1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Performance events core code:
4   *
5   *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6   *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7   *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8   *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9   */
10  
11  #include <linux/fs.h>
12  #include <linux/mm.h>
13  #include <linux/cpu.h>
14  #include <linux/smp.h>
15  #include <linux/idr.h>
16  #include <linux/file.h>
17  #include <linux/poll.h>
18  #include <linux/slab.h>
19  #include <linux/hash.h>
20  #include <linux/tick.h>
21  #include <linux/sysfs.h>
22  #include <linux/dcache.h>
23  #include <linux/percpu.h>
24  #include <linux/ptrace.h>
25  #include <linux/reboot.h>
26  #include <linux/vmstat.h>
27  #include <linux/device.h>
28  #include <linux/export.h>
29  #include <linux/vmalloc.h>
30  #include <linux/hardirq.h>
31  #include <linux/hugetlb.h>
32  #include <linux/rculist.h>
33  #include <linux/uaccess.h>
34  #include <linux/syscalls.h>
35  #include <linux/anon_inodes.h>
36  #include <linux/kernel_stat.h>
37  #include <linux/cgroup.h>
38  #include <linux/perf_event.h>
39  #include <linux/trace_events.h>
40  #include <linux/hw_breakpoint.h>
41  #include <linux/mm_types.h>
42  #include <linux/module.h>
43  #include <linux/mman.h>
44  #include <linux/compat.h>
45  #include <linux/bpf.h>
46  #include <linux/filter.h>
47  #include <linux/namei.h>
48  #include <linux/parser.h>
49  #include <linux/sched/clock.h>
50  #include <linux/sched/mm.h>
51  #include <linux/proc_ns.h>
52  #include <linux/mount.h>
53  #include <linux/min_heap.h>
54  #include <linux/highmem.h>
55  #include <linux/pgtable.h>
56  #include <linux/buildid.h>
57  #include <linux/task_work.h>
58  
59  #include "internal.h"
60  
61  #include <asm/irq_regs.h>
62  
63  typedef int (*remote_function_f)(void *);
64  
65  struct remote_function_call {
66  	struct task_struct	*p;
67  	remote_function_f	func;
68  	void			*info;
69  	int			ret;
70  };
71  
remote_function(void * data)72  static void remote_function(void *data)
73  {
74  	struct remote_function_call *tfc = data;
75  	struct task_struct *p = tfc->p;
76  
77  	if (p) {
78  		/* -EAGAIN */
79  		if (task_cpu(p) != smp_processor_id())
80  			return;
81  
82  		/*
83  		 * Now that we're on right CPU with IRQs disabled, we can test
84  		 * if we hit the right task without races.
85  		 */
86  
87  		tfc->ret = -ESRCH; /* No such (running) process */
88  		if (p != current)
89  			return;
90  	}
91  
92  	tfc->ret = tfc->func(tfc->info);
93  }
94  
95  /**
96   * task_function_call - call a function on the cpu on which a task runs
97   * @p:		the task to evaluate
98   * @func:	the function to be called
99   * @info:	the function call argument
100   *
101   * Calls the function @func when the task is currently running. This might
102   * be on the current CPU, which just calls the function directly.  This will
103   * retry due to any failures in smp_call_function_single(), such as if the
104   * task_cpu() goes offline concurrently.
105   *
106   * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107   */
108  static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)109  task_function_call(struct task_struct *p, remote_function_f func, void *info)
110  {
111  	struct remote_function_call data = {
112  		.p	= p,
113  		.func	= func,
114  		.info	= info,
115  		.ret	= -EAGAIN,
116  	};
117  	int ret;
118  
119  	for (;;) {
120  		ret = smp_call_function_single(task_cpu(p), remote_function,
121  					       &data, 1);
122  		if (!ret)
123  			ret = data.ret;
124  
125  		if (ret != -EAGAIN)
126  			break;
127  
128  		cond_resched();
129  	}
130  
131  	return ret;
132  }
133  
134  /**
135   * cpu_function_call - call a function on the cpu
136   * @cpu:	target cpu to queue this function
137   * @func:	the function to be called
138   * @info:	the function call argument
139   *
140   * Calls the function @func on the remote cpu.
141   *
142   * returns: @func return value or -ENXIO when the cpu is offline
143   */
cpu_function_call(int cpu,remote_function_f func,void * info)144  static int cpu_function_call(int cpu, remote_function_f func, void *info)
145  {
146  	struct remote_function_call data = {
147  		.p	= NULL,
148  		.func	= func,
149  		.info	= info,
150  		.ret	= -ENXIO, /* No such CPU */
151  	};
152  
153  	smp_call_function_single(cpu, remote_function, &data, 1);
154  
155  	return data.ret;
156  }
157  
158  enum event_type_t {
159  	EVENT_FLEXIBLE	= 0x01,
160  	EVENT_PINNED	= 0x02,
161  	EVENT_TIME	= 0x04,
162  	EVENT_FROZEN	= 0x08,
163  	/* see ctx_resched() for details */
164  	EVENT_CPU	= 0x10,
165  	EVENT_CGROUP	= 0x20,
166  
167  	/* compound helpers */
168  	EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
169  	EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
170  };
171  
__perf_ctx_lock(struct perf_event_context * ctx)172  static inline void __perf_ctx_lock(struct perf_event_context *ctx)
173  {
174  	raw_spin_lock(&ctx->lock);
175  	WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
176  }
177  
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)178  static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
179  			  struct perf_event_context *ctx)
180  {
181  	__perf_ctx_lock(&cpuctx->ctx);
182  	if (ctx)
183  		__perf_ctx_lock(ctx);
184  }
185  
__perf_ctx_unlock(struct perf_event_context * ctx)186  static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
187  {
188  	/*
189  	 * If ctx_sched_in() didn't again set any ALL flags, clean up
190  	 * after ctx_sched_out() by clearing is_active.
191  	 */
192  	if (ctx->is_active & EVENT_FROZEN) {
193  		if (!(ctx->is_active & EVENT_ALL))
194  			ctx->is_active = 0;
195  		else
196  			ctx->is_active &= ~EVENT_FROZEN;
197  	}
198  	raw_spin_unlock(&ctx->lock);
199  }
200  
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)201  static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
202  			    struct perf_event_context *ctx)
203  {
204  	if (ctx)
205  		__perf_ctx_unlock(ctx);
206  	__perf_ctx_unlock(&cpuctx->ctx);
207  }
208  
209  #define TASK_TOMBSTONE ((void *)-1L)
210  
is_kernel_event(struct perf_event * event)211  static bool is_kernel_event(struct perf_event *event)
212  {
213  	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
214  }
215  
216  static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
217  
perf_cpu_task_ctx(void)218  struct perf_event_context *perf_cpu_task_ctx(void)
219  {
220  	lockdep_assert_irqs_disabled();
221  	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
222  }
223  
224  /*
225   * On task ctx scheduling...
226   *
227   * When !ctx->nr_events a task context will not be scheduled. This means
228   * we can disable the scheduler hooks (for performance) without leaving
229   * pending task ctx state.
230   *
231   * This however results in two special cases:
232   *
233   *  - removing the last event from a task ctx; this is relatively straight
234   *    forward and is done in __perf_remove_from_context.
235   *
236   *  - adding the first event to a task ctx; this is tricky because we cannot
237   *    rely on ctx->is_active and therefore cannot use event_function_call().
238   *    See perf_install_in_context().
239   *
240   * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
241   */
242  
243  typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
244  			struct perf_event_context *, void *);
245  
246  struct event_function_struct {
247  	struct perf_event *event;
248  	event_f func;
249  	void *data;
250  };
251  
event_function(void * info)252  static int event_function(void *info)
253  {
254  	struct event_function_struct *efs = info;
255  	struct perf_event *event = efs->event;
256  	struct perf_event_context *ctx = event->ctx;
257  	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
258  	struct perf_event_context *task_ctx = cpuctx->task_ctx;
259  	int ret = 0;
260  
261  	lockdep_assert_irqs_disabled();
262  
263  	perf_ctx_lock(cpuctx, task_ctx);
264  	/*
265  	 * Since we do the IPI call without holding ctx->lock things can have
266  	 * changed, double check we hit the task we set out to hit.
267  	 */
268  	if (ctx->task) {
269  		if (ctx->task != current) {
270  			ret = -ESRCH;
271  			goto unlock;
272  		}
273  
274  		/*
275  		 * We only use event_function_call() on established contexts,
276  		 * and event_function() is only ever called when active (or
277  		 * rather, we'll have bailed in task_function_call() or the
278  		 * above ctx->task != current test), therefore we must have
279  		 * ctx->is_active here.
280  		 */
281  		WARN_ON_ONCE(!ctx->is_active);
282  		/*
283  		 * And since we have ctx->is_active, cpuctx->task_ctx must
284  		 * match.
285  		 */
286  		WARN_ON_ONCE(task_ctx != ctx);
287  	} else {
288  		WARN_ON_ONCE(&cpuctx->ctx != ctx);
289  	}
290  
291  	efs->func(event, cpuctx, ctx, efs->data);
292  unlock:
293  	perf_ctx_unlock(cpuctx, task_ctx);
294  
295  	return ret;
296  }
297  
event_function_call(struct perf_event * event,event_f func,void * data)298  static void event_function_call(struct perf_event *event, event_f func, void *data)
299  {
300  	struct perf_event_context *ctx = event->ctx;
301  	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
302  	struct perf_cpu_context *cpuctx;
303  	struct event_function_struct efs = {
304  		.event = event,
305  		.func = func,
306  		.data = data,
307  	};
308  
309  	if (!event->parent) {
310  		/*
311  		 * If this is a !child event, we must hold ctx::mutex to
312  		 * stabilize the event->ctx relation. See
313  		 * perf_event_ctx_lock().
314  		 */
315  		lockdep_assert_held(&ctx->mutex);
316  	}
317  
318  	if (!task) {
319  		cpu_function_call(event->cpu, event_function, &efs);
320  		return;
321  	}
322  
323  	if (task == TASK_TOMBSTONE)
324  		return;
325  
326  again:
327  	if (!task_function_call(task, event_function, &efs))
328  		return;
329  
330  	local_irq_disable();
331  	cpuctx = this_cpu_ptr(&perf_cpu_context);
332  	perf_ctx_lock(cpuctx, ctx);
333  	/*
334  	 * Reload the task pointer, it might have been changed by
335  	 * a concurrent perf_event_context_sched_out().
336  	 */
337  	task = ctx->task;
338  	if (task == TASK_TOMBSTONE)
339  		goto unlock;
340  	if (ctx->is_active) {
341  		perf_ctx_unlock(cpuctx, ctx);
342  		local_irq_enable();
343  		goto again;
344  	}
345  	func(event, NULL, ctx, data);
346  unlock:
347  	perf_ctx_unlock(cpuctx, ctx);
348  	local_irq_enable();
349  }
350  
351  /*
352   * Similar to event_function_call() + event_function(), but hard assumes IRQs
353   * are already disabled and we're on the right CPU.
354   */
event_function_local(struct perf_event * event,event_f func,void * data)355  static void event_function_local(struct perf_event *event, event_f func, void *data)
356  {
357  	struct perf_event_context *ctx = event->ctx;
358  	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
359  	struct task_struct *task = READ_ONCE(ctx->task);
360  	struct perf_event_context *task_ctx = NULL;
361  
362  	lockdep_assert_irqs_disabled();
363  
364  	if (task) {
365  		if (task == TASK_TOMBSTONE)
366  			return;
367  
368  		task_ctx = ctx;
369  	}
370  
371  	perf_ctx_lock(cpuctx, task_ctx);
372  
373  	task = ctx->task;
374  	if (task == TASK_TOMBSTONE)
375  		goto unlock;
376  
377  	if (task) {
378  		/*
379  		 * We must be either inactive or active and the right task,
380  		 * otherwise we're screwed, since we cannot IPI to somewhere
381  		 * else.
382  		 */
383  		if (ctx->is_active) {
384  			if (WARN_ON_ONCE(task != current))
385  				goto unlock;
386  
387  			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
388  				goto unlock;
389  		}
390  	} else {
391  		WARN_ON_ONCE(&cpuctx->ctx != ctx);
392  	}
393  
394  	func(event, cpuctx, ctx, data);
395  unlock:
396  	perf_ctx_unlock(cpuctx, task_ctx);
397  }
398  
399  #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
400  		       PERF_FLAG_FD_OUTPUT  |\
401  		       PERF_FLAG_PID_CGROUP |\
402  		       PERF_FLAG_FD_CLOEXEC)
403  
404  /*
405   * branch priv levels that need permission checks
406   */
407  #define PERF_SAMPLE_BRANCH_PERM_PLM \
408  	(PERF_SAMPLE_BRANCH_KERNEL |\
409  	 PERF_SAMPLE_BRANCH_HV)
410  
411  /*
412   * perf_sched_events : >0 events exist
413   */
414  
415  static void perf_sched_delayed(struct work_struct *work);
416  DEFINE_STATIC_KEY_FALSE(perf_sched_events);
417  static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
418  static DEFINE_MUTEX(perf_sched_mutex);
419  static atomic_t perf_sched_count;
420  
421  static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
422  
423  static atomic_t nr_mmap_events __read_mostly;
424  static atomic_t nr_comm_events __read_mostly;
425  static atomic_t nr_namespaces_events __read_mostly;
426  static atomic_t nr_task_events __read_mostly;
427  static atomic_t nr_freq_events __read_mostly;
428  static atomic_t nr_switch_events __read_mostly;
429  static atomic_t nr_ksymbol_events __read_mostly;
430  static atomic_t nr_bpf_events __read_mostly;
431  static atomic_t nr_cgroup_events __read_mostly;
432  static atomic_t nr_text_poke_events __read_mostly;
433  static atomic_t nr_build_id_events __read_mostly;
434  
435  static LIST_HEAD(pmus);
436  static DEFINE_MUTEX(pmus_lock);
437  static struct srcu_struct pmus_srcu;
438  static cpumask_var_t perf_online_mask;
439  static cpumask_var_t perf_online_core_mask;
440  static cpumask_var_t perf_online_die_mask;
441  static cpumask_var_t perf_online_cluster_mask;
442  static cpumask_var_t perf_online_pkg_mask;
443  static cpumask_var_t perf_online_sys_mask;
444  static struct kmem_cache *perf_event_cache;
445  
446  /*
447   * perf event paranoia level:
448   *  -1 - not paranoid at all
449   *   0 - disallow raw tracepoint access for unpriv
450   *   1 - disallow cpu events for unpriv
451   *   2 - disallow kernel profiling for unpriv
452   */
453  int sysctl_perf_event_paranoid __read_mostly = 2;
454  
455  /* Minimum for 512 kiB + 1 user control page */
456  int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
457  
458  /*
459   * max perf event sample rate
460   */
461  #define DEFAULT_MAX_SAMPLE_RATE		100000
462  #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
463  #define DEFAULT_CPU_TIME_MAX_PERCENT	25
464  
465  int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
466  
467  static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
468  static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
469  
470  static int perf_sample_allowed_ns __read_mostly =
471  	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
472  
update_perf_cpu_limits(void)473  static void update_perf_cpu_limits(void)
474  {
475  	u64 tmp = perf_sample_period_ns;
476  
477  	tmp *= sysctl_perf_cpu_time_max_percent;
478  	tmp = div_u64(tmp, 100);
479  	if (!tmp)
480  		tmp = 1;
481  
482  	WRITE_ONCE(perf_sample_allowed_ns, tmp);
483  }
484  
485  static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
486  
perf_event_max_sample_rate_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)487  int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
488  				       void *buffer, size_t *lenp, loff_t *ppos)
489  {
490  	int ret;
491  	int perf_cpu = sysctl_perf_cpu_time_max_percent;
492  	/*
493  	 * If throttling is disabled don't allow the write:
494  	 */
495  	if (write && (perf_cpu == 100 || perf_cpu == 0))
496  		return -EINVAL;
497  
498  	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
499  	if (ret || !write)
500  		return ret;
501  
502  	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
503  	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
504  	update_perf_cpu_limits();
505  
506  	return 0;
507  }
508  
509  int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
510  
perf_cpu_time_max_percent_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)511  int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
512  		void *buffer, size_t *lenp, loff_t *ppos)
513  {
514  	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515  
516  	if (ret || !write)
517  		return ret;
518  
519  	if (sysctl_perf_cpu_time_max_percent == 100 ||
520  	    sysctl_perf_cpu_time_max_percent == 0) {
521  		printk(KERN_WARNING
522  		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
523  		WRITE_ONCE(perf_sample_allowed_ns, 0);
524  	} else {
525  		update_perf_cpu_limits();
526  	}
527  
528  	return 0;
529  }
530  
531  /*
532   * perf samples are done in some very critical code paths (NMIs).
533   * If they take too much CPU time, the system can lock up and not
534   * get any real work done.  This will drop the sample rate when
535   * we detect that events are taking too long.
536   */
537  #define NR_ACCUMULATED_SAMPLES 128
538  static DEFINE_PER_CPU(u64, running_sample_length);
539  
540  static u64 __report_avg;
541  static u64 __report_allowed;
542  
perf_duration_warn(struct irq_work * w)543  static void perf_duration_warn(struct irq_work *w)
544  {
545  	printk_ratelimited(KERN_INFO
546  		"perf: interrupt took too long (%lld > %lld), lowering "
547  		"kernel.perf_event_max_sample_rate to %d\n",
548  		__report_avg, __report_allowed,
549  		sysctl_perf_event_sample_rate);
550  }
551  
552  static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
553  
perf_sample_event_took(u64 sample_len_ns)554  void perf_sample_event_took(u64 sample_len_ns)
555  {
556  	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
557  	u64 running_len;
558  	u64 avg_len;
559  	u32 max;
560  
561  	if (max_len == 0)
562  		return;
563  
564  	/* Decay the counter by 1 average sample. */
565  	running_len = __this_cpu_read(running_sample_length);
566  	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
567  	running_len += sample_len_ns;
568  	__this_cpu_write(running_sample_length, running_len);
569  
570  	/*
571  	 * Note: this will be biased artificially low until we have
572  	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
573  	 * from having to maintain a count.
574  	 */
575  	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
576  	if (avg_len <= max_len)
577  		return;
578  
579  	__report_avg = avg_len;
580  	__report_allowed = max_len;
581  
582  	/*
583  	 * Compute a throttle threshold 25% below the current duration.
584  	 */
585  	avg_len += avg_len / 4;
586  	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
587  	if (avg_len < max)
588  		max /= (u32)avg_len;
589  	else
590  		max = 1;
591  
592  	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
593  	WRITE_ONCE(max_samples_per_tick, max);
594  
595  	sysctl_perf_event_sample_rate = max * HZ;
596  	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
597  
598  	if (!irq_work_queue(&perf_duration_work)) {
599  		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
600  			     "kernel.perf_event_max_sample_rate to %d\n",
601  			     __report_avg, __report_allowed,
602  			     sysctl_perf_event_sample_rate);
603  	}
604  }
605  
606  static atomic64_t perf_event_id;
607  
608  static void update_context_time(struct perf_event_context *ctx);
609  static u64 perf_event_time(struct perf_event *event);
610  
perf_event_print_debug(void)611  void __weak perf_event_print_debug(void)	{ }
612  
perf_clock(void)613  static inline u64 perf_clock(void)
614  {
615  	return local_clock();
616  }
617  
perf_event_clock(struct perf_event * event)618  static inline u64 perf_event_clock(struct perf_event *event)
619  {
620  	return event->clock();
621  }
622  
623  /*
624   * State based event timekeeping...
625   *
626   * The basic idea is to use event->state to determine which (if any) time
627   * fields to increment with the current delta. This means we only need to
628   * update timestamps when we change state or when they are explicitly requested
629   * (read).
630   *
631   * Event groups make things a little more complicated, but not terribly so. The
632   * rules for a group are that if the group leader is OFF the entire group is
633   * OFF, irrespective of what the group member states are. This results in
634   * __perf_effective_state().
635   *
636   * A further ramification is that when a group leader flips between OFF and
637   * !OFF, we need to update all group member times.
638   *
639   *
640   * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
641   * need to make sure the relevant context time is updated before we try and
642   * update our timestamps.
643   */
644  
645  static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)646  __perf_effective_state(struct perf_event *event)
647  {
648  	struct perf_event *leader = event->group_leader;
649  
650  	if (leader->state <= PERF_EVENT_STATE_OFF)
651  		return leader->state;
652  
653  	return event->state;
654  }
655  
656  static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)657  __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
658  {
659  	enum perf_event_state state = __perf_effective_state(event);
660  	u64 delta = now - event->tstamp;
661  
662  	*enabled = event->total_time_enabled;
663  	if (state >= PERF_EVENT_STATE_INACTIVE)
664  		*enabled += delta;
665  
666  	*running = event->total_time_running;
667  	if (state >= PERF_EVENT_STATE_ACTIVE)
668  		*running += delta;
669  }
670  
perf_event_update_time(struct perf_event * event)671  static void perf_event_update_time(struct perf_event *event)
672  {
673  	u64 now = perf_event_time(event);
674  
675  	__perf_update_times(event, now, &event->total_time_enabled,
676  					&event->total_time_running);
677  	event->tstamp = now;
678  }
679  
perf_event_update_sibling_time(struct perf_event * leader)680  static void perf_event_update_sibling_time(struct perf_event *leader)
681  {
682  	struct perf_event *sibling;
683  
684  	for_each_sibling_event(sibling, leader)
685  		perf_event_update_time(sibling);
686  }
687  
688  static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)689  perf_event_set_state(struct perf_event *event, enum perf_event_state state)
690  {
691  	if (event->state == state)
692  		return;
693  
694  	perf_event_update_time(event);
695  	/*
696  	 * If a group leader gets enabled/disabled all its siblings
697  	 * are affected too.
698  	 */
699  	if ((event->state < 0) ^ (state < 0))
700  		perf_event_update_sibling_time(event);
701  
702  	WRITE_ONCE(event->state, state);
703  }
704  
705  /*
706   * UP store-release, load-acquire
707   */
708  
709  #define __store_release(ptr, val)					\
710  do {									\
711  	barrier();							\
712  	WRITE_ONCE(*(ptr), (val));					\
713  } while (0)
714  
715  #define __load_acquire(ptr)						\
716  ({									\
717  	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
718  	barrier();							\
719  	___p;								\
720  })
721  
722  #define for_each_epc(_epc, _ctx, _pmu, _cgroup)				\
723  	list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
724  		if (_cgroup && !_epc->nr_cgroups)			\
725  			continue;					\
726  		else if (_pmu && _epc->pmu != _pmu)			\
727  			continue;					\
728  		else
729  
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)730  static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
731  {
732  	struct perf_event_pmu_context *pmu_ctx;
733  
734  	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
735  		perf_pmu_disable(pmu_ctx->pmu);
736  }
737  
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)738  static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
739  {
740  	struct perf_event_pmu_context *pmu_ctx;
741  
742  	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
743  		perf_pmu_enable(pmu_ctx->pmu);
744  }
745  
746  static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
747  static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
748  
749  #ifdef CONFIG_CGROUP_PERF
750  
751  static inline bool
perf_cgroup_match(struct perf_event * event)752  perf_cgroup_match(struct perf_event *event)
753  {
754  	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
755  
756  	/* @event doesn't care about cgroup */
757  	if (!event->cgrp)
758  		return true;
759  
760  	/* wants specific cgroup scope but @cpuctx isn't associated with any */
761  	if (!cpuctx->cgrp)
762  		return false;
763  
764  	/*
765  	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
766  	 * also enabled for all its descendant cgroups.  If @cpuctx's
767  	 * cgroup is a descendant of @event's (the test covers identity
768  	 * case), it's a match.
769  	 */
770  	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
771  				    event->cgrp->css.cgroup);
772  }
773  
perf_detach_cgroup(struct perf_event * event)774  static inline void perf_detach_cgroup(struct perf_event *event)
775  {
776  	css_put(&event->cgrp->css);
777  	event->cgrp = NULL;
778  }
779  
is_cgroup_event(struct perf_event * event)780  static inline int is_cgroup_event(struct perf_event *event)
781  {
782  	return event->cgrp != NULL;
783  }
784  
perf_cgroup_event_time(struct perf_event * event)785  static inline u64 perf_cgroup_event_time(struct perf_event *event)
786  {
787  	struct perf_cgroup_info *t;
788  
789  	t = per_cpu_ptr(event->cgrp->info, event->cpu);
790  	return t->time;
791  }
792  
perf_cgroup_event_time_now(struct perf_event * event,u64 now)793  static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
794  {
795  	struct perf_cgroup_info *t;
796  
797  	t = per_cpu_ptr(event->cgrp->info, event->cpu);
798  	if (!__load_acquire(&t->active))
799  		return t->time;
800  	now += READ_ONCE(t->timeoffset);
801  	return now;
802  }
803  
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)804  static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
805  {
806  	if (adv)
807  		info->time += now - info->timestamp;
808  	info->timestamp = now;
809  	/*
810  	 * see update_context_time()
811  	 */
812  	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
813  }
814  
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)815  static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
816  {
817  	struct perf_cgroup *cgrp = cpuctx->cgrp;
818  	struct cgroup_subsys_state *css;
819  	struct perf_cgroup_info *info;
820  
821  	if (cgrp) {
822  		u64 now = perf_clock();
823  
824  		for (css = &cgrp->css; css; css = css->parent) {
825  			cgrp = container_of(css, struct perf_cgroup, css);
826  			info = this_cpu_ptr(cgrp->info);
827  
828  			__update_cgrp_time(info, now, true);
829  			if (final)
830  				__store_release(&info->active, 0);
831  		}
832  	}
833  }
834  
update_cgrp_time_from_event(struct perf_event * event)835  static inline void update_cgrp_time_from_event(struct perf_event *event)
836  {
837  	struct perf_cgroup_info *info;
838  
839  	/*
840  	 * ensure we access cgroup data only when needed and
841  	 * when we know the cgroup is pinned (css_get)
842  	 */
843  	if (!is_cgroup_event(event))
844  		return;
845  
846  	info = this_cpu_ptr(event->cgrp->info);
847  	/*
848  	 * Do not update time when cgroup is not active
849  	 */
850  	if (info->active)
851  		__update_cgrp_time(info, perf_clock(), true);
852  }
853  
854  static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)855  perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
856  {
857  	struct perf_event_context *ctx = &cpuctx->ctx;
858  	struct perf_cgroup *cgrp = cpuctx->cgrp;
859  	struct perf_cgroup_info *info;
860  	struct cgroup_subsys_state *css;
861  
862  	/*
863  	 * ctx->lock held by caller
864  	 * ensure we do not access cgroup data
865  	 * unless we have the cgroup pinned (css_get)
866  	 */
867  	if (!cgrp)
868  		return;
869  
870  	WARN_ON_ONCE(!ctx->nr_cgroups);
871  
872  	for (css = &cgrp->css; css; css = css->parent) {
873  		cgrp = container_of(css, struct perf_cgroup, css);
874  		info = this_cpu_ptr(cgrp->info);
875  		__update_cgrp_time(info, ctx->timestamp, false);
876  		__store_release(&info->active, 1);
877  	}
878  }
879  
880  /*
881   * reschedule events based on the cgroup constraint of task.
882   */
perf_cgroup_switch(struct task_struct * task)883  static void perf_cgroup_switch(struct task_struct *task)
884  {
885  	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
886  	struct perf_cgroup *cgrp;
887  
888  	/*
889  	 * cpuctx->cgrp is set when the first cgroup event enabled,
890  	 * and is cleared when the last cgroup event disabled.
891  	 */
892  	if (READ_ONCE(cpuctx->cgrp) == NULL)
893  		return;
894  
895  	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
896  
897  	cgrp = perf_cgroup_from_task(task, NULL);
898  	if (READ_ONCE(cpuctx->cgrp) == cgrp)
899  		return;
900  
901  	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
902  	perf_ctx_disable(&cpuctx->ctx, true);
903  
904  	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
905  	/*
906  	 * must not be done before ctxswout due
907  	 * to update_cgrp_time_from_cpuctx() in
908  	 * ctx_sched_out()
909  	 */
910  	cpuctx->cgrp = cgrp;
911  	/*
912  	 * set cgrp before ctxsw in to allow
913  	 * perf_cgroup_set_timestamp() in ctx_sched_in()
914  	 * to not have to pass task around
915  	 */
916  	ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
917  
918  	perf_ctx_enable(&cpuctx->ctx, true);
919  	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
920  }
921  
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)922  static int perf_cgroup_ensure_storage(struct perf_event *event,
923  				struct cgroup_subsys_state *css)
924  {
925  	struct perf_cpu_context *cpuctx;
926  	struct perf_event **storage;
927  	int cpu, heap_size, ret = 0;
928  
929  	/*
930  	 * Allow storage to have sufficient space for an iterator for each
931  	 * possibly nested cgroup plus an iterator for events with no cgroup.
932  	 */
933  	for (heap_size = 1; css; css = css->parent)
934  		heap_size++;
935  
936  	for_each_possible_cpu(cpu) {
937  		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
938  		if (heap_size <= cpuctx->heap_size)
939  			continue;
940  
941  		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
942  				       GFP_KERNEL, cpu_to_node(cpu));
943  		if (!storage) {
944  			ret = -ENOMEM;
945  			break;
946  		}
947  
948  		raw_spin_lock_irq(&cpuctx->ctx.lock);
949  		if (cpuctx->heap_size < heap_size) {
950  			swap(cpuctx->heap, storage);
951  			if (storage == cpuctx->heap_default)
952  				storage = NULL;
953  			cpuctx->heap_size = heap_size;
954  		}
955  		raw_spin_unlock_irq(&cpuctx->ctx.lock);
956  
957  		kfree(storage);
958  	}
959  
960  	return ret;
961  }
962  
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)963  static inline int perf_cgroup_connect(int fd, struct perf_event *event,
964  				      struct perf_event_attr *attr,
965  				      struct perf_event *group_leader)
966  {
967  	struct perf_cgroup *cgrp;
968  	struct cgroup_subsys_state *css;
969  	struct fd f = fdget(fd);
970  	int ret = 0;
971  
972  	if (!fd_file(f))
973  		return -EBADF;
974  
975  	css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
976  					 &perf_event_cgrp_subsys);
977  	if (IS_ERR(css)) {
978  		ret = PTR_ERR(css);
979  		goto out;
980  	}
981  
982  	ret = perf_cgroup_ensure_storage(event, css);
983  	if (ret)
984  		goto out;
985  
986  	cgrp = container_of(css, struct perf_cgroup, css);
987  	event->cgrp = cgrp;
988  
989  	/*
990  	 * all events in a group must monitor
991  	 * the same cgroup because a task belongs
992  	 * to only one perf cgroup at a time
993  	 */
994  	if (group_leader && group_leader->cgrp != cgrp) {
995  		perf_detach_cgroup(event);
996  		ret = -EINVAL;
997  	}
998  out:
999  	fdput(f);
1000  	return ret;
1001  }
1002  
1003  static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1004  perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1005  {
1006  	struct perf_cpu_context *cpuctx;
1007  
1008  	if (!is_cgroup_event(event))
1009  		return;
1010  
1011  	event->pmu_ctx->nr_cgroups++;
1012  
1013  	/*
1014  	 * Because cgroup events are always per-cpu events,
1015  	 * @ctx == &cpuctx->ctx.
1016  	 */
1017  	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1018  
1019  	if (ctx->nr_cgroups++)
1020  		return;
1021  
1022  	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1023  }
1024  
1025  static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1026  perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1027  {
1028  	struct perf_cpu_context *cpuctx;
1029  
1030  	if (!is_cgroup_event(event))
1031  		return;
1032  
1033  	event->pmu_ctx->nr_cgroups--;
1034  
1035  	/*
1036  	 * Because cgroup events are always per-cpu events,
1037  	 * @ctx == &cpuctx->ctx.
1038  	 */
1039  	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1040  
1041  	if (--ctx->nr_cgroups)
1042  		return;
1043  
1044  	cpuctx->cgrp = NULL;
1045  }
1046  
1047  #else /* !CONFIG_CGROUP_PERF */
1048  
1049  static inline bool
perf_cgroup_match(struct perf_event * event)1050  perf_cgroup_match(struct perf_event *event)
1051  {
1052  	return true;
1053  }
1054  
perf_detach_cgroup(struct perf_event * event)1055  static inline void perf_detach_cgroup(struct perf_event *event)
1056  {}
1057  
is_cgroup_event(struct perf_event * event)1058  static inline int is_cgroup_event(struct perf_event *event)
1059  {
1060  	return 0;
1061  }
1062  
update_cgrp_time_from_event(struct perf_event * event)1063  static inline void update_cgrp_time_from_event(struct perf_event *event)
1064  {
1065  }
1066  
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1067  static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1068  						bool final)
1069  {
1070  }
1071  
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1072  static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1073  				      struct perf_event_attr *attr,
1074  				      struct perf_event *group_leader)
1075  {
1076  	return -EINVAL;
1077  }
1078  
1079  static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1080  perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1081  {
1082  }
1083  
perf_cgroup_event_time(struct perf_event * event)1084  static inline u64 perf_cgroup_event_time(struct perf_event *event)
1085  {
1086  	return 0;
1087  }
1088  
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1089  static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1090  {
1091  	return 0;
1092  }
1093  
1094  static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1095  perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1096  {
1097  }
1098  
1099  static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1100  perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1101  {
1102  }
1103  
perf_cgroup_switch(struct task_struct * task)1104  static void perf_cgroup_switch(struct task_struct *task)
1105  {
1106  }
1107  #endif
1108  
1109  /*
1110   * set default to be dependent on timer tick just
1111   * like original code
1112   */
1113  #define PERF_CPU_HRTIMER (1000 / HZ)
1114  /*
1115   * function must be called with interrupts disabled
1116   */
perf_mux_hrtimer_handler(struct hrtimer * hr)1117  static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1118  {
1119  	struct perf_cpu_pmu_context *cpc;
1120  	bool rotations;
1121  
1122  	lockdep_assert_irqs_disabled();
1123  
1124  	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1125  	rotations = perf_rotate_context(cpc);
1126  
1127  	raw_spin_lock(&cpc->hrtimer_lock);
1128  	if (rotations)
1129  		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1130  	else
1131  		cpc->hrtimer_active = 0;
1132  	raw_spin_unlock(&cpc->hrtimer_lock);
1133  
1134  	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1135  }
1136  
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1137  static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1138  {
1139  	struct hrtimer *timer = &cpc->hrtimer;
1140  	struct pmu *pmu = cpc->epc.pmu;
1141  	u64 interval;
1142  
1143  	/*
1144  	 * check default is sane, if not set then force to
1145  	 * default interval (1/tick)
1146  	 */
1147  	interval = pmu->hrtimer_interval_ms;
1148  	if (interval < 1)
1149  		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1150  
1151  	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1152  
1153  	raw_spin_lock_init(&cpc->hrtimer_lock);
1154  	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1155  	timer->function = perf_mux_hrtimer_handler;
1156  }
1157  
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1158  static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1159  {
1160  	struct hrtimer *timer = &cpc->hrtimer;
1161  	unsigned long flags;
1162  
1163  	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1164  	if (!cpc->hrtimer_active) {
1165  		cpc->hrtimer_active = 1;
1166  		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1167  		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1168  	}
1169  	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1170  
1171  	return 0;
1172  }
1173  
perf_mux_hrtimer_restart_ipi(void * arg)1174  static int perf_mux_hrtimer_restart_ipi(void *arg)
1175  {
1176  	return perf_mux_hrtimer_restart(arg);
1177  }
1178  
perf_pmu_disable(struct pmu * pmu)1179  void perf_pmu_disable(struct pmu *pmu)
1180  {
1181  	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1182  	if (!(*count)++)
1183  		pmu->pmu_disable(pmu);
1184  }
1185  
perf_pmu_enable(struct pmu * pmu)1186  void perf_pmu_enable(struct pmu *pmu)
1187  {
1188  	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1189  	if (!--(*count))
1190  		pmu->pmu_enable(pmu);
1191  }
1192  
perf_assert_pmu_disabled(struct pmu * pmu)1193  static void perf_assert_pmu_disabled(struct pmu *pmu)
1194  {
1195  	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1196  }
1197  
get_ctx(struct perf_event_context * ctx)1198  static void get_ctx(struct perf_event_context *ctx)
1199  {
1200  	refcount_inc(&ctx->refcount);
1201  }
1202  
alloc_task_ctx_data(struct pmu * pmu)1203  static void *alloc_task_ctx_data(struct pmu *pmu)
1204  {
1205  	if (pmu->task_ctx_cache)
1206  		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1207  
1208  	return NULL;
1209  }
1210  
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1211  static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1212  {
1213  	if (pmu->task_ctx_cache && task_ctx_data)
1214  		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1215  }
1216  
free_ctx(struct rcu_head * head)1217  static void free_ctx(struct rcu_head *head)
1218  {
1219  	struct perf_event_context *ctx;
1220  
1221  	ctx = container_of(head, struct perf_event_context, rcu_head);
1222  	kfree(ctx);
1223  }
1224  
put_ctx(struct perf_event_context * ctx)1225  static void put_ctx(struct perf_event_context *ctx)
1226  {
1227  	if (refcount_dec_and_test(&ctx->refcount)) {
1228  		if (ctx->parent_ctx)
1229  			put_ctx(ctx->parent_ctx);
1230  		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1231  			put_task_struct(ctx->task);
1232  		call_rcu(&ctx->rcu_head, free_ctx);
1233  	}
1234  }
1235  
1236  /*
1237   * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1238   * perf_pmu_migrate_context() we need some magic.
1239   *
1240   * Those places that change perf_event::ctx will hold both
1241   * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1242   *
1243   * Lock ordering is by mutex address. There are two other sites where
1244   * perf_event_context::mutex nests and those are:
1245   *
1246   *  - perf_event_exit_task_context()	[ child , 0 ]
1247   *      perf_event_exit_event()
1248   *        put_event()			[ parent, 1 ]
1249   *
1250   *  - perf_event_init_context()		[ parent, 0 ]
1251   *      inherit_task_group()
1252   *        inherit_group()
1253   *          inherit_event()
1254   *            perf_event_alloc()
1255   *              perf_init_event()
1256   *                perf_try_init_event()	[ child , 1 ]
1257   *
1258   * While it appears there is an obvious deadlock here -- the parent and child
1259   * nesting levels are inverted between the two. This is in fact safe because
1260   * life-time rules separate them. That is an exiting task cannot fork, and a
1261   * spawning task cannot (yet) exit.
1262   *
1263   * But remember that these are parent<->child context relations, and
1264   * migration does not affect children, therefore these two orderings should not
1265   * interact.
1266   *
1267   * The change in perf_event::ctx does not affect children (as claimed above)
1268   * because the sys_perf_event_open() case will install a new event and break
1269   * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1270   * concerned with cpuctx and that doesn't have children.
1271   *
1272   * The places that change perf_event::ctx will issue:
1273   *
1274   *   perf_remove_from_context();
1275   *   synchronize_rcu();
1276   *   perf_install_in_context();
1277   *
1278   * to affect the change. The remove_from_context() + synchronize_rcu() should
1279   * quiesce the event, after which we can install it in the new location. This
1280   * means that only external vectors (perf_fops, prctl) can perturb the event
1281   * while in transit. Therefore all such accessors should also acquire
1282   * perf_event_context::mutex to serialize against this.
1283   *
1284   * However; because event->ctx can change while we're waiting to acquire
1285   * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1286   * function.
1287   *
1288   * Lock order:
1289   *    exec_update_lock
1290   *	task_struct::perf_event_mutex
1291   *	  perf_event_context::mutex
1292   *	    perf_event::child_mutex;
1293   *	      perf_event_context::lock
1294   *	    mmap_lock
1295   *	      perf_event::mmap_mutex
1296   *	        perf_buffer::aux_mutex
1297   *	      perf_addr_filters_head::lock
1298   *
1299   *    cpu_hotplug_lock
1300   *      pmus_lock
1301   *	  cpuctx->mutex / perf_event_context::mutex
1302   */
1303  static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1304  perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1305  {
1306  	struct perf_event_context *ctx;
1307  
1308  again:
1309  	rcu_read_lock();
1310  	ctx = READ_ONCE(event->ctx);
1311  	if (!refcount_inc_not_zero(&ctx->refcount)) {
1312  		rcu_read_unlock();
1313  		goto again;
1314  	}
1315  	rcu_read_unlock();
1316  
1317  	mutex_lock_nested(&ctx->mutex, nesting);
1318  	if (event->ctx != ctx) {
1319  		mutex_unlock(&ctx->mutex);
1320  		put_ctx(ctx);
1321  		goto again;
1322  	}
1323  
1324  	return ctx;
1325  }
1326  
1327  static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1328  perf_event_ctx_lock(struct perf_event *event)
1329  {
1330  	return perf_event_ctx_lock_nested(event, 0);
1331  }
1332  
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1333  static void perf_event_ctx_unlock(struct perf_event *event,
1334  				  struct perf_event_context *ctx)
1335  {
1336  	mutex_unlock(&ctx->mutex);
1337  	put_ctx(ctx);
1338  }
1339  
1340  /*
1341   * This must be done under the ctx->lock, such as to serialize against
1342   * context_equiv(), therefore we cannot call put_ctx() since that might end up
1343   * calling scheduler related locks and ctx->lock nests inside those.
1344   */
1345  static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1346  unclone_ctx(struct perf_event_context *ctx)
1347  {
1348  	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1349  
1350  	lockdep_assert_held(&ctx->lock);
1351  
1352  	if (parent_ctx)
1353  		ctx->parent_ctx = NULL;
1354  	ctx->generation++;
1355  
1356  	return parent_ctx;
1357  }
1358  
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1359  static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1360  				enum pid_type type)
1361  {
1362  	u32 nr;
1363  	/*
1364  	 * only top level events have the pid namespace they were created in
1365  	 */
1366  	if (event->parent)
1367  		event = event->parent;
1368  
1369  	nr = __task_pid_nr_ns(p, type, event->ns);
1370  	/* avoid -1 if it is idle thread or runs in another ns */
1371  	if (!nr && !pid_alive(p))
1372  		nr = -1;
1373  	return nr;
1374  }
1375  
perf_event_pid(struct perf_event * event,struct task_struct * p)1376  static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1377  {
1378  	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1379  }
1380  
perf_event_tid(struct perf_event * event,struct task_struct * p)1381  static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1382  {
1383  	return perf_event_pid_type(event, p, PIDTYPE_PID);
1384  }
1385  
1386  /*
1387   * If we inherit events we want to return the parent event id
1388   * to userspace.
1389   */
primary_event_id(struct perf_event * event)1390  static u64 primary_event_id(struct perf_event *event)
1391  {
1392  	u64 id = event->id;
1393  
1394  	if (event->parent)
1395  		id = event->parent->id;
1396  
1397  	return id;
1398  }
1399  
1400  /*
1401   * Get the perf_event_context for a task and lock it.
1402   *
1403   * This has to cope with the fact that until it is locked,
1404   * the context could get moved to another task.
1405   */
1406  static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1407  perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1408  {
1409  	struct perf_event_context *ctx;
1410  
1411  retry:
1412  	/*
1413  	 * One of the few rules of preemptible RCU is that one cannot do
1414  	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1415  	 * part of the read side critical section was irqs-enabled -- see
1416  	 * rcu_read_unlock_special().
1417  	 *
1418  	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1419  	 * side critical section has interrupts disabled.
1420  	 */
1421  	local_irq_save(*flags);
1422  	rcu_read_lock();
1423  	ctx = rcu_dereference(task->perf_event_ctxp);
1424  	if (ctx) {
1425  		/*
1426  		 * If this context is a clone of another, it might
1427  		 * get swapped for another underneath us by
1428  		 * perf_event_task_sched_out, though the
1429  		 * rcu_read_lock() protects us from any context
1430  		 * getting freed.  Lock the context and check if it
1431  		 * got swapped before we could get the lock, and retry
1432  		 * if so.  If we locked the right context, then it
1433  		 * can't get swapped on us any more.
1434  		 */
1435  		raw_spin_lock(&ctx->lock);
1436  		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1437  			raw_spin_unlock(&ctx->lock);
1438  			rcu_read_unlock();
1439  			local_irq_restore(*flags);
1440  			goto retry;
1441  		}
1442  
1443  		if (ctx->task == TASK_TOMBSTONE ||
1444  		    !refcount_inc_not_zero(&ctx->refcount)) {
1445  			raw_spin_unlock(&ctx->lock);
1446  			ctx = NULL;
1447  		} else {
1448  			WARN_ON_ONCE(ctx->task != task);
1449  		}
1450  	}
1451  	rcu_read_unlock();
1452  	if (!ctx)
1453  		local_irq_restore(*flags);
1454  	return ctx;
1455  }
1456  
1457  /*
1458   * Get the context for a task and increment its pin_count so it
1459   * can't get swapped to another task.  This also increments its
1460   * reference count so that the context can't get freed.
1461   */
1462  static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1463  perf_pin_task_context(struct task_struct *task)
1464  {
1465  	struct perf_event_context *ctx;
1466  	unsigned long flags;
1467  
1468  	ctx = perf_lock_task_context(task, &flags);
1469  	if (ctx) {
1470  		++ctx->pin_count;
1471  		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1472  	}
1473  	return ctx;
1474  }
1475  
perf_unpin_context(struct perf_event_context * ctx)1476  static void perf_unpin_context(struct perf_event_context *ctx)
1477  {
1478  	unsigned long flags;
1479  
1480  	raw_spin_lock_irqsave(&ctx->lock, flags);
1481  	--ctx->pin_count;
1482  	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1483  }
1484  
1485  /*
1486   * Update the record of the current time in a context.
1487   */
__update_context_time(struct perf_event_context * ctx,bool adv)1488  static void __update_context_time(struct perf_event_context *ctx, bool adv)
1489  {
1490  	u64 now = perf_clock();
1491  
1492  	lockdep_assert_held(&ctx->lock);
1493  
1494  	if (adv)
1495  		ctx->time += now - ctx->timestamp;
1496  	ctx->timestamp = now;
1497  
1498  	/*
1499  	 * The above: time' = time + (now - timestamp), can be re-arranged
1500  	 * into: time` = now + (time - timestamp), which gives a single value
1501  	 * offset to compute future time without locks on.
1502  	 *
1503  	 * See perf_event_time_now(), which can be used from NMI context where
1504  	 * it's (obviously) not possible to acquire ctx->lock in order to read
1505  	 * both the above values in a consistent manner.
1506  	 */
1507  	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1508  }
1509  
update_context_time(struct perf_event_context * ctx)1510  static void update_context_time(struct perf_event_context *ctx)
1511  {
1512  	__update_context_time(ctx, true);
1513  }
1514  
perf_event_time(struct perf_event * event)1515  static u64 perf_event_time(struct perf_event *event)
1516  {
1517  	struct perf_event_context *ctx = event->ctx;
1518  
1519  	if (unlikely(!ctx))
1520  		return 0;
1521  
1522  	if (is_cgroup_event(event))
1523  		return perf_cgroup_event_time(event);
1524  
1525  	return ctx->time;
1526  }
1527  
perf_event_time_now(struct perf_event * event,u64 now)1528  static u64 perf_event_time_now(struct perf_event *event, u64 now)
1529  {
1530  	struct perf_event_context *ctx = event->ctx;
1531  
1532  	if (unlikely(!ctx))
1533  		return 0;
1534  
1535  	if (is_cgroup_event(event))
1536  		return perf_cgroup_event_time_now(event, now);
1537  
1538  	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1539  		return ctx->time;
1540  
1541  	now += READ_ONCE(ctx->timeoffset);
1542  	return now;
1543  }
1544  
get_event_type(struct perf_event * event)1545  static enum event_type_t get_event_type(struct perf_event *event)
1546  {
1547  	struct perf_event_context *ctx = event->ctx;
1548  	enum event_type_t event_type;
1549  
1550  	lockdep_assert_held(&ctx->lock);
1551  
1552  	/*
1553  	 * It's 'group type', really, because if our group leader is
1554  	 * pinned, so are we.
1555  	 */
1556  	if (event->group_leader != event)
1557  		event = event->group_leader;
1558  
1559  	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1560  	if (!ctx->task)
1561  		event_type |= EVENT_CPU;
1562  
1563  	return event_type;
1564  }
1565  
1566  /*
1567   * Helper function to initialize event group nodes.
1568   */
init_event_group(struct perf_event * event)1569  static void init_event_group(struct perf_event *event)
1570  {
1571  	RB_CLEAR_NODE(&event->group_node);
1572  	event->group_index = 0;
1573  }
1574  
1575  /*
1576   * Extract pinned or flexible groups from the context
1577   * based on event attrs bits.
1578   */
1579  static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1580  get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1581  {
1582  	if (event->attr.pinned)
1583  		return &ctx->pinned_groups;
1584  	else
1585  		return &ctx->flexible_groups;
1586  }
1587  
1588  /*
1589   * Helper function to initializes perf_event_group trees.
1590   */
perf_event_groups_init(struct perf_event_groups * groups)1591  static void perf_event_groups_init(struct perf_event_groups *groups)
1592  {
1593  	groups->tree = RB_ROOT;
1594  	groups->index = 0;
1595  }
1596  
event_cgroup(const struct perf_event * event)1597  static inline struct cgroup *event_cgroup(const struct perf_event *event)
1598  {
1599  	struct cgroup *cgroup = NULL;
1600  
1601  #ifdef CONFIG_CGROUP_PERF
1602  	if (event->cgrp)
1603  		cgroup = event->cgrp->css.cgroup;
1604  #endif
1605  
1606  	return cgroup;
1607  }
1608  
1609  /*
1610   * Compare function for event groups;
1611   *
1612   * Implements complex key that first sorts by CPU and then by virtual index
1613   * which provides ordering when rotating groups for the same CPU.
1614   */
1615  static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1616  perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1617  		      const struct cgroup *left_cgroup, const u64 left_group_index,
1618  		      const struct perf_event *right)
1619  {
1620  	if (left_cpu < right->cpu)
1621  		return -1;
1622  	if (left_cpu > right->cpu)
1623  		return 1;
1624  
1625  	if (left_pmu) {
1626  		if (left_pmu < right->pmu_ctx->pmu)
1627  			return -1;
1628  		if (left_pmu > right->pmu_ctx->pmu)
1629  			return 1;
1630  	}
1631  
1632  #ifdef CONFIG_CGROUP_PERF
1633  	{
1634  		const struct cgroup *right_cgroup = event_cgroup(right);
1635  
1636  		if (left_cgroup != right_cgroup) {
1637  			if (!left_cgroup) {
1638  				/*
1639  				 * Left has no cgroup but right does, no
1640  				 * cgroups come first.
1641  				 */
1642  				return -1;
1643  			}
1644  			if (!right_cgroup) {
1645  				/*
1646  				 * Right has no cgroup but left does, no
1647  				 * cgroups come first.
1648  				 */
1649  				return 1;
1650  			}
1651  			/* Two dissimilar cgroups, order by id. */
1652  			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1653  				return -1;
1654  
1655  			return 1;
1656  		}
1657  	}
1658  #endif
1659  
1660  	if (left_group_index < right->group_index)
1661  		return -1;
1662  	if (left_group_index > right->group_index)
1663  		return 1;
1664  
1665  	return 0;
1666  }
1667  
1668  #define __node_2_pe(node) \
1669  	rb_entry((node), struct perf_event, group_node)
1670  
__group_less(struct rb_node * a,const struct rb_node * b)1671  static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1672  {
1673  	struct perf_event *e = __node_2_pe(a);
1674  	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1675  				     e->group_index, __node_2_pe(b)) < 0;
1676  }
1677  
1678  struct __group_key {
1679  	int cpu;
1680  	struct pmu *pmu;
1681  	struct cgroup *cgroup;
1682  };
1683  
__group_cmp(const void * key,const struct rb_node * node)1684  static inline int __group_cmp(const void *key, const struct rb_node *node)
1685  {
1686  	const struct __group_key *a = key;
1687  	const struct perf_event *b = __node_2_pe(node);
1688  
1689  	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1690  	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1691  }
1692  
1693  static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1694  __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1695  {
1696  	const struct __group_key *a = key;
1697  	const struct perf_event *b = __node_2_pe(node);
1698  
1699  	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1700  	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1701  				     b->group_index, b);
1702  }
1703  
1704  /*
1705   * Insert @event into @groups' tree; using
1706   *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1707   * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1708   */
1709  static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1710  perf_event_groups_insert(struct perf_event_groups *groups,
1711  			 struct perf_event *event)
1712  {
1713  	event->group_index = ++groups->index;
1714  
1715  	rb_add(&event->group_node, &groups->tree, __group_less);
1716  }
1717  
1718  /*
1719   * Helper function to insert event into the pinned or flexible groups.
1720   */
1721  static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1722  add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1723  {
1724  	struct perf_event_groups *groups;
1725  
1726  	groups = get_event_groups(event, ctx);
1727  	perf_event_groups_insert(groups, event);
1728  }
1729  
1730  /*
1731   * Delete a group from a tree.
1732   */
1733  static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1734  perf_event_groups_delete(struct perf_event_groups *groups,
1735  			 struct perf_event *event)
1736  {
1737  	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1738  		     RB_EMPTY_ROOT(&groups->tree));
1739  
1740  	rb_erase(&event->group_node, &groups->tree);
1741  	init_event_group(event);
1742  }
1743  
1744  /*
1745   * Helper function to delete event from its groups.
1746   */
1747  static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1748  del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1749  {
1750  	struct perf_event_groups *groups;
1751  
1752  	groups = get_event_groups(event, ctx);
1753  	perf_event_groups_delete(groups, event);
1754  }
1755  
1756  /*
1757   * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1758   */
1759  static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1760  perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1761  			struct pmu *pmu, struct cgroup *cgrp)
1762  {
1763  	struct __group_key key = {
1764  		.cpu = cpu,
1765  		.pmu = pmu,
1766  		.cgroup = cgrp,
1767  	};
1768  	struct rb_node *node;
1769  
1770  	node = rb_find_first(&key, &groups->tree, __group_cmp);
1771  	if (node)
1772  		return __node_2_pe(node);
1773  
1774  	return NULL;
1775  }
1776  
1777  static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1778  perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1779  {
1780  	struct __group_key key = {
1781  		.cpu = event->cpu,
1782  		.pmu = pmu,
1783  		.cgroup = event_cgroup(event),
1784  	};
1785  	struct rb_node *next;
1786  
1787  	next = rb_next_match(&key, &event->group_node, __group_cmp);
1788  	if (next)
1789  		return __node_2_pe(next);
1790  
1791  	return NULL;
1792  }
1793  
1794  #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1795  	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1796  	     event; event = perf_event_groups_next(event, pmu))
1797  
1798  /*
1799   * Iterate through the whole groups tree.
1800   */
1801  #define perf_event_groups_for_each(event, groups)			\
1802  	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1803  				typeof(*event), group_node); event;	\
1804  		event = rb_entry_safe(rb_next(&event->group_node),	\
1805  				typeof(*event), group_node))
1806  
1807  /*
1808   * Does the event attribute request inherit with PERF_SAMPLE_READ
1809   */
has_inherit_and_sample_read(struct perf_event_attr * attr)1810  static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1811  {
1812  	return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1813  }
1814  
1815  /*
1816   * Add an event from the lists for its context.
1817   * Must be called with ctx->mutex and ctx->lock held.
1818   */
1819  static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1820  list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1821  {
1822  	lockdep_assert_held(&ctx->lock);
1823  
1824  	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1825  	event->attach_state |= PERF_ATTACH_CONTEXT;
1826  
1827  	event->tstamp = perf_event_time(event);
1828  
1829  	/*
1830  	 * If we're a stand alone event or group leader, we go to the context
1831  	 * list, group events are kept attached to the group so that
1832  	 * perf_group_detach can, at all times, locate all siblings.
1833  	 */
1834  	if (event->group_leader == event) {
1835  		event->group_caps = event->event_caps;
1836  		add_event_to_groups(event, ctx);
1837  	}
1838  
1839  	list_add_rcu(&event->event_entry, &ctx->event_list);
1840  	ctx->nr_events++;
1841  	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1842  		ctx->nr_user++;
1843  	if (event->attr.inherit_stat)
1844  		ctx->nr_stat++;
1845  	if (has_inherit_and_sample_read(&event->attr))
1846  		local_inc(&ctx->nr_no_switch_fast);
1847  
1848  	if (event->state > PERF_EVENT_STATE_OFF)
1849  		perf_cgroup_event_enable(event, ctx);
1850  
1851  	ctx->generation++;
1852  	event->pmu_ctx->nr_events++;
1853  }
1854  
1855  /*
1856   * Initialize event state based on the perf_event_attr::disabled.
1857   */
perf_event__state_init(struct perf_event * event)1858  static inline void perf_event__state_init(struct perf_event *event)
1859  {
1860  	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1861  					      PERF_EVENT_STATE_INACTIVE;
1862  }
1863  
__perf_event_read_size(u64 read_format,int nr_siblings)1864  static int __perf_event_read_size(u64 read_format, int nr_siblings)
1865  {
1866  	int entry = sizeof(u64); /* value */
1867  	int size = 0;
1868  	int nr = 1;
1869  
1870  	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1871  		size += sizeof(u64);
1872  
1873  	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1874  		size += sizeof(u64);
1875  
1876  	if (read_format & PERF_FORMAT_ID)
1877  		entry += sizeof(u64);
1878  
1879  	if (read_format & PERF_FORMAT_LOST)
1880  		entry += sizeof(u64);
1881  
1882  	if (read_format & PERF_FORMAT_GROUP) {
1883  		nr += nr_siblings;
1884  		size += sizeof(u64);
1885  	}
1886  
1887  	/*
1888  	 * Since perf_event_validate_size() limits this to 16k and inhibits
1889  	 * adding more siblings, this will never overflow.
1890  	 */
1891  	return size + nr * entry;
1892  }
1893  
__perf_event_header_size(struct perf_event * event,u64 sample_type)1894  static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1895  {
1896  	struct perf_sample_data *data;
1897  	u16 size = 0;
1898  
1899  	if (sample_type & PERF_SAMPLE_IP)
1900  		size += sizeof(data->ip);
1901  
1902  	if (sample_type & PERF_SAMPLE_ADDR)
1903  		size += sizeof(data->addr);
1904  
1905  	if (sample_type & PERF_SAMPLE_PERIOD)
1906  		size += sizeof(data->period);
1907  
1908  	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1909  		size += sizeof(data->weight.full);
1910  
1911  	if (sample_type & PERF_SAMPLE_READ)
1912  		size += event->read_size;
1913  
1914  	if (sample_type & PERF_SAMPLE_DATA_SRC)
1915  		size += sizeof(data->data_src.val);
1916  
1917  	if (sample_type & PERF_SAMPLE_TRANSACTION)
1918  		size += sizeof(data->txn);
1919  
1920  	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1921  		size += sizeof(data->phys_addr);
1922  
1923  	if (sample_type & PERF_SAMPLE_CGROUP)
1924  		size += sizeof(data->cgroup);
1925  
1926  	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1927  		size += sizeof(data->data_page_size);
1928  
1929  	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1930  		size += sizeof(data->code_page_size);
1931  
1932  	event->header_size = size;
1933  }
1934  
1935  /*
1936   * Called at perf_event creation and when events are attached/detached from a
1937   * group.
1938   */
perf_event__header_size(struct perf_event * event)1939  static void perf_event__header_size(struct perf_event *event)
1940  {
1941  	event->read_size =
1942  		__perf_event_read_size(event->attr.read_format,
1943  				       event->group_leader->nr_siblings);
1944  	__perf_event_header_size(event, event->attr.sample_type);
1945  }
1946  
perf_event__id_header_size(struct perf_event * event)1947  static void perf_event__id_header_size(struct perf_event *event)
1948  {
1949  	struct perf_sample_data *data;
1950  	u64 sample_type = event->attr.sample_type;
1951  	u16 size = 0;
1952  
1953  	if (sample_type & PERF_SAMPLE_TID)
1954  		size += sizeof(data->tid_entry);
1955  
1956  	if (sample_type & PERF_SAMPLE_TIME)
1957  		size += sizeof(data->time);
1958  
1959  	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1960  		size += sizeof(data->id);
1961  
1962  	if (sample_type & PERF_SAMPLE_ID)
1963  		size += sizeof(data->id);
1964  
1965  	if (sample_type & PERF_SAMPLE_STREAM_ID)
1966  		size += sizeof(data->stream_id);
1967  
1968  	if (sample_type & PERF_SAMPLE_CPU)
1969  		size += sizeof(data->cpu_entry);
1970  
1971  	event->id_header_size = size;
1972  }
1973  
1974  /*
1975   * Check that adding an event to the group does not result in anybody
1976   * overflowing the 64k event limit imposed by the output buffer.
1977   *
1978   * Specifically, check that the read_size for the event does not exceed 16k,
1979   * read_size being the one term that grows with groups size. Since read_size
1980   * depends on per-event read_format, also (re)check the existing events.
1981   *
1982   * This leaves 48k for the constant size fields and things like callchains,
1983   * branch stacks and register sets.
1984   */
perf_event_validate_size(struct perf_event * event)1985  static bool perf_event_validate_size(struct perf_event *event)
1986  {
1987  	struct perf_event *sibling, *group_leader = event->group_leader;
1988  
1989  	if (__perf_event_read_size(event->attr.read_format,
1990  				   group_leader->nr_siblings + 1) > 16*1024)
1991  		return false;
1992  
1993  	if (__perf_event_read_size(group_leader->attr.read_format,
1994  				   group_leader->nr_siblings + 1) > 16*1024)
1995  		return false;
1996  
1997  	/*
1998  	 * When creating a new group leader, group_leader->ctx is initialized
1999  	 * after the size has been validated, but we cannot safely use
2000  	 * for_each_sibling_event() until group_leader->ctx is set. A new group
2001  	 * leader cannot have any siblings yet, so we can safely skip checking
2002  	 * the non-existent siblings.
2003  	 */
2004  	if (event == group_leader)
2005  		return true;
2006  
2007  	for_each_sibling_event(sibling, group_leader) {
2008  		if (__perf_event_read_size(sibling->attr.read_format,
2009  					   group_leader->nr_siblings + 1) > 16*1024)
2010  			return false;
2011  	}
2012  
2013  	return true;
2014  }
2015  
perf_group_attach(struct perf_event * event)2016  static void perf_group_attach(struct perf_event *event)
2017  {
2018  	struct perf_event *group_leader = event->group_leader, *pos;
2019  
2020  	lockdep_assert_held(&event->ctx->lock);
2021  
2022  	/*
2023  	 * We can have double attach due to group movement (move_group) in
2024  	 * perf_event_open().
2025  	 */
2026  	if (event->attach_state & PERF_ATTACH_GROUP)
2027  		return;
2028  
2029  	event->attach_state |= PERF_ATTACH_GROUP;
2030  
2031  	if (group_leader == event)
2032  		return;
2033  
2034  	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2035  
2036  	group_leader->group_caps &= event->event_caps;
2037  
2038  	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2039  	group_leader->nr_siblings++;
2040  	group_leader->group_generation++;
2041  
2042  	perf_event__header_size(group_leader);
2043  
2044  	for_each_sibling_event(pos, group_leader)
2045  		perf_event__header_size(pos);
2046  }
2047  
2048  /*
2049   * Remove an event from the lists for its context.
2050   * Must be called with ctx->mutex and ctx->lock held.
2051   */
2052  static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2053  list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2054  {
2055  	WARN_ON_ONCE(event->ctx != ctx);
2056  	lockdep_assert_held(&ctx->lock);
2057  
2058  	/*
2059  	 * We can have double detach due to exit/hot-unplug + close.
2060  	 */
2061  	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2062  		return;
2063  
2064  	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2065  
2066  	ctx->nr_events--;
2067  	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2068  		ctx->nr_user--;
2069  	if (event->attr.inherit_stat)
2070  		ctx->nr_stat--;
2071  	if (has_inherit_and_sample_read(&event->attr))
2072  		local_dec(&ctx->nr_no_switch_fast);
2073  
2074  	list_del_rcu(&event->event_entry);
2075  
2076  	if (event->group_leader == event)
2077  		del_event_from_groups(event, ctx);
2078  
2079  	/*
2080  	 * If event was in error state, then keep it
2081  	 * that way, otherwise bogus counts will be
2082  	 * returned on read(). The only way to get out
2083  	 * of error state is by explicit re-enabling
2084  	 * of the event
2085  	 */
2086  	if (event->state > PERF_EVENT_STATE_OFF) {
2087  		perf_cgroup_event_disable(event, ctx);
2088  		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2089  	}
2090  
2091  	ctx->generation++;
2092  	event->pmu_ctx->nr_events--;
2093  }
2094  
2095  static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2096  perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2097  {
2098  	if (!has_aux(aux_event))
2099  		return 0;
2100  
2101  	if (!event->pmu->aux_output_match)
2102  		return 0;
2103  
2104  	return event->pmu->aux_output_match(aux_event);
2105  }
2106  
2107  static void put_event(struct perf_event *event);
2108  static void event_sched_out(struct perf_event *event,
2109  			    struct perf_event_context *ctx);
2110  
perf_put_aux_event(struct perf_event * event)2111  static void perf_put_aux_event(struct perf_event *event)
2112  {
2113  	struct perf_event_context *ctx = event->ctx;
2114  	struct perf_event *iter;
2115  
2116  	/*
2117  	 * If event uses aux_event tear down the link
2118  	 */
2119  	if (event->aux_event) {
2120  		iter = event->aux_event;
2121  		event->aux_event = NULL;
2122  		put_event(iter);
2123  		return;
2124  	}
2125  
2126  	/*
2127  	 * If the event is an aux_event, tear down all links to
2128  	 * it from other events.
2129  	 */
2130  	for_each_sibling_event(iter, event->group_leader) {
2131  		if (iter->aux_event != event)
2132  			continue;
2133  
2134  		iter->aux_event = NULL;
2135  		put_event(event);
2136  
2137  		/*
2138  		 * If it's ACTIVE, schedule it out and put it into ERROR
2139  		 * state so that we don't try to schedule it again. Note
2140  		 * that perf_event_enable() will clear the ERROR status.
2141  		 */
2142  		event_sched_out(iter, ctx);
2143  		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2144  	}
2145  }
2146  
perf_need_aux_event(struct perf_event * event)2147  static bool perf_need_aux_event(struct perf_event *event)
2148  {
2149  	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2150  }
2151  
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2152  static int perf_get_aux_event(struct perf_event *event,
2153  			      struct perf_event *group_leader)
2154  {
2155  	/*
2156  	 * Our group leader must be an aux event if we want to be
2157  	 * an aux_output. This way, the aux event will precede its
2158  	 * aux_output events in the group, and therefore will always
2159  	 * schedule first.
2160  	 */
2161  	if (!group_leader)
2162  		return 0;
2163  
2164  	/*
2165  	 * aux_output and aux_sample_size are mutually exclusive.
2166  	 */
2167  	if (event->attr.aux_output && event->attr.aux_sample_size)
2168  		return 0;
2169  
2170  	if (event->attr.aux_output &&
2171  	    !perf_aux_output_match(event, group_leader))
2172  		return 0;
2173  
2174  	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2175  		return 0;
2176  
2177  	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2178  		return 0;
2179  
2180  	/*
2181  	 * Link aux_outputs to their aux event; this is undone in
2182  	 * perf_group_detach() by perf_put_aux_event(). When the
2183  	 * group in torn down, the aux_output events loose their
2184  	 * link to the aux_event and can't schedule any more.
2185  	 */
2186  	event->aux_event = group_leader;
2187  
2188  	return 1;
2189  }
2190  
get_event_list(struct perf_event * event)2191  static inline struct list_head *get_event_list(struct perf_event *event)
2192  {
2193  	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2194  				    &event->pmu_ctx->flexible_active;
2195  }
2196  
2197  /*
2198   * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2199   * cannot exist on their own, schedule them out and move them into the ERROR
2200   * state. Also see _perf_event_enable(), it will not be able to recover
2201   * this ERROR state.
2202   */
perf_remove_sibling_event(struct perf_event * event)2203  static inline void perf_remove_sibling_event(struct perf_event *event)
2204  {
2205  	event_sched_out(event, event->ctx);
2206  	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2207  }
2208  
perf_group_detach(struct perf_event * event)2209  static void perf_group_detach(struct perf_event *event)
2210  {
2211  	struct perf_event *leader = event->group_leader;
2212  	struct perf_event *sibling, *tmp;
2213  	struct perf_event_context *ctx = event->ctx;
2214  
2215  	lockdep_assert_held(&ctx->lock);
2216  
2217  	/*
2218  	 * We can have double detach due to exit/hot-unplug + close.
2219  	 */
2220  	if (!(event->attach_state & PERF_ATTACH_GROUP))
2221  		return;
2222  
2223  	event->attach_state &= ~PERF_ATTACH_GROUP;
2224  
2225  	perf_put_aux_event(event);
2226  
2227  	/*
2228  	 * If this is a sibling, remove it from its group.
2229  	 */
2230  	if (leader != event) {
2231  		list_del_init(&event->sibling_list);
2232  		event->group_leader->nr_siblings--;
2233  		event->group_leader->group_generation++;
2234  		goto out;
2235  	}
2236  
2237  	/*
2238  	 * If this was a group event with sibling events then
2239  	 * upgrade the siblings to singleton events by adding them
2240  	 * to whatever list we are on.
2241  	 */
2242  	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2243  
2244  		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2245  			perf_remove_sibling_event(sibling);
2246  
2247  		sibling->group_leader = sibling;
2248  		list_del_init(&sibling->sibling_list);
2249  
2250  		/* Inherit group flags from the previous leader */
2251  		sibling->group_caps = event->group_caps;
2252  
2253  		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2254  			add_event_to_groups(sibling, event->ctx);
2255  
2256  			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2257  				list_add_tail(&sibling->active_list, get_event_list(sibling));
2258  		}
2259  
2260  		WARN_ON_ONCE(sibling->ctx != event->ctx);
2261  	}
2262  
2263  out:
2264  	for_each_sibling_event(tmp, leader)
2265  		perf_event__header_size(tmp);
2266  
2267  	perf_event__header_size(leader);
2268  }
2269  
2270  static void sync_child_event(struct perf_event *child_event);
2271  
perf_child_detach(struct perf_event * event)2272  static void perf_child_detach(struct perf_event *event)
2273  {
2274  	struct perf_event *parent_event = event->parent;
2275  
2276  	if (!(event->attach_state & PERF_ATTACH_CHILD))
2277  		return;
2278  
2279  	event->attach_state &= ~PERF_ATTACH_CHILD;
2280  
2281  	if (WARN_ON_ONCE(!parent_event))
2282  		return;
2283  
2284  	lockdep_assert_held(&parent_event->child_mutex);
2285  
2286  	sync_child_event(event);
2287  	list_del_init(&event->child_list);
2288  }
2289  
is_orphaned_event(struct perf_event * event)2290  static bool is_orphaned_event(struct perf_event *event)
2291  {
2292  	return event->state == PERF_EVENT_STATE_DEAD;
2293  }
2294  
2295  static inline int
event_filter_match(struct perf_event * event)2296  event_filter_match(struct perf_event *event)
2297  {
2298  	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2299  	       perf_cgroup_match(event);
2300  }
2301  
2302  static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2303  event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2304  {
2305  	struct perf_event_pmu_context *epc = event->pmu_ctx;
2306  	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2307  	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2308  
2309  	// XXX cpc serialization, probably per-cpu IRQ disabled
2310  
2311  	WARN_ON_ONCE(event->ctx != ctx);
2312  	lockdep_assert_held(&ctx->lock);
2313  
2314  	if (event->state != PERF_EVENT_STATE_ACTIVE)
2315  		return;
2316  
2317  	/*
2318  	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2319  	 * we can schedule events _OUT_ individually through things like
2320  	 * __perf_remove_from_context().
2321  	 */
2322  	list_del_init(&event->active_list);
2323  
2324  	perf_pmu_disable(event->pmu);
2325  
2326  	event->pmu->del(event, 0);
2327  	event->oncpu = -1;
2328  
2329  	if (event->pending_disable) {
2330  		event->pending_disable = 0;
2331  		perf_cgroup_event_disable(event, ctx);
2332  		state = PERF_EVENT_STATE_OFF;
2333  	}
2334  
2335  	perf_event_set_state(event, state);
2336  
2337  	if (!is_software_event(event))
2338  		cpc->active_oncpu--;
2339  	if (event->attr.freq && event->attr.sample_freq) {
2340  		ctx->nr_freq--;
2341  		epc->nr_freq--;
2342  	}
2343  	if (event->attr.exclusive || !cpc->active_oncpu)
2344  		cpc->exclusive = 0;
2345  
2346  	perf_pmu_enable(event->pmu);
2347  }
2348  
2349  static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2350  group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2351  {
2352  	struct perf_event *event;
2353  
2354  	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2355  		return;
2356  
2357  	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2358  
2359  	event_sched_out(group_event, ctx);
2360  
2361  	/*
2362  	 * Schedule out siblings (if any):
2363  	 */
2364  	for_each_sibling_event(event, group_event)
2365  		event_sched_out(event, ctx);
2366  }
2367  
2368  static inline void
__ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,bool final)2369  __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2370  {
2371  	if (ctx->is_active & EVENT_TIME) {
2372  		if (ctx->is_active & EVENT_FROZEN)
2373  			return;
2374  		update_context_time(ctx);
2375  		update_cgrp_time_from_cpuctx(cpuctx, final);
2376  	}
2377  }
2378  
2379  static inline void
ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2380  ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2381  {
2382  	__ctx_time_update(cpuctx, ctx, false);
2383  }
2384  
2385  /*
2386   * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2387   */
2388  static inline void
ctx_time_freeze(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2389  ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2390  {
2391  	ctx_time_update(cpuctx, ctx);
2392  	if (ctx->is_active & EVENT_TIME)
2393  		ctx->is_active |= EVENT_FROZEN;
2394  }
2395  
2396  static inline void
ctx_time_update_event(struct perf_event_context * ctx,struct perf_event * event)2397  ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2398  {
2399  	if (ctx->is_active & EVENT_TIME) {
2400  		if (ctx->is_active & EVENT_FROZEN)
2401  			return;
2402  		update_context_time(ctx);
2403  		update_cgrp_time_from_event(event);
2404  	}
2405  }
2406  
2407  #define DETACH_GROUP	0x01UL
2408  #define DETACH_CHILD	0x02UL
2409  #define DETACH_DEAD	0x04UL
2410  
2411  /*
2412   * Cross CPU call to remove a performance event
2413   *
2414   * We disable the event on the hardware level first. After that we
2415   * remove it from the context list.
2416   */
2417  static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2418  __perf_remove_from_context(struct perf_event *event,
2419  			   struct perf_cpu_context *cpuctx,
2420  			   struct perf_event_context *ctx,
2421  			   void *info)
2422  {
2423  	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2424  	unsigned long flags = (unsigned long)info;
2425  
2426  	ctx_time_update(cpuctx, ctx);
2427  
2428  	/*
2429  	 * Ensure event_sched_out() switches to OFF, at the very least
2430  	 * this avoids raising perf_pending_task() at this time.
2431  	 */
2432  	if (flags & DETACH_DEAD)
2433  		event->pending_disable = 1;
2434  	event_sched_out(event, ctx);
2435  	if (flags & DETACH_GROUP)
2436  		perf_group_detach(event);
2437  	if (flags & DETACH_CHILD)
2438  		perf_child_detach(event);
2439  	list_del_event(event, ctx);
2440  	if (flags & DETACH_DEAD)
2441  		event->state = PERF_EVENT_STATE_DEAD;
2442  
2443  	if (!pmu_ctx->nr_events) {
2444  		pmu_ctx->rotate_necessary = 0;
2445  
2446  		if (ctx->task && ctx->is_active) {
2447  			struct perf_cpu_pmu_context *cpc;
2448  
2449  			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2450  			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2451  			cpc->task_epc = NULL;
2452  		}
2453  	}
2454  
2455  	if (!ctx->nr_events && ctx->is_active) {
2456  		if (ctx == &cpuctx->ctx)
2457  			update_cgrp_time_from_cpuctx(cpuctx, true);
2458  
2459  		ctx->is_active = 0;
2460  		if (ctx->task) {
2461  			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2462  			cpuctx->task_ctx = NULL;
2463  		}
2464  	}
2465  }
2466  
2467  /*
2468   * Remove the event from a task's (or a CPU's) list of events.
2469   *
2470   * If event->ctx is a cloned context, callers must make sure that
2471   * every task struct that event->ctx->task could possibly point to
2472   * remains valid.  This is OK when called from perf_release since
2473   * that only calls us on the top-level context, which can't be a clone.
2474   * When called from perf_event_exit_task, it's OK because the
2475   * context has been detached from its task.
2476   */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2477  static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2478  {
2479  	struct perf_event_context *ctx = event->ctx;
2480  
2481  	lockdep_assert_held(&ctx->mutex);
2482  
2483  	/*
2484  	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2485  	 * to work in the face of TASK_TOMBSTONE, unlike every other
2486  	 * event_function_call() user.
2487  	 */
2488  	raw_spin_lock_irq(&ctx->lock);
2489  	if (!ctx->is_active) {
2490  		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2491  					   ctx, (void *)flags);
2492  		raw_spin_unlock_irq(&ctx->lock);
2493  		return;
2494  	}
2495  	raw_spin_unlock_irq(&ctx->lock);
2496  
2497  	event_function_call(event, __perf_remove_from_context, (void *)flags);
2498  }
2499  
2500  /*
2501   * Cross CPU call to disable a performance event
2502   */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2503  static void __perf_event_disable(struct perf_event *event,
2504  				 struct perf_cpu_context *cpuctx,
2505  				 struct perf_event_context *ctx,
2506  				 void *info)
2507  {
2508  	if (event->state < PERF_EVENT_STATE_INACTIVE)
2509  		return;
2510  
2511  	perf_pmu_disable(event->pmu_ctx->pmu);
2512  	ctx_time_update_event(ctx, event);
2513  
2514  	if (event == event->group_leader)
2515  		group_sched_out(event, ctx);
2516  	else
2517  		event_sched_out(event, ctx);
2518  
2519  	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2520  	perf_cgroup_event_disable(event, ctx);
2521  
2522  	perf_pmu_enable(event->pmu_ctx->pmu);
2523  }
2524  
2525  /*
2526   * Disable an event.
2527   *
2528   * If event->ctx is a cloned context, callers must make sure that
2529   * every task struct that event->ctx->task could possibly point to
2530   * remains valid.  This condition is satisfied when called through
2531   * perf_event_for_each_child or perf_event_for_each because they
2532   * hold the top-level event's child_mutex, so any descendant that
2533   * goes to exit will block in perf_event_exit_event().
2534   *
2535   * When called from perf_pending_disable it's OK because event->ctx
2536   * is the current context on this CPU and preemption is disabled,
2537   * hence we can't get into perf_event_task_sched_out for this context.
2538   */
_perf_event_disable(struct perf_event * event)2539  static void _perf_event_disable(struct perf_event *event)
2540  {
2541  	struct perf_event_context *ctx = event->ctx;
2542  
2543  	raw_spin_lock_irq(&ctx->lock);
2544  	if (event->state <= PERF_EVENT_STATE_OFF) {
2545  		raw_spin_unlock_irq(&ctx->lock);
2546  		return;
2547  	}
2548  	raw_spin_unlock_irq(&ctx->lock);
2549  
2550  	event_function_call(event, __perf_event_disable, NULL);
2551  }
2552  
perf_event_disable_local(struct perf_event * event)2553  void perf_event_disable_local(struct perf_event *event)
2554  {
2555  	event_function_local(event, __perf_event_disable, NULL);
2556  }
2557  
2558  /*
2559   * Strictly speaking kernel users cannot create groups and therefore this
2560   * interface does not need the perf_event_ctx_lock() magic.
2561   */
perf_event_disable(struct perf_event * event)2562  void perf_event_disable(struct perf_event *event)
2563  {
2564  	struct perf_event_context *ctx;
2565  
2566  	ctx = perf_event_ctx_lock(event);
2567  	_perf_event_disable(event);
2568  	perf_event_ctx_unlock(event, ctx);
2569  }
2570  EXPORT_SYMBOL_GPL(perf_event_disable);
2571  
perf_event_disable_inatomic(struct perf_event * event)2572  void perf_event_disable_inatomic(struct perf_event *event)
2573  {
2574  	event->pending_disable = 1;
2575  	irq_work_queue(&event->pending_disable_irq);
2576  }
2577  
2578  #define MAX_INTERRUPTS (~0ULL)
2579  
2580  static void perf_log_throttle(struct perf_event *event, int enable);
2581  static void perf_log_itrace_start(struct perf_event *event);
2582  
2583  static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2584  event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2585  {
2586  	struct perf_event_pmu_context *epc = event->pmu_ctx;
2587  	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2588  	int ret = 0;
2589  
2590  	WARN_ON_ONCE(event->ctx != ctx);
2591  
2592  	lockdep_assert_held(&ctx->lock);
2593  
2594  	if (event->state <= PERF_EVENT_STATE_OFF)
2595  		return 0;
2596  
2597  	WRITE_ONCE(event->oncpu, smp_processor_id());
2598  	/*
2599  	 * Order event::oncpu write to happen before the ACTIVE state is
2600  	 * visible. This allows perf_event_{stop,read}() to observe the correct
2601  	 * ->oncpu if it sees ACTIVE.
2602  	 */
2603  	smp_wmb();
2604  	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2605  
2606  	/*
2607  	 * Unthrottle events, since we scheduled we might have missed several
2608  	 * ticks already, also for a heavily scheduling task there is little
2609  	 * guarantee it'll get a tick in a timely manner.
2610  	 */
2611  	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2612  		perf_log_throttle(event, 1);
2613  		event->hw.interrupts = 0;
2614  	}
2615  
2616  	perf_pmu_disable(event->pmu);
2617  
2618  	perf_log_itrace_start(event);
2619  
2620  	if (event->pmu->add(event, PERF_EF_START)) {
2621  		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2622  		event->oncpu = -1;
2623  		ret = -EAGAIN;
2624  		goto out;
2625  	}
2626  
2627  	if (!is_software_event(event))
2628  		cpc->active_oncpu++;
2629  	if (event->attr.freq && event->attr.sample_freq) {
2630  		ctx->nr_freq++;
2631  		epc->nr_freq++;
2632  	}
2633  	if (event->attr.exclusive)
2634  		cpc->exclusive = 1;
2635  
2636  out:
2637  	perf_pmu_enable(event->pmu);
2638  
2639  	return ret;
2640  }
2641  
2642  static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2643  group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2644  {
2645  	struct perf_event *event, *partial_group = NULL;
2646  	struct pmu *pmu = group_event->pmu_ctx->pmu;
2647  
2648  	if (group_event->state == PERF_EVENT_STATE_OFF)
2649  		return 0;
2650  
2651  	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2652  
2653  	if (event_sched_in(group_event, ctx))
2654  		goto error;
2655  
2656  	/*
2657  	 * Schedule in siblings as one group (if any):
2658  	 */
2659  	for_each_sibling_event(event, group_event) {
2660  		if (event_sched_in(event, ctx)) {
2661  			partial_group = event;
2662  			goto group_error;
2663  		}
2664  	}
2665  
2666  	if (!pmu->commit_txn(pmu))
2667  		return 0;
2668  
2669  group_error:
2670  	/*
2671  	 * Groups can be scheduled in as one unit only, so undo any
2672  	 * partial group before returning:
2673  	 * The events up to the failed event are scheduled out normally.
2674  	 */
2675  	for_each_sibling_event(event, group_event) {
2676  		if (event == partial_group)
2677  			break;
2678  
2679  		event_sched_out(event, ctx);
2680  	}
2681  	event_sched_out(group_event, ctx);
2682  
2683  error:
2684  	pmu->cancel_txn(pmu);
2685  	return -EAGAIN;
2686  }
2687  
2688  /*
2689   * Work out whether we can put this event group on the CPU now.
2690   */
group_can_go_on(struct perf_event * event,int can_add_hw)2691  static int group_can_go_on(struct perf_event *event, int can_add_hw)
2692  {
2693  	struct perf_event_pmu_context *epc = event->pmu_ctx;
2694  	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2695  
2696  	/*
2697  	 * Groups consisting entirely of software events can always go on.
2698  	 */
2699  	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2700  		return 1;
2701  	/*
2702  	 * If an exclusive group is already on, no other hardware
2703  	 * events can go on.
2704  	 */
2705  	if (cpc->exclusive)
2706  		return 0;
2707  	/*
2708  	 * If this group is exclusive and there are already
2709  	 * events on the CPU, it can't go on.
2710  	 */
2711  	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2712  		return 0;
2713  	/*
2714  	 * Otherwise, try to add it if all previous groups were able
2715  	 * to go on.
2716  	 */
2717  	return can_add_hw;
2718  }
2719  
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2720  static void add_event_to_ctx(struct perf_event *event,
2721  			       struct perf_event_context *ctx)
2722  {
2723  	list_add_event(event, ctx);
2724  	perf_group_attach(event);
2725  }
2726  
task_ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)2727  static void task_ctx_sched_out(struct perf_event_context *ctx,
2728  			       struct pmu *pmu,
2729  			       enum event_type_t event_type)
2730  {
2731  	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2732  
2733  	if (!cpuctx->task_ctx)
2734  		return;
2735  
2736  	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2737  		return;
2738  
2739  	ctx_sched_out(ctx, pmu, event_type);
2740  }
2741  
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct pmu * pmu)2742  static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2743  				struct perf_event_context *ctx,
2744  				struct pmu *pmu)
2745  {
2746  	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2747  	if (ctx)
2748  		 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2749  	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2750  	if (ctx)
2751  		 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2752  }
2753  
2754  /*
2755   * We want to maintain the following priority of scheduling:
2756   *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2757   *  - task pinned (EVENT_PINNED)
2758   *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2759   *  - task flexible (EVENT_FLEXIBLE).
2760   *
2761   * In order to avoid unscheduling and scheduling back in everything every
2762   * time an event is added, only do it for the groups of equal priority and
2763   * below.
2764   *
2765   * This can be called after a batch operation on task events, in which case
2766   * event_type is a bit mask of the types of events involved. For CPU events,
2767   * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2768   */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,struct pmu * pmu,enum event_type_t event_type)2769  static void ctx_resched(struct perf_cpu_context *cpuctx,
2770  			struct perf_event_context *task_ctx,
2771  			struct pmu *pmu, enum event_type_t event_type)
2772  {
2773  	bool cpu_event = !!(event_type & EVENT_CPU);
2774  	struct perf_event_pmu_context *epc;
2775  
2776  	/*
2777  	 * If pinned groups are involved, flexible groups also need to be
2778  	 * scheduled out.
2779  	 */
2780  	if (event_type & EVENT_PINNED)
2781  		event_type |= EVENT_FLEXIBLE;
2782  
2783  	event_type &= EVENT_ALL;
2784  
2785  	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2786  		perf_pmu_disable(epc->pmu);
2787  
2788  	if (task_ctx) {
2789  		for_each_epc(epc, task_ctx, pmu, false)
2790  			perf_pmu_disable(epc->pmu);
2791  
2792  		task_ctx_sched_out(task_ctx, pmu, event_type);
2793  	}
2794  
2795  	/*
2796  	 * Decide which cpu ctx groups to schedule out based on the types
2797  	 * of events that caused rescheduling:
2798  	 *  - EVENT_CPU: schedule out corresponding groups;
2799  	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2800  	 *  - otherwise, do nothing more.
2801  	 */
2802  	if (cpu_event)
2803  		ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2804  	else if (event_type & EVENT_PINNED)
2805  		ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2806  
2807  	perf_event_sched_in(cpuctx, task_ctx, pmu);
2808  
2809  	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2810  		perf_pmu_enable(epc->pmu);
2811  
2812  	if (task_ctx) {
2813  		for_each_epc(epc, task_ctx, pmu, false)
2814  			perf_pmu_enable(epc->pmu);
2815  	}
2816  }
2817  
perf_pmu_resched(struct pmu * pmu)2818  void perf_pmu_resched(struct pmu *pmu)
2819  {
2820  	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2821  	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2822  
2823  	perf_ctx_lock(cpuctx, task_ctx);
2824  	ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2825  	perf_ctx_unlock(cpuctx, task_ctx);
2826  }
2827  
2828  /*
2829   * Cross CPU call to install and enable a performance event
2830   *
2831   * Very similar to remote_function() + event_function() but cannot assume that
2832   * things like ctx->is_active and cpuctx->task_ctx are set.
2833   */
__perf_install_in_context(void * info)2834  static int  __perf_install_in_context(void *info)
2835  {
2836  	struct perf_event *event = info;
2837  	struct perf_event_context *ctx = event->ctx;
2838  	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2839  	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2840  	bool reprogram = true;
2841  	int ret = 0;
2842  
2843  	raw_spin_lock(&cpuctx->ctx.lock);
2844  	if (ctx->task) {
2845  		raw_spin_lock(&ctx->lock);
2846  		task_ctx = ctx;
2847  
2848  		reprogram = (ctx->task == current);
2849  
2850  		/*
2851  		 * If the task is running, it must be running on this CPU,
2852  		 * otherwise we cannot reprogram things.
2853  		 *
2854  		 * If its not running, we don't care, ctx->lock will
2855  		 * serialize against it becoming runnable.
2856  		 */
2857  		if (task_curr(ctx->task) && !reprogram) {
2858  			ret = -ESRCH;
2859  			goto unlock;
2860  		}
2861  
2862  		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2863  	} else if (task_ctx) {
2864  		raw_spin_lock(&task_ctx->lock);
2865  	}
2866  
2867  #ifdef CONFIG_CGROUP_PERF
2868  	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2869  		/*
2870  		 * If the current cgroup doesn't match the event's
2871  		 * cgroup, we should not try to schedule it.
2872  		 */
2873  		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2874  		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2875  					event->cgrp->css.cgroup);
2876  	}
2877  #endif
2878  
2879  	if (reprogram) {
2880  		ctx_time_freeze(cpuctx, ctx);
2881  		add_event_to_ctx(event, ctx);
2882  		ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
2883  			    get_event_type(event));
2884  	} else {
2885  		add_event_to_ctx(event, ctx);
2886  	}
2887  
2888  unlock:
2889  	perf_ctx_unlock(cpuctx, task_ctx);
2890  
2891  	return ret;
2892  }
2893  
2894  static bool exclusive_event_installable(struct perf_event *event,
2895  					struct perf_event_context *ctx);
2896  
2897  /*
2898   * Attach a performance event to a context.
2899   *
2900   * Very similar to event_function_call, see comment there.
2901   */
2902  static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2903  perf_install_in_context(struct perf_event_context *ctx,
2904  			struct perf_event *event,
2905  			int cpu)
2906  {
2907  	struct task_struct *task = READ_ONCE(ctx->task);
2908  
2909  	lockdep_assert_held(&ctx->mutex);
2910  
2911  	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2912  
2913  	if (event->cpu != -1)
2914  		WARN_ON_ONCE(event->cpu != cpu);
2915  
2916  	/*
2917  	 * Ensures that if we can observe event->ctx, both the event and ctx
2918  	 * will be 'complete'. See perf_iterate_sb_cpu().
2919  	 */
2920  	smp_store_release(&event->ctx, ctx);
2921  
2922  	/*
2923  	 * perf_event_attr::disabled events will not run and can be initialized
2924  	 * without IPI. Except when this is the first event for the context, in
2925  	 * that case we need the magic of the IPI to set ctx->is_active.
2926  	 *
2927  	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2928  	 * event will issue the IPI and reprogram the hardware.
2929  	 */
2930  	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2931  	    ctx->nr_events && !is_cgroup_event(event)) {
2932  		raw_spin_lock_irq(&ctx->lock);
2933  		if (ctx->task == TASK_TOMBSTONE) {
2934  			raw_spin_unlock_irq(&ctx->lock);
2935  			return;
2936  		}
2937  		add_event_to_ctx(event, ctx);
2938  		raw_spin_unlock_irq(&ctx->lock);
2939  		return;
2940  	}
2941  
2942  	if (!task) {
2943  		cpu_function_call(cpu, __perf_install_in_context, event);
2944  		return;
2945  	}
2946  
2947  	/*
2948  	 * Should not happen, we validate the ctx is still alive before calling.
2949  	 */
2950  	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2951  		return;
2952  
2953  	/*
2954  	 * Installing events is tricky because we cannot rely on ctx->is_active
2955  	 * to be set in case this is the nr_events 0 -> 1 transition.
2956  	 *
2957  	 * Instead we use task_curr(), which tells us if the task is running.
2958  	 * However, since we use task_curr() outside of rq::lock, we can race
2959  	 * against the actual state. This means the result can be wrong.
2960  	 *
2961  	 * If we get a false positive, we retry, this is harmless.
2962  	 *
2963  	 * If we get a false negative, things are complicated. If we are after
2964  	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2965  	 * value must be correct. If we're before, it doesn't matter since
2966  	 * perf_event_context_sched_in() will program the counter.
2967  	 *
2968  	 * However, this hinges on the remote context switch having observed
2969  	 * our task->perf_event_ctxp[] store, such that it will in fact take
2970  	 * ctx::lock in perf_event_context_sched_in().
2971  	 *
2972  	 * We do this by task_function_call(), if the IPI fails to hit the task
2973  	 * we know any future context switch of task must see the
2974  	 * perf_event_ctpx[] store.
2975  	 */
2976  
2977  	/*
2978  	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2979  	 * task_cpu() load, such that if the IPI then does not find the task
2980  	 * running, a future context switch of that task must observe the
2981  	 * store.
2982  	 */
2983  	smp_mb();
2984  again:
2985  	if (!task_function_call(task, __perf_install_in_context, event))
2986  		return;
2987  
2988  	raw_spin_lock_irq(&ctx->lock);
2989  	task = ctx->task;
2990  	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2991  		/*
2992  		 * Cannot happen because we already checked above (which also
2993  		 * cannot happen), and we hold ctx->mutex, which serializes us
2994  		 * against perf_event_exit_task_context().
2995  		 */
2996  		raw_spin_unlock_irq(&ctx->lock);
2997  		return;
2998  	}
2999  	/*
3000  	 * If the task is not running, ctx->lock will avoid it becoming so,
3001  	 * thus we can safely install the event.
3002  	 */
3003  	if (task_curr(task)) {
3004  		raw_spin_unlock_irq(&ctx->lock);
3005  		goto again;
3006  	}
3007  	add_event_to_ctx(event, ctx);
3008  	raw_spin_unlock_irq(&ctx->lock);
3009  }
3010  
3011  /*
3012   * Cross CPU call to enable a performance event
3013   */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)3014  static void __perf_event_enable(struct perf_event *event,
3015  				struct perf_cpu_context *cpuctx,
3016  				struct perf_event_context *ctx,
3017  				void *info)
3018  {
3019  	struct perf_event *leader = event->group_leader;
3020  	struct perf_event_context *task_ctx;
3021  
3022  	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3023  	    event->state <= PERF_EVENT_STATE_ERROR)
3024  		return;
3025  
3026  	ctx_time_freeze(cpuctx, ctx);
3027  
3028  	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3029  	perf_cgroup_event_enable(event, ctx);
3030  
3031  	if (!ctx->is_active)
3032  		return;
3033  
3034  	if (!event_filter_match(event))
3035  		return;
3036  
3037  	/*
3038  	 * If the event is in a group and isn't the group leader,
3039  	 * then don't put it on unless the group is on.
3040  	 */
3041  	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3042  		return;
3043  
3044  	task_ctx = cpuctx->task_ctx;
3045  	if (ctx->task)
3046  		WARN_ON_ONCE(task_ctx != ctx);
3047  
3048  	ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3049  }
3050  
3051  /*
3052   * Enable an event.
3053   *
3054   * If event->ctx is a cloned context, callers must make sure that
3055   * every task struct that event->ctx->task could possibly point to
3056   * remains valid.  This condition is satisfied when called through
3057   * perf_event_for_each_child or perf_event_for_each as described
3058   * for perf_event_disable.
3059   */
_perf_event_enable(struct perf_event * event)3060  static void _perf_event_enable(struct perf_event *event)
3061  {
3062  	struct perf_event_context *ctx = event->ctx;
3063  
3064  	raw_spin_lock_irq(&ctx->lock);
3065  	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3066  	    event->state <  PERF_EVENT_STATE_ERROR) {
3067  out:
3068  		raw_spin_unlock_irq(&ctx->lock);
3069  		return;
3070  	}
3071  
3072  	/*
3073  	 * If the event is in error state, clear that first.
3074  	 *
3075  	 * That way, if we see the event in error state below, we know that it
3076  	 * has gone back into error state, as distinct from the task having
3077  	 * been scheduled away before the cross-call arrived.
3078  	 */
3079  	if (event->state == PERF_EVENT_STATE_ERROR) {
3080  		/*
3081  		 * Detached SIBLING events cannot leave ERROR state.
3082  		 */
3083  		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3084  		    event->group_leader == event)
3085  			goto out;
3086  
3087  		event->state = PERF_EVENT_STATE_OFF;
3088  	}
3089  	raw_spin_unlock_irq(&ctx->lock);
3090  
3091  	event_function_call(event, __perf_event_enable, NULL);
3092  }
3093  
3094  /*
3095   * See perf_event_disable();
3096   */
perf_event_enable(struct perf_event * event)3097  void perf_event_enable(struct perf_event *event)
3098  {
3099  	struct perf_event_context *ctx;
3100  
3101  	ctx = perf_event_ctx_lock(event);
3102  	_perf_event_enable(event);
3103  	perf_event_ctx_unlock(event, ctx);
3104  }
3105  EXPORT_SYMBOL_GPL(perf_event_enable);
3106  
3107  struct stop_event_data {
3108  	struct perf_event	*event;
3109  	unsigned int		restart;
3110  };
3111  
__perf_event_stop(void * info)3112  static int __perf_event_stop(void *info)
3113  {
3114  	struct stop_event_data *sd = info;
3115  	struct perf_event *event = sd->event;
3116  
3117  	/* if it's already INACTIVE, do nothing */
3118  	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3119  		return 0;
3120  
3121  	/* matches smp_wmb() in event_sched_in() */
3122  	smp_rmb();
3123  
3124  	/*
3125  	 * There is a window with interrupts enabled before we get here,
3126  	 * so we need to check again lest we try to stop another CPU's event.
3127  	 */
3128  	if (READ_ONCE(event->oncpu) != smp_processor_id())
3129  		return -EAGAIN;
3130  
3131  	event->pmu->stop(event, PERF_EF_UPDATE);
3132  
3133  	/*
3134  	 * May race with the actual stop (through perf_pmu_output_stop()),
3135  	 * but it is only used for events with AUX ring buffer, and such
3136  	 * events will refuse to restart because of rb::aux_mmap_count==0,
3137  	 * see comments in perf_aux_output_begin().
3138  	 *
3139  	 * Since this is happening on an event-local CPU, no trace is lost
3140  	 * while restarting.
3141  	 */
3142  	if (sd->restart)
3143  		event->pmu->start(event, 0);
3144  
3145  	return 0;
3146  }
3147  
perf_event_stop(struct perf_event * event,int restart)3148  static int perf_event_stop(struct perf_event *event, int restart)
3149  {
3150  	struct stop_event_data sd = {
3151  		.event		= event,
3152  		.restart	= restart,
3153  	};
3154  	int ret = 0;
3155  
3156  	do {
3157  		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3158  			return 0;
3159  
3160  		/* matches smp_wmb() in event_sched_in() */
3161  		smp_rmb();
3162  
3163  		/*
3164  		 * We only want to restart ACTIVE events, so if the event goes
3165  		 * inactive here (event->oncpu==-1), there's nothing more to do;
3166  		 * fall through with ret==-ENXIO.
3167  		 */
3168  		ret = cpu_function_call(READ_ONCE(event->oncpu),
3169  					__perf_event_stop, &sd);
3170  	} while (ret == -EAGAIN);
3171  
3172  	return ret;
3173  }
3174  
3175  /*
3176   * In order to contain the amount of racy and tricky in the address filter
3177   * configuration management, it is a two part process:
3178   *
3179   * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3180   *      we update the addresses of corresponding vmas in
3181   *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3182   * (p2) when an event is scheduled in (pmu::add), it calls
3183   *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3184   *      if the generation has changed since the previous call.
3185   *
3186   * If (p1) happens while the event is active, we restart it to force (p2).
3187   *
3188   * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3189   *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3190   *     ioctl;
3191   * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3192   *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3193   *     for reading;
3194   * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3195   *     of exec.
3196   */
perf_event_addr_filters_sync(struct perf_event * event)3197  void perf_event_addr_filters_sync(struct perf_event *event)
3198  {
3199  	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3200  
3201  	if (!has_addr_filter(event))
3202  		return;
3203  
3204  	raw_spin_lock(&ifh->lock);
3205  	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3206  		event->pmu->addr_filters_sync(event);
3207  		event->hw.addr_filters_gen = event->addr_filters_gen;
3208  	}
3209  	raw_spin_unlock(&ifh->lock);
3210  }
3211  EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3212  
_perf_event_refresh(struct perf_event * event,int refresh)3213  static int _perf_event_refresh(struct perf_event *event, int refresh)
3214  {
3215  	/*
3216  	 * not supported on inherited events
3217  	 */
3218  	if (event->attr.inherit || !is_sampling_event(event))
3219  		return -EINVAL;
3220  
3221  	atomic_add(refresh, &event->event_limit);
3222  	_perf_event_enable(event);
3223  
3224  	return 0;
3225  }
3226  
3227  /*
3228   * See perf_event_disable()
3229   */
perf_event_refresh(struct perf_event * event,int refresh)3230  int perf_event_refresh(struct perf_event *event, int refresh)
3231  {
3232  	struct perf_event_context *ctx;
3233  	int ret;
3234  
3235  	ctx = perf_event_ctx_lock(event);
3236  	ret = _perf_event_refresh(event, refresh);
3237  	perf_event_ctx_unlock(event, ctx);
3238  
3239  	return ret;
3240  }
3241  EXPORT_SYMBOL_GPL(perf_event_refresh);
3242  
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3243  static int perf_event_modify_breakpoint(struct perf_event *bp,
3244  					 struct perf_event_attr *attr)
3245  {
3246  	int err;
3247  
3248  	_perf_event_disable(bp);
3249  
3250  	err = modify_user_hw_breakpoint_check(bp, attr, true);
3251  
3252  	if (!bp->attr.disabled)
3253  		_perf_event_enable(bp);
3254  
3255  	return err;
3256  }
3257  
3258  /*
3259   * Copy event-type-independent attributes that may be modified.
3260   */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3261  static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3262  					const struct perf_event_attr *from)
3263  {
3264  	to->sig_data = from->sig_data;
3265  }
3266  
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3267  static int perf_event_modify_attr(struct perf_event *event,
3268  				  struct perf_event_attr *attr)
3269  {
3270  	int (*func)(struct perf_event *, struct perf_event_attr *);
3271  	struct perf_event *child;
3272  	int err;
3273  
3274  	if (event->attr.type != attr->type)
3275  		return -EINVAL;
3276  
3277  	switch (event->attr.type) {
3278  	case PERF_TYPE_BREAKPOINT:
3279  		func = perf_event_modify_breakpoint;
3280  		break;
3281  	default:
3282  		/* Place holder for future additions. */
3283  		return -EOPNOTSUPP;
3284  	}
3285  
3286  	WARN_ON_ONCE(event->ctx->parent_ctx);
3287  
3288  	mutex_lock(&event->child_mutex);
3289  	/*
3290  	 * Event-type-independent attributes must be copied before event-type
3291  	 * modification, which will validate that final attributes match the
3292  	 * source attributes after all relevant attributes have been copied.
3293  	 */
3294  	perf_event_modify_copy_attr(&event->attr, attr);
3295  	err = func(event, attr);
3296  	if (err)
3297  		goto out;
3298  	list_for_each_entry(child, &event->child_list, child_list) {
3299  		perf_event_modify_copy_attr(&child->attr, attr);
3300  		err = func(child, attr);
3301  		if (err)
3302  			goto out;
3303  	}
3304  out:
3305  	mutex_unlock(&event->child_mutex);
3306  	return err;
3307  }
3308  
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3309  static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3310  				enum event_type_t event_type)
3311  {
3312  	struct perf_event_context *ctx = pmu_ctx->ctx;
3313  	struct perf_event *event, *tmp;
3314  	struct pmu *pmu = pmu_ctx->pmu;
3315  
3316  	if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3317  		struct perf_cpu_pmu_context *cpc;
3318  
3319  		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3320  		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3321  		cpc->task_epc = NULL;
3322  	}
3323  
3324  	if (!(event_type & EVENT_ALL))
3325  		return;
3326  
3327  	perf_pmu_disable(pmu);
3328  	if (event_type & EVENT_PINNED) {
3329  		list_for_each_entry_safe(event, tmp,
3330  					 &pmu_ctx->pinned_active,
3331  					 active_list)
3332  			group_sched_out(event, ctx);
3333  	}
3334  
3335  	if (event_type & EVENT_FLEXIBLE) {
3336  		list_for_each_entry_safe(event, tmp,
3337  					 &pmu_ctx->flexible_active,
3338  					 active_list)
3339  			group_sched_out(event, ctx);
3340  		/*
3341  		 * Since we cleared EVENT_FLEXIBLE, also clear
3342  		 * rotate_necessary, is will be reset by
3343  		 * ctx_flexible_sched_in() when needed.
3344  		 */
3345  		pmu_ctx->rotate_necessary = 0;
3346  	}
3347  	perf_pmu_enable(pmu);
3348  }
3349  
3350  /*
3351   * Be very careful with the @pmu argument since this will change ctx state.
3352   * The @pmu argument works for ctx_resched(), because that is symmetric in
3353   * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3354   *
3355   * However, if you were to be asymmetrical, you could end up with messed up
3356   * state, eg. ctx->is_active cleared even though most EPCs would still actually
3357   * be active.
3358   */
3359  static void
ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3360  ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3361  {
3362  	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3363  	struct perf_event_pmu_context *pmu_ctx;
3364  	int is_active = ctx->is_active;
3365  	bool cgroup = event_type & EVENT_CGROUP;
3366  
3367  	event_type &= ~EVENT_CGROUP;
3368  
3369  	lockdep_assert_held(&ctx->lock);
3370  
3371  	if (likely(!ctx->nr_events)) {
3372  		/*
3373  		 * See __perf_remove_from_context().
3374  		 */
3375  		WARN_ON_ONCE(ctx->is_active);
3376  		if (ctx->task)
3377  			WARN_ON_ONCE(cpuctx->task_ctx);
3378  		return;
3379  	}
3380  
3381  	/*
3382  	 * Always update time if it was set; not only when it changes.
3383  	 * Otherwise we can 'forget' to update time for any but the last
3384  	 * context we sched out. For example:
3385  	 *
3386  	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3387  	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3388  	 *
3389  	 * would only update time for the pinned events.
3390  	 */
3391  	__ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3392  
3393  	/*
3394  	 * CPU-release for the below ->is_active store,
3395  	 * see __load_acquire() in perf_event_time_now()
3396  	 */
3397  	barrier();
3398  	ctx->is_active &= ~event_type;
3399  
3400  	if (!(ctx->is_active & EVENT_ALL)) {
3401  		/*
3402  		 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3403  		 * does not observe a hole. perf_ctx_unlock() will clean up.
3404  		 */
3405  		if (ctx->is_active & EVENT_FROZEN)
3406  			ctx->is_active &= EVENT_TIME_FROZEN;
3407  		else
3408  			ctx->is_active = 0;
3409  	}
3410  
3411  	if (ctx->task) {
3412  		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3413  		if (!(ctx->is_active & EVENT_ALL))
3414  			cpuctx->task_ctx = NULL;
3415  	}
3416  
3417  	is_active ^= ctx->is_active; /* changed bits */
3418  
3419  	for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3420  		__pmu_ctx_sched_out(pmu_ctx, is_active);
3421  }
3422  
3423  /*
3424   * Test whether two contexts are equivalent, i.e. whether they have both been
3425   * cloned from the same version of the same context.
3426   *
3427   * Equivalence is measured using a generation number in the context that is
3428   * incremented on each modification to it; see unclone_ctx(), list_add_event()
3429   * and list_del_event().
3430   */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3431  static int context_equiv(struct perf_event_context *ctx1,
3432  			 struct perf_event_context *ctx2)
3433  {
3434  	lockdep_assert_held(&ctx1->lock);
3435  	lockdep_assert_held(&ctx2->lock);
3436  
3437  	/* Pinning disables the swap optimization */
3438  	if (ctx1->pin_count || ctx2->pin_count)
3439  		return 0;
3440  
3441  	/* If ctx1 is the parent of ctx2 */
3442  	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3443  		return 1;
3444  
3445  	/* If ctx2 is the parent of ctx1 */
3446  	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3447  		return 1;
3448  
3449  	/*
3450  	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3451  	 * hierarchy, see perf_event_init_context().
3452  	 */
3453  	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3454  			ctx1->parent_gen == ctx2->parent_gen)
3455  		return 1;
3456  
3457  	/* Unmatched */
3458  	return 0;
3459  }
3460  
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3461  static void __perf_event_sync_stat(struct perf_event *event,
3462  				     struct perf_event *next_event)
3463  {
3464  	u64 value;
3465  
3466  	if (!event->attr.inherit_stat)
3467  		return;
3468  
3469  	/*
3470  	 * Update the event value, we cannot use perf_event_read()
3471  	 * because we're in the middle of a context switch and have IRQs
3472  	 * disabled, which upsets smp_call_function_single(), however
3473  	 * we know the event must be on the current CPU, therefore we
3474  	 * don't need to use it.
3475  	 */
3476  	if (event->state == PERF_EVENT_STATE_ACTIVE)
3477  		event->pmu->read(event);
3478  
3479  	perf_event_update_time(event);
3480  
3481  	/*
3482  	 * In order to keep per-task stats reliable we need to flip the event
3483  	 * values when we flip the contexts.
3484  	 */
3485  	value = local64_read(&next_event->count);
3486  	value = local64_xchg(&event->count, value);
3487  	local64_set(&next_event->count, value);
3488  
3489  	swap(event->total_time_enabled, next_event->total_time_enabled);
3490  	swap(event->total_time_running, next_event->total_time_running);
3491  
3492  	/*
3493  	 * Since we swizzled the values, update the user visible data too.
3494  	 */
3495  	perf_event_update_userpage(event);
3496  	perf_event_update_userpage(next_event);
3497  }
3498  
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3499  static void perf_event_sync_stat(struct perf_event_context *ctx,
3500  				   struct perf_event_context *next_ctx)
3501  {
3502  	struct perf_event *event, *next_event;
3503  
3504  	if (!ctx->nr_stat)
3505  		return;
3506  
3507  	update_context_time(ctx);
3508  
3509  	event = list_first_entry(&ctx->event_list,
3510  				   struct perf_event, event_entry);
3511  
3512  	next_event = list_first_entry(&next_ctx->event_list,
3513  					struct perf_event, event_entry);
3514  
3515  	while (&event->event_entry != &ctx->event_list &&
3516  	       &next_event->event_entry != &next_ctx->event_list) {
3517  
3518  		__perf_event_sync_stat(event, next_event);
3519  
3520  		event = list_next_entry(event, event_entry);
3521  		next_event = list_next_entry(next_event, event_entry);
3522  	}
3523  }
3524  
3525  #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3526  	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3527  	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3528  	     !list_entry_is_head(pos1, head1, member) &&		\
3529  	     !list_entry_is_head(pos2, head2, member);			\
3530  	     pos1 = list_next_entry(pos1, member),			\
3531  	     pos2 = list_next_entry(pos2, member))
3532  
perf_event_swap_task_ctx_data(struct perf_event_context * prev_ctx,struct perf_event_context * next_ctx)3533  static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3534  					  struct perf_event_context *next_ctx)
3535  {
3536  	struct perf_event_pmu_context *prev_epc, *next_epc;
3537  
3538  	if (!prev_ctx->nr_task_data)
3539  		return;
3540  
3541  	double_list_for_each_entry(prev_epc, next_epc,
3542  				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3543  				   pmu_ctx_entry) {
3544  
3545  		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3546  			continue;
3547  
3548  		/*
3549  		 * PMU specific parts of task perf context can require
3550  		 * additional synchronization. As an example of such
3551  		 * synchronization see implementation details of Intel
3552  		 * LBR call stack data profiling;
3553  		 */
3554  		if (prev_epc->pmu->swap_task_ctx)
3555  			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3556  		else
3557  			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3558  	}
3559  }
3560  
perf_ctx_sched_task_cb(struct perf_event_context * ctx,bool sched_in)3561  static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3562  {
3563  	struct perf_event_pmu_context *pmu_ctx;
3564  	struct perf_cpu_pmu_context *cpc;
3565  
3566  	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3567  		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3568  
3569  		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3570  			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3571  	}
3572  }
3573  
3574  static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3575  perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3576  {
3577  	struct perf_event_context *ctx = task->perf_event_ctxp;
3578  	struct perf_event_context *next_ctx;
3579  	struct perf_event_context *parent, *next_parent;
3580  	int do_switch = 1;
3581  
3582  	if (likely(!ctx))
3583  		return;
3584  
3585  	rcu_read_lock();
3586  	next_ctx = rcu_dereference(next->perf_event_ctxp);
3587  	if (!next_ctx)
3588  		goto unlock;
3589  
3590  	parent = rcu_dereference(ctx->parent_ctx);
3591  	next_parent = rcu_dereference(next_ctx->parent_ctx);
3592  
3593  	/* If neither context have a parent context; they cannot be clones. */
3594  	if (!parent && !next_parent)
3595  		goto unlock;
3596  
3597  	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3598  		/*
3599  		 * Looks like the two contexts are clones, so we might be
3600  		 * able to optimize the context switch.  We lock both
3601  		 * contexts and check that they are clones under the
3602  		 * lock (including re-checking that neither has been
3603  		 * uncloned in the meantime).  It doesn't matter which
3604  		 * order we take the locks because no other cpu could
3605  		 * be trying to lock both of these tasks.
3606  		 */
3607  		raw_spin_lock(&ctx->lock);
3608  		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3609  		if (context_equiv(ctx, next_ctx)) {
3610  
3611  			perf_ctx_disable(ctx, false);
3612  
3613  			/* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3614  			if (local_read(&ctx->nr_no_switch_fast) ||
3615  			    local_read(&next_ctx->nr_no_switch_fast)) {
3616  				/*
3617  				 * Must not swap out ctx when there's pending
3618  				 * events that rely on the ctx->task relation.
3619  				 *
3620  				 * Likewise, when a context contains inherit +
3621  				 * SAMPLE_READ events they should be switched
3622  				 * out using the slow path so that they are
3623  				 * treated as if they were distinct contexts.
3624  				 */
3625  				raw_spin_unlock(&next_ctx->lock);
3626  				rcu_read_unlock();
3627  				goto inside_switch;
3628  			}
3629  
3630  			WRITE_ONCE(ctx->task, next);
3631  			WRITE_ONCE(next_ctx->task, task);
3632  
3633  			perf_ctx_sched_task_cb(ctx, false);
3634  			perf_event_swap_task_ctx_data(ctx, next_ctx);
3635  
3636  			perf_ctx_enable(ctx, false);
3637  
3638  			/*
3639  			 * RCU_INIT_POINTER here is safe because we've not
3640  			 * modified the ctx and the above modification of
3641  			 * ctx->task and ctx->task_ctx_data are immaterial
3642  			 * since those values are always verified under
3643  			 * ctx->lock which we're now holding.
3644  			 */
3645  			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3646  			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3647  
3648  			do_switch = 0;
3649  
3650  			perf_event_sync_stat(ctx, next_ctx);
3651  		}
3652  		raw_spin_unlock(&next_ctx->lock);
3653  		raw_spin_unlock(&ctx->lock);
3654  	}
3655  unlock:
3656  	rcu_read_unlock();
3657  
3658  	if (do_switch) {
3659  		raw_spin_lock(&ctx->lock);
3660  		perf_ctx_disable(ctx, false);
3661  
3662  inside_switch:
3663  		perf_ctx_sched_task_cb(ctx, false);
3664  		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3665  
3666  		perf_ctx_enable(ctx, false);
3667  		raw_spin_unlock(&ctx->lock);
3668  	}
3669  }
3670  
3671  static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3672  static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3673  
perf_sched_cb_dec(struct pmu * pmu)3674  void perf_sched_cb_dec(struct pmu *pmu)
3675  {
3676  	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3677  
3678  	this_cpu_dec(perf_sched_cb_usages);
3679  	barrier();
3680  
3681  	if (!--cpc->sched_cb_usage)
3682  		list_del(&cpc->sched_cb_entry);
3683  }
3684  
3685  
perf_sched_cb_inc(struct pmu * pmu)3686  void perf_sched_cb_inc(struct pmu *pmu)
3687  {
3688  	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3689  
3690  	if (!cpc->sched_cb_usage++)
3691  		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3692  
3693  	barrier();
3694  	this_cpu_inc(perf_sched_cb_usages);
3695  }
3696  
3697  /*
3698   * This function provides the context switch callback to the lower code
3699   * layer. It is invoked ONLY when the context switch callback is enabled.
3700   *
3701   * This callback is relevant even to per-cpu events; for example multi event
3702   * PEBS requires this to provide PID/TID information. This requires we flush
3703   * all queued PEBS records before we context switch to a new task.
3704   */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,bool sched_in)3705  static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3706  {
3707  	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3708  	struct pmu *pmu;
3709  
3710  	pmu = cpc->epc.pmu;
3711  
3712  	/* software PMUs will not have sched_task */
3713  	if (WARN_ON_ONCE(!pmu->sched_task))
3714  		return;
3715  
3716  	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3717  	perf_pmu_disable(pmu);
3718  
3719  	pmu->sched_task(cpc->task_epc, sched_in);
3720  
3721  	perf_pmu_enable(pmu);
3722  	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3723  }
3724  
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3725  static void perf_pmu_sched_task(struct task_struct *prev,
3726  				struct task_struct *next,
3727  				bool sched_in)
3728  {
3729  	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3730  	struct perf_cpu_pmu_context *cpc;
3731  
3732  	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3733  	if (prev == next || cpuctx->task_ctx)
3734  		return;
3735  
3736  	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3737  		__perf_pmu_sched_task(cpc, sched_in);
3738  }
3739  
3740  static void perf_event_switch(struct task_struct *task,
3741  			      struct task_struct *next_prev, bool sched_in);
3742  
3743  /*
3744   * Called from scheduler to remove the events of the current task,
3745   * with interrupts disabled.
3746   *
3747   * We stop each event and update the event value in event->count.
3748   *
3749   * This does not protect us against NMI, but disable()
3750   * sets the disabled bit in the control field of event _before_
3751   * accessing the event control register. If a NMI hits, then it will
3752   * not restart the event.
3753   */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3754  void __perf_event_task_sched_out(struct task_struct *task,
3755  				 struct task_struct *next)
3756  {
3757  	if (__this_cpu_read(perf_sched_cb_usages))
3758  		perf_pmu_sched_task(task, next, false);
3759  
3760  	if (atomic_read(&nr_switch_events))
3761  		perf_event_switch(task, next, false);
3762  
3763  	perf_event_context_sched_out(task, next);
3764  
3765  	/*
3766  	 * if cgroup events exist on this CPU, then we need
3767  	 * to check if we have to switch out PMU state.
3768  	 * cgroup event are system-wide mode only
3769  	 */
3770  	perf_cgroup_switch(next);
3771  }
3772  
perf_less_group_idx(const void * l,const void * r,void __always_unused * args)3773  static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3774  {
3775  	const struct perf_event *le = *(const struct perf_event **)l;
3776  	const struct perf_event *re = *(const struct perf_event **)r;
3777  
3778  	return le->group_index < re->group_index;
3779  }
3780  
swap_ptr(void * l,void * r,void __always_unused * args)3781  static void swap_ptr(void *l, void *r, void __always_unused *args)
3782  {
3783  	void **lp = l, **rp = r;
3784  
3785  	swap(*lp, *rp);
3786  }
3787  
3788  DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3789  
3790  static const struct min_heap_callbacks perf_min_heap = {
3791  	.less = perf_less_group_idx,
3792  	.swp = swap_ptr,
3793  };
3794  
__heap_add(struct perf_event_min_heap * heap,struct perf_event * event)3795  static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3796  {
3797  	struct perf_event **itrs = heap->data;
3798  
3799  	if (event) {
3800  		itrs[heap->nr] = event;
3801  		heap->nr++;
3802  	}
3803  }
3804  
__link_epc(struct perf_event_pmu_context * pmu_ctx)3805  static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3806  {
3807  	struct perf_cpu_pmu_context *cpc;
3808  
3809  	if (!pmu_ctx->ctx->task)
3810  		return;
3811  
3812  	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3813  	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3814  	cpc->task_epc = pmu_ctx;
3815  }
3816  
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3817  static noinline int visit_groups_merge(struct perf_event_context *ctx,
3818  				struct perf_event_groups *groups, int cpu,
3819  				struct pmu *pmu,
3820  				int (*func)(struct perf_event *, void *),
3821  				void *data)
3822  {
3823  #ifdef CONFIG_CGROUP_PERF
3824  	struct cgroup_subsys_state *css = NULL;
3825  #endif
3826  	struct perf_cpu_context *cpuctx = NULL;
3827  	/* Space for per CPU and/or any CPU event iterators. */
3828  	struct perf_event *itrs[2];
3829  	struct perf_event_min_heap event_heap;
3830  	struct perf_event **evt;
3831  	int ret;
3832  
3833  	if (pmu->filter && pmu->filter(pmu, cpu))
3834  		return 0;
3835  
3836  	if (!ctx->task) {
3837  		cpuctx = this_cpu_ptr(&perf_cpu_context);
3838  		event_heap = (struct perf_event_min_heap){
3839  			.data = cpuctx->heap,
3840  			.nr = 0,
3841  			.size = cpuctx->heap_size,
3842  		};
3843  
3844  		lockdep_assert_held(&cpuctx->ctx.lock);
3845  
3846  #ifdef CONFIG_CGROUP_PERF
3847  		if (cpuctx->cgrp)
3848  			css = &cpuctx->cgrp->css;
3849  #endif
3850  	} else {
3851  		event_heap = (struct perf_event_min_heap){
3852  			.data = itrs,
3853  			.nr = 0,
3854  			.size = ARRAY_SIZE(itrs),
3855  		};
3856  		/* Events not within a CPU context may be on any CPU. */
3857  		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3858  	}
3859  	evt = event_heap.data;
3860  
3861  	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3862  
3863  #ifdef CONFIG_CGROUP_PERF
3864  	for (; css; css = css->parent)
3865  		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3866  #endif
3867  
3868  	if (event_heap.nr) {
3869  		__link_epc((*evt)->pmu_ctx);
3870  		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3871  	}
3872  
3873  	min_heapify_all(&event_heap, &perf_min_heap, NULL);
3874  
3875  	while (event_heap.nr) {
3876  		ret = func(*evt, data);
3877  		if (ret)
3878  			return ret;
3879  
3880  		*evt = perf_event_groups_next(*evt, pmu);
3881  		if (*evt)
3882  			min_heap_sift_down(&event_heap, 0, &perf_min_heap, NULL);
3883  		else
3884  			min_heap_pop(&event_heap, &perf_min_heap, NULL);
3885  	}
3886  
3887  	return 0;
3888  }
3889  
3890  /*
3891   * Because the userpage is strictly per-event (there is no concept of context,
3892   * so there cannot be a context indirection), every userpage must be updated
3893   * when context time starts :-(
3894   *
3895   * IOW, we must not miss EVENT_TIME edges.
3896   */
event_update_userpage(struct perf_event * event)3897  static inline bool event_update_userpage(struct perf_event *event)
3898  {
3899  	if (likely(!atomic_read(&event->mmap_count)))
3900  		return false;
3901  
3902  	perf_event_update_time(event);
3903  	perf_event_update_userpage(event);
3904  
3905  	return true;
3906  }
3907  
group_update_userpage(struct perf_event * group_event)3908  static inline void group_update_userpage(struct perf_event *group_event)
3909  {
3910  	struct perf_event *event;
3911  
3912  	if (!event_update_userpage(group_event))
3913  		return;
3914  
3915  	for_each_sibling_event(event, group_event)
3916  		event_update_userpage(event);
3917  }
3918  
merge_sched_in(struct perf_event * event,void * data)3919  static int merge_sched_in(struct perf_event *event, void *data)
3920  {
3921  	struct perf_event_context *ctx = event->ctx;
3922  	int *can_add_hw = data;
3923  
3924  	if (event->state <= PERF_EVENT_STATE_OFF)
3925  		return 0;
3926  
3927  	if (!event_filter_match(event))
3928  		return 0;
3929  
3930  	if (group_can_go_on(event, *can_add_hw)) {
3931  		if (!group_sched_in(event, ctx))
3932  			list_add_tail(&event->active_list, get_event_list(event));
3933  	}
3934  
3935  	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3936  		*can_add_hw = 0;
3937  		if (event->attr.pinned) {
3938  			perf_cgroup_event_disable(event, ctx);
3939  			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3940  		} else {
3941  			struct perf_cpu_pmu_context *cpc;
3942  
3943  			event->pmu_ctx->rotate_necessary = 1;
3944  			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3945  			perf_mux_hrtimer_restart(cpc);
3946  			group_update_userpage(event);
3947  		}
3948  	}
3949  
3950  	return 0;
3951  }
3952  
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)3953  static void pmu_groups_sched_in(struct perf_event_context *ctx,
3954  				struct perf_event_groups *groups,
3955  				struct pmu *pmu)
3956  {
3957  	int can_add_hw = 1;
3958  	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3959  			   merge_sched_in, &can_add_hw);
3960  }
3961  
__pmu_ctx_sched_in(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3962  static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
3963  			       enum event_type_t event_type)
3964  {
3965  	struct perf_event_context *ctx = pmu_ctx->ctx;
3966  
3967  	if (event_type & EVENT_PINNED)
3968  		pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
3969  	if (event_type & EVENT_FLEXIBLE)
3970  		pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
3971  }
3972  
3973  static void
ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3974  ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3975  {
3976  	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3977  	struct perf_event_pmu_context *pmu_ctx;
3978  	int is_active = ctx->is_active;
3979  	bool cgroup = event_type & EVENT_CGROUP;
3980  
3981  	event_type &= ~EVENT_CGROUP;
3982  
3983  	lockdep_assert_held(&ctx->lock);
3984  
3985  	if (likely(!ctx->nr_events))
3986  		return;
3987  
3988  	if (!(is_active & EVENT_TIME)) {
3989  		/* start ctx time */
3990  		__update_context_time(ctx, false);
3991  		perf_cgroup_set_timestamp(cpuctx);
3992  		/*
3993  		 * CPU-release for the below ->is_active store,
3994  		 * see __load_acquire() in perf_event_time_now()
3995  		 */
3996  		barrier();
3997  	}
3998  
3999  	ctx->is_active |= (event_type | EVENT_TIME);
4000  	if (ctx->task) {
4001  		if (!(is_active & EVENT_ALL))
4002  			cpuctx->task_ctx = ctx;
4003  		else
4004  			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4005  	}
4006  
4007  	is_active ^= ctx->is_active; /* changed bits */
4008  
4009  	/*
4010  	 * First go through the list and put on any pinned groups
4011  	 * in order to give them the best chance of going on.
4012  	 */
4013  	if (is_active & EVENT_PINNED) {
4014  		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4015  			__pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4016  	}
4017  
4018  	/* Then walk through the lower prio flexible groups */
4019  	if (is_active & EVENT_FLEXIBLE) {
4020  		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4021  			__pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4022  	}
4023  }
4024  
perf_event_context_sched_in(struct task_struct * task)4025  static void perf_event_context_sched_in(struct task_struct *task)
4026  {
4027  	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4028  	struct perf_event_context *ctx;
4029  
4030  	rcu_read_lock();
4031  	ctx = rcu_dereference(task->perf_event_ctxp);
4032  	if (!ctx)
4033  		goto rcu_unlock;
4034  
4035  	if (cpuctx->task_ctx == ctx) {
4036  		perf_ctx_lock(cpuctx, ctx);
4037  		perf_ctx_disable(ctx, false);
4038  
4039  		perf_ctx_sched_task_cb(ctx, true);
4040  
4041  		perf_ctx_enable(ctx, false);
4042  		perf_ctx_unlock(cpuctx, ctx);
4043  		goto rcu_unlock;
4044  	}
4045  
4046  	perf_ctx_lock(cpuctx, ctx);
4047  	/*
4048  	 * We must check ctx->nr_events while holding ctx->lock, such
4049  	 * that we serialize against perf_install_in_context().
4050  	 */
4051  	if (!ctx->nr_events)
4052  		goto unlock;
4053  
4054  	perf_ctx_disable(ctx, false);
4055  	/*
4056  	 * We want to keep the following priority order:
4057  	 * cpu pinned (that don't need to move), task pinned,
4058  	 * cpu flexible, task flexible.
4059  	 *
4060  	 * However, if task's ctx is not carrying any pinned
4061  	 * events, no need to flip the cpuctx's events around.
4062  	 */
4063  	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4064  		perf_ctx_disable(&cpuctx->ctx, false);
4065  		ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4066  	}
4067  
4068  	perf_event_sched_in(cpuctx, ctx, NULL);
4069  
4070  	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
4071  
4072  	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4073  		perf_ctx_enable(&cpuctx->ctx, false);
4074  
4075  	perf_ctx_enable(ctx, false);
4076  
4077  unlock:
4078  	perf_ctx_unlock(cpuctx, ctx);
4079  rcu_unlock:
4080  	rcu_read_unlock();
4081  }
4082  
4083  /*
4084   * Called from scheduler to add the events of the current task
4085   * with interrupts disabled.
4086   *
4087   * We restore the event value and then enable it.
4088   *
4089   * This does not protect us against NMI, but enable()
4090   * sets the enabled bit in the control field of event _before_
4091   * accessing the event control register. If a NMI hits, then it will
4092   * keep the event running.
4093   */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4094  void __perf_event_task_sched_in(struct task_struct *prev,
4095  				struct task_struct *task)
4096  {
4097  	perf_event_context_sched_in(task);
4098  
4099  	if (atomic_read(&nr_switch_events))
4100  		perf_event_switch(task, prev, true);
4101  
4102  	if (__this_cpu_read(perf_sched_cb_usages))
4103  		perf_pmu_sched_task(prev, task, true);
4104  }
4105  
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4106  static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4107  {
4108  	u64 frequency = event->attr.sample_freq;
4109  	u64 sec = NSEC_PER_SEC;
4110  	u64 divisor, dividend;
4111  
4112  	int count_fls, nsec_fls, frequency_fls, sec_fls;
4113  
4114  	count_fls = fls64(count);
4115  	nsec_fls = fls64(nsec);
4116  	frequency_fls = fls64(frequency);
4117  	sec_fls = 30;
4118  
4119  	/*
4120  	 * We got @count in @nsec, with a target of sample_freq HZ
4121  	 * the target period becomes:
4122  	 *
4123  	 *             @count * 10^9
4124  	 * period = -------------------
4125  	 *          @nsec * sample_freq
4126  	 *
4127  	 */
4128  
4129  	/*
4130  	 * Reduce accuracy by one bit such that @a and @b converge
4131  	 * to a similar magnitude.
4132  	 */
4133  #define REDUCE_FLS(a, b)		\
4134  do {					\
4135  	if (a##_fls > b##_fls) {	\
4136  		a >>= 1;		\
4137  		a##_fls--;		\
4138  	} else {			\
4139  		b >>= 1;		\
4140  		b##_fls--;		\
4141  	}				\
4142  } while (0)
4143  
4144  	/*
4145  	 * Reduce accuracy until either term fits in a u64, then proceed with
4146  	 * the other, so that finally we can do a u64/u64 division.
4147  	 */
4148  	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4149  		REDUCE_FLS(nsec, frequency);
4150  		REDUCE_FLS(sec, count);
4151  	}
4152  
4153  	if (count_fls + sec_fls > 64) {
4154  		divisor = nsec * frequency;
4155  
4156  		while (count_fls + sec_fls > 64) {
4157  			REDUCE_FLS(count, sec);
4158  			divisor >>= 1;
4159  		}
4160  
4161  		dividend = count * sec;
4162  	} else {
4163  		dividend = count * sec;
4164  
4165  		while (nsec_fls + frequency_fls > 64) {
4166  			REDUCE_FLS(nsec, frequency);
4167  			dividend >>= 1;
4168  		}
4169  
4170  		divisor = nsec * frequency;
4171  	}
4172  
4173  	if (!divisor)
4174  		return dividend;
4175  
4176  	return div64_u64(dividend, divisor);
4177  }
4178  
4179  static DEFINE_PER_CPU(int, perf_throttled_count);
4180  static DEFINE_PER_CPU(u64, perf_throttled_seq);
4181  
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4182  static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4183  {
4184  	struct hw_perf_event *hwc = &event->hw;
4185  	s64 period, sample_period;
4186  	s64 delta;
4187  
4188  	period = perf_calculate_period(event, nsec, count);
4189  
4190  	delta = (s64)(period - hwc->sample_period);
4191  	if (delta >= 0)
4192  		delta += 7;
4193  	else
4194  		delta -= 7;
4195  	delta /= 8; /* low pass filter */
4196  
4197  	sample_period = hwc->sample_period + delta;
4198  
4199  	if (!sample_period)
4200  		sample_period = 1;
4201  
4202  	hwc->sample_period = sample_period;
4203  
4204  	if (local64_read(&hwc->period_left) > 8*sample_period) {
4205  		if (disable)
4206  			event->pmu->stop(event, PERF_EF_UPDATE);
4207  
4208  		local64_set(&hwc->period_left, 0);
4209  
4210  		if (disable)
4211  			event->pmu->start(event, PERF_EF_RELOAD);
4212  	}
4213  }
4214  
perf_adjust_freq_unthr_events(struct list_head * event_list)4215  static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4216  {
4217  	struct perf_event *event;
4218  	struct hw_perf_event *hwc;
4219  	u64 now, period = TICK_NSEC;
4220  	s64 delta;
4221  
4222  	list_for_each_entry(event, event_list, active_list) {
4223  		if (event->state != PERF_EVENT_STATE_ACTIVE)
4224  			continue;
4225  
4226  		// XXX use visit thingy to avoid the -1,cpu match
4227  		if (!event_filter_match(event))
4228  			continue;
4229  
4230  		hwc = &event->hw;
4231  
4232  		if (hwc->interrupts == MAX_INTERRUPTS) {
4233  			hwc->interrupts = 0;
4234  			perf_log_throttle(event, 1);
4235  			if (!event->attr.freq || !event->attr.sample_freq)
4236  				event->pmu->start(event, 0);
4237  		}
4238  
4239  		if (!event->attr.freq || !event->attr.sample_freq)
4240  			continue;
4241  
4242  		/*
4243  		 * stop the event and update event->count
4244  		 */
4245  		event->pmu->stop(event, PERF_EF_UPDATE);
4246  
4247  		now = local64_read(&event->count);
4248  		delta = now - hwc->freq_count_stamp;
4249  		hwc->freq_count_stamp = now;
4250  
4251  		/*
4252  		 * restart the event
4253  		 * reload only if value has changed
4254  		 * we have stopped the event so tell that
4255  		 * to perf_adjust_period() to avoid stopping it
4256  		 * twice.
4257  		 */
4258  		if (delta > 0)
4259  			perf_adjust_period(event, period, delta, false);
4260  
4261  		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4262  	}
4263  }
4264  
4265  /*
4266   * combine freq adjustment with unthrottling to avoid two passes over the
4267   * events. At the same time, make sure, having freq events does not change
4268   * the rate of unthrottling as that would introduce bias.
4269   */
4270  static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4271  perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4272  {
4273  	struct perf_event_pmu_context *pmu_ctx;
4274  
4275  	/*
4276  	 * only need to iterate over all events iff:
4277  	 * - context have events in frequency mode (needs freq adjust)
4278  	 * - there are events to unthrottle on this cpu
4279  	 */
4280  	if (!(ctx->nr_freq || unthrottle))
4281  		return;
4282  
4283  	raw_spin_lock(&ctx->lock);
4284  
4285  	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4286  		if (!(pmu_ctx->nr_freq || unthrottle))
4287  			continue;
4288  		if (!perf_pmu_ctx_is_active(pmu_ctx))
4289  			continue;
4290  		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4291  			continue;
4292  
4293  		perf_pmu_disable(pmu_ctx->pmu);
4294  		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4295  		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4296  		perf_pmu_enable(pmu_ctx->pmu);
4297  	}
4298  
4299  	raw_spin_unlock(&ctx->lock);
4300  }
4301  
4302  /*
4303   * Move @event to the tail of the @ctx's elegible events.
4304   */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4305  static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4306  {
4307  	/*
4308  	 * Rotate the first entry last of non-pinned groups. Rotation might be
4309  	 * disabled by the inheritance code.
4310  	 */
4311  	if (ctx->rotate_disable)
4312  		return;
4313  
4314  	perf_event_groups_delete(&ctx->flexible_groups, event);
4315  	perf_event_groups_insert(&ctx->flexible_groups, event);
4316  }
4317  
4318  /* pick an event from the flexible_groups to rotate */
4319  static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4320  ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4321  {
4322  	struct perf_event *event;
4323  	struct rb_node *node;
4324  	struct rb_root *tree;
4325  	struct __group_key key = {
4326  		.pmu = pmu_ctx->pmu,
4327  	};
4328  
4329  	/* pick the first active flexible event */
4330  	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4331  					 struct perf_event, active_list);
4332  	if (event)
4333  		goto out;
4334  
4335  	/* if no active flexible event, pick the first event */
4336  	tree = &pmu_ctx->ctx->flexible_groups.tree;
4337  
4338  	if (!pmu_ctx->ctx->task) {
4339  		key.cpu = smp_processor_id();
4340  
4341  		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4342  		if (node)
4343  			event = __node_2_pe(node);
4344  		goto out;
4345  	}
4346  
4347  	key.cpu = -1;
4348  	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4349  	if (node) {
4350  		event = __node_2_pe(node);
4351  		goto out;
4352  	}
4353  
4354  	key.cpu = smp_processor_id();
4355  	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4356  	if (node)
4357  		event = __node_2_pe(node);
4358  
4359  out:
4360  	/*
4361  	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4362  	 * finds there are unschedulable events, it will set it again.
4363  	 */
4364  	pmu_ctx->rotate_necessary = 0;
4365  
4366  	return event;
4367  }
4368  
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4369  static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4370  {
4371  	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4372  	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4373  	struct perf_event *cpu_event = NULL, *task_event = NULL;
4374  	int cpu_rotate, task_rotate;
4375  	struct pmu *pmu;
4376  
4377  	/*
4378  	 * Since we run this from IRQ context, nobody can install new
4379  	 * events, thus the event count values are stable.
4380  	 */
4381  
4382  	cpu_epc = &cpc->epc;
4383  	pmu = cpu_epc->pmu;
4384  	task_epc = cpc->task_epc;
4385  
4386  	cpu_rotate = cpu_epc->rotate_necessary;
4387  	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4388  
4389  	if (!(cpu_rotate || task_rotate))
4390  		return false;
4391  
4392  	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4393  	perf_pmu_disable(pmu);
4394  
4395  	if (task_rotate)
4396  		task_event = ctx_event_to_rotate(task_epc);
4397  	if (cpu_rotate)
4398  		cpu_event = ctx_event_to_rotate(cpu_epc);
4399  
4400  	/*
4401  	 * As per the order given at ctx_resched() first 'pop' task flexible
4402  	 * and then, if needed CPU flexible.
4403  	 */
4404  	if (task_event || (task_epc && cpu_event)) {
4405  		update_context_time(task_epc->ctx);
4406  		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4407  	}
4408  
4409  	if (cpu_event) {
4410  		update_context_time(&cpuctx->ctx);
4411  		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4412  		rotate_ctx(&cpuctx->ctx, cpu_event);
4413  		__pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4414  	}
4415  
4416  	if (task_event)
4417  		rotate_ctx(task_epc->ctx, task_event);
4418  
4419  	if (task_event || (task_epc && cpu_event))
4420  		__pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4421  
4422  	perf_pmu_enable(pmu);
4423  	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4424  
4425  	return true;
4426  }
4427  
perf_event_task_tick(void)4428  void perf_event_task_tick(void)
4429  {
4430  	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4431  	struct perf_event_context *ctx;
4432  	int throttled;
4433  
4434  	lockdep_assert_irqs_disabled();
4435  
4436  	__this_cpu_inc(perf_throttled_seq);
4437  	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4438  	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4439  
4440  	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4441  
4442  	rcu_read_lock();
4443  	ctx = rcu_dereference(current->perf_event_ctxp);
4444  	if (ctx)
4445  		perf_adjust_freq_unthr_context(ctx, !!throttled);
4446  	rcu_read_unlock();
4447  }
4448  
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4449  static int event_enable_on_exec(struct perf_event *event,
4450  				struct perf_event_context *ctx)
4451  {
4452  	if (!event->attr.enable_on_exec)
4453  		return 0;
4454  
4455  	event->attr.enable_on_exec = 0;
4456  	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4457  		return 0;
4458  
4459  	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4460  
4461  	return 1;
4462  }
4463  
4464  /*
4465   * Enable all of a task's events that have been marked enable-on-exec.
4466   * This expects task == current.
4467   */
perf_event_enable_on_exec(struct perf_event_context * ctx)4468  static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4469  {
4470  	struct perf_event_context *clone_ctx = NULL;
4471  	enum event_type_t event_type = 0;
4472  	struct perf_cpu_context *cpuctx;
4473  	struct perf_event *event;
4474  	unsigned long flags;
4475  	int enabled = 0;
4476  
4477  	local_irq_save(flags);
4478  	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4479  		goto out;
4480  
4481  	if (!ctx->nr_events)
4482  		goto out;
4483  
4484  	cpuctx = this_cpu_ptr(&perf_cpu_context);
4485  	perf_ctx_lock(cpuctx, ctx);
4486  	ctx_time_freeze(cpuctx, ctx);
4487  
4488  	list_for_each_entry(event, &ctx->event_list, event_entry) {
4489  		enabled |= event_enable_on_exec(event, ctx);
4490  		event_type |= get_event_type(event);
4491  	}
4492  
4493  	/*
4494  	 * Unclone and reschedule this context if we enabled any event.
4495  	 */
4496  	if (enabled) {
4497  		clone_ctx = unclone_ctx(ctx);
4498  		ctx_resched(cpuctx, ctx, NULL, event_type);
4499  	}
4500  	perf_ctx_unlock(cpuctx, ctx);
4501  
4502  out:
4503  	local_irq_restore(flags);
4504  
4505  	if (clone_ctx)
4506  		put_ctx(clone_ctx);
4507  }
4508  
4509  static void perf_remove_from_owner(struct perf_event *event);
4510  static void perf_event_exit_event(struct perf_event *event,
4511  				  struct perf_event_context *ctx);
4512  
4513  /*
4514   * Removes all events from the current task that have been marked
4515   * remove-on-exec, and feeds their values back to parent events.
4516   */
perf_event_remove_on_exec(struct perf_event_context * ctx)4517  static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4518  {
4519  	struct perf_event_context *clone_ctx = NULL;
4520  	struct perf_event *event, *next;
4521  	unsigned long flags;
4522  	bool modified = false;
4523  
4524  	mutex_lock(&ctx->mutex);
4525  
4526  	if (WARN_ON_ONCE(ctx->task != current))
4527  		goto unlock;
4528  
4529  	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4530  		if (!event->attr.remove_on_exec)
4531  			continue;
4532  
4533  		if (!is_kernel_event(event))
4534  			perf_remove_from_owner(event);
4535  
4536  		modified = true;
4537  
4538  		perf_event_exit_event(event, ctx);
4539  	}
4540  
4541  	raw_spin_lock_irqsave(&ctx->lock, flags);
4542  	if (modified)
4543  		clone_ctx = unclone_ctx(ctx);
4544  	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4545  
4546  unlock:
4547  	mutex_unlock(&ctx->mutex);
4548  
4549  	if (clone_ctx)
4550  		put_ctx(clone_ctx);
4551  }
4552  
4553  struct perf_read_data {
4554  	struct perf_event *event;
4555  	bool group;
4556  	int ret;
4557  };
4558  
4559  static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4560  
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4561  static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4562  {
4563  	int local_cpu = smp_processor_id();
4564  	u16 local_pkg, event_pkg;
4565  
4566  	if ((unsigned)event_cpu >= nr_cpu_ids)
4567  		return event_cpu;
4568  
4569  	if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4570  		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4571  
4572  		if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4573  			return local_cpu;
4574  	}
4575  
4576  	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4577  		event_pkg = topology_physical_package_id(event_cpu);
4578  		local_pkg = topology_physical_package_id(local_cpu);
4579  
4580  		if (event_pkg == local_pkg)
4581  			return local_cpu;
4582  	}
4583  
4584  	return event_cpu;
4585  }
4586  
4587  /*
4588   * Cross CPU call to read the hardware event
4589   */
__perf_event_read(void * info)4590  static void __perf_event_read(void *info)
4591  {
4592  	struct perf_read_data *data = info;
4593  	struct perf_event *sub, *event = data->event;
4594  	struct perf_event_context *ctx = event->ctx;
4595  	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4596  	struct pmu *pmu = event->pmu;
4597  
4598  	/*
4599  	 * If this is a task context, we need to check whether it is
4600  	 * the current task context of this cpu.  If not it has been
4601  	 * scheduled out before the smp call arrived.  In that case
4602  	 * event->count would have been updated to a recent sample
4603  	 * when the event was scheduled out.
4604  	 */
4605  	if (ctx->task && cpuctx->task_ctx != ctx)
4606  		return;
4607  
4608  	raw_spin_lock(&ctx->lock);
4609  	ctx_time_update_event(ctx, event);
4610  
4611  	perf_event_update_time(event);
4612  	if (data->group)
4613  		perf_event_update_sibling_time(event);
4614  
4615  	if (event->state != PERF_EVENT_STATE_ACTIVE)
4616  		goto unlock;
4617  
4618  	if (!data->group) {
4619  		pmu->read(event);
4620  		data->ret = 0;
4621  		goto unlock;
4622  	}
4623  
4624  	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4625  
4626  	pmu->read(event);
4627  
4628  	for_each_sibling_event(sub, event) {
4629  		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4630  			/*
4631  			 * Use sibling's PMU rather than @event's since
4632  			 * sibling could be on different (eg: software) PMU.
4633  			 */
4634  			sub->pmu->read(sub);
4635  		}
4636  	}
4637  
4638  	data->ret = pmu->commit_txn(pmu);
4639  
4640  unlock:
4641  	raw_spin_unlock(&ctx->lock);
4642  }
4643  
perf_event_count(struct perf_event * event,bool self)4644  static inline u64 perf_event_count(struct perf_event *event, bool self)
4645  {
4646  	if (self)
4647  		return local64_read(&event->count);
4648  
4649  	return local64_read(&event->count) + atomic64_read(&event->child_count);
4650  }
4651  
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4652  static void calc_timer_values(struct perf_event *event,
4653  				u64 *now,
4654  				u64 *enabled,
4655  				u64 *running)
4656  {
4657  	u64 ctx_time;
4658  
4659  	*now = perf_clock();
4660  	ctx_time = perf_event_time_now(event, *now);
4661  	__perf_update_times(event, ctx_time, enabled, running);
4662  }
4663  
4664  /*
4665   * NMI-safe method to read a local event, that is an event that
4666   * is:
4667   *   - either for the current task, or for this CPU
4668   *   - does not have inherit set, for inherited task events
4669   *     will not be local and we cannot read them atomically
4670   *   - must not have a pmu::count method
4671   */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4672  int perf_event_read_local(struct perf_event *event, u64 *value,
4673  			  u64 *enabled, u64 *running)
4674  {
4675  	unsigned long flags;
4676  	int event_oncpu;
4677  	int event_cpu;
4678  	int ret = 0;
4679  
4680  	/*
4681  	 * Disabling interrupts avoids all counter scheduling (context
4682  	 * switches, timer based rotation and IPIs).
4683  	 */
4684  	local_irq_save(flags);
4685  
4686  	/*
4687  	 * It must not be an event with inherit set, we cannot read
4688  	 * all child counters from atomic context.
4689  	 */
4690  	if (event->attr.inherit) {
4691  		ret = -EOPNOTSUPP;
4692  		goto out;
4693  	}
4694  
4695  	/* If this is a per-task event, it must be for current */
4696  	if ((event->attach_state & PERF_ATTACH_TASK) &&
4697  	    event->hw.target != current) {
4698  		ret = -EINVAL;
4699  		goto out;
4700  	}
4701  
4702  	/*
4703  	 * Get the event CPU numbers, and adjust them to local if the event is
4704  	 * a per-package event that can be read locally
4705  	 */
4706  	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4707  	event_cpu = __perf_event_read_cpu(event, event->cpu);
4708  
4709  	/* If this is a per-CPU event, it must be for this CPU */
4710  	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4711  	    event_cpu != smp_processor_id()) {
4712  		ret = -EINVAL;
4713  		goto out;
4714  	}
4715  
4716  	/* If this is a pinned event it must be running on this CPU */
4717  	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4718  		ret = -EBUSY;
4719  		goto out;
4720  	}
4721  
4722  	/*
4723  	 * If the event is currently on this CPU, its either a per-task event,
4724  	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4725  	 * oncpu == -1).
4726  	 */
4727  	if (event_oncpu == smp_processor_id())
4728  		event->pmu->read(event);
4729  
4730  	*value = local64_read(&event->count);
4731  	if (enabled || running) {
4732  		u64 __enabled, __running, __now;
4733  
4734  		calc_timer_values(event, &__now, &__enabled, &__running);
4735  		if (enabled)
4736  			*enabled = __enabled;
4737  		if (running)
4738  			*running = __running;
4739  	}
4740  out:
4741  	local_irq_restore(flags);
4742  
4743  	return ret;
4744  }
4745  
perf_event_read(struct perf_event * event,bool group)4746  static int perf_event_read(struct perf_event *event, bool group)
4747  {
4748  	enum perf_event_state state = READ_ONCE(event->state);
4749  	int event_cpu, ret = 0;
4750  
4751  	/*
4752  	 * If event is enabled and currently active on a CPU, update the
4753  	 * value in the event structure:
4754  	 */
4755  again:
4756  	if (state == PERF_EVENT_STATE_ACTIVE) {
4757  		struct perf_read_data data;
4758  
4759  		/*
4760  		 * Orders the ->state and ->oncpu loads such that if we see
4761  		 * ACTIVE we must also see the right ->oncpu.
4762  		 *
4763  		 * Matches the smp_wmb() from event_sched_in().
4764  		 */
4765  		smp_rmb();
4766  
4767  		event_cpu = READ_ONCE(event->oncpu);
4768  		if ((unsigned)event_cpu >= nr_cpu_ids)
4769  			return 0;
4770  
4771  		data = (struct perf_read_data){
4772  			.event = event,
4773  			.group = group,
4774  			.ret = 0,
4775  		};
4776  
4777  		preempt_disable();
4778  		event_cpu = __perf_event_read_cpu(event, event_cpu);
4779  
4780  		/*
4781  		 * Purposely ignore the smp_call_function_single() return
4782  		 * value.
4783  		 *
4784  		 * If event_cpu isn't a valid CPU it means the event got
4785  		 * scheduled out and that will have updated the event count.
4786  		 *
4787  		 * Therefore, either way, we'll have an up-to-date event count
4788  		 * after this.
4789  		 */
4790  		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4791  		preempt_enable();
4792  		ret = data.ret;
4793  
4794  	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4795  		struct perf_event_context *ctx = event->ctx;
4796  		unsigned long flags;
4797  
4798  		raw_spin_lock_irqsave(&ctx->lock, flags);
4799  		state = event->state;
4800  		if (state != PERF_EVENT_STATE_INACTIVE) {
4801  			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4802  			goto again;
4803  		}
4804  
4805  		/*
4806  		 * May read while context is not active (e.g., thread is
4807  		 * blocked), in that case we cannot update context time
4808  		 */
4809  		ctx_time_update_event(ctx, event);
4810  
4811  		perf_event_update_time(event);
4812  		if (group)
4813  			perf_event_update_sibling_time(event);
4814  		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4815  	}
4816  
4817  	return ret;
4818  }
4819  
4820  /*
4821   * Initialize the perf_event context in a task_struct:
4822   */
__perf_event_init_context(struct perf_event_context * ctx)4823  static void __perf_event_init_context(struct perf_event_context *ctx)
4824  {
4825  	raw_spin_lock_init(&ctx->lock);
4826  	mutex_init(&ctx->mutex);
4827  	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4828  	perf_event_groups_init(&ctx->pinned_groups);
4829  	perf_event_groups_init(&ctx->flexible_groups);
4830  	INIT_LIST_HEAD(&ctx->event_list);
4831  	refcount_set(&ctx->refcount, 1);
4832  }
4833  
4834  static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4835  __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4836  {
4837  	epc->pmu = pmu;
4838  	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4839  	INIT_LIST_HEAD(&epc->pinned_active);
4840  	INIT_LIST_HEAD(&epc->flexible_active);
4841  	atomic_set(&epc->refcount, 1);
4842  }
4843  
4844  static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4845  alloc_perf_context(struct task_struct *task)
4846  {
4847  	struct perf_event_context *ctx;
4848  
4849  	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4850  	if (!ctx)
4851  		return NULL;
4852  
4853  	__perf_event_init_context(ctx);
4854  	if (task)
4855  		ctx->task = get_task_struct(task);
4856  
4857  	return ctx;
4858  }
4859  
4860  static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4861  find_lively_task_by_vpid(pid_t vpid)
4862  {
4863  	struct task_struct *task;
4864  
4865  	rcu_read_lock();
4866  	if (!vpid)
4867  		task = current;
4868  	else
4869  		task = find_task_by_vpid(vpid);
4870  	if (task)
4871  		get_task_struct(task);
4872  	rcu_read_unlock();
4873  
4874  	if (!task)
4875  		return ERR_PTR(-ESRCH);
4876  
4877  	return task;
4878  }
4879  
4880  /*
4881   * Returns a matching context with refcount and pincount.
4882   */
4883  static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4884  find_get_context(struct task_struct *task, struct perf_event *event)
4885  {
4886  	struct perf_event_context *ctx, *clone_ctx = NULL;
4887  	struct perf_cpu_context *cpuctx;
4888  	unsigned long flags;
4889  	int err;
4890  
4891  	if (!task) {
4892  		/* Must be root to operate on a CPU event: */
4893  		err = perf_allow_cpu(&event->attr);
4894  		if (err)
4895  			return ERR_PTR(err);
4896  
4897  		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4898  		ctx = &cpuctx->ctx;
4899  		get_ctx(ctx);
4900  		raw_spin_lock_irqsave(&ctx->lock, flags);
4901  		++ctx->pin_count;
4902  		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4903  
4904  		return ctx;
4905  	}
4906  
4907  	err = -EINVAL;
4908  retry:
4909  	ctx = perf_lock_task_context(task, &flags);
4910  	if (ctx) {
4911  		clone_ctx = unclone_ctx(ctx);
4912  		++ctx->pin_count;
4913  
4914  		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4915  
4916  		if (clone_ctx)
4917  			put_ctx(clone_ctx);
4918  	} else {
4919  		ctx = alloc_perf_context(task);
4920  		err = -ENOMEM;
4921  		if (!ctx)
4922  			goto errout;
4923  
4924  		err = 0;
4925  		mutex_lock(&task->perf_event_mutex);
4926  		/*
4927  		 * If it has already passed perf_event_exit_task().
4928  		 * we must see PF_EXITING, it takes this mutex too.
4929  		 */
4930  		if (task->flags & PF_EXITING)
4931  			err = -ESRCH;
4932  		else if (task->perf_event_ctxp)
4933  			err = -EAGAIN;
4934  		else {
4935  			get_ctx(ctx);
4936  			++ctx->pin_count;
4937  			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4938  		}
4939  		mutex_unlock(&task->perf_event_mutex);
4940  
4941  		if (unlikely(err)) {
4942  			put_ctx(ctx);
4943  
4944  			if (err == -EAGAIN)
4945  				goto retry;
4946  			goto errout;
4947  		}
4948  	}
4949  
4950  	return ctx;
4951  
4952  errout:
4953  	return ERR_PTR(err);
4954  }
4955  
4956  static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)4957  find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4958  		     struct perf_event *event)
4959  {
4960  	struct perf_event_pmu_context *new = NULL, *epc;
4961  	void *task_ctx_data = NULL;
4962  
4963  	if (!ctx->task) {
4964  		/*
4965  		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4966  		 * relies on the fact that find_get_pmu_context() cannot fail
4967  		 * for CPU contexts.
4968  		 */
4969  		struct perf_cpu_pmu_context *cpc;
4970  
4971  		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4972  		epc = &cpc->epc;
4973  		raw_spin_lock_irq(&ctx->lock);
4974  		if (!epc->ctx) {
4975  			atomic_set(&epc->refcount, 1);
4976  			epc->embedded = 1;
4977  			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4978  			epc->ctx = ctx;
4979  		} else {
4980  			WARN_ON_ONCE(epc->ctx != ctx);
4981  			atomic_inc(&epc->refcount);
4982  		}
4983  		raw_spin_unlock_irq(&ctx->lock);
4984  		return epc;
4985  	}
4986  
4987  	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4988  	if (!new)
4989  		return ERR_PTR(-ENOMEM);
4990  
4991  	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4992  		task_ctx_data = alloc_task_ctx_data(pmu);
4993  		if (!task_ctx_data) {
4994  			kfree(new);
4995  			return ERR_PTR(-ENOMEM);
4996  		}
4997  	}
4998  
4999  	__perf_init_event_pmu_context(new, pmu);
5000  
5001  	/*
5002  	 * XXX
5003  	 *
5004  	 * lockdep_assert_held(&ctx->mutex);
5005  	 *
5006  	 * can't because perf_event_init_task() doesn't actually hold the
5007  	 * child_ctx->mutex.
5008  	 */
5009  
5010  	raw_spin_lock_irq(&ctx->lock);
5011  	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5012  		if (epc->pmu == pmu) {
5013  			WARN_ON_ONCE(epc->ctx != ctx);
5014  			atomic_inc(&epc->refcount);
5015  			goto found_epc;
5016  		}
5017  	}
5018  
5019  	epc = new;
5020  	new = NULL;
5021  
5022  	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5023  	epc->ctx = ctx;
5024  
5025  found_epc:
5026  	if (task_ctx_data && !epc->task_ctx_data) {
5027  		epc->task_ctx_data = task_ctx_data;
5028  		task_ctx_data = NULL;
5029  		ctx->nr_task_data++;
5030  	}
5031  	raw_spin_unlock_irq(&ctx->lock);
5032  
5033  	free_task_ctx_data(pmu, task_ctx_data);
5034  	kfree(new);
5035  
5036  	return epc;
5037  }
5038  
get_pmu_ctx(struct perf_event_pmu_context * epc)5039  static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5040  {
5041  	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5042  }
5043  
free_epc_rcu(struct rcu_head * head)5044  static void free_epc_rcu(struct rcu_head *head)
5045  {
5046  	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5047  
5048  	kfree(epc->task_ctx_data);
5049  	kfree(epc);
5050  }
5051  
put_pmu_ctx(struct perf_event_pmu_context * epc)5052  static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5053  {
5054  	struct perf_event_context *ctx = epc->ctx;
5055  	unsigned long flags;
5056  
5057  	/*
5058  	 * XXX
5059  	 *
5060  	 * lockdep_assert_held(&ctx->mutex);
5061  	 *
5062  	 * can't because of the call-site in _free_event()/put_event()
5063  	 * which isn't always called under ctx->mutex.
5064  	 */
5065  	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5066  		return;
5067  
5068  	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5069  
5070  	list_del_init(&epc->pmu_ctx_entry);
5071  	epc->ctx = NULL;
5072  
5073  	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5074  	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5075  
5076  	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5077  
5078  	if (epc->embedded)
5079  		return;
5080  
5081  	call_rcu(&epc->rcu_head, free_epc_rcu);
5082  }
5083  
5084  static void perf_event_free_filter(struct perf_event *event);
5085  
free_event_rcu(struct rcu_head * head)5086  static void free_event_rcu(struct rcu_head *head)
5087  {
5088  	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5089  
5090  	if (event->ns)
5091  		put_pid_ns(event->ns);
5092  	perf_event_free_filter(event);
5093  	kmem_cache_free(perf_event_cache, event);
5094  }
5095  
5096  static void ring_buffer_attach(struct perf_event *event,
5097  			       struct perf_buffer *rb);
5098  
detach_sb_event(struct perf_event * event)5099  static void detach_sb_event(struct perf_event *event)
5100  {
5101  	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5102  
5103  	raw_spin_lock(&pel->lock);
5104  	list_del_rcu(&event->sb_list);
5105  	raw_spin_unlock(&pel->lock);
5106  }
5107  
is_sb_event(struct perf_event * event)5108  static bool is_sb_event(struct perf_event *event)
5109  {
5110  	struct perf_event_attr *attr = &event->attr;
5111  
5112  	if (event->parent)
5113  		return false;
5114  
5115  	if (event->attach_state & PERF_ATTACH_TASK)
5116  		return false;
5117  
5118  	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5119  	    attr->comm || attr->comm_exec ||
5120  	    attr->task || attr->ksymbol ||
5121  	    attr->context_switch || attr->text_poke ||
5122  	    attr->bpf_event)
5123  		return true;
5124  	return false;
5125  }
5126  
unaccount_pmu_sb_event(struct perf_event * event)5127  static void unaccount_pmu_sb_event(struct perf_event *event)
5128  {
5129  	if (is_sb_event(event))
5130  		detach_sb_event(event);
5131  }
5132  
5133  #ifdef CONFIG_NO_HZ_FULL
5134  static DEFINE_SPINLOCK(nr_freq_lock);
5135  #endif
5136  
unaccount_freq_event_nohz(void)5137  static void unaccount_freq_event_nohz(void)
5138  {
5139  #ifdef CONFIG_NO_HZ_FULL
5140  	spin_lock(&nr_freq_lock);
5141  	if (atomic_dec_and_test(&nr_freq_events))
5142  		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5143  	spin_unlock(&nr_freq_lock);
5144  #endif
5145  }
5146  
unaccount_freq_event(void)5147  static void unaccount_freq_event(void)
5148  {
5149  	if (tick_nohz_full_enabled())
5150  		unaccount_freq_event_nohz();
5151  	else
5152  		atomic_dec(&nr_freq_events);
5153  }
5154  
unaccount_event(struct perf_event * event)5155  static void unaccount_event(struct perf_event *event)
5156  {
5157  	bool dec = false;
5158  
5159  	if (event->parent)
5160  		return;
5161  
5162  	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5163  		dec = true;
5164  	if (event->attr.mmap || event->attr.mmap_data)
5165  		atomic_dec(&nr_mmap_events);
5166  	if (event->attr.build_id)
5167  		atomic_dec(&nr_build_id_events);
5168  	if (event->attr.comm)
5169  		atomic_dec(&nr_comm_events);
5170  	if (event->attr.namespaces)
5171  		atomic_dec(&nr_namespaces_events);
5172  	if (event->attr.cgroup)
5173  		atomic_dec(&nr_cgroup_events);
5174  	if (event->attr.task)
5175  		atomic_dec(&nr_task_events);
5176  	if (event->attr.freq)
5177  		unaccount_freq_event();
5178  	if (event->attr.context_switch) {
5179  		dec = true;
5180  		atomic_dec(&nr_switch_events);
5181  	}
5182  	if (is_cgroup_event(event))
5183  		dec = true;
5184  	if (has_branch_stack(event))
5185  		dec = true;
5186  	if (event->attr.ksymbol)
5187  		atomic_dec(&nr_ksymbol_events);
5188  	if (event->attr.bpf_event)
5189  		atomic_dec(&nr_bpf_events);
5190  	if (event->attr.text_poke)
5191  		atomic_dec(&nr_text_poke_events);
5192  
5193  	if (dec) {
5194  		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5195  			schedule_delayed_work(&perf_sched_work, HZ);
5196  	}
5197  
5198  	unaccount_pmu_sb_event(event);
5199  }
5200  
perf_sched_delayed(struct work_struct * work)5201  static void perf_sched_delayed(struct work_struct *work)
5202  {
5203  	mutex_lock(&perf_sched_mutex);
5204  	if (atomic_dec_and_test(&perf_sched_count))
5205  		static_branch_disable(&perf_sched_events);
5206  	mutex_unlock(&perf_sched_mutex);
5207  }
5208  
5209  /*
5210   * The following implement mutual exclusion of events on "exclusive" pmus
5211   * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5212   * at a time, so we disallow creating events that might conflict, namely:
5213   *
5214   *  1) cpu-wide events in the presence of per-task events,
5215   *  2) per-task events in the presence of cpu-wide events,
5216   *  3) two matching events on the same perf_event_context.
5217   *
5218   * The former two cases are handled in the allocation path (perf_event_alloc(),
5219   * _free_event()), the latter -- before the first perf_install_in_context().
5220   */
exclusive_event_init(struct perf_event * event)5221  static int exclusive_event_init(struct perf_event *event)
5222  {
5223  	struct pmu *pmu = event->pmu;
5224  
5225  	if (!is_exclusive_pmu(pmu))
5226  		return 0;
5227  
5228  	/*
5229  	 * Prevent co-existence of per-task and cpu-wide events on the
5230  	 * same exclusive pmu.
5231  	 *
5232  	 * Negative pmu::exclusive_cnt means there are cpu-wide
5233  	 * events on this "exclusive" pmu, positive means there are
5234  	 * per-task events.
5235  	 *
5236  	 * Since this is called in perf_event_alloc() path, event::ctx
5237  	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5238  	 * to mean "per-task event", because unlike other attach states it
5239  	 * never gets cleared.
5240  	 */
5241  	if (event->attach_state & PERF_ATTACH_TASK) {
5242  		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5243  			return -EBUSY;
5244  	} else {
5245  		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5246  			return -EBUSY;
5247  	}
5248  
5249  	return 0;
5250  }
5251  
exclusive_event_destroy(struct perf_event * event)5252  static void exclusive_event_destroy(struct perf_event *event)
5253  {
5254  	struct pmu *pmu = event->pmu;
5255  
5256  	if (!is_exclusive_pmu(pmu))
5257  		return;
5258  
5259  	/* see comment in exclusive_event_init() */
5260  	if (event->attach_state & PERF_ATTACH_TASK)
5261  		atomic_dec(&pmu->exclusive_cnt);
5262  	else
5263  		atomic_inc(&pmu->exclusive_cnt);
5264  }
5265  
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5266  static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5267  {
5268  	if ((e1->pmu == e2->pmu) &&
5269  	    (e1->cpu == e2->cpu ||
5270  	     e1->cpu == -1 ||
5271  	     e2->cpu == -1))
5272  		return true;
5273  	return false;
5274  }
5275  
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5276  static bool exclusive_event_installable(struct perf_event *event,
5277  					struct perf_event_context *ctx)
5278  {
5279  	struct perf_event *iter_event;
5280  	struct pmu *pmu = event->pmu;
5281  
5282  	lockdep_assert_held(&ctx->mutex);
5283  
5284  	if (!is_exclusive_pmu(pmu))
5285  		return true;
5286  
5287  	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5288  		if (exclusive_event_match(iter_event, event))
5289  			return false;
5290  	}
5291  
5292  	return true;
5293  }
5294  
5295  static void perf_addr_filters_splice(struct perf_event *event,
5296  				       struct list_head *head);
5297  
perf_pending_task_sync(struct perf_event * event)5298  static void perf_pending_task_sync(struct perf_event *event)
5299  {
5300  	struct callback_head *head = &event->pending_task;
5301  
5302  	if (!event->pending_work)
5303  		return;
5304  	/*
5305  	 * If the task is queued to the current task's queue, we
5306  	 * obviously can't wait for it to complete. Simply cancel it.
5307  	 */
5308  	if (task_work_cancel(current, head)) {
5309  		event->pending_work = 0;
5310  		local_dec(&event->ctx->nr_no_switch_fast);
5311  		return;
5312  	}
5313  
5314  	/*
5315  	 * All accesses related to the event are within the same RCU section in
5316  	 * perf_pending_task(). The RCU grace period before the event is freed
5317  	 * will make sure all those accesses are complete by then.
5318  	 */
5319  	rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5320  }
5321  
_free_event(struct perf_event * event)5322  static void _free_event(struct perf_event *event)
5323  {
5324  	irq_work_sync(&event->pending_irq);
5325  	irq_work_sync(&event->pending_disable_irq);
5326  	perf_pending_task_sync(event);
5327  
5328  	unaccount_event(event);
5329  
5330  	security_perf_event_free(event);
5331  
5332  	if (event->rb) {
5333  		/*
5334  		 * Can happen when we close an event with re-directed output.
5335  		 *
5336  		 * Since we have a 0 refcount, perf_mmap_close() will skip
5337  		 * over us; possibly making our ring_buffer_put() the last.
5338  		 */
5339  		mutex_lock(&event->mmap_mutex);
5340  		ring_buffer_attach(event, NULL);
5341  		mutex_unlock(&event->mmap_mutex);
5342  	}
5343  
5344  	if (is_cgroup_event(event))
5345  		perf_detach_cgroup(event);
5346  
5347  	if (!event->parent) {
5348  		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5349  			put_callchain_buffers();
5350  	}
5351  
5352  	perf_event_free_bpf_prog(event);
5353  	perf_addr_filters_splice(event, NULL);
5354  	kfree(event->addr_filter_ranges);
5355  
5356  	if (event->destroy)
5357  		event->destroy(event);
5358  
5359  	/*
5360  	 * Must be after ->destroy(), due to uprobe_perf_close() using
5361  	 * hw.target.
5362  	 */
5363  	if (event->hw.target)
5364  		put_task_struct(event->hw.target);
5365  
5366  	if (event->pmu_ctx)
5367  		put_pmu_ctx(event->pmu_ctx);
5368  
5369  	/*
5370  	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5371  	 * all task references must be cleaned up.
5372  	 */
5373  	if (event->ctx)
5374  		put_ctx(event->ctx);
5375  
5376  	exclusive_event_destroy(event);
5377  	module_put(event->pmu->module);
5378  
5379  	call_rcu(&event->rcu_head, free_event_rcu);
5380  }
5381  
5382  /*
5383   * Used to free events which have a known refcount of 1, such as in error paths
5384   * where the event isn't exposed yet and inherited events.
5385   */
free_event(struct perf_event * event)5386  static void free_event(struct perf_event *event)
5387  {
5388  	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5389  				"unexpected event refcount: %ld; ptr=%p\n",
5390  				atomic_long_read(&event->refcount), event)) {
5391  		/* leak to avoid use-after-free */
5392  		return;
5393  	}
5394  
5395  	_free_event(event);
5396  }
5397  
5398  /*
5399   * Remove user event from the owner task.
5400   */
perf_remove_from_owner(struct perf_event * event)5401  static void perf_remove_from_owner(struct perf_event *event)
5402  {
5403  	struct task_struct *owner;
5404  
5405  	rcu_read_lock();
5406  	/*
5407  	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5408  	 * observe !owner it means the list deletion is complete and we can
5409  	 * indeed free this event, otherwise we need to serialize on
5410  	 * owner->perf_event_mutex.
5411  	 */
5412  	owner = READ_ONCE(event->owner);
5413  	if (owner) {
5414  		/*
5415  		 * Since delayed_put_task_struct() also drops the last
5416  		 * task reference we can safely take a new reference
5417  		 * while holding the rcu_read_lock().
5418  		 */
5419  		get_task_struct(owner);
5420  	}
5421  	rcu_read_unlock();
5422  
5423  	if (owner) {
5424  		/*
5425  		 * If we're here through perf_event_exit_task() we're already
5426  		 * holding ctx->mutex which would be an inversion wrt. the
5427  		 * normal lock order.
5428  		 *
5429  		 * However we can safely take this lock because its the child
5430  		 * ctx->mutex.
5431  		 */
5432  		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5433  
5434  		/*
5435  		 * We have to re-check the event->owner field, if it is cleared
5436  		 * we raced with perf_event_exit_task(), acquiring the mutex
5437  		 * ensured they're done, and we can proceed with freeing the
5438  		 * event.
5439  		 */
5440  		if (event->owner) {
5441  			list_del_init(&event->owner_entry);
5442  			smp_store_release(&event->owner, NULL);
5443  		}
5444  		mutex_unlock(&owner->perf_event_mutex);
5445  		put_task_struct(owner);
5446  	}
5447  }
5448  
put_event(struct perf_event * event)5449  static void put_event(struct perf_event *event)
5450  {
5451  	if (!atomic_long_dec_and_test(&event->refcount))
5452  		return;
5453  
5454  	_free_event(event);
5455  }
5456  
5457  /*
5458   * Kill an event dead; while event:refcount will preserve the event
5459   * object, it will not preserve its functionality. Once the last 'user'
5460   * gives up the object, we'll destroy the thing.
5461   */
perf_event_release_kernel(struct perf_event * event)5462  int perf_event_release_kernel(struct perf_event *event)
5463  {
5464  	struct perf_event_context *ctx = event->ctx;
5465  	struct perf_event *child, *tmp;
5466  	LIST_HEAD(free_list);
5467  
5468  	/*
5469  	 * If we got here through err_alloc: free_event(event); we will not
5470  	 * have attached to a context yet.
5471  	 */
5472  	if (!ctx) {
5473  		WARN_ON_ONCE(event->attach_state &
5474  				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5475  		goto no_ctx;
5476  	}
5477  
5478  	if (!is_kernel_event(event))
5479  		perf_remove_from_owner(event);
5480  
5481  	ctx = perf_event_ctx_lock(event);
5482  	WARN_ON_ONCE(ctx->parent_ctx);
5483  
5484  	/*
5485  	 * Mark this event as STATE_DEAD, there is no external reference to it
5486  	 * anymore.
5487  	 *
5488  	 * Anybody acquiring event->child_mutex after the below loop _must_
5489  	 * also see this, most importantly inherit_event() which will avoid
5490  	 * placing more children on the list.
5491  	 *
5492  	 * Thus this guarantees that we will in fact observe and kill _ALL_
5493  	 * child events.
5494  	 */
5495  	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5496  
5497  	perf_event_ctx_unlock(event, ctx);
5498  
5499  again:
5500  	mutex_lock(&event->child_mutex);
5501  	list_for_each_entry(child, &event->child_list, child_list) {
5502  		void *var = NULL;
5503  
5504  		/*
5505  		 * Cannot change, child events are not migrated, see the
5506  		 * comment with perf_event_ctx_lock_nested().
5507  		 */
5508  		ctx = READ_ONCE(child->ctx);
5509  		/*
5510  		 * Since child_mutex nests inside ctx::mutex, we must jump
5511  		 * through hoops. We start by grabbing a reference on the ctx.
5512  		 *
5513  		 * Since the event cannot get freed while we hold the
5514  		 * child_mutex, the context must also exist and have a !0
5515  		 * reference count.
5516  		 */
5517  		get_ctx(ctx);
5518  
5519  		/*
5520  		 * Now that we have a ctx ref, we can drop child_mutex, and
5521  		 * acquire ctx::mutex without fear of it going away. Then we
5522  		 * can re-acquire child_mutex.
5523  		 */
5524  		mutex_unlock(&event->child_mutex);
5525  		mutex_lock(&ctx->mutex);
5526  		mutex_lock(&event->child_mutex);
5527  
5528  		/*
5529  		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5530  		 * state, if child is still the first entry, it didn't get freed
5531  		 * and we can continue doing so.
5532  		 */
5533  		tmp = list_first_entry_or_null(&event->child_list,
5534  					       struct perf_event, child_list);
5535  		if (tmp == child) {
5536  			perf_remove_from_context(child, DETACH_GROUP);
5537  			list_move(&child->child_list, &free_list);
5538  			/*
5539  			 * This matches the refcount bump in inherit_event();
5540  			 * this can't be the last reference.
5541  			 */
5542  			put_event(event);
5543  		} else {
5544  			var = &ctx->refcount;
5545  		}
5546  
5547  		mutex_unlock(&event->child_mutex);
5548  		mutex_unlock(&ctx->mutex);
5549  		put_ctx(ctx);
5550  
5551  		if (var) {
5552  			/*
5553  			 * If perf_event_free_task() has deleted all events from the
5554  			 * ctx while the child_mutex got released above, make sure to
5555  			 * notify about the preceding put_ctx().
5556  			 */
5557  			smp_mb(); /* pairs with wait_var_event() */
5558  			wake_up_var(var);
5559  		}
5560  		goto again;
5561  	}
5562  	mutex_unlock(&event->child_mutex);
5563  
5564  	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5565  		void *var = &child->ctx->refcount;
5566  
5567  		list_del(&child->child_list);
5568  		free_event(child);
5569  
5570  		/*
5571  		 * Wake any perf_event_free_task() waiting for this event to be
5572  		 * freed.
5573  		 */
5574  		smp_mb(); /* pairs with wait_var_event() */
5575  		wake_up_var(var);
5576  	}
5577  
5578  no_ctx:
5579  	put_event(event); /* Must be the 'last' reference */
5580  	return 0;
5581  }
5582  EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5583  
5584  /*
5585   * Called when the last reference to the file is gone.
5586   */
perf_release(struct inode * inode,struct file * file)5587  static int perf_release(struct inode *inode, struct file *file)
5588  {
5589  	perf_event_release_kernel(file->private_data);
5590  	return 0;
5591  }
5592  
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5593  static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5594  {
5595  	struct perf_event *child;
5596  	u64 total = 0;
5597  
5598  	*enabled = 0;
5599  	*running = 0;
5600  
5601  	mutex_lock(&event->child_mutex);
5602  
5603  	(void)perf_event_read(event, false);
5604  	total += perf_event_count(event, false);
5605  
5606  	*enabled += event->total_time_enabled +
5607  			atomic64_read(&event->child_total_time_enabled);
5608  	*running += event->total_time_running +
5609  			atomic64_read(&event->child_total_time_running);
5610  
5611  	list_for_each_entry(child, &event->child_list, child_list) {
5612  		(void)perf_event_read(child, false);
5613  		total += perf_event_count(child, false);
5614  		*enabled += child->total_time_enabled;
5615  		*running += child->total_time_running;
5616  	}
5617  	mutex_unlock(&event->child_mutex);
5618  
5619  	return total;
5620  }
5621  
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5622  u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5623  {
5624  	struct perf_event_context *ctx;
5625  	u64 count;
5626  
5627  	ctx = perf_event_ctx_lock(event);
5628  	count = __perf_event_read_value(event, enabled, running);
5629  	perf_event_ctx_unlock(event, ctx);
5630  
5631  	return count;
5632  }
5633  EXPORT_SYMBOL_GPL(perf_event_read_value);
5634  
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5635  static int __perf_read_group_add(struct perf_event *leader,
5636  					u64 read_format, u64 *values)
5637  {
5638  	struct perf_event_context *ctx = leader->ctx;
5639  	struct perf_event *sub, *parent;
5640  	unsigned long flags;
5641  	int n = 1; /* skip @nr */
5642  	int ret;
5643  
5644  	ret = perf_event_read(leader, true);
5645  	if (ret)
5646  		return ret;
5647  
5648  	raw_spin_lock_irqsave(&ctx->lock, flags);
5649  	/*
5650  	 * Verify the grouping between the parent and child (inherited)
5651  	 * events is still in tact.
5652  	 *
5653  	 * Specifically:
5654  	 *  - leader->ctx->lock pins leader->sibling_list
5655  	 *  - parent->child_mutex pins parent->child_list
5656  	 *  - parent->ctx->mutex pins parent->sibling_list
5657  	 *
5658  	 * Because parent->ctx != leader->ctx (and child_list nests inside
5659  	 * ctx->mutex), group destruction is not atomic between children, also
5660  	 * see perf_event_release_kernel(). Additionally, parent can grow the
5661  	 * group.
5662  	 *
5663  	 * Therefore it is possible to have parent and child groups in a
5664  	 * different configuration and summing over such a beast makes no sense
5665  	 * what so ever.
5666  	 *
5667  	 * Reject this.
5668  	 */
5669  	parent = leader->parent;
5670  	if (parent &&
5671  	    (parent->group_generation != leader->group_generation ||
5672  	     parent->nr_siblings != leader->nr_siblings)) {
5673  		ret = -ECHILD;
5674  		goto unlock;
5675  	}
5676  
5677  	/*
5678  	 * Since we co-schedule groups, {enabled,running} times of siblings
5679  	 * will be identical to those of the leader, so we only publish one
5680  	 * set.
5681  	 */
5682  	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5683  		values[n++] += leader->total_time_enabled +
5684  			atomic64_read(&leader->child_total_time_enabled);
5685  	}
5686  
5687  	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5688  		values[n++] += leader->total_time_running +
5689  			atomic64_read(&leader->child_total_time_running);
5690  	}
5691  
5692  	/*
5693  	 * Write {count,id} tuples for every sibling.
5694  	 */
5695  	values[n++] += perf_event_count(leader, false);
5696  	if (read_format & PERF_FORMAT_ID)
5697  		values[n++] = primary_event_id(leader);
5698  	if (read_format & PERF_FORMAT_LOST)
5699  		values[n++] = atomic64_read(&leader->lost_samples);
5700  
5701  	for_each_sibling_event(sub, leader) {
5702  		values[n++] += perf_event_count(sub, false);
5703  		if (read_format & PERF_FORMAT_ID)
5704  			values[n++] = primary_event_id(sub);
5705  		if (read_format & PERF_FORMAT_LOST)
5706  			values[n++] = atomic64_read(&sub->lost_samples);
5707  	}
5708  
5709  unlock:
5710  	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5711  	return ret;
5712  }
5713  
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5714  static int perf_read_group(struct perf_event *event,
5715  				   u64 read_format, char __user *buf)
5716  {
5717  	struct perf_event *leader = event->group_leader, *child;
5718  	struct perf_event_context *ctx = leader->ctx;
5719  	int ret;
5720  	u64 *values;
5721  
5722  	lockdep_assert_held(&ctx->mutex);
5723  
5724  	values = kzalloc(event->read_size, GFP_KERNEL);
5725  	if (!values)
5726  		return -ENOMEM;
5727  
5728  	values[0] = 1 + leader->nr_siblings;
5729  
5730  	mutex_lock(&leader->child_mutex);
5731  
5732  	ret = __perf_read_group_add(leader, read_format, values);
5733  	if (ret)
5734  		goto unlock;
5735  
5736  	list_for_each_entry(child, &leader->child_list, child_list) {
5737  		ret = __perf_read_group_add(child, read_format, values);
5738  		if (ret)
5739  			goto unlock;
5740  	}
5741  
5742  	mutex_unlock(&leader->child_mutex);
5743  
5744  	ret = event->read_size;
5745  	if (copy_to_user(buf, values, event->read_size))
5746  		ret = -EFAULT;
5747  	goto out;
5748  
5749  unlock:
5750  	mutex_unlock(&leader->child_mutex);
5751  out:
5752  	kfree(values);
5753  	return ret;
5754  }
5755  
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5756  static int perf_read_one(struct perf_event *event,
5757  				 u64 read_format, char __user *buf)
5758  {
5759  	u64 enabled, running;
5760  	u64 values[5];
5761  	int n = 0;
5762  
5763  	values[n++] = __perf_event_read_value(event, &enabled, &running);
5764  	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5765  		values[n++] = enabled;
5766  	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5767  		values[n++] = running;
5768  	if (read_format & PERF_FORMAT_ID)
5769  		values[n++] = primary_event_id(event);
5770  	if (read_format & PERF_FORMAT_LOST)
5771  		values[n++] = atomic64_read(&event->lost_samples);
5772  
5773  	if (copy_to_user(buf, values, n * sizeof(u64)))
5774  		return -EFAULT;
5775  
5776  	return n * sizeof(u64);
5777  }
5778  
is_event_hup(struct perf_event * event)5779  static bool is_event_hup(struct perf_event *event)
5780  {
5781  	bool no_children;
5782  
5783  	if (event->state > PERF_EVENT_STATE_EXIT)
5784  		return false;
5785  
5786  	mutex_lock(&event->child_mutex);
5787  	no_children = list_empty(&event->child_list);
5788  	mutex_unlock(&event->child_mutex);
5789  	return no_children;
5790  }
5791  
5792  /*
5793   * Read the performance event - simple non blocking version for now
5794   */
5795  static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5796  __perf_read(struct perf_event *event, char __user *buf, size_t count)
5797  {
5798  	u64 read_format = event->attr.read_format;
5799  	int ret;
5800  
5801  	/*
5802  	 * Return end-of-file for a read on an event that is in
5803  	 * error state (i.e. because it was pinned but it couldn't be
5804  	 * scheduled on to the CPU at some point).
5805  	 */
5806  	if (event->state == PERF_EVENT_STATE_ERROR)
5807  		return 0;
5808  
5809  	if (count < event->read_size)
5810  		return -ENOSPC;
5811  
5812  	WARN_ON_ONCE(event->ctx->parent_ctx);
5813  	if (read_format & PERF_FORMAT_GROUP)
5814  		ret = perf_read_group(event, read_format, buf);
5815  	else
5816  		ret = perf_read_one(event, read_format, buf);
5817  
5818  	return ret;
5819  }
5820  
5821  static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5822  perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5823  {
5824  	struct perf_event *event = file->private_data;
5825  	struct perf_event_context *ctx;
5826  	int ret;
5827  
5828  	ret = security_perf_event_read(event);
5829  	if (ret)
5830  		return ret;
5831  
5832  	ctx = perf_event_ctx_lock(event);
5833  	ret = __perf_read(event, buf, count);
5834  	perf_event_ctx_unlock(event, ctx);
5835  
5836  	return ret;
5837  }
5838  
perf_poll(struct file * file,poll_table * wait)5839  static __poll_t perf_poll(struct file *file, poll_table *wait)
5840  {
5841  	struct perf_event *event = file->private_data;
5842  	struct perf_buffer *rb;
5843  	__poll_t events = EPOLLHUP;
5844  
5845  	poll_wait(file, &event->waitq, wait);
5846  
5847  	if (is_event_hup(event))
5848  		return events;
5849  
5850  	/*
5851  	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5852  	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5853  	 */
5854  	mutex_lock(&event->mmap_mutex);
5855  	rb = event->rb;
5856  	if (rb)
5857  		events = atomic_xchg(&rb->poll, 0);
5858  	mutex_unlock(&event->mmap_mutex);
5859  	return events;
5860  }
5861  
_perf_event_reset(struct perf_event * event)5862  static void _perf_event_reset(struct perf_event *event)
5863  {
5864  	(void)perf_event_read(event, false);
5865  	local64_set(&event->count, 0);
5866  	perf_event_update_userpage(event);
5867  }
5868  
5869  /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5870  u64 perf_event_pause(struct perf_event *event, bool reset)
5871  {
5872  	struct perf_event_context *ctx;
5873  	u64 count;
5874  
5875  	ctx = perf_event_ctx_lock(event);
5876  	WARN_ON_ONCE(event->attr.inherit);
5877  	_perf_event_disable(event);
5878  	count = local64_read(&event->count);
5879  	if (reset)
5880  		local64_set(&event->count, 0);
5881  	perf_event_ctx_unlock(event, ctx);
5882  
5883  	return count;
5884  }
5885  EXPORT_SYMBOL_GPL(perf_event_pause);
5886  
5887  /*
5888   * Holding the top-level event's child_mutex means that any
5889   * descendant process that has inherited this event will block
5890   * in perf_event_exit_event() if it goes to exit, thus satisfying the
5891   * task existence requirements of perf_event_enable/disable.
5892   */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5893  static void perf_event_for_each_child(struct perf_event *event,
5894  					void (*func)(struct perf_event *))
5895  {
5896  	struct perf_event *child;
5897  
5898  	WARN_ON_ONCE(event->ctx->parent_ctx);
5899  
5900  	mutex_lock(&event->child_mutex);
5901  	func(event);
5902  	list_for_each_entry(child, &event->child_list, child_list)
5903  		func(child);
5904  	mutex_unlock(&event->child_mutex);
5905  }
5906  
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5907  static void perf_event_for_each(struct perf_event *event,
5908  				  void (*func)(struct perf_event *))
5909  {
5910  	struct perf_event_context *ctx = event->ctx;
5911  	struct perf_event *sibling;
5912  
5913  	lockdep_assert_held(&ctx->mutex);
5914  
5915  	event = event->group_leader;
5916  
5917  	perf_event_for_each_child(event, func);
5918  	for_each_sibling_event(sibling, event)
5919  		perf_event_for_each_child(sibling, func);
5920  }
5921  
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5922  static void __perf_event_period(struct perf_event *event,
5923  				struct perf_cpu_context *cpuctx,
5924  				struct perf_event_context *ctx,
5925  				void *info)
5926  {
5927  	u64 value = *((u64 *)info);
5928  	bool active;
5929  
5930  	if (event->attr.freq) {
5931  		event->attr.sample_freq = value;
5932  	} else {
5933  		event->attr.sample_period = value;
5934  		event->hw.sample_period = value;
5935  	}
5936  
5937  	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5938  	if (active) {
5939  		perf_pmu_disable(event->pmu);
5940  		/*
5941  		 * We could be throttled; unthrottle now to avoid the tick
5942  		 * trying to unthrottle while we already re-started the event.
5943  		 */
5944  		if (event->hw.interrupts == MAX_INTERRUPTS) {
5945  			event->hw.interrupts = 0;
5946  			perf_log_throttle(event, 1);
5947  		}
5948  		event->pmu->stop(event, PERF_EF_UPDATE);
5949  	}
5950  
5951  	local64_set(&event->hw.period_left, 0);
5952  
5953  	if (active) {
5954  		event->pmu->start(event, PERF_EF_RELOAD);
5955  		perf_pmu_enable(event->pmu);
5956  	}
5957  }
5958  
perf_event_check_period(struct perf_event * event,u64 value)5959  static int perf_event_check_period(struct perf_event *event, u64 value)
5960  {
5961  	return event->pmu->check_period(event, value);
5962  }
5963  
_perf_event_period(struct perf_event * event,u64 value)5964  static int _perf_event_period(struct perf_event *event, u64 value)
5965  {
5966  	if (!is_sampling_event(event))
5967  		return -EINVAL;
5968  
5969  	if (!value)
5970  		return -EINVAL;
5971  
5972  	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5973  		return -EINVAL;
5974  
5975  	if (perf_event_check_period(event, value))
5976  		return -EINVAL;
5977  
5978  	if (!event->attr.freq && (value & (1ULL << 63)))
5979  		return -EINVAL;
5980  
5981  	event_function_call(event, __perf_event_period, &value);
5982  
5983  	return 0;
5984  }
5985  
perf_event_period(struct perf_event * event,u64 value)5986  int perf_event_period(struct perf_event *event, u64 value)
5987  {
5988  	struct perf_event_context *ctx;
5989  	int ret;
5990  
5991  	ctx = perf_event_ctx_lock(event);
5992  	ret = _perf_event_period(event, value);
5993  	perf_event_ctx_unlock(event, ctx);
5994  
5995  	return ret;
5996  }
5997  EXPORT_SYMBOL_GPL(perf_event_period);
5998  
5999  static const struct file_operations perf_fops;
6000  
perf_fget_light(int fd,struct fd * p)6001  static inline int perf_fget_light(int fd, struct fd *p)
6002  {
6003  	struct fd f = fdget(fd);
6004  	if (!fd_file(f))
6005  		return -EBADF;
6006  
6007  	if (fd_file(f)->f_op != &perf_fops) {
6008  		fdput(f);
6009  		return -EBADF;
6010  	}
6011  	*p = f;
6012  	return 0;
6013  }
6014  
6015  static int perf_event_set_output(struct perf_event *event,
6016  				 struct perf_event *output_event);
6017  static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6018  static int perf_copy_attr(struct perf_event_attr __user *uattr,
6019  			  struct perf_event_attr *attr);
6020  
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)6021  static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6022  {
6023  	void (*func)(struct perf_event *);
6024  	u32 flags = arg;
6025  
6026  	switch (cmd) {
6027  	case PERF_EVENT_IOC_ENABLE:
6028  		func = _perf_event_enable;
6029  		break;
6030  	case PERF_EVENT_IOC_DISABLE:
6031  		func = _perf_event_disable;
6032  		break;
6033  	case PERF_EVENT_IOC_RESET:
6034  		func = _perf_event_reset;
6035  		break;
6036  
6037  	case PERF_EVENT_IOC_REFRESH:
6038  		return _perf_event_refresh(event, arg);
6039  
6040  	case PERF_EVENT_IOC_PERIOD:
6041  	{
6042  		u64 value;
6043  
6044  		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6045  			return -EFAULT;
6046  
6047  		return _perf_event_period(event, value);
6048  	}
6049  	case PERF_EVENT_IOC_ID:
6050  	{
6051  		u64 id = primary_event_id(event);
6052  
6053  		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6054  			return -EFAULT;
6055  		return 0;
6056  	}
6057  
6058  	case PERF_EVENT_IOC_SET_OUTPUT:
6059  	{
6060  		int ret;
6061  		if (arg != -1) {
6062  			struct perf_event *output_event;
6063  			struct fd output;
6064  			ret = perf_fget_light(arg, &output);
6065  			if (ret)
6066  				return ret;
6067  			output_event = fd_file(output)->private_data;
6068  			ret = perf_event_set_output(event, output_event);
6069  			fdput(output);
6070  		} else {
6071  			ret = perf_event_set_output(event, NULL);
6072  		}
6073  		return ret;
6074  	}
6075  
6076  	case PERF_EVENT_IOC_SET_FILTER:
6077  		return perf_event_set_filter(event, (void __user *)arg);
6078  
6079  	case PERF_EVENT_IOC_SET_BPF:
6080  	{
6081  		struct bpf_prog *prog;
6082  		int err;
6083  
6084  		prog = bpf_prog_get(arg);
6085  		if (IS_ERR(prog))
6086  			return PTR_ERR(prog);
6087  
6088  		err = perf_event_set_bpf_prog(event, prog, 0);
6089  		if (err) {
6090  			bpf_prog_put(prog);
6091  			return err;
6092  		}
6093  
6094  		return 0;
6095  	}
6096  
6097  	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6098  		struct perf_buffer *rb;
6099  
6100  		rcu_read_lock();
6101  		rb = rcu_dereference(event->rb);
6102  		if (!rb || !rb->nr_pages) {
6103  			rcu_read_unlock();
6104  			return -EINVAL;
6105  		}
6106  		rb_toggle_paused(rb, !!arg);
6107  		rcu_read_unlock();
6108  		return 0;
6109  	}
6110  
6111  	case PERF_EVENT_IOC_QUERY_BPF:
6112  		return perf_event_query_prog_array(event, (void __user *)arg);
6113  
6114  	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6115  		struct perf_event_attr new_attr;
6116  		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6117  					 &new_attr);
6118  
6119  		if (err)
6120  			return err;
6121  
6122  		return perf_event_modify_attr(event,  &new_attr);
6123  	}
6124  	default:
6125  		return -ENOTTY;
6126  	}
6127  
6128  	if (flags & PERF_IOC_FLAG_GROUP)
6129  		perf_event_for_each(event, func);
6130  	else
6131  		perf_event_for_each_child(event, func);
6132  
6133  	return 0;
6134  }
6135  
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6136  static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6137  {
6138  	struct perf_event *event = file->private_data;
6139  	struct perf_event_context *ctx;
6140  	long ret;
6141  
6142  	/* Treat ioctl like writes as it is likely a mutating operation. */
6143  	ret = security_perf_event_write(event);
6144  	if (ret)
6145  		return ret;
6146  
6147  	ctx = perf_event_ctx_lock(event);
6148  	ret = _perf_ioctl(event, cmd, arg);
6149  	perf_event_ctx_unlock(event, ctx);
6150  
6151  	return ret;
6152  }
6153  
6154  #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6155  static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6156  				unsigned long arg)
6157  {
6158  	switch (_IOC_NR(cmd)) {
6159  	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6160  	case _IOC_NR(PERF_EVENT_IOC_ID):
6161  	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6162  	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6163  		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6164  		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6165  			cmd &= ~IOCSIZE_MASK;
6166  			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6167  		}
6168  		break;
6169  	}
6170  	return perf_ioctl(file, cmd, arg);
6171  }
6172  #else
6173  # define perf_compat_ioctl NULL
6174  #endif
6175  
perf_event_task_enable(void)6176  int perf_event_task_enable(void)
6177  {
6178  	struct perf_event_context *ctx;
6179  	struct perf_event *event;
6180  
6181  	mutex_lock(&current->perf_event_mutex);
6182  	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6183  		ctx = perf_event_ctx_lock(event);
6184  		perf_event_for_each_child(event, _perf_event_enable);
6185  		perf_event_ctx_unlock(event, ctx);
6186  	}
6187  	mutex_unlock(&current->perf_event_mutex);
6188  
6189  	return 0;
6190  }
6191  
perf_event_task_disable(void)6192  int perf_event_task_disable(void)
6193  {
6194  	struct perf_event_context *ctx;
6195  	struct perf_event *event;
6196  
6197  	mutex_lock(&current->perf_event_mutex);
6198  	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6199  		ctx = perf_event_ctx_lock(event);
6200  		perf_event_for_each_child(event, _perf_event_disable);
6201  		perf_event_ctx_unlock(event, ctx);
6202  	}
6203  	mutex_unlock(&current->perf_event_mutex);
6204  
6205  	return 0;
6206  }
6207  
perf_event_index(struct perf_event * event)6208  static int perf_event_index(struct perf_event *event)
6209  {
6210  	if (event->hw.state & PERF_HES_STOPPED)
6211  		return 0;
6212  
6213  	if (event->state != PERF_EVENT_STATE_ACTIVE)
6214  		return 0;
6215  
6216  	return event->pmu->event_idx(event);
6217  }
6218  
perf_event_init_userpage(struct perf_event * event)6219  static void perf_event_init_userpage(struct perf_event *event)
6220  {
6221  	struct perf_event_mmap_page *userpg;
6222  	struct perf_buffer *rb;
6223  
6224  	rcu_read_lock();
6225  	rb = rcu_dereference(event->rb);
6226  	if (!rb)
6227  		goto unlock;
6228  
6229  	userpg = rb->user_page;
6230  
6231  	/* Allow new userspace to detect that bit 0 is deprecated */
6232  	userpg->cap_bit0_is_deprecated = 1;
6233  	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6234  	userpg->data_offset = PAGE_SIZE;
6235  	userpg->data_size = perf_data_size(rb);
6236  
6237  unlock:
6238  	rcu_read_unlock();
6239  }
6240  
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6241  void __weak arch_perf_update_userpage(
6242  	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6243  {
6244  }
6245  
6246  /*
6247   * Callers need to ensure there can be no nesting of this function, otherwise
6248   * the seqlock logic goes bad. We can not serialize this because the arch
6249   * code calls this from NMI context.
6250   */
perf_event_update_userpage(struct perf_event * event)6251  void perf_event_update_userpage(struct perf_event *event)
6252  {
6253  	struct perf_event_mmap_page *userpg;
6254  	struct perf_buffer *rb;
6255  	u64 enabled, running, now;
6256  
6257  	rcu_read_lock();
6258  	rb = rcu_dereference(event->rb);
6259  	if (!rb)
6260  		goto unlock;
6261  
6262  	/*
6263  	 * compute total_time_enabled, total_time_running
6264  	 * based on snapshot values taken when the event
6265  	 * was last scheduled in.
6266  	 *
6267  	 * we cannot simply called update_context_time()
6268  	 * because of locking issue as we can be called in
6269  	 * NMI context
6270  	 */
6271  	calc_timer_values(event, &now, &enabled, &running);
6272  
6273  	userpg = rb->user_page;
6274  	/*
6275  	 * Disable preemption to guarantee consistent time stamps are stored to
6276  	 * the user page.
6277  	 */
6278  	preempt_disable();
6279  	++userpg->lock;
6280  	barrier();
6281  	userpg->index = perf_event_index(event);
6282  	userpg->offset = perf_event_count(event, false);
6283  	if (userpg->index)
6284  		userpg->offset -= local64_read(&event->hw.prev_count);
6285  
6286  	userpg->time_enabled = enabled +
6287  			atomic64_read(&event->child_total_time_enabled);
6288  
6289  	userpg->time_running = running +
6290  			atomic64_read(&event->child_total_time_running);
6291  
6292  	arch_perf_update_userpage(event, userpg, now);
6293  
6294  	barrier();
6295  	++userpg->lock;
6296  	preempt_enable();
6297  unlock:
6298  	rcu_read_unlock();
6299  }
6300  EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6301  
perf_mmap_fault(struct vm_fault * vmf)6302  static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6303  {
6304  	struct perf_event *event = vmf->vma->vm_file->private_data;
6305  	struct perf_buffer *rb;
6306  	vm_fault_t ret = VM_FAULT_SIGBUS;
6307  
6308  	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6309  		if (vmf->pgoff == 0)
6310  			ret = 0;
6311  		return ret;
6312  	}
6313  
6314  	rcu_read_lock();
6315  	rb = rcu_dereference(event->rb);
6316  	if (!rb)
6317  		goto unlock;
6318  
6319  	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6320  		goto unlock;
6321  
6322  	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6323  	if (!vmf->page)
6324  		goto unlock;
6325  
6326  	get_page(vmf->page);
6327  	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6328  	vmf->page->index   = vmf->pgoff;
6329  
6330  	ret = 0;
6331  unlock:
6332  	rcu_read_unlock();
6333  
6334  	return ret;
6335  }
6336  
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6337  static void ring_buffer_attach(struct perf_event *event,
6338  			       struct perf_buffer *rb)
6339  {
6340  	struct perf_buffer *old_rb = NULL;
6341  	unsigned long flags;
6342  
6343  	WARN_ON_ONCE(event->parent);
6344  
6345  	if (event->rb) {
6346  		/*
6347  		 * Should be impossible, we set this when removing
6348  		 * event->rb_entry and wait/clear when adding event->rb_entry.
6349  		 */
6350  		WARN_ON_ONCE(event->rcu_pending);
6351  
6352  		old_rb = event->rb;
6353  		spin_lock_irqsave(&old_rb->event_lock, flags);
6354  		list_del_rcu(&event->rb_entry);
6355  		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6356  
6357  		event->rcu_batches = get_state_synchronize_rcu();
6358  		event->rcu_pending = 1;
6359  	}
6360  
6361  	if (rb) {
6362  		if (event->rcu_pending) {
6363  			cond_synchronize_rcu(event->rcu_batches);
6364  			event->rcu_pending = 0;
6365  		}
6366  
6367  		spin_lock_irqsave(&rb->event_lock, flags);
6368  		list_add_rcu(&event->rb_entry, &rb->event_list);
6369  		spin_unlock_irqrestore(&rb->event_lock, flags);
6370  	}
6371  
6372  	/*
6373  	 * Avoid racing with perf_mmap_close(AUX): stop the event
6374  	 * before swizzling the event::rb pointer; if it's getting
6375  	 * unmapped, its aux_mmap_count will be 0 and it won't
6376  	 * restart. See the comment in __perf_pmu_output_stop().
6377  	 *
6378  	 * Data will inevitably be lost when set_output is done in
6379  	 * mid-air, but then again, whoever does it like this is
6380  	 * not in for the data anyway.
6381  	 */
6382  	if (has_aux(event))
6383  		perf_event_stop(event, 0);
6384  
6385  	rcu_assign_pointer(event->rb, rb);
6386  
6387  	if (old_rb) {
6388  		ring_buffer_put(old_rb);
6389  		/*
6390  		 * Since we detached before setting the new rb, so that we
6391  		 * could attach the new rb, we could have missed a wakeup.
6392  		 * Provide it now.
6393  		 */
6394  		wake_up_all(&event->waitq);
6395  	}
6396  }
6397  
ring_buffer_wakeup(struct perf_event * event)6398  static void ring_buffer_wakeup(struct perf_event *event)
6399  {
6400  	struct perf_buffer *rb;
6401  
6402  	if (event->parent)
6403  		event = event->parent;
6404  
6405  	rcu_read_lock();
6406  	rb = rcu_dereference(event->rb);
6407  	if (rb) {
6408  		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6409  			wake_up_all(&event->waitq);
6410  	}
6411  	rcu_read_unlock();
6412  }
6413  
ring_buffer_get(struct perf_event * event)6414  struct perf_buffer *ring_buffer_get(struct perf_event *event)
6415  {
6416  	struct perf_buffer *rb;
6417  
6418  	if (event->parent)
6419  		event = event->parent;
6420  
6421  	rcu_read_lock();
6422  	rb = rcu_dereference(event->rb);
6423  	if (rb) {
6424  		if (!refcount_inc_not_zero(&rb->refcount))
6425  			rb = NULL;
6426  	}
6427  	rcu_read_unlock();
6428  
6429  	return rb;
6430  }
6431  
ring_buffer_put(struct perf_buffer * rb)6432  void ring_buffer_put(struct perf_buffer *rb)
6433  {
6434  	if (!refcount_dec_and_test(&rb->refcount))
6435  		return;
6436  
6437  	WARN_ON_ONCE(!list_empty(&rb->event_list));
6438  
6439  	call_rcu(&rb->rcu_head, rb_free_rcu);
6440  }
6441  
perf_mmap_open(struct vm_area_struct * vma)6442  static void perf_mmap_open(struct vm_area_struct *vma)
6443  {
6444  	struct perf_event *event = vma->vm_file->private_data;
6445  
6446  	atomic_inc(&event->mmap_count);
6447  	atomic_inc(&event->rb->mmap_count);
6448  
6449  	if (vma->vm_pgoff)
6450  		atomic_inc(&event->rb->aux_mmap_count);
6451  
6452  	if (event->pmu->event_mapped)
6453  		event->pmu->event_mapped(event, vma->vm_mm);
6454  }
6455  
6456  static void perf_pmu_output_stop(struct perf_event *event);
6457  
6458  /*
6459   * A buffer can be mmap()ed multiple times; either directly through the same
6460   * event, or through other events by use of perf_event_set_output().
6461   *
6462   * In order to undo the VM accounting done by perf_mmap() we need to destroy
6463   * the buffer here, where we still have a VM context. This means we need
6464   * to detach all events redirecting to us.
6465   */
perf_mmap_close(struct vm_area_struct * vma)6466  static void perf_mmap_close(struct vm_area_struct *vma)
6467  {
6468  	struct perf_event *event = vma->vm_file->private_data;
6469  	struct perf_buffer *rb = ring_buffer_get(event);
6470  	struct user_struct *mmap_user = rb->mmap_user;
6471  	int mmap_locked = rb->mmap_locked;
6472  	unsigned long size = perf_data_size(rb);
6473  	bool detach_rest = false;
6474  
6475  	if (event->pmu->event_unmapped)
6476  		event->pmu->event_unmapped(event, vma->vm_mm);
6477  
6478  	/*
6479  	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6480  	 * to avoid complications.
6481  	 */
6482  	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6483  	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6484  		/*
6485  		 * Stop all AUX events that are writing to this buffer,
6486  		 * so that we can free its AUX pages and corresponding PMU
6487  		 * data. Note that after rb::aux_mmap_count dropped to zero,
6488  		 * they won't start any more (see perf_aux_output_begin()).
6489  		 */
6490  		perf_pmu_output_stop(event);
6491  
6492  		/* now it's safe to free the pages */
6493  		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6494  		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6495  
6496  		/* this has to be the last one */
6497  		rb_free_aux(rb);
6498  		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6499  
6500  		mutex_unlock(&rb->aux_mutex);
6501  	}
6502  
6503  	if (atomic_dec_and_test(&rb->mmap_count))
6504  		detach_rest = true;
6505  
6506  	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6507  		goto out_put;
6508  
6509  	ring_buffer_attach(event, NULL);
6510  	mutex_unlock(&event->mmap_mutex);
6511  
6512  	/* If there's still other mmap()s of this buffer, we're done. */
6513  	if (!detach_rest)
6514  		goto out_put;
6515  
6516  	/*
6517  	 * No other mmap()s, detach from all other events that might redirect
6518  	 * into the now unreachable buffer. Somewhat complicated by the
6519  	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6520  	 */
6521  again:
6522  	rcu_read_lock();
6523  	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6524  		if (!atomic_long_inc_not_zero(&event->refcount)) {
6525  			/*
6526  			 * This event is en-route to free_event() which will
6527  			 * detach it and remove it from the list.
6528  			 */
6529  			continue;
6530  		}
6531  		rcu_read_unlock();
6532  
6533  		mutex_lock(&event->mmap_mutex);
6534  		/*
6535  		 * Check we didn't race with perf_event_set_output() which can
6536  		 * swizzle the rb from under us while we were waiting to
6537  		 * acquire mmap_mutex.
6538  		 *
6539  		 * If we find a different rb; ignore this event, a next
6540  		 * iteration will no longer find it on the list. We have to
6541  		 * still restart the iteration to make sure we're not now
6542  		 * iterating the wrong list.
6543  		 */
6544  		if (event->rb == rb)
6545  			ring_buffer_attach(event, NULL);
6546  
6547  		mutex_unlock(&event->mmap_mutex);
6548  		put_event(event);
6549  
6550  		/*
6551  		 * Restart the iteration; either we're on the wrong list or
6552  		 * destroyed its integrity by doing a deletion.
6553  		 */
6554  		goto again;
6555  	}
6556  	rcu_read_unlock();
6557  
6558  	/*
6559  	 * It could be there's still a few 0-ref events on the list; they'll
6560  	 * get cleaned up by free_event() -- they'll also still have their
6561  	 * ref on the rb and will free it whenever they are done with it.
6562  	 *
6563  	 * Aside from that, this buffer is 'fully' detached and unmapped,
6564  	 * undo the VM accounting.
6565  	 */
6566  
6567  	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6568  			&mmap_user->locked_vm);
6569  	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6570  	free_uid(mmap_user);
6571  
6572  out_put:
6573  	ring_buffer_put(rb); /* could be last */
6574  }
6575  
6576  static const struct vm_operations_struct perf_mmap_vmops = {
6577  	.open		= perf_mmap_open,
6578  	.close		= perf_mmap_close, /* non mergeable */
6579  	.fault		= perf_mmap_fault,
6580  	.page_mkwrite	= perf_mmap_fault,
6581  };
6582  
perf_mmap(struct file * file,struct vm_area_struct * vma)6583  static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6584  {
6585  	struct perf_event *event = file->private_data;
6586  	unsigned long user_locked, user_lock_limit;
6587  	struct user_struct *user = current_user();
6588  	struct mutex *aux_mutex = NULL;
6589  	struct perf_buffer *rb = NULL;
6590  	unsigned long locked, lock_limit;
6591  	unsigned long vma_size;
6592  	unsigned long nr_pages;
6593  	long user_extra = 0, extra = 0;
6594  	int ret = 0, flags = 0;
6595  
6596  	/*
6597  	 * Don't allow mmap() of inherited per-task counters. This would
6598  	 * create a performance issue due to all children writing to the
6599  	 * same rb.
6600  	 */
6601  	if (event->cpu == -1 && event->attr.inherit)
6602  		return -EINVAL;
6603  
6604  	if (!(vma->vm_flags & VM_SHARED))
6605  		return -EINVAL;
6606  
6607  	ret = security_perf_event_read(event);
6608  	if (ret)
6609  		return ret;
6610  
6611  	vma_size = vma->vm_end - vma->vm_start;
6612  
6613  	if (vma->vm_pgoff == 0) {
6614  		nr_pages = (vma_size / PAGE_SIZE) - 1;
6615  	} else {
6616  		/*
6617  		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6618  		 * mapped, all subsequent mappings should have the same size
6619  		 * and offset. Must be above the normal perf buffer.
6620  		 */
6621  		u64 aux_offset, aux_size;
6622  
6623  		if (!event->rb)
6624  			return -EINVAL;
6625  
6626  		nr_pages = vma_size / PAGE_SIZE;
6627  		if (nr_pages > INT_MAX)
6628  			return -ENOMEM;
6629  
6630  		mutex_lock(&event->mmap_mutex);
6631  		ret = -EINVAL;
6632  
6633  		rb = event->rb;
6634  		if (!rb)
6635  			goto aux_unlock;
6636  
6637  		aux_mutex = &rb->aux_mutex;
6638  		mutex_lock(aux_mutex);
6639  
6640  		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6641  		aux_size = READ_ONCE(rb->user_page->aux_size);
6642  
6643  		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6644  			goto aux_unlock;
6645  
6646  		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6647  			goto aux_unlock;
6648  
6649  		/* already mapped with a different offset */
6650  		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6651  			goto aux_unlock;
6652  
6653  		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6654  			goto aux_unlock;
6655  
6656  		/* already mapped with a different size */
6657  		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6658  			goto aux_unlock;
6659  
6660  		if (!is_power_of_2(nr_pages))
6661  			goto aux_unlock;
6662  
6663  		if (!atomic_inc_not_zero(&rb->mmap_count))
6664  			goto aux_unlock;
6665  
6666  		if (rb_has_aux(rb)) {
6667  			atomic_inc(&rb->aux_mmap_count);
6668  			ret = 0;
6669  			goto unlock;
6670  		}
6671  
6672  		atomic_set(&rb->aux_mmap_count, 1);
6673  		user_extra = nr_pages;
6674  
6675  		goto accounting;
6676  	}
6677  
6678  	/*
6679  	 * If we have rb pages ensure they're a power-of-two number, so we
6680  	 * can do bitmasks instead of modulo.
6681  	 */
6682  	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6683  		return -EINVAL;
6684  
6685  	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6686  		return -EINVAL;
6687  
6688  	WARN_ON_ONCE(event->ctx->parent_ctx);
6689  again:
6690  	mutex_lock(&event->mmap_mutex);
6691  	if (event->rb) {
6692  		if (data_page_nr(event->rb) != nr_pages) {
6693  			ret = -EINVAL;
6694  			goto unlock;
6695  		}
6696  
6697  		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6698  			/*
6699  			 * Raced against perf_mmap_close(); remove the
6700  			 * event and try again.
6701  			 */
6702  			ring_buffer_attach(event, NULL);
6703  			mutex_unlock(&event->mmap_mutex);
6704  			goto again;
6705  		}
6706  
6707  		goto unlock;
6708  	}
6709  
6710  	user_extra = nr_pages + 1;
6711  
6712  accounting:
6713  	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6714  
6715  	/*
6716  	 * Increase the limit linearly with more CPUs:
6717  	 */
6718  	user_lock_limit *= num_online_cpus();
6719  
6720  	user_locked = atomic_long_read(&user->locked_vm);
6721  
6722  	/*
6723  	 * sysctl_perf_event_mlock may have changed, so that
6724  	 *     user->locked_vm > user_lock_limit
6725  	 */
6726  	if (user_locked > user_lock_limit)
6727  		user_locked = user_lock_limit;
6728  	user_locked += user_extra;
6729  
6730  	if (user_locked > user_lock_limit) {
6731  		/*
6732  		 * charge locked_vm until it hits user_lock_limit;
6733  		 * charge the rest from pinned_vm
6734  		 */
6735  		extra = user_locked - user_lock_limit;
6736  		user_extra -= extra;
6737  	}
6738  
6739  	lock_limit = rlimit(RLIMIT_MEMLOCK);
6740  	lock_limit >>= PAGE_SHIFT;
6741  	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6742  
6743  	if ((locked > lock_limit) && perf_is_paranoid() &&
6744  		!capable(CAP_IPC_LOCK)) {
6745  		ret = -EPERM;
6746  		goto unlock;
6747  	}
6748  
6749  	WARN_ON(!rb && event->rb);
6750  
6751  	if (vma->vm_flags & VM_WRITE)
6752  		flags |= RING_BUFFER_WRITABLE;
6753  
6754  	if (!rb) {
6755  		rb = rb_alloc(nr_pages,
6756  			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6757  			      event->cpu, flags);
6758  
6759  		if (!rb) {
6760  			ret = -ENOMEM;
6761  			goto unlock;
6762  		}
6763  
6764  		atomic_set(&rb->mmap_count, 1);
6765  		rb->mmap_user = get_current_user();
6766  		rb->mmap_locked = extra;
6767  
6768  		ring_buffer_attach(event, rb);
6769  
6770  		perf_event_update_time(event);
6771  		perf_event_init_userpage(event);
6772  		perf_event_update_userpage(event);
6773  	} else {
6774  		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6775  				   event->attr.aux_watermark, flags);
6776  		if (!ret)
6777  			rb->aux_mmap_locked = extra;
6778  	}
6779  
6780  unlock:
6781  	if (!ret) {
6782  		atomic_long_add(user_extra, &user->locked_vm);
6783  		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6784  
6785  		atomic_inc(&event->mmap_count);
6786  	} else if (rb) {
6787  		atomic_dec(&rb->mmap_count);
6788  	}
6789  aux_unlock:
6790  	if (aux_mutex)
6791  		mutex_unlock(aux_mutex);
6792  	mutex_unlock(&event->mmap_mutex);
6793  
6794  	/*
6795  	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6796  	 * vma.
6797  	 */
6798  	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6799  	vma->vm_ops = &perf_mmap_vmops;
6800  
6801  	if (event->pmu->event_mapped)
6802  		event->pmu->event_mapped(event, vma->vm_mm);
6803  
6804  	return ret;
6805  }
6806  
perf_fasync(int fd,struct file * filp,int on)6807  static int perf_fasync(int fd, struct file *filp, int on)
6808  {
6809  	struct inode *inode = file_inode(filp);
6810  	struct perf_event *event = filp->private_data;
6811  	int retval;
6812  
6813  	inode_lock(inode);
6814  	retval = fasync_helper(fd, filp, on, &event->fasync);
6815  	inode_unlock(inode);
6816  
6817  	if (retval < 0)
6818  		return retval;
6819  
6820  	return 0;
6821  }
6822  
6823  static const struct file_operations perf_fops = {
6824  	.release		= perf_release,
6825  	.read			= perf_read,
6826  	.poll			= perf_poll,
6827  	.unlocked_ioctl		= perf_ioctl,
6828  	.compat_ioctl		= perf_compat_ioctl,
6829  	.mmap			= perf_mmap,
6830  	.fasync			= perf_fasync,
6831  };
6832  
6833  /*
6834   * Perf event wakeup
6835   *
6836   * If there's data, ensure we set the poll() state and publish everything
6837   * to user-space before waking everybody up.
6838   */
6839  
perf_event_wakeup(struct perf_event * event)6840  void perf_event_wakeup(struct perf_event *event)
6841  {
6842  	ring_buffer_wakeup(event);
6843  
6844  	if (event->pending_kill) {
6845  		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6846  		event->pending_kill = 0;
6847  	}
6848  }
6849  
perf_sigtrap(struct perf_event * event)6850  static void perf_sigtrap(struct perf_event *event)
6851  {
6852  	/*
6853  	 * We'd expect this to only occur if the irq_work is delayed and either
6854  	 * ctx->task or current has changed in the meantime. This can be the
6855  	 * case on architectures that do not implement arch_irq_work_raise().
6856  	 */
6857  	if (WARN_ON_ONCE(event->ctx->task != current))
6858  		return;
6859  
6860  	/*
6861  	 * Both perf_pending_task() and perf_pending_irq() can race with the
6862  	 * task exiting.
6863  	 */
6864  	if (current->flags & PF_EXITING)
6865  		return;
6866  
6867  	send_sig_perf((void __user *)event->pending_addr,
6868  		      event->orig_type, event->attr.sig_data);
6869  }
6870  
6871  /*
6872   * Deliver the pending work in-event-context or follow the context.
6873   */
__perf_pending_disable(struct perf_event * event)6874  static void __perf_pending_disable(struct perf_event *event)
6875  {
6876  	int cpu = READ_ONCE(event->oncpu);
6877  
6878  	/*
6879  	 * If the event isn't running; we done. event_sched_out() will have
6880  	 * taken care of things.
6881  	 */
6882  	if (cpu < 0)
6883  		return;
6884  
6885  	/*
6886  	 * Yay, we hit home and are in the context of the event.
6887  	 */
6888  	if (cpu == smp_processor_id()) {
6889  		if (event->pending_disable) {
6890  			event->pending_disable = 0;
6891  			perf_event_disable_local(event);
6892  		}
6893  		return;
6894  	}
6895  
6896  	/*
6897  	 *  CPU-A			CPU-B
6898  	 *
6899  	 *  perf_event_disable_inatomic()
6900  	 *    @pending_disable = CPU-A;
6901  	 *    irq_work_queue();
6902  	 *
6903  	 *  sched-out
6904  	 *    @pending_disable = -1;
6905  	 *
6906  	 *				sched-in
6907  	 *				perf_event_disable_inatomic()
6908  	 *				  @pending_disable = CPU-B;
6909  	 *				  irq_work_queue(); // FAILS
6910  	 *
6911  	 *  irq_work_run()
6912  	 *    perf_pending_disable()
6913  	 *
6914  	 * But the event runs on CPU-B and wants disabling there.
6915  	 */
6916  	irq_work_queue_on(&event->pending_disable_irq, cpu);
6917  }
6918  
perf_pending_disable(struct irq_work * entry)6919  static void perf_pending_disable(struct irq_work *entry)
6920  {
6921  	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
6922  	int rctx;
6923  
6924  	/*
6925  	 * If we 'fail' here, that's OK, it means recursion is already disabled
6926  	 * and we won't recurse 'further'.
6927  	 */
6928  	rctx = perf_swevent_get_recursion_context();
6929  	__perf_pending_disable(event);
6930  	if (rctx >= 0)
6931  		perf_swevent_put_recursion_context(rctx);
6932  }
6933  
perf_pending_irq(struct irq_work * entry)6934  static void perf_pending_irq(struct irq_work *entry)
6935  {
6936  	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6937  	int rctx;
6938  
6939  	/*
6940  	 * If we 'fail' here, that's OK, it means recursion is already disabled
6941  	 * and we won't recurse 'further'.
6942  	 */
6943  	rctx = perf_swevent_get_recursion_context();
6944  
6945  	/*
6946  	 * The wakeup isn't bound to the context of the event -- it can happen
6947  	 * irrespective of where the event is.
6948  	 */
6949  	if (event->pending_wakeup) {
6950  		event->pending_wakeup = 0;
6951  		perf_event_wakeup(event);
6952  	}
6953  
6954  	if (rctx >= 0)
6955  		perf_swevent_put_recursion_context(rctx);
6956  }
6957  
perf_pending_task(struct callback_head * head)6958  static void perf_pending_task(struct callback_head *head)
6959  {
6960  	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6961  	int rctx;
6962  
6963  	/*
6964  	 * All accesses to the event must belong to the same implicit RCU read-side
6965  	 * critical section as the ->pending_work reset. See comment in
6966  	 * perf_pending_task_sync().
6967  	 */
6968  	rcu_read_lock();
6969  	/*
6970  	 * If we 'fail' here, that's OK, it means recursion is already disabled
6971  	 * and we won't recurse 'further'.
6972  	 */
6973  	rctx = perf_swevent_get_recursion_context();
6974  
6975  	if (event->pending_work) {
6976  		event->pending_work = 0;
6977  		perf_sigtrap(event);
6978  		local_dec(&event->ctx->nr_no_switch_fast);
6979  		rcuwait_wake_up(&event->pending_work_wait);
6980  	}
6981  	rcu_read_unlock();
6982  
6983  	if (rctx >= 0)
6984  		perf_swevent_put_recursion_context(rctx);
6985  }
6986  
6987  #ifdef CONFIG_GUEST_PERF_EVENTS
6988  struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6989  
6990  DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6991  DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6992  DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6993  
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6994  void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6995  {
6996  	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6997  		return;
6998  
6999  	rcu_assign_pointer(perf_guest_cbs, cbs);
7000  	static_call_update(__perf_guest_state, cbs->state);
7001  	static_call_update(__perf_guest_get_ip, cbs->get_ip);
7002  
7003  	/* Implementing ->handle_intel_pt_intr is optional. */
7004  	if (cbs->handle_intel_pt_intr)
7005  		static_call_update(__perf_guest_handle_intel_pt_intr,
7006  				   cbs->handle_intel_pt_intr);
7007  }
7008  EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7009  
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7010  void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7011  {
7012  	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7013  		return;
7014  
7015  	rcu_assign_pointer(perf_guest_cbs, NULL);
7016  	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7017  	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7018  	static_call_update(__perf_guest_handle_intel_pt_intr,
7019  			   (void *)&__static_call_return0);
7020  	synchronize_rcu();
7021  }
7022  EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7023  #endif
7024  
7025  static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)7026  perf_output_sample_regs(struct perf_output_handle *handle,
7027  			struct pt_regs *regs, u64 mask)
7028  {
7029  	int bit;
7030  	DECLARE_BITMAP(_mask, 64);
7031  
7032  	bitmap_from_u64(_mask, mask);
7033  	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7034  		u64 val;
7035  
7036  		val = perf_reg_value(regs, bit);
7037  		perf_output_put(handle, val);
7038  	}
7039  }
7040  
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)7041  static void perf_sample_regs_user(struct perf_regs *regs_user,
7042  				  struct pt_regs *regs)
7043  {
7044  	if (user_mode(regs)) {
7045  		regs_user->abi = perf_reg_abi(current);
7046  		regs_user->regs = regs;
7047  	} else if (!(current->flags & PF_KTHREAD)) {
7048  		perf_get_regs_user(regs_user, regs);
7049  	} else {
7050  		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7051  		regs_user->regs = NULL;
7052  	}
7053  }
7054  
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)7055  static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7056  				  struct pt_regs *regs)
7057  {
7058  	regs_intr->regs = regs;
7059  	regs_intr->abi  = perf_reg_abi(current);
7060  }
7061  
7062  
7063  /*
7064   * Get remaining task size from user stack pointer.
7065   *
7066   * It'd be better to take stack vma map and limit this more
7067   * precisely, but there's no way to get it safely under interrupt,
7068   * so using TASK_SIZE as limit.
7069   */
perf_ustack_task_size(struct pt_regs * regs)7070  static u64 perf_ustack_task_size(struct pt_regs *regs)
7071  {
7072  	unsigned long addr = perf_user_stack_pointer(regs);
7073  
7074  	if (!addr || addr >= TASK_SIZE)
7075  		return 0;
7076  
7077  	return TASK_SIZE - addr;
7078  }
7079  
7080  static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)7081  perf_sample_ustack_size(u16 stack_size, u16 header_size,
7082  			struct pt_regs *regs)
7083  {
7084  	u64 task_size;
7085  
7086  	/* No regs, no stack pointer, no dump. */
7087  	if (!regs)
7088  		return 0;
7089  
7090  	/*
7091  	 * Check if we fit in with the requested stack size into the:
7092  	 * - TASK_SIZE
7093  	 *   If we don't, we limit the size to the TASK_SIZE.
7094  	 *
7095  	 * - remaining sample size
7096  	 *   If we don't, we customize the stack size to
7097  	 *   fit in to the remaining sample size.
7098  	 */
7099  
7100  	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7101  	stack_size = min(stack_size, (u16) task_size);
7102  
7103  	/* Current header size plus static size and dynamic size. */
7104  	header_size += 2 * sizeof(u64);
7105  
7106  	/* Do we fit in with the current stack dump size? */
7107  	if ((u16) (header_size + stack_size) < header_size) {
7108  		/*
7109  		 * If we overflow the maximum size for the sample,
7110  		 * we customize the stack dump size to fit in.
7111  		 */
7112  		stack_size = USHRT_MAX - header_size - sizeof(u64);
7113  		stack_size = round_up(stack_size, sizeof(u64));
7114  	}
7115  
7116  	return stack_size;
7117  }
7118  
7119  static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)7120  perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7121  			  struct pt_regs *regs)
7122  {
7123  	/* Case of a kernel thread, nothing to dump */
7124  	if (!regs) {
7125  		u64 size = 0;
7126  		perf_output_put(handle, size);
7127  	} else {
7128  		unsigned long sp;
7129  		unsigned int rem;
7130  		u64 dyn_size;
7131  
7132  		/*
7133  		 * We dump:
7134  		 * static size
7135  		 *   - the size requested by user or the best one we can fit
7136  		 *     in to the sample max size
7137  		 * data
7138  		 *   - user stack dump data
7139  		 * dynamic size
7140  		 *   - the actual dumped size
7141  		 */
7142  
7143  		/* Static size. */
7144  		perf_output_put(handle, dump_size);
7145  
7146  		/* Data. */
7147  		sp = perf_user_stack_pointer(regs);
7148  		rem = __output_copy_user(handle, (void *) sp, dump_size);
7149  		dyn_size = dump_size - rem;
7150  
7151  		perf_output_skip(handle, rem);
7152  
7153  		/* Dynamic size. */
7154  		perf_output_put(handle, dyn_size);
7155  	}
7156  }
7157  
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)7158  static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7159  					  struct perf_sample_data *data,
7160  					  size_t size)
7161  {
7162  	struct perf_event *sampler = event->aux_event;
7163  	struct perf_buffer *rb;
7164  
7165  	data->aux_size = 0;
7166  
7167  	if (!sampler)
7168  		goto out;
7169  
7170  	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7171  		goto out;
7172  
7173  	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7174  		goto out;
7175  
7176  	rb = ring_buffer_get(sampler);
7177  	if (!rb)
7178  		goto out;
7179  
7180  	/*
7181  	 * If this is an NMI hit inside sampling code, don't take
7182  	 * the sample. See also perf_aux_sample_output().
7183  	 */
7184  	if (READ_ONCE(rb->aux_in_sampling)) {
7185  		data->aux_size = 0;
7186  	} else {
7187  		size = min_t(size_t, size, perf_aux_size(rb));
7188  		data->aux_size = ALIGN(size, sizeof(u64));
7189  	}
7190  	ring_buffer_put(rb);
7191  
7192  out:
7193  	return data->aux_size;
7194  }
7195  
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7196  static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7197                                   struct perf_event *event,
7198                                   struct perf_output_handle *handle,
7199                                   unsigned long size)
7200  {
7201  	unsigned long flags;
7202  	long ret;
7203  
7204  	/*
7205  	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7206  	 * paths. If we start calling them in NMI context, they may race with
7207  	 * the IRQ ones, that is, for example, re-starting an event that's just
7208  	 * been stopped, which is why we're using a separate callback that
7209  	 * doesn't change the event state.
7210  	 *
7211  	 * IRQs need to be disabled to prevent IPIs from racing with us.
7212  	 */
7213  	local_irq_save(flags);
7214  	/*
7215  	 * Guard against NMI hits inside the critical section;
7216  	 * see also perf_prepare_sample_aux().
7217  	 */
7218  	WRITE_ONCE(rb->aux_in_sampling, 1);
7219  	barrier();
7220  
7221  	ret = event->pmu->snapshot_aux(event, handle, size);
7222  
7223  	barrier();
7224  	WRITE_ONCE(rb->aux_in_sampling, 0);
7225  	local_irq_restore(flags);
7226  
7227  	return ret;
7228  }
7229  
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7230  static void perf_aux_sample_output(struct perf_event *event,
7231  				   struct perf_output_handle *handle,
7232  				   struct perf_sample_data *data)
7233  {
7234  	struct perf_event *sampler = event->aux_event;
7235  	struct perf_buffer *rb;
7236  	unsigned long pad;
7237  	long size;
7238  
7239  	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7240  		return;
7241  
7242  	rb = ring_buffer_get(sampler);
7243  	if (!rb)
7244  		return;
7245  
7246  	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7247  
7248  	/*
7249  	 * An error here means that perf_output_copy() failed (returned a
7250  	 * non-zero surplus that it didn't copy), which in its current
7251  	 * enlightened implementation is not possible. If that changes, we'd
7252  	 * like to know.
7253  	 */
7254  	if (WARN_ON_ONCE(size < 0))
7255  		goto out_put;
7256  
7257  	/*
7258  	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7259  	 * perf_prepare_sample_aux(), so should not be more than that.
7260  	 */
7261  	pad = data->aux_size - size;
7262  	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7263  		pad = 8;
7264  
7265  	if (pad) {
7266  		u64 zero = 0;
7267  		perf_output_copy(handle, &zero, pad);
7268  	}
7269  
7270  out_put:
7271  	ring_buffer_put(rb);
7272  }
7273  
7274  /*
7275   * A set of common sample data types saved even for non-sample records
7276   * when event->attr.sample_id_all is set.
7277   */
7278  #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7279  			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7280  			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7281  
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7282  static void __perf_event_header__init_id(struct perf_sample_data *data,
7283  					 struct perf_event *event,
7284  					 u64 sample_type)
7285  {
7286  	data->type = event->attr.sample_type;
7287  	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7288  
7289  	if (sample_type & PERF_SAMPLE_TID) {
7290  		/* namespace issues */
7291  		data->tid_entry.pid = perf_event_pid(event, current);
7292  		data->tid_entry.tid = perf_event_tid(event, current);
7293  	}
7294  
7295  	if (sample_type & PERF_SAMPLE_TIME)
7296  		data->time = perf_event_clock(event);
7297  
7298  	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7299  		data->id = primary_event_id(event);
7300  
7301  	if (sample_type & PERF_SAMPLE_STREAM_ID)
7302  		data->stream_id = event->id;
7303  
7304  	if (sample_type & PERF_SAMPLE_CPU) {
7305  		data->cpu_entry.cpu	 = raw_smp_processor_id();
7306  		data->cpu_entry.reserved = 0;
7307  	}
7308  }
7309  
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7310  void perf_event_header__init_id(struct perf_event_header *header,
7311  				struct perf_sample_data *data,
7312  				struct perf_event *event)
7313  {
7314  	if (event->attr.sample_id_all) {
7315  		header->size += event->id_header_size;
7316  		__perf_event_header__init_id(data, event, event->attr.sample_type);
7317  	}
7318  }
7319  
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7320  static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7321  					   struct perf_sample_data *data)
7322  {
7323  	u64 sample_type = data->type;
7324  
7325  	if (sample_type & PERF_SAMPLE_TID)
7326  		perf_output_put(handle, data->tid_entry);
7327  
7328  	if (sample_type & PERF_SAMPLE_TIME)
7329  		perf_output_put(handle, data->time);
7330  
7331  	if (sample_type & PERF_SAMPLE_ID)
7332  		perf_output_put(handle, data->id);
7333  
7334  	if (sample_type & PERF_SAMPLE_STREAM_ID)
7335  		perf_output_put(handle, data->stream_id);
7336  
7337  	if (sample_type & PERF_SAMPLE_CPU)
7338  		perf_output_put(handle, data->cpu_entry);
7339  
7340  	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7341  		perf_output_put(handle, data->id);
7342  }
7343  
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7344  void perf_event__output_id_sample(struct perf_event *event,
7345  				  struct perf_output_handle *handle,
7346  				  struct perf_sample_data *sample)
7347  {
7348  	if (event->attr.sample_id_all)
7349  		__perf_event__output_id_sample(handle, sample);
7350  }
7351  
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7352  static void perf_output_read_one(struct perf_output_handle *handle,
7353  				 struct perf_event *event,
7354  				 u64 enabled, u64 running)
7355  {
7356  	u64 read_format = event->attr.read_format;
7357  	u64 values[5];
7358  	int n = 0;
7359  
7360  	values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7361  	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7362  		values[n++] = enabled +
7363  			atomic64_read(&event->child_total_time_enabled);
7364  	}
7365  	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7366  		values[n++] = running +
7367  			atomic64_read(&event->child_total_time_running);
7368  	}
7369  	if (read_format & PERF_FORMAT_ID)
7370  		values[n++] = primary_event_id(event);
7371  	if (read_format & PERF_FORMAT_LOST)
7372  		values[n++] = atomic64_read(&event->lost_samples);
7373  
7374  	__output_copy(handle, values, n * sizeof(u64));
7375  }
7376  
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7377  static void perf_output_read_group(struct perf_output_handle *handle,
7378  				   struct perf_event *event,
7379  				   u64 enabled, u64 running)
7380  {
7381  	struct perf_event *leader = event->group_leader, *sub;
7382  	u64 read_format = event->attr.read_format;
7383  	unsigned long flags;
7384  	u64 values[6];
7385  	int n = 0;
7386  	bool self = has_inherit_and_sample_read(&event->attr);
7387  
7388  	/*
7389  	 * Disabling interrupts avoids all counter scheduling
7390  	 * (context switches, timer based rotation and IPIs).
7391  	 */
7392  	local_irq_save(flags);
7393  
7394  	values[n++] = 1 + leader->nr_siblings;
7395  
7396  	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7397  		values[n++] = enabled;
7398  
7399  	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7400  		values[n++] = running;
7401  
7402  	if ((leader != event) &&
7403  	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7404  		leader->pmu->read(leader);
7405  
7406  	values[n++] = perf_event_count(leader, self);
7407  	if (read_format & PERF_FORMAT_ID)
7408  		values[n++] = primary_event_id(leader);
7409  	if (read_format & PERF_FORMAT_LOST)
7410  		values[n++] = atomic64_read(&leader->lost_samples);
7411  
7412  	__output_copy(handle, values, n * sizeof(u64));
7413  
7414  	for_each_sibling_event(sub, leader) {
7415  		n = 0;
7416  
7417  		if ((sub != event) &&
7418  		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7419  			sub->pmu->read(sub);
7420  
7421  		values[n++] = perf_event_count(sub, self);
7422  		if (read_format & PERF_FORMAT_ID)
7423  			values[n++] = primary_event_id(sub);
7424  		if (read_format & PERF_FORMAT_LOST)
7425  			values[n++] = atomic64_read(&sub->lost_samples);
7426  
7427  		__output_copy(handle, values, n * sizeof(u64));
7428  	}
7429  
7430  	local_irq_restore(flags);
7431  }
7432  
7433  #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7434  				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7435  
7436  /*
7437   * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7438   *
7439   * The problem is that its both hard and excessively expensive to iterate the
7440   * child list, not to mention that its impossible to IPI the children running
7441   * on another CPU, from interrupt/NMI context.
7442   *
7443   * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7444   * counts rather than attempting to accumulate some value across all children on
7445   * all cores.
7446   */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7447  static void perf_output_read(struct perf_output_handle *handle,
7448  			     struct perf_event *event)
7449  {
7450  	u64 enabled = 0, running = 0, now;
7451  	u64 read_format = event->attr.read_format;
7452  
7453  	/*
7454  	 * compute total_time_enabled, total_time_running
7455  	 * based on snapshot values taken when the event
7456  	 * was last scheduled in.
7457  	 *
7458  	 * we cannot simply called update_context_time()
7459  	 * because of locking issue as we are called in
7460  	 * NMI context
7461  	 */
7462  	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7463  		calc_timer_values(event, &now, &enabled, &running);
7464  
7465  	if (event->attr.read_format & PERF_FORMAT_GROUP)
7466  		perf_output_read_group(handle, event, enabled, running);
7467  	else
7468  		perf_output_read_one(handle, event, enabled, running);
7469  }
7470  
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7471  void perf_output_sample(struct perf_output_handle *handle,
7472  			struct perf_event_header *header,
7473  			struct perf_sample_data *data,
7474  			struct perf_event *event)
7475  {
7476  	u64 sample_type = data->type;
7477  
7478  	perf_output_put(handle, *header);
7479  
7480  	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7481  		perf_output_put(handle, data->id);
7482  
7483  	if (sample_type & PERF_SAMPLE_IP)
7484  		perf_output_put(handle, data->ip);
7485  
7486  	if (sample_type & PERF_SAMPLE_TID)
7487  		perf_output_put(handle, data->tid_entry);
7488  
7489  	if (sample_type & PERF_SAMPLE_TIME)
7490  		perf_output_put(handle, data->time);
7491  
7492  	if (sample_type & PERF_SAMPLE_ADDR)
7493  		perf_output_put(handle, data->addr);
7494  
7495  	if (sample_type & PERF_SAMPLE_ID)
7496  		perf_output_put(handle, data->id);
7497  
7498  	if (sample_type & PERF_SAMPLE_STREAM_ID)
7499  		perf_output_put(handle, data->stream_id);
7500  
7501  	if (sample_type & PERF_SAMPLE_CPU)
7502  		perf_output_put(handle, data->cpu_entry);
7503  
7504  	if (sample_type & PERF_SAMPLE_PERIOD)
7505  		perf_output_put(handle, data->period);
7506  
7507  	if (sample_type & PERF_SAMPLE_READ)
7508  		perf_output_read(handle, event);
7509  
7510  	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7511  		int size = 1;
7512  
7513  		size += data->callchain->nr;
7514  		size *= sizeof(u64);
7515  		__output_copy(handle, data->callchain, size);
7516  	}
7517  
7518  	if (sample_type & PERF_SAMPLE_RAW) {
7519  		struct perf_raw_record *raw = data->raw;
7520  
7521  		if (raw) {
7522  			struct perf_raw_frag *frag = &raw->frag;
7523  
7524  			perf_output_put(handle, raw->size);
7525  			do {
7526  				if (frag->copy) {
7527  					__output_custom(handle, frag->copy,
7528  							frag->data, frag->size);
7529  				} else {
7530  					__output_copy(handle, frag->data,
7531  						      frag->size);
7532  				}
7533  				if (perf_raw_frag_last(frag))
7534  					break;
7535  				frag = frag->next;
7536  			} while (1);
7537  			if (frag->pad)
7538  				__output_skip(handle, NULL, frag->pad);
7539  		} else {
7540  			struct {
7541  				u32	size;
7542  				u32	data;
7543  			} raw = {
7544  				.size = sizeof(u32),
7545  				.data = 0,
7546  			};
7547  			perf_output_put(handle, raw);
7548  		}
7549  	}
7550  
7551  	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7552  		if (data->br_stack) {
7553  			size_t size;
7554  
7555  			size = data->br_stack->nr
7556  			     * sizeof(struct perf_branch_entry);
7557  
7558  			perf_output_put(handle, data->br_stack->nr);
7559  			if (branch_sample_hw_index(event))
7560  				perf_output_put(handle, data->br_stack->hw_idx);
7561  			perf_output_copy(handle, data->br_stack->entries, size);
7562  			/*
7563  			 * Add the extension space which is appended
7564  			 * right after the struct perf_branch_stack.
7565  			 */
7566  			if (data->br_stack_cntr) {
7567  				size = data->br_stack->nr * sizeof(u64);
7568  				perf_output_copy(handle, data->br_stack_cntr, size);
7569  			}
7570  		} else {
7571  			/*
7572  			 * we always store at least the value of nr
7573  			 */
7574  			u64 nr = 0;
7575  			perf_output_put(handle, nr);
7576  		}
7577  	}
7578  
7579  	if (sample_type & PERF_SAMPLE_REGS_USER) {
7580  		u64 abi = data->regs_user.abi;
7581  
7582  		/*
7583  		 * If there are no regs to dump, notice it through
7584  		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7585  		 */
7586  		perf_output_put(handle, abi);
7587  
7588  		if (abi) {
7589  			u64 mask = event->attr.sample_regs_user;
7590  			perf_output_sample_regs(handle,
7591  						data->regs_user.regs,
7592  						mask);
7593  		}
7594  	}
7595  
7596  	if (sample_type & PERF_SAMPLE_STACK_USER) {
7597  		perf_output_sample_ustack(handle,
7598  					  data->stack_user_size,
7599  					  data->regs_user.regs);
7600  	}
7601  
7602  	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7603  		perf_output_put(handle, data->weight.full);
7604  
7605  	if (sample_type & PERF_SAMPLE_DATA_SRC)
7606  		perf_output_put(handle, data->data_src.val);
7607  
7608  	if (sample_type & PERF_SAMPLE_TRANSACTION)
7609  		perf_output_put(handle, data->txn);
7610  
7611  	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7612  		u64 abi = data->regs_intr.abi;
7613  		/*
7614  		 * If there are no regs to dump, notice it through
7615  		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7616  		 */
7617  		perf_output_put(handle, abi);
7618  
7619  		if (abi) {
7620  			u64 mask = event->attr.sample_regs_intr;
7621  
7622  			perf_output_sample_regs(handle,
7623  						data->regs_intr.regs,
7624  						mask);
7625  		}
7626  	}
7627  
7628  	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7629  		perf_output_put(handle, data->phys_addr);
7630  
7631  	if (sample_type & PERF_SAMPLE_CGROUP)
7632  		perf_output_put(handle, data->cgroup);
7633  
7634  	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7635  		perf_output_put(handle, data->data_page_size);
7636  
7637  	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7638  		perf_output_put(handle, data->code_page_size);
7639  
7640  	if (sample_type & PERF_SAMPLE_AUX) {
7641  		perf_output_put(handle, data->aux_size);
7642  
7643  		if (data->aux_size)
7644  			perf_aux_sample_output(event, handle, data);
7645  	}
7646  
7647  	if (!event->attr.watermark) {
7648  		int wakeup_events = event->attr.wakeup_events;
7649  
7650  		if (wakeup_events) {
7651  			struct perf_buffer *rb = handle->rb;
7652  			int events = local_inc_return(&rb->events);
7653  
7654  			if (events >= wakeup_events) {
7655  				local_sub(wakeup_events, &rb->events);
7656  				local_inc(&rb->wakeup);
7657  			}
7658  		}
7659  	}
7660  }
7661  
perf_virt_to_phys(u64 virt)7662  static u64 perf_virt_to_phys(u64 virt)
7663  {
7664  	u64 phys_addr = 0;
7665  
7666  	if (!virt)
7667  		return 0;
7668  
7669  	if (virt >= TASK_SIZE) {
7670  		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7671  		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7672  		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7673  			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7674  	} else {
7675  		/*
7676  		 * Walking the pages tables for user address.
7677  		 * Interrupts are disabled, so it prevents any tear down
7678  		 * of the page tables.
7679  		 * Try IRQ-safe get_user_page_fast_only first.
7680  		 * If failed, leave phys_addr as 0.
7681  		 */
7682  		if (current->mm != NULL) {
7683  			struct page *p;
7684  
7685  			pagefault_disable();
7686  			if (get_user_page_fast_only(virt, 0, &p)) {
7687  				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7688  				put_page(p);
7689  			}
7690  			pagefault_enable();
7691  		}
7692  	}
7693  
7694  	return phys_addr;
7695  }
7696  
7697  /*
7698   * Return the pagetable size of a given virtual address.
7699   */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7700  static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7701  {
7702  	u64 size = 0;
7703  
7704  #ifdef CONFIG_HAVE_GUP_FAST
7705  	pgd_t *pgdp, pgd;
7706  	p4d_t *p4dp, p4d;
7707  	pud_t *pudp, pud;
7708  	pmd_t *pmdp, pmd;
7709  	pte_t *ptep, pte;
7710  
7711  	pgdp = pgd_offset(mm, addr);
7712  	pgd = READ_ONCE(*pgdp);
7713  	if (pgd_none(pgd))
7714  		return 0;
7715  
7716  	if (pgd_leaf(pgd))
7717  		return pgd_leaf_size(pgd);
7718  
7719  	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7720  	p4d = READ_ONCE(*p4dp);
7721  	if (!p4d_present(p4d))
7722  		return 0;
7723  
7724  	if (p4d_leaf(p4d))
7725  		return p4d_leaf_size(p4d);
7726  
7727  	pudp = pud_offset_lockless(p4dp, p4d, addr);
7728  	pud = READ_ONCE(*pudp);
7729  	if (!pud_present(pud))
7730  		return 0;
7731  
7732  	if (pud_leaf(pud))
7733  		return pud_leaf_size(pud);
7734  
7735  	pmdp = pmd_offset_lockless(pudp, pud, addr);
7736  again:
7737  	pmd = pmdp_get_lockless(pmdp);
7738  	if (!pmd_present(pmd))
7739  		return 0;
7740  
7741  	if (pmd_leaf(pmd))
7742  		return pmd_leaf_size(pmd);
7743  
7744  	ptep = pte_offset_map(&pmd, addr);
7745  	if (!ptep)
7746  		goto again;
7747  
7748  	pte = ptep_get_lockless(ptep);
7749  	if (pte_present(pte))
7750  		size = __pte_leaf_size(pmd, pte);
7751  	pte_unmap(ptep);
7752  #endif /* CONFIG_HAVE_GUP_FAST */
7753  
7754  	return size;
7755  }
7756  
perf_get_page_size(unsigned long addr)7757  static u64 perf_get_page_size(unsigned long addr)
7758  {
7759  	struct mm_struct *mm;
7760  	unsigned long flags;
7761  	u64 size;
7762  
7763  	if (!addr)
7764  		return 0;
7765  
7766  	/*
7767  	 * Software page-table walkers must disable IRQs,
7768  	 * which prevents any tear down of the page tables.
7769  	 */
7770  	local_irq_save(flags);
7771  
7772  	mm = current->mm;
7773  	if (!mm) {
7774  		/*
7775  		 * For kernel threads and the like, use init_mm so that
7776  		 * we can find kernel memory.
7777  		 */
7778  		mm = &init_mm;
7779  	}
7780  
7781  	size = perf_get_pgtable_size(mm, addr);
7782  
7783  	local_irq_restore(flags);
7784  
7785  	return size;
7786  }
7787  
7788  static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7789  
7790  struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7791  perf_callchain(struct perf_event *event, struct pt_regs *regs)
7792  {
7793  	bool kernel = !event->attr.exclude_callchain_kernel;
7794  	bool user   = !event->attr.exclude_callchain_user;
7795  	/* Disallow cross-task user callchains. */
7796  	bool crosstask = event->ctx->task && event->ctx->task != current;
7797  	const u32 max_stack = event->attr.sample_max_stack;
7798  	struct perf_callchain_entry *callchain;
7799  
7800  	if (!kernel && !user)
7801  		return &__empty_callchain;
7802  
7803  	callchain = get_perf_callchain(regs, 0, kernel, user,
7804  				       max_stack, crosstask, true);
7805  	return callchain ?: &__empty_callchain;
7806  }
7807  
__cond_set(u64 flags,u64 s,u64 d)7808  static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7809  {
7810  	return d * !!(flags & s);
7811  }
7812  
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7813  void perf_prepare_sample(struct perf_sample_data *data,
7814  			 struct perf_event *event,
7815  			 struct pt_regs *regs)
7816  {
7817  	u64 sample_type = event->attr.sample_type;
7818  	u64 filtered_sample_type;
7819  
7820  	/*
7821  	 * Add the sample flags that are dependent to others.  And clear the
7822  	 * sample flags that have already been done by the PMU driver.
7823  	 */
7824  	filtered_sample_type = sample_type;
7825  	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7826  					   PERF_SAMPLE_IP);
7827  	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7828  					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7829  	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7830  					   PERF_SAMPLE_REGS_USER);
7831  	filtered_sample_type &= ~data->sample_flags;
7832  
7833  	if (filtered_sample_type == 0) {
7834  		/* Make sure it has the correct data->type for output */
7835  		data->type = event->attr.sample_type;
7836  		return;
7837  	}
7838  
7839  	__perf_event_header__init_id(data, event, filtered_sample_type);
7840  
7841  	if (filtered_sample_type & PERF_SAMPLE_IP) {
7842  		data->ip = perf_instruction_pointer(regs);
7843  		data->sample_flags |= PERF_SAMPLE_IP;
7844  	}
7845  
7846  	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7847  		perf_sample_save_callchain(data, event, regs);
7848  
7849  	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7850  		data->raw = NULL;
7851  		data->dyn_size += sizeof(u64);
7852  		data->sample_flags |= PERF_SAMPLE_RAW;
7853  	}
7854  
7855  	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7856  		data->br_stack = NULL;
7857  		data->dyn_size += sizeof(u64);
7858  		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7859  	}
7860  
7861  	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7862  		perf_sample_regs_user(&data->regs_user, regs);
7863  
7864  	/*
7865  	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7866  	 * by STACK_USER (using __cond_set() above) and we don't want to update
7867  	 * the dyn_size if it's not requested by users.
7868  	 */
7869  	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7870  		/* regs dump ABI info */
7871  		int size = sizeof(u64);
7872  
7873  		if (data->regs_user.regs) {
7874  			u64 mask = event->attr.sample_regs_user;
7875  			size += hweight64(mask) * sizeof(u64);
7876  		}
7877  
7878  		data->dyn_size += size;
7879  		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7880  	}
7881  
7882  	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7883  		/*
7884  		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7885  		 * processed as the last one or have additional check added
7886  		 * in case new sample type is added, because we could eat
7887  		 * up the rest of the sample size.
7888  		 */
7889  		u16 stack_size = event->attr.sample_stack_user;
7890  		u16 header_size = perf_sample_data_size(data, event);
7891  		u16 size = sizeof(u64);
7892  
7893  		stack_size = perf_sample_ustack_size(stack_size, header_size,
7894  						     data->regs_user.regs);
7895  
7896  		/*
7897  		 * If there is something to dump, add space for the dump
7898  		 * itself and for the field that tells the dynamic size,
7899  		 * which is how many have been actually dumped.
7900  		 */
7901  		if (stack_size)
7902  			size += sizeof(u64) + stack_size;
7903  
7904  		data->stack_user_size = stack_size;
7905  		data->dyn_size += size;
7906  		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7907  	}
7908  
7909  	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7910  		data->weight.full = 0;
7911  		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7912  	}
7913  
7914  	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7915  		data->data_src.val = PERF_MEM_NA;
7916  		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7917  	}
7918  
7919  	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7920  		data->txn = 0;
7921  		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7922  	}
7923  
7924  	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7925  		data->addr = 0;
7926  		data->sample_flags |= PERF_SAMPLE_ADDR;
7927  	}
7928  
7929  	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7930  		/* regs dump ABI info */
7931  		int size = sizeof(u64);
7932  
7933  		perf_sample_regs_intr(&data->regs_intr, regs);
7934  
7935  		if (data->regs_intr.regs) {
7936  			u64 mask = event->attr.sample_regs_intr;
7937  
7938  			size += hweight64(mask) * sizeof(u64);
7939  		}
7940  
7941  		data->dyn_size += size;
7942  		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7943  	}
7944  
7945  	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7946  		data->phys_addr = perf_virt_to_phys(data->addr);
7947  		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7948  	}
7949  
7950  #ifdef CONFIG_CGROUP_PERF
7951  	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7952  		struct cgroup *cgrp;
7953  
7954  		/* protected by RCU */
7955  		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7956  		data->cgroup = cgroup_id(cgrp);
7957  		data->sample_flags |= PERF_SAMPLE_CGROUP;
7958  	}
7959  #endif
7960  
7961  	/*
7962  	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7963  	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7964  	 * but the value will not dump to the userspace.
7965  	 */
7966  	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7967  		data->data_page_size = perf_get_page_size(data->addr);
7968  		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7969  	}
7970  
7971  	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7972  		data->code_page_size = perf_get_page_size(data->ip);
7973  		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7974  	}
7975  
7976  	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7977  		u64 size;
7978  		u16 header_size = perf_sample_data_size(data, event);
7979  
7980  		header_size += sizeof(u64); /* size */
7981  
7982  		/*
7983  		 * Given the 16bit nature of header::size, an AUX sample can
7984  		 * easily overflow it, what with all the preceding sample bits.
7985  		 * Make sure this doesn't happen by using up to U16_MAX bytes
7986  		 * per sample in total (rounded down to 8 byte boundary).
7987  		 */
7988  		size = min_t(size_t, U16_MAX - header_size,
7989  			     event->attr.aux_sample_size);
7990  		size = rounddown(size, 8);
7991  		size = perf_prepare_sample_aux(event, data, size);
7992  
7993  		WARN_ON_ONCE(size + header_size > U16_MAX);
7994  		data->dyn_size += size + sizeof(u64); /* size above */
7995  		data->sample_flags |= PERF_SAMPLE_AUX;
7996  	}
7997  }
7998  
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7999  void perf_prepare_header(struct perf_event_header *header,
8000  			 struct perf_sample_data *data,
8001  			 struct perf_event *event,
8002  			 struct pt_regs *regs)
8003  {
8004  	header->type = PERF_RECORD_SAMPLE;
8005  	header->size = perf_sample_data_size(data, event);
8006  	header->misc = perf_misc_flags(regs);
8007  
8008  	/*
8009  	 * If you're adding more sample types here, you likely need to do
8010  	 * something about the overflowing header::size, like repurpose the
8011  	 * lowest 3 bits of size, which should be always zero at the moment.
8012  	 * This raises a more important question, do we really need 512k sized
8013  	 * samples and why, so good argumentation is in order for whatever you
8014  	 * do here next.
8015  	 */
8016  	WARN_ON_ONCE(header->size & 7);
8017  }
8018  
8019  static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))8020  __perf_event_output(struct perf_event *event,
8021  		    struct perf_sample_data *data,
8022  		    struct pt_regs *regs,
8023  		    int (*output_begin)(struct perf_output_handle *,
8024  					struct perf_sample_data *,
8025  					struct perf_event *,
8026  					unsigned int))
8027  {
8028  	struct perf_output_handle handle;
8029  	struct perf_event_header header;
8030  	int err;
8031  
8032  	/* protect the callchain buffers */
8033  	rcu_read_lock();
8034  
8035  	perf_prepare_sample(data, event, regs);
8036  	perf_prepare_header(&header, data, event, regs);
8037  
8038  	err = output_begin(&handle, data, event, header.size);
8039  	if (err)
8040  		goto exit;
8041  
8042  	perf_output_sample(&handle, &header, data, event);
8043  
8044  	perf_output_end(&handle);
8045  
8046  exit:
8047  	rcu_read_unlock();
8048  	return err;
8049  }
8050  
8051  void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8052  perf_event_output_forward(struct perf_event *event,
8053  			 struct perf_sample_data *data,
8054  			 struct pt_regs *regs)
8055  {
8056  	__perf_event_output(event, data, regs, perf_output_begin_forward);
8057  }
8058  
8059  void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8060  perf_event_output_backward(struct perf_event *event,
8061  			   struct perf_sample_data *data,
8062  			   struct pt_regs *regs)
8063  {
8064  	__perf_event_output(event, data, regs, perf_output_begin_backward);
8065  }
8066  
8067  int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8068  perf_event_output(struct perf_event *event,
8069  		  struct perf_sample_data *data,
8070  		  struct pt_regs *regs)
8071  {
8072  	return __perf_event_output(event, data, regs, perf_output_begin);
8073  }
8074  
8075  /*
8076   * read event_id
8077   */
8078  
8079  struct perf_read_event {
8080  	struct perf_event_header	header;
8081  
8082  	u32				pid;
8083  	u32				tid;
8084  };
8085  
8086  static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)8087  perf_event_read_event(struct perf_event *event,
8088  			struct task_struct *task)
8089  {
8090  	struct perf_output_handle handle;
8091  	struct perf_sample_data sample;
8092  	struct perf_read_event read_event = {
8093  		.header = {
8094  			.type = PERF_RECORD_READ,
8095  			.misc = 0,
8096  			.size = sizeof(read_event) + event->read_size,
8097  		},
8098  		.pid = perf_event_pid(event, task),
8099  		.tid = perf_event_tid(event, task),
8100  	};
8101  	int ret;
8102  
8103  	perf_event_header__init_id(&read_event.header, &sample, event);
8104  	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8105  	if (ret)
8106  		return;
8107  
8108  	perf_output_put(&handle, read_event);
8109  	perf_output_read(&handle, event);
8110  	perf_event__output_id_sample(event, &handle, &sample);
8111  
8112  	perf_output_end(&handle);
8113  }
8114  
8115  typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8116  
8117  static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)8118  perf_iterate_ctx(struct perf_event_context *ctx,
8119  		   perf_iterate_f output,
8120  		   void *data, bool all)
8121  {
8122  	struct perf_event *event;
8123  
8124  	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8125  		if (!all) {
8126  			if (event->state < PERF_EVENT_STATE_INACTIVE)
8127  				continue;
8128  			if (!event_filter_match(event))
8129  				continue;
8130  		}
8131  
8132  		output(event, data);
8133  	}
8134  }
8135  
perf_iterate_sb_cpu(perf_iterate_f output,void * data)8136  static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8137  {
8138  	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8139  	struct perf_event *event;
8140  
8141  	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8142  		/*
8143  		 * Skip events that are not fully formed yet; ensure that
8144  		 * if we observe event->ctx, both event and ctx will be
8145  		 * complete enough. See perf_install_in_context().
8146  		 */
8147  		if (!smp_load_acquire(&event->ctx))
8148  			continue;
8149  
8150  		if (event->state < PERF_EVENT_STATE_INACTIVE)
8151  			continue;
8152  		if (!event_filter_match(event))
8153  			continue;
8154  		output(event, data);
8155  	}
8156  }
8157  
8158  /*
8159   * Iterate all events that need to receive side-band events.
8160   *
8161   * For new callers; ensure that account_pmu_sb_event() includes
8162   * your event, otherwise it might not get delivered.
8163   */
8164  static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)8165  perf_iterate_sb(perf_iterate_f output, void *data,
8166  	       struct perf_event_context *task_ctx)
8167  {
8168  	struct perf_event_context *ctx;
8169  
8170  	rcu_read_lock();
8171  	preempt_disable();
8172  
8173  	/*
8174  	 * If we have task_ctx != NULL we only notify the task context itself.
8175  	 * The task_ctx is set only for EXIT events before releasing task
8176  	 * context.
8177  	 */
8178  	if (task_ctx) {
8179  		perf_iterate_ctx(task_ctx, output, data, false);
8180  		goto done;
8181  	}
8182  
8183  	perf_iterate_sb_cpu(output, data);
8184  
8185  	ctx = rcu_dereference(current->perf_event_ctxp);
8186  	if (ctx)
8187  		perf_iterate_ctx(ctx, output, data, false);
8188  done:
8189  	preempt_enable();
8190  	rcu_read_unlock();
8191  }
8192  
8193  /*
8194   * Clear all file-based filters at exec, they'll have to be
8195   * re-instated when/if these objects are mmapped again.
8196   */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8197  static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8198  {
8199  	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8200  	struct perf_addr_filter *filter;
8201  	unsigned int restart = 0, count = 0;
8202  	unsigned long flags;
8203  
8204  	if (!has_addr_filter(event))
8205  		return;
8206  
8207  	raw_spin_lock_irqsave(&ifh->lock, flags);
8208  	list_for_each_entry(filter, &ifh->list, entry) {
8209  		if (filter->path.dentry) {
8210  			event->addr_filter_ranges[count].start = 0;
8211  			event->addr_filter_ranges[count].size = 0;
8212  			restart++;
8213  		}
8214  
8215  		count++;
8216  	}
8217  
8218  	if (restart)
8219  		event->addr_filters_gen++;
8220  	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8221  
8222  	if (restart)
8223  		perf_event_stop(event, 1);
8224  }
8225  
perf_event_exec(void)8226  void perf_event_exec(void)
8227  {
8228  	struct perf_event_context *ctx;
8229  
8230  	ctx = perf_pin_task_context(current);
8231  	if (!ctx)
8232  		return;
8233  
8234  	perf_event_enable_on_exec(ctx);
8235  	perf_event_remove_on_exec(ctx);
8236  	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8237  
8238  	perf_unpin_context(ctx);
8239  	put_ctx(ctx);
8240  }
8241  
8242  struct remote_output {
8243  	struct perf_buffer	*rb;
8244  	int			err;
8245  };
8246  
__perf_event_output_stop(struct perf_event * event,void * data)8247  static void __perf_event_output_stop(struct perf_event *event, void *data)
8248  {
8249  	struct perf_event *parent = event->parent;
8250  	struct remote_output *ro = data;
8251  	struct perf_buffer *rb = ro->rb;
8252  	struct stop_event_data sd = {
8253  		.event	= event,
8254  	};
8255  
8256  	if (!has_aux(event))
8257  		return;
8258  
8259  	if (!parent)
8260  		parent = event;
8261  
8262  	/*
8263  	 * In case of inheritance, it will be the parent that links to the
8264  	 * ring-buffer, but it will be the child that's actually using it.
8265  	 *
8266  	 * We are using event::rb to determine if the event should be stopped,
8267  	 * however this may race with ring_buffer_attach() (through set_output),
8268  	 * which will make us skip the event that actually needs to be stopped.
8269  	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8270  	 * its rb pointer.
8271  	 */
8272  	if (rcu_dereference(parent->rb) == rb)
8273  		ro->err = __perf_event_stop(&sd);
8274  }
8275  
__perf_pmu_output_stop(void * info)8276  static int __perf_pmu_output_stop(void *info)
8277  {
8278  	struct perf_event *event = info;
8279  	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8280  	struct remote_output ro = {
8281  		.rb	= event->rb,
8282  	};
8283  
8284  	rcu_read_lock();
8285  	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8286  	if (cpuctx->task_ctx)
8287  		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8288  				   &ro, false);
8289  	rcu_read_unlock();
8290  
8291  	return ro.err;
8292  }
8293  
perf_pmu_output_stop(struct perf_event * event)8294  static void perf_pmu_output_stop(struct perf_event *event)
8295  {
8296  	struct perf_event *iter;
8297  	int err, cpu;
8298  
8299  restart:
8300  	rcu_read_lock();
8301  	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8302  		/*
8303  		 * For per-CPU events, we need to make sure that neither they
8304  		 * nor their children are running; for cpu==-1 events it's
8305  		 * sufficient to stop the event itself if it's active, since
8306  		 * it can't have children.
8307  		 */
8308  		cpu = iter->cpu;
8309  		if (cpu == -1)
8310  			cpu = READ_ONCE(iter->oncpu);
8311  
8312  		if (cpu == -1)
8313  			continue;
8314  
8315  		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8316  		if (err == -EAGAIN) {
8317  			rcu_read_unlock();
8318  			goto restart;
8319  		}
8320  	}
8321  	rcu_read_unlock();
8322  }
8323  
8324  /*
8325   * task tracking -- fork/exit
8326   *
8327   * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8328   */
8329  
8330  struct perf_task_event {
8331  	struct task_struct		*task;
8332  	struct perf_event_context	*task_ctx;
8333  
8334  	struct {
8335  		struct perf_event_header	header;
8336  
8337  		u32				pid;
8338  		u32				ppid;
8339  		u32				tid;
8340  		u32				ptid;
8341  		u64				time;
8342  	} event_id;
8343  };
8344  
perf_event_task_match(struct perf_event * event)8345  static int perf_event_task_match(struct perf_event *event)
8346  {
8347  	return event->attr.comm  || event->attr.mmap ||
8348  	       event->attr.mmap2 || event->attr.mmap_data ||
8349  	       event->attr.task;
8350  }
8351  
perf_event_task_output(struct perf_event * event,void * data)8352  static void perf_event_task_output(struct perf_event *event,
8353  				   void *data)
8354  {
8355  	struct perf_task_event *task_event = data;
8356  	struct perf_output_handle handle;
8357  	struct perf_sample_data	sample;
8358  	struct task_struct *task = task_event->task;
8359  	int ret, size = task_event->event_id.header.size;
8360  
8361  	if (!perf_event_task_match(event))
8362  		return;
8363  
8364  	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8365  
8366  	ret = perf_output_begin(&handle, &sample, event,
8367  				task_event->event_id.header.size);
8368  	if (ret)
8369  		goto out;
8370  
8371  	task_event->event_id.pid = perf_event_pid(event, task);
8372  	task_event->event_id.tid = perf_event_tid(event, task);
8373  
8374  	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8375  		task_event->event_id.ppid = perf_event_pid(event,
8376  							task->real_parent);
8377  		task_event->event_id.ptid = perf_event_pid(event,
8378  							task->real_parent);
8379  	} else {  /* PERF_RECORD_FORK */
8380  		task_event->event_id.ppid = perf_event_pid(event, current);
8381  		task_event->event_id.ptid = perf_event_tid(event, current);
8382  	}
8383  
8384  	task_event->event_id.time = perf_event_clock(event);
8385  
8386  	perf_output_put(&handle, task_event->event_id);
8387  
8388  	perf_event__output_id_sample(event, &handle, &sample);
8389  
8390  	perf_output_end(&handle);
8391  out:
8392  	task_event->event_id.header.size = size;
8393  }
8394  
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8395  static void perf_event_task(struct task_struct *task,
8396  			      struct perf_event_context *task_ctx,
8397  			      int new)
8398  {
8399  	struct perf_task_event task_event;
8400  
8401  	if (!atomic_read(&nr_comm_events) &&
8402  	    !atomic_read(&nr_mmap_events) &&
8403  	    !atomic_read(&nr_task_events))
8404  		return;
8405  
8406  	task_event = (struct perf_task_event){
8407  		.task	  = task,
8408  		.task_ctx = task_ctx,
8409  		.event_id    = {
8410  			.header = {
8411  				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8412  				.misc = 0,
8413  				.size = sizeof(task_event.event_id),
8414  			},
8415  			/* .pid  */
8416  			/* .ppid */
8417  			/* .tid  */
8418  			/* .ptid */
8419  			/* .time */
8420  		},
8421  	};
8422  
8423  	perf_iterate_sb(perf_event_task_output,
8424  		       &task_event,
8425  		       task_ctx);
8426  }
8427  
perf_event_fork(struct task_struct * task)8428  void perf_event_fork(struct task_struct *task)
8429  {
8430  	perf_event_task(task, NULL, 1);
8431  	perf_event_namespaces(task);
8432  }
8433  
8434  /*
8435   * comm tracking
8436   */
8437  
8438  struct perf_comm_event {
8439  	struct task_struct	*task;
8440  	char			*comm;
8441  	int			comm_size;
8442  
8443  	struct {
8444  		struct perf_event_header	header;
8445  
8446  		u32				pid;
8447  		u32				tid;
8448  	} event_id;
8449  };
8450  
perf_event_comm_match(struct perf_event * event)8451  static int perf_event_comm_match(struct perf_event *event)
8452  {
8453  	return event->attr.comm;
8454  }
8455  
perf_event_comm_output(struct perf_event * event,void * data)8456  static void perf_event_comm_output(struct perf_event *event,
8457  				   void *data)
8458  {
8459  	struct perf_comm_event *comm_event = data;
8460  	struct perf_output_handle handle;
8461  	struct perf_sample_data sample;
8462  	int size = comm_event->event_id.header.size;
8463  	int ret;
8464  
8465  	if (!perf_event_comm_match(event))
8466  		return;
8467  
8468  	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8469  	ret = perf_output_begin(&handle, &sample, event,
8470  				comm_event->event_id.header.size);
8471  
8472  	if (ret)
8473  		goto out;
8474  
8475  	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8476  	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8477  
8478  	perf_output_put(&handle, comm_event->event_id);
8479  	__output_copy(&handle, comm_event->comm,
8480  				   comm_event->comm_size);
8481  
8482  	perf_event__output_id_sample(event, &handle, &sample);
8483  
8484  	perf_output_end(&handle);
8485  out:
8486  	comm_event->event_id.header.size = size;
8487  }
8488  
perf_event_comm_event(struct perf_comm_event * comm_event)8489  static void perf_event_comm_event(struct perf_comm_event *comm_event)
8490  {
8491  	char comm[TASK_COMM_LEN];
8492  	unsigned int size;
8493  
8494  	memset(comm, 0, sizeof(comm));
8495  	strscpy(comm, comm_event->task->comm, sizeof(comm));
8496  	size = ALIGN(strlen(comm)+1, sizeof(u64));
8497  
8498  	comm_event->comm = comm;
8499  	comm_event->comm_size = size;
8500  
8501  	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8502  
8503  	perf_iterate_sb(perf_event_comm_output,
8504  		       comm_event,
8505  		       NULL);
8506  }
8507  
perf_event_comm(struct task_struct * task,bool exec)8508  void perf_event_comm(struct task_struct *task, bool exec)
8509  {
8510  	struct perf_comm_event comm_event;
8511  
8512  	if (!atomic_read(&nr_comm_events))
8513  		return;
8514  
8515  	comm_event = (struct perf_comm_event){
8516  		.task	= task,
8517  		/* .comm      */
8518  		/* .comm_size */
8519  		.event_id  = {
8520  			.header = {
8521  				.type = PERF_RECORD_COMM,
8522  				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8523  				/* .size */
8524  			},
8525  			/* .pid */
8526  			/* .tid */
8527  		},
8528  	};
8529  
8530  	perf_event_comm_event(&comm_event);
8531  }
8532  
8533  /*
8534   * namespaces tracking
8535   */
8536  
8537  struct perf_namespaces_event {
8538  	struct task_struct		*task;
8539  
8540  	struct {
8541  		struct perf_event_header	header;
8542  
8543  		u32				pid;
8544  		u32				tid;
8545  		u64				nr_namespaces;
8546  		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8547  	} event_id;
8548  };
8549  
perf_event_namespaces_match(struct perf_event * event)8550  static int perf_event_namespaces_match(struct perf_event *event)
8551  {
8552  	return event->attr.namespaces;
8553  }
8554  
perf_event_namespaces_output(struct perf_event * event,void * data)8555  static void perf_event_namespaces_output(struct perf_event *event,
8556  					 void *data)
8557  {
8558  	struct perf_namespaces_event *namespaces_event = data;
8559  	struct perf_output_handle handle;
8560  	struct perf_sample_data sample;
8561  	u16 header_size = namespaces_event->event_id.header.size;
8562  	int ret;
8563  
8564  	if (!perf_event_namespaces_match(event))
8565  		return;
8566  
8567  	perf_event_header__init_id(&namespaces_event->event_id.header,
8568  				   &sample, event);
8569  	ret = perf_output_begin(&handle, &sample, event,
8570  				namespaces_event->event_id.header.size);
8571  	if (ret)
8572  		goto out;
8573  
8574  	namespaces_event->event_id.pid = perf_event_pid(event,
8575  							namespaces_event->task);
8576  	namespaces_event->event_id.tid = perf_event_tid(event,
8577  							namespaces_event->task);
8578  
8579  	perf_output_put(&handle, namespaces_event->event_id);
8580  
8581  	perf_event__output_id_sample(event, &handle, &sample);
8582  
8583  	perf_output_end(&handle);
8584  out:
8585  	namespaces_event->event_id.header.size = header_size;
8586  }
8587  
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8588  static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8589  				   struct task_struct *task,
8590  				   const struct proc_ns_operations *ns_ops)
8591  {
8592  	struct path ns_path;
8593  	struct inode *ns_inode;
8594  	int error;
8595  
8596  	error = ns_get_path(&ns_path, task, ns_ops);
8597  	if (!error) {
8598  		ns_inode = ns_path.dentry->d_inode;
8599  		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8600  		ns_link_info->ino = ns_inode->i_ino;
8601  		path_put(&ns_path);
8602  	}
8603  }
8604  
perf_event_namespaces(struct task_struct * task)8605  void perf_event_namespaces(struct task_struct *task)
8606  {
8607  	struct perf_namespaces_event namespaces_event;
8608  	struct perf_ns_link_info *ns_link_info;
8609  
8610  	if (!atomic_read(&nr_namespaces_events))
8611  		return;
8612  
8613  	namespaces_event = (struct perf_namespaces_event){
8614  		.task	= task,
8615  		.event_id  = {
8616  			.header = {
8617  				.type = PERF_RECORD_NAMESPACES,
8618  				.misc = 0,
8619  				.size = sizeof(namespaces_event.event_id),
8620  			},
8621  			/* .pid */
8622  			/* .tid */
8623  			.nr_namespaces = NR_NAMESPACES,
8624  			/* .link_info[NR_NAMESPACES] */
8625  		},
8626  	};
8627  
8628  	ns_link_info = namespaces_event.event_id.link_info;
8629  
8630  	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8631  			       task, &mntns_operations);
8632  
8633  #ifdef CONFIG_USER_NS
8634  	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8635  			       task, &userns_operations);
8636  #endif
8637  #ifdef CONFIG_NET_NS
8638  	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8639  			       task, &netns_operations);
8640  #endif
8641  #ifdef CONFIG_UTS_NS
8642  	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8643  			       task, &utsns_operations);
8644  #endif
8645  #ifdef CONFIG_IPC_NS
8646  	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8647  			       task, &ipcns_operations);
8648  #endif
8649  #ifdef CONFIG_PID_NS
8650  	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8651  			       task, &pidns_operations);
8652  #endif
8653  #ifdef CONFIG_CGROUPS
8654  	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8655  			       task, &cgroupns_operations);
8656  #endif
8657  
8658  	perf_iterate_sb(perf_event_namespaces_output,
8659  			&namespaces_event,
8660  			NULL);
8661  }
8662  
8663  /*
8664   * cgroup tracking
8665   */
8666  #ifdef CONFIG_CGROUP_PERF
8667  
8668  struct perf_cgroup_event {
8669  	char				*path;
8670  	int				path_size;
8671  	struct {
8672  		struct perf_event_header	header;
8673  		u64				id;
8674  		char				path[];
8675  	} event_id;
8676  };
8677  
perf_event_cgroup_match(struct perf_event * event)8678  static int perf_event_cgroup_match(struct perf_event *event)
8679  {
8680  	return event->attr.cgroup;
8681  }
8682  
perf_event_cgroup_output(struct perf_event * event,void * data)8683  static void perf_event_cgroup_output(struct perf_event *event, void *data)
8684  {
8685  	struct perf_cgroup_event *cgroup_event = data;
8686  	struct perf_output_handle handle;
8687  	struct perf_sample_data sample;
8688  	u16 header_size = cgroup_event->event_id.header.size;
8689  	int ret;
8690  
8691  	if (!perf_event_cgroup_match(event))
8692  		return;
8693  
8694  	perf_event_header__init_id(&cgroup_event->event_id.header,
8695  				   &sample, event);
8696  	ret = perf_output_begin(&handle, &sample, event,
8697  				cgroup_event->event_id.header.size);
8698  	if (ret)
8699  		goto out;
8700  
8701  	perf_output_put(&handle, cgroup_event->event_id);
8702  	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8703  
8704  	perf_event__output_id_sample(event, &handle, &sample);
8705  
8706  	perf_output_end(&handle);
8707  out:
8708  	cgroup_event->event_id.header.size = header_size;
8709  }
8710  
perf_event_cgroup(struct cgroup * cgrp)8711  static void perf_event_cgroup(struct cgroup *cgrp)
8712  {
8713  	struct perf_cgroup_event cgroup_event;
8714  	char path_enomem[16] = "//enomem";
8715  	char *pathname;
8716  	size_t size;
8717  
8718  	if (!atomic_read(&nr_cgroup_events))
8719  		return;
8720  
8721  	cgroup_event = (struct perf_cgroup_event){
8722  		.event_id  = {
8723  			.header = {
8724  				.type = PERF_RECORD_CGROUP,
8725  				.misc = 0,
8726  				.size = sizeof(cgroup_event.event_id),
8727  			},
8728  			.id = cgroup_id(cgrp),
8729  		},
8730  	};
8731  
8732  	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8733  	if (pathname == NULL) {
8734  		cgroup_event.path = path_enomem;
8735  	} else {
8736  		/* just to be sure to have enough space for alignment */
8737  		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8738  		cgroup_event.path = pathname;
8739  	}
8740  
8741  	/*
8742  	 * Since our buffer works in 8 byte units we need to align our string
8743  	 * size to a multiple of 8. However, we must guarantee the tail end is
8744  	 * zero'd out to avoid leaking random bits to userspace.
8745  	 */
8746  	size = strlen(cgroup_event.path) + 1;
8747  	while (!IS_ALIGNED(size, sizeof(u64)))
8748  		cgroup_event.path[size++] = '\0';
8749  
8750  	cgroup_event.event_id.header.size += size;
8751  	cgroup_event.path_size = size;
8752  
8753  	perf_iterate_sb(perf_event_cgroup_output,
8754  			&cgroup_event,
8755  			NULL);
8756  
8757  	kfree(pathname);
8758  }
8759  
8760  #endif
8761  
8762  /*
8763   * mmap tracking
8764   */
8765  
8766  struct perf_mmap_event {
8767  	struct vm_area_struct	*vma;
8768  
8769  	const char		*file_name;
8770  	int			file_size;
8771  	int			maj, min;
8772  	u64			ino;
8773  	u64			ino_generation;
8774  	u32			prot, flags;
8775  	u8			build_id[BUILD_ID_SIZE_MAX];
8776  	u32			build_id_size;
8777  
8778  	struct {
8779  		struct perf_event_header	header;
8780  
8781  		u32				pid;
8782  		u32				tid;
8783  		u64				start;
8784  		u64				len;
8785  		u64				pgoff;
8786  	} event_id;
8787  };
8788  
perf_event_mmap_match(struct perf_event * event,void * data)8789  static int perf_event_mmap_match(struct perf_event *event,
8790  				 void *data)
8791  {
8792  	struct perf_mmap_event *mmap_event = data;
8793  	struct vm_area_struct *vma = mmap_event->vma;
8794  	int executable = vma->vm_flags & VM_EXEC;
8795  
8796  	return (!executable && event->attr.mmap_data) ||
8797  	       (executable && (event->attr.mmap || event->attr.mmap2));
8798  }
8799  
perf_event_mmap_output(struct perf_event * event,void * data)8800  static void perf_event_mmap_output(struct perf_event *event,
8801  				   void *data)
8802  {
8803  	struct perf_mmap_event *mmap_event = data;
8804  	struct perf_output_handle handle;
8805  	struct perf_sample_data sample;
8806  	int size = mmap_event->event_id.header.size;
8807  	u32 type = mmap_event->event_id.header.type;
8808  	bool use_build_id;
8809  	int ret;
8810  
8811  	if (!perf_event_mmap_match(event, data))
8812  		return;
8813  
8814  	if (event->attr.mmap2) {
8815  		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8816  		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8817  		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8818  		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8819  		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8820  		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8821  		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8822  	}
8823  
8824  	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8825  	ret = perf_output_begin(&handle, &sample, event,
8826  				mmap_event->event_id.header.size);
8827  	if (ret)
8828  		goto out;
8829  
8830  	mmap_event->event_id.pid = perf_event_pid(event, current);
8831  	mmap_event->event_id.tid = perf_event_tid(event, current);
8832  
8833  	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8834  
8835  	if (event->attr.mmap2 && use_build_id)
8836  		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8837  
8838  	perf_output_put(&handle, mmap_event->event_id);
8839  
8840  	if (event->attr.mmap2) {
8841  		if (use_build_id) {
8842  			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8843  
8844  			__output_copy(&handle, size, 4);
8845  			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8846  		} else {
8847  			perf_output_put(&handle, mmap_event->maj);
8848  			perf_output_put(&handle, mmap_event->min);
8849  			perf_output_put(&handle, mmap_event->ino);
8850  			perf_output_put(&handle, mmap_event->ino_generation);
8851  		}
8852  		perf_output_put(&handle, mmap_event->prot);
8853  		perf_output_put(&handle, mmap_event->flags);
8854  	}
8855  
8856  	__output_copy(&handle, mmap_event->file_name,
8857  				   mmap_event->file_size);
8858  
8859  	perf_event__output_id_sample(event, &handle, &sample);
8860  
8861  	perf_output_end(&handle);
8862  out:
8863  	mmap_event->event_id.header.size = size;
8864  	mmap_event->event_id.header.type = type;
8865  }
8866  
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8867  static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8868  {
8869  	struct vm_area_struct *vma = mmap_event->vma;
8870  	struct file *file = vma->vm_file;
8871  	int maj = 0, min = 0;
8872  	u64 ino = 0, gen = 0;
8873  	u32 prot = 0, flags = 0;
8874  	unsigned int size;
8875  	char tmp[16];
8876  	char *buf = NULL;
8877  	char *name = NULL;
8878  
8879  	if (vma->vm_flags & VM_READ)
8880  		prot |= PROT_READ;
8881  	if (vma->vm_flags & VM_WRITE)
8882  		prot |= PROT_WRITE;
8883  	if (vma->vm_flags & VM_EXEC)
8884  		prot |= PROT_EXEC;
8885  
8886  	if (vma->vm_flags & VM_MAYSHARE)
8887  		flags = MAP_SHARED;
8888  	else
8889  		flags = MAP_PRIVATE;
8890  
8891  	if (vma->vm_flags & VM_LOCKED)
8892  		flags |= MAP_LOCKED;
8893  	if (is_vm_hugetlb_page(vma))
8894  		flags |= MAP_HUGETLB;
8895  
8896  	if (file) {
8897  		struct inode *inode;
8898  		dev_t dev;
8899  
8900  		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8901  		if (!buf) {
8902  			name = "//enomem";
8903  			goto cpy_name;
8904  		}
8905  		/*
8906  		 * d_path() works from the end of the rb backwards, so we
8907  		 * need to add enough zero bytes after the string to handle
8908  		 * the 64bit alignment we do later.
8909  		 */
8910  		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8911  		if (IS_ERR(name)) {
8912  			name = "//toolong";
8913  			goto cpy_name;
8914  		}
8915  		inode = file_inode(vma->vm_file);
8916  		dev = inode->i_sb->s_dev;
8917  		ino = inode->i_ino;
8918  		gen = inode->i_generation;
8919  		maj = MAJOR(dev);
8920  		min = MINOR(dev);
8921  
8922  		goto got_name;
8923  	} else {
8924  		if (vma->vm_ops && vma->vm_ops->name)
8925  			name = (char *) vma->vm_ops->name(vma);
8926  		if (!name)
8927  			name = (char *)arch_vma_name(vma);
8928  		if (!name) {
8929  			if (vma_is_initial_heap(vma))
8930  				name = "[heap]";
8931  			else if (vma_is_initial_stack(vma))
8932  				name = "[stack]";
8933  			else
8934  				name = "//anon";
8935  		}
8936  	}
8937  
8938  cpy_name:
8939  	strscpy(tmp, name, sizeof(tmp));
8940  	name = tmp;
8941  got_name:
8942  	/*
8943  	 * Since our buffer works in 8 byte units we need to align our string
8944  	 * size to a multiple of 8. However, we must guarantee the tail end is
8945  	 * zero'd out to avoid leaking random bits to userspace.
8946  	 */
8947  	size = strlen(name)+1;
8948  	while (!IS_ALIGNED(size, sizeof(u64)))
8949  		name[size++] = '\0';
8950  
8951  	mmap_event->file_name = name;
8952  	mmap_event->file_size = size;
8953  	mmap_event->maj = maj;
8954  	mmap_event->min = min;
8955  	mmap_event->ino = ino;
8956  	mmap_event->ino_generation = gen;
8957  	mmap_event->prot = prot;
8958  	mmap_event->flags = flags;
8959  
8960  	if (!(vma->vm_flags & VM_EXEC))
8961  		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8962  
8963  	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8964  
8965  	if (atomic_read(&nr_build_id_events))
8966  		build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
8967  
8968  	perf_iterate_sb(perf_event_mmap_output,
8969  		       mmap_event,
8970  		       NULL);
8971  
8972  	kfree(buf);
8973  }
8974  
8975  /*
8976   * Check whether inode and address range match filter criteria.
8977   */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)8978  static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8979  				     struct file *file, unsigned long offset,
8980  				     unsigned long size)
8981  {
8982  	/* d_inode(NULL) won't be equal to any mapped user-space file */
8983  	if (!filter->path.dentry)
8984  		return false;
8985  
8986  	if (d_inode(filter->path.dentry) != file_inode(file))
8987  		return false;
8988  
8989  	if (filter->offset > offset + size)
8990  		return false;
8991  
8992  	if (filter->offset + filter->size < offset)
8993  		return false;
8994  
8995  	return true;
8996  }
8997  
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)8998  static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8999  					struct vm_area_struct *vma,
9000  					struct perf_addr_filter_range *fr)
9001  {
9002  	unsigned long vma_size = vma->vm_end - vma->vm_start;
9003  	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9004  	struct file *file = vma->vm_file;
9005  
9006  	if (!perf_addr_filter_match(filter, file, off, vma_size))
9007  		return false;
9008  
9009  	if (filter->offset < off) {
9010  		fr->start = vma->vm_start;
9011  		fr->size = min(vma_size, filter->size - (off - filter->offset));
9012  	} else {
9013  		fr->start = vma->vm_start + filter->offset - off;
9014  		fr->size = min(vma->vm_end - fr->start, filter->size);
9015  	}
9016  
9017  	return true;
9018  }
9019  
__perf_addr_filters_adjust(struct perf_event * event,void * data)9020  static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9021  {
9022  	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9023  	struct vm_area_struct *vma = data;
9024  	struct perf_addr_filter *filter;
9025  	unsigned int restart = 0, count = 0;
9026  	unsigned long flags;
9027  
9028  	if (!has_addr_filter(event))
9029  		return;
9030  
9031  	if (!vma->vm_file)
9032  		return;
9033  
9034  	raw_spin_lock_irqsave(&ifh->lock, flags);
9035  	list_for_each_entry(filter, &ifh->list, entry) {
9036  		if (perf_addr_filter_vma_adjust(filter, vma,
9037  						&event->addr_filter_ranges[count]))
9038  			restart++;
9039  
9040  		count++;
9041  	}
9042  
9043  	if (restart)
9044  		event->addr_filters_gen++;
9045  	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9046  
9047  	if (restart)
9048  		perf_event_stop(event, 1);
9049  }
9050  
9051  /*
9052   * Adjust all task's events' filters to the new vma
9053   */
perf_addr_filters_adjust(struct vm_area_struct * vma)9054  static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9055  {
9056  	struct perf_event_context *ctx;
9057  
9058  	/*
9059  	 * Data tracing isn't supported yet and as such there is no need
9060  	 * to keep track of anything that isn't related to executable code:
9061  	 */
9062  	if (!(vma->vm_flags & VM_EXEC))
9063  		return;
9064  
9065  	rcu_read_lock();
9066  	ctx = rcu_dereference(current->perf_event_ctxp);
9067  	if (ctx)
9068  		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9069  	rcu_read_unlock();
9070  }
9071  
perf_event_mmap(struct vm_area_struct * vma)9072  void perf_event_mmap(struct vm_area_struct *vma)
9073  {
9074  	struct perf_mmap_event mmap_event;
9075  
9076  	if (!atomic_read(&nr_mmap_events))
9077  		return;
9078  
9079  	mmap_event = (struct perf_mmap_event){
9080  		.vma	= vma,
9081  		/* .file_name */
9082  		/* .file_size */
9083  		.event_id  = {
9084  			.header = {
9085  				.type = PERF_RECORD_MMAP,
9086  				.misc = PERF_RECORD_MISC_USER,
9087  				/* .size */
9088  			},
9089  			/* .pid */
9090  			/* .tid */
9091  			.start  = vma->vm_start,
9092  			.len    = vma->vm_end - vma->vm_start,
9093  			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9094  		},
9095  		/* .maj (attr_mmap2 only) */
9096  		/* .min (attr_mmap2 only) */
9097  		/* .ino (attr_mmap2 only) */
9098  		/* .ino_generation (attr_mmap2 only) */
9099  		/* .prot (attr_mmap2 only) */
9100  		/* .flags (attr_mmap2 only) */
9101  	};
9102  
9103  	perf_addr_filters_adjust(vma);
9104  	perf_event_mmap_event(&mmap_event);
9105  }
9106  
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)9107  void perf_event_aux_event(struct perf_event *event, unsigned long head,
9108  			  unsigned long size, u64 flags)
9109  {
9110  	struct perf_output_handle handle;
9111  	struct perf_sample_data sample;
9112  	struct perf_aux_event {
9113  		struct perf_event_header	header;
9114  		u64				offset;
9115  		u64				size;
9116  		u64				flags;
9117  	} rec = {
9118  		.header = {
9119  			.type = PERF_RECORD_AUX,
9120  			.misc = 0,
9121  			.size = sizeof(rec),
9122  		},
9123  		.offset		= head,
9124  		.size		= size,
9125  		.flags		= flags,
9126  	};
9127  	int ret;
9128  
9129  	perf_event_header__init_id(&rec.header, &sample, event);
9130  	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9131  
9132  	if (ret)
9133  		return;
9134  
9135  	perf_output_put(&handle, rec);
9136  	perf_event__output_id_sample(event, &handle, &sample);
9137  
9138  	perf_output_end(&handle);
9139  }
9140  
9141  /*
9142   * Lost/dropped samples logging
9143   */
perf_log_lost_samples(struct perf_event * event,u64 lost)9144  void perf_log_lost_samples(struct perf_event *event, u64 lost)
9145  {
9146  	struct perf_output_handle handle;
9147  	struct perf_sample_data sample;
9148  	int ret;
9149  
9150  	struct {
9151  		struct perf_event_header	header;
9152  		u64				lost;
9153  	} lost_samples_event = {
9154  		.header = {
9155  			.type = PERF_RECORD_LOST_SAMPLES,
9156  			.misc = 0,
9157  			.size = sizeof(lost_samples_event),
9158  		},
9159  		.lost		= lost,
9160  	};
9161  
9162  	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9163  
9164  	ret = perf_output_begin(&handle, &sample, event,
9165  				lost_samples_event.header.size);
9166  	if (ret)
9167  		return;
9168  
9169  	perf_output_put(&handle, lost_samples_event);
9170  	perf_event__output_id_sample(event, &handle, &sample);
9171  	perf_output_end(&handle);
9172  }
9173  
9174  /*
9175   * context_switch tracking
9176   */
9177  
9178  struct perf_switch_event {
9179  	struct task_struct	*task;
9180  	struct task_struct	*next_prev;
9181  
9182  	struct {
9183  		struct perf_event_header	header;
9184  		u32				next_prev_pid;
9185  		u32				next_prev_tid;
9186  	} event_id;
9187  };
9188  
perf_event_switch_match(struct perf_event * event)9189  static int perf_event_switch_match(struct perf_event *event)
9190  {
9191  	return event->attr.context_switch;
9192  }
9193  
perf_event_switch_output(struct perf_event * event,void * data)9194  static void perf_event_switch_output(struct perf_event *event, void *data)
9195  {
9196  	struct perf_switch_event *se = data;
9197  	struct perf_output_handle handle;
9198  	struct perf_sample_data sample;
9199  	int ret;
9200  
9201  	if (!perf_event_switch_match(event))
9202  		return;
9203  
9204  	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9205  	if (event->ctx->task) {
9206  		se->event_id.header.type = PERF_RECORD_SWITCH;
9207  		se->event_id.header.size = sizeof(se->event_id.header);
9208  	} else {
9209  		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9210  		se->event_id.header.size = sizeof(se->event_id);
9211  		se->event_id.next_prev_pid =
9212  					perf_event_pid(event, se->next_prev);
9213  		se->event_id.next_prev_tid =
9214  					perf_event_tid(event, se->next_prev);
9215  	}
9216  
9217  	perf_event_header__init_id(&se->event_id.header, &sample, event);
9218  
9219  	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9220  	if (ret)
9221  		return;
9222  
9223  	if (event->ctx->task)
9224  		perf_output_put(&handle, se->event_id.header);
9225  	else
9226  		perf_output_put(&handle, se->event_id);
9227  
9228  	perf_event__output_id_sample(event, &handle, &sample);
9229  
9230  	perf_output_end(&handle);
9231  }
9232  
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9233  static void perf_event_switch(struct task_struct *task,
9234  			      struct task_struct *next_prev, bool sched_in)
9235  {
9236  	struct perf_switch_event switch_event;
9237  
9238  	/* N.B. caller checks nr_switch_events != 0 */
9239  
9240  	switch_event = (struct perf_switch_event){
9241  		.task		= task,
9242  		.next_prev	= next_prev,
9243  		.event_id	= {
9244  			.header = {
9245  				/* .type */
9246  				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9247  				/* .size */
9248  			},
9249  			/* .next_prev_pid */
9250  			/* .next_prev_tid */
9251  		},
9252  	};
9253  
9254  	if (!sched_in && task_is_runnable(task)) {
9255  		switch_event.event_id.header.misc |=
9256  				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9257  	}
9258  
9259  	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9260  }
9261  
9262  /*
9263   * IRQ throttle logging
9264   */
9265  
perf_log_throttle(struct perf_event * event,int enable)9266  static void perf_log_throttle(struct perf_event *event, int enable)
9267  {
9268  	struct perf_output_handle handle;
9269  	struct perf_sample_data sample;
9270  	int ret;
9271  
9272  	struct {
9273  		struct perf_event_header	header;
9274  		u64				time;
9275  		u64				id;
9276  		u64				stream_id;
9277  	} throttle_event = {
9278  		.header = {
9279  			.type = PERF_RECORD_THROTTLE,
9280  			.misc = 0,
9281  			.size = sizeof(throttle_event),
9282  		},
9283  		.time		= perf_event_clock(event),
9284  		.id		= primary_event_id(event),
9285  		.stream_id	= event->id,
9286  	};
9287  
9288  	if (enable)
9289  		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9290  
9291  	perf_event_header__init_id(&throttle_event.header, &sample, event);
9292  
9293  	ret = perf_output_begin(&handle, &sample, event,
9294  				throttle_event.header.size);
9295  	if (ret)
9296  		return;
9297  
9298  	perf_output_put(&handle, throttle_event);
9299  	perf_event__output_id_sample(event, &handle, &sample);
9300  	perf_output_end(&handle);
9301  }
9302  
9303  /*
9304   * ksymbol register/unregister tracking
9305   */
9306  
9307  struct perf_ksymbol_event {
9308  	const char	*name;
9309  	int		name_len;
9310  	struct {
9311  		struct perf_event_header        header;
9312  		u64				addr;
9313  		u32				len;
9314  		u16				ksym_type;
9315  		u16				flags;
9316  	} event_id;
9317  };
9318  
perf_event_ksymbol_match(struct perf_event * event)9319  static int perf_event_ksymbol_match(struct perf_event *event)
9320  {
9321  	return event->attr.ksymbol;
9322  }
9323  
perf_event_ksymbol_output(struct perf_event * event,void * data)9324  static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9325  {
9326  	struct perf_ksymbol_event *ksymbol_event = data;
9327  	struct perf_output_handle handle;
9328  	struct perf_sample_data sample;
9329  	int ret;
9330  
9331  	if (!perf_event_ksymbol_match(event))
9332  		return;
9333  
9334  	perf_event_header__init_id(&ksymbol_event->event_id.header,
9335  				   &sample, event);
9336  	ret = perf_output_begin(&handle, &sample, event,
9337  				ksymbol_event->event_id.header.size);
9338  	if (ret)
9339  		return;
9340  
9341  	perf_output_put(&handle, ksymbol_event->event_id);
9342  	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9343  	perf_event__output_id_sample(event, &handle, &sample);
9344  
9345  	perf_output_end(&handle);
9346  }
9347  
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9348  void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9349  			const char *sym)
9350  {
9351  	struct perf_ksymbol_event ksymbol_event;
9352  	char name[KSYM_NAME_LEN];
9353  	u16 flags = 0;
9354  	int name_len;
9355  
9356  	if (!atomic_read(&nr_ksymbol_events))
9357  		return;
9358  
9359  	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9360  	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9361  		goto err;
9362  
9363  	strscpy(name, sym, KSYM_NAME_LEN);
9364  	name_len = strlen(name) + 1;
9365  	while (!IS_ALIGNED(name_len, sizeof(u64)))
9366  		name[name_len++] = '\0';
9367  	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9368  
9369  	if (unregister)
9370  		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9371  
9372  	ksymbol_event = (struct perf_ksymbol_event){
9373  		.name = name,
9374  		.name_len = name_len,
9375  		.event_id = {
9376  			.header = {
9377  				.type = PERF_RECORD_KSYMBOL,
9378  				.size = sizeof(ksymbol_event.event_id) +
9379  					name_len,
9380  			},
9381  			.addr = addr,
9382  			.len = len,
9383  			.ksym_type = ksym_type,
9384  			.flags = flags,
9385  		},
9386  	};
9387  
9388  	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9389  	return;
9390  err:
9391  	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9392  }
9393  
9394  /*
9395   * bpf program load/unload tracking
9396   */
9397  
9398  struct perf_bpf_event {
9399  	struct bpf_prog	*prog;
9400  	struct {
9401  		struct perf_event_header        header;
9402  		u16				type;
9403  		u16				flags;
9404  		u32				id;
9405  		u8				tag[BPF_TAG_SIZE];
9406  	} event_id;
9407  };
9408  
perf_event_bpf_match(struct perf_event * event)9409  static int perf_event_bpf_match(struct perf_event *event)
9410  {
9411  	return event->attr.bpf_event;
9412  }
9413  
perf_event_bpf_output(struct perf_event * event,void * data)9414  static void perf_event_bpf_output(struct perf_event *event, void *data)
9415  {
9416  	struct perf_bpf_event *bpf_event = data;
9417  	struct perf_output_handle handle;
9418  	struct perf_sample_data sample;
9419  	int ret;
9420  
9421  	if (!perf_event_bpf_match(event))
9422  		return;
9423  
9424  	perf_event_header__init_id(&bpf_event->event_id.header,
9425  				   &sample, event);
9426  	ret = perf_output_begin(&handle, &sample, event,
9427  				bpf_event->event_id.header.size);
9428  	if (ret)
9429  		return;
9430  
9431  	perf_output_put(&handle, bpf_event->event_id);
9432  	perf_event__output_id_sample(event, &handle, &sample);
9433  
9434  	perf_output_end(&handle);
9435  }
9436  
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9437  static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9438  					 enum perf_bpf_event_type type)
9439  {
9440  	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9441  	int i;
9442  
9443  	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9444  			   (u64)(unsigned long)prog->bpf_func,
9445  			   prog->jited_len, unregister,
9446  			   prog->aux->ksym.name);
9447  
9448  	for (i = 1; i < prog->aux->func_cnt; i++) {
9449  		struct bpf_prog *subprog = prog->aux->func[i];
9450  
9451  		perf_event_ksymbol(
9452  			PERF_RECORD_KSYMBOL_TYPE_BPF,
9453  			(u64)(unsigned long)subprog->bpf_func,
9454  			subprog->jited_len, unregister,
9455  			subprog->aux->ksym.name);
9456  	}
9457  }
9458  
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9459  void perf_event_bpf_event(struct bpf_prog *prog,
9460  			  enum perf_bpf_event_type type,
9461  			  u16 flags)
9462  {
9463  	struct perf_bpf_event bpf_event;
9464  
9465  	switch (type) {
9466  	case PERF_BPF_EVENT_PROG_LOAD:
9467  	case PERF_BPF_EVENT_PROG_UNLOAD:
9468  		if (atomic_read(&nr_ksymbol_events))
9469  			perf_event_bpf_emit_ksymbols(prog, type);
9470  		break;
9471  	default:
9472  		return;
9473  	}
9474  
9475  	if (!atomic_read(&nr_bpf_events))
9476  		return;
9477  
9478  	bpf_event = (struct perf_bpf_event){
9479  		.prog = prog,
9480  		.event_id = {
9481  			.header = {
9482  				.type = PERF_RECORD_BPF_EVENT,
9483  				.size = sizeof(bpf_event.event_id),
9484  			},
9485  			.type = type,
9486  			.flags = flags,
9487  			.id = prog->aux->id,
9488  		},
9489  	};
9490  
9491  	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9492  
9493  	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9494  	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9495  }
9496  
9497  struct perf_text_poke_event {
9498  	const void		*old_bytes;
9499  	const void		*new_bytes;
9500  	size_t			pad;
9501  	u16			old_len;
9502  	u16			new_len;
9503  
9504  	struct {
9505  		struct perf_event_header	header;
9506  
9507  		u64				addr;
9508  	} event_id;
9509  };
9510  
perf_event_text_poke_match(struct perf_event * event)9511  static int perf_event_text_poke_match(struct perf_event *event)
9512  {
9513  	return event->attr.text_poke;
9514  }
9515  
perf_event_text_poke_output(struct perf_event * event,void * data)9516  static void perf_event_text_poke_output(struct perf_event *event, void *data)
9517  {
9518  	struct perf_text_poke_event *text_poke_event = data;
9519  	struct perf_output_handle handle;
9520  	struct perf_sample_data sample;
9521  	u64 padding = 0;
9522  	int ret;
9523  
9524  	if (!perf_event_text_poke_match(event))
9525  		return;
9526  
9527  	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9528  
9529  	ret = perf_output_begin(&handle, &sample, event,
9530  				text_poke_event->event_id.header.size);
9531  	if (ret)
9532  		return;
9533  
9534  	perf_output_put(&handle, text_poke_event->event_id);
9535  	perf_output_put(&handle, text_poke_event->old_len);
9536  	perf_output_put(&handle, text_poke_event->new_len);
9537  
9538  	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9539  	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9540  
9541  	if (text_poke_event->pad)
9542  		__output_copy(&handle, &padding, text_poke_event->pad);
9543  
9544  	perf_event__output_id_sample(event, &handle, &sample);
9545  
9546  	perf_output_end(&handle);
9547  }
9548  
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9549  void perf_event_text_poke(const void *addr, const void *old_bytes,
9550  			  size_t old_len, const void *new_bytes, size_t new_len)
9551  {
9552  	struct perf_text_poke_event text_poke_event;
9553  	size_t tot, pad;
9554  
9555  	if (!atomic_read(&nr_text_poke_events))
9556  		return;
9557  
9558  	tot  = sizeof(text_poke_event.old_len) + old_len;
9559  	tot += sizeof(text_poke_event.new_len) + new_len;
9560  	pad  = ALIGN(tot, sizeof(u64)) - tot;
9561  
9562  	text_poke_event = (struct perf_text_poke_event){
9563  		.old_bytes    = old_bytes,
9564  		.new_bytes    = new_bytes,
9565  		.pad          = pad,
9566  		.old_len      = old_len,
9567  		.new_len      = new_len,
9568  		.event_id  = {
9569  			.header = {
9570  				.type = PERF_RECORD_TEXT_POKE,
9571  				.misc = PERF_RECORD_MISC_KERNEL,
9572  				.size = sizeof(text_poke_event.event_id) + tot + pad,
9573  			},
9574  			.addr = (unsigned long)addr,
9575  		},
9576  	};
9577  
9578  	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9579  }
9580  
perf_event_itrace_started(struct perf_event * event)9581  void perf_event_itrace_started(struct perf_event *event)
9582  {
9583  	event->attach_state |= PERF_ATTACH_ITRACE;
9584  }
9585  
perf_log_itrace_start(struct perf_event * event)9586  static void perf_log_itrace_start(struct perf_event *event)
9587  {
9588  	struct perf_output_handle handle;
9589  	struct perf_sample_data sample;
9590  	struct perf_aux_event {
9591  		struct perf_event_header        header;
9592  		u32				pid;
9593  		u32				tid;
9594  	} rec;
9595  	int ret;
9596  
9597  	if (event->parent)
9598  		event = event->parent;
9599  
9600  	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9601  	    event->attach_state & PERF_ATTACH_ITRACE)
9602  		return;
9603  
9604  	rec.header.type	= PERF_RECORD_ITRACE_START;
9605  	rec.header.misc	= 0;
9606  	rec.header.size	= sizeof(rec);
9607  	rec.pid	= perf_event_pid(event, current);
9608  	rec.tid	= perf_event_tid(event, current);
9609  
9610  	perf_event_header__init_id(&rec.header, &sample, event);
9611  	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9612  
9613  	if (ret)
9614  		return;
9615  
9616  	perf_output_put(&handle, rec);
9617  	perf_event__output_id_sample(event, &handle, &sample);
9618  
9619  	perf_output_end(&handle);
9620  }
9621  
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)9622  void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9623  {
9624  	struct perf_output_handle handle;
9625  	struct perf_sample_data sample;
9626  	struct perf_aux_event {
9627  		struct perf_event_header        header;
9628  		u64				hw_id;
9629  	} rec;
9630  	int ret;
9631  
9632  	if (event->parent)
9633  		event = event->parent;
9634  
9635  	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9636  	rec.header.misc	= 0;
9637  	rec.header.size	= sizeof(rec);
9638  	rec.hw_id	= hw_id;
9639  
9640  	perf_event_header__init_id(&rec.header, &sample, event);
9641  	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9642  
9643  	if (ret)
9644  		return;
9645  
9646  	perf_output_put(&handle, rec);
9647  	perf_event__output_id_sample(event, &handle, &sample);
9648  
9649  	perf_output_end(&handle);
9650  }
9651  EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9652  
9653  static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)9654  __perf_event_account_interrupt(struct perf_event *event, int throttle)
9655  {
9656  	struct hw_perf_event *hwc = &event->hw;
9657  	int ret = 0;
9658  	u64 seq;
9659  
9660  	seq = __this_cpu_read(perf_throttled_seq);
9661  	if (seq != hwc->interrupts_seq) {
9662  		hwc->interrupts_seq = seq;
9663  		hwc->interrupts = 1;
9664  	} else {
9665  		hwc->interrupts++;
9666  		if (unlikely(throttle &&
9667  			     hwc->interrupts > max_samples_per_tick)) {
9668  			__this_cpu_inc(perf_throttled_count);
9669  			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9670  			hwc->interrupts = MAX_INTERRUPTS;
9671  			perf_log_throttle(event, 0);
9672  			ret = 1;
9673  		}
9674  	}
9675  
9676  	if (event->attr.freq) {
9677  		u64 now = perf_clock();
9678  		s64 delta = now - hwc->freq_time_stamp;
9679  
9680  		hwc->freq_time_stamp = now;
9681  
9682  		if (delta > 0 && delta < 2*TICK_NSEC)
9683  			perf_adjust_period(event, delta, hwc->last_period, true);
9684  	}
9685  
9686  	return ret;
9687  }
9688  
perf_event_account_interrupt(struct perf_event * event)9689  int perf_event_account_interrupt(struct perf_event *event)
9690  {
9691  	return __perf_event_account_interrupt(event, 1);
9692  }
9693  
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)9694  static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9695  {
9696  	/*
9697  	 * Due to interrupt latency (AKA "skid"), we may enter the
9698  	 * kernel before taking an overflow, even if the PMU is only
9699  	 * counting user events.
9700  	 */
9701  	if (event->attr.exclude_kernel && !user_mode(regs))
9702  		return false;
9703  
9704  	return true;
9705  }
9706  
9707  #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9708  static int bpf_overflow_handler(struct perf_event *event,
9709  				struct perf_sample_data *data,
9710  				struct pt_regs *regs)
9711  {
9712  	struct bpf_perf_event_data_kern ctx = {
9713  		.data = data,
9714  		.event = event,
9715  	};
9716  	struct bpf_prog *prog;
9717  	int ret = 0;
9718  
9719  	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9720  	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9721  		goto out;
9722  	rcu_read_lock();
9723  	prog = READ_ONCE(event->prog);
9724  	if (prog) {
9725  		perf_prepare_sample(data, event, regs);
9726  		ret = bpf_prog_run(prog, &ctx);
9727  	}
9728  	rcu_read_unlock();
9729  out:
9730  	__this_cpu_dec(bpf_prog_active);
9731  
9732  	return ret;
9733  }
9734  
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)9735  static inline int perf_event_set_bpf_handler(struct perf_event *event,
9736  					     struct bpf_prog *prog,
9737  					     u64 bpf_cookie)
9738  {
9739  	if (event->overflow_handler_context)
9740  		/* hw breakpoint or kernel counter */
9741  		return -EINVAL;
9742  
9743  	if (event->prog)
9744  		return -EEXIST;
9745  
9746  	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9747  		return -EINVAL;
9748  
9749  	if (event->attr.precise_ip &&
9750  	    prog->call_get_stack &&
9751  	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9752  	     event->attr.exclude_callchain_kernel ||
9753  	     event->attr.exclude_callchain_user)) {
9754  		/*
9755  		 * On perf_event with precise_ip, calling bpf_get_stack()
9756  		 * may trigger unwinder warnings and occasional crashes.
9757  		 * bpf_get_[stack|stackid] works around this issue by using
9758  		 * callchain attached to perf_sample_data. If the
9759  		 * perf_event does not full (kernel and user) callchain
9760  		 * attached to perf_sample_data, do not allow attaching BPF
9761  		 * program that calls bpf_get_[stack|stackid].
9762  		 */
9763  		return -EPROTO;
9764  	}
9765  
9766  	event->prog = prog;
9767  	event->bpf_cookie = bpf_cookie;
9768  	return 0;
9769  }
9770  
perf_event_free_bpf_handler(struct perf_event * event)9771  static inline void perf_event_free_bpf_handler(struct perf_event *event)
9772  {
9773  	struct bpf_prog *prog = event->prog;
9774  
9775  	if (!prog)
9776  		return;
9777  
9778  	event->prog = NULL;
9779  	bpf_prog_put(prog);
9780  }
9781  #else
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9782  static inline int bpf_overflow_handler(struct perf_event *event,
9783  				       struct perf_sample_data *data,
9784  				       struct pt_regs *regs)
9785  {
9786  	return 1;
9787  }
9788  
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)9789  static inline int perf_event_set_bpf_handler(struct perf_event *event,
9790  					     struct bpf_prog *prog,
9791  					     u64 bpf_cookie)
9792  {
9793  	return -EOPNOTSUPP;
9794  }
9795  
perf_event_free_bpf_handler(struct perf_event * event)9796  static inline void perf_event_free_bpf_handler(struct perf_event *event)
9797  {
9798  }
9799  #endif
9800  
9801  /*
9802   * Generic event overflow handling, sampling.
9803   */
9804  
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)9805  static int __perf_event_overflow(struct perf_event *event,
9806  				 int throttle, struct perf_sample_data *data,
9807  				 struct pt_regs *regs)
9808  {
9809  	int events = atomic_read(&event->event_limit);
9810  	int ret = 0;
9811  
9812  	/*
9813  	 * Non-sampling counters might still use the PMI to fold short
9814  	 * hardware counters, ignore those.
9815  	 */
9816  	if (unlikely(!is_sampling_event(event)))
9817  		return 0;
9818  
9819  	ret = __perf_event_account_interrupt(event, throttle);
9820  
9821  	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
9822  	    !bpf_overflow_handler(event, data, regs))
9823  		return ret;
9824  
9825  	/*
9826  	 * XXX event_limit might not quite work as expected on inherited
9827  	 * events
9828  	 */
9829  
9830  	event->pending_kill = POLL_IN;
9831  	if (events && atomic_dec_and_test(&event->event_limit)) {
9832  		ret = 1;
9833  		event->pending_kill = POLL_HUP;
9834  		perf_event_disable_inatomic(event);
9835  	}
9836  
9837  	if (event->attr.sigtrap) {
9838  		/*
9839  		 * The desired behaviour of sigtrap vs invalid samples is a bit
9840  		 * tricky; on the one hand, one should not loose the SIGTRAP if
9841  		 * it is the first event, on the other hand, we should also not
9842  		 * trigger the WARN or override the data address.
9843  		 */
9844  		bool valid_sample = sample_is_allowed(event, regs);
9845  		unsigned int pending_id = 1;
9846  		enum task_work_notify_mode notify_mode;
9847  
9848  		if (regs)
9849  			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9850  
9851  		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
9852  
9853  		if (!event->pending_work &&
9854  		    !task_work_add(current, &event->pending_task, notify_mode)) {
9855  			event->pending_work = pending_id;
9856  			local_inc(&event->ctx->nr_no_switch_fast);
9857  
9858  			event->pending_addr = 0;
9859  			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9860  				event->pending_addr = data->addr;
9861  
9862  		} else if (event->attr.exclude_kernel && valid_sample) {
9863  			/*
9864  			 * Should not be able to return to user space without
9865  			 * consuming pending_work; with exceptions:
9866  			 *
9867  			 *  1. Where !exclude_kernel, events can overflow again
9868  			 *     in the kernel without returning to user space.
9869  			 *
9870  			 *  2. Events that can overflow again before the IRQ-
9871  			 *     work without user space progress (e.g. hrtimer).
9872  			 *     To approximate progress (with false negatives),
9873  			 *     check 32-bit hash of the current IP.
9874  			 */
9875  			WARN_ON_ONCE(event->pending_work != pending_id);
9876  		}
9877  	}
9878  
9879  	READ_ONCE(event->overflow_handler)(event, data, regs);
9880  
9881  	if (*perf_event_fasync(event) && event->pending_kill) {
9882  		event->pending_wakeup = 1;
9883  		irq_work_queue(&event->pending_irq);
9884  	}
9885  
9886  	return ret;
9887  }
9888  
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9889  int perf_event_overflow(struct perf_event *event,
9890  			struct perf_sample_data *data,
9891  			struct pt_regs *regs)
9892  {
9893  	return __perf_event_overflow(event, 1, data, regs);
9894  }
9895  
9896  /*
9897   * Generic software event infrastructure
9898   */
9899  
9900  struct swevent_htable {
9901  	struct swevent_hlist		*swevent_hlist;
9902  	struct mutex			hlist_mutex;
9903  	int				hlist_refcount;
9904  };
9905  static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9906  
9907  /*
9908   * We directly increment event->count and keep a second value in
9909   * event->hw.period_left to count intervals. This period event
9910   * is kept in the range [-sample_period, 0] so that we can use the
9911   * sign as trigger.
9912   */
9913  
perf_swevent_set_period(struct perf_event * event)9914  u64 perf_swevent_set_period(struct perf_event *event)
9915  {
9916  	struct hw_perf_event *hwc = &event->hw;
9917  	u64 period = hwc->last_period;
9918  	u64 nr, offset;
9919  	s64 old, val;
9920  
9921  	hwc->last_period = hwc->sample_period;
9922  
9923  	old = local64_read(&hwc->period_left);
9924  	do {
9925  		val = old;
9926  		if (val < 0)
9927  			return 0;
9928  
9929  		nr = div64_u64(period + val, period);
9930  		offset = nr * period;
9931  		val -= offset;
9932  	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9933  
9934  	return nr;
9935  }
9936  
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)9937  static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9938  				    struct perf_sample_data *data,
9939  				    struct pt_regs *regs)
9940  {
9941  	struct hw_perf_event *hwc = &event->hw;
9942  	int throttle = 0;
9943  
9944  	if (!overflow)
9945  		overflow = perf_swevent_set_period(event);
9946  
9947  	if (hwc->interrupts == MAX_INTERRUPTS)
9948  		return;
9949  
9950  	for (; overflow; overflow--) {
9951  		if (__perf_event_overflow(event, throttle,
9952  					    data, regs)) {
9953  			/*
9954  			 * We inhibit the overflow from happening when
9955  			 * hwc->interrupts == MAX_INTERRUPTS.
9956  			 */
9957  			break;
9958  		}
9959  		throttle = 1;
9960  	}
9961  }
9962  
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9963  static void perf_swevent_event(struct perf_event *event, u64 nr,
9964  			       struct perf_sample_data *data,
9965  			       struct pt_regs *regs)
9966  {
9967  	struct hw_perf_event *hwc = &event->hw;
9968  
9969  	local64_add(nr, &event->count);
9970  
9971  	if (!regs)
9972  		return;
9973  
9974  	if (!is_sampling_event(event))
9975  		return;
9976  
9977  	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9978  		data->period = nr;
9979  		return perf_swevent_overflow(event, 1, data, regs);
9980  	} else
9981  		data->period = event->hw.last_period;
9982  
9983  	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9984  		return perf_swevent_overflow(event, 1, data, regs);
9985  
9986  	if (local64_add_negative(nr, &hwc->period_left))
9987  		return;
9988  
9989  	perf_swevent_overflow(event, 0, data, regs);
9990  }
9991  
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)9992  static int perf_exclude_event(struct perf_event *event,
9993  			      struct pt_regs *regs)
9994  {
9995  	if (event->hw.state & PERF_HES_STOPPED)
9996  		return 1;
9997  
9998  	if (regs) {
9999  		if (event->attr.exclude_user && user_mode(regs))
10000  			return 1;
10001  
10002  		if (event->attr.exclude_kernel && !user_mode(regs))
10003  			return 1;
10004  	}
10005  
10006  	return 0;
10007  }
10008  
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)10009  static int perf_swevent_match(struct perf_event *event,
10010  				enum perf_type_id type,
10011  				u32 event_id,
10012  				struct perf_sample_data *data,
10013  				struct pt_regs *regs)
10014  {
10015  	if (event->attr.type != type)
10016  		return 0;
10017  
10018  	if (event->attr.config != event_id)
10019  		return 0;
10020  
10021  	if (perf_exclude_event(event, regs))
10022  		return 0;
10023  
10024  	return 1;
10025  }
10026  
swevent_hash(u64 type,u32 event_id)10027  static inline u64 swevent_hash(u64 type, u32 event_id)
10028  {
10029  	u64 val = event_id | (type << 32);
10030  
10031  	return hash_64(val, SWEVENT_HLIST_BITS);
10032  }
10033  
10034  static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)10035  __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10036  {
10037  	u64 hash = swevent_hash(type, event_id);
10038  
10039  	return &hlist->heads[hash];
10040  }
10041  
10042  /* For the read side: events when they trigger */
10043  static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)10044  find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10045  {
10046  	struct swevent_hlist *hlist;
10047  
10048  	hlist = rcu_dereference(swhash->swevent_hlist);
10049  	if (!hlist)
10050  		return NULL;
10051  
10052  	return __find_swevent_head(hlist, type, event_id);
10053  }
10054  
10055  /* For the event head insertion and removal in the hlist */
10056  static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)10057  find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10058  {
10059  	struct swevent_hlist *hlist;
10060  	u32 event_id = event->attr.config;
10061  	u64 type = event->attr.type;
10062  
10063  	/*
10064  	 * Event scheduling is always serialized against hlist allocation
10065  	 * and release. Which makes the protected version suitable here.
10066  	 * The context lock guarantees that.
10067  	 */
10068  	hlist = rcu_dereference_protected(swhash->swevent_hlist,
10069  					  lockdep_is_held(&event->ctx->lock));
10070  	if (!hlist)
10071  		return NULL;
10072  
10073  	return __find_swevent_head(hlist, type, event_id);
10074  }
10075  
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10076  static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10077  				    u64 nr,
10078  				    struct perf_sample_data *data,
10079  				    struct pt_regs *regs)
10080  {
10081  	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10082  	struct perf_event *event;
10083  	struct hlist_head *head;
10084  
10085  	rcu_read_lock();
10086  	head = find_swevent_head_rcu(swhash, type, event_id);
10087  	if (!head)
10088  		goto end;
10089  
10090  	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10091  		if (perf_swevent_match(event, type, event_id, data, regs))
10092  			perf_swevent_event(event, nr, data, regs);
10093  	}
10094  end:
10095  	rcu_read_unlock();
10096  }
10097  
10098  DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10099  
perf_swevent_get_recursion_context(void)10100  int perf_swevent_get_recursion_context(void)
10101  {
10102  	return get_recursion_context(current->perf_recursion);
10103  }
10104  EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10105  
perf_swevent_put_recursion_context(int rctx)10106  void perf_swevent_put_recursion_context(int rctx)
10107  {
10108  	put_recursion_context(current->perf_recursion, rctx);
10109  }
10110  
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10111  void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10112  {
10113  	struct perf_sample_data data;
10114  
10115  	if (WARN_ON_ONCE(!regs))
10116  		return;
10117  
10118  	perf_sample_data_init(&data, addr, 0);
10119  	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10120  }
10121  
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10122  void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10123  {
10124  	int rctx;
10125  
10126  	preempt_disable_notrace();
10127  	rctx = perf_swevent_get_recursion_context();
10128  	if (unlikely(rctx < 0))
10129  		goto fail;
10130  
10131  	___perf_sw_event(event_id, nr, regs, addr);
10132  
10133  	perf_swevent_put_recursion_context(rctx);
10134  fail:
10135  	preempt_enable_notrace();
10136  }
10137  
perf_swevent_read(struct perf_event * event)10138  static void perf_swevent_read(struct perf_event *event)
10139  {
10140  }
10141  
perf_swevent_add(struct perf_event * event,int flags)10142  static int perf_swevent_add(struct perf_event *event, int flags)
10143  {
10144  	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10145  	struct hw_perf_event *hwc = &event->hw;
10146  	struct hlist_head *head;
10147  
10148  	if (is_sampling_event(event)) {
10149  		hwc->last_period = hwc->sample_period;
10150  		perf_swevent_set_period(event);
10151  	}
10152  
10153  	hwc->state = !(flags & PERF_EF_START);
10154  
10155  	head = find_swevent_head(swhash, event);
10156  	if (WARN_ON_ONCE(!head))
10157  		return -EINVAL;
10158  
10159  	hlist_add_head_rcu(&event->hlist_entry, head);
10160  	perf_event_update_userpage(event);
10161  
10162  	return 0;
10163  }
10164  
perf_swevent_del(struct perf_event * event,int flags)10165  static void perf_swevent_del(struct perf_event *event, int flags)
10166  {
10167  	hlist_del_rcu(&event->hlist_entry);
10168  }
10169  
perf_swevent_start(struct perf_event * event,int flags)10170  static void perf_swevent_start(struct perf_event *event, int flags)
10171  {
10172  	event->hw.state = 0;
10173  }
10174  
perf_swevent_stop(struct perf_event * event,int flags)10175  static void perf_swevent_stop(struct perf_event *event, int flags)
10176  {
10177  	event->hw.state = PERF_HES_STOPPED;
10178  }
10179  
10180  /* Deref the hlist from the update side */
10181  static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)10182  swevent_hlist_deref(struct swevent_htable *swhash)
10183  {
10184  	return rcu_dereference_protected(swhash->swevent_hlist,
10185  					 lockdep_is_held(&swhash->hlist_mutex));
10186  }
10187  
swevent_hlist_release(struct swevent_htable * swhash)10188  static void swevent_hlist_release(struct swevent_htable *swhash)
10189  {
10190  	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10191  
10192  	if (!hlist)
10193  		return;
10194  
10195  	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10196  	kfree_rcu(hlist, rcu_head);
10197  }
10198  
swevent_hlist_put_cpu(int cpu)10199  static void swevent_hlist_put_cpu(int cpu)
10200  {
10201  	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10202  
10203  	mutex_lock(&swhash->hlist_mutex);
10204  
10205  	if (!--swhash->hlist_refcount)
10206  		swevent_hlist_release(swhash);
10207  
10208  	mutex_unlock(&swhash->hlist_mutex);
10209  }
10210  
swevent_hlist_put(void)10211  static void swevent_hlist_put(void)
10212  {
10213  	int cpu;
10214  
10215  	for_each_possible_cpu(cpu)
10216  		swevent_hlist_put_cpu(cpu);
10217  }
10218  
swevent_hlist_get_cpu(int cpu)10219  static int swevent_hlist_get_cpu(int cpu)
10220  {
10221  	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10222  	int err = 0;
10223  
10224  	mutex_lock(&swhash->hlist_mutex);
10225  	if (!swevent_hlist_deref(swhash) &&
10226  	    cpumask_test_cpu(cpu, perf_online_mask)) {
10227  		struct swevent_hlist *hlist;
10228  
10229  		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10230  		if (!hlist) {
10231  			err = -ENOMEM;
10232  			goto exit;
10233  		}
10234  		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10235  	}
10236  	swhash->hlist_refcount++;
10237  exit:
10238  	mutex_unlock(&swhash->hlist_mutex);
10239  
10240  	return err;
10241  }
10242  
swevent_hlist_get(void)10243  static int swevent_hlist_get(void)
10244  {
10245  	int err, cpu, failed_cpu;
10246  
10247  	mutex_lock(&pmus_lock);
10248  	for_each_possible_cpu(cpu) {
10249  		err = swevent_hlist_get_cpu(cpu);
10250  		if (err) {
10251  			failed_cpu = cpu;
10252  			goto fail;
10253  		}
10254  	}
10255  	mutex_unlock(&pmus_lock);
10256  	return 0;
10257  fail:
10258  	for_each_possible_cpu(cpu) {
10259  		if (cpu == failed_cpu)
10260  			break;
10261  		swevent_hlist_put_cpu(cpu);
10262  	}
10263  	mutex_unlock(&pmus_lock);
10264  	return err;
10265  }
10266  
10267  struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10268  
sw_perf_event_destroy(struct perf_event * event)10269  static void sw_perf_event_destroy(struct perf_event *event)
10270  {
10271  	u64 event_id = event->attr.config;
10272  
10273  	WARN_ON(event->parent);
10274  
10275  	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10276  	swevent_hlist_put();
10277  }
10278  
10279  static struct pmu perf_cpu_clock; /* fwd declaration */
10280  static struct pmu perf_task_clock;
10281  
perf_swevent_init(struct perf_event * event)10282  static int perf_swevent_init(struct perf_event *event)
10283  {
10284  	u64 event_id = event->attr.config;
10285  
10286  	if (event->attr.type != PERF_TYPE_SOFTWARE)
10287  		return -ENOENT;
10288  
10289  	/*
10290  	 * no branch sampling for software events
10291  	 */
10292  	if (has_branch_stack(event))
10293  		return -EOPNOTSUPP;
10294  
10295  	switch (event_id) {
10296  	case PERF_COUNT_SW_CPU_CLOCK:
10297  		event->attr.type = perf_cpu_clock.type;
10298  		return -ENOENT;
10299  	case PERF_COUNT_SW_TASK_CLOCK:
10300  		event->attr.type = perf_task_clock.type;
10301  		return -ENOENT;
10302  
10303  	default:
10304  		break;
10305  	}
10306  
10307  	if (event_id >= PERF_COUNT_SW_MAX)
10308  		return -ENOENT;
10309  
10310  	if (!event->parent) {
10311  		int err;
10312  
10313  		err = swevent_hlist_get();
10314  		if (err)
10315  			return err;
10316  
10317  		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10318  		event->destroy = sw_perf_event_destroy;
10319  	}
10320  
10321  	return 0;
10322  }
10323  
10324  static struct pmu perf_swevent = {
10325  	.task_ctx_nr	= perf_sw_context,
10326  
10327  	.capabilities	= PERF_PMU_CAP_NO_NMI,
10328  
10329  	.event_init	= perf_swevent_init,
10330  	.add		= perf_swevent_add,
10331  	.del		= perf_swevent_del,
10332  	.start		= perf_swevent_start,
10333  	.stop		= perf_swevent_stop,
10334  	.read		= perf_swevent_read,
10335  };
10336  
10337  #ifdef CONFIG_EVENT_TRACING
10338  
tp_perf_event_destroy(struct perf_event * event)10339  static void tp_perf_event_destroy(struct perf_event *event)
10340  {
10341  	perf_trace_destroy(event);
10342  }
10343  
perf_tp_event_init(struct perf_event * event)10344  static int perf_tp_event_init(struct perf_event *event)
10345  {
10346  	int err;
10347  
10348  	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10349  		return -ENOENT;
10350  
10351  	/*
10352  	 * no branch sampling for tracepoint events
10353  	 */
10354  	if (has_branch_stack(event))
10355  		return -EOPNOTSUPP;
10356  
10357  	err = perf_trace_init(event);
10358  	if (err)
10359  		return err;
10360  
10361  	event->destroy = tp_perf_event_destroy;
10362  
10363  	return 0;
10364  }
10365  
10366  static struct pmu perf_tracepoint = {
10367  	.task_ctx_nr	= perf_sw_context,
10368  
10369  	.event_init	= perf_tp_event_init,
10370  	.add		= perf_trace_add,
10371  	.del		= perf_trace_del,
10372  	.start		= perf_swevent_start,
10373  	.stop		= perf_swevent_stop,
10374  	.read		= perf_swevent_read,
10375  };
10376  
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)10377  static int perf_tp_filter_match(struct perf_event *event,
10378  				struct perf_sample_data *data)
10379  {
10380  	void *record = data->raw->frag.data;
10381  
10382  	/* only top level events have filters set */
10383  	if (event->parent)
10384  		event = event->parent;
10385  
10386  	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10387  		return 1;
10388  	return 0;
10389  }
10390  
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10391  static int perf_tp_event_match(struct perf_event *event,
10392  				struct perf_sample_data *data,
10393  				struct pt_regs *regs)
10394  {
10395  	if (event->hw.state & PERF_HES_STOPPED)
10396  		return 0;
10397  	/*
10398  	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10399  	 */
10400  	if (event->attr.exclude_kernel && !user_mode(regs))
10401  		return 0;
10402  
10403  	if (!perf_tp_filter_match(event, data))
10404  		return 0;
10405  
10406  	return 1;
10407  }
10408  
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10409  void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10410  			       struct trace_event_call *call, u64 count,
10411  			       struct pt_regs *regs, struct hlist_head *head,
10412  			       struct task_struct *task)
10413  {
10414  	if (bpf_prog_array_valid(call)) {
10415  		*(struct pt_regs **)raw_data = regs;
10416  		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10417  			perf_swevent_put_recursion_context(rctx);
10418  			return;
10419  		}
10420  	}
10421  	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10422  		      rctx, task);
10423  }
10424  EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10425  
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_event * event)10426  static void __perf_tp_event_target_task(u64 count, void *record,
10427  					struct pt_regs *regs,
10428  					struct perf_sample_data *data,
10429  					struct perf_event *event)
10430  {
10431  	struct trace_entry *entry = record;
10432  
10433  	if (event->attr.config != entry->type)
10434  		return;
10435  	/* Cannot deliver synchronous signal to other task. */
10436  	if (event->attr.sigtrap)
10437  		return;
10438  	if (perf_tp_event_match(event, data, regs))
10439  		perf_swevent_event(event, count, data, regs);
10440  }
10441  
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_event_context * ctx)10442  static void perf_tp_event_target_task(u64 count, void *record,
10443  				      struct pt_regs *regs,
10444  				      struct perf_sample_data *data,
10445  				      struct perf_event_context *ctx)
10446  {
10447  	unsigned int cpu = smp_processor_id();
10448  	struct pmu *pmu = &perf_tracepoint;
10449  	struct perf_event *event, *sibling;
10450  
10451  	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10452  		__perf_tp_event_target_task(count, record, regs, data, event);
10453  		for_each_sibling_event(sibling, event)
10454  			__perf_tp_event_target_task(count, record, regs, data, sibling);
10455  	}
10456  
10457  	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10458  		__perf_tp_event_target_task(count, record, regs, data, event);
10459  		for_each_sibling_event(sibling, event)
10460  			__perf_tp_event_target_task(count, record, regs, data, sibling);
10461  	}
10462  }
10463  
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10464  void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10465  		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10466  		   struct task_struct *task)
10467  {
10468  	struct perf_sample_data data;
10469  	struct perf_event *event;
10470  
10471  	struct perf_raw_record raw = {
10472  		.frag = {
10473  			.size = entry_size,
10474  			.data = record,
10475  		},
10476  	};
10477  
10478  	perf_sample_data_init(&data, 0, 0);
10479  	perf_sample_save_raw_data(&data, &raw);
10480  
10481  	perf_trace_buf_update(record, event_type);
10482  
10483  	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10484  		if (perf_tp_event_match(event, &data, regs)) {
10485  			perf_swevent_event(event, count, &data, regs);
10486  
10487  			/*
10488  			 * Here use the same on-stack perf_sample_data,
10489  			 * some members in data are event-specific and
10490  			 * need to be re-computed for different sweveents.
10491  			 * Re-initialize data->sample_flags safely to avoid
10492  			 * the problem that next event skips preparing data
10493  			 * because data->sample_flags is set.
10494  			 */
10495  			perf_sample_data_init(&data, 0, 0);
10496  			perf_sample_save_raw_data(&data, &raw);
10497  		}
10498  	}
10499  
10500  	/*
10501  	 * If we got specified a target task, also iterate its context and
10502  	 * deliver this event there too.
10503  	 */
10504  	if (task && task != current) {
10505  		struct perf_event_context *ctx;
10506  
10507  		rcu_read_lock();
10508  		ctx = rcu_dereference(task->perf_event_ctxp);
10509  		if (!ctx)
10510  			goto unlock;
10511  
10512  		raw_spin_lock(&ctx->lock);
10513  		perf_tp_event_target_task(count, record, regs, &data, ctx);
10514  		raw_spin_unlock(&ctx->lock);
10515  unlock:
10516  		rcu_read_unlock();
10517  	}
10518  
10519  	perf_swevent_put_recursion_context(rctx);
10520  }
10521  EXPORT_SYMBOL_GPL(perf_tp_event);
10522  
10523  #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10524  /*
10525   * Flags in config, used by dynamic PMU kprobe and uprobe
10526   * The flags should match following PMU_FORMAT_ATTR().
10527   *
10528   * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10529   *                               if not set, create kprobe/uprobe
10530   *
10531   * The following values specify a reference counter (or semaphore in the
10532   * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10533   * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10534   *
10535   * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10536   * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10537   */
10538  enum perf_probe_config {
10539  	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10540  	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10541  	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10542  };
10543  
10544  PMU_FORMAT_ATTR(retprobe, "config:0");
10545  #endif
10546  
10547  #ifdef CONFIG_KPROBE_EVENTS
10548  static struct attribute *kprobe_attrs[] = {
10549  	&format_attr_retprobe.attr,
10550  	NULL,
10551  };
10552  
10553  static struct attribute_group kprobe_format_group = {
10554  	.name = "format",
10555  	.attrs = kprobe_attrs,
10556  };
10557  
10558  static const struct attribute_group *kprobe_attr_groups[] = {
10559  	&kprobe_format_group,
10560  	NULL,
10561  };
10562  
10563  static int perf_kprobe_event_init(struct perf_event *event);
10564  static struct pmu perf_kprobe = {
10565  	.task_ctx_nr	= perf_sw_context,
10566  	.event_init	= perf_kprobe_event_init,
10567  	.add		= perf_trace_add,
10568  	.del		= perf_trace_del,
10569  	.start		= perf_swevent_start,
10570  	.stop		= perf_swevent_stop,
10571  	.read		= perf_swevent_read,
10572  	.attr_groups	= kprobe_attr_groups,
10573  };
10574  
perf_kprobe_event_init(struct perf_event * event)10575  static int perf_kprobe_event_init(struct perf_event *event)
10576  {
10577  	int err;
10578  	bool is_retprobe;
10579  
10580  	if (event->attr.type != perf_kprobe.type)
10581  		return -ENOENT;
10582  
10583  	if (!perfmon_capable())
10584  		return -EACCES;
10585  
10586  	/*
10587  	 * no branch sampling for probe events
10588  	 */
10589  	if (has_branch_stack(event))
10590  		return -EOPNOTSUPP;
10591  
10592  	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10593  	err = perf_kprobe_init(event, is_retprobe);
10594  	if (err)
10595  		return err;
10596  
10597  	event->destroy = perf_kprobe_destroy;
10598  
10599  	return 0;
10600  }
10601  #endif /* CONFIG_KPROBE_EVENTS */
10602  
10603  #ifdef CONFIG_UPROBE_EVENTS
10604  PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10605  
10606  static struct attribute *uprobe_attrs[] = {
10607  	&format_attr_retprobe.attr,
10608  	&format_attr_ref_ctr_offset.attr,
10609  	NULL,
10610  };
10611  
10612  static struct attribute_group uprobe_format_group = {
10613  	.name = "format",
10614  	.attrs = uprobe_attrs,
10615  };
10616  
10617  static const struct attribute_group *uprobe_attr_groups[] = {
10618  	&uprobe_format_group,
10619  	NULL,
10620  };
10621  
10622  static int perf_uprobe_event_init(struct perf_event *event);
10623  static struct pmu perf_uprobe = {
10624  	.task_ctx_nr	= perf_sw_context,
10625  	.event_init	= perf_uprobe_event_init,
10626  	.add		= perf_trace_add,
10627  	.del		= perf_trace_del,
10628  	.start		= perf_swevent_start,
10629  	.stop		= perf_swevent_stop,
10630  	.read		= perf_swevent_read,
10631  	.attr_groups	= uprobe_attr_groups,
10632  };
10633  
perf_uprobe_event_init(struct perf_event * event)10634  static int perf_uprobe_event_init(struct perf_event *event)
10635  {
10636  	int err;
10637  	unsigned long ref_ctr_offset;
10638  	bool is_retprobe;
10639  
10640  	if (event->attr.type != perf_uprobe.type)
10641  		return -ENOENT;
10642  
10643  	if (!perfmon_capable())
10644  		return -EACCES;
10645  
10646  	/*
10647  	 * no branch sampling for probe events
10648  	 */
10649  	if (has_branch_stack(event))
10650  		return -EOPNOTSUPP;
10651  
10652  	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10653  	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10654  	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10655  	if (err)
10656  		return err;
10657  
10658  	event->destroy = perf_uprobe_destroy;
10659  
10660  	return 0;
10661  }
10662  #endif /* CONFIG_UPROBE_EVENTS */
10663  
perf_tp_register(void)10664  static inline void perf_tp_register(void)
10665  {
10666  	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10667  #ifdef CONFIG_KPROBE_EVENTS
10668  	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10669  #endif
10670  #ifdef CONFIG_UPROBE_EVENTS
10671  	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10672  #endif
10673  }
10674  
perf_event_free_filter(struct perf_event * event)10675  static void perf_event_free_filter(struct perf_event *event)
10676  {
10677  	ftrace_profile_free_filter(event);
10678  }
10679  
10680  /*
10681   * returns true if the event is a tracepoint, or a kprobe/upprobe created
10682   * with perf_event_open()
10683   */
perf_event_is_tracing(struct perf_event * event)10684  static inline bool perf_event_is_tracing(struct perf_event *event)
10685  {
10686  	if (event->pmu == &perf_tracepoint)
10687  		return true;
10688  #ifdef CONFIG_KPROBE_EVENTS
10689  	if (event->pmu == &perf_kprobe)
10690  		return true;
10691  #endif
10692  #ifdef CONFIG_UPROBE_EVENTS
10693  	if (event->pmu == &perf_uprobe)
10694  		return true;
10695  #endif
10696  	return false;
10697  }
10698  
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10699  int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10700  			    u64 bpf_cookie)
10701  {
10702  	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10703  
10704  	if (!perf_event_is_tracing(event))
10705  		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10706  
10707  	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10708  	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10709  	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10710  	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10711  	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10712  		/* bpf programs can only be attached to u/kprobe or tracepoint */
10713  		return -EINVAL;
10714  
10715  	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10716  	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10717  	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10718  		return -EINVAL;
10719  
10720  	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10721  		/* only uprobe programs are allowed to be sleepable */
10722  		return -EINVAL;
10723  
10724  	/* Kprobe override only works for kprobes, not uprobes. */
10725  	if (prog->kprobe_override && !is_kprobe)
10726  		return -EINVAL;
10727  
10728  	if (is_tracepoint || is_syscall_tp) {
10729  		int off = trace_event_get_offsets(event->tp_event);
10730  
10731  		if (prog->aux->max_ctx_offset > off)
10732  			return -EACCES;
10733  	}
10734  
10735  	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10736  }
10737  
perf_event_free_bpf_prog(struct perf_event * event)10738  void perf_event_free_bpf_prog(struct perf_event *event)
10739  {
10740  	if (!perf_event_is_tracing(event)) {
10741  		perf_event_free_bpf_handler(event);
10742  		return;
10743  	}
10744  	perf_event_detach_bpf_prog(event);
10745  }
10746  
10747  #else
10748  
perf_tp_register(void)10749  static inline void perf_tp_register(void)
10750  {
10751  }
10752  
perf_event_free_filter(struct perf_event * event)10753  static void perf_event_free_filter(struct perf_event *event)
10754  {
10755  }
10756  
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10757  int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10758  			    u64 bpf_cookie)
10759  {
10760  	return -ENOENT;
10761  }
10762  
perf_event_free_bpf_prog(struct perf_event * event)10763  void perf_event_free_bpf_prog(struct perf_event *event)
10764  {
10765  }
10766  #endif /* CONFIG_EVENT_TRACING */
10767  
10768  #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)10769  void perf_bp_event(struct perf_event *bp, void *data)
10770  {
10771  	struct perf_sample_data sample;
10772  	struct pt_regs *regs = data;
10773  
10774  	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10775  
10776  	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10777  		perf_swevent_event(bp, 1, &sample, regs);
10778  }
10779  #endif
10780  
10781  /*
10782   * Allocate a new address filter
10783   */
10784  static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)10785  perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10786  {
10787  	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10788  	struct perf_addr_filter *filter;
10789  
10790  	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10791  	if (!filter)
10792  		return NULL;
10793  
10794  	INIT_LIST_HEAD(&filter->entry);
10795  	list_add_tail(&filter->entry, filters);
10796  
10797  	return filter;
10798  }
10799  
free_filters_list(struct list_head * filters)10800  static void free_filters_list(struct list_head *filters)
10801  {
10802  	struct perf_addr_filter *filter, *iter;
10803  
10804  	list_for_each_entry_safe(filter, iter, filters, entry) {
10805  		path_put(&filter->path);
10806  		list_del(&filter->entry);
10807  		kfree(filter);
10808  	}
10809  }
10810  
10811  /*
10812   * Free existing address filters and optionally install new ones
10813   */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)10814  static void perf_addr_filters_splice(struct perf_event *event,
10815  				     struct list_head *head)
10816  {
10817  	unsigned long flags;
10818  	LIST_HEAD(list);
10819  
10820  	if (!has_addr_filter(event))
10821  		return;
10822  
10823  	/* don't bother with children, they don't have their own filters */
10824  	if (event->parent)
10825  		return;
10826  
10827  	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10828  
10829  	list_splice_init(&event->addr_filters.list, &list);
10830  	if (head)
10831  		list_splice(head, &event->addr_filters.list);
10832  
10833  	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10834  
10835  	free_filters_list(&list);
10836  }
10837  
10838  /*
10839   * Scan through mm's vmas and see if one of them matches the
10840   * @filter; if so, adjust filter's address range.
10841   * Called with mm::mmap_lock down for reading.
10842   */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10843  static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10844  				   struct mm_struct *mm,
10845  				   struct perf_addr_filter_range *fr)
10846  {
10847  	struct vm_area_struct *vma;
10848  	VMA_ITERATOR(vmi, mm, 0);
10849  
10850  	for_each_vma(vmi, vma) {
10851  		if (!vma->vm_file)
10852  			continue;
10853  
10854  		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10855  			return;
10856  	}
10857  }
10858  
10859  /*
10860   * Update event's address range filters based on the
10861   * task's existing mappings, if any.
10862   */
perf_event_addr_filters_apply(struct perf_event * event)10863  static void perf_event_addr_filters_apply(struct perf_event *event)
10864  {
10865  	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10866  	struct task_struct *task = READ_ONCE(event->ctx->task);
10867  	struct perf_addr_filter *filter;
10868  	struct mm_struct *mm = NULL;
10869  	unsigned int count = 0;
10870  	unsigned long flags;
10871  
10872  	/*
10873  	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10874  	 * will stop on the parent's child_mutex that our caller is also holding
10875  	 */
10876  	if (task == TASK_TOMBSTONE)
10877  		return;
10878  
10879  	if (ifh->nr_file_filters) {
10880  		mm = get_task_mm(task);
10881  		if (!mm)
10882  			goto restart;
10883  
10884  		mmap_read_lock(mm);
10885  	}
10886  
10887  	raw_spin_lock_irqsave(&ifh->lock, flags);
10888  	list_for_each_entry(filter, &ifh->list, entry) {
10889  		if (filter->path.dentry) {
10890  			/*
10891  			 * Adjust base offset if the filter is associated to a
10892  			 * binary that needs to be mapped:
10893  			 */
10894  			event->addr_filter_ranges[count].start = 0;
10895  			event->addr_filter_ranges[count].size = 0;
10896  
10897  			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10898  		} else {
10899  			event->addr_filter_ranges[count].start = filter->offset;
10900  			event->addr_filter_ranges[count].size  = filter->size;
10901  		}
10902  
10903  		count++;
10904  	}
10905  
10906  	event->addr_filters_gen++;
10907  	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10908  
10909  	if (ifh->nr_file_filters) {
10910  		mmap_read_unlock(mm);
10911  
10912  		mmput(mm);
10913  	}
10914  
10915  restart:
10916  	perf_event_stop(event, 1);
10917  }
10918  
10919  /*
10920   * Address range filtering: limiting the data to certain
10921   * instruction address ranges. Filters are ioctl()ed to us from
10922   * userspace as ascii strings.
10923   *
10924   * Filter string format:
10925   *
10926   * ACTION RANGE_SPEC
10927   * where ACTION is one of the
10928   *  * "filter": limit the trace to this region
10929   *  * "start": start tracing from this address
10930   *  * "stop": stop tracing at this address/region;
10931   * RANGE_SPEC is
10932   *  * for kernel addresses: <start address>[/<size>]
10933   *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10934   *
10935   * if <size> is not specified or is zero, the range is treated as a single
10936   * address; not valid for ACTION=="filter".
10937   */
10938  enum {
10939  	IF_ACT_NONE = -1,
10940  	IF_ACT_FILTER,
10941  	IF_ACT_START,
10942  	IF_ACT_STOP,
10943  	IF_SRC_FILE,
10944  	IF_SRC_KERNEL,
10945  	IF_SRC_FILEADDR,
10946  	IF_SRC_KERNELADDR,
10947  };
10948  
10949  enum {
10950  	IF_STATE_ACTION = 0,
10951  	IF_STATE_SOURCE,
10952  	IF_STATE_END,
10953  };
10954  
10955  static const match_table_t if_tokens = {
10956  	{ IF_ACT_FILTER,	"filter" },
10957  	{ IF_ACT_START,		"start" },
10958  	{ IF_ACT_STOP,		"stop" },
10959  	{ IF_SRC_FILE,		"%u/%u@%s" },
10960  	{ IF_SRC_KERNEL,	"%u/%u" },
10961  	{ IF_SRC_FILEADDR,	"%u@%s" },
10962  	{ IF_SRC_KERNELADDR,	"%u" },
10963  	{ IF_ACT_NONE,		NULL },
10964  };
10965  
10966  /*
10967   * Address filter string parser
10968   */
10969  static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)10970  perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10971  			     struct list_head *filters)
10972  {
10973  	struct perf_addr_filter *filter = NULL;
10974  	char *start, *orig, *filename = NULL;
10975  	substring_t args[MAX_OPT_ARGS];
10976  	int state = IF_STATE_ACTION, token;
10977  	unsigned int kernel = 0;
10978  	int ret = -EINVAL;
10979  
10980  	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10981  	if (!fstr)
10982  		return -ENOMEM;
10983  
10984  	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10985  		static const enum perf_addr_filter_action_t actions[] = {
10986  			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10987  			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10988  			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10989  		};
10990  		ret = -EINVAL;
10991  
10992  		if (!*start)
10993  			continue;
10994  
10995  		/* filter definition begins */
10996  		if (state == IF_STATE_ACTION) {
10997  			filter = perf_addr_filter_new(event, filters);
10998  			if (!filter)
10999  				goto fail;
11000  		}
11001  
11002  		token = match_token(start, if_tokens, args);
11003  		switch (token) {
11004  		case IF_ACT_FILTER:
11005  		case IF_ACT_START:
11006  		case IF_ACT_STOP:
11007  			if (state != IF_STATE_ACTION)
11008  				goto fail;
11009  
11010  			filter->action = actions[token];
11011  			state = IF_STATE_SOURCE;
11012  			break;
11013  
11014  		case IF_SRC_KERNELADDR:
11015  		case IF_SRC_KERNEL:
11016  			kernel = 1;
11017  			fallthrough;
11018  
11019  		case IF_SRC_FILEADDR:
11020  		case IF_SRC_FILE:
11021  			if (state != IF_STATE_SOURCE)
11022  				goto fail;
11023  
11024  			*args[0].to = 0;
11025  			ret = kstrtoul(args[0].from, 0, &filter->offset);
11026  			if (ret)
11027  				goto fail;
11028  
11029  			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11030  				*args[1].to = 0;
11031  				ret = kstrtoul(args[1].from, 0, &filter->size);
11032  				if (ret)
11033  					goto fail;
11034  			}
11035  
11036  			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11037  				int fpos = token == IF_SRC_FILE ? 2 : 1;
11038  
11039  				kfree(filename);
11040  				filename = match_strdup(&args[fpos]);
11041  				if (!filename) {
11042  					ret = -ENOMEM;
11043  					goto fail;
11044  				}
11045  			}
11046  
11047  			state = IF_STATE_END;
11048  			break;
11049  
11050  		default:
11051  			goto fail;
11052  		}
11053  
11054  		/*
11055  		 * Filter definition is fully parsed, validate and install it.
11056  		 * Make sure that it doesn't contradict itself or the event's
11057  		 * attribute.
11058  		 */
11059  		if (state == IF_STATE_END) {
11060  			ret = -EINVAL;
11061  
11062  			/*
11063  			 * ACTION "filter" must have a non-zero length region
11064  			 * specified.
11065  			 */
11066  			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11067  			    !filter->size)
11068  				goto fail;
11069  
11070  			if (!kernel) {
11071  				if (!filename)
11072  					goto fail;
11073  
11074  				/*
11075  				 * For now, we only support file-based filters
11076  				 * in per-task events; doing so for CPU-wide
11077  				 * events requires additional context switching
11078  				 * trickery, since same object code will be
11079  				 * mapped at different virtual addresses in
11080  				 * different processes.
11081  				 */
11082  				ret = -EOPNOTSUPP;
11083  				if (!event->ctx->task)
11084  					goto fail;
11085  
11086  				/* look up the path and grab its inode */
11087  				ret = kern_path(filename, LOOKUP_FOLLOW,
11088  						&filter->path);
11089  				if (ret)
11090  					goto fail;
11091  
11092  				ret = -EINVAL;
11093  				if (!filter->path.dentry ||
11094  				    !S_ISREG(d_inode(filter->path.dentry)
11095  					     ->i_mode))
11096  					goto fail;
11097  
11098  				event->addr_filters.nr_file_filters++;
11099  			}
11100  
11101  			/* ready to consume more filters */
11102  			kfree(filename);
11103  			filename = NULL;
11104  			state = IF_STATE_ACTION;
11105  			filter = NULL;
11106  			kernel = 0;
11107  		}
11108  	}
11109  
11110  	if (state != IF_STATE_ACTION)
11111  		goto fail;
11112  
11113  	kfree(filename);
11114  	kfree(orig);
11115  
11116  	return 0;
11117  
11118  fail:
11119  	kfree(filename);
11120  	free_filters_list(filters);
11121  	kfree(orig);
11122  
11123  	return ret;
11124  }
11125  
11126  static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)11127  perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11128  {
11129  	LIST_HEAD(filters);
11130  	int ret;
11131  
11132  	/*
11133  	 * Since this is called in perf_ioctl() path, we're already holding
11134  	 * ctx::mutex.
11135  	 */
11136  	lockdep_assert_held(&event->ctx->mutex);
11137  
11138  	if (WARN_ON_ONCE(event->parent))
11139  		return -EINVAL;
11140  
11141  	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11142  	if (ret)
11143  		goto fail_clear_files;
11144  
11145  	ret = event->pmu->addr_filters_validate(&filters);
11146  	if (ret)
11147  		goto fail_free_filters;
11148  
11149  	/* remove existing filters, if any */
11150  	perf_addr_filters_splice(event, &filters);
11151  
11152  	/* install new filters */
11153  	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11154  
11155  	return ret;
11156  
11157  fail_free_filters:
11158  	free_filters_list(&filters);
11159  
11160  fail_clear_files:
11161  	event->addr_filters.nr_file_filters = 0;
11162  
11163  	return ret;
11164  }
11165  
perf_event_set_filter(struct perf_event * event,void __user * arg)11166  static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11167  {
11168  	int ret = -EINVAL;
11169  	char *filter_str;
11170  
11171  	filter_str = strndup_user(arg, PAGE_SIZE);
11172  	if (IS_ERR(filter_str))
11173  		return PTR_ERR(filter_str);
11174  
11175  #ifdef CONFIG_EVENT_TRACING
11176  	if (perf_event_is_tracing(event)) {
11177  		struct perf_event_context *ctx = event->ctx;
11178  
11179  		/*
11180  		 * Beware, here be dragons!!
11181  		 *
11182  		 * the tracepoint muck will deadlock against ctx->mutex, but
11183  		 * the tracepoint stuff does not actually need it. So
11184  		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11185  		 * already have a reference on ctx.
11186  		 *
11187  		 * This can result in event getting moved to a different ctx,
11188  		 * but that does not affect the tracepoint state.
11189  		 */
11190  		mutex_unlock(&ctx->mutex);
11191  		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11192  		mutex_lock(&ctx->mutex);
11193  	} else
11194  #endif
11195  	if (has_addr_filter(event))
11196  		ret = perf_event_set_addr_filter(event, filter_str);
11197  
11198  	kfree(filter_str);
11199  	return ret;
11200  }
11201  
11202  /*
11203   * hrtimer based swevent callback
11204   */
11205  
perf_swevent_hrtimer(struct hrtimer * hrtimer)11206  static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11207  {
11208  	enum hrtimer_restart ret = HRTIMER_RESTART;
11209  	struct perf_sample_data data;
11210  	struct pt_regs *regs;
11211  	struct perf_event *event;
11212  	u64 period;
11213  
11214  	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11215  
11216  	if (event->state != PERF_EVENT_STATE_ACTIVE)
11217  		return HRTIMER_NORESTART;
11218  
11219  	event->pmu->read(event);
11220  
11221  	perf_sample_data_init(&data, 0, event->hw.last_period);
11222  	regs = get_irq_regs();
11223  
11224  	if (regs && !perf_exclude_event(event, regs)) {
11225  		if (!(event->attr.exclude_idle && is_idle_task(current)))
11226  			if (__perf_event_overflow(event, 1, &data, regs))
11227  				ret = HRTIMER_NORESTART;
11228  	}
11229  
11230  	period = max_t(u64, 10000, event->hw.sample_period);
11231  	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11232  
11233  	return ret;
11234  }
11235  
perf_swevent_start_hrtimer(struct perf_event * event)11236  static void perf_swevent_start_hrtimer(struct perf_event *event)
11237  {
11238  	struct hw_perf_event *hwc = &event->hw;
11239  	s64 period;
11240  
11241  	if (!is_sampling_event(event))
11242  		return;
11243  
11244  	period = local64_read(&hwc->period_left);
11245  	if (period) {
11246  		if (period < 0)
11247  			period = 10000;
11248  
11249  		local64_set(&hwc->period_left, 0);
11250  	} else {
11251  		period = max_t(u64, 10000, hwc->sample_period);
11252  	}
11253  	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11254  		      HRTIMER_MODE_REL_PINNED_HARD);
11255  }
11256  
perf_swevent_cancel_hrtimer(struct perf_event * event)11257  static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11258  {
11259  	struct hw_perf_event *hwc = &event->hw;
11260  
11261  	if (is_sampling_event(event)) {
11262  		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11263  		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11264  
11265  		hrtimer_cancel(&hwc->hrtimer);
11266  	}
11267  }
11268  
perf_swevent_init_hrtimer(struct perf_event * event)11269  static void perf_swevent_init_hrtimer(struct perf_event *event)
11270  {
11271  	struct hw_perf_event *hwc = &event->hw;
11272  
11273  	if (!is_sampling_event(event))
11274  		return;
11275  
11276  	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11277  	hwc->hrtimer.function = perf_swevent_hrtimer;
11278  
11279  	/*
11280  	 * Since hrtimers have a fixed rate, we can do a static freq->period
11281  	 * mapping and avoid the whole period adjust feedback stuff.
11282  	 */
11283  	if (event->attr.freq) {
11284  		long freq = event->attr.sample_freq;
11285  
11286  		event->attr.sample_period = NSEC_PER_SEC / freq;
11287  		hwc->sample_period = event->attr.sample_period;
11288  		local64_set(&hwc->period_left, hwc->sample_period);
11289  		hwc->last_period = hwc->sample_period;
11290  		event->attr.freq = 0;
11291  	}
11292  }
11293  
11294  /*
11295   * Software event: cpu wall time clock
11296   */
11297  
cpu_clock_event_update(struct perf_event * event)11298  static void cpu_clock_event_update(struct perf_event *event)
11299  {
11300  	s64 prev;
11301  	u64 now;
11302  
11303  	now = local_clock();
11304  	prev = local64_xchg(&event->hw.prev_count, now);
11305  	local64_add(now - prev, &event->count);
11306  }
11307  
cpu_clock_event_start(struct perf_event * event,int flags)11308  static void cpu_clock_event_start(struct perf_event *event, int flags)
11309  {
11310  	local64_set(&event->hw.prev_count, local_clock());
11311  	perf_swevent_start_hrtimer(event);
11312  }
11313  
cpu_clock_event_stop(struct perf_event * event,int flags)11314  static void cpu_clock_event_stop(struct perf_event *event, int flags)
11315  {
11316  	perf_swevent_cancel_hrtimer(event);
11317  	cpu_clock_event_update(event);
11318  }
11319  
cpu_clock_event_add(struct perf_event * event,int flags)11320  static int cpu_clock_event_add(struct perf_event *event, int flags)
11321  {
11322  	if (flags & PERF_EF_START)
11323  		cpu_clock_event_start(event, flags);
11324  	perf_event_update_userpage(event);
11325  
11326  	return 0;
11327  }
11328  
cpu_clock_event_del(struct perf_event * event,int flags)11329  static void cpu_clock_event_del(struct perf_event *event, int flags)
11330  {
11331  	cpu_clock_event_stop(event, flags);
11332  }
11333  
cpu_clock_event_read(struct perf_event * event)11334  static void cpu_clock_event_read(struct perf_event *event)
11335  {
11336  	cpu_clock_event_update(event);
11337  }
11338  
cpu_clock_event_init(struct perf_event * event)11339  static int cpu_clock_event_init(struct perf_event *event)
11340  {
11341  	if (event->attr.type != perf_cpu_clock.type)
11342  		return -ENOENT;
11343  
11344  	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11345  		return -ENOENT;
11346  
11347  	/*
11348  	 * no branch sampling for software events
11349  	 */
11350  	if (has_branch_stack(event))
11351  		return -EOPNOTSUPP;
11352  
11353  	perf_swevent_init_hrtimer(event);
11354  
11355  	return 0;
11356  }
11357  
11358  static struct pmu perf_cpu_clock = {
11359  	.task_ctx_nr	= perf_sw_context,
11360  
11361  	.capabilities	= PERF_PMU_CAP_NO_NMI,
11362  	.dev		= PMU_NULL_DEV,
11363  
11364  	.event_init	= cpu_clock_event_init,
11365  	.add		= cpu_clock_event_add,
11366  	.del		= cpu_clock_event_del,
11367  	.start		= cpu_clock_event_start,
11368  	.stop		= cpu_clock_event_stop,
11369  	.read		= cpu_clock_event_read,
11370  };
11371  
11372  /*
11373   * Software event: task time clock
11374   */
11375  
task_clock_event_update(struct perf_event * event,u64 now)11376  static void task_clock_event_update(struct perf_event *event, u64 now)
11377  {
11378  	u64 prev;
11379  	s64 delta;
11380  
11381  	prev = local64_xchg(&event->hw.prev_count, now);
11382  	delta = now - prev;
11383  	local64_add(delta, &event->count);
11384  }
11385  
task_clock_event_start(struct perf_event * event,int flags)11386  static void task_clock_event_start(struct perf_event *event, int flags)
11387  {
11388  	local64_set(&event->hw.prev_count, event->ctx->time);
11389  	perf_swevent_start_hrtimer(event);
11390  }
11391  
task_clock_event_stop(struct perf_event * event,int flags)11392  static void task_clock_event_stop(struct perf_event *event, int flags)
11393  {
11394  	perf_swevent_cancel_hrtimer(event);
11395  	task_clock_event_update(event, event->ctx->time);
11396  }
11397  
task_clock_event_add(struct perf_event * event,int flags)11398  static int task_clock_event_add(struct perf_event *event, int flags)
11399  {
11400  	if (flags & PERF_EF_START)
11401  		task_clock_event_start(event, flags);
11402  	perf_event_update_userpage(event);
11403  
11404  	return 0;
11405  }
11406  
task_clock_event_del(struct perf_event * event,int flags)11407  static void task_clock_event_del(struct perf_event *event, int flags)
11408  {
11409  	task_clock_event_stop(event, PERF_EF_UPDATE);
11410  }
11411  
task_clock_event_read(struct perf_event * event)11412  static void task_clock_event_read(struct perf_event *event)
11413  {
11414  	u64 now = perf_clock();
11415  	u64 delta = now - event->ctx->timestamp;
11416  	u64 time = event->ctx->time + delta;
11417  
11418  	task_clock_event_update(event, time);
11419  }
11420  
task_clock_event_init(struct perf_event * event)11421  static int task_clock_event_init(struct perf_event *event)
11422  {
11423  	if (event->attr.type != perf_task_clock.type)
11424  		return -ENOENT;
11425  
11426  	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11427  		return -ENOENT;
11428  
11429  	/*
11430  	 * no branch sampling for software events
11431  	 */
11432  	if (has_branch_stack(event))
11433  		return -EOPNOTSUPP;
11434  
11435  	perf_swevent_init_hrtimer(event);
11436  
11437  	return 0;
11438  }
11439  
11440  static struct pmu perf_task_clock = {
11441  	.task_ctx_nr	= perf_sw_context,
11442  
11443  	.capabilities	= PERF_PMU_CAP_NO_NMI,
11444  	.dev		= PMU_NULL_DEV,
11445  
11446  	.event_init	= task_clock_event_init,
11447  	.add		= task_clock_event_add,
11448  	.del		= task_clock_event_del,
11449  	.start		= task_clock_event_start,
11450  	.stop		= task_clock_event_stop,
11451  	.read		= task_clock_event_read,
11452  };
11453  
perf_pmu_nop_void(struct pmu * pmu)11454  static void perf_pmu_nop_void(struct pmu *pmu)
11455  {
11456  }
11457  
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)11458  static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11459  {
11460  }
11461  
perf_pmu_nop_int(struct pmu * pmu)11462  static int perf_pmu_nop_int(struct pmu *pmu)
11463  {
11464  	return 0;
11465  }
11466  
perf_event_nop_int(struct perf_event * event,u64 value)11467  static int perf_event_nop_int(struct perf_event *event, u64 value)
11468  {
11469  	return 0;
11470  }
11471  
11472  static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11473  
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)11474  static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11475  {
11476  	__this_cpu_write(nop_txn_flags, flags);
11477  
11478  	if (flags & ~PERF_PMU_TXN_ADD)
11479  		return;
11480  
11481  	perf_pmu_disable(pmu);
11482  }
11483  
perf_pmu_commit_txn(struct pmu * pmu)11484  static int perf_pmu_commit_txn(struct pmu *pmu)
11485  {
11486  	unsigned int flags = __this_cpu_read(nop_txn_flags);
11487  
11488  	__this_cpu_write(nop_txn_flags, 0);
11489  
11490  	if (flags & ~PERF_PMU_TXN_ADD)
11491  		return 0;
11492  
11493  	perf_pmu_enable(pmu);
11494  	return 0;
11495  }
11496  
perf_pmu_cancel_txn(struct pmu * pmu)11497  static void perf_pmu_cancel_txn(struct pmu *pmu)
11498  {
11499  	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11500  
11501  	__this_cpu_write(nop_txn_flags, 0);
11502  
11503  	if (flags & ~PERF_PMU_TXN_ADD)
11504  		return;
11505  
11506  	perf_pmu_enable(pmu);
11507  }
11508  
perf_event_idx_default(struct perf_event * event)11509  static int perf_event_idx_default(struct perf_event *event)
11510  {
11511  	return 0;
11512  }
11513  
free_pmu_context(struct pmu * pmu)11514  static void free_pmu_context(struct pmu *pmu)
11515  {
11516  	free_percpu(pmu->cpu_pmu_context);
11517  }
11518  
11519  /*
11520   * Let userspace know that this PMU supports address range filtering:
11521   */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11522  static ssize_t nr_addr_filters_show(struct device *dev,
11523  				    struct device_attribute *attr,
11524  				    char *page)
11525  {
11526  	struct pmu *pmu = dev_get_drvdata(dev);
11527  
11528  	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11529  }
11530  DEVICE_ATTR_RO(nr_addr_filters);
11531  
11532  static struct idr pmu_idr;
11533  
11534  static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11535  type_show(struct device *dev, struct device_attribute *attr, char *page)
11536  {
11537  	struct pmu *pmu = dev_get_drvdata(dev);
11538  
11539  	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11540  }
11541  static DEVICE_ATTR_RO(type);
11542  
11543  static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11544  perf_event_mux_interval_ms_show(struct device *dev,
11545  				struct device_attribute *attr,
11546  				char *page)
11547  {
11548  	struct pmu *pmu = dev_get_drvdata(dev);
11549  
11550  	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11551  }
11552  
11553  static DEFINE_MUTEX(mux_interval_mutex);
11554  
11555  static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11556  perf_event_mux_interval_ms_store(struct device *dev,
11557  				 struct device_attribute *attr,
11558  				 const char *buf, size_t count)
11559  {
11560  	struct pmu *pmu = dev_get_drvdata(dev);
11561  	int timer, cpu, ret;
11562  
11563  	ret = kstrtoint(buf, 0, &timer);
11564  	if (ret)
11565  		return ret;
11566  
11567  	if (timer < 1)
11568  		return -EINVAL;
11569  
11570  	/* same value, noting to do */
11571  	if (timer == pmu->hrtimer_interval_ms)
11572  		return count;
11573  
11574  	mutex_lock(&mux_interval_mutex);
11575  	pmu->hrtimer_interval_ms = timer;
11576  
11577  	/* update all cpuctx for this PMU */
11578  	cpus_read_lock();
11579  	for_each_online_cpu(cpu) {
11580  		struct perf_cpu_pmu_context *cpc;
11581  		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11582  		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11583  
11584  		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11585  	}
11586  	cpus_read_unlock();
11587  	mutex_unlock(&mux_interval_mutex);
11588  
11589  	return count;
11590  }
11591  static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11592  
perf_scope_cpu_topology_cpumask(unsigned int scope,int cpu)11593  static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
11594  {
11595  	switch (scope) {
11596  	case PERF_PMU_SCOPE_CORE:
11597  		return topology_sibling_cpumask(cpu);
11598  	case PERF_PMU_SCOPE_DIE:
11599  		return topology_die_cpumask(cpu);
11600  	case PERF_PMU_SCOPE_CLUSTER:
11601  		return topology_cluster_cpumask(cpu);
11602  	case PERF_PMU_SCOPE_PKG:
11603  		return topology_core_cpumask(cpu);
11604  	case PERF_PMU_SCOPE_SYS_WIDE:
11605  		return cpu_online_mask;
11606  	}
11607  
11608  	return NULL;
11609  }
11610  
perf_scope_cpumask(unsigned int scope)11611  static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
11612  {
11613  	switch (scope) {
11614  	case PERF_PMU_SCOPE_CORE:
11615  		return perf_online_core_mask;
11616  	case PERF_PMU_SCOPE_DIE:
11617  		return perf_online_die_mask;
11618  	case PERF_PMU_SCOPE_CLUSTER:
11619  		return perf_online_cluster_mask;
11620  	case PERF_PMU_SCOPE_PKG:
11621  		return perf_online_pkg_mask;
11622  	case PERF_PMU_SCOPE_SYS_WIDE:
11623  		return perf_online_sys_mask;
11624  	}
11625  
11626  	return NULL;
11627  }
11628  
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)11629  static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
11630  			    char *buf)
11631  {
11632  	struct pmu *pmu = dev_get_drvdata(dev);
11633  	struct cpumask *mask = perf_scope_cpumask(pmu->scope);
11634  
11635  	if (mask)
11636  		return cpumap_print_to_pagebuf(true, buf, mask);
11637  	return 0;
11638  }
11639  
11640  static DEVICE_ATTR_RO(cpumask);
11641  
11642  static struct attribute *pmu_dev_attrs[] = {
11643  	&dev_attr_type.attr,
11644  	&dev_attr_perf_event_mux_interval_ms.attr,
11645  	&dev_attr_nr_addr_filters.attr,
11646  	&dev_attr_cpumask.attr,
11647  	NULL,
11648  };
11649  
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)11650  static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11651  {
11652  	struct device *dev = kobj_to_dev(kobj);
11653  	struct pmu *pmu = dev_get_drvdata(dev);
11654  
11655  	if (n == 2 && !pmu->nr_addr_filters)
11656  		return 0;
11657  
11658  	/* cpumask */
11659  	if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
11660  		return 0;
11661  
11662  	return a->mode;
11663  }
11664  
11665  static struct attribute_group pmu_dev_attr_group = {
11666  	.is_visible = pmu_dev_is_visible,
11667  	.attrs = pmu_dev_attrs,
11668  };
11669  
11670  static const struct attribute_group *pmu_dev_groups[] = {
11671  	&pmu_dev_attr_group,
11672  	NULL,
11673  };
11674  
11675  static int pmu_bus_running;
11676  static struct bus_type pmu_bus = {
11677  	.name		= "event_source",
11678  	.dev_groups	= pmu_dev_groups,
11679  };
11680  
pmu_dev_release(struct device * dev)11681  static void pmu_dev_release(struct device *dev)
11682  {
11683  	kfree(dev);
11684  }
11685  
pmu_dev_alloc(struct pmu * pmu)11686  static int pmu_dev_alloc(struct pmu *pmu)
11687  {
11688  	int ret = -ENOMEM;
11689  
11690  	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11691  	if (!pmu->dev)
11692  		goto out;
11693  
11694  	pmu->dev->groups = pmu->attr_groups;
11695  	device_initialize(pmu->dev);
11696  
11697  	dev_set_drvdata(pmu->dev, pmu);
11698  	pmu->dev->bus = &pmu_bus;
11699  	pmu->dev->parent = pmu->parent;
11700  	pmu->dev->release = pmu_dev_release;
11701  
11702  	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11703  	if (ret)
11704  		goto free_dev;
11705  
11706  	ret = device_add(pmu->dev);
11707  	if (ret)
11708  		goto free_dev;
11709  
11710  	if (pmu->attr_update) {
11711  		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11712  		if (ret)
11713  			goto del_dev;
11714  	}
11715  
11716  out:
11717  	return ret;
11718  
11719  del_dev:
11720  	device_del(pmu->dev);
11721  
11722  free_dev:
11723  	put_device(pmu->dev);
11724  	goto out;
11725  }
11726  
11727  static struct lock_class_key cpuctx_mutex;
11728  static struct lock_class_key cpuctx_lock;
11729  
perf_pmu_register(struct pmu * pmu,const char * name,int type)11730  int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11731  {
11732  	int cpu, ret, max = PERF_TYPE_MAX;
11733  
11734  	mutex_lock(&pmus_lock);
11735  	ret = -ENOMEM;
11736  	pmu->pmu_disable_count = alloc_percpu(int);
11737  	if (!pmu->pmu_disable_count)
11738  		goto unlock;
11739  
11740  	pmu->type = -1;
11741  	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11742  		ret = -EINVAL;
11743  		goto free_pdc;
11744  	}
11745  
11746  	if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, "Can not register a pmu with an invalid scope.\n")) {
11747  		ret = -EINVAL;
11748  		goto free_pdc;
11749  	}
11750  
11751  	pmu->name = name;
11752  
11753  	if (type >= 0)
11754  		max = type;
11755  
11756  	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11757  	if (ret < 0)
11758  		goto free_pdc;
11759  
11760  	WARN_ON(type >= 0 && ret != type);
11761  
11762  	type = ret;
11763  	pmu->type = type;
11764  
11765  	if (pmu_bus_running && !pmu->dev) {
11766  		ret = pmu_dev_alloc(pmu);
11767  		if (ret)
11768  			goto free_idr;
11769  	}
11770  
11771  	ret = -ENOMEM;
11772  	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11773  	if (!pmu->cpu_pmu_context)
11774  		goto free_dev;
11775  
11776  	for_each_possible_cpu(cpu) {
11777  		struct perf_cpu_pmu_context *cpc;
11778  
11779  		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11780  		__perf_init_event_pmu_context(&cpc->epc, pmu);
11781  		__perf_mux_hrtimer_init(cpc, cpu);
11782  	}
11783  
11784  	if (!pmu->start_txn) {
11785  		if (pmu->pmu_enable) {
11786  			/*
11787  			 * If we have pmu_enable/pmu_disable calls, install
11788  			 * transaction stubs that use that to try and batch
11789  			 * hardware accesses.
11790  			 */
11791  			pmu->start_txn  = perf_pmu_start_txn;
11792  			pmu->commit_txn = perf_pmu_commit_txn;
11793  			pmu->cancel_txn = perf_pmu_cancel_txn;
11794  		} else {
11795  			pmu->start_txn  = perf_pmu_nop_txn;
11796  			pmu->commit_txn = perf_pmu_nop_int;
11797  			pmu->cancel_txn = perf_pmu_nop_void;
11798  		}
11799  	}
11800  
11801  	if (!pmu->pmu_enable) {
11802  		pmu->pmu_enable  = perf_pmu_nop_void;
11803  		pmu->pmu_disable = perf_pmu_nop_void;
11804  	}
11805  
11806  	if (!pmu->check_period)
11807  		pmu->check_period = perf_event_nop_int;
11808  
11809  	if (!pmu->event_idx)
11810  		pmu->event_idx = perf_event_idx_default;
11811  
11812  	list_add_rcu(&pmu->entry, &pmus);
11813  	atomic_set(&pmu->exclusive_cnt, 0);
11814  	ret = 0;
11815  unlock:
11816  	mutex_unlock(&pmus_lock);
11817  
11818  	return ret;
11819  
11820  free_dev:
11821  	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11822  		device_del(pmu->dev);
11823  		put_device(pmu->dev);
11824  	}
11825  
11826  free_idr:
11827  	idr_remove(&pmu_idr, pmu->type);
11828  
11829  free_pdc:
11830  	free_percpu(pmu->pmu_disable_count);
11831  	goto unlock;
11832  }
11833  EXPORT_SYMBOL_GPL(perf_pmu_register);
11834  
perf_pmu_unregister(struct pmu * pmu)11835  void perf_pmu_unregister(struct pmu *pmu)
11836  {
11837  	mutex_lock(&pmus_lock);
11838  	list_del_rcu(&pmu->entry);
11839  
11840  	/*
11841  	 * We dereference the pmu list under both SRCU and regular RCU, so
11842  	 * synchronize against both of those.
11843  	 */
11844  	synchronize_srcu(&pmus_srcu);
11845  	synchronize_rcu();
11846  
11847  	free_percpu(pmu->pmu_disable_count);
11848  	idr_remove(&pmu_idr, pmu->type);
11849  	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11850  		if (pmu->nr_addr_filters)
11851  			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11852  		device_del(pmu->dev);
11853  		put_device(pmu->dev);
11854  	}
11855  	free_pmu_context(pmu);
11856  	mutex_unlock(&pmus_lock);
11857  }
11858  EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11859  
has_extended_regs(struct perf_event * event)11860  static inline bool has_extended_regs(struct perf_event *event)
11861  {
11862  	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11863  	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11864  }
11865  
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11866  static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11867  {
11868  	struct perf_event_context *ctx = NULL;
11869  	int ret;
11870  
11871  	if (!try_module_get(pmu->module))
11872  		return -ENODEV;
11873  
11874  	/*
11875  	 * A number of pmu->event_init() methods iterate the sibling_list to,
11876  	 * for example, validate if the group fits on the PMU. Therefore,
11877  	 * if this is a sibling event, acquire the ctx->mutex to protect
11878  	 * the sibling_list.
11879  	 */
11880  	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11881  		/*
11882  		 * This ctx->mutex can nest when we're called through
11883  		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11884  		 */
11885  		ctx = perf_event_ctx_lock_nested(event->group_leader,
11886  						 SINGLE_DEPTH_NESTING);
11887  		BUG_ON(!ctx);
11888  	}
11889  
11890  	event->pmu = pmu;
11891  	ret = pmu->event_init(event);
11892  
11893  	if (ctx)
11894  		perf_event_ctx_unlock(event->group_leader, ctx);
11895  
11896  	if (!ret) {
11897  		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11898  		    has_extended_regs(event))
11899  			ret = -EOPNOTSUPP;
11900  
11901  		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11902  		    event_has_any_exclude_flag(event))
11903  			ret = -EINVAL;
11904  
11905  		if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
11906  			const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
11907  			struct cpumask *pmu_cpumask = perf_scope_cpumask(pmu->scope);
11908  			int cpu;
11909  
11910  			if (pmu_cpumask && cpumask) {
11911  				cpu = cpumask_any_and(pmu_cpumask, cpumask);
11912  				if (cpu >= nr_cpu_ids)
11913  					ret = -ENODEV;
11914  				else
11915  					event->event_caps |= PERF_EV_CAP_READ_SCOPE;
11916  			} else {
11917  				ret = -ENODEV;
11918  			}
11919  		}
11920  
11921  		if (ret && event->destroy)
11922  			event->destroy(event);
11923  	}
11924  
11925  	if (ret)
11926  		module_put(pmu->module);
11927  
11928  	return ret;
11929  }
11930  
perf_init_event(struct perf_event * event)11931  static struct pmu *perf_init_event(struct perf_event *event)
11932  {
11933  	bool extended_type = false;
11934  	int idx, type, ret;
11935  	struct pmu *pmu;
11936  
11937  	idx = srcu_read_lock(&pmus_srcu);
11938  
11939  	/*
11940  	 * Save original type before calling pmu->event_init() since certain
11941  	 * pmus overwrites event->attr.type to forward event to another pmu.
11942  	 */
11943  	event->orig_type = event->attr.type;
11944  
11945  	/* Try parent's PMU first: */
11946  	if (event->parent && event->parent->pmu) {
11947  		pmu = event->parent->pmu;
11948  		ret = perf_try_init_event(pmu, event);
11949  		if (!ret)
11950  			goto unlock;
11951  	}
11952  
11953  	/*
11954  	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11955  	 * are often aliases for PERF_TYPE_RAW.
11956  	 */
11957  	type = event->attr.type;
11958  	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11959  		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11960  		if (!type) {
11961  			type = PERF_TYPE_RAW;
11962  		} else {
11963  			extended_type = true;
11964  			event->attr.config &= PERF_HW_EVENT_MASK;
11965  		}
11966  	}
11967  
11968  again:
11969  	rcu_read_lock();
11970  	pmu = idr_find(&pmu_idr, type);
11971  	rcu_read_unlock();
11972  	if (pmu) {
11973  		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11974  		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11975  			goto fail;
11976  
11977  		ret = perf_try_init_event(pmu, event);
11978  		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11979  			type = event->attr.type;
11980  			goto again;
11981  		}
11982  
11983  		if (ret)
11984  			pmu = ERR_PTR(ret);
11985  
11986  		goto unlock;
11987  	}
11988  
11989  	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11990  		ret = perf_try_init_event(pmu, event);
11991  		if (!ret)
11992  			goto unlock;
11993  
11994  		if (ret != -ENOENT) {
11995  			pmu = ERR_PTR(ret);
11996  			goto unlock;
11997  		}
11998  	}
11999  fail:
12000  	pmu = ERR_PTR(-ENOENT);
12001  unlock:
12002  	srcu_read_unlock(&pmus_srcu, idx);
12003  
12004  	return pmu;
12005  }
12006  
attach_sb_event(struct perf_event * event)12007  static void attach_sb_event(struct perf_event *event)
12008  {
12009  	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12010  
12011  	raw_spin_lock(&pel->lock);
12012  	list_add_rcu(&event->sb_list, &pel->list);
12013  	raw_spin_unlock(&pel->lock);
12014  }
12015  
12016  /*
12017   * We keep a list of all !task (and therefore per-cpu) events
12018   * that need to receive side-band records.
12019   *
12020   * This avoids having to scan all the various PMU per-cpu contexts
12021   * looking for them.
12022   */
account_pmu_sb_event(struct perf_event * event)12023  static void account_pmu_sb_event(struct perf_event *event)
12024  {
12025  	if (is_sb_event(event))
12026  		attach_sb_event(event);
12027  }
12028  
12029  /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)12030  static void account_freq_event_nohz(void)
12031  {
12032  #ifdef CONFIG_NO_HZ_FULL
12033  	/* Lock so we don't race with concurrent unaccount */
12034  	spin_lock(&nr_freq_lock);
12035  	if (atomic_inc_return(&nr_freq_events) == 1)
12036  		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12037  	spin_unlock(&nr_freq_lock);
12038  #endif
12039  }
12040  
account_freq_event(void)12041  static void account_freq_event(void)
12042  {
12043  	if (tick_nohz_full_enabled())
12044  		account_freq_event_nohz();
12045  	else
12046  		atomic_inc(&nr_freq_events);
12047  }
12048  
12049  
account_event(struct perf_event * event)12050  static void account_event(struct perf_event *event)
12051  {
12052  	bool inc = false;
12053  
12054  	if (event->parent)
12055  		return;
12056  
12057  	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12058  		inc = true;
12059  	if (event->attr.mmap || event->attr.mmap_data)
12060  		atomic_inc(&nr_mmap_events);
12061  	if (event->attr.build_id)
12062  		atomic_inc(&nr_build_id_events);
12063  	if (event->attr.comm)
12064  		atomic_inc(&nr_comm_events);
12065  	if (event->attr.namespaces)
12066  		atomic_inc(&nr_namespaces_events);
12067  	if (event->attr.cgroup)
12068  		atomic_inc(&nr_cgroup_events);
12069  	if (event->attr.task)
12070  		atomic_inc(&nr_task_events);
12071  	if (event->attr.freq)
12072  		account_freq_event();
12073  	if (event->attr.context_switch) {
12074  		atomic_inc(&nr_switch_events);
12075  		inc = true;
12076  	}
12077  	if (has_branch_stack(event))
12078  		inc = true;
12079  	if (is_cgroup_event(event))
12080  		inc = true;
12081  	if (event->attr.ksymbol)
12082  		atomic_inc(&nr_ksymbol_events);
12083  	if (event->attr.bpf_event)
12084  		atomic_inc(&nr_bpf_events);
12085  	if (event->attr.text_poke)
12086  		atomic_inc(&nr_text_poke_events);
12087  
12088  	if (inc) {
12089  		/*
12090  		 * We need the mutex here because static_branch_enable()
12091  		 * must complete *before* the perf_sched_count increment
12092  		 * becomes visible.
12093  		 */
12094  		if (atomic_inc_not_zero(&perf_sched_count))
12095  			goto enabled;
12096  
12097  		mutex_lock(&perf_sched_mutex);
12098  		if (!atomic_read(&perf_sched_count)) {
12099  			static_branch_enable(&perf_sched_events);
12100  			/*
12101  			 * Guarantee that all CPUs observe they key change and
12102  			 * call the perf scheduling hooks before proceeding to
12103  			 * install events that need them.
12104  			 */
12105  			synchronize_rcu();
12106  		}
12107  		/*
12108  		 * Now that we have waited for the sync_sched(), allow further
12109  		 * increments to by-pass the mutex.
12110  		 */
12111  		atomic_inc(&perf_sched_count);
12112  		mutex_unlock(&perf_sched_mutex);
12113  	}
12114  enabled:
12115  
12116  	account_pmu_sb_event(event);
12117  }
12118  
12119  /*
12120   * Allocate and initialize an event structure
12121   */
12122  static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)12123  perf_event_alloc(struct perf_event_attr *attr, int cpu,
12124  		 struct task_struct *task,
12125  		 struct perf_event *group_leader,
12126  		 struct perf_event *parent_event,
12127  		 perf_overflow_handler_t overflow_handler,
12128  		 void *context, int cgroup_fd)
12129  {
12130  	struct pmu *pmu;
12131  	struct perf_event *event;
12132  	struct hw_perf_event *hwc;
12133  	long err = -EINVAL;
12134  	int node;
12135  
12136  	if ((unsigned)cpu >= nr_cpu_ids) {
12137  		if (!task || cpu != -1)
12138  			return ERR_PTR(-EINVAL);
12139  	}
12140  	if (attr->sigtrap && !task) {
12141  		/* Requires a task: avoid signalling random tasks. */
12142  		return ERR_PTR(-EINVAL);
12143  	}
12144  
12145  	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12146  	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
12147  				      node);
12148  	if (!event)
12149  		return ERR_PTR(-ENOMEM);
12150  
12151  	/*
12152  	 * Single events are their own group leaders, with an
12153  	 * empty sibling list:
12154  	 */
12155  	if (!group_leader)
12156  		group_leader = event;
12157  
12158  	mutex_init(&event->child_mutex);
12159  	INIT_LIST_HEAD(&event->child_list);
12160  
12161  	INIT_LIST_HEAD(&event->event_entry);
12162  	INIT_LIST_HEAD(&event->sibling_list);
12163  	INIT_LIST_HEAD(&event->active_list);
12164  	init_event_group(event);
12165  	INIT_LIST_HEAD(&event->rb_entry);
12166  	INIT_LIST_HEAD(&event->active_entry);
12167  	INIT_LIST_HEAD(&event->addr_filters.list);
12168  	INIT_HLIST_NODE(&event->hlist_entry);
12169  
12170  
12171  	init_waitqueue_head(&event->waitq);
12172  	init_irq_work(&event->pending_irq, perf_pending_irq);
12173  	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12174  	init_task_work(&event->pending_task, perf_pending_task);
12175  	rcuwait_init(&event->pending_work_wait);
12176  
12177  	mutex_init(&event->mmap_mutex);
12178  	raw_spin_lock_init(&event->addr_filters.lock);
12179  
12180  	atomic_long_set(&event->refcount, 1);
12181  	event->cpu		= cpu;
12182  	event->attr		= *attr;
12183  	event->group_leader	= group_leader;
12184  	event->pmu		= NULL;
12185  	event->oncpu		= -1;
12186  
12187  	event->parent		= parent_event;
12188  
12189  	event->ns		= get_pid_ns(task_active_pid_ns(current));
12190  	event->id		= atomic64_inc_return(&perf_event_id);
12191  
12192  	event->state		= PERF_EVENT_STATE_INACTIVE;
12193  
12194  	if (parent_event)
12195  		event->event_caps = parent_event->event_caps;
12196  
12197  	if (task) {
12198  		event->attach_state = PERF_ATTACH_TASK;
12199  		/*
12200  		 * XXX pmu::event_init needs to know what task to account to
12201  		 * and we cannot use the ctx information because we need the
12202  		 * pmu before we get a ctx.
12203  		 */
12204  		event->hw.target = get_task_struct(task);
12205  	}
12206  
12207  	event->clock = &local_clock;
12208  	if (parent_event)
12209  		event->clock = parent_event->clock;
12210  
12211  	if (!overflow_handler && parent_event) {
12212  		overflow_handler = parent_event->overflow_handler;
12213  		context = parent_event->overflow_handler_context;
12214  #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12215  		if (parent_event->prog) {
12216  			struct bpf_prog *prog = parent_event->prog;
12217  
12218  			bpf_prog_inc(prog);
12219  			event->prog = prog;
12220  		}
12221  #endif
12222  	}
12223  
12224  	if (overflow_handler) {
12225  		event->overflow_handler	= overflow_handler;
12226  		event->overflow_handler_context = context;
12227  	} else if (is_write_backward(event)){
12228  		event->overflow_handler = perf_event_output_backward;
12229  		event->overflow_handler_context = NULL;
12230  	} else {
12231  		event->overflow_handler = perf_event_output_forward;
12232  		event->overflow_handler_context = NULL;
12233  	}
12234  
12235  	perf_event__state_init(event);
12236  
12237  	pmu = NULL;
12238  
12239  	hwc = &event->hw;
12240  	hwc->sample_period = attr->sample_period;
12241  	if (attr->freq && attr->sample_freq)
12242  		hwc->sample_period = 1;
12243  	hwc->last_period = hwc->sample_period;
12244  
12245  	local64_set(&hwc->period_left, hwc->sample_period);
12246  
12247  	/*
12248  	 * We do not support PERF_SAMPLE_READ on inherited events unless
12249  	 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12250  	 * collect per-thread samples.
12251  	 * See perf_output_read().
12252  	 */
12253  	if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12254  		goto err_ns;
12255  
12256  	if (!has_branch_stack(event))
12257  		event->attr.branch_sample_type = 0;
12258  
12259  	pmu = perf_init_event(event);
12260  	if (IS_ERR(pmu)) {
12261  		err = PTR_ERR(pmu);
12262  		goto err_ns;
12263  	}
12264  
12265  	/*
12266  	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12267  	 * events (they don't make sense as the cgroup will be different
12268  	 * on other CPUs in the uncore mask).
12269  	 */
12270  	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12271  		err = -EINVAL;
12272  		goto err_pmu;
12273  	}
12274  
12275  	if (event->attr.aux_output &&
12276  	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12277  		err = -EOPNOTSUPP;
12278  		goto err_pmu;
12279  	}
12280  
12281  	if (cgroup_fd != -1) {
12282  		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12283  		if (err)
12284  			goto err_pmu;
12285  	}
12286  
12287  	err = exclusive_event_init(event);
12288  	if (err)
12289  		goto err_pmu;
12290  
12291  	if (has_addr_filter(event)) {
12292  		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12293  						    sizeof(struct perf_addr_filter_range),
12294  						    GFP_KERNEL);
12295  		if (!event->addr_filter_ranges) {
12296  			err = -ENOMEM;
12297  			goto err_per_task;
12298  		}
12299  
12300  		/*
12301  		 * Clone the parent's vma offsets: they are valid until exec()
12302  		 * even if the mm is not shared with the parent.
12303  		 */
12304  		if (event->parent) {
12305  			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12306  
12307  			raw_spin_lock_irq(&ifh->lock);
12308  			memcpy(event->addr_filter_ranges,
12309  			       event->parent->addr_filter_ranges,
12310  			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12311  			raw_spin_unlock_irq(&ifh->lock);
12312  		}
12313  
12314  		/* force hw sync on the address filters */
12315  		event->addr_filters_gen = 1;
12316  	}
12317  
12318  	if (!event->parent) {
12319  		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12320  			err = get_callchain_buffers(attr->sample_max_stack);
12321  			if (err)
12322  				goto err_addr_filters;
12323  		}
12324  	}
12325  
12326  	err = security_perf_event_alloc(event);
12327  	if (err)
12328  		goto err_callchain_buffer;
12329  
12330  	/* symmetric to unaccount_event() in _free_event() */
12331  	account_event(event);
12332  
12333  	return event;
12334  
12335  err_callchain_buffer:
12336  	if (!event->parent) {
12337  		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12338  			put_callchain_buffers();
12339  	}
12340  err_addr_filters:
12341  	kfree(event->addr_filter_ranges);
12342  
12343  err_per_task:
12344  	exclusive_event_destroy(event);
12345  
12346  err_pmu:
12347  	if (is_cgroup_event(event))
12348  		perf_detach_cgroup(event);
12349  	if (event->destroy)
12350  		event->destroy(event);
12351  	module_put(pmu->module);
12352  err_ns:
12353  	if (event->hw.target)
12354  		put_task_struct(event->hw.target);
12355  	call_rcu(&event->rcu_head, free_event_rcu);
12356  
12357  	return ERR_PTR(err);
12358  }
12359  
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)12360  static int perf_copy_attr(struct perf_event_attr __user *uattr,
12361  			  struct perf_event_attr *attr)
12362  {
12363  	u32 size;
12364  	int ret;
12365  
12366  	/* Zero the full structure, so that a short copy will be nice. */
12367  	memset(attr, 0, sizeof(*attr));
12368  
12369  	ret = get_user(size, &uattr->size);
12370  	if (ret)
12371  		return ret;
12372  
12373  	/* ABI compatibility quirk: */
12374  	if (!size)
12375  		size = PERF_ATTR_SIZE_VER0;
12376  	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12377  		goto err_size;
12378  
12379  	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12380  	if (ret) {
12381  		if (ret == -E2BIG)
12382  			goto err_size;
12383  		return ret;
12384  	}
12385  
12386  	attr->size = size;
12387  
12388  	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12389  		return -EINVAL;
12390  
12391  	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12392  		return -EINVAL;
12393  
12394  	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12395  		return -EINVAL;
12396  
12397  	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12398  		u64 mask = attr->branch_sample_type;
12399  
12400  		/* only using defined bits */
12401  		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12402  			return -EINVAL;
12403  
12404  		/* at least one branch bit must be set */
12405  		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12406  			return -EINVAL;
12407  
12408  		/* propagate priv level, when not set for branch */
12409  		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12410  
12411  			/* exclude_kernel checked on syscall entry */
12412  			if (!attr->exclude_kernel)
12413  				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12414  
12415  			if (!attr->exclude_user)
12416  				mask |= PERF_SAMPLE_BRANCH_USER;
12417  
12418  			if (!attr->exclude_hv)
12419  				mask |= PERF_SAMPLE_BRANCH_HV;
12420  			/*
12421  			 * adjust user setting (for HW filter setup)
12422  			 */
12423  			attr->branch_sample_type = mask;
12424  		}
12425  		/* privileged levels capture (kernel, hv): check permissions */
12426  		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12427  			ret = perf_allow_kernel(attr);
12428  			if (ret)
12429  				return ret;
12430  		}
12431  	}
12432  
12433  	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12434  		ret = perf_reg_validate(attr->sample_regs_user);
12435  		if (ret)
12436  			return ret;
12437  	}
12438  
12439  	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12440  		if (!arch_perf_have_user_stack_dump())
12441  			return -ENOSYS;
12442  
12443  		/*
12444  		 * We have __u32 type for the size, but so far
12445  		 * we can only use __u16 as maximum due to the
12446  		 * __u16 sample size limit.
12447  		 */
12448  		if (attr->sample_stack_user >= USHRT_MAX)
12449  			return -EINVAL;
12450  		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12451  			return -EINVAL;
12452  	}
12453  
12454  	if (!attr->sample_max_stack)
12455  		attr->sample_max_stack = sysctl_perf_event_max_stack;
12456  
12457  	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12458  		ret = perf_reg_validate(attr->sample_regs_intr);
12459  
12460  #ifndef CONFIG_CGROUP_PERF
12461  	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12462  		return -EINVAL;
12463  #endif
12464  	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12465  	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12466  		return -EINVAL;
12467  
12468  	if (!attr->inherit && attr->inherit_thread)
12469  		return -EINVAL;
12470  
12471  	if (attr->remove_on_exec && attr->enable_on_exec)
12472  		return -EINVAL;
12473  
12474  	if (attr->sigtrap && !attr->remove_on_exec)
12475  		return -EINVAL;
12476  
12477  out:
12478  	return ret;
12479  
12480  err_size:
12481  	put_user(sizeof(*attr), &uattr->size);
12482  	ret = -E2BIG;
12483  	goto out;
12484  }
12485  
mutex_lock_double(struct mutex * a,struct mutex * b)12486  static void mutex_lock_double(struct mutex *a, struct mutex *b)
12487  {
12488  	if (b < a)
12489  		swap(a, b);
12490  
12491  	mutex_lock(a);
12492  	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12493  }
12494  
12495  static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)12496  perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12497  {
12498  	struct perf_buffer *rb = NULL;
12499  	int ret = -EINVAL;
12500  
12501  	if (!output_event) {
12502  		mutex_lock(&event->mmap_mutex);
12503  		goto set;
12504  	}
12505  
12506  	/* don't allow circular references */
12507  	if (event == output_event)
12508  		goto out;
12509  
12510  	/*
12511  	 * Don't allow cross-cpu buffers
12512  	 */
12513  	if (output_event->cpu != event->cpu)
12514  		goto out;
12515  
12516  	/*
12517  	 * If its not a per-cpu rb, it must be the same task.
12518  	 */
12519  	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12520  		goto out;
12521  
12522  	/*
12523  	 * Mixing clocks in the same buffer is trouble you don't need.
12524  	 */
12525  	if (output_event->clock != event->clock)
12526  		goto out;
12527  
12528  	/*
12529  	 * Either writing ring buffer from beginning or from end.
12530  	 * Mixing is not allowed.
12531  	 */
12532  	if (is_write_backward(output_event) != is_write_backward(event))
12533  		goto out;
12534  
12535  	/*
12536  	 * If both events generate aux data, they must be on the same PMU
12537  	 */
12538  	if (has_aux(event) && has_aux(output_event) &&
12539  	    event->pmu != output_event->pmu)
12540  		goto out;
12541  
12542  	/*
12543  	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12544  	 * output_event is already on rb->event_list, and the list iteration
12545  	 * restarts after every removal, it is guaranteed this new event is
12546  	 * observed *OR* if output_event is already removed, it's guaranteed we
12547  	 * observe !rb->mmap_count.
12548  	 */
12549  	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12550  set:
12551  	/* Can't redirect output if we've got an active mmap() */
12552  	if (atomic_read(&event->mmap_count))
12553  		goto unlock;
12554  
12555  	if (output_event) {
12556  		/* get the rb we want to redirect to */
12557  		rb = ring_buffer_get(output_event);
12558  		if (!rb)
12559  			goto unlock;
12560  
12561  		/* did we race against perf_mmap_close() */
12562  		if (!atomic_read(&rb->mmap_count)) {
12563  			ring_buffer_put(rb);
12564  			goto unlock;
12565  		}
12566  	}
12567  
12568  	ring_buffer_attach(event, rb);
12569  
12570  	ret = 0;
12571  unlock:
12572  	mutex_unlock(&event->mmap_mutex);
12573  	if (output_event)
12574  		mutex_unlock(&output_event->mmap_mutex);
12575  
12576  out:
12577  	return ret;
12578  }
12579  
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)12580  static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12581  {
12582  	bool nmi_safe = false;
12583  
12584  	switch (clk_id) {
12585  	case CLOCK_MONOTONIC:
12586  		event->clock = &ktime_get_mono_fast_ns;
12587  		nmi_safe = true;
12588  		break;
12589  
12590  	case CLOCK_MONOTONIC_RAW:
12591  		event->clock = &ktime_get_raw_fast_ns;
12592  		nmi_safe = true;
12593  		break;
12594  
12595  	case CLOCK_REALTIME:
12596  		event->clock = &ktime_get_real_ns;
12597  		break;
12598  
12599  	case CLOCK_BOOTTIME:
12600  		event->clock = &ktime_get_boottime_ns;
12601  		break;
12602  
12603  	case CLOCK_TAI:
12604  		event->clock = &ktime_get_clocktai_ns;
12605  		break;
12606  
12607  	default:
12608  		return -EINVAL;
12609  	}
12610  
12611  	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12612  		return -EINVAL;
12613  
12614  	return 0;
12615  }
12616  
12617  static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)12618  perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12619  {
12620  	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12621  	bool is_capable = perfmon_capable();
12622  
12623  	if (attr->sigtrap) {
12624  		/*
12625  		 * perf_event_attr::sigtrap sends signals to the other task.
12626  		 * Require the current task to also have CAP_KILL.
12627  		 */
12628  		rcu_read_lock();
12629  		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12630  		rcu_read_unlock();
12631  
12632  		/*
12633  		 * If the required capabilities aren't available, checks for
12634  		 * ptrace permissions: upgrade to ATTACH, since sending signals
12635  		 * can effectively change the target task.
12636  		 */
12637  		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12638  	}
12639  
12640  	/*
12641  	 * Preserve ptrace permission check for backwards compatibility. The
12642  	 * ptrace check also includes checks that the current task and other
12643  	 * task have matching uids, and is therefore not done here explicitly.
12644  	 */
12645  	return is_capable || ptrace_may_access(task, ptrace_mode);
12646  }
12647  
12648  /**
12649   * sys_perf_event_open - open a performance event, associate it to a task/cpu
12650   *
12651   * @attr_uptr:	event_id type attributes for monitoring/sampling
12652   * @pid:		target pid
12653   * @cpu:		target cpu
12654   * @group_fd:		group leader event fd
12655   * @flags:		perf event open flags
12656   */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)12657  SYSCALL_DEFINE5(perf_event_open,
12658  		struct perf_event_attr __user *, attr_uptr,
12659  		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12660  {
12661  	struct perf_event *group_leader = NULL, *output_event = NULL;
12662  	struct perf_event_pmu_context *pmu_ctx;
12663  	struct perf_event *event, *sibling;
12664  	struct perf_event_attr attr;
12665  	struct perf_event_context *ctx;
12666  	struct file *event_file = NULL;
12667  	struct fd group = EMPTY_FD;
12668  	struct task_struct *task = NULL;
12669  	struct pmu *pmu;
12670  	int event_fd;
12671  	int move_group = 0;
12672  	int err;
12673  	int f_flags = O_RDWR;
12674  	int cgroup_fd = -1;
12675  
12676  	/* for future expandability... */
12677  	if (flags & ~PERF_FLAG_ALL)
12678  		return -EINVAL;
12679  
12680  	err = perf_copy_attr(attr_uptr, &attr);
12681  	if (err)
12682  		return err;
12683  
12684  	/* Do we allow access to perf_event_open(2) ? */
12685  	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12686  	if (err)
12687  		return err;
12688  
12689  	if (!attr.exclude_kernel) {
12690  		err = perf_allow_kernel(&attr);
12691  		if (err)
12692  			return err;
12693  	}
12694  
12695  	if (attr.namespaces) {
12696  		if (!perfmon_capable())
12697  			return -EACCES;
12698  	}
12699  
12700  	if (attr.freq) {
12701  		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12702  			return -EINVAL;
12703  	} else {
12704  		if (attr.sample_period & (1ULL << 63))
12705  			return -EINVAL;
12706  	}
12707  
12708  	/* Only privileged users can get physical addresses */
12709  	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12710  		err = perf_allow_kernel(&attr);
12711  		if (err)
12712  			return err;
12713  	}
12714  
12715  	/* REGS_INTR can leak data, lockdown must prevent this */
12716  	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12717  		err = security_locked_down(LOCKDOWN_PERF);
12718  		if (err)
12719  			return err;
12720  	}
12721  
12722  	/*
12723  	 * In cgroup mode, the pid argument is used to pass the fd
12724  	 * opened to the cgroup directory in cgroupfs. The cpu argument
12725  	 * designates the cpu on which to monitor threads from that
12726  	 * cgroup.
12727  	 */
12728  	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12729  		return -EINVAL;
12730  
12731  	if (flags & PERF_FLAG_FD_CLOEXEC)
12732  		f_flags |= O_CLOEXEC;
12733  
12734  	event_fd = get_unused_fd_flags(f_flags);
12735  	if (event_fd < 0)
12736  		return event_fd;
12737  
12738  	if (group_fd != -1) {
12739  		err = perf_fget_light(group_fd, &group);
12740  		if (err)
12741  			goto err_fd;
12742  		group_leader = fd_file(group)->private_data;
12743  		if (flags & PERF_FLAG_FD_OUTPUT)
12744  			output_event = group_leader;
12745  		if (flags & PERF_FLAG_FD_NO_GROUP)
12746  			group_leader = NULL;
12747  	}
12748  
12749  	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12750  		task = find_lively_task_by_vpid(pid);
12751  		if (IS_ERR(task)) {
12752  			err = PTR_ERR(task);
12753  			goto err_group_fd;
12754  		}
12755  	}
12756  
12757  	if (task && group_leader &&
12758  	    group_leader->attr.inherit != attr.inherit) {
12759  		err = -EINVAL;
12760  		goto err_task;
12761  	}
12762  
12763  	if (flags & PERF_FLAG_PID_CGROUP)
12764  		cgroup_fd = pid;
12765  
12766  	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12767  				 NULL, NULL, cgroup_fd);
12768  	if (IS_ERR(event)) {
12769  		err = PTR_ERR(event);
12770  		goto err_task;
12771  	}
12772  
12773  	if (is_sampling_event(event)) {
12774  		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12775  			err = -EOPNOTSUPP;
12776  			goto err_alloc;
12777  		}
12778  	}
12779  
12780  	/*
12781  	 * Special case software events and allow them to be part of
12782  	 * any hardware group.
12783  	 */
12784  	pmu = event->pmu;
12785  
12786  	if (attr.use_clockid) {
12787  		err = perf_event_set_clock(event, attr.clockid);
12788  		if (err)
12789  			goto err_alloc;
12790  	}
12791  
12792  	if (pmu->task_ctx_nr == perf_sw_context)
12793  		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12794  
12795  	if (task) {
12796  		err = down_read_interruptible(&task->signal->exec_update_lock);
12797  		if (err)
12798  			goto err_alloc;
12799  
12800  		/*
12801  		 * We must hold exec_update_lock across this and any potential
12802  		 * perf_install_in_context() call for this new event to
12803  		 * serialize against exec() altering our credentials (and the
12804  		 * perf_event_exit_task() that could imply).
12805  		 */
12806  		err = -EACCES;
12807  		if (!perf_check_permission(&attr, task))
12808  			goto err_cred;
12809  	}
12810  
12811  	/*
12812  	 * Get the target context (task or percpu):
12813  	 */
12814  	ctx = find_get_context(task, event);
12815  	if (IS_ERR(ctx)) {
12816  		err = PTR_ERR(ctx);
12817  		goto err_cred;
12818  	}
12819  
12820  	mutex_lock(&ctx->mutex);
12821  
12822  	if (ctx->task == TASK_TOMBSTONE) {
12823  		err = -ESRCH;
12824  		goto err_locked;
12825  	}
12826  
12827  	if (!task) {
12828  		/*
12829  		 * Check if the @cpu we're creating an event for is online.
12830  		 *
12831  		 * We use the perf_cpu_context::ctx::mutex to serialize against
12832  		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12833  		 */
12834  		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12835  
12836  		if (!cpuctx->online) {
12837  			err = -ENODEV;
12838  			goto err_locked;
12839  		}
12840  	}
12841  
12842  	if (group_leader) {
12843  		err = -EINVAL;
12844  
12845  		/*
12846  		 * Do not allow a recursive hierarchy (this new sibling
12847  		 * becoming part of another group-sibling):
12848  		 */
12849  		if (group_leader->group_leader != group_leader)
12850  			goto err_locked;
12851  
12852  		/* All events in a group should have the same clock */
12853  		if (group_leader->clock != event->clock)
12854  			goto err_locked;
12855  
12856  		/*
12857  		 * Make sure we're both events for the same CPU;
12858  		 * grouping events for different CPUs is broken; since
12859  		 * you can never concurrently schedule them anyhow.
12860  		 */
12861  		if (group_leader->cpu != event->cpu)
12862  			goto err_locked;
12863  
12864  		/*
12865  		 * Make sure we're both on the same context; either task or cpu.
12866  		 */
12867  		if (group_leader->ctx != ctx)
12868  			goto err_locked;
12869  
12870  		/*
12871  		 * Only a group leader can be exclusive or pinned
12872  		 */
12873  		if (attr.exclusive || attr.pinned)
12874  			goto err_locked;
12875  
12876  		if (is_software_event(event) &&
12877  		    !in_software_context(group_leader)) {
12878  			/*
12879  			 * If the event is a sw event, but the group_leader
12880  			 * is on hw context.
12881  			 *
12882  			 * Allow the addition of software events to hw
12883  			 * groups, this is safe because software events
12884  			 * never fail to schedule.
12885  			 *
12886  			 * Note the comment that goes with struct
12887  			 * perf_event_pmu_context.
12888  			 */
12889  			pmu = group_leader->pmu_ctx->pmu;
12890  		} else if (!is_software_event(event)) {
12891  			if (is_software_event(group_leader) &&
12892  			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12893  				/*
12894  				 * In case the group is a pure software group, and we
12895  				 * try to add a hardware event, move the whole group to
12896  				 * the hardware context.
12897  				 */
12898  				move_group = 1;
12899  			}
12900  
12901  			/* Don't allow group of multiple hw events from different pmus */
12902  			if (!in_software_context(group_leader) &&
12903  			    group_leader->pmu_ctx->pmu != pmu)
12904  				goto err_locked;
12905  		}
12906  	}
12907  
12908  	/*
12909  	 * Now that we're certain of the pmu; find the pmu_ctx.
12910  	 */
12911  	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12912  	if (IS_ERR(pmu_ctx)) {
12913  		err = PTR_ERR(pmu_ctx);
12914  		goto err_locked;
12915  	}
12916  	event->pmu_ctx = pmu_ctx;
12917  
12918  	if (output_event) {
12919  		err = perf_event_set_output(event, output_event);
12920  		if (err)
12921  			goto err_context;
12922  	}
12923  
12924  	if (!perf_event_validate_size(event)) {
12925  		err = -E2BIG;
12926  		goto err_context;
12927  	}
12928  
12929  	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12930  		err = -EINVAL;
12931  		goto err_context;
12932  	}
12933  
12934  	/*
12935  	 * Must be under the same ctx::mutex as perf_install_in_context(),
12936  	 * because we need to serialize with concurrent event creation.
12937  	 */
12938  	if (!exclusive_event_installable(event, ctx)) {
12939  		err = -EBUSY;
12940  		goto err_context;
12941  	}
12942  
12943  	WARN_ON_ONCE(ctx->parent_ctx);
12944  
12945  	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12946  	if (IS_ERR(event_file)) {
12947  		err = PTR_ERR(event_file);
12948  		event_file = NULL;
12949  		goto err_context;
12950  	}
12951  
12952  	/*
12953  	 * This is the point on no return; we cannot fail hereafter. This is
12954  	 * where we start modifying current state.
12955  	 */
12956  
12957  	if (move_group) {
12958  		perf_remove_from_context(group_leader, 0);
12959  		put_pmu_ctx(group_leader->pmu_ctx);
12960  
12961  		for_each_sibling_event(sibling, group_leader) {
12962  			perf_remove_from_context(sibling, 0);
12963  			put_pmu_ctx(sibling->pmu_ctx);
12964  		}
12965  
12966  		/*
12967  		 * Install the group siblings before the group leader.
12968  		 *
12969  		 * Because a group leader will try and install the entire group
12970  		 * (through the sibling list, which is still in-tact), we can
12971  		 * end up with siblings installed in the wrong context.
12972  		 *
12973  		 * By installing siblings first we NO-OP because they're not
12974  		 * reachable through the group lists.
12975  		 */
12976  		for_each_sibling_event(sibling, group_leader) {
12977  			sibling->pmu_ctx = pmu_ctx;
12978  			get_pmu_ctx(pmu_ctx);
12979  			perf_event__state_init(sibling);
12980  			perf_install_in_context(ctx, sibling, sibling->cpu);
12981  		}
12982  
12983  		/*
12984  		 * Removing from the context ends up with disabled
12985  		 * event. What we want here is event in the initial
12986  		 * startup state, ready to be add into new context.
12987  		 */
12988  		group_leader->pmu_ctx = pmu_ctx;
12989  		get_pmu_ctx(pmu_ctx);
12990  		perf_event__state_init(group_leader);
12991  		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12992  	}
12993  
12994  	/*
12995  	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12996  	 * that we're serialized against further additions and before
12997  	 * perf_install_in_context() which is the point the event is active and
12998  	 * can use these values.
12999  	 */
13000  	perf_event__header_size(event);
13001  	perf_event__id_header_size(event);
13002  
13003  	event->owner = current;
13004  
13005  	perf_install_in_context(ctx, event, event->cpu);
13006  	perf_unpin_context(ctx);
13007  
13008  	mutex_unlock(&ctx->mutex);
13009  
13010  	if (task) {
13011  		up_read(&task->signal->exec_update_lock);
13012  		put_task_struct(task);
13013  	}
13014  
13015  	mutex_lock(&current->perf_event_mutex);
13016  	list_add_tail(&event->owner_entry, &current->perf_event_list);
13017  	mutex_unlock(&current->perf_event_mutex);
13018  
13019  	/*
13020  	 * Drop the reference on the group_event after placing the
13021  	 * new event on the sibling_list. This ensures destruction
13022  	 * of the group leader will find the pointer to itself in
13023  	 * perf_group_detach().
13024  	 */
13025  	fdput(group);
13026  	fd_install(event_fd, event_file);
13027  	return event_fd;
13028  
13029  err_context:
13030  	put_pmu_ctx(event->pmu_ctx);
13031  	event->pmu_ctx = NULL; /* _free_event() */
13032  err_locked:
13033  	mutex_unlock(&ctx->mutex);
13034  	perf_unpin_context(ctx);
13035  	put_ctx(ctx);
13036  err_cred:
13037  	if (task)
13038  		up_read(&task->signal->exec_update_lock);
13039  err_alloc:
13040  	free_event(event);
13041  err_task:
13042  	if (task)
13043  		put_task_struct(task);
13044  err_group_fd:
13045  	fdput(group);
13046  err_fd:
13047  	put_unused_fd(event_fd);
13048  	return err;
13049  }
13050  
13051  /**
13052   * perf_event_create_kernel_counter
13053   *
13054   * @attr: attributes of the counter to create
13055   * @cpu: cpu in which the counter is bound
13056   * @task: task to profile (NULL for percpu)
13057   * @overflow_handler: callback to trigger when we hit the event
13058   * @context: context data could be used in overflow_handler callback
13059   */
13060  struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)13061  perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13062  				 struct task_struct *task,
13063  				 perf_overflow_handler_t overflow_handler,
13064  				 void *context)
13065  {
13066  	struct perf_event_pmu_context *pmu_ctx;
13067  	struct perf_event_context *ctx;
13068  	struct perf_event *event;
13069  	struct pmu *pmu;
13070  	int err;
13071  
13072  	/*
13073  	 * Grouping is not supported for kernel events, neither is 'AUX',
13074  	 * make sure the caller's intentions are adjusted.
13075  	 */
13076  	if (attr->aux_output)
13077  		return ERR_PTR(-EINVAL);
13078  
13079  	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13080  				 overflow_handler, context, -1);
13081  	if (IS_ERR(event)) {
13082  		err = PTR_ERR(event);
13083  		goto err;
13084  	}
13085  
13086  	/* Mark owner so we could distinguish it from user events. */
13087  	event->owner = TASK_TOMBSTONE;
13088  	pmu = event->pmu;
13089  
13090  	if (pmu->task_ctx_nr == perf_sw_context)
13091  		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13092  
13093  	/*
13094  	 * Get the target context (task or percpu):
13095  	 */
13096  	ctx = find_get_context(task, event);
13097  	if (IS_ERR(ctx)) {
13098  		err = PTR_ERR(ctx);
13099  		goto err_alloc;
13100  	}
13101  
13102  	WARN_ON_ONCE(ctx->parent_ctx);
13103  	mutex_lock(&ctx->mutex);
13104  	if (ctx->task == TASK_TOMBSTONE) {
13105  		err = -ESRCH;
13106  		goto err_unlock;
13107  	}
13108  
13109  	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13110  	if (IS_ERR(pmu_ctx)) {
13111  		err = PTR_ERR(pmu_ctx);
13112  		goto err_unlock;
13113  	}
13114  	event->pmu_ctx = pmu_ctx;
13115  
13116  	if (!task) {
13117  		/*
13118  		 * Check if the @cpu we're creating an event for is online.
13119  		 *
13120  		 * We use the perf_cpu_context::ctx::mutex to serialize against
13121  		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13122  		 */
13123  		struct perf_cpu_context *cpuctx =
13124  			container_of(ctx, struct perf_cpu_context, ctx);
13125  		if (!cpuctx->online) {
13126  			err = -ENODEV;
13127  			goto err_pmu_ctx;
13128  		}
13129  	}
13130  
13131  	if (!exclusive_event_installable(event, ctx)) {
13132  		err = -EBUSY;
13133  		goto err_pmu_ctx;
13134  	}
13135  
13136  	perf_install_in_context(ctx, event, event->cpu);
13137  	perf_unpin_context(ctx);
13138  	mutex_unlock(&ctx->mutex);
13139  
13140  	return event;
13141  
13142  err_pmu_ctx:
13143  	put_pmu_ctx(pmu_ctx);
13144  	event->pmu_ctx = NULL; /* _free_event() */
13145  err_unlock:
13146  	mutex_unlock(&ctx->mutex);
13147  	perf_unpin_context(ctx);
13148  	put_ctx(ctx);
13149  err_alloc:
13150  	free_event(event);
13151  err:
13152  	return ERR_PTR(err);
13153  }
13154  EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13155  
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)13156  static void __perf_pmu_remove(struct perf_event_context *ctx,
13157  			      int cpu, struct pmu *pmu,
13158  			      struct perf_event_groups *groups,
13159  			      struct list_head *events)
13160  {
13161  	struct perf_event *event, *sibling;
13162  
13163  	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13164  		perf_remove_from_context(event, 0);
13165  		put_pmu_ctx(event->pmu_ctx);
13166  		list_add(&event->migrate_entry, events);
13167  
13168  		for_each_sibling_event(sibling, event) {
13169  			perf_remove_from_context(sibling, 0);
13170  			put_pmu_ctx(sibling->pmu_ctx);
13171  			list_add(&sibling->migrate_entry, events);
13172  		}
13173  	}
13174  }
13175  
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)13176  static void __perf_pmu_install_event(struct pmu *pmu,
13177  				     struct perf_event_context *ctx,
13178  				     int cpu, struct perf_event *event)
13179  {
13180  	struct perf_event_pmu_context *epc;
13181  	struct perf_event_context *old_ctx = event->ctx;
13182  
13183  	get_ctx(ctx); /* normally find_get_context() */
13184  
13185  	event->cpu = cpu;
13186  	epc = find_get_pmu_context(pmu, ctx, event);
13187  	event->pmu_ctx = epc;
13188  
13189  	if (event->state >= PERF_EVENT_STATE_OFF)
13190  		event->state = PERF_EVENT_STATE_INACTIVE;
13191  	perf_install_in_context(ctx, event, cpu);
13192  
13193  	/*
13194  	 * Now that event->ctx is updated and visible, put the old ctx.
13195  	 */
13196  	put_ctx(old_ctx);
13197  }
13198  
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)13199  static void __perf_pmu_install(struct perf_event_context *ctx,
13200  			       int cpu, struct pmu *pmu, struct list_head *events)
13201  {
13202  	struct perf_event *event, *tmp;
13203  
13204  	/*
13205  	 * Re-instate events in 2 passes.
13206  	 *
13207  	 * Skip over group leaders and only install siblings on this first
13208  	 * pass, siblings will not get enabled without a leader, however a
13209  	 * leader will enable its siblings, even if those are still on the old
13210  	 * context.
13211  	 */
13212  	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13213  		if (event->group_leader == event)
13214  			continue;
13215  
13216  		list_del(&event->migrate_entry);
13217  		__perf_pmu_install_event(pmu, ctx, cpu, event);
13218  	}
13219  
13220  	/*
13221  	 * Once all the siblings are setup properly, install the group leaders
13222  	 * to make it go.
13223  	 */
13224  	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13225  		list_del(&event->migrate_entry);
13226  		__perf_pmu_install_event(pmu, ctx, cpu, event);
13227  	}
13228  }
13229  
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)13230  void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13231  {
13232  	struct perf_event_context *src_ctx, *dst_ctx;
13233  	LIST_HEAD(events);
13234  
13235  	/*
13236  	 * Since per-cpu context is persistent, no need to grab an extra
13237  	 * reference.
13238  	 */
13239  	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13240  	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13241  
13242  	/*
13243  	 * See perf_event_ctx_lock() for comments on the details
13244  	 * of swizzling perf_event::ctx.
13245  	 */
13246  	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13247  
13248  	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13249  	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13250  
13251  	if (!list_empty(&events)) {
13252  		/*
13253  		 * Wait for the events to quiesce before re-instating them.
13254  		 */
13255  		synchronize_rcu();
13256  
13257  		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13258  	}
13259  
13260  	mutex_unlock(&dst_ctx->mutex);
13261  	mutex_unlock(&src_ctx->mutex);
13262  }
13263  EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13264  
sync_child_event(struct perf_event * child_event)13265  static void sync_child_event(struct perf_event *child_event)
13266  {
13267  	struct perf_event *parent_event = child_event->parent;
13268  	u64 child_val;
13269  
13270  	if (child_event->attr.inherit_stat) {
13271  		struct task_struct *task = child_event->ctx->task;
13272  
13273  		if (task && task != TASK_TOMBSTONE)
13274  			perf_event_read_event(child_event, task);
13275  	}
13276  
13277  	child_val = perf_event_count(child_event, false);
13278  
13279  	/*
13280  	 * Add back the child's count to the parent's count:
13281  	 */
13282  	atomic64_add(child_val, &parent_event->child_count);
13283  	atomic64_add(child_event->total_time_enabled,
13284  		     &parent_event->child_total_time_enabled);
13285  	atomic64_add(child_event->total_time_running,
13286  		     &parent_event->child_total_time_running);
13287  }
13288  
13289  static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)13290  perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13291  {
13292  	struct perf_event *parent_event = event->parent;
13293  	unsigned long detach_flags = 0;
13294  
13295  	if (parent_event) {
13296  		/*
13297  		 * Do not destroy the 'original' grouping; because of the
13298  		 * context switch optimization the original events could've
13299  		 * ended up in a random child task.
13300  		 *
13301  		 * If we were to destroy the original group, all group related
13302  		 * operations would cease to function properly after this
13303  		 * random child dies.
13304  		 *
13305  		 * Do destroy all inherited groups, we don't care about those
13306  		 * and being thorough is better.
13307  		 */
13308  		detach_flags = DETACH_GROUP | DETACH_CHILD;
13309  		mutex_lock(&parent_event->child_mutex);
13310  	}
13311  
13312  	perf_remove_from_context(event, detach_flags);
13313  
13314  	raw_spin_lock_irq(&ctx->lock);
13315  	if (event->state > PERF_EVENT_STATE_EXIT)
13316  		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13317  	raw_spin_unlock_irq(&ctx->lock);
13318  
13319  	/*
13320  	 * Child events can be freed.
13321  	 */
13322  	if (parent_event) {
13323  		mutex_unlock(&parent_event->child_mutex);
13324  		/*
13325  		 * Kick perf_poll() for is_event_hup();
13326  		 */
13327  		perf_event_wakeup(parent_event);
13328  		free_event(event);
13329  		put_event(parent_event);
13330  		return;
13331  	}
13332  
13333  	/*
13334  	 * Parent events are governed by their filedesc, retain them.
13335  	 */
13336  	perf_event_wakeup(event);
13337  }
13338  
perf_event_exit_task_context(struct task_struct * child)13339  static void perf_event_exit_task_context(struct task_struct *child)
13340  {
13341  	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13342  	struct perf_event *child_event, *next;
13343  
13344  	WARN_ON_ONCE(child != current);
13345  
13346  	child_ctx = perf_pin_task_context(child);
13347  	if (!child_ctx)
13348  		return;
13349  
13350  	/*
13351  	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13352  	 * ctx::mutex over the entire thing. This serializes against almost
13353  	 * everything that wants to access the ctx.
13354  	 *
13355  	 * The exception is sys_perf_event_open() /
13356  	 * perf_event_create_kernel_count() which does find_get_context()
13357  	 * without ctx::mutex (it cannot because of the move_group double mutex
13358  	 * lock thing). See the comments in perf_install_in_context().
13359  	 */
13360  	mutex_lock(&child_ctx->mutex);
13361  
13362  	/*
13363  	 * In a single ctx::lock section, de-schedule the events and detach the
13364  	 * context from the task such that we cannot ever get it scheduled back
13365  	 * in.
13366  	 */
13367  	raw_spin_lock_irq(&child_ctx->lock);
13368  	task_ctx_sched_out(child_ctx, NULL, EVENT_ALL);
13369  
13370  	/*
13371  	 * Now that the context is inactive, destroy the task <-> ctx relation
13372  	 * and mark the context dead.
13373  	 */
13374  	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13375  	put_ctx(child_ctx); /* cannot be last */
13376  	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13377  	put_task_struct(current); /* cannot be last */
13378  
13379  	clone_ctx = unclone_ctx(child_ctx);
13380  	raw_spin_unlock_irq(&child_ctx->lock);
13381  
13382  	if (clone_ctx)
13383  		put_ctx(clone_ctx);
13384  
13385  	/*
13386  	 * Report the task dead after unscheduling the events so that we
13387  	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13388  	 * get a few PERF_RECORD_READ events.
13389  	 */
13390  	perf_event_task(child, child_ctx, 0);
13391  
13392  	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13393  		perf_event_exit_event(child_event, child_ctx);
13394  
13395  	mutex_unlock(&child_ctx->mutex);
13396  
13397  	put_ctx(child_ctx);
13398  }
13399  
13400  /*
13401   * When a child task exits, feed back event values to parent events.
13402   *
13403   * Can be called with exec_update_lock held when called from
13404   * setup_new_exec().
13405   */
perf_event_exit_task(struct task_struct * child)13406  void perf_event_exit_task(struct task_struct *child)
13407  {
13408  	struct perf_event *event, *tmp;
13409  
13410  	mutex_lock(&child->perf_event_mutex);
13411  	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13412  				 owner_entry) {
13413  		list_del_init(&event->owner_entry);
13414  
13415  		/*
13416  		 * Ensure the list deletion is visible before we clear
13417  		 * the owner, closes a race against perf_release() where
13418  		 * we need to serialize on the owner->perf_event_mutex.
13419  		 */
13420  		smp_store_release(&event->owner, NULL);
13421  	}
13422  	mutex_unlock(&child->perf_event_mutex);
13423  
13424  	perf_event_exit_task_context(child);
13425  
13426  	/*
13427  	 * The perf_event_exit_task_context calls perf_event_task
13428  	 * with child's task_ctx, which generates EXIT events for
13429  	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13430  	 * At this point we need to send EXIT events to cpu contexts.
13431  	 */
13432  	perf_event_task(child, NULL, 0);
13433  }
13434  
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)13435  static void perf_free_event(struct perf_event *event,
13436  			    struct perf_event_context *ctx)
13437  {
13438  	struct perf_event *parent = event->parent;
13439  
13440  	if (WARN_ON_ONCE(!parent))
13441  		return;
13442  
13443  	mutex_lock(&parent->child_mutex);
13444  	list_del_init(&event->child_list);
13445  	mutex_unlock(&parent->child_mutex);
13446  
13447  	put_event(parent);
13448  
13449  	raw_spin_lock_irq(&ctx->lock);
13450  	perf_group_detach(event);
13451  	list_del_event(event, ctx);
13452  	raw_spin_unlock_irq(&ctx->lock);
13453  	free_event(event);
13454  }
13455  
13456  /*
13457   * Free a context as created by inheritance by perf_event_init_task() below,
13458   * used by fork() in case of fail.
13459   *
13460   * Even though the task has never lived, the context and events have been
13461   * exposed through the child_list, so we must take care tearing it all down.
13462   */
perf_event_free_task(struct task_struct * task)13463  void perf_event_free_task(struct task_struct *task)
13464  {
13465  	struct perf_event_context *ctx;
13466  	struct perf_event *event, *tmp;
13467  
13468  	ctx = rcu_access_pointer(task->perf_event_ctxp);
13469  	if (!ctx)
13470  		return;
13471  
13472  	mutex_lock(&ctx->mutex);
13473  	raw_spin_lock_irq(&ctx->lock);
13474  	/*
13475  	 * Destroy the task <-> ctx relation and mark the context dead.
13476  	 *
13477  	 * This is important because even though the task hasn't been
13478  	 * exposed yet the context has been (through child_list).
13479  	 */
13480  	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13481  	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13482  	put_task_struct(task); /* cannot be last */
13483  	raw_spin_unlock_irq(&ctx->lock);
13484  
13485  
13486  	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13487  		perf_free_event(event, ctx);
13488  
13489  	mutex_unlock(&ctx->mutex);
13490  
13491  	/*
13492  	 * perf_event_release_kernel() could've stolen some of our
13493  	 * child events and still have them on its free_list. In that
13494  	 * case we must wait for these events to have been freed (in
13495  	 * particular all their references to this task must've been
13496  	 * dropped).
13497  	 *
13498  	 * Without this copy_process() will unconditionally free this
13499  	 * task (irrespective of its reference count) and
13500  	 * _free_event()'s put_task_struct(event->hw.target) will be a
13501  	 * use-after-free.
13502  	 *
13503  	 * Wait for all events to drop their context reference.
13504  	 */
13505  	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13506  	put_ctx(ctx); /* must be last */
13507  }
13508  
perf_event_delayed_put(struct task_struct * task)13509  void perf_event_delayed_put(struct task_struct *task)
13510  {
13511  	WARN_ON_ONCE(task->perf_event_ctxp);
13512  }
13513  
perf_event_get(unsigned int fd)13514  struct file *perf_event_get(unsigned int fd)
13515  {
13516  	struct file *file = fget(fd);
13517  	if (!file)
13518  		return ERR_PTR(-EBADF);
13519  
13520  	if (file->f_op != &perf_fops) {
13521  		fput(file);
13522  		return ERR_PTR(-EBADF);
13523  	}
13524  
13525  	return file;
13526  }
13527  
perf_get_event(struct file * file)13528  const struct perf_event *perf_get_event(struct file *file)
13529  {
13530  	if (file->f_op != &perf_fops)
13531  		return ERR_PTR(-EINVAL);
13532  
13533  	return file->private_data;
13534  }
13535  
perf_event_attrs(struct perf_event * event)13536  const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13537  {
13538  	if (!event)
13539  		return ERR_PTR(-EINVAL);
13540  
13541  	return &event->attr;
13542  }
13543  
perf_allow_kernel(struct perf_event_attr * attr)13544  int perf_allow_kernel(struct perf_event_attr *attr)
13545  {
13546  	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13547  		return -EACCES;
13548  
13549  	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13550  }
13551  EXPORT_SYMBOL_GPL(perf_allow_kernel);
13552  
13553  /*
13554   * Inherit an event from parent task to child task.
13555   *
13556   * Returns:
13557   *  - valid pointer on success
13558   *  - NULL for orphaned events
13559   *  - IS_ERR() on error
13560   */
13561  static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13562  inherit_event(struct perf_event *parent_event,
13563  	      struct task_struct *parent,
13564  	      struct perf_event_context *parent_ctx,
13565  	      struct task_struct *child,
13566  	      struct perf_event *group_leader,
13567  	      struct perf_event_context *child_ctx)
13568  {
13569  	enum perf_event_state parent_state = parent_event->state;
13570  	struct perf_event_pmu_context *pmu_ctx;
13571  	struct perf_event *child_event;
13572  	unsigned long flags;
13573  
13574  	/*
13575  	 * Instead of creating recursive hierarchies of events,
13576  	 * we link inherited events back to the original parent,
13577  	 * which has a filp for sure, which we use as the reference
13578  	 * count:
13579  	 */
13580  	if (parent_event->parent)
13581  		parent_event = parent_event->parent;
13582  
13583  	child_event = perf_event_alloc(&parent_event->attr,
13584  					   parent_event->cpu,
13585  					   child,
13586  					   group_leader, parent_event,
13587  					   NULL, NULL, -1);
13588  	if (IS_ERR(child_event))
13589  		return child_event;
13590  
13591  	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13592  	if (IS_ERR(pmu_ctx)) {
13593  		free_event(child_event);
13594  		return ERR_CAST(pmu_ctx);
13595  	}
13596  	child_event->pmu_ctx = pmu_ctx;
13597  
13598  	/*
13599  	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13600  	 * must be under the same lock in order to serialize against
13601  	 * perf_event_release_kernel(), such that either we must observe
13602  	 * is_orphaned_event() or they will observe us on the child_list.
13603  	 */
13604  	mutex_lock(&parent_event->child_mutex);
13605  	if (is_orphaned_event(parent_event) ||
13606  	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13607  		mutex_unlock(&parent_event->child_mutex);
13608  		/* task_ctx_data is freed with child_ctx */
13609  		free_event(child_event);
13610  		return NULL;
13611  	}
13612  
13613  	get_ctx(child_ctx);
13614  
13615  	/*
13616  	 * Make the child state follow the state of the parent event,
13617  	 * not its attr.disabled bit.  We hold the parent's mutex,
13618  	 * so we won't race with perf_event_{en, dis}able_family.
13619  	 */
13620  	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13621  		child_event->state = PERF_EVENT_STATE_INACTIVE;
13622  	else
13623  		child_event->state = PERF_EVENT_STATE_OFF;
13624  
13625  	if (parent_event->attr.freq) {
13626  		u64 sample_period = parent_event->hw.sample_period;
13627  		struct hw_perf_event *hwc = &child_event->hw;
13628  
13629  		hwc->sample_period = sample_period;
13630  		hwc->last_period   = sample_period;
13631  
13632  		local64_set(&hwc->period_left, sample_period);
13633  	}
13634  
13635  	child_event->ctx = child_ctx;
13636  	child_event->overflow_handler = parent_event->overflow_handler;
13637  	child_event->overflow_handler_context
13638  		= parent_event->overflow_handler_context;
13639  
13640  	/*
13641  	 * Precalculate sample_data sizes
13642  	 */
13643  	perf_event__header_size(child_event);
13644  	perf_event__id_header_size(child_event);
13645  
13646  	/*
13647  	 * Link it up in the child's context:
13648  	 */
13649  	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13650  	add_event_to_ctx(child_event, child_ctx);
13651  	child_event->attach_state |= PERF_ATTACH_CHILD;
13652  	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13653  
13654  	/*
13655  	 * Link this into the parent event's child list
13656  	 */
13657  	list_add_tail(&child_event->child_list, &parent_event->child_list);
13658  	mutex_unlock(&parent_event->child_mutex);
13659  
13660  	return child_event;
13661  }
13662  
13663  /*
13664   * Inherits an event group.
13665   *
13666   * This will quietly suppress orphaned events; !inherit_event() is not an error.
13667   * This matches with perf_event_release_kernel() removing all child events.
13668   *
13669   * Returns:
13670   *  - 0 on success
13671   *  - <0 on error
13672   */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)13673  static int inherit_group(struct perf_event *parent_event,
13674  	      struct task_struct *parent,
13675  	      struct perf_event_context *parent_ctx,
13676  	      struct task_struct *child,
13677  	      struct perf_event_context *child_ctx)
13678  {
13679  	struct perf_event *leader;
13680  	struct perf_event *sub;
13681  	struct perf_event *child_ctr;
13682  
13683  	leader = inherit_event(parent_event, parent, parent_ctx,
13684  				 child, NULL, child_ctx);
13685  	if (IS_ERR(leader))
13686  		return PTR_ERR(leader);
13687  	/*
13688  	 * @leader can be NULL here because of is_orphaned_event(). In this
13689  	 * case inherit_event() will create individual events, similar to what
13690  	 * perf_group_detach() would do anyway.
13691  	 */
13692  	for_each_sibling_event(sub, parent_event) {
13693  		child_ctr = inherit_event(sub, parent, parent_ctx,
13694  					    child, leader, child_ctx);
13695  		if (IS_ERR(child_ctr))
13696  			return PTR_ERR(child_ctr);
13697  
13698  		if (sub->aux_event == parent_event && child_ctr &&
13699  		    !perf_get_aux_event(child_ctr, leader))
13700  			return -EINVAL;
13701  	}
13702  	if (leader)
13703  		leader->group_generation = parent_event->group_generation;
13704  	return 0;
13705  }
13706  
13707  /*
13708   * Creates the child task context and tries to inherit the event-group.
13709   *
13710   * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13711   * inherited_all set when we 'fail' to inherit an orphaned event; this is
13712   * consistent with perf_event_release_kernel() removing all child events.
13713   *
13714   * Returns:
13715   *  - 0 on success
13716   *  - <0 on error
13717   */
13718  static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)13719  inherit_task_group(struct perf_event *event, struct task_struct *parent,
13720  		   struct perf_event_context *parent_ctx,
13721  		   struct task_struct *child,
13722  		   u64 clone_flags, int *inherited_all)
13723  {
13724  	struct perf_event_context *child_ctx;
13725  	int ret;
13726  
13727  	if (!event->attr.inherit ||
13728  	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13729  	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13730  	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13731  		*inherited_all = 0;
13732  		return 0;
13733  	}
13734  
13735  	child_ctx = child->perf_event_ctxp;
13736  	if (!child_ctx) {
13737  		/*
13738  		 * This is executed from the parent task context, so
13739  		 * inherit events that have been marked for cloning.
13740  		 * First allocate and initialize a context for the
13741  		 * child.
13742  		 */
13743  		child_ctx = alloc_perf_context(child);
13744  		if (!child_ctx)
13745  			return -ENOMEM;
13746  
13747  		child->perf_event_ctxp = child_ctx;
13748  	}
13749  
13750  	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13751  	if (ret)
13752  		*inherited_all = 0;
13753  
13754  	return ret;
13755  }
13756  
13757  /*
13758   * Initialize the perf_event context in task_struct
13759   */
perf_event_init_context(struct task_struct * child,u64 clone_flags)13760  static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13761  {
13762  	struct perf_event_context *child_ctx, *parent_ctx;
13763  	struct perf_event_context *cloned_ctx;
13764  	struct perf_event *event;
13765  	struct task_struct *parent = current;
13766  	int inherited_all = 1;
13767  	unsigned long flags;
13768  	int ret = 0;
13769  
13770  	if (likely(!parent->perf_event_ctxp))
13771  		return 0;
13772  
13773  	/*
13774  	 * If the parent's context is a clone, pin it so it won't get
13775  	 * swapped under us.
13776  	 */
13777  	parent_ctx = perf_pin_task_context(parent);
13778  	if (!parent_ctx)
13779  		return 0;
13780  
13781  	/*
13782  	 * No need to check if parent_ctx != NULL here; since we saw
13783  	 * it non-NULL earlier, the only reason for it to become NULL
13784  	 * is if we exit, and since we're currently in the middle of
13785  	 * a fork we can't be exiting at the same time.
13786  	 */
13787  
13788  	/*
13789  	 * Lock the parent list. No need to lock the child - not PID
13790  	 * hashed yet and not running, so nobody can access it.
13791  	 */
13792  	mutex_lock(&parent_ctx->mutex);
13793  
13794  	/*
13795  	 * We dont have to disable NMIs - we are only looking at
13796  	 * the list, not manipulating it:
13797  	 */
13798  	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13799  		ret = inherit_task_group(event, parent, parent_ctx,
13800  					 child, clone_flags, &inherited_all);
13801  		if (ret)
13802  			goto out_unlock;
13803  	}
13804  
13805  	/*
13806  	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13807  	 * to allocations, but we need to prevent rotation because
13808  	 * rotate_ctx() will change the list from interrupt context.
13809  	 */
13810  	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13811  	parent_ctx->rotate_disable = 1;
13812  	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13813  
13814  	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13815  		ret = inherit_task_group(event, parent, parent_ctx,
13816  					 child, clone_flags, &inherited_all);
13817  		if (ret)
13818  			goto out_unlock;
13819  	}
13820  
13821  	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13822  	parent_ctx->rotate_disable = 0;
13823  
13824  	child_ctx = child->perf_event_ctxp;
13825  
13826  	if (child_ctx && inherited_all) {
13827  		/*
13828  		 * Mark the child context as a clone of the parent
13829  		 * context, or of whatever the parent is a clone of.
13830  		 *
13831  		 * Note that if the parent is a clone, the holding of
13832  		 * parent_ctx->lock avoids it from being uncloned.
13833  		 */
13834  		cloned_ctx = parent_ctx->parent_ctx;
13835  		if (cloned_ctx) {
13836  			child_ctx->parent_ctx = cloned_ctx;
13837  			child_ctx->parent_gen = parent_ctx->parent_gen;
13838  		} else {
13839  			child_ctx->parent_ctx = parent_ctx;
13840  			child_ctx->parent_gen = parent_ctx->generation;
13841  		}
13842  		get_ctx(child_ctx->parent_ctx);
13843  	}
13844  
13845  	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13846  out_unlock:
13847  	mutex_unlock(&parent_ctx->mutex);
13848  
13849  	perf_unpin_context(parent_ctx);
13850  	put_ctx(parent_ctx);
13851  
13852  	return ret;
13853  }
13854  
13855  /*
13856   * Initialize the perf_event context in task_struct
13857   */
perf_event_init_task(struct task_struct * child,u64 clone_flags)13858  int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13859  {
13860  	int ret;
13861  
13862  	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
13863  	child->perf_event_ctxp = NULL;
13864  	mutex_init(&child->perf_event_mutex);
13865  	INIT_LIST_HEAD(&child->perf_event_list);
13866  
13867  	ret = perf_event_init_context(child, clone_flags);
13868  	if (ret) {
13869  		perf_event_free_task(child);
13870  		return ret;
13871  	}
13872  
13873  	return 0;
13874  }
13875  
perf_event_init_all_cpus(void)13876  static void __init perf_event_init_all_cpus(void)
13877  {
13878  	struct swevent_htable *swhash;
13879  	struct perf_cpu_context *cpuctx;
13880  	int cpu;
13881  
13882  	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13883  	zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
13884  	zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
13885  	zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
13886  	zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
13887  	zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
13888  
13889  
13890  	for_each_possible_cpu(cpu) {
13891  		swhash = &per_cpu(swevent_htable, cpu);
13892  		mutex_init(&swhash->hlist_mutex);
13893  
13894  		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13895  		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13896  
13897  		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13898  
13899  		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13900  		__perf_event_init_context(&cpuctx->ctx);
13901  		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13902  		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13903  		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13904  		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13905  		cpuctx->heap = cpuctx->heap_default;
13906  	}
13907  }
13908  
perf_swevent_init_cpu(unsigned int cpu)13909  static void perf_swevent_init_cpu(unsigned int cpu)
13910  {
13911  	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13912  
13913  	mutex_lock(&swhash->hlist_mutex);
13914  	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13915  		struct swevent_hlist *hlist;
13916  
13917  		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13918  		WARN_ON(!hlist);
13919  		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13920  	}
13921  	mutex_unlock(&swhash->hlist_mutex);
13922  }
13923  
13924  #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)13925  static void __perf_event_exit_context(void *__info)
13926  {
13927  	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13928  	struct perf_event_context *ctx = __info;
13929  	struct perf_event *event;
13930  
13931  	raw_spin_lock(&ctx->lock);
13932  	ctx_sched_out(ctx, NULL, EVENT_TIME);
13933  	list_for_each_entry(event, &ctx->event_list, event_entry)
13934  		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13935  	raw_spin_unlock(&ctx->lock);
13936  }
13937  
perf_event_clear_cpumask(unsigned int cpu)13938  static void perf_event_clear_cpumask(unsigned int cpu)
13939  {
13940  	int target[PERF_PMU_MAX_SCOPE];
13941  	unsigned int scope;
13942  	struct pmu *pmu;
13943  
13944  	cpumask_clear_cpu(cpu, perf_online_mask);
13945  
13946  	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
13947  		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
13948  		struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
13949  
13950  		target[scope] = -1;
13951  		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
13952  			continue;
13953  
13954  		if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
13955  			continue;
13956  		target[scope] = cpumask_any_but(cpumask, cpu);
13957  		if (target[scope] < nr_cpu_ids)
13958  			cpumask_set_cpu(target[scope], pmu_cpumask);
13959  	}
13960  
13961  	/* migrate */
13962  	list_for_each_entry(pmu, &pmus, entry) {
13963  		if (pmu->scope == PERF_PMU_SCOPE_NONE ||
13964  		    WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
13965  			continue;
13966  
13967  		if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
13968  			perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
13969  	}
13970  }
13971  
perf_event_exit_cpu_context(int cpu)13972  static void perf_event_exit_cpu_context(int cpu)
13973  {
13974  	struct perf_cpu_context *cpuctx;
13975  	struct perf_event_context *ctx;
13976  
13977  	// XXX simplify cpuctx->online
13978  	mutex_lock(&pmus_lock);
13979  	/*
13980  	 * Clear the cpumasks, and migrate to other CPUs if possible.
13981  	 * Must be invoked before the __perf_event_exit_context.
13982  	 */
13983  	perf_event_clear_cpumask(cpu);
13984  	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13985  	ctx = &cpuctx->ctx;
13986  
13987  	mutex_lock(&ctx->mutex);
13988  	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13989  	cpuctx->online = 0;
13990  	mutex_unlock(&ctx->mutex);
13991  	mutex_unlock(&pmus_lock);
13992  }
13993  #else
13994  
perf_event_exit_cpu_context(int cpu)13995  static void perf_event_exit_cpu_context(int cpu) { }
13996  
13997  #endif
13998  
perf_event_setup_cpumask(unsigned int cpu)13999  static void perf_event_setup_cpumask(unsigned int cpu)
14000  {
14001  	struct cpumask *pmu_cpumask;
14002  	unsigned int scope;
14003  
14004  	/*
14005  	 * Early boot stage, the cpumask hasn't been set yet.
14006  	 * The perf_online_<domain>_masks includes the first CPU of each domain.
14007  	 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14008  	 */
14009  	if (cpumask_empty(perf_online_mask)) {
14010  		for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14011  			pmu_cpumask = perf_scope_cpumask(scope);
14012  			if (WARN_ON_ONCE(!pmu_cpumask))
14013  				continue;
14014  			cpumask_set_cpu(cpu, pmu_cpumask);
14015  		}
14016  		goto end;
14017  	}
14018  
14019  	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14020  		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14021  
14022  		pmu_cpumask = perf_scope_cpumask(scope);
14023  
14024  		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14025  			continue;
14026  
14027  		if (!cpumask_empty(cpumask) &&
14028  		    cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14029  			cpumask_set_cpu(cpu, pmu_cpumask);
14030  	}
14031  end:
14032  	cpumask_set_cpu(cpu, perf_online_mask);
14033  }
14034  
perf_event_init_cpu(unsigned int cpu)14035  int perf_event_init_cpu(unsigned int cpu)
14036  {
14037  	struct perf_cpu_context *cpuctx;
14038  	struct perf_event_context *ctx;
14039  
14040  	perf_swevent_init_cpu(cpu);
14041  
14042  	mutex_lock(&pmus_lock);
14043  	perf_event_setup_cpumask(cpu);
14044  	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14045  	ctx = &cpuctx->ctx;
14046  
14047  	mutex_lock(&ctx->mutex);
14048  	cpuctx->online = 1;
14049  	mutex_unlock(&ctx->mutex);
14050  	mutex_unlock(&pmus_lock);
14051  
14052  	return 0;
14053  }
14054  
perf_event_exit_cpu(unsigned int cpu)14055  int perf_event_exit_cpu(unsigned int cpu)
14056  {
14057  	perf_event_exit_cpu_context(cpu);
14058  	return 0;
14059  }
14060  
14061  static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)14062  perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14063  {
14064  	int cpu;
14065  
14066  	for_each_online_cpu(cpu)
14067  		perf_event_exit_cpu(cpu);
14068  
14069  	return NOTIFY_OK;
14070  }
14071  
14072  /*
14073   * Run the perf reboot notifier at the very last possible moment so that
14074   * the generic watchdog code runs as long as possible.
14075   */
14076  static struct notifier_block perf_reboot_notifier = {
14077  	.notifier_call = perf_reboot,
14078  	.priority = INT_MIN,
14079  };
14080  
perf_event_init(void)14081  void __init perf_event_init(void)
14082  {
14083  	int ret;
14084  
14085  	idr_init(&pmu_idr);
14086  
14087  	perf_event_init_all_cpus();
14088  	init_srcu_struct(&pmus_srcu);
14089  	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14090  	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14091  	perf_pmu_register(&perf_task_clock, "task_clock", -1);
14092  	perf_tp_register();
14093  	perf_event_init_cpu(smp_processor_id());
14094  	register_reboot_notifier(&perf_reboot_notifier);
14095  
14096  	ret = init_hw_breakpoint();
14097  	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14098  
14099  	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14100  
14101  	/*
14102  	 * Build time assertion that we keep the data_head at the intended
14103  	 * location.  IOW, validation we got the __reserved[] size right.
14104  	 */
14105  	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14106  		     != 1024);
14107  }
14108  
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)14109  ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14110  			      char *page)
14111  {
14112  	struct perf_pmu_events_attr *pmu_attr =
14113  		container_of(attr, struct perf_pmu_events_attr, attr);
14114  
14115  	if (pmu_attr->event_str)
14116  		return sprintf(page, "%s\n", pmu_attr->event_str);
14117  
14118  	return 0;
14119  }
14120  EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14121  
perf_event_sysfs_init(void)14122  static int __init perf_event_sysfs_init(void)
14123  {
14124  	struct pmu *pmu;
14125  	int ret;
14126  
14127  	mutex_lock(&pmus_lock);
14128  
14129  	ret = bus_register(&pmu_bus);
14130  	if (ret)
14131  		goto unlock;
14132  
14133  	list_for_each_entry(pmu, &pmus, entry) {
14134  		if (pmu->dev)
14135  			continue;
14136  
14137  		ret = pmu_dev_alloc(pmu);
14138  		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14139  	}
14140  	pmu_bus_running = 1;
14141  	ret = 0;
14142  
14143  unlock:
14144  	mutex_unlock(&pmus_lock);
14145  
14146  	return ret;
14147  }
14148  device_initcall(perf_event_sysfs_init);
14149  
14150  #ifdef CONFIG_CGROUP_PERF
14151  static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)14152  perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14153  {
14154  	struct perf_cgroup *jc;
14155  
14156  	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14157  	if (!jc)
14158  		return ERR_PTR(-ENOMEM);
14159  
14160  	jc->info = alloc_percpu(struct perf_cgroup_info);
14161  	if (!jc->info) {
14162  		kfree(jc);
14163  		return ERR_PTR(-ENOMEM);
14164  	}
14165  
14166  	return &jc->css;
14167  }
14168  
perf_cgroup_css_free(struct cgroup_subsys_state * css)14169  static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14170  {
14171  	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14172  
14173  	free_percpu(jc->info);
14174  	kfree(jc);
14175  }
14176  
perf_cgroup_css_online(struct cgroup_subsys_state * css)14177  static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14178  {
14179  	perf_event_cgroup(css->cgroup);
14180  	return 0;
14181  }
14182  
__perf_cgroup_move(void * info)14183  static int __perf_cgroup_move(void *info)
14184  {
14185  	struct task_struct *task = info;
14186  
14187  	preempt_disable();
14188  	perf_cgroup_switch(task);
14189  	preempt_enable();
14190  
14191  	return 0;
14192  }
14193  
perf_cgroup_attach(struct cgroup_taskset * tset)14194  static void perf_cgroup_attach(struct cgroup_taskset *tset)
14195  {
14196  	struct task_struct *task;
14197  	struct cgroup_subsys_state *css;
14198  
14199  	cgroup_taskset_for_each(task, css, tset)
14200  		task_function_call(task, __perf_cgroup_move, task);
14201  }
14202  
14203  struct cgroup_subsys perf_event_cgrp_subsys = {
14204  	.css_alloc	= perf_cgroup_css_alloc,
14205  	.css_free	= perf_cgroup_css_free,
14206  	.css_online	= perf_cgroup_css_online,
14207  	.attach		= perf_cgroup_attach,
14208  	/*
14209  	 * Implicitly enable on dfl hierarchy so that perf events can
14210  	 * always be filtered by cgroup2 path as long as perf_event
14211  	 * controller is not mounted on a legacy hierarchy.
14212  	 */
14213  	.implicit_on_dfl = true,
14214  	.threaded	= true,
14215  };
14216  #endif /* CONFIG_CGROUP_PERF */
14217  
14218  DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
14219