1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * arch/parisc/kernel/firmware.c  - safe PDC access routines
4   *
5   *	PDC == Processor Dependent Code
6   *
7   * See PDC documentation at
8   * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
9   * for documentation describing the entry points and calling
10   * conventions defined below.
11   *
12   * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
13   * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
14   * Copyright 2003 Grant Grundler <grundler parisc-linux org>
15   * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
16   * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
17   */
18  
19  /*	I think it would be in everyone's best interest to follow this
20   *	guidelines when writing PDC wrappers:
21   *
22   *	 - the name of the pdc wrapper should match one of the macros
23   *	   used for the first two arguments
24   *	 - don't use caps for random parts of the name
25   *	 - use the static PDC result buffers and "copyout" to structs
26   *	   supplied by the caller to encapsulate alignment restrictions
27   *	 - hold pdc_lock while in PDC or using static result buffers
28   *	 - use __pa() to convert virtual (kernel) pointers to physical
29   *	   ones.
30   *	 - the name of the struct used for pdc return values should equal
31   *	   one of the macros used for the first two arguments to the
32   *	   corresponding PDC call
33   *	 - keep the order of arguments
34   *	 - don't be smart (setting trailing NUL bytes for strings, return
35   *	   something useful even if the call failed) unless you are sure
36   *	   it's not going to affect functionality or performance
37   *
38   *	Example:
39   *	int pdc_cache_info(struct pdc_cache_info *cache_info )
40   *	{
41   *		int retval;
42   *
43   *		spin_lock_irq(&pdc_lock);
44   *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
45   *		convert_to_wide(pdc_result);
46   *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
47   *		spin_unlock_irq(&pdc_lock);
48   *
49   *		return retval;
50   *	}
51   *					prumpf	991016
52   */
53  
54  #include <linux/stdarg.h>
55  
56  #include <linux/delay.h>
57  #include <linux/init.h>
58  #include <linux/kernel.h>
59  #include <linux/module.h>
60  #include <linux/string.h>
61  #include <linux/spinlock.h>
62  
63  #include <asm/page.h>
64  #include <asm/pdc.h>
65  #include <asm/pdcpat.h>
66  #include <asm/processor.h>	/* for boot_cpu_data */
67  
68  #if defined(BOOTLOADER)
69  # undef  spin_lock_irqsave
70  # define spin_lock_irqsave(a, b) { b = 1; }
71  # undef  spin_unlock_irqrestore
72  # define spin_unlock_irqrestore(a, b)
73  #else
74  static DEFINE_SPINLOCK(pdc_lock);
75  #endif
76  
77  static unsigned long pdc_result[NUM_PDC_RESULT]  __aligned(8);
78  static unsigned long pdc_result2[NUM_PDC_RESULT] __aligned(8);
79  
80  #ifdef CONFIG_64BIT
81  #define WIDE_FIRMWARE		PDC_MODEL_OS64
82  #define NARROW_FIRMWARE		PDC_MODEL_OS32
83  
84  /* Firmware needs to be initially set to narrow to determine the
85   * actual firmware width. */
86  int parisc_narrow_firmware __ro_after_init = NARROW_FIRMWARE;
87  #endif
88  
89  /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
90   * and MEM_PDC calls are always the same width as the OS.
91   * Some PAT boxes may have 64-bit IODC I/O.
92   *
93   * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
94   * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
95   * This allowed wide kernels to run on Cxxx boxes.
96   * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
97   * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
98   */
99  
100  #ifdef CONFIG_64BIT
101  long real64_call(unsigned long function, ...);
102  #endif
103  long real32_call(unsigned long function, ...);
104  
105  #ifdef CONFIG_64BIT
106  #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
107  #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
108  #else
109  #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
110  #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
111  #endif
112  
113  
114  /**
115   * f_extend - Convert PDC addresses to kernel addresses.
116   * @address: Address returned from PDC.
117   *
118   * This function is used to convert PDC addresses into kernel addresses
119   * when the PDC address size and kernel address size are different.
120   */
f_extend(unsigned long address)121  static unsigned long f_extend(unsigned long address)
122  {
123  #ifdef CONFIG_64BIT
124  	if(unlikely(parisc_narrow_firmware)) {
125  		if((address & 0xff000000) == 0xf0000000)
126  			return (0xfffffff0UL << 32) | (u32)address;
127  
128  		if((address & 0xf0000000) == 0xf0000000)
129  			return (0xffffffffUL << 32) | (u32)address;
130  	}
131  #endif
132  	return address;
133  }
134  
135  /**
136   * convert_to_wide - Convert the return buffer addresses into kernel addresses.
137   * @addr: The return buffer from PDC.
138   *
139   * This function is used to convert the return buffer addresses retrieved from PDC
140   * into kernel addresses when the PDC address size and kernel address size are
141   * different.
142   */
convert_to_wide(unsigned long * addr)143  static void convert_to_wide(unsigned long *addr)
144  {
145  #ifdef CONFIG_64BIT
146  	int i;
147  	unsigned int *p = (unsigned int *)addr;
148  
149  	if (unlikely(parisc_narrow_firmware)) {
150  		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
151  			addr[i] = p[i];
152  	}
153  #endif
154  }
155  
156  #ifdef CONFIG_64BIT
set_firmware_width_unlocked(void)157  void set_firmware_width_unlocked(void)
158  {
159  	int ret;
160  
161  	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
162  		__pa(pdc_result), 0);
163  	if (ret < 0)
164  		return;
165  	convert_to_wide(pdc_result);
166  	if (pdc_result[0] != NARROW_FIRMWARE)
167  		parisc_narrow_firmware = 0;
168  }
169  
170  /**
171   * set_firmware_width - Determine if the firmware is wide or narrow.
172   *
173   * This function must be called before any pdc_* function that uses the
174   * convert_to_wide function.
175   */
set_firmware_width(void)176  void set_firmware_width(void)
177  {
178  	unsigned long flags;
179  
180  	/* already initialized? */
181  	if (parisc_narrow_firmware != NARROW_FIRMWARE)
182  		return;
183  
184  	spin_lock_irqsave(&pdc_lock, flags);
185  	set_firmware_width_unlocked();
186  	spin_unlock_irqrestore(&pdc_lock, flags);
187  }
188  #else
set_firmware_width_unlocked(void)189  void set_firmware_width_unlocked(void)
190  {
191  	return;
192  }
193  
set_firmware_width(void)194  void set_firmware_width(void)
195  {
196  	return;
197  }
198  #endif /*CONFIG_64BIT*/
199  
200  
201  #if !defined(BOOTLOADER)
202  /**
203   * pdc_emergency_unlock - Unlock the linux pdc lock
204   *
205   * This call unlocks the linux pdc lock in case we need some PDC functions
206   * (like pdc_add_valid) during kernel stack dump.
207   */
pdc_emergency_unlock(void)208  void pdc_emergency_unlock(void)
209  {
210   	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
211          if (spin_is_locked(&pdc_lock))
212  		spin_unlock(&pdc_lock);
213  }
214  
215  
216  /**
217   * pdc_add_valid - Verify address can be accessed without causing a HPMC.
218   * @address: Address to be verified.
219   *
220   * This PDC call attempts to read from the specified address and verifies
221   * if the address is valid.
222   *
223   * The return value is PDC_OK (0) in case accessing this address is valid.
224   */
pdc_add_valid(unsigned long address)225  int pdc_add_valid(unsigned long address)
226  {
227          int retval;
228  	unsigned long flags;
229  
230          spin_lock_irqsave(&pdc_lock, flags);
231          retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
232          spin_unlock_irqrestore(&pdc_lock, flags);
233  
234          return retval;
235  }
236  EXPORT_SYMBOL(pdc_add_valid);
237  
238  /**
239   * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
240   * @instr: Pointer to variable which will get instruction opcode.
241   *
242   * The return value is PDC_OK (0) in case call succeeded.
243   */
pdc_instr(unsigned int * instr)244  int __init pdc_instr(unsigned int *instr)
245  {
246  	int retval;
247  	unsigned long flags;
248  
249  	spin_lock_irqsave(&pdc_lock, flags);
250  	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
251  	convert_to_wide(pdc_result);
252  	*instr = pdc_result[0];
253  	spin_unlock_irqrestore(&pdc_lock, flags);
254  
255  	return retval;
256  }
257  
258  /**
259   * pdc_chassis_info - Return chassis information.
260   * @chassis_info: The memory buffer address.
261   * @led_info: The size of the memory buffer address.
262   * @len: The size of the memory buffer address.
263   *
264   * An HVERSION dependent call for returning the chassis information.
265   */
pdc_chassis_info(struct pdc_chassis_info * chassis_info,void * led_info,unsigned long len)266  int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
267  {
268          int retval;
269  	unsigned long flags;
270  
271          spin_lock_irqsave(&pdc_lock, flags);
272          memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
273          memcpy(&pdc_result2, led_info, len);
274          retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
275                                __pa(pdc_result), __pa(pdc_result2), len);
276          memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
277          memcpy(led_info, pdc_result2, len);
278          spin_unlock_irqrestore(&pdc_lock, flags);
279  
280          return retval;
281  }
282  
283  /**
284   * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
285   * @state: state of the machine
286   * @data: value for that state
287   *
288   * Must be correctly formatted or expect system crash
289   */
290  #ifdef CONFIG_64BIT
pdc_pat_chassis_send_log(unsigned long state,unsigned long data)291  int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
292  {
293  	int retval = 0;
294  	unsigned long flags;
295  
296  	if (!is_pdc_pat())
297  		return -1;
298  
299  	spin_lock_irqsave(&pdc_lock, flags);
300  	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
301  	spin_unlock_irqrestore(&pdc_lock, flags);
302  
303  	return retval;
304  }
305  #endif
306  
307  /**
308   * pdc_chassis_disp - Updates chassis code
309   * @disp: value to show on display
310   */
pdc_chassis_disp(unsigned long disp)311  int pdc_chassis_disp(unsigned long disp)
312  {
313  	int retval = 0;
314  	unsigned long flags;
315  
316  	spin_lock_irqsave(&pdc_lock, flags);
317  	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
318  	spin_unlock_irqrestore(&pdc_lock, flags);
319  
320  	return retval;
321  }
322  
323  /**
324   * __pdc_cpu_rendezvous - Stop currently executing CPU and do not return.
325   */
__pdc_cpu_rendezvous(void)326  int __pdc_cpu_rendezvous(void)
327  {
328  	if (is_pdc_pat())
329  		return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
330  	else
331  		return mem_pdc_call(PDC_PROC, 1, 0);
332  }
333  
334  /**
335   * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state
336   */
pdc_cpu_rendezvous_lock(void)337  void pdc_cpu_rendezvous_lock(void) __acquires(&pdc_lock)
338  {
339  	spin_lock(&pdc_lock);
340  }
341  
342  /**
343   * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state
344   */
pdc_cpu_rendezvous_unlock(void)345  void pdc_cpu_rendezvous_unlock(void) __releases(&pdc_lock)
346  {
347  	spin_unlock(&pdc_lock);
348  }
349  
350  /**
351   * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU
352   * @pdc_entry: pointer to where the PDC entry point should be stored
353   */
pdc_pat_get_PDC_entrypoint(unsigned long * pdc_entry)354  int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry)
355  {
356  	int retval = 0;
357  	unsigned long flags;
358  
359  	if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) {
360  		*pdc_entry = MEM_PDC;
361  		return 0;
362  	}
363  
364  	spin_lock_irqsave(&pdc_lock, flags);
365  	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT,
366  			__pa(pdc_result));
367  	*pdc_entry = pdc_result[0];
368  	spin_unlock_irqrestore(&pdc_lock, flags);
369  
370  	return retval;
371  }
372  /**
373   * pdc_chassis_warn - Fetches chassis warnings
374   * @warn: The warning value to be shown
375   */
pdc_chassis_warn(unsigned long * warn)376  int pdc_chassis_warn(unsigned long *warn)
377  {
378  	int retval = 0;
379  	unsigned long flags;
380  
381  	spin_lock_irqsave(&pdc_lock, flags);
382  	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
383  	*warn = pdc_result[0];
384  	spin_unlock_irqrestore(&pdc_lock, flags);
385  
386  	return retval;
387  }
388  
pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg * pdc_coproc_info)389  int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
390  {
391  	int ret;
392  
393  	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
394  	convert_to_wide(pdc_result);
395  	pdc_coproc_info->ccr_functional = pdc_result[0];
396  	pdc_coproc_info->ccr_present = pdc_result[1];
397  	pdc_coproc_info->revision = pdc_result[17];
398  	pdc_coproc_info->model = pdc_result[18];
399  
400  	return ret;
401  }
402  
403  /**
404   * pdc_coproc_cfg - To identify coprocessors attached to the processor.
405   * @pdc_coproc_info: Return buffer address.
406   *
407   * This PDC call returns the presence and status of all the coprocessors
408   * attached to the processor.
409   */
pdc_coproc_cfg(struct pdc_coproc_cfg * pdc_coproc_info)410  int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
411  {
412  	int ret;
413  	unsigned long flags;
414  
415  	spin_lock_irqsave(&pdc_lock, flags);
416  	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
417  	spin_unlock_irqrestore(&pdc_lock, flags);
418  
419  	return ret;
420  }
421  
422  /**
423   * pdc_iodc_read - Read data from the modules IODC.
424   * @actcnt: The actual number of bytes.
425   * @hpa: The HPA of the module for the iodc read.
426   * @index: The iodc entry point.
427   * @iodc_data: A buffer memory for the iodc options.
428   * @iodc_data_size: Size of the memory buffer.
429   *
430   * This PDC call reads from the IODC of the module specified by the hpa
431   * argument.
432   */
pdc_iodc_read(unsigned long * actcnt,unsigned long hpa,unsigned int index,void * iodc_data,unsigned int iodc_data_size)433  int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
434  		  void *iodc_data, unsigned int iodc_data_size)
435  {
436  	int retval;
437  	unsigned long flags;
438  
439  	spin_lock_irqsave(&pdc_lock, flags);
440  	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
441  			      index, __pa(pdc_result2), iodc_data_size);
442  	convert_to_wide(pdc_result);
443  	*actcnt = pdc_result[0];
444  	memcpy(iodc_data, pdc_result2, iodc_data_size);
445  	spin_unlock_irqrestore(&pdc_lock, flags);
446  
447  	return retval;
448  }
449  EXPORT_SYMBOL(pdc_iodc_read);
450  
451  /**
452   * pdc_system_map_find_mods - Locate unarchitected modules.
453   * @pdc_mod_info: Return buffer address.
454   * @mod_path: pointer to dev path structure.
455   * @mod_index: fixed address module index.
456   *
457   * To locate and identify modules which reside at fixed I/O addresses, which
458   * do not self-identify via architected bus walks.
459   */
pdc_system_map_find_mods(struct pdc_system_map_mod_info * pdc_mod_info,struct pdc_module_path * mod_path,long mod_index)460  int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
461  			     struct pdc_module_path *mod_path, long mod_index)
462  {
463  	int retval;
464  	unsigned long flags;
465  
466  	spin_lock_irqsave(&pdc_lock, flags);
467  	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
468  			      __pa(pdc_result2), mod_index);
469  	convert_to_wide(pdc_result);
470  	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
471  	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
472  	spin_unlock_irqrestore(&pdc_lock, flags);
473  
474  	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
475  	return retval;
476  }
477  
478  /**
479   * pdc_system_map_find_addrs - Retrieve additional address ranges.
480   * @pdc_addr_info: Return buffer address.
481   * @mod_index: Fixed address module index.
482   * @addr_index: Address range index.
483   *
484   * Retrieve additional information about subsequent address ranges for modules
485   * with multiple address ranges.
486   */
pdc_system_map_find_addrs(struct pdc_system_map_addr_info * pdc_addr_info,long mod_index,long addr_index)487  int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
488  			      long mod_index, long addr_index)
489  {
490  	int retval;
491  	unsigned long flags;
492  
493  	spin_lock_irqsave(&pdc_lock, flags);
494  	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
495  			      mod_index, addr_index);
496  	convert_to_wide(pdc_result);
497  	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
498  	spin_unlock_irqrestore(&pdc_lock, flags);
499  
500  	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
501  	return retval;
502  }
503  
504  /**
505   * pdc_model_info - Return model information about the processor.
506   * @model: The return buffer.
507   *
508   * Returns the version numbers, identifiers, and capabilities from the processor module.
509   */
pdc_model_info(struct pdc_model * model)510  int pdc_model_info(struct pdc_model *model)
511  {
512  	int retval;
513  	unsigned long flags;
514  
515  	spin_lock_irqsave(&pdc_lock, flags);
516  	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
517  	convert_to_wide(pdc_result);
518  	memcpy(model, pdc_result, sizeof(*model));
519  	spin_unlock_irqrestore(&pdc_lock, flags);
520  
521  	return retval;
522  }
523  
524  /**
525   * pdc_model_sysmodel - Get the system model name.
526   * @os_id: The operating system ID asked for (an OS_ID_* value)
527   * @name: A char array of at least 81 characters.
528   *
529   * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
530   * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
531   * on HP/UX.
532   */
pdc_model_sysmodel(unsigned int os_id,char * name)533  int pdc_model_sysmodel(unsigned int os_id, char *name)
534  {
535          int retval;
536  	unsigned long flags;
537  
538          spin_lock_irqsave(&pdc_lock, flags);
539          retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
540                                os_id, __pa(name));
541          convert_to_wide(pdc_result);
542  
543          if (retval == PDC_OK) {
544                  name[pdc_result[0]] = '\0'; /* add trailing '\0' */
545          } else {
546                  name[0] = 0;
547          }
548          spin_unlock_irqrestore(&pdc_lock, flags);
549  
550          return retval;
551  }
552  
553  /**
554   * pdc_model_versions - Identify the version number of each processor.
555   * @versions: The return buffer.
556   * @id: The id of the processor to check.
557   *
558   * Returns the version number for each processor component.
559   *
560   * This comment was here before, but I do not know what it means :( -RB
561   * id: 0 = cpu revision, 1 = boot-rom-version
562   */
pdc_model_versions(unsigned long * versions,int id)563  int pdc_model_versions(unsigned long *versions, int id)
564  {
565          int retval;
566  	unsigned long flags;
567  
568          spin_lock_irqsave(&pdc_lock, flags);
569          retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
570          convert_to_wide(pdc_result);
571          *versions = pdc_result[0];
572          spin_unlock_irqrestore(&pdc_lock, flags);
573  
574          return retval;
575  }
576  
577  /**
578   * pdc_model_cpuid - Returns the CPU_ID.
579   * @cpu_id: The return buffer.
580   *
581   * Returns the CPU_ID value which uniquely identifies the cpu portion of
582   * the processor module.
583   */
pdc_model_cpuid(unsigned long * cpu_id)584  int pdc_model_cpuid(unsigned long *cpu_id)
585  {
586          int retval;
587  	unsigned long flags;
588  
589          spin_lock_irqsave(&pdc_lock, flags);
590          pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
591          retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
592          convert_to_wide(pdc_result);
593          *cpu_id = pdc_result[0];
594          spin_unlock_irqrestore(&pdc_lock, flags);
595  
596          return retval;
597  }
598  
599  /**
600   * pdc_model_capabilities - Returns the platform capabilities.
601   * @capabilities: The return buffer.
602   *
603   * Returns information about platform support for 32- and/or 64-bit
604   * OSes, IO-PDIR coherency, and virtual aliasing.
605   */
pdc_model_capabilities(unsigned long * capabilities)606  int pdc_model_capabilities(unsigned long *capabilities)
607  {
608          int retval;
609  	unsigned long flags;
610  
611          spin_lock_irqsave(&pdc_lock, flags);
612          pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
613          retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
614          convert_to_wide(pdc_result);
615          if (retval == PDC_OK) {
616                  *capabilities = pdc_result[0];
617          } else {
618                  *capabilities = PDC_MODEL_OS32;
619          }
620          spin_unlock_irqrestore(&pdc_lock, flags);
621  
622          return retval;
623  }
624  
625  /**
626   * pdc_model_platform_info - Returns machine product and serial number.
627   * @orig_prod_num: Return buffer for original product number.
628   * @current_prod_num: Return buffer for current product number.
629   * @serial_no: Return buffer for serial number.
630   *
631   * Returns strings containing the original and current product numbers and the
632   * serial number of the system.
633   */
pdc_model_platform_info(char * orig_prod_num,char * current_prod_num,char * serial_no)634  int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
635  		char *serial_no)
636  {
637  	int retval;
638  	unsigned long flags;
639  
640  	spin_lock_irqsave(&pdc_lock, flags);
641  	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
642  		__pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
643  	convert_to_wide(pdc_result);
644  	spin_unlock_irqrestore(&pdc_lock, flags);
645  
646  	return retval;
647  }
648  
649  /**
650   * pdc_cache_info - Return cache and TLB information.
651   * @cache_info: The return buffer.
652   *
653   * Returns information about the processor's cache and TLB.
654   */
pdc_cache_info(struct pdc_cache_info * cache_info)655  int pdc_cache_info(struct pdc_cache_info *cache_info)
656  {
657          int retval;
658  	unsigned long flags;
659  
660          spin_lock_irqsave(&pdc_lock, flags);
661          retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
662          convert_to_wide(pdc_result);
663          memcpy(cache_info, pdc_result, sizeof(*cache_info));
664          spin_unlock_irqrestore(&pdc_lock, flags);
665  
666          return retval;
667  }
668  
669  /**
670   * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
671   * @space_bits: Should be 0, if not, bad mojo!
672   *
673   * Returns information about Space ID hashing.
674   */
pdc_spaceid_bits(unsigned long * space_bits)675  int pdc_spaceid_bits(unsigned long *space_bits)
676  {
677  	int retval;
678  	unsigned long flags;
679  
680  	spin_lock_irqsave(&pdc_lock, flags);
681  	pdc_result[0] = 0;
682  	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
683  	convert_to_wide(pdc_result);
684  	*space_bits = pdc_result[0];
685  	spin_unlock_irqrestore(&pdc_lock, flags);
686  
687  	return retval;
688  }
689  
690  /**
691   * pdc_btlb_info - Return block TLB information.
692   * @btlb: The return buffer.
693   *
694   * Returns information about the hardware Block TLB.
695   */
pdc_btlb_info(struct pdc_btlb_info * btlb)696  int pdc_btlb_info(struct pdc_btlb_info *btlb)
697  {
698  	int retval;
699  	unsigned long flags;
700  
701  	if (IS_ENABLED(CONFIG_PA20))
702  		return PDC_BAD_PROC;
703  
704  	spin_lock_irqsave(&pdc_lock, flags);
705  	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
706  	memcpy(btlb, pdc_result, sizeof(*btlb));
707  	spin_unlock_irqrestore(&pdc_lock, flags);
708  
709  	if(retval < 0) {
710  		btlb->max_size = 0;
711  	}
712  	return retval;
713  }
714  
pdc_btlb_insert(unsigned long long vpage,unsigned long physpage,unsigned long len,unsigned long entry_info,unsigned long slot)715  int pdc_btlb_insert(unsigned long long vpage, unsigned long physpage, unsigned long len,
716  		    unsigned long entry_info, unsigned long slot)
717  {
718  	int retval;
719  	unsigned long flags;
720  
721  	if (IS_ENABLED(CONFIG_PA20))
722  		return PDC_BAD_PROC;
723  
724  	spin_lock_irqsave(&pdc_lock, flags);
725  	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INSERT, (unsigned long) (vpage >> 32),
726  			      (unsigned long) vpage, physpage, len, entry_info, slot);
727  	spin_unlock_irqrestore(&pdc_lock, flags);
728  	return retval;
729  }
730  
pdc_btlb_purge_all(void)731  int pdc_btlb_purge_all(void)
732  {
733  	int retval;
734  	unsigned long flags;
735  
736  	if (IS_ENABLED(CONFIG_PA20))
737  		return PDC_BAD_PROC;
738  
739  	spin_lock_irqsave(&pdc_lock, flags);
740  	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_PURGE_ALL);
741  	spin_unlock_irqrestore(&pdc_lock, flags);
742  	return retval;
743  }
744  
745  /**
746   * pdc_mem_map_hpa - Find fixed module information.
747   * @address: The return buffer
748   * @mod_path: pointer to dev path structure.
749   *
750   * This call was developed for S700 workstations to allow the kernel to find
751   * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
752   * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
753   * call.
754   *
755   * This call is supported by all existing S700 workstations (up to  Gecko).
756   */
pdc_mem_map_hpa(struct pdc_memory_map * address,struct pdc_module_path * mod_path)757  int pdc_mem_map_hpa(struct pdc_memory_map *address,
758  		struct pdc_module_path *mod_path)
759  {
760          int retval;
761  	unsigned long flags;
762  
763  	if (IS_ENABLED(CONFIG_PA20))
764  		return PDC_BAD_PROC;
765  
766          spin_lock_irqsave(&pdc_lock, flags);
767          memcpy(pdc_result2, mod_path, sizeof(*mod_path));
768          retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
769  				__pa(pdc_result2));
770          memcpy(address, pdc_result, sizeof(*address));
771          spin_unlock_irqrestore(&pdc_lock, flags);
772  
773          return retval;
774  }
775  
776  /**
777   * pdc_lan_station_id - Get the LAN address.
778   * @lan_addr: The return buffer.
779   * @hpa: The network device HPA.
780   *
781   * Get the LAN station address when it is not directly available from the LAN hardware.
782   */
pdc_lan_station_id(char * lan_addr,unsigned long hpa)783  int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
784  {
785  	int retval;
786  	unsigned long flags;
787  
788  	spin_lock_irqsave(&pdc_lock, flags);
789  	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
790  			__pa(pdc_result), hpa);
791  	if (retval < 0) {
792  		/* FIXME: else read MAC from NVRAM */
793  		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
794  	} else {
795  		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
796  	}
797  	spin_unlock_irqrestore(&pdc_lock, flags);
798  
799  	return retval;
800  }
801  EXPORT_SYMBOL(pdc_lan_station_id);
802  
803  /**
804   * pdc_stable_read - Read data from Stable Storage.
805   * @staddr: Stable Storage address to access.
806   * @memaddr: The memory address where Stable Storage data shall be copied.
807   * @count: number of bytes to transfer. count is multiple of 4.
808   *
809   * This PDC call reads from the Stable Storage address supplied in staddr
810   * and copies count bytes to the memory address memaddr.
811   * The call will fail if staddr+count > PDC_STABLE size.
812   */
pdc_stable_read(unsigned long staddr,void * memaddr,unsigned long count)813  int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
814  {
815         int retval;
816  	unsigned long flags;
817  
818         spin_lock_irqsave(&pdc_lock, flags);
819         retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
820                 __pa(pdc_result), count);
821         convert_to_wide(pdc_result);
822         memcpy(memaddr, pdc_result, count);
823         spin_unlock_irqrestore(&pdc_lock, flags);
824  
825         return retval;
826  }
827  EXPORT_SYMBOL(pdc_stable_read);
828  
829  /**
830   * pdc_stable_write - Write data to Stable Storage.
831   * @staddr: Stable Storage address to access.
832   * @memaddr: The memory address where Stable Storage data shall be read from.
833   * @count: number of bytes to transfer. count is multiple of 4.
834   *
835   * This PDC call reads count bytes from the supplied memaddr address,
836   * and copies count bytes to the Stable Storage address staddr.
837   * The call will fail if staddr+count > PDC_STABLE size.
838   */
pdc_stable_write(unsigned long staddr,void * memaddr,unsigned long count)839  int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
840  {
841         int retval;
842  	unsigned long flags;
843  
844         spin_lock_irqsave(&pdc_lock, flags);
845         memcpy(pdc_result, memaddr, count);
846         convert_to_wide(pdc_result);
847         retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
848                 __pa(pdc_result), count);
849         spin_unlock_irqrestore(&pdc_lock, flags);
850  
851         return retval;
852  }
853  EXPORT_SYMBOL(pdc_stable_write);
854  
855  /**
856   * pdc_stable_get_size - Get Stable Storage size in bytes.
857   * @size: pointer where the size will be stored.
858   *
859   * This PDC call returns the number of bytes in the processor's Stable
860   * Storage, which is the number of contiguous bytes implemented in Stable
861   * Storage starting from staddr=0. size in an unsigned 64-bit integer
862   * which is a multiple of four.
863   */
pdc_stable_get_size(unsigned long * size)864  int pdc_stable_get_size(unsigned long *size)
865  {
866         int retval;
867  	unsigned long flags;
868  
869         spin_lock_irqsave(&pdc_lock, flags);
870         retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
871         *size = pdc_result[0];
872         spin_unlock_irqrestore(&pdc_lock, flags);
873  
874         return retval;
875  }
876  EXPORT_SYMBOL(pdc_stable_get_size);
877  
878  /**
879   * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
880   *
881   * This PDC call is meant to be used to check the integrity of the current
882   * contents of Stable Storage.
883   */
pdc_stable_verify_contents(void)884  int pdc_stable_verify_contents(void)
885  {
886         int retval;
887  	unsigned long flags;
888  
889         spin_lock_irqsave(&pdc_lock, flags);
890         retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
891         spin_unlock_irqrestore(&pdc_lock, flags);
892  
893         return retval;
894  }
895  EXPORT_SYMBOL(pdc_stable_verify_contents);
896  
897  /**
898   * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
899   * the validity indicator.
900   *
901   * This PDC call will erase all contents of Stable Storage. Use with care!
902   */
pdc_stable_initialize(void)903  int pdc_stable_initialize(void)
904  {
905         int retval;
906  	unsigned long flags;
907  
908         spin_lock_irqsave(&pdc_lock, flags);
909         retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
910         spin_unlock_irqrestore(&pdc_lock, flags);
911  
912         return retval;
913  }
914  EXPORT_SYMBOL(pdc_stable_initialize);
915  
916  /**
917   * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
918   * @hwpath: fully bc.mod style path to the device.
919   * @initiator: the array to return the result into
920   *
921   * Get the SCSI operational parameters from PDC.
922   * Needed since HPUX never used BIOS or symbios card NVRAM.
923   * Most ncr/sym cards won't have an entry and just use whatever
924   * capabilities of the card are (eg Ultra, LVD). But there are
925   * several cases where it's useful:
926   *    o set SCSI id for Multi-initiator clusters,
927   *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
928   *    o bus width exported is less than what the interface chip supports.
929   */
pdc_get_initiator(struct hardware_path * hwpath,struct pdc_initiator * initiator)930  int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
931  {
932  	int retval;
933  	unsigned long flags;
934  
935  	spin_lock_irqsave(&pdc_lock, flags);
936  
937  /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
938  #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
939  	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
940  
941  	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
942  			      __pa(pdc_result), __pa(hwpath));
943  	if (retval < PDC_OK)
944  		goto out;
945  
946  	if (pdc_result[0] < 16) {
947  		initiator->host_id = pdc_result[0];
948  	} else {
949  		initiator->host_id = -1;
950  	}
951  
952  	/*
953  	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
954  	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
955  	 */
956  	switch (pdc_result[1]) {
957  		case  1: initiator->factor = 50; break;
958  		case  2: initiator->factor = 25; break;
959  		case  5: initiator->factor = 12; break;
960  		case 25: initiator->factor = 10; break;
961  		case 20: initiator->factor = 12; break;
962  		case 40: initiator->factor = 10; break;
963  		default: initiator->factor = -1; break;
964  	}
965  
966  	if (IS_SPROCKETS()) {
967  		initiator->width = pdc_result[4];
968  		initiator->mode = pdc_result[5];
969  	} else {
970  		initiator->width = -1;
971  		initiator->mode = -1;
972  	}
973  
974   out:
975  	spin_unlock_irqrestore(&pdc_lock, flags);
976  
977  	return (retval >= PDC_OK);
978  }
979  EXPORT_SYMBOL(pdc_get_initiator);
980  
981  
982  /**
983   * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
984   * @num_entries: The return value.
985   * @hpa: The HPA for the device.
986   *
987   * This PDC function returns the number of entries in the specified cell's
988   * interrupt table.
989   * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
990   */
pdc_pci_irt_size(unsigned long * num_entries,unsigned long hpa)991  int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
992  {
993  	int retval;
994  	unsigned long flags;
995  
996  	spin_lock_irqsave(&pdc_lock, flags);
997  	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
998  			      __pa(pdc_result), hpa);
999  	convert_to_wide(pdc_result);
1000  	*num_entries = pdc_result[0];
1001  	spin_unlock_irqrestore(&pdc_lock, flags);
1002  
1003  	return retval;
1004  }
1005  
1006  /**
1007   * pdc_pci_irt - Get the PCI interrupt routing table.
1008   * @num_entries: The number of entries in the table.
1009   * @hpa: The Hard Physical Address of the device.
1010   * @tbl:
1011   *
1012   * Get the PCI interrupt routing table for the device at the given HPA.
1013   * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
1014   */
pdc_pci_irt(unsigned long num_entries,unsigned long hpa,void * tbl)1015  int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
1016  {
1017  	int retval;
1018  	unsigned long flags;
1019  
1020  	BUG_ON((unsigned long)tbl & 0x7);
1021  
1022  	spin_lock_irqsave(&pdc_lock, flags);
1023  	pdc_result[0] = num_entries;
1024  	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
1025  			      __pa(pdc_result), hpa, __pa(tbl));
1026  	spin_unlock_irqrestore(&pdc_lock, flags);
1027  
1028  	return retval;
1029  }
1030  
1031  
1032  #if 0	/* UNTEST CODE - left here in case someone needs it */
1033  
1034  /**
1035   * pdc_pci_config_read - read PCI config space.
1036   * @hpa: Token from PDC to indicate which PCI device
1037   * @cfg_addr: Configuration space address to read from
1038   *
1039   * Read PCI Configuration space *before* linux PCI subsystem is running.
1040   */
1041  unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
1042  {
1043  	int retval;
1044  	unsigned long flags;
1045  
1046  	spin_lock_irqsave(&pdc_lock, flags);
1047  	pdc_result[0] = 0;
1048  	pdc_result[1] = 0;
1049  	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
1050  			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
1051  	spin_unlock_irqrestore(&pdc_lock, flags);
1052  
1053  	return retval ? ~0 : (unsigned int) pdc_result[0];
1054  }
1055  
1056  
1057  /**
1058   * pdc_pci_config_write - read PCI config space.
1059   * @hpa: Token from PDC to indicate which PCI device
1060   * @cfg_addr: Configuration space address to write
1061   * @val: Value we want in the 32-bit register
1062   *
1063   * Write PCI Configuration space *before* linux PCI subsystem is running.
1064   */
1065  void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
1066  {
1067  	int retval;
1068  	unsigned long flags;
1069  
1070  	spin_lock_irqsave(&pdc_lock, flags);
1071  	pdc_result[0] = 0;
1072  	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
1073  			      __pa(pdc_result), hpa,
1074  			      cfg_addr&~3UL, 4UL, (unsigned long) val);
1075  	spin_unlock_irqrestore(&pdc_lock, flags);
1076  
1077  	return retval;
1078  }
1079  #endif /* UNTESTED CODE */
1080  
1081  /**
1082   * pdc_tod_read - Read the Time-Of-Day clock.
1083   * @tod: The return buffer:
1084   *
1085   * Read the Time-Of-Day clock
1086   */
pdc_tod_read(struct pdc_tod * tod)1087  int pdc_tod_read(struct pdc_tod *tod)
1088  {
1089          int retval;
1090  	unsigned long flags;
1091  
1092          spin_lock_irqsave(&pdc_lock, flags);
1093          retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1094          convert_to_wide(pdc_result);
1095          memcpy(tod, pdc_result, sizeof(*tod));
1096          spin_unlock_irqrestore(&pdc_lock, flags);
1097  
1098          return retval;
1099  }
1100  EXPORT_SYMBOL(pdc_tod_read);
1101  
pdc_mem_pdt_info(struct pdc_mem_retinfo * rinfo)1102  int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1103  {
1104  	int retval;
1105  	unsigned long flags;
1106  
1107  	spin_lock_irqsave(&pdc_lock, flags);
1108  	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1109  	convert_to_wide(pdc_result);
1110  	memcpy(rinfo, pdc_result, sizeof(*rinfo));
1111  	spin_unlock_irqrestore(&pdc_lock, flags);
1112  
1113  	return retval;
1114  }
1115  
pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt * pret,unsigned long * pdt_entries_ptr)1116  int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1117  		unsigned long *pdt_entries_ptr)
1118  {
1119  	int retval;
1120  	unsigned long flags;
1121  
1122  	spin_lock_irqsave(&pdc_lock, flags);
1123  	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1124  			__pa(pdt_entries_ptr));
1125  	if (retval == PDC_OK) {
1126  		convert_to_wide(pdc_result);
1127  		memcpy(pret, pdc_result, sizeof(*pret));
1128  	}
1129  	spin_unlock_irqrestore(&pdc_lock, flags);
1130  
1131  #ifdef CONFIG_64BIT
1132  	/*
1133  	 * 64-bit kernels should not call this PDT function in narrow mode.
1134  	 * The pdt_entries_ptr array above will now contain 32-bit values
1135  	 */
1136  	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1137  		return PDC_ERROR;
1138  #endif
1139  
1140  	return retval;
1141  }
1142  
1143  /**
1144   * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware.
1145   * @ret: pointer to return buffer
1146   */
pdc_pim_toc11(struct pdc_toc_pim_11 * ret)1147  int pdc_pim_toc11(struct pdc_toc_pim_11 *ret)
1148  {
1149  	int retval;
1150  	unsigned long flags;
1151  
1152  	spin_lock_irqsave(&pdc_lock, flags);
1153  	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1154  			      __pa(ret), sizeof(*ret));
1155  	spin_unlock_irqrestore(&pdc_lock, flags);
1156  	return retval;
1157  }
1158  
1159  /**
1160   * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware.
1161   * @ret: pointer to return buffer
1162   */
pdc_pim_toc20(struct pdc_toc_pim_20 * ret)1163  int pdc_pim_toc20(struct pdc_toc_pim_20 *ret)
1164  {
1165  	int retval;
1166  	unsigned long flags;
1167  
1168  	spin_lock_irqsave(&pdc_lock, flags);
1169  	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1170  			      __pa(ret), sizeof(*ret));
1171  	spin_unlock_irqrestore(&pdc_lock, flags);
1172  	return retval;
1173  }
1174  
1175  /**
1176   * pdc_tod_set - Set the Time-Of-Day clock.
1177   * @sec: The number of seconds since epoch.
1178   * @usec: The number of micro seconds.
1179   *
1180   * Set the Time-Of-Day clock.
1181   */
pdc_tod_set(unsigned long sec,unsigned long usec)1182  int pdc_tod_set(unsigned long sec, unsigned long usec)
1183  {
1184          int retval;
1185  	unsigned long flags;
1186  
1187          spin_lock_irqsave(&pdc_lock, flags);
1188          retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1189          spin_unlock_irqrestore(&pdc_lock, flags);
1190  
1191          return retval;
1192  }
1193  EXPORT_SYMBOL(pdc_tod_set);
1194  
1195  #ifdef CONFIG_64BIT
pdc_mem_mem_table(struct pdc_memory_table_raddr * r_addr,struct pdc_memory_table * tbl,unsigned long entries)1196  int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1197  		struct pdc_memory_table *tbl, unsigned long entries)
1198  {
1199  	int retval;
1200  	unsigned long flags;
1201  
1202  	spin_lock_irqsave(&pdc_lock, flags);
1203  	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1204  	convert_to_wide(pdc_result);
1205  	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1206  	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1207  	spin_unlock_irqrestore(&pdc_lock, flags);
1208  
1209  	return retval;
1210  }
1211  #endif /* CONFIG_64BIT */
1212  
1213  /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1214   * so I guessed at unsigned long.  Someone who knows what this does, can fix
1215   * it later. :)
1216   */
pdc_do_firm_test_reset(unsigned long ftc_bitmap)1217  int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1218  {
1219          int retval;
1220  	unsigned long flags;
1221  
1222          spin_lock_irqsave(&pdc_lock, flags);
1223          retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1224                                PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1225          spin_unlock_irqrestore(&pdc_lock, flags);
1226  
1227          return retval;
1228  }
1229  
1230  /*
1231   * pdc_do_reset - Reset the system.
1232   *
1233   * Reset the system.
1234   */
pdc_do_reset(void)1235  int pdc_do_reset(void)
1236  {
1237          int retval;
1238  	unsigned long flags;
1239  
1240          spin_lock_irqsave(&pdc_lock, flags);
1241          retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1242          spin_unlock_irqrestore(&pdc_lock, flags);
1243  
1244          return retval;
1245  }
1246  
1247  /*
1248   * pdc_soft_power_info - Enable soft power switch.
1249   * @power_reg: address of soft power register
1250   *
1251   * Return the absolute address of the soft power switch register
1252   */
pdc_soft_power_info(unsigned long * power_reg)1253  int __init pdc_soft_power_info(unsigned long *power_reg)
1254  {
1255  	int retval;
1256  	unsigned long flags;
1257  
1258  	*power_reg = (unsigned long) (-1);
1259  
1260  	spin_lock_irqsave(&pdc_lock, flags);
1261  	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1262  	if (retval == PDC_OK) {
1263                  convert_to_wide(pdc_result);
1264                  *power_reg = f_extend(pdc_result[0]);
1265  	}
1266  	spin_unlock_irqrestore(&pdc_lock, flags);
1267  
1268  	return retval;
1269  }
1270  
1271  /*
1272   * pdc_soft_power_button{_panic} - Control the soft power button behaviour
1273   * @sw_control: 0 for hardware control, 1 for software control
1274   *
1275   *
1276   * This PDC function places the soft power button under software or
1277   * hardware control.
1278   * Under software control the OS may control to when to allow to shut
1279   * down the system. Under hardware control pressing the power button
1280   * powers off the system immediately.
1281   *
1282   * The _panic version relies on spin_trylock to prevent deadlock
1283   * on panic path.
1284   */
pdc_soft_power_button(int sw_control)1285  int pdc_soft_power_button(int sw_control)
1286  {
1287  	int retval;
1288  	unsigned long flags;
1289  
1290  	spin_lock_irqsave(&pdc_lock, flags);
1291  	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1292  	spin_unlock_irqrestore(&pdc_lock, flags);
1293  
1294  	return retval;
1295  }
1296  
pdc_soft_power_button_panic(int sw_control)1297  int pdc_soft_power_button_panic(int sw_control)
1298  {
1299  	int retval;
1300  	unsigned long flags;
1301  
1302  	if (!spin_trylock_irqsave(&pdc_lock, flags)) {
1303  		pr_emerg("Couldn't enable soft power button\n");
1304  		return -EBUSY; /* ignored by the panic notifier */
1305  	}
1306  
1307  	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1308  	spin_unlock_irqrestore(&pdc_lock, flags);
1309  
1310  	return retval;
1311  }
1312  
1313  /*
1314   * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1315   * Primarily a problem on T600 (which parisc-linux doesn't support) but
1316   * who knows what other platform firmware might do with this OS "hook".
1317   */
pdc_io_reset(void)1318  void pdc_io_reset(void)
1319  {
1320  	unsigned long flags;
1321  
1322  	spin_lock_irqsave(&pdc_lock, flags);
1323  	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1324  	spin_unlock_irqrestore(&pdc_lock, flags);
1325  }
1326  
1327  /*
1328   * pdc_io_reset_devices - Hack to Stop USB controller
1329   *
1330   * If PDC used the usb controller, the usb controller
1331   * is still running and will crash the machines during iommu
1332   * setup, because of still running DMA. This PDC call
1333   * stops the USB controller.
1334   * Normally called after calling pdc_io_reset().
1335   */
pdc_io_reset_devices(void)1336  void pdc_io_reset_devices(void)
1337  {
1338  	unsigned long flags;
1339  
1340  	spin_lock_irqsave(&pdc_lock, flags);
1341  	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1342  	spin_unlock_irqrestore(&pdc_lock, flags);
1343  }
1344  
1345  #endif /* defined(BOOTLOADER) */
1346  
1347  /* locked by pdc_lock */
1348  static char iodc_dbuf[4096] __page_aligned_bss;
1349  
1350  /**
1351   * pdc_iodc_print - Console print using IODC.
1352   * @str: the string to output.
1353   * @count: length of str
1354   *
1355   * Note that only these special chars are architected for console IODC io:
1356   * BEL, BS, CR, and LF. Others are passed through.
1357   * Since the HP console requires CR+LF to perform a 'newline', we translate
1358   * "\n" to "\r\n".
1359   */
pdc_iodc_print(const unsigned char * str,unsigned count)1360  int pdc_iodc_print(const unsigned char *str, unsigned count)
1361  {
1362  	unsigned int i, found = 0;
1363  	unsigned long flags;
1364  
1365  	count = min_t(unsigned int, count, sizeof(iodc_dbuf));
1366  
1367  	spin_lock_irqsave(&pdc_lock, flags);
1368  	for (i = 0; i < count;) {
1369  		switch(str[i]) {
1370  		case '\n':
1371  			iodc_dbuf[i+0] = '\r';
1372  			iodc_dbuf[i+1] = '\n';
1373  			i += 2;
1374  			found = 1;
1375  			goto print;
1376  		default:
1377  			iodc_dbuf[i] = str[i];
1378  			i++;
1379  			break;
1380  		}
1381  	}
1382  
1383  print:
1384  	real32_call(PAGE0->mem_cons.iodc_io,
1385  		(unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1386  		PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1387  		__pa(pdc_result), 0, __pa(iodc_dbuf), i, 0);
1388  	spin_unlock_irqrestore(&pdc_lock, flags);
1389  
1390  	return i - found;
1391  }
1392  
1393  #if !defined(BOOTLOADER)
1394  /**
1395   * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1396   *
1397   * Read a character (non-blocking) from the PDC console, returns -1 if
1398   * key is not present.
1399   */
pdc_iodc_getc(void)1400  int pdc_iodc_getc(void)
1401  {
1402  	int ch;
1403  	int status;
1404  	unsigned long flags;
1405  
1406  	/* Bail if no console input device. */
1407  	if (!PAGE0->mem_kbd.iodc_io)
1408  		return 0;
1409  
1410  	/* wait for a keyboard (rs232)-input */
1411  	spin_lock_irqsave(&pdc_lock, flags);
1412  	real32_call(PAGE0->mem_kbd.iodc_io,
1413  		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1414  		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1415  		    __pa(pdc_result), 0, __pa(iodc_dbuf), 1, 0);
1416  
1417  	ch = *iodc_dbuf;
1418  	/* like convert_to_wide() but for first return value only: */
1419  	status = *(int *)&pdc_result;
1420  	spin_unlock_irqrestore(&pdc_lock, flags);
1421  
1422  	if (status == 0)
1423  	    return -1;
1424  
1425  	return ch;
1426  }
1427  
pdc_sti_call(unsigned long func,unsigned long flags,unsigned long inptr,unsigned long outputr,unsigned long glob_cfg,int do_call64)1428  int pdc_sti_call(unsigned long func, unsigned long flags,
1429  		unsigned long inptr, unsigned long outputr,
1430  		unsigned long glob_cfg, int do_call64)
1431  {
1432  	int retval = 0;
1433  	unsigned long irqflags;
1434  
1435  	spin_lock_irqsave(&pdc_lock, irqflags);
1436  	if (IS_ENABLED(CONFIG_64BIT) && do_call64) {
1437  #ifdef CONFIG_64BIT
1438  		retval = real64_call(func, flags, inptr, outputr, glob_cfg);
1439  #else
1440  		WARN_ON(1);
1441  #endif
1442  	} else {
1443  		retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1444  	}
1445  	spin_unlock_irqrestore(&pdc_lock, irqflags);
1446  
1447  	return retval;
1448  }
1449  EXPORT_SYMBOL(pdc_sti_call);
1450  
1451  #ifdef CONFIG_64BIT
1452  /**
1453   * pdc_pat_cell_get_number - Returns the cell number.
1454   * @cell_info: The return buffer.
1455   *
1456   * This PDC call returns the cell number of the cell from which the call
1457   * is made.
1458   */
pdc_pat_cell_get_number(struct pdc_pat_cell_num * cell_info)1459  int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1460  {
1461  	int retval;
1462  	unsigned long flags;
1463  
1464  	spin_lock_irqsave(&pdc_lock, flags);
1465  	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1466  	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1467  	spin_unlock_irqrestore(&pdc_lock, flags);
1468  
1469  	return retval;
1470  }
1471  
1472  /**
1473   * pdc_pat_cell_module - Retrieve the cell's module information.
1474   * @actcnt: The number of bytes written to mem_addr.
1475   * @ploc: The physical location.
1476   * @mod: The module index.
1477   * @view_type: The view of the address type.
1478   * @mem_addr: The return buffer.
1479   *
1480   * This PDC call returns information about each module attached to the cell
1481   * at the specified location.
1482   */
pdc_pat_cell_module(unsigned long * actcnt,unsigned long ploc,unsigned long mod,unsigned long view_type,void * mem_addr)1483  int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1484  			unsigned long view_type, void *mem_addr)
1485  {
1486  	int retval;
1487  	unsigned long flags;
1488  	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1489  
1490  	spin_lock_irqsave(&pdc_lock, flags);
1491  	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1492  			      ploc, mod, view_type, __pa(&result));
1493  	if(!retval) {
1494  		*actcnt = pdc_result[0];
1495  		memcpy(mem_addr, &result, *actcnt);
1496  	}
1497  	spin_unlock_irqrestore(&pdc_lock, flags);
1498  
1499  	return retval;
1500  }
1501  
1502  /**
1503   * pdc_pat_cell_info - Retrieve the cell's information.
1504   * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1505   * @actcnt: The number of bytes which should be written to info.
1506   * @offset: offset of the structure.
1507   * @cell_number: The cell number which should be asked, or -1 for current cell.
1508   *
1509   * This PDC call returns information about the given cell (or all cells).
1510   */
pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block * info,unsigned long * actcnt,unsigned long offset,unsigned long cell_number)1511  int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1512  		unsigned long *actcnt, unsigned long offset,
1513  		unsigned long cell_number)
1514  {
1515  	int retval;
1516  	unsigned long flags;
1517  	struct pdc_pat_cell_info_rtn_block result;
1518  
1519  	spin_lock_irqsave(&pdc_lock, flags);
1520  	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1521  			__pa(pdc_result), __pa(&result), *actcnt,
1522  			offset, cell_number);
1523  	if (!retval) {
1524  		*actcnt = pdc_result[0];
1525  		memcpy(info, &result, *actcnt);
1526  	}
1527  	spin_unlock_irqrestore(&pdc_lock, flags);
1528  
1529  	return retval;
1530  }
1531  
1532  /**
1533   * pdc_pat_cpu_get_number - Retrieve the cpu number.
1534   * @cpu_info: The return buffer.
1535   * @hpa: The Hard Physical Address of the CPU.
1536   *
1537   * Retrieve the cpu number for the cpu at the specified HPA.
1538   */
pdc_pat_cpu_get_number(struct pdc_pat_cpu_num * cpu_info,unsigned long hpa)1539  int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1540  {
1541  	int retval;
1542  	unsigned long flags;
1543  
1544  	spin_lock_irqsave(&pdc_lock, flags);
1545  	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1546  			      __pa(&pdc_result), hpa);
1547  	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1548  	spin_unlock_irqrestore(&pdc_lock, flags);
1549  
1550  	return retval;
1551  }
1552  
1553  /**
1554   * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1555   * @num_entries: The return value.
1556   * @cell_num: The target cell.
1557   *
1558   * This PDC function returns the number of entries in the specified cell's
1559   * interrupt table.
1560   */
pdc_pat_get_irt_size(unsigned long * num_entries,unsigned long cell_num)1561  int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1562  {
1563  	int retval;
1564  	unsigned long flags;
1565  
1566  	spin_lock_irqsave(&pdc_lock, flags);
1567  	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1568  			      __pa(pdc_result), cell_num);
1569  	*num_entries = pdc_result[0];
1570  	spin_unlock_irqrestore(&pdc_lock, flags);
1571  
1572  	return retval;
1573  }
1574  
1575  /**
1576   * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1577   * @r_addr: The return buffer.
1578   * @cell_num: The target cell.
1579   *
1580   * This PDC function returns the actual interrupt table for the specified cell.
1581   */
pdc_pat_get_irt(void * r_addr,unsigned long cell_num)1582  int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1583  {
1584  	int retval;
1585  	unsigned long flags;
1586  
1587  	spin_lock_irqsave(&pdc_lock, flags);
1588  	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1589  			      __pa(r_addr), cell_num);
1590  	spin_unlock_irqrestore(&pdc_lock, flags);
1591  
1592  	return retval;
1593  }
1594  
1595  /**
1596   * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1597   * @actual_len: The return buffer.
1598   * @mem_addr: Pointer to the memory buffer.
1599   * @count: The number of bytes to read from the buffer.
1600   * @offset: The offset with respect to the beginning of the buffer.
1601   *
1602   */
pdc_pat_pd_get_addr_map(unsigned long * actual_len,void * mem_addr,unsigned long count,unsigned long offset)1603  int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1604  			    unsigned long count, unsigned long offset)
1605  {
1606  	int retval;
1607  	unsigned long flags;
1608  
1609  	spin_lock_irqsave(&pdc_lock, flags);
1610  	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1611  			      __pa(pdc_result2), count, offset);
1612  	*actual_len = pdc_result[0];
1613  	memcpy(mem_addr, pdc_result2, *actual_len);
1614  	spin_unlock_irqrestore(&pdc_lock, flags);
1615  
1616  	return retval;
1617  }
1618  
1619  /**
1620   * pdc_pat_pd_get_pdc_revisions - Retrieve PDC interface revisions.
1621   * @legacy_rev: The legacy revision.
1622   * @pat_rev: The PAT revision.
1623   * @pdc_cap: The PDC capabilities.
1624   *
1625   */
pdc_pat_pd_get_pdc_revisions(unsigned long * legacy_rev,unsigned long * pat_rev,unsigned long * pdc_cap)1626  int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1627  		unsigned long *pat_rev, unsigned long *pdc_cap)
1628  {
1629  	int retval;
1630  	unsigned long flags;
1631  
1632  	spin_lock_irqsave(&pdc_lock, flags);
1633  	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1634  				__pa(pdc_result));
1635  	if (retval == PDC_OK) {
1636  		*legacy_rev = pdc_result[0];
1637  		*pat_rev = pdc_result[1];
1638  		*pdc_cap = pdc_result[2];
1639  	}
1640  	spin_unlock_irqrestore(&pdc_lock, flags);
1641  
1642  	return retval;
1643  }
1644  
1645  
1646  /**
1647   * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1648   * @pci_addr: PCI configuration space address for which the read request is being made.
1649   * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1650   * @mem_addr: Pointer to return memory buffer.
1651   *
1652   */
pdc_pat_io_pci_cfg_read(unsigned long pci_addr,int pci_size,u32 * mem_addr)1653  int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1654  {
1655  	int retval;
1656  	unsigned long flags;
1657  
1658  	spin_lock_irqsave(&pdc_lock, flags);
1659  	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1660  					__pa(pdc_result), pci_addr, pci_size);
1661  	switch(pci_size) {
1662  		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1663  		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1664  		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1665  	}
1666  	spin_unlock_irqrestore(&pdc_lock, flags);
1667  
1668  	return retval;
1669  }
1670  
1671  /**
1672   * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1673   * @pci_addr: PCI configuration space address for which the write  request is being made.
1674   * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1675   * @val: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1676   *         written to PCI Config space.
1677   *
1678   */
pdc_pat_io_pci_cfg_write(unsigned long pci_addr,int pci_size,u32 val)1679  int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1680  {
1681  	int retval;
1682  	unsigned long flags;
1683  
1684  	spin_lock_irqsave(&pdc_lock, flags);
1685  	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1686  				pci_addr, pci_size, val);
1687  	spin_unlock_irqrestore(&pdc_lock, flags);
1688  
1689  	return retval;
1690  }
1691  
1692  /**
1693   * pdc_pat_mem_pdt_info - Retrieve information about page deallocation table
1694   * @rinfo: memory pdt information
1695   *
1696   */
pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo * rinfo)1697  int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1698  {
1699  	int retval;
1700  	unsigned long flags;
1701  
1702  	spin_lock_irqsave(&pdc_lock, flags);
1703  	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1704  			__pa(&pdc_result));
1705  	if (retval == PDC_OK)
1706  		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1707  	spin_unlock_irqrestore(&pdc_lock, flags);
1708  
1709  	return retval;
1710  }
1711  
1712  /**
1713   * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1714   *				table of a cell
1715   * @rinfo: memory pdt information
1716   * @cell: cell number
1717   *
1718   */
pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo * rinfo,unsigned long cell)1719  int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1720  		unsigned long cell)
1721  {
1722  	int retval;
1723  	unsigned long flags;
1724  
1725  	spin_lock_irqsave(&pdc_lock, flags);
1726  	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1727  			__pa(&pdc_result), cell);
1728  	if (retval == PDC_OK)
1729  		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1730  	spin_unlock_irqrestore(&pdc_lock, flags);
1731  
1732  	return retval;
1733  }
1734  
1735  /**
1736   * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1737   * @pret: array of PDT entries
1738   * @pdt_entries_ptr: ptr to hold number of PDT entries
1739   * @max_entries: maximum number of entries to be read
1740   *
1741   */
pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo * pret,unsigned long * pdt_entries_ptr,unsigned long max_entries)1742  int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1743  		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1744  {
1745  	int retval;
1746  	unsigned long flags, entries;
1747  
1748  	spin_lock_irqsave(&pdc_lock, flags);
1749  	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1750  	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1751  			__pa(&pdc_result), parisc_cell_num,
1752  			__pa(pdt_entries_ptr));
1753  
1754  	if (retval == PDC_OK) {
1755  		/* build up return value as for PDC_PAT_MEM_PD_READ */
1756  		entries = min(pdc_result[0], max_entries);
1757  		pret->pdt_entries = entries;
1758  		pret->actual_count_bytes = entries * sizeof(unsigned long);
1759  	}
1760  
1761  	spin_unlock_irqrestore(&pdc_lock, flags);
1762  	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1763  
1764  	return retval;
1765  }
1766  /**
1767   * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1768   * @pret: array of PDT entries
1769   * @pdt_entries_ptr: ptr to hold number of PDT entries
1770   * @count: number of bytes to read
1771   * @offset: offset to start (in bytes)
1772   *
1773   */
pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo * pret,unsigned long * pdt_entries_ptr,unsigned long count,unsigned long offset)1774  int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1775  		unsigned long *pdt_entries_ptr, unsigned long count,
1776  		unsigned long offset)
1777  {
1778  	int retval;
1779  	unsigned long flags, entries;
1780  
1781  	spin_lock_irqsave(&pdc_lock, flags);
1782  	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1783  		__pa(&pdc_result), __pa(pdt_entries_ptr),
1784  		count, offset);
1785  
1786  	if (retval == PDC_OK) {
1787  		entries = min(pdc_result[0], count);
1788  		pret->actual_count_bytes = entries;
1789  		pret->pdt_entries = entries / sizeof(unsigned long);
1790  	}
1791  
1792  	spin_unlock_irqrestore(&pdc_lock, flags);
1793  
1794  	return retval;
1795  }
1796  
1797  /**
1798   * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1799   * @pret: ptr to hold returned information
1800   * @phys_addr: physical address to examine
1801   *
1802   */
pdc_pat_mem_get_dimm_phys_location(struct pdc_pat_mem_phys_mem_location * pret,unsigned long phys_addr)1803  int pdc_pat_mem_get_dimm_phys_location(
1804  		struct pdc_pat_mem_phys_mem_location *pret,
1805  		unsigned long phys_addr)
1806  {
1807  	int retval;
1808  	unsigned long flags;
1809  
1810  	spin_lock_irqsave(&pdc_lock, flags);
1811  	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1812  		__pa(&pdc_result), phys_addr);
1813  
1814  	if (retval == PDC_OK)
1815  		memcpy(pret, &pdc_result, sizeof(*pret));
1816  
1817  	spin_unlock_irqrestore(&pdc_lock, flags);
1818  
1819  	return retval;
1820  }
1821  #endif /* CONFIG_64BIT */
1822  #endif /* defined(BOOTLOADER) */
1823  
1824  
1825  /***************** 32-bit real-mode calls ***********/
1826  /* The struct below is used
1827   * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1828   * real32_call_asm() then uses this stack in narrow real mode
1829   */
1830  
1831  struct narrow_stack {
1832  	/* use int, not long which is 64 bits */
1833  	unsigned int arg13;
1834  	unsigned int arg12;
1835  	unsigned int arg11;
1836  	unsigned int arg10;
1837  	unsigned int arg9;
1838  	unsigned int arg8;
1839  	unsigned int arg7;
1840  	unsigned int arg6;
1841  	unsigned int arg5;
1842  	unsigned int arg4;
1843  	unsigned int arg3;
1844  	unsigned int arg2;
1845  	unsigned int arg1;
1846  	unsigned int arg0;
1847  	unsigned int frame_marker[8];
1848  	unsigned int sp;
1849  	/* in reality, there's nearly 8k of stack after this */
1850  };
1851  
real32_call(unsigned long fn,...)1852  long real32_call(unsigned long fn, ...)
1853  {
1854  	va_list args;
1855  	extern struct narrow_stack real_stack;
1856  	extern unsigned long real32_call_asm(unsigned int *,
1857  					     unsigned int *,
1858  					     unsigned int);
1859  
1860  	va_start(args, fn);
1861  	real_stack.arg0 = va_arg(args, unsigned int);
1862  	real_stack.arg1 = va_arg(args, unsigned int);
1863  	real_stack.arg2 = va_arg(args, unsigned int);
1864  	real_stack.arg3 = va_arg(args, unsigned int);
1865  	real_stack.arg4 = va_arg(args, unsigned int);
1866  	real_stack.arg5 = va_arg(args, unsigned int);
1867  	real_stack.arg6 = va_arg(args, unsigned int);
1868  	real_stack.arg7 = va_arg(args, unsigned int);
1869  	real_stack.arg8 = va_arg(args, unsigned int);
1870  	real_stack.arg9 = va_arg(args, unsigned int);
1871  	real_stack.arg10 = va_arg(args, unsigned int);
1872  	real_stack.arg11 = va_arg(args, unsigned int);
1873  	real_stack.arg12 = va_arg(args, unsigned int);
1874  	real_stack.arg13 = va_arg(args, unsigned int);
1875  	va_end(args);
1876  
1877  	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1878  }
1879  
1880  #ifdef CONFIG_64BIT
1881  /***************** 64-bit real-mode calls ***********/
1882  
1883  struct wide_stack {
1884  	unsigned long arg0;
1885  	unsigned long arg1;
1886  	unsigned long arg2;
1887  	unsigned long arg3;
1888  	unsigned long arg4;
1889  	unsigned long arg5;
1890  	unsigned long arg6;
1891  	unsigned long arg7;
1892  	unsigned long arg8;
1893  	unsigned long arg9;
1894  	unsigned long arg10;
1895  	unsigned long arg11;
1896  	unsigned long arg12;
1897  	unsigned long arg13;
1898  	unsigned long frame_marker[2];	/* rp, previous sp */
1899  	unsigned long sp;
1900  	/* in reality, there's nearly 8k of stack after this */
1901  };
1902  
real64_call(unsigned long fn,...)1903  long real64_call(unsigned long fn, ...)
1904  {
1905  	va_list args;
1906  	extern struct wide_stack real64_stack;
1907  	extern unsigned long real64_call_asm(unsigned long *,
1908  					     unsigned long *,
1909  					     unsigned long);
1910  
1911  	va_start(args, fn);
1912  	real64_stack.arg0 = va_arg(args, unsigned long);
1913  	real64_stack.arg1 = va_arg(args, unsigned long);
1914  	real64_stack.arg2 = va_arg(args, unsigned long);
1915  	real64_stack.arg3 = va_arg(args, unsigned long);
1916  	real64_stack.arg4 = va_arg(args, unsigned long);
1917  	real64_stack.arg5 = va_arg(args, unsigned long);
1918  	real64_stack.arg6 = va_arg(args, unsigned long);
1919  	real64_stack.arg7 = va_arg(args, unsigned long);
1920  	real64_stack.arg8 = va_arg(args, unsigned long);
1921  	real64_stack.arg9 = va_arg(args, unsigned long);
1922  	real64_stack.arg10 = va_arg(args, unsigned long);
1923  	real64_stack.arg11 = va_arg(args, unsigned long);
1924  	real64_stack.arg12 = va_arg(args, unsigned long);
1925  	real64_stack.arg13 = va_arg(args, unsigned long);
1926  	va_end(args);
1927  
1928  	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1929  }
1930  
1931  #endif /* CONFIG_64BIT */
1932