < 0)
376  		return -1;
377  
378  	return do_write_string(ff, uts.machine);
379  }
380  
write_version(struct feat_fd * ff,struct evlist * evlist __maybe_unused)381  static int write_version(struct feat_fd *ff,
382  			 struct evlist *evlist __maybe_unused)
383  {
384  	return do_write_string(ff, perf_version_string);
385  }
386  
__write_cpudesc(struct feat_fd * ff,const char * cpuinfo_proc)387  static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
388  {
389  	FILE *file;
390  	char *buf = NULL;
391  	char *s, *p;
392  	const char *search = cpuinfo_proc;
393  	size_t len = 0;
394  	int ret = -1;
395  
396  	if (!search)
397  		return -1;
398  
399  	file = fopen("/proc/cpuinfo", "r");
400  	if (!file)
401  		return -1;
402  
403  	while (getline(&buf, &len, file) > 0) {
404  		ret = strncmp(buf, search, strlen(search));
405  		if (!ret)
406  			break;
407  	}
408  
409  	if (ret) {
410  		ret = -1;
411  		goto done;
412  	}
413  
414  	s = buf;
415  
416  	p = strchr(buf, ':');
417  	if (p && *(p+1) == ' ' && *(p+2))
418  		s = p + 2;
419  	p = strchr(s, '\n');
420  	if (p)
421  		*p = '\0';
422  
423  	/* squash extra space characters (branding string) */
424  	p = s;
425  	while (*p) {
426  		if (isspace(*p)) {
427  			char *r = p + 1;
428  			char *q = skip_spaces(r);
429  			*p = ' ';
430  			if (q != (p+1))
431  				while ((*r++ = *q++));
432  		}
433  		p++;
434  	}
435  	ret = do_write_string(ff, s);
436  done:
437  	free(buf);
438  	fclose(file);
439  	return ret;
440  }
441  
write_cpudesc(struct feat_fd * ff,struct evlist * evlist __maybe_unused)442  static int write_cpudesc(struct feat_fd *ff,
443  		       struct evlist *evlist __maybe_unused)
444  {
445  #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
446  #define CPUINFO_PROC	{ "cpu", }
447  #elif defined(__s390__)
448  #define CPUINFO_PROC	{ "vendor_id", }
449  #elif defined(__sh__)
450  #define CPUINFO_PROC	{ "cpu type", }
451  #elif defined(__alpha__) || defined(__mips__)
452  #define CPUINFO_PROC	{ "cpu model", }
453  #elif defined(__arm__)
454  #define CPUINFO_PROC	{ "model name", "Processor", }
455  #elif defined(__arc__)
456  #define CPUINFO_PROC	{ "Processor", }
457  #elif defined(__xtensa__)
458  #define CPUINFO_PROC	{ "core ID", }
459  #elif defined(__loongarch__)
460  #define CPUINFO_PROC	{ "Model Name", }
461  #else
462  #define CPUINFO_PROC	{ "model name", }
463  #endif
464  	const char *cpuinfo_procs[] = CPUINFO_PROC;
465  #undef CPUINFO_PROC
466  	unsigned int i;
467  
468  	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
469  		int ret;
470  		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
471  		if (ret >= 0)
472  			return ret;
473  	}
474  	return -1;
475  }
476  
477  
write_nrcpus(struct feat_fd * ff,struct evlist * evlist __maybe_unused)478  static int write_nrcpus(struct feat_fd *ff,
479  			struct evlist *evlist __maybe_unused)
480  {
481  	long nr;
482  	u32 nrc, nra;
483  	int ret;
484  
485  	nrc = cpu__max_present_cpu().cpu;
486  
487  	nr = sysconf(_SC_NPROCESSORS_ONLN);
488  	if (nr < 0)
489  		return -1;
490  
491  	nra = (u32)(nr & UINT_MAX);
492  
493  	ret = do_write(ff, &nrc, sizeof(nrc));
494  	if (ret < 0)
495  		return ret;
496  
497  	return do_write(ff, &nra, sizeof(nra));
498  }
499  
write_event_desc(struct feat_fd * ff,struct evlist * evlist)500  static int write_event_desc(struct feat_fd *ff,
501  			    struct evlist *evlist)
502  {
503  	struct evsel *evsel;
504  	u32 nre, nri, sz;
505  	int ret;
506  
507  	nre = evlist->core.nr_entries;
508  
509  	/*
510  	 * write number of events
511  	 */
512  	ret = do_write(ff, &nre, sizeof(nre));
513  	if (ret < 0)
514  		return ret;
515  
516  	/*
517  	 * size of perf_event_attr struct
518  	 */
519  	sz = (u32)sizeof(evsel->core.attr);
520  	ret = do_write(ff, &sz, sizeof(sz));
521  	if (ret < 0)
522  		return ret;
523  
524  	evlist__for_each_entry(evlist, evsel) {
525  		ret = do_write(ff, &evsel->core.attr, sz);
526  		if (ret < 0)
527  			return ret;
528  		/*
529  		 * write number of unique id per event
530  		 * there is one id per instance of an event
531  		 *
532  		 * copy into an nri to be independent of the
533  		 * type of ids,
534  		 */
535  		nri = evsel->core.ids;
536  		ret = do_write(ff, &nri, sizeof(nri));
537  		if (ret < 0)
538  			return ret;
539  
540  		/*
541  		 * write event string as passed on cmdline
542  		 */
543  		ret = do_write_string(ff, evsel__name(evsel));
544  		if (ret < 0)
545  			return ret;
546  		/*
547  		 * write unique ids for this event
548  		 */
549  		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
550  		if (ret < 0)
551  			return ret;
552  	}
553  	return 0;
554  }
555  
write_cmdline(struct feat_fd * ff,struct evlist * evlist __maybe_unused)556  static int write_cmdline(struct feat_fd *ff,
557  			 struct evlist *evlist __maybe_unused)
558  {
559  	char pbuf[MAXPATHLEN], *buf;
560  	int i, ret, n;
561  
562  	/* actual path to perf binary */
563  	buf = perf_exe(pbuf, MAXPATHLEN);
564  
565  	/* account for binary path */
566  	n = perf_env.nr_cmdline + 1;
567  
568  	ret = do_write(ff, &n, sizeof(n));
569  	if (ret < 0)
570  		return ret;
571  
572  	ret = do_write_string(ff, buf);
573  	if (ret < 0)
574  		return ret;
575  
576  	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
577  		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
578  		if (ret < 0)
579  			return ret;
580  	}
581  	return 0;
582  }
583  
584  
write_cpu_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)585  static int write_cpu_topology(struct feat_fd *ff,
586  			      struct evlist *evlist __maybe_unused)
587  {
588  	struct cpu_topology *tp;
589  	u32 i;
590  	int ret, j;
591  
592  	tp = cpu_topology__new();
593  	if (!tp)
594  		return -1;
595  
596  	ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
597  	if (ret < 0)
598  		goto done;
599  
600  	for (i = 0; i < tp->package_cpus_lists; i++) {
601  		ret = do_write_string(ff, tp->package_cpus_list[i]);
602  		if (ret < 0)
603  			goto done;
604  	}
605  	ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
606  	if (ret < 0)
607  		goto done;
608  
609  	for (i = 0; i < tp->core_cpus_lists; i++) {
610  		ret = do_write_string(ff, tp->core_cpus_list[i]);
611  		if (ret < 0)
612  			break;
613  	}
614  
615  	ret = perf_env__read_cpu_topology_map(&perf_env);
616  	if (ret < 0)
617  		goto done;
618  
619  	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
620  		ret = do_write(ff, &perf_env.cpu[j].core_id,
621  			       sizeof(perf_env.cpu[j].core_id));
622  		if (ret < 0)
623  			return ret;
624  		ret = do_write(ff, &perf_env.cpu[j].socket_id,
625  			       sizeof(perf_env.cpu[j].socket_id));
626  		if (ret < 0)
627  			return ret;
628  	}
629  
630  	if (!tp->die_cpus_lists)
631  		goto done;
632  
633  	ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
634  	if (ret < 0)
635  		goto done;
636  
637  	for (i = 0; i < tp->die_cpus_lists; i++) {
638  		ret = do_write_string(ff, tp->die_cpus_list[i]);
639  		if (ret < 0)
640  			goto done;
641  	}
642  
643  	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
644  		ret = do_write(ff, &perf_env.cpu[j].die_id,
645  			       sizeof(perf_env.cpu[j].die_id));
646  		if (ret < 0)
647  			return ret;
648  	}
649  
650  done:
651  	cpu_topology__delete(tp);
652  	return ret;
653  }
654  
655  
656  
write_total_mem(struct feat_fd * ff,struct evlist * evlist __maybe_unused)657  static int write_total_mem(struct feat_fd *ff,
658  			   struct evlist *evlist __maybe_unused)
659  {
660  	char *buf = NULL;
661  	FILE *fp;
662  	size_t len = 0;
663  	int ret = -1, n;
664  	uint64_t mem;
665  
666  	fp = fopen("/proc/meminfo", "r");
667  	if (!fp)
668  		return -1;
669  
670  	while (getline(&buf, &len, fp) > 0) {
671  		ret = strncmp(buf, "MemTotal:", 9);
672  		if (!ret)
673  			break;
674  	}
675  	if (!ret) {
676  		n = sscanf(buf, "%*s %"PRIu64, &mem);
677  		if (n == 1)
678  			ret = do_write(ff, &mem, sizeof(mem));
679  	} else
680  		ret = -1;
681  	free(buf);
682  	fclose(fp);
683  	return ret;
684  }
685  
write_numa_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)686  static int write_numa_topology(struct feat_fd *ff,
687  			       struct evlist *evlist __maybe_unused)
688  {
689  	struct numa_topology *tp;
690  	int ret = -1;
691  	u32 i;
692  
693  	tp = numa_topology__new();
694  	if (!tp)
695  		return -ENOMEM;
696  
697  	ret = do_write(ff, &tp->nr, sizeof(u32));
698  	if (ret < 0)
699  		goto err;
700  
701  	for (i = 0; i < tp->nr; i++) {
702  		struct numa_topology_node *n = &tp->nodes[i];
703  
704  		ret = do_write(ff, &n->node, sizeof(u32));
705  		if (ret < 0)
706  			goto err;
707  
708  		ret = do_write(ff, &n->mem_total, sizeof(u64));
709  		if (ret)
710  			goto err;
711  
712  		ret = do_write(ff, &n->mem_free, sizeof(u64));
713  		if (ret)
714  			goto err;
715  
716  		ret = do_write_string(ff, n->cpus);
717  		if (ret < 0)
718  			goto err;
719  	}
720  
721  	ret = 0;
722  
723  err:
724  	numa_topology__delete(tp);
725  	return ret;
726  }
727  
728  /*
729   * File format:
730   *
731   * struct pmu_mappings {
732   *	u32	pmu_num;
733   *	struct pmu_map {
734   *		u32	type;
735   *		char	name[];
736   *	}[pmu_num];
737   * };
738   */
739  
write_pmu_mappings(struct feat_fd * ff,struct evlist * evlist __maybe_unused)740  static int write_pmu_mappings(struct feat_fd *ff,
741  			      struct evlist *evlist __maybe_unused)
742  {
743  	struct perf_pmu *pmu = NULL;
744  	u32 pmu_num = 0;
745  	int ret;
746  
747  	/*
748  	 * Do a first pass to count number of pmu to avoid lseek so this
749  	 * works in pipe mode as well.
750  	 */
751  	while ((pmu = perf_pmus__scan(pmu)))
752  		pmu_num++;
753  
754  	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
755  	if (ret < 0)
756  		return ret;
757  
758  	while ((pmu = perf_pmus__scan(pmu))) {
759  		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
760  		if (ret < 0)
761  			return ret;
762  
763  		ret = do_write_string(ff, pmu->name);
764  		if (ret < 0)
765  			return ret;
766  	}
767  
768  	return 0;
769  }
770  
771  /*
772   * File format:
773   *
774   * struct group_descs {
775   *	u32	nr_groups;
776   *	struct group_desc {
777   *		char	name[];
778   *		u32	leader_idx;
779   *		u32	nr_members;
780   *	}[nr_groups];
781   * };
782   */
write_group_desc(struct feat_fd * ff,struct evlist * evlist)783  static int write_group_desc(struct feat_fd *ff,
784  			    struct evlist *evlist)
785  {
786  	u32 nr_groups = evlist__nr_groups(evlist);
787  	struct evsel *evsel;
788  	int ret;
789  
790  	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
791  	if (ret < 0)
792  		return ret;
793  
794  	evlist__for_each_entry(evlist, evsel) {
795  		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
796  			const char *name = evsel->group_name ?: "{anon_group}";
797  			u32 leader_idx = evsel->core.idx;
798  			u32 nr_members = evsel->core.nr_members;
799  
800  			ret = do_write_string(ff, name);
801  			if (ret < 0)
802  				return ret;
803  
804  			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
805  			if (ret < 0)
806  				return ret;
807  
808  			ret = do_write(ff, &nr_members, sizeof(nr_members));
809  			if (ret < 0)
810  				return ret;
811  		}
812  	}
813  	return 0;
814  }
815  
816  /*
817   * Return the CPU id as a raw string.
818   *
819   * Each architecture should provide a more precise id string that
820   * can be use to match the architecture's "mapfile".
821   */
get_cpuid_str(struct perf_pmu * pmu __maybe_unused)822  char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
823  {
824  	return NULL;
825  }
826  
827  /* Return zero when the cpuid from the mapfile.csv matches the
828   * cpuid string generated on this platform.
829   * Otherwise return non-zero.
830   */
strcmp_cpuid_str(const char * mapcpuid,const char * cpuid)831  int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
832  {
833  	regex_t re;
834  	regmatch_t pmatch[1];
835  	int match;
836  
837  	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
838  		/* Warn unable to generate match particular string. */
839  		pr_info("Invalid regular expression %s\n", mapcpuid);
840  		return 1;
841  	}
842  
843  	match = !regexec(&re, cpuid, 1, pmatch, 0);
844  	regfree(&re);
845  	if (match) {
846  		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
847  
848  		/* Verify the entire string matched. */
849  		if (match_len == strlen(cpuid))
850  			return 0;
851  	}
852  	return 1;
853  }
854  
855  /*
856   * default get_cpuid(): nothing gets recorded
857   * actual implementation must be in arch/$(SRCARCH)/util/header.c
858   */
get_cpuid(char * buffer __maybe_unused,size_t sz __maybe_unused)859  int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
860  {
861  	return ENOSYS; /* Not implemented */
862  }
863  
write_cpuid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)864  static int write_cpuid(struct feat_fd *ff,
865  		       struct evlist *evlist __maybe_unused)
866  {
867  	char buffer[64];
868  	int ret;
869  
870  	ret = get_cpuid(buffer, sizeof(buffer));
871  	if (ret)
872  		return -1;
873  
874  	return do_write_string(ff, buffer);
875  }
876  
write_branch_stack(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)877  static int write_branch_stack(struct feat_fd *ff __maybe_unused,
878  			      struct evlist *evlist __maybe_unused)
879  {
880  	return 0;
881  }
882  
write_auxtrace(struct feat_fd * ff,struct evlist * evlist __maybe_unused)883  static int write_auxtrace(struct feat_fd *ff,
884  			  struct evlist *evlist __maybe_unused)
885  {
886  	struct perf_session *session;
887  	int err;
888  
889  	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
890  		return -1;
891  
892  	session = container_of(ff->ph, struct perf_session, header);
893  
894  	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
895  	if (err < 0)
896  		pr_err("Failed to write auxtrace index\n");
897  	return err;
898  }
899  
write_clockid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)900  static int write_clockid(struct feat_fd *ff,
901  			 struct evlist *evlist __maybe_unused)
902  {
903  	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
904  			sizeof(ff->ph->env.clock.clockid_res_ns));
905  }
906  
write_clock_data(struct feat_fd * ff,struct evlist * evlist __maybe_unused)907  static int write_clock_data(struct feat_fd *ff,
908  			    struct evlist *evlist __maybe_unused)
909  {
910  	u64 *data64;
911  	u32 data32;
912  	int ret;
913  
914  	/* version */
915  	data32 = 1;
916  
917  	ret = do_write(ff, &data32, sizeof(data32));
918  	if (ret < 0)
919  		return ret;
920  
921  	/* clockid */
922  	data32 = ff->ph->env.clock.clockid;
923  
924  	ret = do_write(ff, &data32, sizeof(data32));
925  	if (ret < 0)
926  		return ret;
927  
928  	/* TOD ref time */
929  	data64 = &ff->ph->env.clock.tod_ns;
930  
931  	ret = do_write(ff, data64, sizeof(*data64));
932  	if (ret < 0)
933  		return ret;
934  
935  	/* clockid ref time */
936  	data64 = &ff->ph->env.clock.clockid_ns;
937  
938  	return do_write(ff, data64, sizeof(*data64));
939  }
940  
write_hybrid_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)941  static int write_hybrid_topology(struct feat_fd *ff,
942  				 struct evlist *evlist __maybe_unused)
943  {
944  	struct hybrid_topology *tp;
945  	int ret;
946  	u32 i;
947  
948  	tp = hybrid_topology__new();
949  	if (!tp)
950  		return -ENOENT;
951  
952  	ret = do_write(ff, &tp->nr, sizeof(u32));
953  	if (ret < 0)
954  		goto err;
955  
956  	for (i = 0; i < tp->nr; i++) {
957  		struct hybrid_topology_node *n = &tp->nodes[i];
958  
959  		ret = do_write_string(ff, n->pmu_name);
960  		if (ret < 0)
961  			goto err;
962  
963  		ret = do_write_string(ff, n->cpus);
964  		if (ret < 0)
965  			goto err;
966  	}
967  
968  	ret = 0;
969  
970  err:
971  	hybrid_topology__delete(tp);
972  	return ret;
973  }
974  
write_dir_format(struct feat_fd * ff,struct evlist * evlist __maybe_unused)975  static int write_dir_format(struct feat_fd *ff,
976  			    struct evlist *evlist __maybe_unused)
977  {
978  	struct perf_session *session;
979  	struct perf_data *data;
980  
981  	session = container_of(ff->ph, struct perf_session, header);
982  	data = session->data;
983  
984  	if (WARN_ON(!perf_data__is_dir(data)))
985  		return -1;
986  
987  	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
988  }
989  
990  /*
991   * Check whether a CPU is online
992   *
993   * Returns:
994   *     1 -> if CPU is online
995   *     0 -> if CPU is offline
996   *    -1 -> error case
997   */
is_cpu_online(unsigned int cpu)998  int is_cpu_online(unsigned int cpu)
999  {
1000  	char *str;
1001  	size_t strlen;
1002  	char buf[256];
1003  	int status = -1;
1004  	struct stat statbuf;
1005  
1006  	snprintf(buf, sizeof(buf),
1007  		"/sys/devices/system/cpu/cpu%d", cpu);
1008  	if (stat(buf, &statbuf) != 0)
1009  		return 0;
1010  
1011  	/*
1012  	 * Check if /sys/devices/system/cpu/cpux/online file
1013  	 * exists. Some cases cpu0 won't have online file since
1014  	 * it is not expected to be turned off generally.
1015  	 * In kernels without CONFIG_HOTPLUG_CPU, this
1016  	 * file won't exist
1017  	 */
1018  	snprintf(buf, sizeof(buf),
1019  		"/sys/devices/system/cpu/cpu%d/online", cpu);
1020  	if (stat(buf, &statbuf) != 0)
1021  		return 1;
1022  
1023  	/*
1024  	 * Read online file using sysfs__read_str.
1025  	 * If read or open fails, return -1.
1026  	 * If read succeeds, return value from file
1027  	 * which gets stored in "str"
1028  	 */
1029  	snprintf(buf, sizeof(buf),
1030  		"devices/system/cpu/cpu%d/online", cpu);
1031  
1032  	if (sysfs__read_str(buf, &str, &strlen) < 0)
1033  		return status;
1034  
1035  	status = atoi(str);
1036  
1037  	free(str);
1038  	return status;
1039  }
1040  
1041  #ifdef HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1042  static int write_bpf_prog_info(struct feat_fd *ff,
1043  			       struct evlist *evlist __maybe_unused)
1044  {
1045  	struct perf_env *env = &ff->ph->env;
1046  	struct rb_root *root;
1047  	struct rb_node *next;
1048  	int ret;
1049  
1050  	down_read(&env->bpf_progs.lock);
1051  
1052  	ret = do_write(ff, &env->bpf_progs.infos_cnt,
1053  		       sizeof(env->bpf_progs.infos_cnt));
1054  	if (ret < 0)
1055  		goto out;
1056  
1057  	root = &env->bpf_progs.infos;
1058  	next = rb_first(root);
1059  	while (next) {
1060  		struct bpf_prog_info_node *node;
1061  		size_t len;
1062  
1063  		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1064  		next = rb_next(&node->rb_node);
1065  		len = sizeof(struct perf_bpil) +
1066  			node->info_linear->data_len;
1067  
1068  		/* before writing to file, translate address to offset */
1069  		bpil_addr_to_offs(node->info_linear);
1070  		ret = do_write(ff, node->info_linear, len);
1071  		/*
1072  		 * translate back to address even when do_write() fails,
1073  		 * so that this function never changes the data.
1074  		 */
1075  		bpil_offs_to_addr(node->info_linear);
1076  		if (ret < 0)
1077  			goto out;
1078  	}
1079  out:
1080  	up_read(&env->bpf_progs.lock);
1081  	return ret;
1082  }
1083  
write_bpf_btf(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1084  static int write_bpf_btf(struct feat_fd *ff,
1085  			 struct evlist *evlist __maybe_unused)
1086  {
1087  	struct perf_env *env = &ff->ph->env;
1088  	struct rb_root *root;
1089  	struct rb_node *next;
1090  	int ret;
1091  
1092  	down_read(&env->bpf_progs.lock);
1093  
1094  	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1095  		       sizeof(env->bpf_progs.btfs_cnt));
1096  
1097  	if (ret < 0)
1098  		goto out;
1099  
1100  	root = &env->bpf_progs.btfs;
1101  	next = rb_first(root);
1102  	while (next) {
1103  		struct btf_node *node;
1104  
1105  		node = rb_entry(next, struct btf_node, rb_node);
1106  		next = rb_next(&node->rb_node);
1107  		ret = do_write(ff, &node->id,
1108  			       sizeof(u32) * 2 + node->data_size);
1109  		if (ret < 0)
1110  			goto out;
1111  	}
1112  out:
1113  	up_read(&env->bpf_progs.lock);
1114  	return ret;
1115  }
1116  #endif // HAVE_LIBBPF_SUPPORT
1117  
cpu_cache_level__sort(const void * a,const void * b)1118  static int cpu_cache_level__sort(const void *a, const void *b)
1119  {
1120  	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1121  	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1122  
1123  	return cache_a->level - cache_b->level;
1124  }
1125  
cpu_cache_level__cmp(struct cpu_cache_level * a,struct cpu_cache_level * b)1126  static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1127  {
1128  	if (a->level != b->level)
1129  		return false;
1130  
1131  	if (a->line_size != b->line_size)
1132  		return false;
1133  
1134  	if (a->sets != b->sets)
1135  		return false;
1136  
1137  	if (a->ways != b->ways)
1138  		return false;
1139  
1140  	if (strcmp(a->type, b->type))
1141  		return false;
1142  
1143  	if (strcmp(a->size, b->size))
1144  		return false;
1145  
1146  	if (strcmp(a->map, b->map))
1147  		return false;
1148  
1149  	return true;
1150  }
1151  
cpu_cache_level__read(struct cpu_cache_level * cache,u32 cpu,u16 level)1152  static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1153  {
1154  	char path[PATH_MAX], file[PATH_MAX];
1155  	struct stat st;
1156  	size_t len;
1157  
1158  	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1159  	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1160  
1161  	if (stat(file, &st))
1162  		return 1;
1163  
1164  	scnprintf(file, PATH_MAX, "%s/level", path);
1165  	if (sysfs__read_int(file, (int *) &cache->level))
1166  		return -1;
1167  
1168  	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1169  	if (sysfs__read_int(file, (int *) &cache->line_size))
1170  		return -1;
1171  
1172  	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1173  	if (sysfs__read_int(file, (int *) &cache->sets))
1174  		return -1;
1175  
1176  	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1177  	if (sysfs__read_int(file, (int *) &cache->ways))
1178  		return -1;
1179  
1180  	scnprintf(file, PATH_MAX, "%s/type", path);
1181  	if (sysfs__read_str(file, &cache->type, &len))
1182  		return -1;
1183  
1184  	cache->type[len] = 0;
1185  	cache->type = strim(cache->type);
1186  
1187  	scnprintf(file, PATH_MAX, "%s/size", path);
1188  	if (sysfs__read_str(file, &cache->size, &len)) {
1189  		zfree(&cache->type);
1190  		return -1;
1191  	}
1192  
1193  	cache->size[len] = 0;
1194  	cache->size = strim(cache->size);
1195  
1196  	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1197  	if (sysfs__read_str(file, &cache->map, &len)) {
1198  		zfree(&cache->size);
1199  		zfree(&cache->type);
1200  		return -1;
1201  	}
1202  
1203  	cache->map[len] = 0;
1204  	cache->map = strim(cache->map);
1205  	return 0;
1206  }
1207  
cpu_cache_level__fprintf(FILE * out,struct cpu_cache_level * c)1208  static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1209  {
1210  	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1211  }
1212  
1213  /*
1214   * Build caches levels for a particular CPU from the data in
1215   * /sys/devices/system/cpu/cpu<cpu>/cache/
1216   * The cache level data is stored in caches[] from index at
1217   * *cntp.
1218   */
build_caches_for_cpu(u32 cpu,struct cpu_cache_level caches[],u32 * cntp)1219  int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1220  {
1221  	u16 level;
1222  
1223  	for (level = 0; level < MAX_CACHE_LVL; level++) {
1224  		struct cpu_cache_level c;
1225  		int err;
1226  		u32 i;
1227  
1228  		err = cpu_cache_level__read(&c, cpu, level);
1229  		if (err < 0)
1230  			return err;
1231  
1232  		if (err == 1)
1233  			break;
1234  
1235  		for (i = 0; i < *cntp; i++) {
1236  			if (cpu_cache_level__cmp(&c, &caches[i]))
1237  				break;
1238  		}
1239  
1240  		if (i == *cntp) {
1241  			caches[*cntp] = c;
1242  			*cntp = *cntp + 1;
1243  		} else
1244  			cpu_cache_level__free(&c);
1245  	}
1246  
1247  	return 0;
1248  }
1249  
build_caches(struct cpu_cache_level caches[],u32 * cntp)1250  static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1251  {
1252  	u32 nr, cpu, cnt = 0;
1253  
1254  	nr = cpu__max_cpu().cpu;
1255  
1256  	for (cpu = 0; cpu < nr; cpu++) {
1257  		int ret = build_caches_for_cpu(cpu, caches, &cnt);
1258  
1259  		if (ret)
1260  			return ret;
1261  	}
1262  	*cntp = cnt;
1263  	return 0;
1264  }
1265  
write_cache(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1266  static int write_cache(struct feat_fd *ff,
1267  		       struct evlist *evlist __maybe_unused)
1268  {
1269  	u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1270  	struct cpu_cache_level caches[max_caches];
1271  	u32 cnt = 0, i, version = 1;
1272  	int ret;
1273  
1274  	ret = build_caches(caches, &cnt);
1275  	if (ret)
1276  		goto out;
1277  
1278  	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1279  
1280  	ret = do_write(ff, &version, sizeof(u32));
1281  	if (ret < 0)
1282  		goto out;
1283  
1284  	ret = do_write(ff, &cnt, sizeof(u32));
1285  	if (ret < 0)
1286  		goto out;
1287  
1288  	for (i = 0; i < cnt; i++) {
1289  		struct cpu_cache_level *c = &caches[i];
1290  
1291  		#define _W(v)					\
1292  			ret = do_write(ff, &c->v, sizeof(u32));	\
1293  			if (ret < 0)				\
1294  				goto out;
1295  
1296  		_W(level)
1297  		_W(line_size)
1298  		_W(sets)
1299  		_W(ways)
1300  		#undef _W
1301  
1302  		#define _W(v)						\
1303  			ret = do_write_string(ff, (const char *) c->v);	\
1304  			if (ret < 0)					\
1305  				goto out;
1306  
1307  		_W(type)
1308  		_W(size)
1309  		_W(map)
1310  		#undef _W
1311  	}
1312  
1313  out:
1314  	for (i = 0; i < cnt; i++)
1315  		cpu_cache_level__free(&caches[i]);
1316  	return ret;
1317  }
1318  
write_stat(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1319  static int write_stat(struct feat_fd *ff __maybe_unused,
1320  		      struct evlist *evlist __maybe_unused)
1321  {
1322  	return 0;
1323  }
1324  
write_sample_time(struct feat_fd * ff,struct evlist * evlist)1325  static int write_sample_time(struct feat_fd *ff,
1326  			     struct evlist *evlist)
1327  {
1328  	int ret;
1329  
1330  	ret = do_write(ff, &evlist->first_sample_time,
1331  		       sizeof(evlist->first_sample_time));
1332  	if (ret < 0)
1333  		return ret;
1334  
1335  	return do_write(ff, &evlist->last_sample_time,
1336  			sizeof(evlist->last_sample_time));
1337  }
1338  
1339  
memory_node__read(struct memory_node * n,unsigned long idx)1340  static int memory_node__read(struct memory_node *n, unsigned long idx)
1341  {
1342  	unsigned int phys, size = 0;
1343  	char path[PATH_MAX];
1344  	struct dirent *ent;
1345  	DIR *dir;
1346  
1347  #define for_each_memory(mem, dir)					\
1348  	while ((ent = readdir(dir)))					\
1349  		if (strcmp(ent->d_name, ".") &&				\
1350  		    strcmp(ent->d_name, "..") &&			\
1351  		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1352  
1353  	scnprintf(path, PATH_MAX,
1354  		  "%s/devices/system/node/node%lu",
1355  		  sysfs__mountpoint(), idx);
1356  
1357  	dir = opendir(path);
1358  	if (!dir) {
1359  		pr_warning("failed: can't open memory sysfs data\n");
1360  		return -1;
1361  	}
1362  
1363  	for_each_memory(phys, dir) {
1364  		size = max(phys, size);
1365  	}
1366  
1367  	size++;
1368  
1369  	n->set = bitmap_zalloc(size);
1370  	if (!n->set) {
1371  		closedir(dir);
1372  		return -ENOMEM;
1373  	}
1374  
1375  	n->node = idx;
1376  	n->size = size;
1377  
1378  	rewinddir(dir);
1379  
1380  	for_each_memory(phys, dir) {
1381  		__set_bit(phys, n->set);
1382  	}
1383  
1384  	closedir(dir);
1385  	return 0;
1386  }
1387  
memory_node__delete_nodes(struct memory_node * nodesp,u64 cnt)1388  static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1389  {
1390  	for (u64 i = 0; i < cnt; i++)
1391  		bitmap_free(nodesp[i].set);
1392  
1393  	free(nodesp);
1394  }
1395  
memory_node__sort(const void * a,const void * b)1396  static int memory_node__sort(const void *a, const void *b)
1397  {
1398  	const struct memory_node *na = a;
1399  	const struct memory_node *nb = b;
1400  
1401  	return na->node - nb->node;
1402  }
1403  
build_mem_topology(struct memory_node ** nodesp,u64 * cntp)1404  static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1405  {
1406  	char path[PATH_MAX];
1407  	struct dirent *ent;
1408  	DIR *dir;
1409  	int ret = 0;
1410  	size_t cnt = 0, size = 0;
1411  	struct memory_node *nodes = NULL;
1412  
1413  	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1414  		  sysfs__mountpoint());
1415  
1416  	dir = opendir(path);
1417  	if (!dir) {
1418  		pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1419  			  __func__, path);
1420  		return -1;
1421  	}
1422  
1423  	while (!ret && (ent = readdir(dir))) {
1424  		unsigned int idx;
1425  		int r;
1426  
1427  		if (!strcmp(ent->d_name, ".") ||
1428  		    !strcmp(ent->d_name, ".."))
1429  			continue;
1430  
1431  		r = sscanf(ent->d_name, "node%u", &idx);
1432  		if (r != 1)
1433  			continue;
1434  
1435  		if (cnt >= size) {
1436  			struct memory_node *new_nodes =
1437  				reallocarray(nodes, cnt + 4, sizeof(*nodes));
1438  
1439  			if (!new_nodes) {
1440  				pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1441  				ret = -ENOMEM;
1442  				goto out;
1443  			}
1444  			nodes = new_nodes;
1445  			size += 4;
1446  		}
1447  		ret = memory_node__read(&nodes[cnt], idx);
1448  		if (!ret)
1449  			cnt += 1;
1450  	}
1451  out:
1452  	closedir(dir);
1453  	if (!ret) {
1454  		*cntp = cnt;
1455  		*nodesp = nodes;
1456  		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1457  	} else
1458  		memory_node__delete_nodes(nodes, cnt);
1459  
1460  	return ret;
1461  }
1462  
1463  /*
1464   * The MEM_TOPOLOGY holds physical memory map for every
1465   * node in system. The format of data is as follows:
1466   *
1467   *  0 - version          | for future changes
1468   *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1469   * 16 - count            | number of nodes
1470   *
1471   * For each node we store map of physical indexes for
1472   * each node:
1473   *
1474   * 32 - node id          | node index
1475   * 40 - size             | size of bitmap
1476   * 48 - bitmap           | bitmap of memory indexes that belongs to node
1477   */
write_mem_topology(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1478  static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1479  			      struct evlist *evlist __maybe_unused)
1480  {
1481  	struct memory_node *nodes = NULL;
1482  	u64 bsize, version = 1, i, nr = 0;
1483  	int ret;
1484  
1485  	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1486  			      (unsigned long long *) &bsize);
1487  	if (ret)
1488  		return ret;
1489  
1490  	ret = build_mem_topology(&nodes, &nr);
1491  	if (ret)
1492  		return ret;
1493  
1494  	ret = do_write(ff, &version, sizeof(version));
1495  	if (ret < 0)
1496  		goto out;
1497  
1498  	ret = do_write(ff, &bsize, sizeof(bsize));
1499  	if (ret < 0)
1500  		goto out;
1501  
1502  	ret = do_write(ff, &nr, sizeof(nr));
1503  	if (ret < 0)
1504  		goto out;
1505  
1506  	for (i = 0; i < nr; i++) {
1507  		struct memory_node *n = &nodes[i];
1508  
1509  		#define _W(v)						\
1510  			ret = do_write(ff, &n->v, sizeof(n->v));	\
1511  			if (ret < 0)					\
1512  				goto out;
1513  
1514  		_W(node)
1515  		_W(size)
1516  
1517  		#undef _W
1518  
1519  		ret = do_write_bitmap(ff, n->set, n->size);
1520  		if (ret < 0)
1521  			goto out;
1522  	}
1523  
1524  out:
1525  	memory_node__delete_nodes(nodes, nr);
1526  	return ret;
1527  }
1528  
write_compressed(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1529  static int write_compressed(struct feat_fd *ff __maybe_unused,
1530  			    struct evlist *evlist __maybe_unused)
1531  {
1532  	int ret;
1533  
1534  	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1535  	if (ret)
1536  		return ret;
1537  
1538  	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1539  	if (ret)
1540  		return ret;
1541  
1542  	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1543  	if (ret)
1544  		return ret;
1545  
1546  	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1547  	if (ret)
1548  		return ret;
1549  
1550  	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1551  }
1552  
__write_pmu_caps(struct feat_fd * ff,struct perf_pmu * pmu,bool write_pmu)1553  static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1554  			    bool write_pmu)
1555  {
1556  	struct perf_pmu_caps *caps = NULL;
1557  	int ret;
1558  
1559  	ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1560  	if (ret < 0)
1561  		return ret;
1562  
1563  	list_for_each_entry(caps, &pmu->caps, list) {
1564  		ret = do_write_string(ff, caps->name);
1565  		if (ret < 0)
1566  			return ret;
1567  
1568  		ret = do_write_string(ff, caps->value);
1569  		if (ret < 0)
1570  			return ret;
1571  	}
1572  
1573  	if (write_pmu) {
1574  		ret = do_write_string(ff, pmu->name);
1575  		if (ret < 0)
1576  			return ret;
1577  	}
1578  
1579  	return ret;
1580  }
1581  
write_cpu_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1582  static int write_cpu_pmu_caps(struct feat_fd *ff,
1583  			      struct evlist *evlist __maybe_unused)
1584  {
1585  	struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1586  	int ret;
1587  
1588  	if (!cpu_pmu)
1589  		return -ENOENT;
1590  
1591  	ret = perf_pmu__caps_parse(cpu_pmu);
1592  	if (ret < 0)
1593  		return ret;
1594  
1595  	return __write_pmu_caps(ff, cpu_pmu, false);
1596  }
1597  
write_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1598  static int write_pmu_caps(struct feat_fd *ff,
1599  			  struct evlist *evlist __maybe_unused)
1600  {
1601  	struct perf_pmu *pmu = NULL;
1602  	int nr_pmu = 0;
1603  	int ret;
1604  
1605  	while ((pmu = perf_pmus__scan(pmu))) {
1606  		if (!strcmp(pmu->name, "cpu")) {
1607  			/*
1608  			 * The "cpu" PMU is special and covered by
1609  			 * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1610  			 * counted/written here for ARM, s390 and Intel hybrid.
1611  			 */
1612  			continue;
1613  		}
1614  		if (perf_pmu__caps_parse(pmu) <= 0)
1615  			continue;
1616  		nr_pmu++;
1617  	}
1618  
1619  	ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1620  	if (ret < 0)
1621  		return ret;
1622  
1623  	if (!nr_pmu)
1624  		return 0;
1625  
1626  	/*
1627  	 * Note older perf tools assume core PMUs come first, this is a property
1628  	 * of perf_pmus__scan.
1629  	 */
1630  	pmu = NULL;
1631  	while ((pmu = perf_pmus__scan(pmu))) {
1632  		if (!strcmp(pmu->name, "cpu")) {
1633  			/* Skip as above. */
1634  			continue;
1635  		}
1636  		if (perf_pmu__caps_parse(pmu) <= 0)
1637  			continue;
1638  		ret = __write_pmu_caps(ff, pmu, true);
1639  		if (ret < 0)
1640  			return ret;
1641  	}
1642  	return 0;
1643  }
1644  
print_hostname(struct feat_fd * ff,FILE * fp)1645  static void print_hostname(struct feat_fd *ff, FILE *fp)
1646  {
1647  	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1648  }
1649  
print_osrelease(struct feat_fd * ff,FILE * fp)1650  static void print_osrelease(struct feat_fd *ff, FILE *fp)
1651  {
1652  	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1653  }
1654  
print_arch(struct feat_fd * ff,FILE * fp)1655  static void print_arch(struct feat_fd *ff, FILE *fp)
1656  {
1657  	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1658  }
1659  
print_cpudesc(struct feat_fd * ff,FILE * fp)1660  static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1661  {
1662  	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1663  }
1664  
print_nrcpus(struct feat_fd * ff,FILE * fp)1665  static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1666  {
1667  	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1668  	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1669  }
1670  
print_version(struct feat_fd * ff,FILE * fp)1671  static void print_version(struct feat_fd *ff, FILE *fp)
1672  {
1673  	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1674  }
1675  
print_cmdline(struct feat_fd * ff,FILE * fp)1676  static void print_cmdline(struct feat_fd *ff, FILE *fp)
1677  {
1678  	int nr, i;
1679  
1680  	nr = ff->ph->env.nr_cmdline;
1681  
1682  	fprintf(fp, "# cmdline : ");
1683  
1684  	for (i = 0; i < nr; i++) {
1685  		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1686  		if (!argv_i) {
1687  			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1688  		} else {
1689  			char *mem = argv_i;
1690  			do {
1691  				char *quote = strchr(argv_i, '\'');
1692  				if (!quote)
1693  					break;
1694  				*quote++ = '\0';
1695  				fprintf(fp, "%s\\\'", argv_i);
1696  				argv_i = quote;
1697  			} while (1);
1698  			fprintf(fp, "%s ", argv_i);
1699  			free(mem);
1700  		}
1701  	}
1702  	fputc('\n', fp);
1703  }
1704  
print_cpu_topology(struct feat_fd * ff,FILE * fp)1705  static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1706  {
1707  	struct perf_header *ph = ff->ph;
1708  	int cpu_nr = ph->env.nr_cpus_avail;
1709  	int nr, i;
1710  	char *str;
1711  
1712  	nr = ph->env.nr_sibling_cores;
1713  	str = ph->env.sibling_cores;
1714  
1715  	for (i = 0; i < nr; i++) {
1716  		fprintf(fp, "# sibling sockets : %s\n", str);
1717  		str += strlen(str) + 1;
1718  	}
1719  
1720  	if (ph->env.nr_sibling_dies) {
1721  		nr = ph->env.nr_sibling_dies;
1722  		str = ph->env.sibling_dies;
1723  
1724  		for (i = 0; i < nr; i++) {
1725  			fprintf(fp, "# sibling dies    : %s\n", str);
1726  			str += strlen(str) + 1;
1727  		}
1728  	}
1729  
1730  	nr = ph->env.nr_sibling_threads;
1731  	str = ph->env.sibling_threads;
1732  
1733  	for (i = 0; i < nr; i++) {
1734  		fprintf(fp, "# sibling threads : %s\n", str);
1735  		str += strlen(str) + 1;
1736  	}
1737  
1738  	if (ph->env.nr_sibling_dies) {
1739  		if (ph->env.cpu != NULL) {
1740  			for (i = 0; i < cpu_nr; i++)
1741  				fprintf(fp, "# CPU %d: Core ID %d, "
1742  					    "Die ID %d, Socket ID %d\n",
1743  					    i, ph->env.cpu[i].core_id,
1744  					    ph->env.cpu[i].die_id,
1745  					    ph->env.cpu[i].socket_id);
1746  		} else
1747  			fprintf(fp, "# Core ID, Die ID and Socket ID "
1748  				    "information is not available\n");
1749  	} else {
1750  		if (ph->env.cpu != NULL) {
1751  			for (i = 0; i < cpu_nr; i++)
1752  				fprintf(fp, "# CPU %d: Core ID %d, "
1753  					    "Socket ID %d\n",
1754  					    i, ph->env.cpu[i].core_id,
1755  					    ph->env.cpu[i].socket_id);
1756  		} else
1757  			fprintf(fp, "# Core ID and Socket ID "
1758  				    "information is not available\n");
1759  	}
1760  }
1761  
print_clockid(struct feat_fd * ff,FILE * fp)1762  static void print_clockid(struct feat_fd *ff, FILE *fp)
1763  {
1764  	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1765  		ff->ph->env.clock.clockid_res_ns * 1000);
1766  }
1767  
print_clock_data(struct feat_fd * ff,FILE * fp)1768  static void print_clock_data(struct feat_fd *ff, FILE *fp)
1769  {
1770  	struct timespec clockid_ns;
1771  	char tstr[64], date[64];
1772  	struct timeval tod_ns;
1773  	clockid_t clockid;
1774  	struct tm ltime;
1775  	u64 ref;
1776  
1777  	if (!ff->ph->env.clock.enabled) {
1778  		fprintf(fp, "# reference time disabled\n");
1779  		return;
1780  	}
1781  
1782  	/* Compute TOD time. */
1783  	ref = ff->ph->env.clock.tod_ns;
1784  	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1785  	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1786  	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1787  
1788  	/* Compute clockid time. */
1789  	ref = ff->ph->env.clock.clockid_ns;
1790  	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1791  	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1792  	clockid_ns.tv_nsec = ref;
1793  
1794  	clockid = ff->ph->env.clock.clockid;
1795  
1796  	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1797  		snprintf(tstr, sizeof(tstr), "<error>");
1798  	else {
1799  		strftime(date, sizeof(date), "%F %T", &ltime);
1800  		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1801  			  date, (int) tod_ns.tv_usec);
1802  	}
1803  
1804  	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1805  	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1806  		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1807  		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1808  		    clockid_name(clockid));
1809  }
1810  
print_hybrid_topology(struct feat_fd * ff,FILE * fp)1811  static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1812  {
1813  	int i;
1814  	struct hybrid_node *n;
1815  
1816  	fprintf(fp, "# hybrid cpu system:\n");
1817  	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1818  		n = &ff->ph->env.hybrid_nodes[i];
1819  		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1820  	}
1821  }
1822  
print_dir_format(struct feat_fd * ff,FILE * fp)1823  static void print_dir_format(struct feat_fd *ff, FILE *fp)
1824  {
1825  	struct perf_session *session;
1826  	struct perf_data *data;
1827  
1828  	session = container_of(ff->ph, struct perf_session, header);
1829  	data = session->data;
1830  
1831  	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1832  }
1833  
1834  #ifdef HAVE_LIBBPF_SUPPORT
print_bpf_prog_info(struct feat_fd * ff,FILE * fp)1835  static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1836  {
1837  	struct perf_env *env = &ff->ph->env;
1838  	struct rb_root *root;
1839  	struct rb_node *next;
1840  
1841  	down_read(&env->bpf_progs.lock);
1842  
1843  	root = &env->bpf_progs.infos;
1844  	next = rb_first(root);
1845  
1846  	while (next) {
1847  		struct bpf_prog_info_node *node;
1848  
1849  		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1850  		next = rb_next(&node->rb_node);
1851  
1852  		__bpf_event__print_bpf_prog_info(&node->info_linear->info,
1853  						 env, fp);
1854  	}
1855  
1856  	up_read(&env->bpf_progs.lock);
1857  }
1858  
print_bpf_btf(struct feat_fd * ff,FILE * fp)1859  static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1860  {
1861  	struct perf_env *env = &ff->ph->env;
1862  	struct rb_root *root;
1863  	struct rb_node *next;
1864  
1865  	down_read(&env->bpf_progs.lock);
1866  
1867  	root = &env->bpf_progs.btfs;
1868  	next = rb_first(root);
1869  
1870  	while (next) {
1871  		struct btf_node *node;
1872  
1873  		node = rb_entry(next, struct btf_node, rb_node);
1874  		next = rb_next(&node->rb_node);
1875  		fprintf(fp, "# btf info of id %u\n", node->id);
1876  	}
1877  
1878  	up_read(&env->bpf_progs.lock);
1879  }
1880  #endif // HAVE_LIBBPF_SUPPORT
1881  
free_event_desc(struct evsel * events)1882  static void free_event_desc(struct evsel *events)
1883  {
1884  	struct evsel *evsel;
1885  
1886  	if (!events)
1887  		return;
1888  
1889  	for (evsel = events; evsel->core.attr.size; evsel++) {
1890  		zfree(&evsel->name);
1891  		zfree(&evsel->core.id);
1892  	}
1893  
1894  	free(events);
1895  }
1896  
perf_attr_check(struct perf_event_attr * attr)1897  static bool perf_attr_check(struct perf_event_attr *attr)
1898  {
1899  	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1900  		pr_warning("Reserved bits are set unexpectedly. "
1901  			   "Please update perf tool.\n");
1902  		return false;
1903  	}
1904  
1905  	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1906  		pr_warning("Unknown sample type (0x%llx) is detected. "
1907  			   "Please update perf tool.\n",
1908  			   attr->sample_type);
1909  		return false;
1910  	}
1911  
1912  	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1913  		pr_warning("Unknown read format (0x%llx) is detected. "
1914  			   "Please update perf tool.\n",
1915  			   attr->read_format);
1916  		return false;
1917  	}
1918  
1919  	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1920  	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1921  		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1922  			   "Please update perf tool.\n",
1923  			   attr->branch_sample_type);
1924  
1925  		return false;
1926  	}
1927  
1928  	return true;
1929  }
1930  
read_event_desc(struct feat_fd * ff)1931  static struct evsel *read_event_desc(struct feat_fd *ff)
1932  {
1933  	struct evsel *evsel, *events = NULL;
1934  	u64 *id;
1935  	void *buf = NULL;
1936  	u32 nre, sz, nr, i, j;
1937  	size_t msz;
1938  
1939  	/* number of events */
1940  	if (do_read_u32(ff, &nre))
1941  		goto error;
1942  
1943  	if (do_read_u32(ff, &sz))
1944  		goto error;
1945  
1946  	/* buffer to hold on file attr struct */
1947  	buf = malloc(sz);
1948  	if (!buf)
1949  		goto error;
1950  
1951  	/* the last event terminates with evsel->core.attr.size == 0: */
1952  	events = calloc(nre + 1, sizeof(*events));
1953  	if (!events)
1954  		goto error;
1955  
1956  	msz = sizeof(evsel->core.attr);
1957  	if (sz < msz)
1958  		msz = sz;
1959  
1960  	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1961  		evsel->core.idx = i;
1962  
1963  		/*
1964  		 * must read entire on-file attr struct to
1965  		 * sync up with layout.
1966  		 */
1967  		if (__do_read(ff, buf, sz))
1968  			goto error;
1969  
1970  		if (ff->ph->needs_swap)
1971  			perf_event__attr_swap(buf);
1972  
1973  		memcpy(&evsel->core.attr, buf, msz);
1974  
1975  		if (!perf_attr_check(&evsel->core.attr))
1976  			goto error;
1977  
1978  		if (do_read_u32(ff, &nr))
1979  			goto error;
1980  
1981  		if (ff->ph->needs_swap)
1982  			evsel->needs_swap = true;
1983  
1984  		evsel->name = do_read_string(ff);
1985  		if (!evsel->name)
1986  			goto error;
1987  
1988  		if (!nr)
1989  			continue;
1990  
1991  		id = calloc(nr, sizeof(*id));
1992  		if (!id)
1993  			goto error;
1994  		evsel->core.ids = nr;
1995  		evsel->core.id = id;
1996  
1997  		for (j = 0 ; j < nr; j++) {
1998  			if (do_read_u64(ff, id))
1999  				goto error;
2000  			id++;
2001  		}
2002  	}
2003  out:
2004  	free(buf);
2005  	return events;
2006  error:
2007  	free_event_desc(events);
2008  	events = NULL;
2009  	goto out;
2010  }
2011  
__desc_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)2012  static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
2013  				void *priv __maybe_unused)
2014  {
2015  	return fprintf(fp, ", %s = %s", name, val);
2016  }
2017  
print_event_desc(struct feat_fd * ff,FILE * fp)2018  static void print_event_desc(struct feat_fd *ff, FILE *fp)
2019  {
2020  	struct evsel *evsel, *events;
2021  	u32 j;
2022  	u64 *id;
2023  
2024  	if (ff->events)
2025  		events = ff->events;
2026  	else
2027  		events = read_event_desc(ff);
2028  
2029  	if (!events) {
2030  		fprintf(fp, "# event desc: not available or unable to read\n");
2031  		return;
2032  	}
2033  
2034  	for (evsel = events; evsel->core.attr.size; evsel++) {
2035  		fprintf(fp, "# event : name = %s, ", evsel->name);
2036  
2037  		if (evsel->core.ids) {
2038  			fprintf(fp, ", id = {");
2039  			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2040  				if (j)
2041  					fputc(',', fp);
2042  				fprintf(fp, " %"PRIu64, *id);
2043  			}
2044  			fprintf(fp, " }");
2045  		}
2046  
2047  		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2048  
2049  		fputc('\n', fp);
2050  	}
2051  
2052  	free_event_desc(events);
2053  	ff->events = NULL;
2054  }
2055  
print_total_mem(struct feat_fd * ff,FILE * fp)2056  static void print_total_mem(struct feat_fd *ff, FILE *fp)
2057  {
2058  	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2059  }
2060  
print_numa_topology(struct feat_fd * ff,FILE * fp)2061  static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2062  {
2063  	int i;
2064  	struct numa_node *n;
2065  
2066  	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2067  		n = &ff->ph->env.numa_nodes[i];
2068  
2069  		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2070  			    " free = %"PRIu64" kB\n",
2071  			n->node, n->mem_total, n->mem_free);
2072  
2073  		fprintf(fp, "# node%u cpu list : ", n->node);
2074  		cpu_map__fprintf(n->map, fp);
2075  	}
2076  }
2077  
print_cpuid(struct feat_fd * ff,FILE * fp)2078  static void print_cpuid(struct feat_fd *ff, FILE *fp)
2079  {
2080  	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2081  }
2082  
print_branch_stack(struct feat_fd * ff __maybe_unused,FILE * fp)2083  static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2084  {
2085  	fprintf(fp, "# contains samples with branch stack\n");
2086  }
2087  
print_auxtrace(struct feat_fd * ff __maybe_unused,FILE * fp)2088  static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2089  {
2090  	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2091  }
2092  
print_stat(struct feat_fd * ff __maybe_unused,FILE * fp)2093  static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2094  {
2095  	fprintf(fp, "# contains stat data\n");
2096  }
2097  
print_cache(struct feat_fd * ff,FILE * fp __maybe_unused)2098  static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2099  {
2100  	int i;
2101  
2102  	fprintf(fp, "# CPU cache info:\n");
2103  	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2104  		fprintf(fp, "#  ");
2105  		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2106  	}
2107  }
2108  
print_compressed(struct feat_fd * ff,FILE * fp)2109  static void print_compressed(struct feat_fd *ff, FILE *fp)
2110  {
2111  	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2112  		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2113  		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2114  }
2115  
__print_pmu_caps(FILE * fp,int nr_caps,char ** caps,char * pmu_name)2116  static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2117  {
2118  	const char *delimiter = "";
2119  	int i;
2120  
2121  	if (!nr_caps) {
2122  		fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2123  		return;
2124  	}
2125  
2126  	fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2127  	for (i = 0; i < nr_caps; i++) {
2128  		fprintf(fp, "%s%s", delimiter, caps[i]);
2129  		delimiter = ", ";
2130  	}
2131  
2132  	fprintf(fp, "\n");
2133  }
2134  
print_cpu_pmu_caps(struct feat_fd * ff,FILE * fp)2135  static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2136  {
2137  	__print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2138  			 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2139  }
2140  
print_pmu_caps(struct feat_fd * ff,FILE * fp)2141  static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2142  {
2143  	struct pmu_caps *pmu_caps;
2144  
2145  	for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2146  		pmu_caps = &ff->ph->env.pmu_caps[i];
2147  		__print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2148  				 pmu_caps->pmu_name);
2149  	}
2150  
2151  	if (strcmp(perf_env__arch(&ff->ph->env), "x86") == 0 &&
2152  	    perf_env__has_pmu_mapping(&ff->ph->env, "ibs_op")) {
2153  		char *max_precise = perf_env__find_pmu_cap(&ff->ph->env, "cpu", "max_precise");
2154  
2155  		if (max_precise != NULL && atoi(max_precise) == 0)
2156  			fprintf(fp, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n");
2157  	}
2158  }
2159  
print_pmu_mappings(struct feat_fd * ff,FILE * fp)2160  static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2161  {
2162  	const char *delimiter = "# pmu mappings: ";
2163  	char *str, *tmp;
2164  	u32 pmu_num;
2165  	u32 type;
2166  
2167  	pmu_num = ff->ph->env.nr_pmu_mappings;
2168  	if (!pmu_num) {
2169  		fprintf(fp, "# pmu mappings: not available\n");
2170  		return;
2171  	}
2172  
2173  	str = ff->ph->env.pmu_mappings;
2174  
2175  	while (pmu_num) {
2176  		type = strtoul(str, &tmp, 0);
2177  		if (*tmp != ':')
2178  			goto error;
2179  
2180  		str = tmp + 1;
2181  		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2182  
2183  		delimiter = ", ";
2184  		str += strlen(str) + 1;
2185  		pmu_num--;
2186  	}
2187  
2188  	fprintf(fp, "\n");
2189  
2190  	if (!pmu_num)
2191  		return;
2192  error:
2193  	fprintf(fp, "# pmu mappings: unable to read\n");
2194  }
2195  
print_group_desc(struct feat_fd * ff,FILE * fp)2196  static void print_group_desc(struct feat_fd *ff, FILE *fp)
2197  {
2198  	struct perf_session *session;
2199  	struct evsel *evsel;
2200  	u32 nr = 0;
2201  
2202  	session = container_of(ff->ph, struct perf_session, header);
2203  
2204  	evlist__for_each_entry(session->evlist, evsel) {
2205  		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2206  			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2207  
2208  			nr = evsel->core.nr_members - 1;
2209  		} else if (nr) {
2210  			fprintf(fp, ",%s", evsel__name(evsel));
2211  
2212  			if (--nr == 0)
2213  				fprintf(fp, "}\n");
2214  		}
2215  	}
2216  }
2217  
print_sample_time(struct feat_fd * ff,FILE * fp)2218  static void print_sample_time(struct feat_fd *ff, FILE *fp)
2219  {
2220  	struct perf_session *session;
2221  	char time_buf[32];
2222  	double d;
2223  
2224  	session = container_of(ff->ph, struct perf_session, header);
2225  
2226  	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2227  				  time_buf, sizeof(time_buf));
2228  	fprintf(fp, "# time of first sample : %s\n", time_buf);
2229  
2230  	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2231  				  time_buf, sizeof(time_buf));
2232  	fprintf(fp, "# time of last sample : %s\n", time_buf);
2233  
2234  	d = (double)(session->evlist->last_sample_time -
2235  		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2236  
2237  	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2238  }
2239  
memory_node__fprintf(struct memory_node * n,unsigned long long bsize,FILE * fp)2240  static void memory_node__fprintf(struct memory_node *n,
2241  				 unsigned long long bsize, FILE *fp)
2242  {
2243  	char buf_map[100], buf_size[50];
2244  	unsigned long long size;
2245  
2246  	size = bsize * bitmap_weight(n->set, n->size);
2247  	unit_number__scnprintf(buf_size, 50, size);
2248  
2249  	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2250  	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2251  }
2252  
print_mem_topology(struct feat_fd * ff,FILE * fp)2253  static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2254  {
2255  	struct memory_node *nodes;
2256  	int i, nr;
2257  
2258  	nodes = ff->ph->env.memory_nodes;
2259  	nr    = ff->ph->env.nr_memory_nodes;
2260  
2261  	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2262  		nr, ff->ph->env.memory_bsize);
2263  
2264  	for (i = 0; i < nr; i++) {
2265  		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2266  	}
2267  }
2268  
__event_process_build_id(struct perf_record_header_build_id * bev,char * filename,struct perf_session * session)2269  static int __event_process_build_id(struct perf_record_header_build_id *bev,
2270  				    char *filename,
2271  				    struct perf_session *session)
2272  {
2273  	int err = -1;
2274  	struct machine *machine;
2275  	u16 cpumode;
2276  	struct dso *dso;
2277  	enum dso_space_type dso_space;
2278  
2279  	machine = perf_session__findnew_machine(session, bev->pid);
2280  	if (!machine)
2281  		goto out;
2282  
2283  	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2284  
2285  	switch (cpumode) {
2286  	case PERF_RECORD_MISC_KERNEL:
2287  		dso_space = DSO_SPACE__KERNEL;
2288  		break;
2289  	case PERF_RECORD_MISC_GUEST_KERNEL:
2290  		dso_space = DSO_SPACE__KERNEL_GUEST;
2291  		break;
2292  	case PERF_RECORD_MISC_USER:
2293  	case PERF_RECORD_MISC_GUEST_USER:
2294  		dso_space = DSO_SPACE__USER;
2295  		break;
2296  	default:
2297  		goto out;
2298  	}
2299  
2300  	dso = machine__findnew_dso(machine, filename);
2301  	if (dso != NULL) {
2302  		char sbuild_id[SBUILD_ID_SIZE];
2303  		struct build_id bid;
2304  		size_t size = BUILD_ID_SIZE;
2305  
2306  		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2307  			size = bev->size;
2308  
2309  		build_id__init(&bid, bev->data, size);
2310  		dso__set_build_id(dso, &bid);
2311  		dso__set_header_build_id(dso, true);
2312  
2313  		if (dso_space != DSO_SPACE__USER) {
2314  			struct kmod_path m = { .name = NULL, };
2315  
2316  			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2317  				dso__set_module_info(dso, &m, machine);
2318  
2319  			dso__set_kernel(dso, dso_space);
2320  			free(m.name);
2321  		}
2322  
2323  		build_id__sprintf(dso__bid(dso), sbuild_id);
2324  		pr_debug("build id event received for %s: %s [%zu]\n",
2325  			 dso__long_name(dso), sbuild_id, size);
2326  		dso__put(dso);
2327  	}
2328  
2329  	err = 0;
2330  out:
2331  	return err;
2332  }
2333  
perf_header__read_build_ids_abi_quirk(struct perf_header * header,int input,u64 offset,u64 size)2334  static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2335  						 int input, u64 offset, u64 size)
2336  {
2337  	struct perf_session *session = container_of(header, struct perf_session, header);
2338  	struct {
2339  		struct perf_event_header   header;
2340  		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2341  		char			   filename[0];
2342  	} old_bev;
2343  	struct perf_record_header_build_id bev;
2344  	char filename[PATH_MAX];
2345  	u64 limit = offset + size;
2346  
2347  	while (offset < limit) {
2348  		ssize_t len;
2349  
2350  		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2351  			return -1;
2352  
2353  		if (header->needs_swap)
2354  			perf_event_header__bswap(&old_bev.header);
2355  
2356  		len = old_bev.header.size - sizeof(old_bev);
2357  		if (readn(input, filename, len) != len)
2358  			return -1;
2359  
2360  		bev.header = old_bev.header;
2361  
2362  		/*
2363  		 * As the pid is the missing value, we need to fill
2364  		 * it properly. The header.misc value give us nice hint.
2365  		 */
2366  		bev.pid	= HOST_KERNEL_ID;
2367  		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2368  		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2369  			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2370  
2371  		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2372  		__event_process_build_id(&bev, filename, session);
2373  
2374  		offset += bev.header.size;
2375  	}
2376  
2377  	return 0;
2378  }
2379  
perf_header__read_build_ids(struct perf_header * header,int input,u64 offset,u64 size)2380  static int perf_header__read_build_ids(struct perf_header *header,
2381  				       int input, u64 offset, u64 size)
2382  {
2383  	struct perf_session *session = container_of(header, struct perf_session, header);
2384  	struct perf_record_header_build_id bev;
2385  	char filename[PATH_MAX];
2386  	u64 limit = offset + size, orig_offset = offset;
2387  	int err = -1;
2388  
2389  	while (offset < limit) {
2390  		ssize_t len;
2391  
2392  		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2393  			goto out;
2394  
2395  		if (header->needs_swap)
2396  			perf_event_header__bswap(&bev.header);
2397  
2398  		len = bev.header.size - sizeof(bev);
2399  		if (readn(input, filename, len) != len)
2400  			goto out;
2401  		/*
2402  		 * The a1645ce1 changeset:
2403  		 *
2404  		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2405  		 *
2406  		 * Added a field to struct perf_record_header_build_id that broke the file
2407  		 * format.
2408  		 *
2409  		 * Since the kernel build-id is the first entry, process the
2410  		 * table using the old format if the well known
2411  		 * '[kernel.kallsyms]' string for the kernel build-id has the
2412  		 * first 4 characters chopped off (where the pid_t sits).
2413  		 */
2414  		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2415  			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2416  				return -1;
2417  			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2418  		}
2419  
2420  		__event_process_build_id(&bev, filename, session);
2421  
2422  		offset += bev.header.size;
2423  	}
2424  	err = 0;
2425  out:
2426  	return err;
2427  }
2428  
2429  /* Macro for features that simply need to read and store a string. */
2430  #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2431  static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2432  {\
2433  	free(ff->ph->env.__feat_env);		     \
2434  	ff->ph->env.__feat_env = do_read_string(ff); \
2435  	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2436  }
2437  
2438  FEAT_PROCESS_STR_FUN(hostname, hostname);
2439  FEAT_PROCESS_STR_FUN(osrelease, os_release);
2440  FEAT_PROCESS_STR_FUN(version, version);
2441  FEAT_PROCESS_STR_FUN(arch, arch);
2442  FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2443  FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2444  
2445  #ifdef HAVE_LIBTRACEEVENT
process_tracing_data(struct feat_fd * ff,void * data)2446  static int process_tracing_data(struct feat_fd *ff, void *data)
2447  {
2448  	ssize_t ret = trace_report(ff->fd, data, false);
2449  
2450  	return ret < 0 ? -1 : 0;
2451  }
2452  #endif
2453  
process_build_id(struct feat_fd * ff,void * data __maybe_unused)2454  static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2455  {
2456  	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2457  		pr_debug("Failed to read buildids, continuing...\n");
2458  	return 0;
2459  }
2460  
process_nrcpus(struct feat_fd * ff,void * data __maybe_unused)2461  static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2462  {
2463  	int ret;
2464  	u32 nr_cpus_avail, nr_cpus_online;
2465  
2466  	ret = do_read_u32(ff, &nr_cpus_avail);
2467  	if (ret)
2468  		return ret;
2469  
2470  	ret = do_read_u32(ff, &nr_cpus_online);
2471  	if (ret)
2472  		return ret;
2473  	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2474  	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2475  	return 0;
2476  }
2477  
process_total_mem(struct feat_fd * ff,void * data __maybe_unused)2478  static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2479  {
2480  	u64 total_mem;
2481  	int ret;
2482  
2483  	ret = do_read_u64(ff, &total_mem);
2484  	if (ret)
2485  		return -1;
2486  	ff->ph->env.total_mem = (unsigned long long)total_mem;
2487  	return 0;
2488  }
2489  
evlist__find_by_index(struct evlist * evlist,int idx)2490  static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2491  {
2492  	struct evsel *evsel;
2493  
2494  	evlist__for_each_entry(evlist, evsel) {
2495  		if (evsel->core.idx == idx)
2496  			return evsel;
2497  	}
2498  
2499  	return NULL;
2500  }
2501  
evlist__set_event_name(struct evlist * evlist,struct evsel * event)2502  static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2503  {
2504  	struct evsel *evsel;
2505  
2506  	if (!event->name)
2507  		return;
2508  
2509  	evsel = evlist__find_by_index(evlist, event->core.idx);
2510  	if (!evsel)
2511  		return;
2512  
2513  	if (evsel->name)
2514  		return;
2515  
2516  	evsel->name = strdup(event->name);
2517  }
2518  
2519  static int
process_event_desc(struct feat_fd * ff,void * data __maybe_unused)2520  process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2521  {
2522  	struct perf_session *session;
2523  	struct evsel *evsel, *events = read_event_desc(ff);
2524  
2525  	if (!events)
2526  		return 0;
2527  
2528  	session = container_of(ff->ph, struct perf_session, header);
2529  
2530  	if (session->data->is_pipe) {
2531  		/* Save events for reading later by print_event_desc,
2532  		 * since they can't be read again in pipe mode. */
2533  		ff->events = events;
2534  	}
2535  
2536  	for (evsel = events; evsel->core.attr.size; evsel++)
2537  		evlist__set_event_name(session->evlist, evsel);
2538  
2539  	if (!session->data->is_pipe)
2540  		free_event_desc(events);
2541  
2542  	return 0;
2543  }
2544  
process_cmdline(struct feat_fd * ff,void * data __maybe_unused)2545  static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2546  {
2547  	char *str, *cmdline = NULL, **argv = NULL;
2548  	u32 nr, i, len = 0;
2549  
2550  	if (do_read_u32(ff, &nr))
2551  		return -1;
2552  
2553  	ff->ph->env.nr_cmdline = nr;
2554  
2555  	cmdline = zalloc(ff->size + nr + 1);
2556  	if (!cmdline)
2557  		return -1;
2558  
2559  	argv = zalloc(sizeof(char *) * (nr + 1));
2560  	if (!argv)
2561  		goto error;
2562  
2563  	for (i = 0; i < nr; i++) {
2564  		str = do_read_string(ff);
2565  		if (!str)
2566  			goto error;
2567  
2568  		argv[i] = cmdline + len;
2569  		memcpy(argv[i], str, strlen(str) + 1);
2570  		len += strlen(str) + 1;
2571  		free(str);
2572  	}
2573  	ff->ph->env.cmdline = cmdline;
2574  	ff->ph->env.cmdline_argv = (const char **) argv;
2575  	return 0;
2576  
2577  error:
2578  	free(argv);
2579  	free(cmdline);
2580  	return -1;
2581  }
2582  
process_cpu_topology(struct feat_fd * ff,void * data __maybe_unused)2583  static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2584  {
2585  	u32 nr, i;
2586  	char *str = NULL;
2587  	struct strbuf sb;
2588  	int cpu_nr = ff->ph->env.nr_cpus_avail;
2589  	u64 size = 0;
2590  	struct perf_header *ph = ff->ph;
2591  	bool do_core_id_test = true;
2592  
2593  	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2594  	if (!ph->env.cpu)
2595  		return -1;
2596  
2597  	if (do_read_u32(ff, &nr))
2598  		goto free_cpu;
2599  
2600  	ph->env.nr_sibling_cores = nr;
2601  	size += sizeof(u32);
2602  	if (strbuf_init(&sb, 128) < 0)
2603  		goto free_cpu;
2604  
2605  	for (i = 0; i < nr; i++) {
2606  		str = do_read_string(ff);
2607  		if (!str)
2608  			goto error;
2609  
2610  		/* include a NULL character at the end */
2611  		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2612  			goto error;
2613  		size += string_size(str);
2614  		zfree(&str);
2615  	}
2616  	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2617  
2618  	if (do_read_u32(ff, &nr))
2619  		return -1;
2620  
2621  	ph->env.nr_sibling_threads = nr;
2622  	size += sizeof(u32);
2623  
2624  	for (i = 0; i < nr; i++) {
2625  		str = do_read_string(ff);
2626  		if (!str)
2627  			goto error;
2628  
2629  		/* include a NULL character at the end */
2630  		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2631  			goto error;
2632  		size += string_size(str);
2633  		zfree(&str);
2634  	}
2635  	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2636  
2637  	/*
2638  	 * The header may be from old perf,
2639  	 * which doesn't include core id and socket id information.
2640  	 */
2641  	if (ff->size <= size) {
2642  		zfree(&ph->env.cpu);
2643  		return 0;
2644  	}
2645  
2646  	/* On s390 the socket_id number is not related to the numbers of cpus.
2647  	 * The socket_id number might be higher than the numbers of cpus.
2648  	 * This depends on the configuration.
2649  	 * AArch64 is the same.
2650  	 */
2651  	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2652  			  || !strncmp(ph->env.arch, "aarch64", 7)))
2653  		do_core_id_test = false;
2654  
2655  	for (i = 0; i < (u32)cpu_nr; i++) {
2656  		if (do_read_u32(ff, &nr))
2657  			goto free_cpu;
2658  
2659  		ph->env.cpu[i].core_id = nr;
2660  		size += sizeof(u32);
2661  
2662  		if (do_read_u32(ff, &nr))
2663  			goto free_cpu;
2664  
2665  		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2666  			pr_debug("socket_id number is too big."
2667  				 "You may need to upgrade the perf tool.\n");
2668  			goto free_cpu;
2669  		}
2670  
2671  		ph->env.cpu[i].socket_id = nr;
2672  		size += sizeof(u32);
2673  	}
2674  
2675  	/*
2676  	 * The header may be from old perf,
2677  	 * which doesn't include die information.
2678  	 */
2679  	if (ff->size <= size)
2680  		return 0;
2681  
2682  	if (do_read_u32(ff, &nr))
2683  		return -1;
2684  
2685  	ph->env.nr_sibling_dies = nr;
2686  	size += sizeof(u32);
2687  
2688  	for (i = 0; i < nr; i++) {
2689  		str = do_read_string(ff);
2690  		if (!str)
2691  			goto error;
2692  
2693  		/* include a NULL character at the end */
2694  		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2695  			goto error;
2696  		size += string_size(str);
2697  		zfree(&str);
2698  	}
2699  	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2700  
2701  	for (i = 0; i < (u32)cpu_nr; i++) {
2702  		if (do_read_u32(ff, &nr))
2703  			goto free_cpu;
2704  
2705  		ph->env.cpu[i].die_id = nr;
2706  	}
2707  
2708  	return 0;
2709  
2710  error:
2711  	strbuf_release(&sb);
2712  	zfree(&str);
2713  free_cpu:
2714  	zfree(&ph->env.cpu);
2715  	return -1;
2716  }
2717  
process_numa_topology(struct feat_fd * ff,void * data __maybe_unused)2718  static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2719  {
2720  	struct numa_node *nodes, *n;
2721  	u32 nr, i;
2722  	char *str;
2723  
2724  	/* nr nodes */
2725  	if (do_read_u32(ff, &nr))
2726  		return -1;
2727  
2728  	nodes = zalloc(sizeof(*nodes) * nr);
2729  	if (!nodes)
2730  		return -ENOMEM;
2731  
2732  	for (i = 0; i < nr; i++) {
2733  		n = &nodes[i];
2734  
2735  		/* node number */
2736  		if (do_read_u32(ff, &n->node))
2737  			goto error;
2738  
2739  		if (do_read_u64(ff, &n->mem_total))
2740  			goto error;
2741  
2742  		if (do_read_u64(ff, &n->mem_free))
2743  			goto error;
2744  
2745  		str = do_read_string(ff);
2746  		if (!str)
2747  			goto error;
2748  
2749  		n->map = perf_cpu_map__new(str);
2750  		free(str);
2751  		if (!n->map)
2752  			goto error;
2753  	}
2754  	ff->ph->env.nr_numa_nodes = nr;
2755  	ff->ph->env.numa_nodes = nodes;
2756  	return 0;
2757  
2758  error:
2759  	free(nodes);
2760  	return -1;
2761  }
2762  
process_pmu_mappings(struct feat_fd * ff,void * data __maybe_unused)2763  static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2764  {
2765  	char *name;
2766  	u32 pmu_num;
2767  	u32 type;
2768  	struct strbuf sb;
2769  
2770  	if (do_read_u32(ff, &pmu_num))
2771  		return -1;
2772  
2773  	if (!pmu_num) {
2774  		pr_debug("pmu mappings not available\n");
2775  		return 0;
2776  	}
2777  
2778  	ff->ph->env.nr_pmu_mappings = pmu_num;
2779  	if (strbuf_init(&sb, 128) < 0)
2780  		return -1;
2781  
2782  	while (pmu_num) {
2783  		if (do_read_u32(ff, &type))
2784  			goto error;
2785  
2786  		name = do_read_string(ff);
2787  		if (!name)
2788  			goto error;
2789  
2790  		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2791  			goto error;
2792  		/* include a NULL character at the end */
2793  		if (strbuf_add(&sb, "", 1) < 0)
2794  			goto error;
2795  
2796  		if (!strcmp(name, "msr"))
2797  			ff->ph->env.msr_pmu_type = type;
2798  
2799  		free(name);
2800  		pmu_num--;
2801  	}
2802  	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2803  	return 0;
2804  
2805  error:
2806  	strbuf_release(&sb);
2807  	return -1;
2808  }
2809  
process_group_desc(struct feat_fd * ff,void * data __maybe_unused)2810  static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2811  {
2812  	size_t ret = -1;
2813  	u32 i, nr, nr_groups;
2814  	struct perf_session *session;
2815  	struct evsel *evsel, *leader = NULL;
2816  	struct group_desc {
2817  		char *name;
2818  		u32 leader_idx;
2819  		u32 nr_members;
2820  	} *desc;
2821  
2822  	if (do_read_u32(ff, &nr_groups))
2823  		return -1;
2824  
2825  	ff->ph->env.nr_groups = nr_groups;
2826  	if (!nr_groups) {
2827  		pr_debug("group desc not available\n");
2828  		return 0;
2829  	}
2830  
2831  	desc = calloc(nr_groups, sizeof(*desc));
2832  	if (!desc)
2833  		return -1;
2834  
2835  	for (i = 0; i < nr_groups; i++) {
2836  		desc[i].name = do_read_string(ff);
2837  		if (!desc[i].name)
2838  			goto out_free;
2839  
2840  		if (do_read_u32(ff, &desc[i].leader_idx))
2841  			goto out_free;
2842  
2843  		if (do_read_u32(ff, &desc[i].nr_members))
2844  			goto out_free;
2845  	}
2846  
2847  	/*
2848  	 * Rebuild group relationship based on the group_desc
2849  	 */
2850  	session = container_of(ff->ph, struct perf_session, header);
2851  
2852  	i = nr = 0;
2853  	evlist__for_each_entry(session->evlist, evsel) {
2854  		if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2855  			evsel__set_leader(evsel, evsel);
2856  			/* {anon_group} is a dummy name */
2857  			if (strcmp(desc[i].name, "{anon_group}")) {
2858  				evsel->group_name = desc[i].name;
2859  				desc[i].name = NULL;
2860  			}
2861  			evsel->core.nr_members = desc[i].nr_members;
2862  
2863  			if (i >= nr_groups || nr > 0) {
2864  				pr_debug("invalid group desc\n");
2865  				goto out_free;
2866  			}
2867  
2868  			leader = evsel;
2869  			nr = evsel->core.nr_members - 1;
2870  			i++;
2871  		} else if (nr) {
2872  			/* This is a group member */
2873  			evsel__set_leader(evsel, leader);
2874  
2875  			nr--;
2876  		}
2877  	}
2878  
2879  	if (i != nr_groups || nr != 0) {
2880  		pr_debug("invalid group desc\n");
2881  		goto out_free;
2882  	}
2883  
2884  	ret = 0;
2885  out_free:
2886  	for (i = 0; i < nr_groups; i++)
2887  		zfree(&desc[i].name);
2888  	free(desc);
2889  
2890  	return ret;
2891  }
2892  
process_auxtrace(struct feat_fd * ff,void * data __maybe_unused)2893  static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2894  {
2895  	struct perf_session *session;
2896  	int err;
2897  
2898  	session = container_of(ff->ph, struct perf_session, header);
2899  
2900  	err = auxtrace_index__process(ff->fd, ff->size, session,
2901  				      ff->ph->needs_swap);
2902  	if (err < 0)
2903  		pr_err("Failed to process auxtrace index\n");
2904  	return err;
2905  }
2906  
process_cache(struct feat_fd * ff,void * data __maybe_unused)2907  static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2908  {
2909  	struct cpu_cache_level *caches;
2910  	u32 cnt, i, version;
2911  
2912  	if (do_read_u32(ff, &version))
2913  		return -1;
2914  
2915  	if (version != 1)
2916  		return -1;
2917  
2918  	if (do_read_u32(ff, &cnt))
2919  		return -1;
2920  
2921  	caches = zalloc(sizeof(*caches) * cnt);
2922  	if (!caches)
2923  		return -1;
2924  
2925  	for (i = 0; i < cnt; i++) {
2926  		struct cpu_cache_level *c = &caches[i];
2927  
2928  		#define _R(v)						\
2929  			if (do_read_u32(ff, &c->v))			\
2930  				goto out_free_caches;			\
2931  
2932  		_R(level)
2933  		_R(line_size)
2934  		_R(sets)
2935  		_R(ways)
2936  		#undef _R
2937  
2938  		#define _R(v)					\
2939  			c->v = do_read_string(ff);		\
2940  			if (!c->v)				\
2941  				goto out_free_caches;		\
2942  
2943  		_R(type)
2944  		_R(size)
2945  		_R(map)
2946  		#undef _R
2947  	}
2948  
2949  	ff->ph->env.caches = caches;
2950  	ff->ph->env.caches_cnt = cnt;
2951  	return 0;
2952  out_free_caches:
2953  	for (i = 0; i < cnt; i++) {
2954  		free(caches[i].type);
2955  		free(caches[i].size);
2956  		free(caches[i].map);
2957  	}
2958  	free(caches);
2959  	return -1;
2960  }
2961  
process_sample_time(struct feat_fd * ff,void * data __maybe_unused)2962  static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2963  {
2964  	struct perf_session *session;
2965  	u64 first_sample_time, last_sample_time;
2966  	int ret;
2967  
2968  	session = container_of(ff->ph, struct perf_session, header);
2969  
2970  	ret = do_read_u64(ff, &first_sample_time);
2971  	if (ret)
2972  		return -1;
2973  
2974  	ret = do_read_u64(ff, &last_sample_time);
2975  	if (ret)
2976  		return -1;
2977  
2978  	session->evlist->first_sample_time = first_sample_time;
2979  	session->evlist->last_sample_time = last_sample_time;
2980  	return 0;
2981  }
2982  
process_mem_topology(struct feat_fd * ff,void * data __maybe_unused)2983  static int process_mem_topology(struct feat_fd *ff,
2984  				void *data __maybe_unused)
2985  {
2986  	struct memory_node *nodes;
2987  	u64 version, i, nr, bsize;
2988  	int ret = -1;
2989  
2990  	if (do_read_u64(ff, &version))
2991  		return -1;
2992  
2993  	if (version != 1)
2994  		return -1;
2995  
2996  	if (do_read_u64(ff, &bsize))
2997  		return -1;
2998  
2999  	if (do_read_u64(ff, &nr))
3000  		return -1;
3001  
3002  	nodes = zalloc(sizeof(*nodes) * nr);
3003  	if (!nodes)
3004  		return -1;
3005  
3006  	for (i = 0; i < nr; i++) {
3007  		struct memory_node n;
3008  
3009  		#define _R(v)				\
3010  			if (do_read_u64(ff, &n.v))	\
3011  				goto out;		\
3012  
3013  		_R(node)
3014  		_R(size)
3015  
3016  		#undef _R
3017  
3018  		if (do_read_bitmap(ff, &n.set, &n.size))
3019  			goto out;
3020  
3021  		nodes[i] = n;
3022  	}
3023  
3024  	ff->ph->env.memory_bsize    = bsize;
3025  	ff->ph->env.memory_nodes    = nodes;
3026  	ff->ph->env.nr_memory_nodes = nr;
3027  	ret = 0;
3028  
3029  out:
3030  	if (ret)
3031  		free(nodes);
3032  	return ret;
3033  }
3034  
process_clockid(struct feat_fd * ff,void * data __maybe_unused)3035  static int process_clockid(struct feat_fd *ff,
3036  			   void *data __maybe_unused)
3037  {
3038  	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3039  		return -1;
3040  
3041  	return 0;
3042  }
3043  
process_clock_data(struct feat_fd * ff,void * _data __maybe_unused)3044  static int process_clock_data(struct feat_fd *ff,
3045  			      void *_data __maybe_unused)
3046  {
3047  	u32 data32;
3048  	u64 data64;
3049  
3050  	/* version */
3051  	if (do_read_u32(ff, &data32))
3052  		return -1;
3053  
3054  	if (data32 != 1)
3055  		return -1;
3056  
3057  	/* clockid */
3058  	if (do_read_u32(ff, &data32))
3059  		return -1;
3060  
3061  	ff->ph->env.clock.clockid = data32;
3062  
3063  	/* TOD ref time */
3064  	if (do_read_u64(ff, &data64))
3065  		return -1;
3066  
3067  	ff->ph->env.clock.tod_ns = data64;
3068  
3069  	/* clockid ref time */
3070  	if (do_read_u64(ff, &data64))
3071  		return -1;
3072  
3073  	ff->ph->env.clock.clockid_ns = data64;
3074  	ff->ph->env.clock.enabled = true;
3075  	return 0;
3076  }
3077  
process_hybrid_topology(struct feat_fd * ff,void * data __maybe_unused)3078  static int process_hybrid_topology(struct feat_fd *ff,
3079  				   void *data __maybe_unused)
3080  {
3081  	struct hybrid_node *nodes, *n;
3082  	u32 nr, i;
3083  
3084  	/* nr nodes */
3085  	if (do_read_u32(ff, &nr))
3086  		return -1;
3087  
3088  	nodes = zalloc(sizeof(*nodes) * nr);
3089  	if (!nodes)
3090  		return -ENOMEM;
3091  
3092  	for (i = 0; i < nr; i++) {
3093  		n = &nodes[i];
3094  
3095  		n->pmu_name = do_read_string(ff);
3096  		if (!n->pmu_name)
3097  			goto error;
3098  
3099  		n->cpus = do_read_string(ff);
3100  		if (!n->cpus)
3101  			goto error;
3102  	}
3103  
3104  	ff->ph->env.nr_hybrid_nodes = nr;
3105  	ff->ph->env.hybrid_nodes = nodes;
3106  	return 0;
3107  
3108  error:
3109  	for (i = 0; i < nr; i++) {
3110  		free(nodes[i].pmu_name);
3111  		free(nodes[i].cpus);
3112  	}
3113  
3114  	free(nodes);
3115  	return -1;
3116  }
3117  
process_dir_format(struct feat_fd * ff,void * _data __maybe_unused)3118  static int process_dir_format(struct feat_fd *ff,
3119  			      void *_data __maybe_unused)
3120  {
3121  	struct perf_session *session;
3122  	struct perf_data *data;
3123  
3124  	session = container_of(ff->ph, struct perf_session, header);
3125  	data = session->data;
3126  
3127  	if (WARN_ON(!perf_data__is_dir(data)))
3128  		return -1;
3129  
3130  	return do_read_u64(ff, &data->dir.version);
3131  }
3132  
3133  #ifdef HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff,void * data __maybe_unused)3134  static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3135  {
3136  	struct bpf_prog_info_node *info_node;
3137  	struct perf_env *env = &ff->ph->env;
3138  	struct perf_bpil *info_linear;
3139  	u32 count, i;
3140  	int err = -1;
3141  
3142  	if (ff->ph->needs_swap) {
3143  		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3144  		return 0;
3145  	}
3146  
3147  	if (do_read_u32(ff, &count))
3148  		return -1;
3149  
3150  	down_write(&env->bpf_progs.lock);
3151  
3152  	for (i = 0; i < count; ++i) {
3153  		u32 info_len, data_len;
3154  
3155  		info_linear = NULL;
3156  		info_node = NULL;
3157  		if (do_read_u32(ff, &info_len))
3158  			goto out;
3159  		if (do_read_u32(ff, &data_len))
3160  			goto out;
3161  
3162  		if (info_len > sizeof(struct bpf_prog_info)) {
3163  			pr_warning("detected invalid bpf_prog_info\n");
3164  			goto out;
3165  		}
3166  
3167  		info_linear = malloc(sizeof(struct perf_bpil) +
3168  				     data_len);
3169  		if (!info_linear)
3170  			goto out;
3171  		info_linear->info_len = sizeof(struct bpf_prog_info);
3172  		info_linear->data_len = data_len;
3173  		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3174  			goto out;
3175  		if (__do_read(ff, &info_linear->info, info_len))
3176  			goto out;
3177  		if (info_len < sizeof(struct bpf_prog_info))
3178  			memset(((void *)(&info_linear->info)) + info_len, 0,
3179  			       sizeof(struct bpf_prog_info) - info_len);
3180  
3181  		if (__do_read(ff, info_linear->data, data_len))
3182  			goto out;
3183  
3184  		info_node = malloc(sizeof(struct bpf_prog_info_node));
3185  		if (!info_node)
3186  			goto out;
3187  
3188  		/* after reading from file, translate offset to address */
3189  		bpil_offs_to_addr(info_linear);
3190  		info_node->info_linear = info_linear;
3191  		__perf_env__insert_bpf_prog_info(env, info_node);
3192  	}
3193  
3194  	up_write(&env->bpf_progs.lock);
3195  	return 0;
3196  out:
3197  	free(info_linear);
3198  	free(info_node);
3199  	up_write(&env->bpf_progs.lock);
3200  	return err;
3201  }
3202  
process_bpf_btf(struct feat_fd * ff,void * data __maybe_unused)3203  static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3204  {
3205  	struct perf_env *env = &ff->ph->env;
3206  	struct btf_node *node = NULL;
3207  	u32 count, i;
3208  	int err = -1;
3209  
3210  	if (ff->ph->needs_swap) {
3211  		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3212  		return 0;
3213  	}
3214  
3215  	if (do_read_u32(ff, &count))
3216  		return -1;
3217  
3218  	down_write(&env->bpf_progs.lock);
3219  
3220  	for (i = 0; i < count; ++i) {
3221  		u32 id, data_size;
3222  
3223  		if (do_read_u32(ff, &id))
3224  			goto out;
3225  		if (do_read_u32(ff, &data_size))
3226  			goto out;
3227  
3228  		node = malloc(sizeof(struct btf_node) + data_size);
3229  		if (!node)
3230  			goto out;
3231  
3232  		node->id = id;
3233  		node->data_size = data_size;
3234  
3235  		if (__do_read(ff, node->data, data_size))
3236  			goto out;
3237  
3238  		__perf_env__insert_btf(env, node);
3239  		node = NULL;
3240  	}
3241  
3242  	err = 0;
3243  out:
3244  	up_write(&env->bpf_progs.lock);
3245  	free(node);
3246  	return err;
3247  }
3248  #endif // HAVE_LIBBPF_SUPPORT
3249  
process_compressed(struct feat_fd * ff,void * data __maybe_unused)3250  static int process_compressed(struct feat_fd *ff,
3251  			      void *data __maybe_unused)
3252  {
3253  	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3254  		return -1;
3255  
3256  	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3257  		return -1;
3258  
3259  	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3260  		return -1;
3261  
3262  	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3263  		return -1;
3264  
3265  	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3266  		return -1;
3267  
3268  	return 0;
3269  }
3270  
__process_pmu_caps(struct feat_fd * ff,int * nr_caps,char *** caps,unsigned int * max_branches,unsigned int * br_cntr_nr,unsigned int * br_cntr_width)3271  static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3272  			      char ***caps, unsigned int *max_branches,
3273  			      unsigned int *br_cntr_nr,
3274  			      unsigned int *br_cntr_width)
3275  {
3276  	char *name, *value, *ptr;
3277  	u32 nr_pmu_caps, i;
3278  
3279  	*nr_caps = 0;
3280  	*caps = NULL;
3281  
3282  	if (do_read_u32(ff, &nr_pmu_caps))
3283  		return -1;
3284  
3285  	if (!nr_pmu_caps)
3286  		return 0;
3287  
3288  	*caps = zalloc(sizeof(char *) * nr_pmu_caps);
3289  	if (!*caps)
3290  		return -1;
3291  
3292  	for (i = 0; i < nr_pmu_caps; i++) {
3293  		name = do_read_string(ff);
3294  		if (!name)
3295  			goto error;
3296  
3297  		value = do_read_string(ff);
3298  		if (!value)
3299  			goto free_name;
3300  
3301  		if (asprintf(&ptr, "%s=%s", name, value) < 0)
3302  			goto free_value;
3303  
3304  		(*caps)[i] = ptr;
3305  
3306  		if (!strcmp(name, "branches"))
3307  			*max_branches = atoi(value);
3308  
3309  		if (!strcmp(name, "branch_counter_nr"))
3310  			*br_cntr_nr = atoi(value);
3311  
3312  		if (!strcmp(name, "branch_counter_width"))
3313  			*br_cntr_width = atoi(value);
3314  
3315  		free(value);
3316  		free(name);
3317  	}
3318  	*nr_caps = nr_pmu_caps;
3319  	return 0;
3320  
3321  free_value:
3322  	free(value);
3323  free_name:
3324  	free(name);
3325  error:
3326  	for (; i > 0; i--)
3327  		free((*caps)[i - 1]);
3328  	free(*caps);
3329  	*caps = NULL;
3330  	*nr_caps = 0;
3331  	return -1;
3332  }
3333  
process_cpu_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3334  static int process_cpu_pmu_caps(struct feat_fd *ff,
3335  				void *data __maybe_unused)
3336  {
3337  	int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3338  				     &ff->ph->env.cpu_pmu_caps,
3339  				     &ff->ph->env.max_branches,
3340  				     &ff->ph->env.br_cntr_nr,
3341  				     &ff->ph->env.br_cntr_width);
3342  
3343  	if (!ret && !ff->ph->env.cpu_pmu_caps)
3344  		pr_debug("cpu pmu capabilities not available\n");
3345  	return ret;
3346  }
3347  
process_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3348  static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3349  {
3350  	struct pmu_caps *pmu_caps;
3351  	u32 nr_pmu, i;
3352  	int ret;
3353  	int j;
3354  
3355  	if (do_read_u32(ff, &nr_pmu))
3356  		return -1;
3357  
3358  	if (!nr_pmu) {
3359  		pr_debug("pmu capabilities not available\n");
3360  		return 0;
3361  	}
3362  
3363  	pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3364  	if (!pmu_caps)
3365  		return -ENOMEM;
3366  
3367  	for (i = 0; i < nr_pmu; i++) {
3368  		ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3369  					 &pmu_caps[i].caps,
3370  					 &pmu_caps[i].max_branches,
3371  					 &pmu_caps[i].br_cntr_nr,
3372  					 &pmu_caps[i].br_cntr_width);
3373  		if (ret)
3374  			goto err;
3375  
3376  		pmu_caps[i].pmu_name = do_read_string(ff);
3377  		if (!pmu_caps[i].pmu_name) {
3378  			ret = -1;
3379  			goto err;
3380  		}
3381  		if (!pmu_caps[i].nr_caps) {
3382  			pr_debug("%s pmu capabilities not available\n",
3383  				 pmu_caps[i].pmu_name);
3384  		}
3385  	}
3386  
3387  	ff->ph->env.nr_pmus_with_caps = nr_pmu;
3388  	ff->ph->env.pmu_caps = pmu_caps;
3389  	return 0;
3390  
3391  err:
3392  	for (i = 0; i < nr_pmu; i++) {
3393  		for (j = 0; j < pmu_caps[i].nr_caps; j++)
3394  			free(pmu_caps[i].caps[j]);
3395  		free(pmu_caps[i].caps);
3396  		free(pmu_caps[i].pmu_name);
3397  	}
3398  
3399  	free(pmu_caps);
3400  	return ret;
3401  }
3402  
3403  #define FEAT_OPR(n, func, __full_only) \
3404  	[HEADER_##n] = {					\
3405  		.name	    = __stringify(n),			\
3406  		.write	    = write_##func,			\
3407  		.print	    = print_##func,			\
3408  		.full_only  = __full_only,			\
3409  		.process    = process_##func,			\
3410  		.synthesize = true				\
3411  	}
3412  
3413  #define FEAT_OPN(n, func, __full_only) \
3414  	[HEADER_##n] = {					\
3415  		.name	    = __stringify(n),			\
3416  		.write	    = write_##func,			\
3417  		.print	    = print_##func,			\
3418  		.full_only  = __full_only,			\
3419  		.process    = process_##func			\
3420  	}
3421  
3422  /* feature_ops not implemented: */
3423  #define print_tracing_data	NULL
3424  #define print_build_id		NULL
3425  
3426  #define process_branch_stack	NULL
3427  #define process_stat		NULL
3428  
3429  // Only used in util/synthetic-events.c
3430  const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3431  
3432  const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3433  #ifdef HAVE_LIBTRACEEVENT
3434  	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3435  #endif
3436  	FEAT_OPN(BUILD_ID,	build_id,	false),
3437  	FEAT_OPR(HOSTNAME,	hostname,	false),
3438  	FEAT_OPR(OSRELEASE,	osrelease,	false),
3439  	FEAT_OPR(VERSION,	version,	false),
3440  	FEAT_OPR(ARCH,		arch,		false),
3441  	FEAT_OPR(NRCPUS,	nrcpus,		false),
3442  	FEAT_OPR(CPUDESC,	cpudesc,	false),
3443  	FEAT_OPR(CPUID,		cpuid,		false),
3444  	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3445  	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3446  	FEAT_OPR(CMDLINE,	cmdline,	false),
3447  	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3448  	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3449  	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3450  	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3451  	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3452  	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3453  	FEAT_OPN(STAT,		stat,		false),
3454  	FEAT_OPN(CACHE,		cache,		true),
3455  	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3456  	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3457  	FEAT_OPR(CLOCKID,	clockid,	false),
3458  	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3459  #ifdef HAVE_LIBBPF_SUPPORT
3460  	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3461  	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3462  #endif
3463  	FEAT_OPR(COMPRESSED,	compressed,	false),
3464  	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3465  	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3466  	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
3467  	FEAT_OPR(PMU_CAPS,	pmu_caps,	false),
3468  };
3469  
3470  struct header_print_data {
3471  	FILE *fp;
3472  	bool full; /* extended list of headers */
3473  };
3474  
perf_file_section__fprintf_info(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3475  static int perf_file_section__fprintf_info(struct perf_file_section *section,
3476  					   struct perf_header *ph,
3477  					   int feat, int fd, void *data)
3478  {
3479  	struct header_print_data *hd = data;
3480  	struct feat_fd ff;
3481  
3482  	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3483  		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3484  				"%d, continuing...\n", section->offset, feat);
3485  		return 0;
3486  	}
3487  	if (feat >= HEADER_LAST_FEATURE) {
3488  		pr_warning("unknown feature %d\n", feat);
3489  		return 0;
3490  	}
3491  	if (!feat_ops[feat].print)
3492  		return 0;
3493  
3494  	ff = (struct  feat_fd) {
3495  		.fd = fd,
3496  		.ph = ph,
3497  	};
3498  
3499  	if (!feat_ops[feat].full_only || hd->full)
3500  		feat_ops[feat].print(&ff, hd->fp);
3501  	else
3502  		fprintf(hd->fp, "# %s info available, use -I to display\n",
3503  			feat_ops[feat].name);
3504  
3505  	return 0;
3506  }
3507  
perf_header__fprintf_info(struct perf_session * session,FILE * fp,bool full)3508  int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3509  {
3510  	struct header_print_data hd;
3511  	struct perf_header *header = &session->header;
3512  	int fd = perf_data__fd(session->data);
3513  	struct stat st;
3514  	time_t stctime;
3515  	int ret, bit;
3516  
3517  	hd.fp = fp;
3518  	hd.full = full;
3519  
3520  	ret = fstat(fd, &st);
3521  	if (ret == -1)
3522  		return -1;
3523  
3524  	stctime = st.st_mtime;
3525  	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3526  
3527  	fprintf(fp, "# header version : %u\n", header->version);
3528  	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3529  	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3530  	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3531  
3532  	perf_header__process_sections(header, fd, &hd,
3533  				      perf_file_section__fprintf_info);
3534  
3535  	if (session->data->is_pipe)
3536  		return 0;
3537  
3538  	fprintf(fp, "# missing features: ");
3539  	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3540  		if (bit)
3541  			fprintf(fp, "%s ", feat_ops[bit].name);
3542  	}
3543  
3544  	fprintf(fp, "\n");
3545  	return 0;
3546  }
3547  
3548  struct header_fw {
3549  	struct feat_writer	fw;
3550  	struct feat_fd		*ff;
3551  };
3552  
feat_writer_cb(struct feat_writer * fw,void * buf,size_t sz)3553  static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3554  {
3555  	struct header_fw *h = container_of(fw, struct header_fw, fw);
3556  
3557  	return do_write(h->ff, buf, sz);
3558  }
3559  
do_write_feat(struct feat_fd * ff,int type,struct perf_file_section ** p,struct evlist * evlist,struct feat_copier * fc)3560  static int do_write_feat(struct feat_fd *ff, int type,
3561  			 struct perf_file_section **p,
3562  			 struct evlist *evlist,
3563  			 struct feat_copier *fc)
3564  {
3565  	int err;
3566  	int ret = 0;
3567  
3568  	if (perf_header__has_feat(ff->ph, type)) {
3569  		if (!feat_ops[type].write)
3570  			return -1;
3571  
3572  		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3573  			return -1;
3574  
3575  		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3576  
3577  		/*
3578  		 * Hook to let perf inject copy features sections from the input
3579  		 * file.
3580  		 */
3581  		if (fc && fc->copy) {
3582  			struct header_fw h = {
3583  				.fw.write = feat_writer_cb,
3584  				.ff = ff,
3585  			};
3586  
3587  			/* ->copy() returns 0 if the feature was not copied */
3588  			err = fc->copy(fc, type, &h.fw);
3589  		} else {
3590  			err = 0;
3591  		}
3592  		if (!err)
3593  			err = feat_ops[type].write(ff, evlist);
3594  		if (err < 0) {
3595  			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3596  
3597  			/* undo anything written */
3598  			lseek(ff->fd, (*p)->offset, SEEK_SET);
3599  
3600  			return -1;
3601  		}
3602  		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3603  		(*p)++;
3604  	}
3605  	return ret;
3606  }
3607  
perf_header__adds_write(struct perf_header * header,struct evlist * evlist,int fd,struct feat_copier * fc)3608  static int perf_header__adds_write(struct perf_header *header,
3609  				   struct evlist *evlist, int fd,
3610  				   struct feat_copier *fc)
3611  {
3612  	int nr_sections;
3613  	struct feat_fd ff = {
3614  		.fd  = fd,
3615  		.ph = header,
3616  	};
3617  	struct perf_file_section *feat_sec, *p;
3618  	int sec_size;
3619  	u64 sec_start;
3620  	int feat;
3621  	int err;
3622  
3623  	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3624  	if (!nr_sections)
3625  		return 0;
3626  
3627  	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3628  	if (feat_sec == NULL)
3629  		return -ENOMEM;
3630  
3631  	sec_size = sizeof(*feat_sec) * nr_sections;
3632  
3633  	sec_start = header->feat_offset;
3634  	lseek(fd, sec_start + sec_size, SEEK_SET);
3635  
3636  	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3637  		if (do_write_feat(&ff, feat, &p, evlist, fc))
3638  			perf_header__clear_feat(header, feat);
3639  	}
3640  
3641  	lseek(fd, sec_start, SEEK_SET);
3642  	/*
3643  	 * may write more than needed due to dropped feature, but
3644  	 * this is okay, reader will skip the missing entries
3645  	 */
3646  	err = do_write(&ff, feat_sec, sec_size);
3647  	if (err < 0)
3648  		pr_debug("failed to write feature section\n");
3649  	free(ff.buf); /* TODO: added to silence clang-tidy. */
3650  	free(feat_sec);
3651  	return err;
3652  }
3653  
perf_header__write_pipe(int fd)3654  int perf_header__write_pipe(int fd)
3655  {
3656  	struct perf_pipe_file_header f_header;
3657  	struct feat_fd ff = {
3658  		.fd = fd,
3659  	};
3660  	int err;
3661  
3662  	f_header = (struct perf_pipe_file_header){
3663  		.magic	   = PERF_MAGIC,
3664  		.size	   = sizeof(f_header),
3665  	};
3666  
3667  	err = do_write(&ff, &f_header, sizeof(f_header));
3668  	if (err < 0) {
3669  		pr_debug("failed to write perf pipe header\n");
3670  		return err;
3671  	}
3672  	free(ff.buf);
3673  	return 0;
3674  }
3675  
perf_session__do_write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit,struct feat_copier * fc,bool write_attrs_after_data)3676  static int perf_session__do_write_header(struct perf_session *session,
3677  					 struct evlist *evlist,
3678  					 int fd, bool at_exit,
3679  					 struct feat_copier *fc,
3680  					 bool write_attrs_after_data)
3681  {
3682  	struct perf_file_header f_header;
3683  	struct perf_header *header = &session->header;
3684  	struct evsel *evsel;
3685  	struct feat_fd ff = {
3686  		.fd = fd,
3687  	};
3688  	u64 attr_offset = sizeof(f_header), attr_size = 0;
3689  	int err;
3690  
3691  	if (write_attrs_after_data && at_exit) {
3692  		/*
3693  		 * Write features at the end of the file first so that
3694  		 * attributes may come after them.
3695  		 */
3696  		if (!header->data_offset && header->data_size) {
3697  			pr_err("File contains data but offset unknown\n");
3698  			err = -1;
3699  			goto err_out;
3700  		}
3701  		header->feat_offset = header->data_offset + header->data_size;
3702  		err = perf_header__adds_write(header, evlist, fd, fc);
3703  		if (err < 0)
3704  			goto err_out;
3705  		attr_offset = lseek(fd, 0, SEEK_CUR);
3706  	} else {
3707  		lseek(fd, attr_offset, SEEK_SET);
3708  	}
3709  
3710  	evlist__for_each_entry(session->evlist, evsel) {
3711  		evsel->id_offset = attr_offset;
3712  		/* Avoid writing at the end of the file until the session is exiting. */
3713  		if (!write_attrs_after_data || at_exit) {
3714  			err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3715  			if (err < 0) {
3716  				pr_debug("failed to write perf header\n");
3717  				goto err_out;
3718  			}
3719  		}
3720  		attr_offset += evsel->core.ids * sizeof(u64);
3721  	}
3722  
3723  	evlist__for_each_entry(evlist, evsel) {
3724  		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3725  			/*
3726  			 * We are likely in "perf inject" and have read
3727  			 * from an older file. Update attr size so that
3728  			 * reader gets the right offset to the ids.
3729  			 */
3730  			evsel->core.attr.size = sizeof(evsel->core.attr);
3731  		}
3732  		/* Avoid writing at the end of the file until the session is exiting. */
3733  		if (!write_attrs_after_data || at_exit) {
3734  			struct perf_file_attr f_attr = {
3735  				.attr = evsel->core.attr,
3736  				.ids  = {
3737  					.offset = evsel->id_offset,
3738  					.size   = evsel->core.ids * sizeof(u64),
3739  				}
3740  			};
3741  			err = do_write(&ff, &f_attr, sizeof(f_attr));
3742  			if (err < 0) {
3743  				pr_debug("failed to write perf header attribute\n");
3744  				goto err_out;
3745  			}
3746  		}
3747  		attr_size += sizeof(struct perf_file_attr);
3748  	}
3749  
3750  	if (!header->data_offset) {
3751  		if (write_attrs_after_data)
3752  			header->data_offset = sizeof(f_header);
3753  		else
3754  			header->data_offset = attr_offset + attr_size;
3755  	}
3756  	header->feat_offset = header->data_offset + header->data_size;
3757  
3758  	if (!write_attrs_after_data && at_exit) {
3759  		/* Write features now feat_offset is known. */
3760  		err = perf_header__adds_write(header, evlist, fd, fc);
3761  		if (err < 0)
3762  			goto err_out;
3763  	}
3764  
3765  	f_header = (struct perf_file_header){
3766  		.magic	   = PERF_MAGIC,
3767  		.size	   = sizeof(f_header),
3768  		.attr_size = sizeof(struct perf_file_attr),
3769  		.attrs = {
3770  			.offset = attr_offset,
3771  			.size   = attr_size,
3772  		},
3773  		.data = {
3774  			.offset = header->data_offset,
3775  			.size	= header->data_size,
3776  		},
3777  		/* event_types is ignored, store zeros */
3778  	};
3779  
3780  	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3781  
3782  	lseek(fd, 0, SEEK_SET);
3783  	err = do_write(&ff, &f_header, sizeof(f_header));
3784  	if (err < 0) {
3785  		pr_debug("failed to write perf header\n");
3786  		goto err_out;
3787  	} else {
3788  		lseek(fd, 0, SEEK_END);
3789  		err = 0;
3790  	}
3791  err_out:
3792  	free(ff.buf);
3793  	return err;
3794  }
3795  
perf_session__write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit)3796  int perf_session__write_header(struct perf_session *session,
3797  			       struct evlist *evlist,
3798  			       int fd, bool at_exit)
3799  {
3800  	return perf_session__do_write_header(session, evlist, fd, at_exit, /*fc=*/NULL,
3801  					     /*write_attrs_after_data=*/false);
3802  }
3803  
perf_session__data_offset(const struct evlist * evlist)3804  size_t perf_session__data_offset(const struct evlist *evlist)
3805  {
3806  	struct evsel *evsel;
3807  	size_t data_offset;
3808  
3809  	data_offset = sizeof(struct perf_file_header);
3810  	evlist__for_each_entry(evlist, evsel) {
3811  		data_offset += evsel->core.ids * sizeof(u64);
3812  	}
3813  	data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3814  
3815  	return data_offset;
3816  }
3817  
perf_session__inject_header(struct perf_session * session,struct evlist * evlist,int fd,struct feat_copier * fc,bool write_attrs_after_data)3818  int perf_session__inject_header(struct perf_session *session,
3819  				struct evlist *evlist,
3820  				int fd,
3821  				struct feat_copier *fc,
3822  				bool write_attrs_after_data)
3823  {
3824  	return perf_session__do_write_header(session, evlist, fd, true, fc,
3825  					     write_attrs_after_data);
3826  }
3827  
perf_header__getbuffer64(struct perf_header * header,int fd,void * buf,size_t size)3828  static int perf_header__getbuffer64(struct perf_header *header,
3829  				    int fd, void *buf, size_t size)
3830  {
3831  	if (readn(fd, buf, size) <= 0)
3832  		return -1;
3833  
3834  	if (header->needs_swap)
3835  		mem_bswap_64(buf, size);
3836  
3837  	return 0;
3838  }
3839  
perf_header__process_sections(struct perf_header * header,int fd,void * data,int (* process)(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data))3840  int perf_header__process_sections(struct perf_header *header, int fd,
3841  				  void *data,
3842  				  int (*process)(struct perf_file_section *section,
3843  						 struct perf_header *ph,
3844  						 int feat, int fd, void *data))
3845  {
3846  	struct perf_file_section *feat_sec, *sec;
3847  	int nr_sections;
3848  	int sec_size;
3849  	int feat;
3850  	int err;
3851  
3852  	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3853  	if (!nr_sections)
3854  		return 0;
3855  
3856  	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3857  	if (!feat_sec)
3858  		return -1;
3859  
3860  	sec_size = sizeof(*feat_sec) * nr_sections;
3861  
3862  	lseek(fd, header->feat_offset, SEEK_SET);
3863  
3864  	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3865  	if (err < 0)
3866  		goto out_free;
3867  
3868  	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3869  		err = process(sec++, header, feat, fd, data);
3870  		if (err < 0)
3871  			goto out_free;
3872  	}
3873  	err = 0;
3874  out_free:
3875  	free(feat_sec);
3876  	return err;
3877  }
3878  
3879  static const int attr_file_abi_sizes[] = {
3880  	[0] = PERF_ATTR_SIZE_VER0,
3881  	[1] = PERF_ATTR_SIZE_VER1,
3882  	[2] = PERF_ATTR_SIZE_VER2,
3883  	[3] = PERF_ATTR_SIZE_VER3,
3884  	[4] = PERF_ATTR_SIZE_VER4,
3885  	0,
3886  };
3887  
3888  /*
3889   * In the legacy file format, the magic number is not used to encode endianness.
3890   * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3891   * on ABI revisions, we need to try all combinations for all endianness to
3892   * detect the endianness.
3893   */
try_all_file_abis(uint64_t hdr_sz,struct perf_header * ph)3894  static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3895  {
3896  	uint64_t ref_size, attr_size;
3897  	int i;
3898  
3899  	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3900  		ref_size = attr_file_abi_sizes[i]
3901  			 + sizeof(struct perf_file_section);
3902  		if (hdr_sz != ref_size) {
3903  			attr_size = bswap_64(hdr_sz);
3904  			if (attr_size != ref_size)
3905  				continue;
3906  
3907  			ph->needs_swap = true;
3908  		}
3909  		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3910  			 i,
3911  			 ph->needs_swap);
3912  		return 0;
3913  	}
3914  	/* could not determine endianness */
3915  	return -1;
3916  }
3917  
3918  #define PERF_PIPE_HDR_VER0	16
3919  
3920  static const size_t attr_pipe_abi_sizes[] = {
3921  	[0] = PERF_PIPE_HDR_VER0,
3922  	0,
3923  };
3924  
3925  /*
3926   * In the legacy pipe format, there is an implicit assumption that endianness
3927   * between host recording the samples, and host parsing the samples is the
3928   * same. This is not always the case given that the pipe output may always be
3929   * redirected into a file and analyzed on a different machine with possibly a
3930   * different endianness and perf_event ABI revisions in the perf tool itself.
3931   */
try_all_pipe_abis(uint64_t hdr_sz,struct perf_header * ph)3932  static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3933  {
3934  	u64 attr_size;
3935  	int i;
3936  
3937  	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3938  		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3939  			attr_size = bswap_64(hdr_sz);
3940  			if (attr_size != hdr_sz)
3941  				continue;
3942  
3943  			ph->needs_swap = true;
3944  		}
3945  		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3946  		return 0;
3947  	}
3948  	return -1;
3949  }
3950  
is_perf_magic(u64 magic)3951  bool is_perf_magic(u64 magic)
3952  {
3953  	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3954  		|| magic == __perf_magic2
3955  		|| magic == __perf_magic2_sw)
3956  		return true;
3957  
3958  	return false;
3959  }
3960  
check_magic_endian(u64 magic,uint64_t hdr_sz,bool is_pipe,struct perf_header * ph)3961  static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3962  			      bool is_pipe, struct perf_header *ph)
3963  {
3964  	int ret;
3965  
3966  	/* check for legacy format */
3967  	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3968  	if (ret == 0) {
3969  		ph->version = PERF_HEADER_VERSION_1;
3970  		pr_debug("legacy perf.data format\n");
3971  		if (is_pipe)
3972  			return try_all_pipe_abis(hdr_sz, ph);
3973  
3974  		return try_all_file_abis(hdr_sz, ph);
3975  	}
3976  	/*
3977  	 * the new magic number serves two purposes:
3978  	 * - unique number to identify actual perf.data files
3979  	 * - encode endianness of file
3980  	 */
3981  	ph->version = PERF_HEADER_VERSION_2;
3982  
3983  	/* check magic number with one endianness */
3984  	if (magic == __perf_magic2)
3985  		return 0;
3986  
3987  	/* check magic number with opposite endianness */
3988  	if (magic != __perf_magic2_sw)
3989  		return -1;
3990  
3991  	ph->needs_swap = true;
3992  
3993  	return 0;
3994  }
3995  
perf_file_header__read(struct perf_file_header * header,struct perf_header * ph,int fd)3996  int perf_file_header__read(struct perf_file_header *header,
3997  			   struct perf_header *ph, int fd)
3998  {
3999  	ssize_t ret;
4000  
4001  	lseek(fd, 0, SEEK_SET);
4002  
4003  	ret = readn(fd, header, sizeof(*header));
4004  	if (ret <= 0)
4005  		return -1;
4006  
4007  	if (check_magic_endian(header->magic,
4008  			       header->attr_size, false, ph) < 0) {
4009  		pr_debug("magic/endian check failed\n");
4010  		return -1;
4011  	}
4012  
4013  	if (ph->needs_swap) {
4014  		mem_bswap_64(header, offsetof(struct perf_file_header,
4015  			     adds_features));
4016  	}
4017  
4018  	if (header->size > header->attrs.offset) {
4019  		pr_err("Perf file header corrupt: header overlaps attrs\n");
4020  		return -1;
4021  	}
4022  
4023  	if (header->size > header->data.offset) {
4024  		pr_err("Perf file header corrupt: header overlaps data\n");
4025  		return -1;
4026  	}
4027  
4028  	if ((header->attrs.offset <= header->data.offset &&
4029  	     header->attrs.offset + header->attrs.size > header->data.offset) ||
4030  	    (header->attrs.offset > header->data.offset &&
4031  	     header->data.offset + header->data.size > header->attrs.offset)) {
4032  		pr_err("Perf file header corrupt: Attributes and data overlap\n");
4033  		return -1;
4034  	}
4035  
4036  	if (header->size != sizeof(*header)) {
4037  		/* Support the previous format */
4038  		if (header->size == offsetof(typeof(*header), adds_features))
4039  			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4040  		else
4041  			return -1;
4042  	} else if (ph->needs_swap) {
4043  		/*
4044  		 * feature bitmap is declared as an array of unsigned longs --
4045  		 * not good since its size can differ between the host that
4046  		 * generated the data file and the host analyzing the file.
4047  		 *
4048  		 * We need to handle endianness, but we don't know the size of
4049  		 * the unsigned long where the file was generated. Take a best
4050  		 * guess at determining it: try 64-bit swap first (ie., file
4051  		 * created on a 64-bit host), and check if the hostname feature
4052  		 * bit is set (this feature bit is forced on as of fbe96f2).
4053  		 * If the bit is not, undo the 64-bit swap and try a 32-bit
4054  		 * swap. If the hostname bit is still not set (e.g., older data
4055  		 * file), punt and fallback to the original behavior --
4056  		 * clearing all feature bits and setting buildid.
4057  		 */
4058  		mem_bswap_64(&header->adds_features,
4059  			    BITS_TO_U64(HEADER_FEAT_BITS));
4060  
4061  		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4062  			/* unswap as u64 */
4063  			mem_bswap_64(&header->adds_features,
4064  				    BITS_TO_U64(HEADER_FEAT_BITS));
4065  
4066  			/* unswap as u32 */
4067  			mem_bswap_32(&header->adds_features,
4068  				    BITS_TO_U32(HEADER_FEAT_BITS));
4069  		}
4070  
4071  		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4072  			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4073  			__set_bit(HEADER_BUILD_ID, header->adds_features);
4074  		}
4075  	}
4076  
4077  	memcpy(&ph->adds_features, &header->adds_features,
4078  	       sizeof(ph->adds_features));
4079  
4080  	ph->data_offset  = header->data.offset;
4081  	ph->data_size	 = header->data.size;
4082  	ph->feat_offset  = header->data.offset + header->data.size;
4083  	return 0;
4084  }
4085  
perf_file_section__process(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)4086  static int perf_file_section__process(struct perf_file_section *section,
4087  				      struct perf_header *ph,
4088  				      int feat, int fd, void *data)
4089  {
4090  	struct feat_fd fdd = {
4091  		.fd	= fd,
4092  		.ph	= ph,
4093  		.size	= section->size,
4094  		.offset	= section->offset,
4095  	};
4096  
4097  	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4098  		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4099  			  "%d, continuing...\n", section->offset, feat);
4100  		return 0;
4101  	}
4102  
4103  	if (feat >= HEADER_LAST_FEATURE) {
4104  		pr_debug("unknown feature %d, continuing...\n", feat);
4105  		return 0;
4106  	}
4107  
4108  	if (!feat_ops[feat].process)
4109  		return 0;
4110  
4111  	return feat_ops[feat].process(&fdd, data);
4112  }
4113  
perf_file_header__read_pipe(struct perf_pipe_file_header * header,struct perf_header * ph,struct perf_data * data)4114  static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4115  				       struct perf_header *ph,
4116  				       struct perf_data *data)
4117  {
4118  	ssize_t ret;
4119  
4120  	ret = perf_data__read(data, header, sizeof(*header));
4121  	if (ret <= 0)
4122  		return -1;
4123  
4124  	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4125  		pr_debug("endian/magic failed\n");
4126  		return -1;
4127  	}
4128  
4129  	if (ph->needs_swap)
4130  		header->size = bswap_64(header->size);
4131  
4132  	return 0;
4133  }
4134  
perf_header__read_pipe(struct perf_session * session)4135  static int perf_header__read_pipe(struct perf_session *session)
4136  {
4137  	struct perf_header *header = &session->header;
4138  	struct perf_pipe_file_header f_header;
4139  
4140  	if (perf_file_header__read_pipe(&f_header, header, session->data) < 0) {
4141  		pr_debug("incompatible file format\n");
4142  		return -EINVAL;
4143  	}
4144  
4145  	return f_header.size == sizeof(f_header) ? 0 : -1;
4146  }
4147  
read_attr(int fd,struct perf_header * ph,struct perf_file_attr * f_attr)4148  static int read_attr(int fd, struct perf_header *ph,
4149  		     struct perf_file_attr *f_attr)
4150  {
4151  	struct perf_event_attr *attr = &f_attr->attr;
4152  	size_t sz, left;
4153  	size_t our_sz = sizeof(f_attr->attr);
4154  	ssize_t ret;
4155  
4156  	memset(f_attr, 0, sizeof(*f_attr));
4157  
4158  	/* read minimal guaranteed structure */
4159  	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4160  	if (ret <= 0) {
4161  		pr_debug("cannot read %d bytes of header attr\n",
4162  			 PERF_ATTR_SIZE_VER0);
4163  		return -1;
4164  	}
4165  
4166  	/* on file perf_event_attr size */
4167  	sz = attr->size;
4168  
4169  	if (ph->needs_swap)
4170  		sz = bswap_32(sz);
4171  
4172  	if (sz == 0) {
4173  		/* assume ABI0 */
4174  		sz =  PERF_ATTR_SIZE_VER0;
4175  	} else if (sz > our_sz) {
4176  		pr_debug("file uses a more recent and unsupported ABI"
4177  			 " (%zu bytes extra)\n", sz - our_sz);
4178  		return -1;
4179  	}
4180  	/* what we have not yet read and that we know about */
4181  	left = sz - PERF_ATTR_SIZE_VER0;
4182  	if (left) {
4183  		void *ptr = attr;
4184  		ptr += PERF_ATTR_SIZE_VER0;
4185  
4186  		ret = readn(fd, ptr, left);
4187  	}
4188  	/* read perf_file_section, ids are read in caller */
4189  	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4190  
4191  	return ret <= 0 ? -1 : 0;
4192  }
4193  
4194  #ifdef HAVE_LIBTRACEEVENT
evsel__prepare_tracepoint_event(struct evsel * evsel,struct tep_handle * pevent)4195  static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4196  {
4197  	struct tep_event *event;
4198  	char bf[128];
4199  
4200  	/* already prepared */
4201  	if (evsel->tp_format)
4202  		return 0;
4203  
4204  	if (pevent == NULL) {
4205  		pr_debug("broken or missing trace data\n");
4206  		return -1;
4207  	}
4208  
4209  	event = tep_find_event(pevent, evsel->core.attr.config);
4210  	if (event == NULL) {
4211  		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4212  		return -1;
4213  	}
4214  
4215  	if (!evsel->name) {
4216  		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4217  		evsel->name = strdup(bf);
4218  		if (evsel->name == NULL)
4219  			return -1;
4220  	}
4221  
4222  	evsel->tp_format = event;
4223  	return 0;
4224  }
4225  
evlist__prepare_tracepoint_events(struct evlist * evlist,struct tep_handle * pevent)4226  static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4227  {
4228  	struct evsel *pos;
4229  
4230  	evlist__for_each_entry(evlist, pos) {
4231  		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4232  		    evsel__prepare_tracepoint_event(pos, pevent))
4233  			return -1;
4234  	}
4235  
4236  	return 0;
4237  }
4238  #endif
4239  
perf_session__read_header(struct perf_session * session)4240  int perf_session__read_header(struct perf_session *session)
4241  {
4242  	struct perf_data *data = session->data;
4243  	struct perf_header *header = &session->header;
4244  	struct perf_file_header	f_header;
4245  	struct perf_file_attr	f_attr;
4246  	u64			f_id;
4247  	int nr_attrs, nr_ids, i, j, err;
4248  	int fd = perf_data__fd(data);
4249  
4250  	session->evlist = evlist__new();
4251  	if (session->evlist == NULL)
4252  		return -ENOMEM;
4253  
4254  	session->evlist->env = &header->env;
4255  	session->machines.host.env = &header->env;
4256  
4257  	/*
4258  	 * We can read 'pipe' data event from regular file,
4259  	 * check for the pipe header regardless of source.
4260  	 */
4261  	err = perf_header__read_pipe(session);
4262  	if (!err || perf_data__is_pipe(data)) {
4263  		data->is_pipe = true;
4264  		return err;
4265  	}
4266  
4267  	if (perf_file_header__read(&f_header, header, fd) < 0)
4268  		return -EINVAL;
4269  
4270  	if (header->needs_swap && data->in_place_update) {
4271  		pr_err("In-place update not supported when byte-swapping is required\n");
4272  		return -EINVAL;
4273  	}
4274  
4275  	/*
4276  	 * Sanity check that perf.data was written cleanly; data size is
4277  	 * initialized to 0 and updated only if the on_exit function is run.
4278  	 * If data size is still 0 then the file contains only partial
4279  	 * information.  Just warn user and process it as much as it can.
4280  	 */
4281  	if (f_header.data.size == 0) {
4282  		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4283  			   "Was the 'perf record' command properly terminated?\n",
4284  			   data->file.path);
4285  	}
4286  
4287  	if (f_header.attr_size == 0) {
4288  		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4289  		       "Was the 'perf record' command properly terminated?\n",
4290  		       data->file.path);
4291  		return -EINVAL;
4292  	}
4293  
4294  	nr_attrs = f_header.attrs.size / f_header.attr_size;
4295  	lseek(fd, f_header.attrs.offset, SEEK_SET);
4296  
4297  	for (i = 0; i < nr_attrs; i++) {
4298  		struct evsel *evsel;
4299  		off_t tmp;
4300  
4301  		if (read_attr(fd, header, &f_attr) < 0)
4302  			goto out_errno;
4303  
4304  		if (header->needs_swap) {
4305  			f_attr.ids.size   = bswap_64(f_attr.ids.size);
4306  			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4307  			perf_event__attr_swap(&f_attr.attr);
4308  		}
4309  
4310  		tmp = lseek(fd, 0, SEEK_CUR);
4311  		evsel = evsel__new(&f_attr.attr);
4312  
4313  		if (evsel == NULL)
4314  			goto out_delete_evlist;
4315  
4316  		evsel->needs_swap = header->needs_swap;
4317  		/*
4318  		 * Do it before so that if perf_evsel__alloc_id fails, this
4319  		 * entry gets purged too at evlist__delete().
4320  		 */
4321  		evlist__add(session->evlist, evsel);
4322  
4323  		nr_ids = f_attr.ids.size / sizeof(u64);
4324  		/*
4325  		 * We don't have the cpu and thread maps on the header, so
4326  		 * for allocating the perf_sample_id table we fake 1 cpu and
4327  		 * hattr->ids threads.
4328  		 */
4329  		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4330  			goto out_delete_evlist;
4331  
4332  		lseek(fd, f_attr.ids.offset, SEEK_SET);
4333  
4334  		for (j = 0; j < nr_ids; j++) {
4335  			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4336  				goto out_errno;
4337  
4338  			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4339  		}
4340  
4341  		lseek(fd, tmp, SEEK_SET);
4342  	}
4343  
4344  #ifdef HAVE_LIBTRACEEVENT
4345  	perf_header__process_sections(header, fd, &session->tevent,
4346  				      perf_file_section__process);
4347  
4348  	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4349  		goto out_delete_evlist;
4350  #else
4351  	perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4352  #endif
4353  
4354  	return 0;
4355  out_errno:
4356  	return -errno;
4357  
4358  out_delete_evlist:
4359  	evlist__delete(session->evlist);
4360  	session->evlist = NULL;
4361  	return -ENOMEM;
4362  }
4363  
perf_event__process_feature(struct perf_session * session,union perf_event * event)4364  int perf_event__process_feature(struct perf_session *session,
4365  				union perf_event *event)
4366  {
4367  	const struct perf_tool *tool = session->tool;
4368  	struct feat_fd ff = { .fd = 0 };
4369  	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4370  	int type = fe->header.type;
4371  	u64 feat = fe->feat_id;
4372  	int ret = 0;
4373  
4374  	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4375  		pr_warning("invalid record type %d in pipe-mode\n", type);
4376  		return 0;
4377  	}
4378  	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4379  		pr_warning("invalid record type %d in pipe-mode\n", type);
4380  		return -1;
4381  	}
4382  
4383  	if (!feat_ops[feat].process)
4384  		return 0;
4385  
4386  	ff.buf  = (void *)fe->data;
4387  	ff.size = event->header.size - sizeof(*fe);
4388  	ff.ph = &session->header;
4389  
4390  	if (feat_ops[feat].process(&ff, NULL)) {
4391  		ret = -1;
4392  		goto out;
4393  	}
4394  
4395  	if (!feat_ops[feat].print || !tool->show_feat_hdr)
4396  		goto out;
4397  
4398  	if (!feat_ops[feat].full_only ||
4399  	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4400  		feat_ops[feat].print(&ff, stdout);
4401  	} else {
4402  		fprintf(stdout, "# %s info available, use -I to display\n",
4403  			feat_ops[feat].name);
4404  	}
4405  out:
4406  	free_event_desc(ff.events);
4407  	return ret;
4408  }
4409  
perf_event__fprintf_event_update(union perf_event * event,FILE * fp)4410  size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4411  {
4412  	struct perf_record_event_update *ev = &event->event_update;
4413  	struct perf_cpu_map *map;
4414  	size_t ret;
4415  
4416  	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4417  
4418  	switch (ev->type) {
4419  	case PERF_EVENT_UPDATE__SCALE:
4420  		ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4421  		break;
4422  	case PERF_EVENT_UPDATE__UNIT:
4423  		ret += fprintf(fp, "... unit:  %s\n", ev->unit);
4424  		break;
4425  	case PERF_EVENT_UPDATE__NAME:
4426  		ret += fprintf(fp, "... name:  %s\n", ev->name);
4427  		break;
4428  	case PERF_EVENT_UPDATE__CPUS:
4429  		ret += fprintf(fp, "... ");
4430  
4431  		map = cpu_map__new_data(&ev->cpus.cpus);
4432  		if (map) {
4433  			ret += cpu_map__fprintf(map, fp);
4434  			perf_cpu_map__put(map);
4435  		} else
4436  			ret += fprintf(fp, "failed to get cpus\n");
4437  		break;
4438  	default:
4439  		ret += fprintf(fp, "... unknown type\n");
4440  		break;
4441  	}
4442  
4443  	return ret;
4444  }
4445  
perf_event__process_attr(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4446  int perf_event__process_attr(const struct perf_tool *tool __maybe_unused,
4447  			     union perf_event *event,
4448  			     struct evlist **pevlist)
4449  {
4450  	u32 i, n_ids;
4451  	u64 *ids;
4452  	struct evsel *evsel;
4453  	struct evlist *evlist = *pevlist;
4454  
4455  	if (evlist == NULL) {
4456  		*pevlist = evlist = evlist__new();
4457  		if (evlist == NULL)
4458  			return -ENOMEM;
4459  	}
4460  
4461  	evsel = evsel__new(&event->attr.attr);
4462  	if (evsel == NULL)
4463  		return -ENOMEM;
4464  
4465  	evlist__add(evlist, evsel);
4466  
4467  	n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4468  	n_ids = n_ids / sizeof(u64);
4469  	/*
4470  	 * We don't have the cpu and thread maps on the header, so
4471  	 * for allocating the perf_sample_id table we fake 1 cpu and
4472  	 * hattr->ids threads.
4473  	 */
4474  	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4475  		return -ENOMEM;
4476  
4477  	ids = perf_record_header_attr_id(event);
4478  	for (i = 0; i < n_ids; i++) {
4479  		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4480  	}
4481  
4482  	return 0;
4483  }
4484  
perf_event__process_event_update(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4485  int perf_event__process_event_update(const struct perf_tool *tool __maybe_unused,
4486  				     union perf_event *event,
4487  				     struct evlist **pevlist)
4488  {
4489  	struct perf_record_event_update *ev = &event->event_update;
4490  	struct evlist *evlist;
4491  	struct evsel *evsel;
4492  	struct perf_cpu_map *map;
4493  
4494  	if (dump_trace)
4495  		perf_event__fprintf_event_update(event, stdout);
4496  
4497  	if (!pevlist || *pevlist == NULL)
4498  		return -EINVAL;
4499  
4500  	evlist = *pevlist;
4501  
4502  	evsel = evlist__id2evsel(evlist, ev->id);
4503  	if (evsel == NULL)
4504  		return -EINVAL;
4505  
4506  	switch (ev->type) {
4507  	case PERF_EVENT_UPDATE__UNIT:
4508  		free((char *)evsel->unit);
4509  		evsel->unit = strdup(ev->unit);
4510  		break;
4511  	case PERF_EVENT_UPDATE__NAME:
4512  		free(evsel->name);
4513  		evsel->name = strdup(ev->name);
4514  		break;
4515  	case PERF_EVENT_UPDATE__SCALE:
4516  		evsel->scale = ev->scale.scale;
4517  		break;
4518  	case PERF_EVENT_UPDATE__CPUS:
4519  		map = cpu_map__new_data(&ev->cpus.cpus);
4520  		if (map) {
4521  			perf_cpu_map__put(evsel->core.own_cpus);
4522  			evsel->core.own_cpus = map;
4523  		} else
4524  			pr_err("failed to get event_update cpus\n");
4525  	default:
4526  		break;
4527  	}
4528  
4529  	return 0;
4530  }
4531  
4532  #ifdef HAVE_LIBTRACEEVENT
perf_event__process_tracing_data(struct perf_session * session,union perf_event * event)4533  int perf_event__process_tracing_data(struct perf_session *session,
4534  				     union perf_event *event)
4535  {
4536  	ssize_t size_read, padding, size = event->tracing_data.size;
4537  	int fd = perf_data__fd(session->data);
4538  	char buf[BUFSIZ];
4539  
4540  	/*
4541  	 * The pipe fd is already in proper place and in any case
4542  	 * we can't move it, and we'd screw the case where we read
4543  	 * 'pipe' data from regular file. The trace_report reads
4544  	 * data from 'fd' so we need to set it directly behind the
4545  	 * event, where the tracing data starts.
4546  	 */
4547  	if (!perf_data__is_pipe(session->data)) {
4548  		off_t offset = lseek(fd, 0, SEEK_CUR);
4549  
4550  		/* setup for reading amidst mmap */
4551  		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4552  		      SEEK_SET);
4553  	}
4554  
4555  	size_read = trace_report(fd, &session->tevent, session->trace_event_repipe);
4556  	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4557  
4558  	if (readn(fd, buf, padding) < 0) {
4559  		pr_err("%s: reading input file", __func__);
4560  		return -1;
4561  	}
4562  	if (session->trace_event_repipe) {
4563  		int retw = write(STDOUT_FILENO, buf, padding);
4564  		if (retw <= 0 || retw != padding) {
4565  			pr_err("%s: repiping tracing data padding", __func__);
4566  			return -1;
4567  		}
4568  	}
4569  
4570  	if (size_read + padding != size) {
4571  		pr_err("%s: tracing data size mismatch", __func__);
4572  		return -1;
4573  	}
4574  
4575  	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4576  
4577  	return size_read + padding;
4578  }
4579  #endif
4580  
perf_event__process_build_id(struct perf_session * session,union perf_event * event)4581  int perf_event__process_build_id(struct perf_session *session,
4582  				 union perf_event *event)
4583  {
4584  	__event_process_build_id(&event->build_id,
4585  				 event->build_id.filename,
4586  				 session);
4587  	return 0;
4588  }
4589