1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/dma.h>
32 #include <linux/aer.h>
33 #include <linux/bitfield.h>
34 #include "pci.h"
35 
36 DEFINE_MUTEX(pci_slot_mutex);
37 
38 const char *pci_power_names[] = {
39 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42 
43 #ifdef CONFIG_X86_32
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 #endif
47 
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
50 
51 unsigned int pci_pm_d3hot_delay;
52 
53 static void pci_pme_list_scan(struct work_struct *work);
54 
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 
59 struct pci_pme_device {
60 	struct list_head list;
61 	struct pci_dev *dev;
62 };
63 
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 
66 /*
67  * Following exit from Conventional Reset, devices must be ready within 1 sec
68  * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
69  * Reset (PCIe r6.0 sec 5.8).
70  */
71 #define PCI_RESET_WAIT 1000 /* msec */
72 
73 /*
74  * Devices may extend the 1 sec period through Request Retry Status
75  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
76  * limit, but 60 sec ought to be enough for any device to become
77  * responsive.
78  */
79 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
80 
pci_dev_d3_sleep(struct pci_dev * dev)81 static void pci_dev_d3_sleep(struct pci_dev *dev)
82 {
83 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
84 	unsigned int upper;
85 
86 	if (delay_ms) {
87 		/* Use a 20% upper bound, 1ms minimum */
88 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
89 		usleep_range(delay_ms * USEC_PER_MSEC,
90 			     (delay_ms + upper) * USEC_PER_MSEC);
91 	}
92 }
93 
pci_reset_supported(struct pci_dev * dev)94 bool pci_reset_supported(struct pci_dev *dev)
95 {
96 	return dev->reset_methods[0] != 0;
97 }
98 
99 #ifdef CONFIG_PCI_DOMAINS
100 int pci_domains_supported = 1;
101 #endif
102 
103 #define DEFAULT_CARDBUS_IO_SIZE		(256)
104 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
105 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
106 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
107 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
108 
109 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
110 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
111 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
112 /* hpiosize=nn can override this */
113 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
114 /*
115  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
116  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
117  * pci=hpmemsize=nnM overrides both
118  */
119 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
120 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
121 
122 #define DEFAULT_HOTPLUG_BUS_SIZE	1
123 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
124 
125 
126 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
127 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
129 #elif defined CONFIG_PCIE_BUS_SAFE
130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
131 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
132 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
133 #elif defined CONFIG_PCIE_BUS_PEER2PEER
134 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
135 #else
136 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
137 #endif
138 
139 /*
140  * The default CLS is used if arch didn't set CLS explicitly and not
141  * all pci devices agree on the same value.  Arch can override either
142  * the dfl or actual value as it sees fit.  Don't forget this is
143  * measured in 32-bit words, not bytes.
144  */
145 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
146 u8 pci_cache_line_size __ro_after_init ;
147 
148 /*
149  * If we set up a device for bus mastering, we need to check the latency
150  * timer as certain BIOSes forget to set it properly.
151  */
152 unsigned int pcibios_max_latency = 255;
153 
154 /* If set, the PCIe ARI capability will not be used. */
155 static bool pcie_ari_disabled;
156 
157 /* If set, the PCIe ATS capability will not be used. */
158 static bool pcie_ats_disabled;
159 
160 /* If set, the PCI config space of each device is printed during boot. */
161 bool pci_early_dump;
162 
pci_ats_disabled(void)163 bool pci_ats_disabled(void)
164 {
165 	return pcie_ats_disabled;
166 }
167 EXPORT_SYMBOL_GPL(pci_ats_disabled);
168 
169 /* Disable bridge_d3 for all PCIe ports */
170 static bool pci_bridge_d3_disable;
171 /* Force bridge_d3 for all PCIe ports */
172 static bool pci_bridge_d3_force;
173 
pcie_port_pm_setup(char * str)174 static int __init pcie_port_pm_setup(char *str)
175 {
176 	if (!strcmp(str, "off"))
177 		pci_bridge_d3_disable = true;
178 	else if (!strcmp(str, "force"))
179 		pci_bridge_d3_force = true;
180 	return 1;
181 }
182 __setup("pcie_port_pm=", pcie_port_pm_setup);
183 
184 /**
185  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
186  * @bus: pointer to PCI bus structure to search
187  *
188  * Given a PCI bus, returns the highest PCI bus number present in the set
189  * including the given PCI bus and its list of child PCI buses.
190  */
pci_bus_max_busnr(struct pci_bus * bus)191 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
192 {
193 	struct pci_bus *tmp;
194 	unsigned char max, n;
195 
196 	max = bus->busn_res.end;
197 	list_for_each_entry(tmp, &bus->children, node) {
198 		n = pci_bus_max_busnr(tmp);
199 		if (n > max)
200 			max = n;
201 	}
202 	return max;
203 }
204 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
205 
206 /**
207  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
208  * @pdev: the PCI device
209  *
210  * Returns error bits set in PCI_STATUS and clears them.
211  */
pci_status_get_and_clear_errors(struct pci_dev * pdev)212 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
213 {
214 	u16 status;
215 	int ret;
216 
217 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
218 	if (ret != PCIBIOS_SUCCESSFUL)
219 		return -EIO;
220 
221 	status &= PCI_STATUS_ERROR_BITS;
222 	if (status)
223 		pci_write_config_word(pdev, PCI_STATUS, status);
224 
225 	return status;
226 }
227 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
228 
229 #ifdef CONFIG_HAS_IOMEM
__pci_ioremap_resource(struct pci_dev * pdev,int bar,bool write_combine)230 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
231 					    bool write_combine)
232 {
233 	struct resource *res = &pdev->resource[bar];
234 	resource_size_t start = res->start;
235 	resource_size_t size = resource_size(res);
236 
237 	/*
238 	 * Make sure the BAR is actually a memory resource, not an IO resource
239 	 */
240 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
241 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
242 		return NULL;
243 	}
244 
245 	if (write_combine)
246 		return ioremap_wc(start, size);
247 
248 	return ioremap(start, size);
249 }
250 
pci_ioremap_bar(struct pci_dev * pdev,int bar)251 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
252 {
253 	return __pci_ioremap_resource(pdev, bar, false);
254 }
255 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
256 
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)257 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
258 {
259 	return __pci_ioremap_resource(pdev, bar, true);
260 }
261 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
262 #endif
263 
264 /**
265  * pci_dev_str_match_path - test if a path string matches a device
266  * @dev: the PCI device to test
267  * @path: string to match the device against
268  * @endptr: pointer to the string after the match
269  *
270  * Test if a string (typically from a kernel parameter) formatted as a
271  * path of device/function addresses matches a PCI device. The string must
272  * be of the form:
273  *
274  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
275  *
276  * A path for a device can be obtained using 'lspci -t'.  Using a path
277  * is more robust against bus renumbering than using only a single bus,
278  * device and function address.
279  *
280  * Returns 1 if the string matches the device, 0 if it does not and
281  * a negative error code if it fails to parse the string.
282  */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)283 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
284 				  const char **endptr)
285 {
286 	int ret;
287 	unsigned int seg, bus, slot, func;
288 	char *wpath, *p;
289 	char end;
290 
291 	*endptr = strchrnul(path, ';');
292 
293 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
294 	if (!wpath)
295 		return -ENOMEM;
296 
297 	while (1) {
298 		p = strrchr(wpath, '/');
299 		if (!p)
300 			break;
301 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
302 		if (ret != 2) {
303 			ret = -EINVAL;
304 			goto free_and_exit;
305 		}
306 
307 		if (dev->devfn != PCI_DEVFN(slot, func)) {
308 			ret = 0;
309 			goto free_and_exit;
310 		}
311 
312 		/*
313 		 * Note: we don't need to get a reference to the upstream
314 		 * bridge because we hold a reference to the top level
315 		 * device which should hold a reference to the bridge,
316 		 * and so on.
317 		 */
318 		dev = pci_upstream_bridge(dev);
319 		if (!dev) {
320 			ret = 0;
321 			goto free_and_exit;
322 		}
323 
324 		*p = 0;
325 	}
326 
327 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
328 		     &func, &end);
329 	if (ret != 4) {
330 		seg = 0;
331 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
332 		if (ret != 3) {
333 			ret = -EINVAL;
334 			goto free_and_exit;
335 		}
336 	}
337 
338 	ret = (seg == pci_domain_nr(dev->bus) &&
339 	       bus == dev->bus->number &&
340 	       dev->devfn == PCI_DEVFN(slot, func));
341 
342 free_and_exit:
343 	kfree(wpath);
344 	return ret;
345 }
346 
347 /**
348  * pci_dev_str_match - test if a string matches a device
349  * @dev: the PCI device to test
350  * @p: string to match the device against
351  * @endptr: pointer to the string after the match
352  *
353  * Test if a string (typically from a kernel parameter) matches a specified
354  * PCI device. The string may be of one of the following formats:
355  *
356  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
357  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
358  *
359  * The first format specifies a PCI bus/device/function address which
360  * may change if new hardware is inserted, if motherboard firmware changes,
361  * or due to changes caused in kernel parameters. If the domain is
362  * left unspecified, it is taken to be 0.  In order to be robust against
363  * bus renumbering issues, a path of PCI device/function numbers may be used
364  * to address the specific device.  The path for a device can be determined
365  * through the use of 'lspci -t'.
366  *
367  * The second format matches devices using IDs in the configuration
368  * space which may match multiple devices in the system. A value of 0
369  * for any field will match all devices. (Note: this differs from
370  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
371  * legacy reasons and convenience so users don't have to specify
372  * FFFFFFFFs on the command line.)
373  *
374  * Returns 1 if the string matches the device, 0 if it does not and
375  * a negative error code if the string cannot be parsed.
376  */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)377 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
378 			     const char **endptr)
379 {
380 	int ret;
381 	int count;
382 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
383 
384 	if (strncmp(p, "pci:", 4) == 0) {
385 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
386 		p += 4;
387 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
388 			     &subsystem_vendor, &subsystem_device, &count);
389 		if (ret != 4) {
390 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
391 			if (ret != 2)
392 				return -EINVAL;
393 
394 			subsystem_vendor = 0;
395 			subsystem_device = 0;
396 		}
397 
398 		p += count;
399 
400 		if ((!vendor || vendor == dev->vendor) &&
401 		    (!device || device == dev->device) &&
402 		    (!subsystem_vendor ||
403 			    subsystem_vendor == dev->subsystem_vendor) &&
404 		    (!subsystem_device ||
405 			    subsystem_device == dev->subsystem_device))
406 			goto found;
407 	} else {
408 		/*
409 		 * PCI Bus, Device, Function IDs are specified
410 		 * (optionally, may include a path of devfns following it)
411 		 */
412 		ret = pci_dev_str_match_path(dev, p, &p);
413 		if (ret < 0)
414 			return ret;
415 		else if (ret)
416 			goto found;
417 	}
418 
419 	*endptr = p;
420 	return 0;
421 
422 found:
423 	*endptr = p;
424 	return 1;
425 }
426 
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)427 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
428 				  u8 pos, int cap, int *ttl)
429 {
430 	u8 id;
431 	u16 ent;
432 
433 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
434 
435 	while ((*ttl)--) {
436 		if (pos < 0x40)
437 			break;
438 		pos &= ~3;
439 		pci_bus_read_config_word(bus, devfn, pos, &ent);
440 
441 		id = ent & 0xff;
442 		if (id == 0xff)
443 			break;
444 		if (id == cap)
445 			return pos;
446 		pos = (ent >> 8);
447 	}
448 	return 0;
449 }
450 
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)451 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
452 			      u8 pos, int cap)
453 {
454 	int ttl = PCI_FIND_CAP_TTL;
455 
456 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
457 }
458 
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)459 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
460 {
461 	return __pci_find_next_cap(dev->bus, dev->devfn,
462 				   pos + PCI_CAP_LIST_NEXT, cap);
463 }
464 EXPORT_SYMBOL_GPL(pci_find_next_capability);
465 
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)466 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
467 				    unsigned int devfn, u8 hdr_type)
468 {
469 	u16 status;
470 
471 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
472 	if (!(status & PCI_STATUS_CAP_LIST))
473 		return 0;
474 
475 	switch (hdr_type) {
476 	case PCI_HEADER_TYPE_NORMAL:
477 	case PCI_HEADER_TYPE_BRIDGE:
478 		return PCI_CAPABILITY_LIST;
479 	case PCI_HEADER_TYPE_CARDBUS:
480 		return PCI_CB_CAPABILITY_LIST;
481 	}
482 
483 	return 0;
484 }
485 
486 /**
487  * pci_find_capability - query for devices' capabilities
488  * @dev: PCI device to query
489  * @cap: capability code
490  *
491  * Tell if a device supports a given PCI capability.
492  * Returns the address of the requested capability structure within the
493  * device's PCI configuration space or 0 in case the device does not
494  * support it.  Possible values for @cap include:
495  *
496  *  %PCI_CAP_ID_PM           Power Management
497  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
498  *  %PCI_CAP_ID_VPD          Vital Product Data
499  *  %PCI_CAP_ID_SLOTID       Slot Identification
500  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
501  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
502  *  %PCI_CAP_ID_PCIX         PCI-X
503  *  %PCI_CAP_ID_EXP          PCI Express
504  */
pci_find_capability(struct pci_dev * dev,int cap)505 u8 pci_find_capability(struct pci_dev *dev, int cap)
506 {
507 	u8 pos;
508 
509 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
510 	if (pos)
511 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
512 
513 	return pos;
514 }
515 EXPORT_SYMBOL(pci_find_capability);
516 
517 /**
518  * pci_bus_find_capability - query for devices' capabilities
519  * @bus: the PCI bus to query
520  * @devfn: PCI device to query
521  * @cap: capability code
522  *
523  * Like pci_find_capability() but works for PCI devices that do not have a
524  * pci_dev structure set up yet.
525  *
526  * Returns the address of the requested capability structure within the
527  * device's PCI configuration space or 0 in case the device does not
528  * support it.
529  */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)530 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
531 {
532 	u8 hdr_type, pos;
533 
534 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
535 
536 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
537 	if (pos)
538 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
539 
540 	return pos;
541 }
542 EXPORT_SYMBOL(pci_bus_find_capability);
543 
544 /**
545  * pci_find_next_ext_capability - Find an extended capability
546  * @dev: PCI device to query
547  * @start: address at which to start looking (0 to start at beginning of list)
548  * @cap: capability code
549  *
550  * Returns the address of the next matching extended capability structure
551  * within the device's PCI configuration space or 0 if the device does
552  * not support it.  Some capabilities can occur several times, e.g., the
553  * vendor-specific capability, and this provides a way to find them all.
554  */
pci_find_next_ext_capability(struct pci_dev * dev,u16 start,int cap)555 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
556 {
557 	u32 header;
558 	int ttl;
559 	u16 pos = PCI_CFG_SPACE_SIZE;
560 
561 	/* minimum 8 bytes per capability */
562 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
563 
564 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
565 		return 0;
566 
567 	if (start)
568 		pos = start;
569 
570 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
571 		return 0;
572 
573 	/*
574 	 * If we have no capabilities, this is indicated by cap ID,
575 	 * cap version and next pointer all being 0.
576 	 */
577 	if (header == 0)
578 		return 0;
579 
580 	while (ttl-- > 0) {
581 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
582 			return pos;
583 
584 		pos = PCI_EXT_CAP_NEXT(header);
585 		if (pos < PCI_CFG_SPACE_SIZE)
586 			break;
587 
588 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
589 			break;
590 	}
591 
592 	return 0;
593 }
594 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
595 
596 /**
597  * pci_find_ext_capability - Find an extended capability
598  * @dev: PCI device to query
599  * @cap: capability code
600  *
601  * Returns the address of the requested extended capability structure
602  * within the device's PCI configuration space or 0 if the device does
603  * not support it.  Possible values for @cap include:
604  *
605  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
606  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
607  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
608  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
609  */
pci_find_ext_capability(struct pci_dev * dev,int cap)610 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
611 {
612 	return pci_find_next_ext_capability(dev, 0, cap);
613 }
614 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
615 
616 /**
617  * pci_get_dsn - Read and return the 8-byte Device Serial Number
618  * @dev: PCI device to query
619  *
620  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
621  * Number.
622  *
623  * Returns the DSN, or zero if the capability does not exist.
624  */
pci_get_dsn(struct pci_dev * dev)625 u64 pci_get_dsn(struct pci_dev *dev)
626 {
627 	u32 dword;
628 	u64 dsn;
629 	int pos;
630 
631 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
632 	if (!pos)
633 		return 0;
634 
635 	/*
636 	 * The Device Serial Number is two dwords offset 4 bytes from the
637 	 * capability position. The specification says that the first dword is
638 	 * the lower half, and the second dword is the upper half.
639 	 */
640 	pos += 4;
641 	pci_read_config_dword(dev, pos, &dword);
642 	dsn = (u64)dword;
643 	pci_read_config_dword(dev, pos + 4, &dword);
644 	dsn |= ((u64)dword) << 32;
645 
646 	return dsn;
647 }
648 EXPORT_SYMBOL_GPL(pci_get_dsn);
649 
__pci_find_next_ht_cap(struct pci_dev * dev,u8 pos,int ht_cap)650 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
651 {
652 	int rc, ttl = PCI_FIND_CAP_TTL;
653 	u8 cap, mask;
654 
655 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
656 		mask = HT_3BIT_CAP_MASK;
657 	else
658 		mask = HT_5BIT_CAP_MASK;
659 
660 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
661 				      PCI_CAP_ID_HT, &ttl);
662 	while (pos) {
663 		rc = pci_read_config_byte(dev, pos + 3, &cap);
664 		if (rc != PCIBIOS_SUCCESSFUL)
665 			return 0;
666 
667 		if ((cap & mask) == ht_cap)
668 			return pos;
669 
670 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
671 					      pos + PCI_CAP_LIST_NEXT,
672 					      PCI_CAP_ID_HT, &ttl);
673 	}
674 
675 	return 0;
676 }
677 
678 /**
679  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
680  * @dev: PCI device to query
681  * @pos: Position from which to continue searching
682  * @ht_cap: HyperTransport capability code
683  *
684  * To be used in conjunction with pci_find_ht_capability() to search for
685  * all capabilities matching @ht_cap. @pos should always be a value returned
686  * from pci_find_ht_capability().
687  *
688  * NB. To be 100% safe against broken PCI devices, the caller should take
689  * steps to avoid an infinite loop.
690  */
pci_find_next_ht_capability(struct pci_dev * dev,u8 pos,int ht_cap)691 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
692 {
693 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
694 }
695 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
696 
697 /**
698  * pci_find_ht_capability - query a device's HyperTransport capabilities
699  * @dev: PCI device to query
700  * @ht_cap: HyperTransport capability code
701  *
702  * Tell if a device supports a given HyperTransport capability.
703  * Returns an address within the device's PCI configuration space
704  * or 0 in case the device does not support the request capability.
705  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
706  * which has a HyperTransport capability matching @ht_cap.
707  */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)708 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
709 {
710 	u8 pos;
711 
712 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
713 	if (pos)
714 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
715 
716 	return pos;
717 }
718 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
719 
720 /**
721  * pci_find_vsec_capability - Find a vendor-specific extended capability
722  * @dev: PCI device to query
723  * @vendor: Vendor ID for which capability is defined
724  * @cap: Vendor-specific capability ID
725  *
726  * If @dev has Vendor ID @vendor, search for a VSEC capability with
727  * VSEC ID @cap. If found, return the capability offset in
728  * config space; otherwise return 0.
729  */
pci_find_vsec_capability(struct pci_dev * dev,u16 vendor,int cap)730 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
731 {
732 	u16 vsec = 0;
733 	u32 header;
734 	int ret;
735 
736 	if (vendor != dev->vendor)
737 		return 0;
738 
739 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 						     PCI_EXT_CAP_ID_VNDR))) {
741 		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
742 		if (ret != PCIBIOS_SUCCESSFUL)
743 			continue;
744 
745 		if (PCI_VNDR_HEADER_ID(header) == cap)
746 			return vsec;
747 	}
748 
749 	return 0;
750 }
751 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
752 
753 /**
754  * pci_find_dvsec_capability - Find DVSEC for vendor
755  * @dev: PCI device to query
756  * @vendor: Vendor ID to match for the DVSEC
757  * @dvsec: Designated Vendor-specific capability ID
758  *
759  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
760  * offset in config space; otherwise return 0.
761  */
pci_find_dvsec_capability(struct pci_dev * dev,u16 vendor,u16 dvsec)762 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
763 {
764 	int pos;
765 
766 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
767 	if (!pos)
768 		return 0;
769 
770 	while (pos) {
771 		u16 v, id;
772 
773 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
774 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
775 		if (vendor == v && dvsec == id)
776 			return pos;
777 
778 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
779 	}
780 
781 	return 0;
782 }
783 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
784 
785 /**
786  * pci_find_parent_resource - return resource region of parent bus of given
787  *			      region
788  * @dev: PCI device structure contains resources to be searched
789  * @res: child resource record for which parent is sought
790  *
791  * For given resource region of given device, return the resource region of
792  * parent bus the given region is contained in.
793  */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)794 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
795 					  struct resource *res)
796 {
797 	const struct pci_bus *bus = dev->bus;
798 	struct resource *r;
799 
800 	pci_bus_for_each_resource(bus, r) {
801 		if (!r)
802 			continue;
803 		if (resource_contains(r, res)) {
804 
805 			/*
806 			 * If the window is prefetchable but the BAR is
807 			 * not, the allocator made a mistake.
808 			 */
809 			if (r->flags & IORESOURCE_PREFETCH &&
810 			    !(res->flags & IORESOURCE_PREFETCH))
811 				return NULL;
812 
813 			/*
814 			 * If we're below a transparent bridge, there may
815 			 * be both a positively-decoded aperture and a
816 			 * subtractively-decoded region that contain the BAR.
817 			 * We want the positively-decoded one, so this depends
818 			 * on pci_bus_for_each_resource() giving us those
819 			 * first.
820 			 */
821 			return r;
822 		}
823 	}
824 	return NULL;
825 }
826 EXPORT_SYMBOL(pci_find_parent_resource);
827 
828 /**
829  * pci_find_resource - Return matching PCI device resource
830  * @dev: PCI device to query
831  * @res: Resource to look for
832  *
833  * Goes over standard PCI resources (BARs) and checks if the given resource
834  * is partially or fully contained in any of them. In that case the
835  * matching resource is returned, %NULL otherwise.
836  */
pci_find_resource(struct pci_dev * dev,struct resource * res)837 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
838 {
839 	int i;
840 
841 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
842 		struct resource *r = &dev->resource[i];
843 
844 		if (r->start && resource_contains(r, res))
845 			return r;
846 	}
847 
848 	return NULL;
849 }
850 EXPORT_SYMBOL(pci_find_resource);
851 
852 /**
853  * pci_resource_name - Return the name of the PCI resource
854  * @dev: PCI device to query
855  * @i: index of the resource
856  *
857  * Return the standard PCI resource (BAR) name according to their index.
858  */
pci_resource_name(struct pci_dev * dev,unsigned int i)859 const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
860 {
861 	static const char * const bar_name[] = {
862 		"BAR 0",
863 		"BAR 1",
864 		"BAR 2",
865 		"BAR 3",
866 		"BAR 4",
867 		"BAR 5",
868 		"ROM",
869 #ifdef CONFIG_PCI_IOV
870 		"VF BAR 0",
871 		"VF BAR 1",
872 		"VF BAR 2",
873 		"VF BAR 3",
874 		"VF BAR 4",
875 		"VF BAR 5",
876 #endif
877 		"bridge window",	/* "io" included in %pR */
878 		"bridge window",	/* "mem" included in %pR */
879 		"bridge window",	/* "mem pref" included in %pR */
880 	};
881 	static const char * const cardbus_name[] = {
882 		"BAR 1",
883 		"unknown",
884 		"unknown",
885 		"unknown",
886 		"unknown",
887 		"unknown",
888 #ifdef CONFIG_PCI_IOV
889 		"unknown",
890 		"unknown",
891 		"unknown",
892 		"unknown",
893 		"unknown",
894 		"unknown",
895 #endif
896 		"CardBus bridge window 0",	/* I/O */
897 		"CardBus bridge window 1",	/* I/O */
898 		"CardBus bridge window 0",	/* mem */
899 		"CardBus bridge window 1",	/* mem */
900 	};
901 
902 	if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
903 	    i < ARRAY_SIZE(cardbus_name))
904 		return cardbus_name[i];
905 
906 	if (i < ARRAY_SIZE(bar_name))
907 		return bar_name[i];
908 
909 	return "unknown";
910 }
911 
912 /**
913  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
914  * @dev: the PCI device to operate on
915  * @pos: config space offset of status word
916  * @mask: mask of bit(s) to care about in status word
917  *
918  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
919  */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)920 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
921 {
922 	int i;
923 
924 	/* Wait for Transaction Pending bit clean */
925 	for (i = 0; i < 4; i++) {
926 		u16 status;
927 		if (i)
928 			msleep((1 << (i - 1)) * 100);
929 
930 		pci_read_config_word(dev, pos, &status);
931 		if (!(status & mask))
932 			return 1;
933 	}
934 
935 	return 0;
936 }
937 
938 static int pci_acs_enable;
939 
940 /**
941  * pci_request_acs - ask for ACS to be enabled if supported
942  */
pci_request_acs(void)943 void pci_request_acs(void)
944 {
945 	pci_acs_enable = 1;
946 }
947 
948 static const char *disable_acs_redir_param;
949 static const char *config_acs_param;
950 
951 struct pci_acs {
952 	u16 cap;
953 	u16 ctrl;
954 	u16 fw_ctrl;
955 };
956 
__pci_config_acs(struct pci_dev * dev,struct pci_acs * caps,const char * p,u16 mask,u16 flags)957 static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps,
958 			     const char *p, u16 mask, u16 flags)
959 {
960 	char *delimit;
961 	int ret = 0;
962 
963 	if (!p)
964 		return;
965 
966 	while (*p) {
967 		if (!mask) {
968 			/* Check for ACS flags */
969 			delimit = strstr(p, "@");
970 			if (delimit) {
971 				int end;
972 				u32 shift = 0;
973 
974 				end = delimit - p - 1;
975 
976 				while (end > -1) {
977 					if (*(p + end) == '0') {
978 						mask |= 1 << shift;
979 						shift++;
980 						end--;
981 					} else if (*(p + end) == '1') {
982 						mask |= 1 << shift;
983 						flags |= 1 << shift;
984 						shift++;
985 						end--;
986 					} else if ((*(p + end) == 'x') || (*(p + end) == 'X')) {
987 						shift++;
988 						end--;
989 					} else {
990 						pci_err(dev, "Invalid ACS flags... Ignoring\n");
991 						return;
992 					}
993 				}
994 				p = delimit + 1;
995 			} else {
996 				pci_err(dev, "ACS Flags missing\n");
997 				return;
998 			}
999 		}
1000 
1001 		if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR |
1002 			    PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) {
1003 			pci_err(dev, "Invalid ACS flags specified\n");
1004 			return;
1005 		}
1006 
1007 		ret = pci_dev_str_match(dev, p, &p);
1008 		if (ret < 0) {
1009 			pr_info_once("PCI: Can't parse ACS command line parameter\n");
1010 			break;
1011 		} else if (ret == 1) {
1012 			/* Found a match */
1013 			break;
1014 		}
1015 
1016 		if (*p != ';' && *p != ',') {
1017 			/* End of param or invalid format */
1018 			break;
1019 		}
1020 		p++;
1021 	}
1022 
1023 	if (ret != 1)
1024 		return;
1025 
1026 	if (!pci_dev_specific_disable_acs_redir(dev))
1027 		return;
1028 
1029 	pci_dbg(dev, "ACS mask  = %#06x\n", mask);
1030 	pci_dbg(dev, "ACS flags = %#06x\n", flags);
1031 
1032 	/* If mask is 0 then we copy the bit from the firmware setting. */
1033 	caps->ctrl = (caps->ctrl & ~mask) | (caps->fw_ctrl & mask);
1034 	caps->ctrl |= flags;
1035 
1036 	pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl);
1037 }
1038 
1039 /**
1040  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1041  * @dev: the PCI device
1042  * @caps: default ACS controls
1043  */
pci_std_enable_acs(struct pci_dev * dev,struct pci_acs * caps)1044 static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps)
1045 {
1046 	/* Source Validation */
1047 	caps->ctrl |= (caps->cap & PCI_ACS_SV);
1048 
1049 	/* P2P Request Redirect */
1050 	caps->ctrl |= (caps->cap & PCI_ACS_RR);
1051 
1052 	/* P2P Completion Redirect */
1053 	caps->ctrl |= (caps->cap & PCI_ACS_CR);
1054 
1055 	/* Upstream Forwarding */
1056 	caps->ctrl |= (caps->cap & PCI_ACS_UF);
1057 
1058 	/* Enable Translation Blocking for external devices and noats */
1059 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1060 		caps->ctrl |= (caps->cap & PCI_ACS_TB);
1061 }
1062 
1063 /**
1064  * pci_enable_acs - enable ACS if hardware support it
1065  * @dev: the PCI device
1066  */
pci_enable_acs(struct pci_dev * dev)1067 static void pci_enable_acs(struct pci_dev *dev)
1068 {
1069 	struct pci_acs caps;
1070 	bool enable_acs = false;
1071 	int pos;
1072 
1073 	/* If an iommu is present we start with kernel default caps */
1074 	if (pci_acs_enable) {
1075 		if (pci_dev_specific_enable_acs(dev))
1076 			enable_acs = true;
1077 	}
1078 
1079 	pos = dev->acs_cap;
1080 	if (!pos)
1081 		return;
1082 
1083 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap);
1084 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl);
1085 	caps.fw_ctrl = caps.ctrl;
1086 
1087 	if (enable_acs)
1088 		pci_std_enable_acs(dev, &caps);
1089 
1090 	/*
1091 	 * Always apply caps from the command line, even if there is no iommu.
1092 	 * Trust that the admin has a reason to change the ACS settings.
1093 	 */
1094 	__pci_config_acs(dev, &caps, disable_acs_redir_param,
1095 			 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC,
1096 			 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC));
1097 	__pci_config_acs(dev, &caps, config_acs_param, 0, 0);
1098 
1099 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl);
1100 }
1101 
1102 /**
1103  * pcie_read_tlp_log - read TLP Header Log
1104  * @dev: PCIe device
1105  * @where: PCI Config offset of TLP Header Log
1106  * @tlp_log: TLP Log structure to fill
1107  *
1108  * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1109  *
1110  * Return: 0 on success and filled TLP Log structure, <0 on error.
1111  */
pcie_read_tlp_log(struct pci_dev * dev,int where,struct pcie_tlp_log * tlp_log)1112 int pcie_read_tlp_log(struct pci_dev *dev, int where,
1113 		      struct pcie_tlp_log *tlp_log)
1114 {
1115 	int i, ret;
1116 
1117 	memset(tlp_log, 0, sizeof(*tlp_log));
1118 
1119 	for (i = 0; i < 4; i++) {
1120 		ret = pci_read_config_dword(dev, where + i * 4,
1121 					    &tlp_log->dw[i]);
1122 		if (ret)
1123 			return pcibios_err_to_errno(ret);
1124 	}
1125 
1126 	return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1129 
1130 /**
1131  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1132  * @dev: PCI device to have its BARs restored
1133  *
1134  * Restore the BAR values for a given device, so as to make it
1135  * accessible by its driver.
1136  */
pci_restore_bars(struct pci_dev * dev)1137 static void pci_restore_bars(struct pci_dev *dev)
1138 {
1139 	int i;
1140 
1141 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1142 		pci_update_resource(dev, i);
1143 }
1144 
platform_pci_power_manageable(struct pci_dev * dev)1145 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1146 {
1147 	if (pci_use_mid_pm())
1148 		return true;
1149 
1150 	return acpi_pci_power_manageable(dev);
1151 }
1152 
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)1153 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1154 					       pci_power_t t)
1155 {
1156 	if (pci_use_mid_pm())
1157 		return mid_pci_set_power_state(dev, t);
1158 
1159 	return acpi_pci_set_power_state(dev, t);
1160 }
1161 
platform_pci_get_power_state(struct pci_dev * dev)1162 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1163 {
1164 	if (pci_use_mid_pm())
1165 		return mid_pci_get_power_state(dev);
1166 
1167 	return acpi_pci_get_power_state(dev);
1168 }
1169 
platform_pci_refresh_power_state(struct pci_dev * dev)1170 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1171 {
1172 	if (!pci_use_mid_pm())
1173 		acpi_pci_refresh_power_state(dev);
1174 }
1175 
platform_pci_choose_state(struct pci_dev * dev)1176 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1177 {
1178 	if (pci_use_mid_pm())
1179 		return PCI_POWER_ERROR;
1180 
1181 	return acpi_pci_choose_state(dev);
1182 }
1183 
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)1184 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1185 {
1186 	if (pci_use_mid_pm())
1187 		return PCI_POWER_ERROR;
1188 
1189 	return acpi_pci_wakeup(dev, enable);
1190 }
1191 
platform_pci_need_resume(struct pci_dev * dev)1192 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1193 {
1194 	if (pci_use_mid_pm())
1195 		return false;
1196 
1197 	return acpi_pci_need_resume(dev);
1198 }
1199 
platform_pci_bridge_d3(struct pci_dev * dev)1200 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1201 {
1202 	if (pci_use_mid_pm())
1203 		return false;
1204 
1205 	return acpi_pci_bridge_d3(dev);
1206 }
1207 
1208 /**
1209  * pci_update_current_state - Read power state of given device and cache it
1210  * @dev: PCI device to handle.
1211  * @state: State to cache in case the device doesn't have the PM capability
1212  *
1213  * The power state is read from the PMCSR register, which however is
1214  * inaccessible in D3cold.  The platform firmware is therefore queried first
1215  * to detect accessibility of the register.  In case the platform firmware
1216  * reports an incorrect state or the device isn't power manageable by the
1217  * platform at all, we try to detect D3cold by testing accessibility of the
1218  * vendor ID in config space.
1219  */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1220 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1221 {
1222 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1223 		dev->current_state = PCI_D3cold;
1224 	} else if (dev->pm_cap) {
1225 		u16 pmcsr;
1226 
1227 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1228 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1229 			dev->current_state = PCI_D3cold;
1230 			return;
1231 		}
1232 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1233 	} else {
1234 		dev->current_state = state;
1235 	}
1236 }
1237 
1238 /**
1239  * pci_refresh_power_state - Refresh the given device's power state data
1240  * @dev: Target PCI device.
1241  *
1242  * Ask the platform to refresh the devices power state information and invoke
1243  * pci_update_current_state() to update its current PCI power state.
1244  */
pci_refresh_power_state(struct pci_dev * dev)1245 void pci_refresh_power_state(struct pci_dev *dev)
1246 {
1247 	platform_pci_refresh_power_state(dev);
1248 	pci_update_current_state(dev, dev->current_state);
1249 }
1250 
1251 /**
1252  * pci_platform_power_transition - Use platform to change device power state
1253  * @dev: PCI device to handle.
1254  * @state: State to put the device into.
1255  */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1256 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1257 {
1258 	int error;
1259 
1260 	error = platform_pci_set_power_state(dev, state);
1261 	if (!error)
1262 		pci_update_current_state(dev, state);
1263 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1264 		dev->current_state = PCI_D0;
1265 
1266 	return error;
1267 }
1268 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1269 
pci_resume_one(struct pci_dev * pci_dev,void * ign)1270 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1271 {
1272 	pm_request_resume(&pci_dev->dev);
1273 	return 0;
1274 }
1275 
1276 /**
1277  * pci_resume_bus - Walk given bus and runtime resume devices on it
1278  * @bus: Top bus of the subtree to walk.
1279  */
pci_resume_bus(struct pci_bus * bus)1280 void pci_resume_bus(struct pci_bus *bus)
1281 {
1282 	if (bus)
1283 		pci_walk_bus(bus, pci_resume_one, NULL);
1284 }
1285 
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1286 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1287 {
1288 	int delay = 1;
1289 	bool retrain = false;
1290 	struct pci_dev *root, *bridge;
1291 
1292 	root = pcie_find_root_port(dev);
1293 
1294 	if (pci_is_pcie(dev)) {
1295 		bridge = pci_upstream_bridge(dev);
1296 		if (bridge)
1297 			retrain = true;
1298 	}
1299 
1300 	/*
1301 	 * The caller has already waited long enough after a reset that the
1302 	 * device should respond to config requests, but it may respond
1303 	 * with Request Retry Status (RRS) if it needs more time to
1304 	 * initialize.
1305 	 *
1306 	 * If the device is below a Root Port with Configuration RRS
1307 	 * Software Visibility enabled, reading the Vendor ID returns a
1308 	 * special data value if the device responded with RRS.  Read the
1309 	 * Vendor ID until we get non-RRS status.
1310 	 *
1311 	 * If there's no Root Port or Configuration RRS Software Visibility
1312 	 * is not enabled, the device may still respond with RRS, but
1313 	 * hardware may retry the config request.  If no retries receive
1314 	 * Successful Completion, hardware generally synthesizes ~0
1315 	 * (PCI_ERROR_RESPONSE) data to complete the read.  Reading Vendor
1316 	 * ID for VFs and non-existent devices also returns ~0, so read the
1317 	 * Command register until it returns something other than ~0.
1318 	 */
1319 	for (;;) {
1320 		u32 id;
1321 
1322 		if (pci_dev_is_disconnected(dev)) {
1323 			pci_dbg(dev, "disconnected; not waiting\n");
1324 			return -ENOTTY;
1325 		}
1326 
1327 		if (root && root->config_rrs_sv) {
1328 			pci_read_config_dword(dev, PCI_VENDOR_ID, &id);
1329 			if (!pci_bus_rrs_vendor_id(id))
1330 				break;
1331 		} else {
1332 			pci_read_config_dword(dev, PCI_COMMAND, &id);
1333 			if (!PCI_POSSIBLE_ERROR(id))
1334 				break;
1335 		}
1336 
1337 		if (delay > timeout) {
1338 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1339 				 delay - 1, reset_type);
1340 			return -ENOTTY;
1341 		}
1342 
1343 		if (delay > PCI_RESET_WAIT) {
1344 			if (retrain) {
1345 				retrain = false;
1346 				if (pcie_failed_link_retrain(bridge) == 0) {
1347 					delay = 1;
1348 					continue;
1349 				}
1350 			}
1351 			pci_info(dev, "not ready %dms after %s; waiting\n",
1352 				 delay - 1, reset_type);
1353 		}
1354 
1355 		msleep(delay);
1356 		delay *= 2;
1357 	}
1358 
1359 	if (delay > PCI_RESET_WAIT)
1360 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1361 			 reset_type);
1362 	else
1363 		pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1364 			reset_type);
1365 
1366 	return 0;
1367 }
1368 
1369 /**
1370  * pci_power_up - Put the given device into D0
1371  * @dev: PCI device to power up
1372  *
1373  * On success, return 0 or 1, depending on whether or not it is necessary to
1374  * restore the device's BARs subsequently (1 is returned in that case).
1375  *
1376  * On failure, return a negative error code.  Always return failure if @dev
1377  * lacks a Power Management Capability, even if the platform was able to
1378  * put the device in D0 via non-PCI means.
1379  */
pci_power_up(struct pci_dev * dev)1380 int pci_power_up(struct pci_dev *dev)
1381 {
1382 	bool need_restore;
1383 	pci_power_t state;
1384 	u16 pmcsr;
1385 
1386 	platform_pci_set_power_state(dev, PCI_D0);
1387 
1388 	if (!dev->pm_cap) {
1389 		state = platform_pci_get_power_state(dev);
1390 		if (state == PCI_UNKNOWN)
1391 			dev->current_state = PCI_D0;
1392 		else
1393 			dev->current_state = state;
1394 
1395 		return -EIO;
1396 	}
1397 
1398 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1399 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1400 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1401 			pci_power_name(dev->current_state));
1402 		dev->current_state = PCI_D3cold;
1403 		return -EIO;
1404 	}
1405 
1406 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1407 
1408 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1409 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1410 
1411 	if (state == PCI_D0)
1412 		goto end;
1413 
1414 	/*
1415 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1416 	 * PME_En, and sets PowerState to 0.
1417 	 */
1418 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1419 
1420 	/* Mandatory transition delays; see PCI PM 1.2. */
1421 	if (state == PCI_D3hot)
1422 		pci_dev_d3_sleep(dev);
1423 	else if (state == PCI_D2)
1424 		udelay(PCI_PM_D2_DELAY);
1425 
1426 end:
1427 	dev->current_state = PCI_D0;
1428 	if (need_restore)
1429 		return 1;
1430 
1431 	return 0;
1432 }
1433 
1434 /**
1435  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1436  * @dev: PCI device to power up
1437  * @locked: whether pci_bus_sem is held
1438  *
1439  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1440  * to confirm the state change, restore its BARs if they might be lost and
1441  * reconfigure ASPM in accordance with the new power state.
1442  *
1443  * If pci_restore_state() is going to be called right after a power state change
1444  * to D0, it is more efficient to use pci_power_up() directly instead of this
1445  * function.
1446  */
pci_set_full_power_state(struct pci_dev * dev,bool locked)1447 static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1448 {
1449 	u16 pmcsr;
1450 	int ret;
1451 
1452 	ret = pci_power_up(dev);
1453 	if (ret < 0) {
1454 		if (dev->current_state == PCI_D0)
1455 			return 0;
1456 
1457 		return ret;
1458 	}
1459 
1460 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1461 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1462 	if (dev->current_state != PCI_D0) {
1463 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1464 				     pci_power_name(dev->current_state));
1465 	} else if (ret > 0) {
1466 		/*
1467 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1468 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1469 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1470 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1471 		 * For example, at least some versions of the 3c905B and the
1472 		 * 3c556B exhibit this behaviour.
1473 		 *
1474 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1475 		 * devices in a D3hot state at boot.  Consequently, we need to
1476 		 * restore at least the BARs so that the device will be
1477 		 * accessible to its driver.
1478 		 */
1479 		pci_restore_bars(dev);
1480 	}
1481 
1482 	if (dev->bus->self)
1483 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1484 
1485 	return 0;
1486 }
1487 
1488 /**
1489  * __pci_dev_set_current_state - Set current state of a PCI device
1490  * @dev: Device to handle
1491  * @data: pointer to state to be set
1492  */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1493 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1494 {
1495 	pci_power_t state = *(pci_power_t *)data;
1496 
1497 	dev->current_state = state;
1498 	return 0;
1499 }
1500 
1501 /**
1502  * pci_bus_set_current_state - Walk given bus and set current state of devices
1503  * @bus: Top bus of the subtree to walk.
1504  * @state: state to be set
1505  */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1506 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1507 {
1508 	if (bus)
1509 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1510 }
1511 
__pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state,bool locked)1512 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1513 {
1514 	if (!bus)
1515 		return;
1516 
1517 	if (locked)
1518 		pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1519 	else
1520 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1521 }
1522 
1523 /**
1524  * pci_set_low_power_state - Put a PCI device into a low-power state.
1525  * @dev: PCI device to handle.
1526  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1527  * @locked: whether pci_bus_sem is held
1528  *
1529  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1530  *
1531  * RETURN VALUE:
1532  * -EINVAL if the requested state is invalid.
1533  * -EIO if device does not support PCI PM or its PM capabilities register has a
1534  * wrong version, or device doesn't support the requested state.
1535  * 0 if device already is in the requested state.
1536  * 0 if device's power state has been successfully changed.
1537  */
pci_set_low_power_state(struct pci_dev * dev,pci_power_t state,bool locked)1538 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1539 {
1540 	u16 pmcsr;
1541 
1542 	if (!dev->pm_cap)
1543 		return -EIO;
1544 
1545 	/*
1546 	 * Validate transition: We can enter D0 from any state, but if
1547 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1548 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1549 	 * we'd have to go from D3 to D0, then to D1.
1550 	 */
1551 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1552 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1553 			pci_power_name(dev->current_state),
1554 			pci_power_name(state));
1555 		return -EINVAL;
1556 	}
1557 
1558 	/* Check if this device supports the desired state */
1559 	if ((state == PCI_D1 && !dev->d1_support)
1560 	   || (state == PCI_D2 && !dev->d2_support))
1561 		return -EIO;
1562 
1563 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1564 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1565 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1566 			pci_power_name(dev->current_state),
1567 			pci_power_name(state));
1568 		dev->current_state = PCI_D3cold;
1569 		return -EIO;
1570 	}
1571 
1572 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1573 	pmcsr |= state;
1574 
1575 	/* Enter specified state */
1576 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1577 
1578 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1579 	if (state == PCI_D3hot)
1580 		pci_dev_d3_sleep(dev);
1581 	else if (state == PCI_D2)
1582 		udelay(PCI_PM_D2_DELAY);
1583 
1584 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1585 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1586 	if (dev->current_state != state)
1587 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1588 				     pci_power_name(dev->current_state),
1589 				     pci_power_name(state));
1590 
1591 	if (dev->bus->self)
1592 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1593 
1594 	return 0;
1595 }
1596 
__pci_set_power_state(struct pci_dev * dev,pci_power_t state,bool locked)1597 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1598 {
1599 	int error;
1600 
1601 	/* Bound the state we're entering */
1602 	if (state > PCI_D3cold)
1603 		state = PCI_D3cold;
1604 	else if (state < PCI_D0)
1605 		state = PCI_D0;
1606 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1607 
1608 		/*
1609 		 * If the device or the parent bridge do not support PCI
1610 		 * PM, ignore the request if we're doing anything other
1611 		 * than putting it into D0 (which would only happen on
1612 		 * boot).
1613 		 */
1614 		return 0;
1615 
1616 	/* Check if we're already there */
1617 	if (dev->current_state == state)
1618 		return 0;
1619 
1620 	if (state == PCI_D0)
1621 		return pci_set_full_power_state(dev, locked);
1622 
1623 	/*
1624 	 * This device is quirked not to be put into D3, so don't put it in
1625 	 * D3
1626 	 */
1627 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1628 		return 0;
1629 
1630 	if (state == PCI_D3cold) {
1631 		/*
1632 		 * To put the device in D3cold, put it into D3hot in the native
1633 		 * way, then put it into D3cold using platform ops.
1634 		 */
1635 		error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1636 
1637 		if (pci_platform_power_transition(dev, PCI_D3cold))
1638 			return error;
1639 
1640 		/* Powering off a bridge may power off the whole hierarchy */
1641 		if (dev->current_state == PCI_D3cold)
1642 			__pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1643 	} else {
1644 		error = pci_set_low_power_state(dev, state, locked);
1645 
1646 		if (pci_platform_power_transition(dev, state))
1647 			return error;
1648 	}
1649 
1650 	return 0;
1651 }
1652 
1653 /**
1654  * pci_set_power_state - Set the power state of a PCI device
1655  * @dev: PCI device to handle.
1656  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1657  *
1658  * Transition a device to a new power state, using the platform firmware and/or
1659  * the device's PCI PM registers.
1660  *
1661  * RETURN VALUE:
1662  * -EINVAL if the requested state is invalid.
1663  * -EIO if device does not support PCI PM or its PM capabilities register has a
1664  * wrong version, or device doesn't support the requested state.
1665  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1666  * 0 if device already is in the requested state.
1667  * 0 if the transition is to D3 but D3 is not supported.
1668  * 0 if device's power state has been successfully changed.
1669  */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1670 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1671 {
1672 	return __pci_set_power_state(dev, state, false);
1673 }
1674 EXPORT_SYMBOL(pci_set_power_state);
1675 
pci_set_power_state_locked(struct pci_dev * dev,pci_power_t state)1676 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1677 {
1678 	lockdep_assert_held(&pci_bus_sem);
1679 
1680 	return __pci_set_power_state(dev, state, true);
1681 }
1682 EXPORT_SYMBOL(pci_set_power_state_locked);
1683 
1684 #define PCI_EXP_SAVE_REGS	7
1685 
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1686 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1687 						       u16 cap, bool extended)
1688 {
1689 	struct pci_cap_saved_state *tmp;
1690 
1691 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1692 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1693 			return tmp;
1694 	}
1695 	return NULL;
1696 }
1697 
pci_find_saved_cap(struct pci_dev * dev,char cap)1698 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1699 {
1700 	return _pci_find_saved_cap(dev, cap, false);
1701 }
1702 
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1703 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1704 {
1705 	return _pci_find_saved_cap(dev, cap, true);
1706 }
1707 
pci_save_pcie_state(struct pci_dev * dev)1708 static int pci_save_pcie_state(struct pci_dev *dev)
1709 {
1710 	int i = 0;
1711 	struct pci_cap_saved_state *save_state;
1712 	u16 *cap;
1713 
1714 	if (!pci_is_pcie(dev))
1715 		return 0;
1716 
1717 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1718 	if (!save_state) {
1719 		pci_err(dev, "buffer not found in %s\n", __func__);
1720 		return -ENOMEM;
1721 	}
1722 
1723 	cap = (u16 *)&save_state->cap.data[0];
1724 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1725 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1726 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1727 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1728 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1729 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1730 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1731 
1732 	pci_save_aspm_l1ss_state(dev);
1733 	pci_save_ltr_state(dev);
1734 
1735 	return 0;
1736 }
1737 
pci_restore_pcie_state(struct pci_dev * dev)1738 static void pci_restore_pcie_state(struct pci_dev *dev)
1739 {
1740 	int i = 0;
1741 	struct pci_cap_saved_state *save_state;
1742 	u16 *cap;
1743 
1744 	/*
1745 	 * Restore max latencies (in the LTR capability) before enabling
1746 	 * LTR itself in PCI_EXP_DEVCTL2.
1747 	 */
1748 	pci_restore_ltr_state(dev);
1749 	pci_restore_aspm_l1ss_state(dev);
1750 
1751 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1752 	if (!save_state)
1753 		return;
1754 
1755 	/*
1756 	 * Downstream ports reset the LTR enable bit when link goes down.
1757 	 * Check and re-configure the bit here before restoring device.
1758 	 * PCIe r5.0, sec 7.5.3.16.
1759 	 */
1760 	pci_bridge_reconfigure_ltr(dev);
1761 
1762 	cap = (u16 *)&save_state->cap.data[0];
1763 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1764 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1765 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1766 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1767 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1768 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1769 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1770 }
1771 
pci_save_pcix_state(struct pci_dev * dev)1772 static int pci_save_pcix_state(struct pci_dev *dev)
1773 {
1774 	int pos;
1775 	struct pci_cap_saved_state *save_state;
1776 
1777 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1778 	if (!pos)
1779 		return 0;
1780 
1781 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1782 	if (!save_state) {
1783 		pci_err(dev, "buffer not found in %s\n", __func__);
1784 		return -ENOMEM;
1785 	}
1786 
1787 	pci_read_config_word(dev, pos + PCI_X_CMD,
1788 			     (u16 *)save_state->cap.data);
1789 
1790 	return 0;
1791 }
1792 
pci_restore_pcix_state(struct pci_dev * dev)1793 static void pci_restore_pcix_state(struct pci_dev *dev)
1794 {
1795 	int i = 0, pos;
1796 	struct pci_cap_saved_state *save_state;
1797 	u16 *cap;
1798 
1799 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1800 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1801 	if (!save_state || !pos)
1802 		return;
1803 	cap = (u16 *)&save_state->cap.data[0];
1804 
1805 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1806 }
1807 
1808 /**
1809  * pci_save_state - save the PCI configuration space of a device before
1810  *		    suspending
1811  * @dev: PCI device that we're dealing with
1812  */
pci_save_state(struct pci_dev * dev)1813 int pci_save_state(struct pci_dev *dev)
1814 {
1815 	int i;
1816 	/* XXX: 100% dword access ok here? */
1817 	for (i = 0; i < 16; i++) {
1818 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1819 		pci_dbg(dev, "save config %#04x: %#010x\n",
1820 			i * 4, dev->saved_config_space[i]);
1821 	}
1822 	dev->state_saved = true;
1823 
1824 	i = pci_save_pcie_state(dev);
1825 	if (i != 0)
1826 		return i;
1827 
1828 	i = pci_save_pcix_state(dev);
1829 	if (i != 0)
1830 		return i;
1831 
1832 	pci_save_dpc_state(dev);
1833 	pci_save_aer_state(dev);
1834 	pci_save_ptm_state(dev);
1835 	return pci_save_vc_state(dev);
1836 }
1837 EXPORT_SYMBOL(pci_save_state);
1838 
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1839 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1840 				     u32 saved_val, int retry, bool force)
1841 {
1842 	u32 val;
1843 
1844 	pci_read_config_dword(pdev, offset, &val);
1845 	if (!force && val == saved_val)
1846 		return;
1847 
1848 	for (;;) {
1849 		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1850 			offset, val, saved_val);
1851 		pci_write_config_dword(pdev, offset, saved_val);
1852 		if (retry-- <= 0)
1853 			return;
1854 
1855 		pci_read_config_dword(pdev, offset, &val);
1856 		if (val == saved_val)
1857 			return;
1858 
1859 		mdelay(1);
1860 	}
1861 }
1862 
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1863 static void pci_restore_config_space_range(struct pci_dev *pdev,
1864 					   int start, int end, int retry,
1865 					   bool force)
1866 {
1867 	int index;
1868 
1869 	for (index = end; index >= start; index--)
1870 		pci_restore_config_dword(pdev, 4 * index,
1871 					 pdev->saved_config_space[index],
1872 					 retry, force);
1873 }
1874 
pci_restore_config_space(struct pci_dev * pdev)1875 static void pci_restore_config_space(struct pci_dev *pdev)
1876 {
1877 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1878 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1879 		/* Restore BARs before the command register. */
1880 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1881 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1882 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1883 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1884 
1885 		/*
1886 		 * Force rewriting of prefetch registers to avoid S3 resume
1887 		 * issues on Intel PCI bridges that occur when these
1888 		 * registers are not explicitly written.
1889 		 */
1890 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1891 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1892 	} else {
1893 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1894 	}
1895 }
1896 
pci_restore_rebar_state(struct pci_dev * pdev)1897 static void pci_restore_rebar_state(struct pci_dev *pdev)
1898 {
1899 	unsigned int pos, nbars, i;
1900 	u32 ctrl;
1901 
1902 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1903 	if (!pos)
1904 		return;
1905 
1906 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1907 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1908 
1909 	for (i = 0; i < nbars; i++, pos += 8) {
1910 		struct resource *res;
1911 		int bar_idx, size;
1912 
1913 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1914 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1915 		res = pdev->resource + bar_idx;
1916 		size = pci_rebar_bytes_to_size(resource_size(res));
1917 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1918 		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1919 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1920 	}
1921 }
1922 
1923 /**
1924  * pci_restore_state - Restore the saved state of a PCI device
1925  * @dev: PCI device that we're dealing with
1926  */
pci_restore_state(struct pci_dev * dev)1927 void pci_restore_state(struct pci_dev *dev)
1928 {
1929 	if (!dev->state_saved)
1930 		return;
1931 
1932 	pci_restore_pcie_state(dev);
1933 	pci_restore_pasid_state(dev);
1934 	pci_restore_pri_state(dev);
1935 	pci_restore_ats_state(dev);
1936 	pci_restore_vc_state(dev);
1937 	pci_restore_rebar_state(dev);
1938 	pci_restore_dpc_state(dev);
1939 	pci_restore_ptm_state(dev);
1940 
1941 	pci_aer_clear_status(dev);
1942 	pci_restore_aer_state(dev);
1943 
1944 	pci_restore_config_space(dev);
1945 
1946 	pci_restore_pcix_state(dev);
1947 	pci_restore_msi_state(dev);
1948 
1949 	/* Restore ACS and IOV configuration state */
1950 	pci_enable_acs(dev);
1951 	pci_restore_iov_state(dev);
1952 
1953 	dev->state_saved = false;
1954 }
1955 EXPORT_SYMBOL(pci_restore_state);
1956 
1957 struct pci_saved_state {
1958 	u32 config_space[16];
1959 	struct pci_cap_saved_data cap[];
1960 };
1961 
1962 /**
1963  * pci_store_saved_state - Allocate and return an opaque struct containing
1964  *			   the device saved state.
1965  * @dev: PCI device that we're dealing with
1966  *
1967  * Return NULL if no state or error.
1968  */
pci_store_saved_state(struct pci_dev * dev)1969 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1970 {
1971 	struct pci_saved_state *state;
1972 	struct pci_cap_saved_state *tmp;
1973 	struct pci_cap_saved_data *cap;
1974 	size_t size;
1975 
1976 	if (!dev->state_saved)
1977 		return NULL;
1978 
1979 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1980 
1981 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1982 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1983 
1984 	state = kzalloc(size, GFP_KERNEL);
1985 	if (!state)
1986 		return NULL;
1987 
1988 	memcpy(state->config_space, dev->saved_config_space,
1989 	       sizeof(state->config_space));
1990 
1991 	cap = state->cap;
1992 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1993 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1994 		memcpy(cap, &tmp->cap, len);
1995 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1996 	}
1997 	/* Empty cap_save terminates list */
1998 
1999 	return state;
2000 }
2001 EXPORT_SYMBOL_GPL(pci_store_saved_state);
2002 
2003 /**
2004  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
2005  * @dev: PCI device that we're dealing with
2006  * @state: Saved state returned from pci_store_saved_state()
2007  */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)2008 int pci_load_saved_state(struct pci_dev *dev,
2009 			 struct pci_saved_state *state)
2010 {
2011 	struct pci_cap_saved_data *cap;
2012 
2013 	dev->state_saved = false;
2014 
2015 	if (!state)
2016 		return 0;
2017 
2018 	memcpy(dev->saved_config_space, state->config_space,
2019 	       sizeof(state->config_space));
2020 
2021 	cap = state->cap;
2022 	while (cap->size) {
2023 		struct pci_cap_saved_state *tmp;
2024 
2025 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2026 		if (!tmp || tmp->cap.size != cap->size)
2027 			return -EINVAL;
2028 
2029 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2030 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
2031 		       sizeof(struct pci_cap_saved_data) + cap->size);
2032 	}
2033 
2034 	dev->state_saved = true;
2035 	return 0;
2036 }
2037 EXPORT_SYMBOL_GPL(pci_load_saved_state);
2038 
2039 /**
2040  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2041  *				   and free the memory allocated for it.
2042  * @dev: PCI device that we're dealing with
2043  * @state: Pointer to saved state returned from pci_store_saved_state()
2044  */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)2045 int pci_load_and_free_saved_state(struct pci_dev *dev,
2046 				  struct pci_saved_state **state)
2047 {
2048 	int ret = pci_load_saved_state(dev, *state);
2049 	kfree(*state);
2050 	*state = NULL;
2051 	return ret;
2052 }
2053 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2054 
pcibios_enable_device(struct pci_dev * dev,int bars)2055 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2056 {
2057 	return pci_enable_resources(dev, bars);
2058 }
2059 
do_pci_enable_device(struct pci_dev * dev,int bars)2060 static int do_pci_enable_device(struct pci_dev *dev, int bars)
2061 {
2062 	int err;
2063 	struct pci_dev *bridge;
2064 	u16 cmd;
2065 	u8 pin;
2066 
2067 	err = pci_set_power_state(dev, PCI_D0);
2068 	if (err < 0 && err != -EIO)
2069 		return err;
2070 
2071 	bridge = pci_upstream_bridge(dev);
2072 	if (bridge)
2073 		pcie_aspm_powersave_config_link(bridge);
2074 
2075 	err = pcibios_enable_device(dev, bars);
2076 	if (err < 0)
2077 		return err;
2078 	pci_fixup_device(pci_fixup_enable, dev);
2079 
2080 	if (dev->msi_enabled || dev->msix_enabled)
2081 		return 0;
2082 
2083 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2084 	if (pin) {
2085 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
2086 		if (cmd & PCI_COMMAND_INTX_DISABLE)
2087 			pci_write_config_word(dev, PCI_COMMAND,
2088 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
2089 	}
2090 
2091 	return 0;
2092 }
2093 
2094 /**
2095  * pci_reenable_device - Resume abandoned device
2096  * @dev: PCI device to be resumed
2097  *
2098  * NOTE: This function is a backend of pci_default_resume() and is not supposed
2099  * to be called by normal code, write proper resume handler and use it instead.
2100  */
pci_reenable_device(struct pci_dev * dev)2101 int pci_reenable_device(struct pci_dev *dev)
2102 {
2103 	if (pci_is_enabled(dev))
2104 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2105 	return 0;
2106 }
2107 EXPORT_SYMBOL(pci_reenable_device);
2108 
pci_enable_bridge(struct pci_dev * dev)2109 static void pci_enable_bridge(struct pci_dev *dev)
2110 {
2111 	struct pci_dev *bridge;
2112 	int retval;
2113 
2114 	bridge = pci_upstream_bridge(dev);
2115 	if (bridge)
2116 		pci_enable_bridge(bridge);
2117 
2118 	if (pci_is_enabled(dev)) {
2119 		if (!dev->is_busmaster)
2120 			pci_set_master(dev);
2121 		return;
2122 	}
2123 
2124 	retval = pci_enable_device(dev);
2125 	if (retval)
2126 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2127 			retval);
2128 	pci_set_master(dev);
2129 }
2130 
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)2131 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2132 {
2133 	struct pci_dev *bridge;
2134 	int err;
2135 	int i, bars = 0;
2136 
2137 	/*
2138 	 * Power state could be unknown at this point, either due to a fresh
2139 	 * boot or a device removal call.  So get the current power state
2140 	 * so that things like MSI message writing will behave as expected
2141 	 * (e.g. if the device really is in D0 at enable time).
2142 	 */
2143 	pci_update_current_state(dev, dev->current_state);
2144 
2145 	if (atomic_inc_return(&dev->enable_cnt) > 1)
2146 		return 0;		/* already enabled */
2147 
2148 	bridge = pci_upstream_bridge(dev);
2149 	if (bridge)
2150 		pci_enable_bridge(bridge);
2151 
2152 	/* only skip sriov related */
2153 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2154 		if (dev->resource[i].flags & flags)
2155 			bars |= (1 << i);
2156 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2157 		if (dev->resource[i].flags & flags)
2158 			bars |= (1 << i);
2159 
2160 	err = do_pci_enable_device(dev, bars);
2161 	if (err < 0)
2162 		atomic_dec(&dev->enable_cnt);
2163 	return err;
2164 }
2165 
2166 /**
2167  * pci_enable_device_mem - Initialize a device for use with Memory space
2168  * @dev: PCI device to be initialized
2169  *
2170  * Initialize device before it's used by a driver. Ask low-level code
2171  * to enable Memory resources. Wake up the device if it was suspended.
2172  * Beware, this function can fail.
2173  */
pci_enable_device_mem(struct pci_dev * dev)2174 int pci_enable_device_mem(struct pci_dev *dev)
2175 {
2176 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2177 }
2178 EXPORT_SYMBOL(pci_enable_device_mem);
2179 
2180 /**
2181  * pci_enable_device - Initialize device before it's used by a driver.
2182  * @dev: PCI device to be initialized
2183  *
2184  * Initialize device before it's used by a driver. Ask low-level code
2185  * to enable I/O and memory. Wake up the device if it was suspended.
2186  * Beware, this function can fail.
2187  *
2188  * Note we don't actually enable the device many times if we call
2189  * this function repeatedly (we just increment the count).
2190  */
pci_enable_device(struct pci_dev * dev)2191 int pci_enable_device(struct pci_dev *dev)
2192 {
2193 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2194 }
2195 EXPORT_SYMBOL(pci_enable_device);
2196 
2197 /*
2198  * pcibios_device_add - provide arch specific hooks when adding device dev
2199  * @dev: the PCI device being added
2200  *
2201  * Permits the platform to provide architecture specific functionality when
2202  * devices are added. This is the default implementation. Architecture
2203  * implementations can override this.
2204  */
pcibios_device_add(struct pci_dev * dev)2205 int __weak pcibios_device_add(struct pci_dev *dev)
2206 {
2207 	return 0;
2208 }
2209 
2210 /**
2211  * pcibios_release_device - provide arch specific hooks when releasing
2212  *			    device dev
2213  * @dev: the PCI device being released
2214  *
2215  * Permits the platform to provide architecture specific functionality when
2216  * devices are released. This is the default implementation. Architecture
2217  * implementations can override this.
2218  */
pcibios_release_device(struct pci_dev * dev)2219 void __weak pcibios_release_device(struct pci_dev *dev) {}
2220 
2221 /**
2222  * pcibios_disable_device - disable arch specific PCI resources for device dev
2223  * @dev: the PCI device to disable
2224  *
2225  * Disables architecture specific PCI resources for the device. This
2226  * is the default implementation. Architecture implementations can
2227  * override this.
2228  */
pcibios_disable_device(struct pci_dev * dev)2229 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2230 
do_pci_disable_device(struct pci_dev * dev)2231 static void do_pci_disable_device(struct pci_dev *dev)
2232 {
2233 	u16 pci_command;
2234 
2235 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2236 	if (pci_command & PCI_COMMAND_MASTER) {
2237 		pci_command &= ~PCI_COMMAND_MASTER;
2238 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2239 	}
2240 
2241 	pcibios_disable_device(dev);
2242 }
2243 
2244 /**
2245  * pci_disable_enabled_device - Disable device without updating enable_cnt
2246  * @dev: PCI device to disable
2247  *
2248  * NOTE: This function is a backend of PCI power management routines and is
2249  * not supposed to be called drivers.
2250  */
pci_disable_enabled_device(struct pci_dev * dev)2251 void pci_disable_enabled_device(struct pci_dev *dev)
2252 {
2253 	if (pci_is_enabled(dev))
2254 		do_pci_disable_device(dev);
2255 }
2256 
2257 /**
2258  * pci_disable_device - Disable PCI device after use
2259  * @dev: PCI device to be disabled
2260  *
2261  * Signal to the system that the PCI device is not in use by the system
2262  * anymore.  This only involves disabling PCI bus-mastering, if active.
2263  *
2264  * Note we don't actually disable the device until all callers of
2265  * pci_enable_device() have called pci_disable_device().
2266  */
pci_disable_device(struct pci_dev * dev)2267 void pci_disable_device(struct pci_dev *dev)
2268 {
2269 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2270 		      "disabling already-disabled device");
2271 
2272 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2273 		return;
2274 
2275 	do_pci_disable_device(dev);
2276 
2277 	dev->is_busmaster = 0;
2278 }
2279 EXPORT_SYMBOL(pci_disable_device);
2280 
2281 /**
2282  * pcibios_set_pcie_reset_state - set reset state for device dev
2283  * @dev: the PCIe device reset
2284  * @state: Reset state to enter into
2285  *
2286  * Set the PCIe reset state for the device. This is the default
2287  * implementation. Architecture implementations can override this.
2288  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2289 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2290 					enum pcie_reset_state state)
2291 {
2292 	return -EINVAL;
2293 }
2294 
2295 /**
2296  * pci_set_pcie_reset_state - set reset state for device dev
2297  * @dev: the PCIe device reset
2298  * @state: Reset state to enter into
2299  *
2300  * Sets the PCI reset state for the device.
2301  */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2302 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2303 {
2304 	return pcibios_set_pcie_reset_state(dev, state);
2305 }
2306 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2307 
2308 #ifdef CONFIG_PCIEAER
pcie_clear_device_status(struct pci_dev * dev)2309 void pcie_clear_device_status(struct pci_dev *dev)
2310 {
2311 	u16 sta;
2312 
2313 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2314 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2315 }
2316 #endif
2317 
2318 /**
2319  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2320  * @dev: PCIe root port or event collector.
2321  */
pcie_clear_root_pme_status(struct pci_dev * dev)2322 void pcie_clear_root_pme_status(struct pci_dev *dev)
2323 {
2324 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2325 }
2326 
2327 /**
2328  * pci_check_pme_status - Check if given device has generated PME.
2329  * @dev: Device to check.
2330  *
2331  * Check the PME status of the device and if set, clear it and clear PME enable
2332  * (if set).  Return 'true' if PME status and PME enable were both set or
2333  * 'false' otherwise.
2334  */
pci_check_pme_status(struct pci_dev * dev)2335 bool pci_check_pme_status(struct pci_dev *dev)
2336 {
2337 	int pmcsr_pos;
2338 	u16 pmcsr;
2339 	bool ret = false;
2340 
2341 	if (!dev->pm_cap)
2342 		return false;
2343 
2344 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2345 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2346 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2347 		return false;
2348 
2349 	/* Clear PME status. */
2350 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2351 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2352 		/* Disable PME to avoid interrupt flood. */
2353 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2354 		ret = true;
2355 	}
2356 
2357 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2358 
2359 	return ret;
2360 }
2361 
2362 /**
2363  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2364  * @dev: Device to handle.
2365  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2366  *
2367  * Check if @dev has generated PME and queue a resume request for it in that
2368  * case.
2369  */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2370 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2371 {
2372 	if (pme_poll_reset && dev->pme_poll)
2373 		dev->pme_poll = false;
2374 
2375 	if (pci_check_pme_status(dev)) {
2376 		pci_wakeup_event(dev);
2377 		pm_request_resume(&dev->dev);
2378 	}
2379 	return 0;
2380 }
2381 
2382 /**
2383  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2384  * @bus: Top bus of the subtree to walk.
2385  */
pci_pme_wakeup_bus(struct pci_bus * bus)2386 void pci_pme_wakeup_bus(struct pci_bus *bus)
2387 {
2388 	if (bus)
2389 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2390 }
2391 
2392 
2393 /**
2394  * pci_pme_capable - check the capability of PCI device to generate PME#
2395  * @dev: PCI device to handle.
2396  * @state: PCI state from which device will issue PME#.
2397  */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2398 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2399 {
2400 	if (!dev->pm_cap)
2401 		return false;
2402 
2403 	return !!(dev->pme_support & (1 << state));
2404 }
2405 EXPORT_SYMBOL(pci_pme_capable);
2406 
pci_pme_list_scan(struct work_struct * work)2407 static void pci_pme_list_scan(struct work_struct *work)
2408 {
2409 	struct pci_pme_device *pme_dev, *n;
2410 
2411 	mutex_lock(&pci_pme_list_mutex);
2412 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2413 		struct pci_dev *pdev = pme_dev->dev;
2414 
2415 		if (pdev->pme_poll) {
2416 			struct pci_dev *bridge = pdev->bus->self;
2417 			struct device *dev = &pdev->dev;
2418 			struct device *bdev = bridge ? &bridge->dev : NULL;
2419 			int bref = 0;
2420 
2421 			/*
2422 			 * If we have a bridge, it should be in an active/D0
2423 			 * state or the configuration space of subordinate
2424 			 * devices may not be accessible or stable over the
2425 			 * course of the call.
2426 			 */
2427 			if (bdev) {
2428 				bref = pm_runtime_get_if_active(bdev);
2429 				if (!bref)
2430 					continue;
2431 
2432 				if (bridge->current_state != PCI_D0)
2433 					goto put_bridge;
2434 			}
2435 
2436 			/*
2437 			 * The device itself should be suspended but config
2438 			 * space must be accessible, therefore it cannot be in
2439 			 * D3cold.
2440 			 */
2441 			if (pm_runtime_suspended(dev) &&
2442 			    pdev->current_state != PCI_D3cold)
2443 				pci_pme_wakeup(pdev, NULL);
2444 
2445 put_bridge:
2446 			if (bref > 0)
2447 				pm_runtime_put(bdev);
2448 		} else {
2449 			list_del(&pme_dev->list);
2450 			kfree(pme_dev);
2451 		}
2452 	}
2453 	if (!list_empty(&pci_pme_list))
2454 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2455 				   msecs_to_jiffies(PME_TIMEOUT));
2456 	mutex_unlock(&pci_pme_list_mutex);
2457 }
2458 
__pci_pme_active(struct pci_dev * dev,bool enable)2459 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2460 {
2461 	u16 pmcsr;
2462 
2463 	if (!dev->pme_support)
2464 		return;
2465 
2466 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2467 	/* Clear PME_Status by writing 1 to it and enable PME# */
2468 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2469 	if (!enable)
2470 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2471 
2472 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2473 }
2474 
2475 /**
2476  * pci_pme_restore - Restore PME configuration after config space restore.
2477  * @dev: PCI device to update.
2478  */
pci_pme_restore(struct pci_dev * dev)2479 void pci_pme_restore(struct pci_dev *dev)
2480 {
2481 	u16 pmcsr;
2482 
2483 	if (!dev->pme_support)
2484 		return;
2485 
2486 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2487 	if (dev->wakeup_prepared) {
2488 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2489 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2490 	} else {
2491 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2492 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2493 	}
2494 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2495 }
2496 
2497 /**
2498  * pci_pme_active - enable or disable PCI device's PME# function
2499  * @dev: PCI device to handle.
2500  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2501  *
2502  * The caller must verify that the device is capable of generating PME# before
2503  * calling this function with @enable equal to 'true'.
2504  */
pci_pme_active(struct pci_dev * dev,bool enable)2505 void pci_pme_active(struct pci_dev *dev, bool enable)
2506 {
2507 	__pci_pme_active(dev, enable);
2508 
2509 	/*
2510 	 * PCI (as opposed to PCIe) PME requires that the device have
2511 	 * its PME# line hooked up correctly. Not all hardware vendors
2512 	 * do this, so the PME never gets delivered and the device
2513 	 * remains asleep. The easiest way around this is to
2514 	 * periodically walk the list of suspended devices and check
2515 	 * whether any have their PME flag set. The assumption is that
2516 	 * we'll wake up often enough anyway that this won't be a huge
2517 	 * hit, and the power savings from the devices will still be a
2518 	 * win.
2519 	 *
2520 	 * Although PCIe uses in-band PME message instead of PME# line
2521 	 * to report PME, PME does not work for some PCIe devices in
2522 	 * reality.  For example, there are devices that set their PME
2523 	 * status bits, but don't really bother to send a PME message;
2524 	 * there are PCI Express Root Ports that don't bother to
2525 	 * trigger interrupts when they receive PME messages from the
2526 	 * devices below.  So PME poll is used for PCIe devices too.
2527 	 */
2528 
2529 	if (dev->pme_poll) {
2530 		struct pci_pme_device *pme_dev;
2531 		if (enable) {
2532 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2533 					  GFP_KERNEL);
2534 			if (!pme_dev) {
2535 				pci_warn(dev, "can't enable PME#\n");
2536 				return;
2537 			}
2538 			pme_dev->dev = dev;
2539 			mutex_lock(&pci_pme_list_mutex);
2540 			list_add(&pme_dev->list, &pci_pme_list);
2541 			if (list_is_singular(&pci_pme_list))
2542 				queue_delayed_work(system_freezable_wq,
2543 						   &pci_pme_work,
2544 						   msecs_to_jiffies(PME_TIMEOUT));
2545 			mutex_unlock(&pci_pme_list_mutex);
2546 		} else {
2547 			mutex_lock(&pci_pme_list_mutex);
2548 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2549 				if (pme_dev->dev == dev) {
2550 					list_del(&pme_dev->list);
2551 					kfree(pme_dev);
2552 					break;
2553 				}
2554 			}
2555 			mutex_unlock(&pci_pme_list_mutex);
2556 		}
2557 	}
2558 
2559 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2560 }
2561 EXPORT_SYMBOL(pci_pme_active);
2562 
2563 /**
2564  * __pci_enable_wake - enable PCI device as wakeup event source
2565  * @dev: PCI device affected
2566  * @state: PCI state from which device will issue wakeup events
2567  * @enable: True to enable event generation; false to disable
2568  *
2569  * This enables the device as a wakeup event source, or disables it.
2570  * When such events involves platform-specific hooks, those hooks are
2571  * called automatically by this routine.
2572  *
2573  * Devices with legacy power management (no standard PCI PM capabilities)
2574  * always require such platform hooks.
2575  *
2576  * RETURN VALUE:
2577  * 0 is returned on success
2578  * -EINVAL is returned if device is not supposed to wake up the system
2579  * Error code depending on the platform is returned if both the platform and
2580  * the native mechanism fail to enable the generation of wake-up events
2581  */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2582 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2583 {
2584 	int ret = 0;
2585 
2586 	/*
2587 	 * Bridges that are not power-manageable directly only signal
2588 	 * wakeup on behalf of subordinate devices which is set up
2589 	 * elsewhere, so skip them. However, bridges that are
2590 	 * power-manageable may signal wakeup for themselves (for example,
2591 	 * on a hotplug event) and they need to be covered here.
2592 	 */
2593 	if (!pci_power_manageable(dev))
2594 		return 0;
2595 
2596 	/* Don't do the same thing twice in a row for one device. */
2597 	if (!!enable == !!dev->wakeup_prepared)
2598 		return 0;
2599 
2600 	/*
2601 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2602 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2603 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2604 	 */
2605 
2606 	if (enable) {
2607 		int error;
2608 
2609 		/*
2610 		 * Enable PME signaling if the device can signal PME from
2611 		 * D3cold regardless of whether or not it can signal PME from
2612 		 * the current target state, because that will allow it to
2613 		 * signal PME when the hierarchy above it goes into D3cold and
2614 		 * the device itself ends up in D3cold as a result of that.
2615 		 */
2616 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2617 			pci_pme_active(dev, true);
2618 		else
2619 			ret = 1;
2620 		error = platform_pci_set_wakeup(dev, true);
2621 		if (ret)
2622 			ret = error;
2623 		if (!ret)
2624 			dev->wakeup_prepared = true;
2625 	} else {
2626 		platform_pci_set_wakeup(dev, false);
2627 		pci_pme_active(dev, false);
2628 		dev->wakeup_prepared = false;
2629 	}
2630 
2631 	return ret;
2632 }
2633 
2634 /**
2635  * pci_enable_wake - change wakeup settings for a PCI device
2636  * @pci_dev: Target device
2637  * @state: PCI state from which device will issue wakeup events
2638  * @enable: Whether or not to enable event generation
2639  *
2640  * If @enable is set, check device_may_wakeup() for the device before calling
2641  * __pci_enable_wake() for it.
2642  */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2643 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2644 {
2645 	if (enable && !device_may_wakeup(&pci_dev->dev))
2646 		return -EINVAL;
2647 
2648 	return __pci_enable_wake(pci_dev, state, enable);
2649 }
2650 EXPORT_SYMBOL(pci_enable_wake);
2651 
2652 /**
2653  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2654  * @dev: PCI device to prepare
2655  * @enable: True to enable wake-up event generation; false to disable
2656  *
2657  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2658  * and this function allows them to set that up cleanly - pci_enable_wake()
2659  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2660  * ordering constraints.
2661  *
2662  * This function only returns error code if the device is not allowed to wake
2663  * up the system from sleep or it is not capable of generating PME# from both
2664  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2665  */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2666 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2667 {
2668 	return pci_pme_capable(dev, PCI_D3cold) ?
2669 			pci_enable_wake(dev, PCI_D3cold, enable) :
2670 			pci_enable_wake(dev, PCI_D3hot, enable);
2671 }
2672 EXPORT_SYMBOL(pci_wake_from_d3);
2673 
2674 /**
2675  * pci_target_state - find an appropriate low power state for a given PCI dev
2676  * @dev: PCI device
2677  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2678  *
2679  * Use underlying platform code to find a supported low power state for @dev.
2680  * If the platform can't manage @dev, return the deepest state from which it
2681  * can generate wake events, based on any available PME info.
2682  */
pci_target_state(struct pci_dev * dev,bool wakeup)2683 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2684 {
2685 	if (platform_pci_power_manageable(dev)) {
2686 		/*
2687 		 * Call the platform to find the target state for the device.
2688 		 */
2689 		pci_power_t state = platform_pci_choose_state(dev);
2690 
2691 		switch (state) {
2692 		case PCI_POWER_ERROR:
2693 		case PCI_UNKNOWN:
2694 			return PCI_D3hot;
2695 
2696 		case PCI_D1:
2697 		case PCI_D2:
2698 			if (pci_no_d1d2(dev))
2699 				return PCI_D3hot;
2700 		}
2701 
2702 		return state;
2703 	}
2704 
2705 	/*
2706 	 * If the device is in D3cold even though it's not power-manageable by
2707 	 * the platform, it may have been powered down by non-standard means.
2708 	 * Best to let it slumber.
2709 	 */
2710 	if (dev->current_state == PCI_D3cold)
2711 		return PCI_D3cold;
2712 	else if (!dev->pm_cap)
2713 		return PCI_D0;
2714 
2715 	if (wakeup && dev->pme_support) {
2716 		pci_power_t state = PCI_D3hot;
2717 
2718 		/*
2719 		 * Find the deepest state from which the device can generate
2720 		 * PME#.
2721 		 */
2722 		while (state && !(dev->pme_support & (1 << state)))
2723 			state--;
2724 
2725 		if (state)
2726 			return state;
2727 		else if (dev->pme_support & 1)
2728 			return PCI_D0;
2729 	}
2730 
2731 	return PCI_D3hot;
2732 }
2733 
2734 /**
2735  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2736  *			  into a sleep state
2737  * @dev: Device to handle.
2738  *
2739  * Choose the power state appropriate for the device depending on whether
2740  * it can wake up the system and/or is power manageable by the platform
2741  * (PCI_D3hot is the default) and put the device into that state.
2742  */
pci_prepare_to_sleep(struct pci_dev * dev)2743 int pci_prepare_to_sleep(struct pci_dev *dev)
2744 {
2745 	bool wakeup = device_may_wakeup(&dev->dev);
2746 	pci_power_t target_state = pci_target_state(dev, wakeup);
2747 	int error;
2748 
2749 	if (target_state == PCI_POWER_ERROR)
2750 		return -EIO;
2751 
2752 	pci_enable_wake(dev, target_state, wakeup);
2753 
2754 	error = pci_set_power_state(dev, target_state);
2755 
2756 	if (error)
2757 		pci_enable_wake(dev, target_state, false);
2758 
2759 	return error;
2760 }
2761 EXPORT_SYMBOL(pci_prepare_to_sleep);
2762 
2763 /**
2764  * pci_back_from_sleep - turn PCI device on during system-wide transition
2765  *			 into working state
2766  * @dev: Device to handle.
2767  *
2768  * Disable device's system wake-up capability and put it into D0.
2769  */
pci_back_from_sleep(struct pci_dev * dev)2770 int pci_back_from_sleep(struct pci_dev *dev)
2771 {
2772 	int ret = pci_set_power_state(dev, PCI_D0);
2773 
2774 	if (ret)
2775 		return ret;
2776 
2777 	pci_enable_wake(dev, PCI_D0, false);
2778 	return 0;
2779 }
2780 EXPORT_SYMBOL(pci_back_from_sleep);
2781 
2782 /**
2783  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2784  * @dev: PCI device being suspended.
2785  *
2786  * Prepare @dev to generate wake-up events at run time and put it into a low
2787  * power state.
2788  */
pci_finish_runtime_suspend(struct pci_dev * dev)2789 int pci_finish_runtime_suspend(struct pci_dev *dev)
2790 {
2791 	pci_power_t target_state;
2792 	int error;
2793 
2794 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2795 	if (target_state == PCI_POWER_ERROR)
2796 		return -EIO;
2797 
2798 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2799 
2800 	error = pci_set_power_state(dev, target_state);
2801 
2802 	if (error)
2803 		pci_enable_wake(dev, target_state, false);
2804 
2805 	return error;
2806 }
2807 
2808 /**
2809  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2810  * @dev: Device to check.
2811  *
2812  * Return true if the device itself is capable of generating wake-up events
2813  * (through the platform or using the native PCIe PME) or if the device supports
2814  * PME and one of its upstream bridges can generate wake-up events.
2815  */
pci_dev_run_wake(struct pci_dev * dev)2816 bool pci_dev_run_wake(struct pci_dev *dev)
2817 {
2818 	struct pci_bus *bus = dev->bus;
2819 
2820 	if (!dev->pme_support)
2821 		return false;
2822 
2823 	/* PME-capable in principle, but not from the target power state */
2824 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2825 		return false;
2826 
2827 	if (device_can_wakeup(&dev->dev))
2828 		return true;
2829 
2830 	while (bus->parent) {
2831 		struct pci_dev *bridge = bus->self;
2832 
2833 		if (device_can_wakeup(&bridge->dev))
2834 			return true;
2835 
2836 		bus = bus->parent;
2837 	}
2838 
2839 	/* We have reached the root bus. */
2840 	if (bus->bridge)
2841 		return device_can_wakeup(bus->bridge);
2842 
2843 	return false;
2844 }
2845 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2846 
2847 /**
2848  * pci_dev_need_resume - Check if it is necessary to resume the device.
2849  * @pci_dev: Device to check.
2850  *
2851  * Return 'true' if the device is not runtime-suspended or it has to be
2852  * reconfigured due to wakeup settings difference between system and runtime
2853  * suspend, or the current power state of it is not suitable for the upcoming
2854  * (system-wide) transition.
2855  */
pci_dev_need_resume(struct pci_dev * pci_dev)2856 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2857 {
2858 	struct device *dev = &pci_dev->dev;
2859 	pci_power_t target_state;
2860 
2861 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2862 		return true;
2863 
2864 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2865 
2866 	/*
2867 	 * If the earlier platform check has not triggered, D3cold is just power
2868 	 * removal on top of D3hot, so no need to resume the device in that
2869 	 * case.
2870 	 */
2871 	return target_state != pci_dev->current_state &&
2872 		target_state != PCI_D3cold &&
2873 		pci_dev->current_state != PCI_D3hot;
2874 }
2875 
2876 /**
2877  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2878  * @pci_dev: Device to check.
2879  *
2880  * If the device is suspended and it is not configured for system wakeup,
2881  * disable PME for it to prevent it from waking up the system unnecessarily.
2882  *
2883  * Note that if the device's power state is D3cold and the platform check in
2884  * pci_dev_need_resume() has not triggered, the device's configuration need not
2885  * be changed.
2886  */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2887 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2888 {
2889 	struct device *dev = &pci_dev->dev;
2890 
2891 	spin_lock_irq(&dev->power.lock);
2892 
2893 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2894 	    pci_dev->current_state < PCI_D3cold)
2895 		__pci_pme_active(pci_dev, false);
2896 
2897 	spin_unlock_irq(&dev->power.lock);
2898 }
2899 
2900 /**
2901  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2902  * @pci_dev: Device to handle.
2903  *
2904  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2905  * it might have been disabled during the prepare phase of system suspend if
2906  * the device was not configured for system wakeup.
2907  */
pci_dev_complete_resume(struct pci_dev * pci_dev)2908 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2909 {
2910 	struct device *dev = &pci_dev->dev;
2911 
2912 	if (!pci_dev_run_wake(pci_dev))
2913 		return;
2914 
2915 	spin_lock_irq(&dev->power.lock);
2916 
2917 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2918 		__pci_pme_active(pci_dev, true);
2919 
2920 	spin_unlock_irq(&dev->power.lock);
2921 }
2922 
2923 /**
2924  * pci_choose_state - Choose the power state of a PCI device.
2925  * @dev: Target PCI device.
2926  * @state: Target state for the whole system.
2927  *
2928  * Returns PCI power state suitable for @dev and @state.
2929  */
pci_choose_state(struct pci_dev * dev,pm_message_t state)2930 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2931 {
2932 	if (state.event == PM_EVENT_ON)
2933 		return PCI_D0;
2934 
2935 	return pci_target_state(dev, false);
2936 }
2937 EXPORT_SYMBOL(pci_choose_state);
2938 
pci_config_pm_runtime_get(struct pci_dev * pdev)2939 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2940 {
2941 	struct device *dev = &pdev->dev;
2942 	struct device *parent = dev->parent;
2943 
2944 	if (parent)
2945 		pm_runtime_get_sync(parent);
2946 	pm_runtime_get_noresume(dev);
2947 	/*
2948 	 * pdev->current_state is set to PCI_D3cold during suspending,
2949 	 * so wait until suspending completes
2950 	 */
2951 	pm_runtime_barrier(dev);
2952 	/*
2953 	 * Only need to resume devices in D3cold, because config
2954 	 * registers are still accessible for devices suspended but
2955 	 * not in D3cold.
2956 	 */
2957 	if (pdev->current_state == PCI_D3cold)
2958 		pm_runtime_resume(dev);
2959 }
2960 
pci_config_pm_runtime_put(struct pci_dev * pdev)2961 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2962 {
2963 	struct device *dev = &pdev->dev;
2964 	struct device *parent = dev->parent;
2965 
2966 	pm_runtime_put(dev);
2967 	if (parent)
2968 		pm_runtime_put_sync(parent);
2969 }
2970 
2971 static const struct dmi_system_id bridge_d3_blacklist[] = {
2972 #ifdef CONFIG_X86
2973 	{
2974 		/*
2975 		 * Gigabyte X299 root port is not marked as hotplug capable
2976 		 * which allows Linux to power manage it.  However, this
2977 		 * confuses the BIOS SMI handler so don't power manage root
2978 		 * ports on that system.
2979 		 */
2980 		.ident = "X299 DESIGNARE EX-CF",
2981 		.matches = {
2982 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2983 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2984 		},
2985 	},
2986 	{
2987 		/*
2988 		 * Downstream device is not accessible after putting a root port
2989 		 * into D3cold and back into D0 on Elo Continental Z2 board
2990 		 */
2991 		.ident = "Elo Continental Z2",
2992 		.matches = {
2993 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2994 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2995 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2996 		},
2997 	},
2998 	{
2999 		/*
3000 		 * Changing power state of root port dGPU is connected fails
3001 		 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
3002 		 */
3003 		.ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
3004 		.matches = {
3005 			DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
3006 			DMI_MATCH(DMI_BOARD_NAME, "1972"),
3007 			DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
3008 		},
3009 	},
3010 #endif
3011 	{ }
3012 };
3013 
3014 /**
3015  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3016  * @bridge: Bridge to check
3017  *
3018  * This function checks if it is possible to move the bridge to D3.
3019  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3020  */
pci_bridge_d3_possible(struct pci_dev * bridge)3021 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3022 {
3023 	if (!pci_is_pcie(bridge))
3024 		return false;
3025 
3026 	switch (pci_pcie_type(bridge)) {
3027 	case PCI_EXP_TYPE_ROOT_PORT:
3028 	case PCI_EXP_TYPE_UPSTREAM:
3029 	case PCI_EXP_TYPE_DOWNSTREAM:
3030 		if (pci_bridge_d3_disable)
3031 			return false;
3032 
3033 		/*
3034 		 * Hotplug ports handled by firmware in System Management Mode
3035 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3036 		 */
3037 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3038 			return false;
3039 
3040 		if (pci_bridge_d3_force)
3041 			return true;
3042 
3043 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3044 		if (bridge->is_thunderbolt)
3045 			return true;
3046 
3047 		/* Platform might know better if the bridge supports D3 */
3048 		if (platform_pci_bridge_d3(bridge))
3049 			return true;
3050 
3051 		/*
3052 		 * Hotplug ports handled natively by the OS were not validated
3053 		 * by vendors for runtime D3 at least until 2018 because there
3054 		 * was no OS support.
3055 		 */
3056 		if (bridge->is_hotplug_bridge)
3057 			return false;
3058 
3059 		if (dmi_check_system(bridge_d3_blacklist))
3060 			return false;
3061 
3062 		/*
3063 		 * It should be safe to put PCIe ports from 2015 or newer
3064 		 * to D3.
3065 		 */
3066 		if (dmi_get_bios_year() >= 2015)
3067 			return true;
3068 		break;
3069 	}
3070 
3071 	return false;
3072 }
3073 
pci_dev_check_d3cold(struct pci_dev * dev,void * data)3074 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3075 {
3076 	bool *d3cold_ok = data;
3077 
3078 	if (/* The device needs to be allowed to go D3cold ... */
3079 	    dev->no_d3cold || !dev->d3cold_allowed ||
3080 
3081 	    /* ... and if it is wakeup capable to do so from D3cold. */
3082 	    (device_may_wakeup(&dev->dev) &&
3083 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3084 
3085 	    /* If it is a bridge it must be allowed to go to D3. */
3086 	    !pci_power_manageable(dev))
3087 
3088 		*d3cold_ok = false;
3089 
3090 	return !*d3cold_ok;
3091 }
3092 
3093 /*
3094  * pci_bridge_d3_update - Update bridge D3 capabilities
3095  * @dev: PCI device which is changed
3096  *
3097  * Update upstream bridge PM capabilities accordingly depending on if the
3098  * device PM configuration was changed or the device is being removed.  The
3099  * change is also propagated upstream.
3100  */
pci_bridge_d3_update(struct pci_dev * dev)3101 void pci_bridge_d3_update(struct pci_dev *dev)
3102 {
3103 	bool remove = !device_is_registered(&dev->dev);
3104 	struct pci_dev *bridge;
3105 	bool d3cold_ok = true;
3106 
3107 	bridge = pci_upstream_bridge(dev);
3108 	if (!bridge || !pci_bridge_d3_possible(bridge))
3109 		return;
3110 
3111 	/*
3112 	 * If D3 is currently allowed for the bridge, removing one of its
3113 	 * children won't change that.
3114 	 */
3115 	if (remove && bridge->bridge_d3)
3116 		return;
3117 
3118 	/*
3119 	 * If D3 is currently allowed for the bridge and a child is added or
3120 	 * changed, disallowance of D3 can only be caused by that child, so
3121 	 * we only need to check that single device, not any of its siblings.
3122 	 *
3123 	 * If D3 is currently not allowed for the bridge, checking the device
3124 	 * first may allow us to skip checking its siblings.
3125 	 */
3126 	if (!remove)
3127 		pci_dev_check_d3cold(dev, &d3cold_ok);
3128 
3129 	/*
3130 	 * If D3 is currently not allowed for the bridge, this may be caused
3131 	 * either by the device being changed/removed or any of its siblings,
3132 	 * so we need to go through all children to find out if one of them
3133 	 * continues to block D3.
3134 	 */
3135 	if (d3cold_ok && !bridge->bridge_d3)
3136 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3137 			     &d3cold_ok);
3138 
3139 	if (bridge->bridge_d3 != d3cold_ok) {
3140 		bridge->bridge_d3 = d3cold_ok;
3141 		/* Propagate change to upstream bridges */
3142 		pci_bridge_d3_update(bridge);
3143 	}
3144 }
3145 
3146 /**
3147  * pci_d3cold_enable - Enable D3cold for device
3148  * @dev: PCI device to handle
3149  *
3150  * This function can be used in drivers to enable D3cold from the device
3151  * they handle.  It also updates upstream PCI bridge PM capabilities
3152  * accordingly.
3153  */
pci_d3cold_enable(struct pci_dev * dev)3154 void pci_d3cold_enable(struct pci_dev *dev)
3155 {
3156 	if (dev->no_d3cold) {
3157 		dev->no_d3cold = false;
3158 		pci_bridge_d3_update(dev);
3159 	}
3160 }
3161 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3162 
3163 /**
3164  * pci_d3cold_disable - Disable D3cold for device
3165  * @dev: PCI device to handle
3166  *
3167  * This function can be used in drivers to disable D3cold from the device
3168  * they handle.  It also updates upstream PCI bridge PM capabilities
3169  * accordingly.
3170  */
pci_d3cold_disable(struct pci_dev * dev)3171 void pci_d3cold_disable(struct pci_dev *dev)
3172 {
3173 	if (!dev->no_d3cold) {
3174 		dev->no_d3cold = true;
3175 		pci_bridge_d3_update(dev);
3176 	}
3177 }
3178 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3179 
3180 /**
3181  * pci_pm_init - Initialize PM functions of given PCI device
3182  * @dev: PCI device to handle.
3183  */
pci_pm_init(struct pci_dev * dev)3184 void pci_pm_init(struct pci_dev *dev)
3185 {
3186 	int pm;
3187 	u16 status;
3188 	u16 pmc;
3189 
3190 	pm_runtime_forbid(&dev->dev);
3191 	pm_runtime_set_active(&dev->dev);
3192 	pm_runtime_enable(&dev->dev);
3193 	device_enable_async_suspend(&dev->dev);
3194 	dev->wakeup_prepared = false;
3195 
3196 	dev->pm_cap = 0;
3197 	dev->pme_support = 0;
3198 
3199 	/* find PCI PM capability in list */
3200 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3201 	if (!pm)
3202 		return;
3203 	/* Check device's ability to generate PME# */
3204 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3205 
3206 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3207 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3208 			pmc & PCI_PM_CAP_VER_MASK);
3209 		return;
3210 	}
3211 
3212 	dev->pm_cap = pm;
3213 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3214 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3215 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3216 	dev->d3cold_allowed = true;
3217 
3218 	dev->d1_support = false;
3219 	dev->d2_support = false;
3220 	if (!pci_no_d1d2(dev)) {
3221 		if (pmc & PCI_PM_CAP_D1)
3222 			dev->d1_support = true;
3223 		if (pmc & PCI_PM_CAP_D2)
3224 			dev->d2_support = true;
3225 
3226 		if (dev->d1_support || dev->d2_support)
3227 			pci_info(dev, "supports%s%s\n",
3228 				   dev->d1_support ? " D1" : "",
3229 				   dev->d2_support ? " D2" : "");
3230 	}
3231 
3232 	pmc &= PCI_PM_CAP_PME_MASK;
3233 	if (pmc) {
3234 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3235 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3236 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3237 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3238 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3239 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3240 		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3241 		dev->pme_poll = true;
3242 		/*
3243 		 * Make device's PM flags reflect the wake-up capability, but
3244 		 * let the user space enable it to wake up the system as needed.
3245 		 */
3246 		device_set_wakeup_capable(&dev->dev, true);
3247 		/* Disable the PME# generation functionality */
3248 		pci_pme_active(dev, false);
3249 	}
3250 
3251 	pci_read_config_word(dev, PCI_STATUS, &status);
3252 	if (status & PCI_STATUS_IMM_READY)
3253 		dev->imm_ready = 1;
3254 }
3255 
pci_ea_flags(struct pci_dev * dev,u8 prop)3256 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3257 {
3258 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3259 
3260 	switch (prop) {
3261 	case PCI_EA_P_MEM:
3262 	case PCI_EA_P_VF_MEM:
3263 		flags |= IORESOURCE_MEM;
3264 		break;
3265 	case PCI_EA_P_MEM_PREFETCH:
3266 	case PCI_EA_P_VF_MEM_PREFETCH:
3267 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3268 		break;
3269 	case PCI_EA_P_IO:
3270 		flags |= IORESOURCE_IO;
3271 		break;
3272 	default:
3273 		return 0;
3274 	}
3275 
3276 	return flags;
3277 }
3278 
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3279 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3280 					    u8 prop)
3281 {
3282 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3283 		return &dev->resource[bei];
3284 #ifdef CONFIG_PCI_IOV
3285 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3286 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3287 		return &dev->resource[PCI_IOV_RESOURCES +
3288 				      bei - PCI_EA_BEI_VF_BAR0];
3289 #endif
3290 	else if (bei == PCI_EA_BEI_ROM)
3291 		return &dev->resource[PCI_ROM_RESOURCE];
3292 	else
3293 		return NULL;
3294 }
3295 
3296 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3297 static int pci_ea_read(struct pci_dev *dev, int offset)
3298 {
3299 	struct resource *res;
3300 	const char *res_name;
3301 	int ent_size, ent_offset = offset;
3302 	resource_size_t start, end;
3303 	unsigned long flags;
3304 	u32 dw0, bei, base, max_offset;
3305 	u8 prop;
3306 	bool support_64 = (sizeof(resource_size_t) >= 8);
3307 
3308 	pci_read_config_dword(dev, ent_offset, &dw0);
3309 	ent_offset += 4;
3310 
3311 	/* Entry size field indicates DWORDs after 1st */
3312 	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3313 
3314 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3315 		goto out;
3316 
3317 	bei = FIELD_GET(PCI_EA_BEI, dw0);
3318 	prop = FIELD_GET(PCI_EA_PP, dw0);
3319 
3320 	/*
3321 	 * If the Property is in the reserved range, try the Secondary
3322 	 * Property instead.
3323 	 */
3324 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3325 		prop = FIELD_GET(PCI_EA_SP, dw0);
3326 	if (prop > PCI_EA_P_BRIDGE_IO)
3327 		goto out;
3328 
3329 	res = pci_ea_get_resource(dev, bei, prop);
3330 	res_name = pci_resource_name(dev, bei);
3331 	if (!res) {
3332 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3333 		goto out;
3334 	}
3335 
3336 	flags = pci_ea_flags(dev, prop);
3337 	if (!flags) {
3338 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3339 		goto out;
3340 	}
3341 
3342 	/* Read Base */
3343 	pci_read_config_dword(dev, ent_offset, &base);
3344 	start = (base & PCI_EA_FIELD_MASK);
3345 	ent_offset += 4;
3346 
3347 	/* Read MaxOffset */
3348 	pci_read_config_dword(dev, ent_offset, &max_offset);
3349 	ent_offset += 4;
3350 
3351 	/* Read Base MSBs (if 64-bit entry) */
3352 	if (base & PCI_EA_IS_64) {
3353 		u32 base_upper;
3354 
3355 		pci_read_config_dword(dev, ent_offset, &base_upper);
3356 		ent_offset += 4;
3357 
3358 		flags |= IORESOURCE_MEM_64;
3359 
3360 		/* entry starts above 32-bit boundary, can't use */
3361 		if (!support_64 && base_upper)
3362 			goto out;
3363 
3364 		if (support_64)
3365 			start |= ((u64)base_upper << 32);
3366 	}
3367 
3368 	end = start + (max_offset | 0x03);
3369 
3370 	/* Read MaxOffset MSBs (if 64-bit entry) */
3371 	if (max_offset & PCI_EA_IS_64) {
3372 		u32 max_offset_upper;
3373 
3374 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3375 		ent_offset += 4;
3376 
3377 		flags |= IORESOURCE_MEM_64;
3378 
3379 		/* entry too big, can't use */
3380 		if (!support_64 && max_offset_upper)
3381 			goto out;
3382 
3383 		if (support_64)
3384 			end += ((u64)max_offset_upper << 32);
3385 	}
3386 
3387 	if (end < start) {
3388 		pci_err(dev, "EA Entry crosses address boundary\n");
3389 		goto out;
3390 	}
3391 
3392 	if (ent_size != ent_offset - offset) {
3393 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3394 			ent_size, ent_offset - offset);
3395 		goto out;
3396 	}
3397 
3398 	res->name = pci_name(dev);
3399 	res->start = start;
3400 	res->end = end;
3401 	res->flags = flags;
3402 
3403 	if (bei <= PCI_EA_BEI_BAR5)
3404 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3405 			 res_name, res, prop);
3406 	else if (bei == PCI_EA_BEI_ROM)
3407 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3408 			 res_name, res, prop);
3409 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3410 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3411 			 res_name, res, prop);
3412 	else
3413 		pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3414 			   bei, res, prop);
3415 
3416 out:
3417 	return offset + ent_size;
3418 }
3419 
3420 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3421 void pci_ea_init(struct pci_dev *dev)
3422 {
3423 	int ea;
3424 	u8 num_ent;
3425 	int offset;
3426 	int i;
3427 
3428 	/* find PCI EA capability in list */
3429 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3430 	if (!ea)
3431 		return;
3432 
3433 	/* determine the number of entries */
3434 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3435 					&num_ent);
3436 	num_ent &= PCI_EA_NUM_ENT_MASK;
3437 
3438 	offset = ea + PCI_EA_FIRST_ENT;
3439 
3440 	/* Skip DWORD 2 for type 1 functions */
3441 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3442 		offset += 4;
3443 
3444 	/* parse each EA entry */
3445 	for (i = 0; i < num_ent; ++i)
3446 		offset = pci_ea_read(dev, offset);
3447 }
3448 
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3449 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3450 	struct pci_cap_saved_state *new_cap)
3451 {
3452 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3453 }
3454 
3455 /**
3456  * _pci_add_cap_save_buffer - allocate buffer for saving given
3457  *			      capability registers
3458  * @dev: the PCI device
3459  * @cap: the capability to allocate the buffer for
3460  * @extended: Standard or Extended capability ID
3461  * @size: requested size of the buffer
3462  */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3463 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3464 				    bool extended, unsigned int size)
3465 {
3466 	int pos;
3467 	struct pci_cap_saved_state *save_state;
3468 
3469 	if (extended)
3470 		pos = pci_find_ext_capability(dev, cap);
3471 	else
3472 		pos = pci_find_capability(dev, cap);
3473 
3474 	if (!pos)
3475 		return 0;
3476 
3477 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3478 	if (!save_state)
3479 		return -ENOMEM;
3480 
3481 	save_state->cap.cap_nr = cap;
3482 	save_state->cap.cap_extended = extended;
3483 	save_state->cap.size = size;
3484 	pci_add_saved_cap(dev, save_state);
3485 
3486 	return 0;
3487 }
3488 
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3489 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3490 {
3491 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3492 }
3493 
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3494 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3495 {
3496 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3497 }
3498 
3499 /**
3500  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3501  * @dev: the PCI device
3502  */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3503 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3504 {
3505 	int error;
3506 
3507 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3508 					PCI_EXP_SAVE_REGS * sizeof(u16));
3509 	if (error)
3510 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3511 
3512 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3513 	if (error)
3514 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3515 
3516 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3517 					    2 * sizeof(u16));
3518 	if (error)
3519 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3520 
3521 	pci_allocate_vc_save_buffers(dev);
3522 }
3523 
pci_free_cap_save_buffers(struct pci_dev * dev)3524 void pci_free_cap_save_buffers(struct pci_dev *dev)
3525 {
3526 	struct pci_cap_saved_state *tmp;
3527 	struct hlist_node *n;
3528 
3529 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3530 		kfree(tmp);
3531 }
3532 
3533 /**
3534  * pci_configure_ari - enable or disable ARI forwarding
3535  * @dev: the PCI device
3536  *
3537  * If @dev and its upstream bridge both support ARI, enable ARI in the
3538  * bridge.  Otherwise, disable ARI in the bridge.
3539  */
pci_configure_ari(struct pci_dev * dev)3540 void pci_configure_ari(struct pci_dev *dev)
3541 {
3542 	u32 cap;
3543 	struct pci_dev *bridge;
3544 
3545 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3546 		return;
3547 
3548 	bridge = dev->bus->self;
3549 	if (!bridge)
3550 		return;
3551 
3552 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3553 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3554 		return;
3555 
3556 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3557 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3558 					 PCI_EXP_DEVCTL2_ARI);
3559 		bridge->ari_enabled = 1;
3560 	} else {
3561 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3562 					   PCI_EXP_DEVCTL2_ARI);
3563 		bridge->ari_enabled = 0;
3564 	}
3565 }
3566 
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3567 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3568 {
3569 	int pos;
3570 	u16 cap, ctrl;
3571 
3572 	pos = pdev->acs_cap;
3573 	if (!pos)
3574 		return false;
3575 
3576 	/*
3577 	 * Except for egress control, capabilities are either required
3578 	 * or only required if controllable.  Features missing from the
3579 	 * capability field can therefore be assumed as hard-wired enabled.
3580 	 */
3581 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3582 	acs_flags &= (cap | PCI_ACS_EC);
3583 
3584 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3585 	return (ctrl & acs_flags) == acs_flags;
3586 }
3587 
3588 /**
3589  * pci_acs_enabled - test ACS against required flags for a given device
3590  * @pdev: device to test
3591  * @acs_flags: required PCI ACS flags
3592  *
3593  * Return true if the device supports the provided flags.  Automatically
3594  * filters out flags that are not implemented on multifunction devices.
3595  *
3596  * Note that this interface checks the effective ACS capabilities of the
3597  * device rather than the actual capabilities.  For instance, most single
3598  * function endpoints are not required to support ACS because they have no
3599  * opportunity for peer-to-peer access.  We therefore return 'true'
3600  * regardless of whether the device exposes an ACS capability.  This makes
3601  * it much easier for callers of this function to ignore the actual type
3602  * or topology of the device when testing ACS support.
3603  */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3604 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3605 {
3606 	int ret;
3607 
3608 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3609 	if (ret >= 0)
3610 		return ret > 0;
3611 
3612 	/*
3613 	 * Conventional PCI and PCI-X devices never support ACS, either
3614 	 * effectively or actually.  The shared bus topology implies that
3615 	 * any device on the bus can receive or snoop DMA.
3616 	 */
3617 	if (!pci_is_pcie(pdev))
3618 		return false;
3619 
3620 	switch (pci_pcie_type(pdev)) {
3621 	/*
3622 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3623 	 * but since their primary interface is PCI/X, we conservatively
3624 	 * handle them as we would a non-PCIe device.
3625 	 */
3626 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3627 	/*
3628 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3629 	 * applicable... must never implement an ACS Extended Capability...".
3630 	 * This seems arbitrary, but we take a conservative interpretation
3631 	 * of this statement.
3632 	 */
3633 	case PCI_EXP_TYPE_PCI_BRIDGE:
3634 	case PCI_EXP_TYPE_RC_EC:
3635 		return false;
3636 	/*
3637 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3638 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3639 	 * regardless of whether they are single- or multi-function devices.
3640 	 */
3641 	case PCI_EXP_TYPE_DOWNSTREAM:
3642 	case PCI_EXP_TYPE_ROOT_PORT:
3643 		return pci_acs_flags_enabled(pdev, acs_flags);
3644 	/*
3645 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3646 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3647 	 * capabilities, but only when they are part of a multifunction
3648 	 * device.  The footnote for section 6.12 indicates the specific
3649 	 * PCIe types included here.
3650 	 */
3651 	case PCI_EXP_TYPE_ENDPOINT:
3652 	case PCI_EXP_TYPE_UPSTREAM:
3653 	case PCI_EXP_TYPE_LEG_END:
3654 	case PCI_EXP_TYPE_RC_END:
3655 		if (!pdev->multifunction)
3656 			break;
3657 
3658 		return pci_acs_flags_enabled(pdev, acs_flags);
3659 	}
3660 
3661 	/*
3662 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3663 	 * to single function devices with the exception of downstream ports.
3664 	 */
3665 	return true;
3666 }
3667 
3668 /**
3669  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3670  * @start: starting downstream device
3671  * @end: ending upstream device or NULL to search to the root bus
3672  * @acs_flags: required flags
3673  *
3674  * Walk up a device tree from start to end testing PCI ACS support.  If
3675  * any step along the way does not support the required flags, return false.
3676  */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3677 bool pci_acs_path_enabled(struct pci_dev *start,
3678 			  struct pci_dev *end, u16 acs_flags)
3679 {
3680 	struct pci_dev *pdev, *parent = start;
3681 
3682 	do {
3683 		pdev = parent;
3684 
3685 		if (!pci_acs_enabled(pdev, acs_flags))
3686 			return false;
3687 
3688 		if (pci_is_root_bus(pdev->bus))
3689 			return (end == NULL);
3690 
3691 		parent = pdev->bus->self;
3692 	} while (pdev != end);
3693 
3694 	return true;
3695 }
3696 
3697 /**
3698  * pci_acs_init - Initialize ACS if hardware supports it
3699  * @dev: the PCI device
3700  */
pci_acs_init(struct pci_dev * dev)3701 void pci_acs_init(struct pci_dev *dev)
3702 {
3703 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3704 
3705 	/*
3706 	 * Attempt to enable ACS regardless of capability because some Root
3707 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3708 	 * the standard ACS capability but still support ACS via those
3709 	 * quirks.
3710 	 */
3711 	pci_enable_acs(dev);
3712 }
3713 
3714 /**
3715  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3716  * @pdev: PCI device
3717  * @bar: BAR to find
3718  *
3719  * Helper to find the position of the ctrl register for a BAR.
3720  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3721  * Returns -ENOENT if no ctrl register for the BAR could be found.
3722  */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3723 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3724 {
3725 	unsigned int pos, nbars, i;
3726 	u32 ctrl;
3727 
3728 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3729 	if (!pos)
3730 		return -ENOTSUPP;
3731 
3732 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3733 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3734 
3735 	for (i = 0; i < nbars; i++, pos += 8) {
3736 		int bar_idx;
3737 
3738 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3739 		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3740 		if (bar_idx == bar)
3741 			return pos;
3742 	}
3743 
3744 	return -ENOENT;
3745 }
3746 
3747 /**
3748  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3749  * @pdev: PCI device
3750  * @bar: BAR to query
3751  *
3752  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3753  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3754  */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3755 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3756 {
3757 	int pos;
3758 	u32 cap;
3759 
3760 	pos = pci_rebar_find_pos(pdev, bar);
3761 	if (pos < 0)
3762 		return 0;
3763 
3764 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3765 	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3766 
3767 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3768 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3769 	    bar == 0 && cap == 0x700)
3770 		return 0x3f00;
3771 
3772 	return cap;
3773 }
3774 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3775 
3776 /**
3777  * pci_rebar_get_current_size - get the current size of a BAR
3778  * @pdev: PCI device
3779  * @bar: BAR to set size to
3780  *
3781  * Read the size of a BAR from the resizable BAR config.
3782  * Returns size if found or negative error code.
3783  */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3784 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3785 {
3786 	int pos;
3787 	u32 ctrl;
3788 
3789 	pos = pci_rebar_find_pos(pdev, bar);
3790 	if (pos < 0)
3791 		return pos;
3792 
3793 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3794 	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3795 }
3796 
3797 /**
3798  * pci_rebar_set_size - set a new size for a BAR
3799  * @pdev: PCI device
3800  * @bar: BAR to set size to
3801  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3802  *
3803  * Set the new size of a BAR as defined in the spec.
3804  * Returns zero if resizing was successful, error code otherwise.
3805  */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3806 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3807 {
3808 	int pos;
3809 	u32 ctrl;
3810 
3811 	pos = pci_rebar_find_pos(pdev, bar);
3812 	if (pos < 0)
3813 		return pos;
3814 
3815 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3816 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3817 	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3818 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3819 	return 0;
3820 }
3821 
3822 /**
3823  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3824  * @dev: the PCI device
3825  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3826  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3827  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3828  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3829  *
3830  * Return 0 if all upstream bridges support AtomicOp routing, egress
3831  * blocking is disabled on all upstream ports, and the root port supports
3832  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3833  * AtomicOp completion), or negative otherwise.
3834  */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3835 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3836 {
3837 	struct pci_bus *bus = dev->bus;
3838 	struct pci_dev *bridge;
3839 	u32 cap, ctl2;
3840 
3841 	/*
3842 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3843 	 * in Device Control 2 is reserved in VFs and the PF value applies
3844 	 * to all associated VFs.
3845 	 */
3846 	if (dev->is_virtfn)
3847 		return -EINVAL;
3848 
3849 	if (!pci_is_pcie(dev))
3850 		return -EINVAL;
3851 
3852 	/*
3853 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3854 	 * AtomicOp requesters.  For now, we only support endpoints as
3855 	 * requesters and root ports as completers.  No endpoints as
3856 	 * completers, and no peer-to-peer.
3857 	 */
3858 
3859 	switch (pci_pcie_type(dev)) {
3860 	case PCI_EXP_TYPE_ENDPOINT:
3861 	case PCI_EXP_TYPE_LEG_END:
3862 	case PCI_EXP_TYPE_RC_END:
3863 		break;
3864 	default:
3865 		return -EINVAL;
3866 	}
3867 
3868 	while (bus->parent) {
3869 		bridge = bus->self;
3870 
3871 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3872 
3873 		switch (pci_pcie_type(bridge)) {
3874 		/* Ensure switch ports support AtomicOp routing */
3875 		case PCI_EXP_TYPE_UPSTREAM:
3876 		case PCI_EXP_TYPE_DOWNSTREAM:
3877 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3878 				return -EINVAL;
3879 			break;
3880 
3881 		/* Ensure root port supports all the sizes we care about */
3882 		case PCI_EXP_TYPE_ROOT_PORT:
3883 			if ((cap & cap_mask) != cap_mask)
3884 				return -EINVAL;
3885 			break;
3886 		}
3887 
3888 		/* Ensure upstream ports don't block AtomicOps on egress */
3889 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3890 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3891 						   &ctl2);
3892 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3893 				return -EINVAL;
3894 		}
3895 
3896 		bus = bus->parent;
3897 	}
3898 
3899 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3900 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3901 	return 0;
3902 }
3903 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3904 
3905 /**
3906  * pci_release_region - Release a PCI bar
3907  * @pdev: PCI device whose resources were previously reserved by
3908  *	  pci_request_region()
3909  * @bar: BAR to release
3910  *
3911  * Releases the PCI I/O and memory resources previously reserved by a
3912  * successful call to pci_request_region().  Call this function only
3913  * after all use of the PCI regions has ceased.
3914  */
pci_release_region(struct pci_dev * pdev,int bar)3915 void pci_release_region(struct pci_dev *pdev, int bar)
3916 {
3917 	/*
3918 	 * This is done for backwards compatibility, because the old PCI devres
3919 	 * API had a mode in which the function became managed if it had been
3920 	 * enabled with pcim_enable_device() instead of pci_enable_device().
3921 	 */
3922 	if (pci_is_managed(pdev)) {
3923 		pcim_release_region(pdev, bar);
3924 		return;
3925 	}
3926 
3927 	if (pci_resource_len(pdev, bar) == 0)
3928 		return;
3929 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3930 		release_region(pci_resource_start(pdev, bar),
3931 				pci_resource_len(pdev, bar));
3932 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3933 		release_mem_region(pci_resource_start(pdev, bar),
3934 				pci_resource_len(pdev, bar));
3935 }
3936 EXPORT_SYMBOL(pci_release_region);
3937 
3938 /**
3939  * __pci_request_region - Reserved PCI I/O and memory resource
3940  * @pdev: PCI device whose resources are to be reserved
3941  * @bar: BAR to be reserved
3942  * @res_name: Name to be associated with resource.
3943  * @exclusive: whether the region access is exclusive or not
3944  *
3945  * Returns: 0 on success, negative error code on failure.
3946  *
3947  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3948  * being reserved by owner @res_name.  Do not access any
3949  * address inside the PCI regions unless this call returns
3950  * successfully.
3951  *
3952  * If @exclusive is set, then the region is marked so that userspace
3953  * is explicitly not allowed to map the resource via /dev/mem or
3954  * sysfs MMIO access.
3955  *
3956  * Returns 0 on success, or %EBUSY on error.  A warning
3957  * message is also printed on failure.
3958  */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3959 static int __pci_request_region(struct pci_dev *pdev, int bar,
3960 				const char *res_name, int exclusive)
3961 {
3962 	if (pci_is_managed(pdev)) {
3963 		if (exclusive == IORESOURCE_EXCLUSIVE)
3964 			return pcim_request_region_exclusive(pdev, bar, res_name);
3965 
3966 		return pcim_request_region(pdev, bar, res_name);
3967 	}
3968 
3969 	if (pci_resource_len(pdev, bar) == 0)
3970 		return 0;
3971 
3972 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3973 		if (!request_region(pci_resource_start(pdev, bar),
3974 			    pci_resource_len(pdev, bar), res_name))
3975 			goto err_out;
3976 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3977 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3978 					pci_resource_len(pdev, bar), res_name,
3979 					exclusive))
3980 			goto err_out;
3981 	}
3982 
3983 	return 0;
3984 
3985 err_out:
3986 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3987 		 &pdev->resource[bar]);
3988 	return -EBUSY;
3989 }
3990 
3991 /**
3992  * pci_request_region - Reserve PCI I/O and memory resource
3993  * @pdev: PCI device whose resources are to be reserved
3994  * @bar: BAR to be reserved
3995  * @res_name: Name to be associated with resource
3996  *
3997  * Returns: 0 on success, negative error code on failure.
3998  *
3999  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4000  * being reserved by owner @res_name.  Do not access any
4001  * address inside the PCI regions unless this call returns
4002  * successfully.
4003  *
4004  * Returns 0 on success, or %EBUSY on error.  A warning
4005  * message is also printed on failure.
4006  *
4007  * NOTE:
4008  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4009  * when pcim_enable_device() has been called in advance. This hybrid feature is
4010  * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4011  */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)4012 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4013 {
4014 	return __pci_request_region(pdev, bar, res_name, 0);
4015 }
4016 EXPORT_SYMBOL(pci_request_region);
4017 
4018 /**
4019  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4020  * @pdev: PCI device whose resources were previously reserved
4021  * @bars: Bitmask of BARs to be released
4022  *
4023  * Release selected PCI I/O and memory resources previously reserved.
4024  * Call this function only after all use of the PCI regions has ceased.
4025  */
pci_release_selected_regions(struct pci_dev * pdev,int bars)4026 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4027 {
4028 	int i;
4029 
4030 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4031 		if (bars & (1 << i))
4032 			pci_release_region(pdev, i);
4033 }
4034 EXPORT_SYMBOL(pci_release_selected_regions);
4035 
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)4036 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4037 					  const char *res_name, int excl)
4038 {
4039 	int i;
4040 
4041 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4042 		if (bars & (1 << i))
4043 			if (__pci_request_region(pdev, i, res_name, excl))
4044 				goto err_out;
4045 	return 0;
4046 
4047 err_out:
4048 	while (--i >= 0)
4049 		if (bars & (1 << i))
4050 			pci_release_region(pdev, i);
4051 
4052 	return -EBUSY;
4053 }
4054 
4055 
4056 /**
4057  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4058  * @pdev: PCI device whose resources are to be reserved
4059  * @bars: Bitmask of BARs to be requested
4060  * @res_name: Name to be associated with resource
4061  *
4062  * Returns: 0 on success, negative error code on failure.
4063  *
4064  * NOTE:
4065  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4066  * when pcim_enable_device() has been called in advance. This hybrid feature is
4067  * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4068  */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)4069 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4070 				 const char *res_name)
4071 {
4072 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4073 }
4074 EXPORT_SYMBOL(pci_request_selected_regions);
4075 
4076 /**
4077  * pci_request_selected_regions_exclusive - Request regions exclusively
4078  * @pdev: PCI device to request regions from
4079  * @bars: bit mask of BARs to request
4080  * @res_name: name to be associated with the requests
4081  *
4082  * Returns: 0 on success, negative error code on failure.
4083  *
4084  * NOTE:
4085  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4086  * when pcim_enable_device() has been called in advance. This hybrid feature is
4087  * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4088  */
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)4089 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4090 					   const char *res_name)
4091 {
4092 	return __pci_request_selected_regions(pdev, bars, res_name,
4093 			IORESOURCE_EXCLUSIVE);
4094 }
4095 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4096 
4097 /**
4098  * pci_release_regions - Release reserved PCI I/O and memory resources
4099  * @pdev: PCI device whose resources were previously reserved by
4100  *	  pci_request_regions()
4101  *
4102  * Releases all PCI I/O and memory resources previously reserved by a
4103  * successful call to pci_request_regions().  Call this function only
4104  * after all use of the PCI regions has ceased.
4105  */
pci_release_regions(struct pci_dev * pdev)4106 void pci_release_regions(struct pci_dev *pdev)
4107 {
4108 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4109 }
4110 EXPORT_SYMBOL(pci_release_regions);
4111 
4112 /**
4113  * pci_request_regions - Reserve PCI I/O and memory resources
4114  * @pdev: PCI device whose resources are to be reserved
4115  * @res_name: Name to be associated with resource.
4116  *
4117  * Mark all PCI regions associated with PCI device @pdev as
4118  * being reserved by owner @res_name.  Do not access any
4119  * address inside the PCI regions unless this call returns
4120  * successfully.
4121  *
4122  * Returns 0 on success, or %EBUSY on error.  A warning
4123  * message is also printed on failure.
4124  *
4125  * NOTE:
4126  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4127  * when pcim_enable_device() has been called in advance. This hybrid feature is
4128  * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4129  */
pci_request_regions(struct pci_dev * pdev,const char * res_name)4130 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4131 {
4132 	return pci_request_selected_regions(pdev,
4133 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4134 }
4135 EXPORT_SYMBOL(pci_request_regions);
4136 
4137 /**
4138  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4139  * @pdev: PCI device whose resources are to be reserved
4140  * @res_name: Name to be associated with resource.
4141  *
4142  * Returns: 0 on success, negative error code on failure.
4143  *
4144  * Mark all PCI regions associated with PCI device @pdev as being reserved
4145  * by owner @res_name.  Do not access any address inside the PCI regions
4146  * unless this call returns successfully.
4147  *
4148  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4149  * and the sysfs MMIO access will not be allowed.
4150  *
4151  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4152  * printed on failure.
4153  *
4154  * NOTE:
4155  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4156  * when pcim_enable_device() has been called in advance. This hybrid feature is
4157  * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4158  */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)4159 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4160 {
4161 	return pci_request_selected_regions_exclusive(pdev,
4162 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4163 }
4164 EXPORT_SYMBOL(pci_request_regions_exclusive);
4165 
4166 /*
4167  * Record the PCI IO range (expressed as CPU physical address + size).
4168  * Return a negative value if an error has occurred, zero otherwise
4169  */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4170 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4171 			resource_size_t	size)
4172 {
4173 	int ret = 0;
4174 #ifdef PCI_IOBASE
4175 	struct logic_pio_hwaddr *range;
4176 
4177 	if (!size || addr + size < addr)
4178 		return -EINVAL;
4179 
4180 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4181 	if (!range)
4182 		return -ENOMEM;
4183 
4184 	range->fwnode = fwnode;
4185 	range->size = size;
4186 	range->hw_start = addr;
4187 	range->flags = LOGIC_PIO_CPU_MMIO;
4188 
4189 	ret = logic_pio_register_range(range);
4190 	if (ret)
4191 		kfree(range);
4192 
4193 	/* Ignore duplicates due to deferred probing */
4194 	if (ret == -EEXIST)
4195 		ret = 0;
4196 #endif
4197 
4198 	return ret;
4199 }
4200 
pci_pio_to_address(unsigned long pio)4201 phys_addr_t pci_pio_to_address(unsigned long pio)
4202 {
4203 #ifdef PCI_IOBASE
4204 	if (pio < MMIO_UPPER_LIMIT)
4205 		return logic_pio_to_hwaddr(pio);
4206 #endif
4207 
4208 	return (phys_addr_t) OF_BAD_ADDR;
4209 }
4210 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4211 
pci_address_to_pio(phys_addr_t address)4212 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4213 {
4214 #ifdef PCI_IOBASE
4215 	return logic_pio_trans_cpuaddr(address);
4216 #else
4217 	if (address > IO_SPACE_LIMIT)
4218 		return (unsigned long)-1;
4219 
4220 	return (unsigned long) address;
4221 #endif
4222 }
4223 
4224 /**
4225  * pci_remap_iospace - Remap the memory mapped I/O space
4226  * @res: Resource describing the I/O space
4227  * @phys_addr: physical address of range to be mapped
4228  *
4229  * Remap the memory mapped I/O space described by the @res and the CPU
4230  * physical address @phys_addr into virtual address space.  Only
4231  * architectures that have memory mapped IO functions defined (and the
4232  * PCI_IOBASE value defined) should call this function.
4233  */
4234 #ifndef pci_remap_iospace
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4235 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4236 {
4237 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4238 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4239 
4240 	if (!(res->flags & IORESOURCE_IO))
4241 		return -EINVAL;
4242 
4243 	if (res->end > IO_SPACE_LIMIT)
4244 		return -EINVAL;
4245 
4246 	return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4247 			       pgprot_device(PAGE_KERNEL));
4248 #else
4249 	/*
4250 	 * This architecture does not have memory mapped I/O space,
4251 	 * so this function should never be called
4252 	 */
4253 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4254 	return -ENODEV;
4255 #endif
4256 }
4257 EXPORT_SYMBOL(pci_remap_iospace);
4258 #endif
4259 
4260 /**
4261  * pci_unmap_iospace - Unmap the memory mapped I/O space
4262  * @res: resource to be unmapped
4263  *
4264  * Unmap the CPU virtual address @res from virtual address space.  Only
4265  * architectures that have memory mapped IO functions defined (and the
4266  * PCI_IOBASE value defined) should call this function.
4267  */
pci_unmap_iospace(struct resource * res)4268 void pci_unmap_iospace(struct resource *res)
4269 {
4270 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4271 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4272 
4273 	vunmap_range(vaddr, vaddr + resource_size(res));
4274 #endif
4275 }
4276 EXPORT_SYMBOL(pci_unmap_iospace);
4277 
__pci_set_master(struct pci_dev * dev,bool enable)4278 static void __pci_set_master(struct pci_dev *dev, bool enable)
4279 {
4280 	u16 old_cmd, cmd;
4281 
4282 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4283 	if (enable)
4284 		cmd = old_cmd | PCI_COMMAND_MASTER;
4285 	else
4286 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4287 	if (cmd != old_cmd) {
4288 		pci_dbg(dev, "%s bus mastering\n",
4289 			enable ? "enabling" : "disabling");
4290 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4291 	}
4292 	dev->is_busmaster = enable;
4293 }
4294 
4295 /**
4296  * pcibios_setup - process "pci=" kernel boot arguments
4297  * @str: string used to pass in "pci=" kernel boot arguments
4298  *
4299  * Process kernel boot arguments.  This is the default implementation.
4300  * Architecture specific implementations can override this as necessary.
4301  */
pcibios_setup(char * str)4302 char * __weak __init pcibios_setup(char *str)
4303 {
4304 	return str;
4305 }
4306 
4307 /**
4308  * pcibios_set_master - enable PCI bus-mastering for device dev
4309  * @dev: the PCI device to enable
4310  *
4311  * Enables PCI bus-mastering for the device.  This is the default
4312  * implementation.  Architecture specific implementations can override
4313  * this if necessary.
4314  */
pcibios_set_master(struct pci_dev * dev)4315 void __weak pcibios_set_master(struct pci_dev *dev)
4316 {
4317 	u8 lat;
4318 
4319 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4320 	if (pci_is_pcie(dev))
4321 		return;
4322 
4323 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4324 	if (lat < 16)
4325 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4326 	else if (lat > pcibios_max_latency)
4327 		lat = pcibios_max_latency;
4328 	else
4329 		return;
4330 
4331 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4332 }
4333 
4334 /**
4335  * pci_set_master - enables bus-mastering for device dev
4336  * @dev: the PCI device to enable
4337  *
4338  * Enables bus-mastering on the device and calls pcibios_set_master()
4339  * to do the needed arch specific settings.
4340  */
pci_set_master(struct pci_dev * dev)4341 void pci_set_master(struct pci_dev *dev)
4342 {
4343 	__pci_set_master(dev, true);
4344 	pcibios_set_master(dev);
4345 }
4346 EXPORT_SYMBOL(pci_set_master);
4347 
4348 /**
4349  * pci_clear_master - disables bus-mastering for device dev
4350  * @dev: the PCI device to disable
4351  */
pci_clear_master(struct pci_dev * dev)4352 void pci_clear_master(struct pci_dev *dev)
4353 {
4354 	__pci_set_master(dev, false);
4355 }
4356 EXPORT_SYMBOL(pci_clear_master);
4357 
4358 /**
4359  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4360  * @dev: the PCI device for which MWI is to be enabled
4361  *
4362  * Helper function for pci_set_mwi.
4363  * Originally copied from drivers/net/acenic.c.
4364  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4365  *
4366  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4367  */
pci_set_cacheline_size(struct pci_dev * dev)4368 int pci_set_cacheline_size(struct pci_dev *dev)
4369 {
4370 	u8 cacheline_size;
4371 
4372 	if (!pci_cache_line_size)
4373 		return -EINVAL;
4374 
4375 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4376 	   equal to or multiple of the right value. */
4377 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4378 	if (cacheline_size >= pci_cache_line_size &&
4379 	    (cacheline_size % pci_cache_line_size) == 0)
4380 		return 0;
4381 
4382 	/* Write the correct value. */
4383 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4384 	/* Read it back. */
4385 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4386 	if (cacheline_size == pci_cache_line_size)
4387 		return 0;
4388 
4389 	pci_dbg(dev, "cache line size of %d is not supported\n",
4390 		   pci_cache_line_size << 2);
4391 
4392 	return -EINVAL;
4393 }
4394 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4395 
4396 /**
4397  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4398  * @dev: the PCI device for which MWI is enabled
4399  *
4400  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4401  *
4402  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4403  */
pci_set_mwi(struct pci_dev * dev)4404 int pci_set_mwi(struct pci_dev *dev)
4405 {
4406 #ifdef PCI_DISABLE_MWI
4407 	return 0;
4408 #else
4409 	int rc;
4410 	u16 cmd;
4411 
4412 	rc = pci_set_cacheline_size(dev);
4413 	if (rc)
4414 		return rc;
4415 
4416 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4417 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4418 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4419 		cmd |= PCI_COMMAND_INVALIDATE;
4420 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4421 	}
4422 	return 0;
4423 #endif
4424 }
4425 EXPORT_SYMBOL(pci_set_mwi);
4426 
4427 /**
4428  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4429  * @dev: the PCI device for which MWI is enabled
4430  *
4431  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4432  * Callers are not required to check the return value.
4433  *
4434  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4435  */
pci_try_set_mwi(struct pci_dev * dev)4436 int pci_try_set_mwi(struct pci_dev *dev)
4437 {
4438 #ifdef PCI_DISABLE_MWI
4439 	return 0;
4440 #else
4441 	return pci_set_mwi(dev);
4442 #endif
4443 }
4444 EXPORT_SYMBOL(pci_try_set_mwi);
4445 
4446 /**
4447  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4448  * @dev: the PCI device to disable
4449  *
4450  * Disables PCI Memory-Write-Invalidate transaction on the device
4451  */
pci_clear_mwi(struct pci_dev * dev)4452 void pci_clear_mwi(struct pci_dev *dev)
4453 {
4454 #ifndef PCI_DISABLE_MWI
4455 	u16 cmd;
4456 
4457 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4458 	if (cmd & PCI_COMMAND_INVALIDATE) {
4459 		cmd &= ~PCI_COMMAND_INVALIDATE;
4460 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4461 	}
4462 #endif
4463 }
4464 EXPORT_SYMBOL(pci_clear_mwi);
4465 
4466 /**
4467  * pci_disable_parity - disable parity checking for device
4468  * @dev: the PCI device to operate on
4469  *
4470  * Disable parity checking for device @dev
4471  */
pci_disable_parity(struct pci_dev * dev)4472 void pci_disable_parity(struct pci_dev *dev)
4473 {
4474 	u16 cmd;
4475 
4476 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4477 	if (cmd & PCI_COMMAND_PARITY) {
4478 		cmd &= ~PCI_COMMAND_PARITY;
4479 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4480 	}
4481 }
4482 
4483 /**
4484  * pci_intx - enables/disables PCI INTx for device dev
4485  * @pdev: the PCI device to operate on
4486  * @enable: boolean: whether to enable or disable PCI INTx
4487  *
4488  * Enables/disables PCI INTx for device @pdev
4489  *
4490  * NOTE:
4491  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4492  * when pcim_enable_device() has been called in advance. This hybrid feature is
4493  * DEPRECATED! If you want managed cleanup, use pcim_intx() instead.
4494  */
pci_intx(struct pci_dev * pdev,int enable)4495 void pci_intx(struct pci_dev *pdev, int enable)
4496 {
4497 	u16 pci_command, new;
4498 
4499 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4500 
4501 	if (enable)
4502 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4503 	else
4504 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4505 
4506 	if (new != pci_command) {
4507 		/* Preserve the "hybrid" behavior for backwards compatibility */
4508 		if (pci_is_managed(pdev)) {
4509 			WARN_ON_ONCE(pcim_intx(pdev, enable) != 0);
4510 			return;
4511 		}
4512 
4513 		pci_write_config_word(pdev, PCI_COMMAND, new);
4514 	}
4515 }
4516 EXPORT_SYMBOL_GPL(pci_intx);
4517 
4518 /**
4519  * pci_wait_for_pending_transaction - wait for pending transaction
4520  * @dev: the PCI device to operate on
4521  *
4522  * Return 0 if transaction is pending 1 otherwise.
4523  */
pci_wait_for_pending_transaction(struct pci_dev * dev)4524 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4525 {
4526 	if (!pci_is_pcie(dev))
4527 		return 1;
4528 
4529 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4530 				    PCI_EXP_DEVSTA_TRPND);
4531 }
4532 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4533 
4534 /**
4535  * pcie_flr - initiate a PCIe function level reset
4536  * @dev: device to reset
4537  *
4538  * Initiate a function level reset unconditionally on @dev without
4539  * checking any flags and DEVCAP
4540  */
pcie_flr(struct pci_dev * dev)4541 int pcie_flr(struct pci_dev *dev)
4542 {
4543 	if (!pci_wait_for_pending_transaction(dev))
4544 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4545 
4546 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4547 
4548 	if (dev->imm_ready)
4549 		return 0;
4550 
4551 	/*
4552 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4553 	 * 100ms, but may silently discard requests while the FLR is in
4554 	 * progress.  Wait 100ms before trying to access the device.
4555 	 */
4556 	msleep(100);
4557 
4558 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4559 }
4560 EXPORT_SYMBOL_GPL(pcie_flr);
4561 
4562 /**
4563  * pcie_reset_flr - initiate a PCIe function level reset
4564  * @dev: device to reset
4565  * @probe: if true, return 0 if device can be reset this way
4566  *
4567  * Initiate a function level reset on @dev.
4568  */
pcie_reset_flr(struct pci_dev * dev,bool probe)4569 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4570 {
4571 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4572 		return -ENOTTY;
4573 
4574 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4575 		return -ENOTTY;
4576 
4577 	if (probe)
4578 		return 0;
4579 
4580 	return pcie_flr(dev);
4581 }
4582 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4583 
pci_af_flr(struct pci_dev * dev,bool probe)4584 static int pci_af_flr(struct pci_dev *dev, bool probe)
4585 {
4586 	int pos;
4587 	u8 cap;
4588 
4589 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4590 	if (!pos)
4591 		return -ENOTTY;
4592 
4593 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4594 		return -ENOTTY;
4595 
4596 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4597 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4598 		return -ENOTTY;
4599 
4600 	if (probe)
4601 		return 0;
4602 
4603 	/*
4604 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4605 	 * is used, so we use the control offset rather than status and shift
4606 	 * the test bit to match.
4607 	 */
4608 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4609 				 PCI_AF_STATUS_TP << 8))
4610 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4611 
4612 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4613 
4614 	if (dev->imm_ready)
4615 		return 0;
4616 
4617 	/*
4618 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4619 	 * updated 27 July 2006; a device must complete an FLR within
4620 	 * 100ms, but may silently discard requests while the FLR is in
4621 	 * progress.  Wait 100ms before trying to access the device.
4622 	 */
4623 	msleep(100);
4624 
4625 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4626 }
4627 
4628 /**
4629  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4630  * @dev: Device to reset.
4631  * @probe: if true, return 0 if the device can be reset this way.
4632  *
4633  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4634  * unset, it will be reinitialized internally when going from PCI_D3hot to
4635  * PCI_D0.  If that's the case and the device is not in a low-power state
4636  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4637  *
4638  * NOTE: This causes the caller to sleep for twice the device power transition
4639  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4640  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4641  * Moreover, only devices in D0 can be reset by this function.
4642  */
pci_pm_reset(struct pci_dev * dev,bool probe)4643 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4644 {
4645 	u16 csr;
4646 
4647 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4648 		return -ENOTTY;
4649 
4650 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4651 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4652 		return -ENOTTY;
4653 
4654 	if (probe)
4655 		return 0;
4656 
4657 	if (dev->current_state != PCI_D0)
4658 		return -EINVAL;
4659 
4660 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4661 	csr |= PCI_D3hot;
4662 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4663 	pci_dev_d3_sleep(dev);
4664 
4665 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4666 	csr |= PCI_D0;
4667 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4668 	pci_dev_d3_sleep(dev);
4669 
4670 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4671 }
4672 
4673 /**
4674  * pcie_wait_for_link_status - Wait for link status change
4675  * @pdev: Device whose link to wait for.
4676  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4677  * @active: Waiting for active or inactive?
4678  *
4679  * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4680  * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4681  */
pcie_wait_for_link_status(struct pci_dev * pdev,bool use_lt,bool active)4682 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4683 				     bool use_lt, bool active)
4684 {
4685 	u16 lnksta_mask, lnksta_match;
4686 	unsigned long end_jiffies;
4687 	u16 lnksta;
4688 
4689 	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4690 	lnksta_match = active ? lnksta_mask : 0;
4691 
4692 	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4693 	do {
4694 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4695 		if ((lnksta & lnksta_mask) == lnksta_match)
4696 			return 0;
4697 		msleep(1);
4698 	} while (time_before(jiffies, end_jiffies));
4699 
4700 	return -ETIMEDOUT;
4701 }
4702 
4703 /**
4704  * pcie_retrain_link - Request a link retrain and wait for it to complete
4705  * @pdev: Device whose link to retrain.
4706  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4707  *
4708  * Retrain completion status is retrieved from the Link Status Register
4709  * according to @use_lt.  It is not verified whether the use of the DLLLA
4710  * bit is valid.
4711  *
4712  * Return 0 if successful, or -ETIMEDOUT if training has not completed
4713  * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4714  */
pcie_retrain_link(struct pci_dev * pdev,bool use_lt)4715 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4716 {
4717 	int rc;
4718 
4719 	/*
4720 	 * Ensure the updated LNKCTL parameters are used during link
4721 	 * training by checking that there is no ongoing link training that
4722 	 * may have started before link parameters were changed, so as to
4723 	 * avoid LTSSM race as recommended in Implementation Note at the end
4724 	 * of PCIe r6.1 sec 7.5.3.7.
4725 	 */
4726 	rc = pcie_wait_for_link_status(pdev, true, false);
4727 	if (rc)
4728 		return rc;
4729 
4730 	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4731 	if (pdev->clear_retrain_link) {
4732 		/*
4733 		 * Due to an erratum in some devices the Retrain Link bit
4734 		 * needs to be cleared again manually to allow the link
4735 		 * training to succeed.
4736 		 */
4737 		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4738 	}
4739 
4740 	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4741 
4742 	/*
4743 	 * Clear LBMS after a manual retrain so that the bit can be used
4744 	 * to track link speed or width changes made by hardware itself
4745 	 * in attempt to correct unreliable link operation.
4746 	 */
4747 	pcie_capability_write_word(pdev, PCI_EXP_LNKSTA, PCI_EXP_LNKSTA_LBMS);
4748 	return rc;
4749 }
4750 
4751 /**
4752  * pcie_wait_for_link_delay - Wait until link is active or inactive
4753  * @pdev: Bridge device
4754  * @active: waiting for active or inactive?
4755  * @delay: Delay to wait after link has become active (in ms)
4756  *
4757  * Use this to wait till link becomes active or inactive.
4758  */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4759 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4760 				     int delay)
4761 {
4762 	int rc;
4763 
4764 	/*
4765 	 * Some controllers might not implement link active reporting. In this
4766 	 * case, we wait for 1000 ms + any delay requested by the caller.
4767 	 */
4768 	if (!pdev->link_active_reporting) {
4769 		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4770 		return true;
4771 	}
4772 
4773 	/*
4774 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4775 	 * after which we should expect an link active if the reset was
4776 	 * successful. If so, software must wait a minimum 100ms before sending
4777 	 * configuration requests to devices downstream this port.
4778 	 *
4779 	 * If the link fails to activate, either the device was physically
4780 	 * removed or the link is permanently failed.
4781 	 */
4782 	if (active)
4783 		msleep(20);
4784 	rc = pcie_wait_for_link_status(pdev, false, active);
4785 	if (active) {
4786 		if (rc)
4787 			rc = pcie_failed_link_retrain(pdev);
4788 		if (rc)
4789 			return false;
4790 
4791 		msleep(delay);
4792 		return true;
4793 	}
4794 
4795 	if (rc)
4796 		return false;
4797 
4798 	return true;
4799 }
4800 
4801 /**
4802  * pcie_wait_for_link - Wait until link is active or inactive
4803  * @pdev: Bridge device
4804  * @active: waiting for active or inactive?
4805  *
4806  * Use this to wait till link becomes active or inactive.
4807  */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4808 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4809 {
4810 	return pcie_wait_for_link_delay(pdev, active, 100);
4811 }
4812 
4813 /*
4814  * Find maximum D3cold delay required by all the devices on the bus.  The
4815  * spec says 100 ms, but firmware can lower it and we allow drivers to
4816  * increase it as well.
4817  *
4818  * Called with @pci_bus_sem locked for reading.
4819  */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)4820 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4821 {
4822 	const struct pci_dev *pdev;
4823 	int min_delay = 100;
4824 	int max_delay = 0;
4825 
4826 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4827 		if (pdev->d3cold_delay < min_delay)
4828 			min_delay = pdev->d3cold_delay;
4829 		if (pdev->d3cold_delay > max_delay)
4830 			max_delay = pdev->d3cold_delay;
4831 	}
4832 
4833 	return max(min_delay, max_delay);
4834 }
4835 
4836 /**
4837  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4838  * @dev: PCI bridge
4839  * @reset_type: reset type in human-readable form
4840  *
4841  * Handle necessary delays before access to the devices on the secondary
4842  * side of the bridge are permitted after D3cold to D0 transition
4843  * or Conventional Reset.
4844  *
4845  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4846  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4847  * 4.3.2.
4848  *
4849  * Return 0 on success or -ENOTTY if the first device on the secondary bus
4850  * failed to become accessible.
4851  */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev,char * reset_type)4852 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4853 {
4854 	struct pci_dev *child __free(pci_dev_put) = NULL;
4855 	int delay;
4856 
4857 	if (pci_dev_is_disconnected(dev))
4858 		return 0;
4859 
4860 	if (!pci_is_bridge(dev))
4861 		return 0;
4862 
4863 	down_read(&pci_bus_sem);
4864 
4865 	/*
4866 	 * We only deal with devices that are present currently on the bus.
4867 	 * For any hot-added devices the access delay is handled in pciehp
4868 	 * board_added(). In case of ACPI hotplug the firmware is expected
4869 	 * to configure the devices before OS is notified.
4870 	 */
4871 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4872 		up_read(&pci_bus_sem);
4873 		return 0;
4874 	}
4875 
4876 	/* Take d3cold_delay requirements into account */
4877 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4878 	if (!delay) {
4879 		up_read(&pci_bus_sem);
4880 		return 0;
4881 	}
4882 
4883 	child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
4884 					     struct pci_dev, bus_list));
4885 	up_read(&pci_bus_sem);
4886 
4887 	/*
4888 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4889 	 * accessing the device after reset (that is 1000 ms + 100 ms).
4890 	 */
4891 	if (!pci_is_pcie(dev)) {
4892 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4893 		msleep(1000 + delay);
4894 		return 0;
4895 	}
4896 
4897 	/*
4898 	 * For PCIe downstream and root ports that do not support speeds
4899 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4900 	 * speeds (gen3) we need to wait first for the data link layer to
4901 	 * become active.
4902 	 *
4903 	 * However, 100 ms is the minimum and the PCIe spec says the
4904 	 * software must allow at least 1s before it can determine that the
4905 	 * device that did not respond is a broken device. Also device can
4906 	 * take longer than that to respond if it indicates so through Request
4907 	 * Retry Status completions.
4908 	 *
4909 	 * Therefore we wait for 100 ms and check for the device presence
4910 	 * until the timeout expires.
4911 	 */
4912 	if (!pcie_downstream_port(dev))
4913 		return 0;
4914 
4915 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4916 		u16 status;
4917 
4918 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4919 		msleep(delay);
4920 
4921 		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4922 			return 0;
4923 
4924 		/*
4925 		 * If the port supports active link reporting we now check
4926 		 * whether the link is active and if not bail out early with
4927 		 * the assumption that the device is not present anymore.
4928 		 */
4929 		if (!dev->link_active_reporting)
4930 			return -ENOTTY;
4931 
4932 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4933 		if (!(status & PCI_EXP_LNKSTA_DLLLA))
4934 			return -ENOTTY;
4935 
4936 		return pci_dev_wait(child, reset_type,
4937 				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4938 	}
4939 
4940 	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4941 		delay);
4942 	if (!pcie_wait_for_link_delay(dev, true, delay)) {
4943 		/* Did not train, no need to wait any further */
4944 		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4945 		return -ENOTTY;
4946 	}
4947 
4948 	return pci_dev_wait(child, reset_type,
4949 			    PCIE_RESET_READY_POLL_MS - delay);
4950 }
4951 
pci_reset_secondary_bus(struct pci_dev * dev)4952 void pci_reset_secondary_bus(struct pci_dev *dev)
4953 {
4954 	u16 ctrl;
4955 
4956 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4957 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4958 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4959 
4960 	/*
4961 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4962 	 * this to 2ms to ensure that we meet the minimum requirement.
4963 	 */
4964 	msleep(2);
4965 
4966 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4967 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4968 }
4969 
pcibios_reset_secondary_bus(struct pci_dev * dev)4970 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4971 {
4972 	pci_reset_secondary_bus(dev);
4973 }
4974 
4975 /**
4976  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4977  * @dev: Bridge device
4978  *
4979  * Use the bridge control register to assert reset on the secondary bus.
4980  * Devices on the secondary bus are left in power-on state.
4981  */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)4982 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4983 {
4984 	if (!dev->block_cfg_access)
4985 		pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n",
4986 			      __builtin_return_address(0));
4987 	pcibios_reset_secondary_bus(dev);
4988 
4989 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4990 }
4991 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4992 
pci_parent_bus_reset(struct pci_dev * dev,bool probe)4993 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4994 {
4995 	struct pci_dev *pdev;
4996 
4997 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4998 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4999 		return -ENOTTY;
5000 
5001 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5002 		if (pdev != dev)
5003 			return -ENOTTY;
5004 
5005 	if (probe)
5006 		return 0;
5007 
5008 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5009 }
5010 
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,bool probe)5011 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5012 {
5013 	int rc = -ENOTTY;
5014 
5015 	if (!hotplug || !try_module_get(hotplug->owner))
5016 		return rc;
5017 
5018 	if (hotplug->ops->reset_slot)
5019 		rc = hotplug->ops->reset_slot(hotplug, probe);
5020 
5021 	module_put(hotplug->owner);
5022 
5023 	return rc;
5024 }
5025 
pci_dev_reset_slot_function(struct pci_dev * dev,bool probe)5026 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5027 {
5028 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5029 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5030 		return -ENOTTY;
5031 
5032 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5033 }
5034 
cxl_port_dvsec(struct pci_dev * dev)5035 static u16 cxl_port_dvsec(struct pci_dev *dev)
5036 {
5037 	return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
5038 					 PCI_DVSEC_CXL_PORT);
5039 }
5040 
cxl_sbr_masked(struct pci_dev * dev)5041 static bool cxl_sbr_masked(struct pci_dev *dev)
5042 {
5043 	u16 dvsec, reg;
5044 	int rc;
5045 
5046 	dvsec = cxl_port_dvsec(dev);
5047 	if (!dvsec)
5048 		return false;
5049 
5050 	rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, &reg);
5051 	if (rc || PCI_POSSIBLE_ERROR(reg))
5052 		return false;
5053 
5054 	/*
5055 	 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
5056 	 * bit in Bridge Control has no effect.  When 1, the Port generates
5057 	 * hot reset when the SBR bit is set to 1.
5058 	 */
5059 	if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
5060 		return false;
5061 
5062 	return true;
5063 }
5064 
pci_reset_bus_function(struct pci_dev * dev,bool probe)5065 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5066 {
5067 	struct pci_dev *bridge = pci_upstream_bridge(dev);
5068 	int rc;
5069 
5070 	/*
5071 	 * If "dev" is below a CXL port that has SBR control masked, SBR
5072 	 * won't do anything, so return error.
5073 	 */
5074 	if (bridge && cxl_sbr_masked(bridge)) {
5075 		if (probe)
5076 			return 0;
5077 
5078 		return -ENOTTY;
5079 	}
5080 
5081 	rc = pci_dev_reset_slot_function(dev, probe);
5082 	if (rc != -ENOTTY)
5083 		return rc;
5084 	return pci_parent_bus_reset(dev, probe);
5085 }
5086 
cxl_reset_bus_function(struct pci_dev * dev,bool probe)5087 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
5088 {
5089 	struct pci_dev *bridge;
5090 	u16 dvsec, reg, val;
5091 	int rc;
5092 
5093 	bridge = pci_upstream_bridge(dev);
5094 	if (!bridge)
5095 		return -ENOTTY;
5096 
5097 	dvsec = cxl_port_dvsec(bridge);
5098 	if (!dvsec)
5099 		return -ENOTTY;
5100 
5101 	if (probe)
5102 		return 0;
5103 
5104 	rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, &reg);
5105 	if (rc)
5106 		return -ENOTTY;
5107 
5108 	if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
5109 		val = reg;
5110 	} else {
5111 		val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
5112 		pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5113 				      val);
5114 	}
5115 
5116 	rc = pci_reset_bus_function(dev, probe);
5117 
5118 	if (reg != val)
5119 		pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5120 				      reg);
5121 
5122 	return rc;
5123 }
5124 
pci_dev_lock(struct pci_dev * dev)5125 void pci_dev_lock(struct pci_dev *dev)
5126 {
5127 	/* block PM suspend, driver probe, etc. */
5128 	device_lock(&dev->dev);
5129 	pci_cfg_access_lock(dev);
5130 }
5131 EXPORT_SYMBOL_GPL(pci_dev_lock);
5132 
5133 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)5134 int pci_dev_trylock(struct pci_dev *dev)
5135 {
5136 	if (device_trylock(&dev->dev)) {
5137 		if (pci_cfg_access_trylock(dev))
5138 			return 1;
5139 		device_unlock(&dev->dev);
5140 	}
5141 
5142 	return 0;
5143 }
5144 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5145 
pci_dev_unlock(struct pci_dev * dev)5146 void pci_dev_unlock(struct pci_dev *dev)
5147 {
5148 	pci_cfg_access_unlock(dev);
5149 	device_unlock(&dev->dev);
5150 }
5151 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5152 
pci_dev_save_and_disable(struct pci_dev * dev)5153 static void pci_dev_save_and_disable(struct pci_dev *dev)
5154 {
5155 	const struct pci_error_handlers *err_handler =
5156 			dev->driver ? dev->driver->err_handler : NULL;
5157 
5158 	/*
5159 	 * dev->driver->err_handler->reset_prepare() is protected against
5160 	 * races with ->remove() by the device lock, which must be held by
5161 	 * the caller.
5162 	 */
5163 	if (err_handler && err_handler->reset_prepare)
5164 		err_handler->reset_prepare(dev);
5165 
5166 	/*
5167 	 * Wake-up device prior to save.  PM registers default to D0 after
5168 	 * reset and a simple register restore doesn't reliably return
5169 	 * to a non-D0 state anyway.
5170 	 */
5171 	pci_set_power_state(dev, PCI_D0);
5172 
5173 	pci_save_state(dev);
5174 	/*
5175 	 * Disable the device by clearing the Command register, except for
5176 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5177 	 * BARs, but also prevents the device from being Bus Master, preventing
5178 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5179 	 * compliant devices, INTx-disable prevents legacy interrupts.
5180 	 */
5181 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5182 }
5183 
pci_dev_restore(struct pci_dev * dev)5184 static void pci_dev_restore(struct pci_dev *dev)
5185 {
5186 	const struct pci_error_handlers *err_handler =
5187 			dev->driver ? dev->driver->err_handler : NULL;
5188 
5189 	pci_restore_state(dev);
5190 
5191 	/*
5192 	 * dev->driver->err_handler->reset_done() is protected against
5193 	 * races with ->remove() by the device lock, which must be held by
5194 	 * the caller.
5195 	 */
5196 	if (err_handler && err_handler->reset_done)
5197 		err_handler->reset_done(dev);
5198 }
5199 
5200 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5201 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5202 	{ },
5203 	{ pci_dev_specific_reset, .name = "device_specific" },
5204 	{ pci_dev_acpi_reset, .name = "acpi" },
5205 	{ pcie_reset_flr, .name = "flr" },
5206 	{ pci_af_flr, .name = "af_flr" },
5207 	{ pci_pm_reset, .name = "pm" },
5208 	{ pci_reset_bus_function, .name = "bus" },
5209 	{ cxl_reset_bus_function, .name = "cxl_bus" },
5210 };
5211 
reset_method_show(struct device * dev,struct device_attribute * attr,char * buf)5212 static ssize_t reset_method_show(struct device *dev,
5213 				 struct device_attribute *attr, char *buf)
5214 {
5215 	struct pci_dev *pdev = to_pci_dev(dev);
5216 	ssize_t len = 0;
5217 	int i, m;
5218 
5219 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5220 		m = pdev->reset_methods[i];
5221 		if (!m)
5222 			break;
5223 
5224 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5225 				     pci_reset_fn_methods[m].name);
5226 	}
5227 
5228 	if (len)
5229 		len += sysfs_emit_at(buf, len, "\n");
5230 
5231 	return len;
5232 }
5233 
reset_method_lookup(const char * name)5234 static int reset_method_lookup(const char *name)
5235 {
5236 	int m;
5237 
5238 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5239 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5240 			return m;
5241 	}
5242 
5243 	return 0;	/* not found */
5244 }
5245 
reset_method_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5246 static ssize_t reset_method_store(struct device *dev,
5247 				  struct device_attribute *attr,
5248 				  const char *buf, size_t count)
5249 {
5250 	struct pci_dev *pdev = to_pci_dev(dev);
5251 	char *options, *name;
5252 	int m, n;
5253 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5254 
5255 	if (sysfs_streq(buf, "")) {
5256 		pdev->reset_methods[0] = 0;
5257 		pci_warn(pdev, "All device reset methods disabled by user");
5258 		return count;
5259 	}
5260 
5261 	if (sysfs_streq(buf, "default")) {
5262 		pci_init_reset_methods(pdev);
5263 		return count;
5264 	}
5265 
5266 	options = kstrndup(buf, count, GFP_KERNEL);
5267 	if (!options)
5268 		return -ENOMEM;
5269 
5270 	n = 0;
5271 	while ((name = strsep(&options, " ")) != NULL) {
5272 		if (sysfs_streq(name, ""))
5273 			continue;
5274 
5275 		name = strim(name);
5276 
5277 		m = reset_method_lookup(name);
5278 		if (!m) {
5279 			pci_err(pdev, "Invalid reset method '%s'", name);
5280 			goto error;
5281 		}
5282 
5283 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5284 			pci_err(pdev, "Unsupported reset method '%s'", name);
5285 			goto error;
5286 		}
5287 
5288 		if (n == PCI_NUM_RESET_METHODS - 1) {
5289 			pci_err(pdev, "Too many reset methods\n");
5290 			goto error;
5291 		}
5292 
5293 		reset_methods[n++] = m;
5294 	}
5295 
5296 	reset_methods[n] = 0;
5297 
5298 	/* Warn if dev-specific supported but not highest priority */
5299 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5300 	    reset_methods[0] != 1)
5301 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5302 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5303 	kfree(options);
5304 	return count;
5305 
5306 error:
5307 	/* Leave previous methods unchanged */
5308 	kfree(options);
5309 	return -EINVAL;
5310 }
5311 static DEVICE_ATTR_RW(reset_method);
5312 
5313 static struct attribute *pci_dev_reset_method_attrs[] = {
5314 	&dev_attr_reset_method.attr,
5315 	NULL,
5316 };
5317 
pci_dev_reset_method_attr_is_visible(struct kobject * kobj,struct attribute * a,int n)5318 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5319 						    struct attribute *a, int n)
5320 {
5321 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5322 
5323 	if (!pci_reset_supported(pdev))
5324 		return 0;
5325 
5326 	return a->mode;
5327 }
5328 
5329 const struct attribute_group pci_dev_reset_method_attr_group = {
5330 	.attrs = pci_dev_reset_method_attrs,
5331 	.is_visible = pci_dev_reset_method_attr_is_visible,
5332 };
5333 
5334 /**
5335  * __pci_reset_function_locked - reset a PCI device function while holding
5336  * the @dev mutex lock.
5337  * @dev: PCI device to reset
5338  *
5339  * Some devices allow an individual function to be reset without affecting
5340  * other functions in the same device.  The PCI device must be responsive
5341  * to PCI config space in order to use this function.
5342  *
5343  * The device function is presumed to be unused and the caller is holding
5344  * the device mutex lock when this function is called.
5345  *
5346  * Resetting the device will make the contents of PCI configuration space
5347  * random, so any caller of this must be prepared to reinitialise the
5348  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5349  * etc.
5350  *
5351  * Returns 0 if the device function was successfully reset or negative if the
5352  * device doesn't support resetting a single function.
5353  */
__pci_reset_function_locked(struct pci_dev * dev)5354 int __pci_reset_function_locked(struct pci_dev *dev)
5355 {
5356 	int i, m, rc;
5357 
5358 	might_sleep();
5359 
5360 	/*
5361 	 * A reset method returns -ENOTTY if it doesn't support this device and
5362 	 * we should try the next method.
5363 	 *
5364 	 * If it returns 0 (success), we're finished.  If it returns any other
5365 	 * error, we're also finished: this indicates that further reset
5366 	 * mechanisms might be broken on the device.
5367 	 */
5368 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5369 		m = dev->reset_methods[i];
5370 		if (!m)
5371 			return -ENOTTY;
5372 
5373 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5374 		if (!rc)
5375 			return 0;
5376 		if (rc != -ENOTTY)
5377 			return rc;
5378 	}
5379 
5380 	return -ENOTTY;
5381 }
5382 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5383 
5384 /**
5385  * pci_init_reset_methods - check whether device can be safely reset
5386  * and store supported reset mechanisms.
5387  * @dev: PCI device to check for reset mechanisms
5388  *
5389  * Some devices allow an individual function to be reset without affecting
5390  * other functions in the same device.  The PCI device must be in D0-D3hot
5391  * state.
5392  *
5393  * Stores reset mechanisms supported by device in reset_methods byte array
5394  * which is a member of struct pci_dev.
5395  */
pci_init_reset_methods(struct pci_dev * dev)5396 void pci_init_reset_methods(struct pci_dev *dev)
5397 {
5398 	int m, i, rc;
5399 
5400 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5401 
5402 	might_sleep();
5403 
5404 	i = 0;
5405 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5406 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5407 		if (!rc)
5408 			dev->reset_methods[i++] = m;
5409 		else if (rc != -ENOTTY)
5410 			break;
5411 	}
5412 
5413 	dev->reset_methods[i] = 0;
5414 }
5415 
5416 /**
5417  * pci_reset_function - quiesce and reset a PCI device function
5418  * @dev: PCI device to reset
5419  *
5420  * Some devices allow an individual function to be reset without affecting
5421  * other functions in the same device.  The PCI device must be responsive
5422  * to PCI config space in order to use this function.
5423  *
5424  * This function does not just reset the PCI portion of a device, but
5425  * clears all the state associated with the device.  This function differs
5426  * from __pci_reset_function_locked() in that it saves and restores device state
5427  * over the reset and takes the PCI device lock.
5428  *
5429  * Returns 0 if the device function was successfully reset or negative if the
5430  * device doesn't support resetting a single function.
5431  */
pci_reset_function(struct pci_dev * dev)5432 int pci_reset_function(struct pci_dev *dev)
5433 {
5434 	struct pci_dev *bridge;
5435 	int rc;
5436 
5437 	if (!pci_reset_supported(dev))
5438 		return -ENOTTY;
5439 
5440 	/*
5441 	 * If there's no upstream bridge, no locking is needed since there is
5442 	 * no upstream bridge configuration to hold consistent.
5443 	 */
5444 	bridge = pci_upstream_bridge(dev);
5445 	if (bridge)
5446 		pci_dev_lock(bridge);
5447 
5448 	pci_dev_lock(dev);
5449 	pci_dev_save_and_disable(dev);
5450 
5451 	rc = __pci_reset_function_locked(dev);
5452 
5453 	pci_dev_restore(dev);
5454 	pci_dev_unlock(dev);
5455 
5456 	if (bridge)
5457 		pci_dev_unlock(bridge);
5458 
5459 	return rc;
5460 }
5461 EXPORT_SYMBOL_GPL(pci_reset_function);
5462 
5463 /**
5464  * pci_reset_function_locked - quiesce and reset a PCI device function
5465  * @dev: PCI device to reset
5466  *
5467  * Some devices allow an individual function to be reset without affecting
5468  * other functions in the same device.  The PCI device must be responsive
5469  * to PCI config space in order to use this function.
5470  *
5471  * This function does not just reset the PCI portion of a device, but
5472  * clears all the state associated with the device.  This function differs
5473  * from __pci_reset_function_locked() in that it saves and restores device state
5474  * over the reset.  It also differs from pci_reset_function() in that it
5475  * requires the PCI device lock to be held.
5476  *
5477  * Returns 0 if the device function was successfully reset or negative if the
5478  * device doesn't support resetting a single function.
5479  */
pci_reset_function_locked(struct pci_dev * dev)5480 int pci_reset_function_locked(struct pci_dev *dev)
5481 {
5482 	int rc;
5483 
5484 	if (!pci_reset_supported(dev))
5485 		return -ENOTTY;
5486 
5487 	pci_dev_save_and_disable(dev);
5488 
5489 	rc = __pci_reset_function_locked(dev);
5490 
5491 	pci_dev_restore(dev);
5492 
5493 	return rc;
5494 }
5495 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5496 
5497 /**
5498  * pci_try_reset_function - quiesce and reset a PCI device function
5499  * @dev: PCI device to reset
5500  *
5501  * Same as above, except return -EAGAIN if unable to lock device.
5502  */
pci_try_reset_function(struct pci_dev * dev)5503 int pci_try_reset_function(struct pci_dev *dev)
5504 {
5505 	int rc;
5506 
5507 	if (!pci_reset_supported(dev))
5508 		return -ENOTTY;
5509 
5510 	if (!pci_dev_trylock(dev))
5511 		return -EAGAIN;
5512 
5513 	pci_dev_save_and_disable(dev);
5514 	rc = __pci_reset_function_locked(dev);
5515 	pci_dev_restore(dev);
5516 	pci_dev_unlock(dev);
5517 
5518 	return rc;
5519 }
5520 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5521 
5522 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resettable(struct pci_bus * bus)5523 static bool pci_bus_resettable(struct pci_bus *bus)
5524 {
5525 	struct pci_dev *dev;
5526 
5527 
5528 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5529 		return false;
5530 
5531 	list_for_each_entry(dev, &bus->devices, bus_list) {
5532 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5533 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5534 			return false;
5535 	}
5536 
5537 	return true;
5538 }
5539 
5540 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5541 static void pci_bus_lock(struct pci_bus *bus)
5542 {
5543 	struct pci_dev *dev;
5544 
5545 	pci_dev_lock(bus->self);
5546 	list_for_each_entry(dev, &bus->devices, bus_list) {
5547 		if (dev->subordinate)
5548 			pci_bus_lock(dev->subordinate);
5549 		else
5550 			pci_dev_lock(dev);
5551 	}
5552 }
5553 
5554 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5555 static void pci_bus_unlock(struct pci_bus *bus)
5556 {
5557 	struct pci_dev *dev;
5558 
5559 	list_for_each_entry(dev, &bus->devices, bus_list) {
5560 		if (dev->subordinate)
5561 			pci_bus_unlock(dev->subordinate);
5562 		else
5563 			pci_dev_unlock(dev);
5564 	}
5565 	pci_dev_unlock(bus->self);
5566 }
5567 
5568 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5569 static int pci_bus_trylock(struct pci_bus *bus)
5570 {
5571 	struct pci_dev *dev;
5572 
5573 	if (!pci_dev_trylock(bus->self))
5574 		return 0;
5575 
5576 	list_for_each_entry(dev, &bus->devices, bus_list) {
5577 		if (dev->subordinate) {
5578 			if (!pci_bus_trylock(dev->subordinate))
5579 				goto unlock;
5580 		} else if (!pci_dev_trylock(dev))
5581 			goto unlock;
5582 	}
5583 	return 1;
5584 
5585 unlock:
5586 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5587 		if (dev->subordinate)
5588 			pci_bus_unlock(dev->subordinate);
5589 		else
5590 			pci_dev_unlock(dev);
5591 	}
5592 	pci_dev_unlock(bus->self);
5593 	return 0;
5594 }
5595 
5596 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resettable(struct pci_slot * slot)5597 static bool pci_slot_resettable(struct pci_slot *slot)
5598 {
5599 	struct pci_dev *dev;
5600 
5601 	if (slot->bus->self &&
5602 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5603 		return false;
5604 
5605 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5606 		if (!dev->slot || dev->slot != slot)
5607 			continue;
5608 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5609 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5610 			return false;
5611 	}
5612 
5613 	return true;
5614 }
5615 
5616 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5617 static void pci_slot_lock(struct pci_slot *slot)
5618 {
5619 	struct pci_dev *dev;
5620 
5621 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5622 		if (!dev->slot || dev->slot != slot)
5623 			continue;
5624 		if (dev->subordinate)
5625 			pci_bus_lock(dev->subordinate);
5626 		else
5627 			pci_dev_lock(dev);
5628 	}
5629 }
5630 
5631 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5632 static void pci_slot_unlock(struct pci_slot *slot)
5633 {
5634 	struct pci_dev *dev;
5635 
5636 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5637 		if (!dev->slot || dev->slot != slot)
5638 			continue;
5639 		if (dev->subordinate)
5640 			pci_bus_unlock(dev->subordinate);
5641 		pci_dev_unlock(dev);
5642 	}
5643 }
5644 
5645 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5646 static int pci_slot_trylock(struct pci_slot *slot)
5647 {
5648 	struct pci_dev *dev;
5649 
5650 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5651 		if (!dev->slot || dev->slot != slot)
5652 			continue;
5653 		if (dev->subordinate) {
5654 			if (!pci_bus_trylock(dev->subordinate)) {
5655 				pci_dev_unlock(dev);
5656 				goto unlock;
5657 			}
5658 		} else if (!pci_dev_trylock(dev))
5659 			goto unlock;
5660 	}
5661 	return 1;
5662 
5663 unlock:
5664 	list_for_each_entry_continue_reverse(dev,
5665 					     &slot->bus->devices, bus_list) {
5666 		if (!dev->slot || dev->slot != slot)
5667 			continue;
5668 		if (dev->subordinate)
5669 			pci_bus_unlock(dev->subordinate);
5670 		else
5671 			pci_dev_unlock(dev);
5672 	}
5673 	return 0;
5674 }
5675 
5676 /*
5677  * Save and disable devices from the top of the tree down while holding
5678  * the @dev mutex lock for the entire tree.
5679  */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5680 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5681 {
5682 	struct pci_dev *dev;
5683 
5684 	list_for_each_entry(dev, &bus->devices, bus_list) {
5685 		pci_dev_save_and_disable(dev);
5686 		if (dev->subordinate)
5687 			pci_bus_save_and_disable_locked(dev->subordinate);
5688 	}
5689 }
5690 
5691 /*
5692  * Restore devices from top of the tree down while holding @dev mutex lock
5693  * for the entire tree.  Parent bridges need to be restored before we can
5694  * get to subordinate devices.
5695  */
pci_bus_restore_locked(struct pci_bus * bus)5696 static void pci_bus_restore_locked(struct pci_bus *bus)
5697 {
5698 	struct pci_dev *dev;
5699 
5700 	list_for_each_entry(dev, &bus->devices, bus_list) {
5701 		pci_dev_restore(dev);
5702 		if (dev->subordinate) {
5703 			pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5704 			pci_bus_restore_locked(dev->subordinate);
5705 		}
5706 	}
5707 }
5708 
5709 /*
5710  * Save and disable devices from the top of the tree down while holding
5711  * the @dev mutex lock for the entire tree.
5712  */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5713 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5714 {
5715 	struct pci_dev *dev;
5716 
5717 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5718 		if (!dev->slot || dev->slot != slot)
5719 			continue;
5720 		pci_dev_save_and_disable(dev);
5721 		if (dev->subordinate)
5722 			pci_bus_save_and_disable_locked(dev->subordinate);
5723 	}
5724 }
5725 
5726 /*
5727  * Restore devices from top of the tree down while holding @dev mutex lock
5728  * for the entire tree.  Parent bridges need to be restored before we can
5729  * get to subordinate devices.
5730  */
pci_slot_restore_locked(struct pci_slot * slot)5731 static void pci_slot_restore_locked(struct pci_slot *slot)
5732 {
5733 	struct pci_dev *dev;
5734 
5735 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5736 		if (!dev->slot || dev->slot != slot)
5737 			continue;
5738 		pci_dev_restore(dev);
5739 		if (dev->subordinate) {
5740 			pci_bridge_wait_for_secondary_bus(dev, "slot reset");
5741 			pci_bus_restore_locked(dev->subordinate);
5742 		}
5743 	}
5744 }
5745 
pci_slot_reset(struct pci_slot * slot,bool probe)5746 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5747 {
5748 	int rc;
5749 
5750 	if (!slot || !pci_slot_resettable(slot))
5751 		return -ENOTTY;
5752 
5753 	if (!probe)
5754 		pci_slot_lock(slot);
5755 
5756 	might_sleep();
5757 
5758 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5759 
5760 	if (!probe)
5761 		pci_slot_unlock(slot);
5762 
5763 	return rc;
5764 }
5765 
5766 /**
5767  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5768  * @slot: PCI slot to probe
5769  *
5770  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5771  */
pci_probe_reset_slot(struct pci_slot * slot)5772 int pci_probe_reset_slot(struct pci_slot *slot)
5773 {
5774 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5775 }
5776 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5777 
5778 /**
5779  * __pci_reset_slot - Try to reset a PCI slot
5780  * @slot: PCI slot to reset
5781  *
5782  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5783  * independent of other slots.  For instance, some slots may support slot power
5784  * control.  In the case of a 1:1 bus to slot architecture, this function may
5785  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5786  * Generally a slot reset should be attempted before a bus reset.  All of the
5787  * function of the slot and any subordinate buses behind the slot are reset
5788  * through this function.  PCI config space of all devices in the slot and
5789  * behind the slot is saved before and restored after reset.
5790  *
5791  * Same as above except return -EAGAIN if the slot cannot be locked
5792  */
__pci_reset_slot(struct pci_slot * slot)5793 static int __pci_reset_slot(struct pci_slot *slot)
5794 {
5795 	int rc;
5796 
5797 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5798 	if (rc)
5799 		return rc;
5800 
5801 	if (pci_slot_trylock(slot)) {
5802 		pci_slot_save_and_disable_locked(slot);
5803 		might_sleep();
5804 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5805 		pci_slot_restore_locked(slot);
5806 		pci_slot_unlock(slot);
5807 	} else
5808 		rc = -EAGAIN;
5809 
5810 	return rc;
5811 }
5812 
pci_bus_reset(struct pci_bus * bus,bool probe)5813 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5814 {
5815 	int ret;
5816 
5817 	if (!bus->self || !pci_bus_resettable(bus))
5818 		return -ENOTTY;
5819 
5820 	if (probe)
5821 		return 0;
5822 
5823 	pci_bus_lock(bus);
5824 
5825 	might_sleep();
5826 
5827 	ret = pci_bridge_secondary_bus_reset(bus->self);
5828 
5829 	pci_bus_unlock(bus);
5830 
5831 	return ret;
5832 }
5833 
5834 /**
5835  * pci_bus_error_reset - reset the bridge's subordinate bus
5836  * @bridge: The parent device that connects to the bus to reset
5837  *
5838  * This function will first try to reset the slots on this bus if the method is
5839  * available. If slot reset fails or is not available, this will fall back to a
5840  * secondary bus reset.
5841  */
pci_bus_error_reset(struct pci_dev * bridge)5842 int pci_bus_error_reset(struct pci_dev *bridge)
5843 {
5844 	struct pci_bus *bus = bridge->subordinate;
5845 	struct pci_slot *slot;
5846 
5847 	if (!bus)
5848 		return -ENOTTY;
5849 
5850 	mutex_lock(&pci_slot_mutex);
5851 	if (list_empty(&bus->slots))
5852 		goto bus_reset;
5853 
5854 	list_for_each_entry(slot, &bus->slots, list)
5855 		if (pci_probe_reset_slot(slot))
5856 			goto bus_reset;
5857 
5858 	list_for_each_entry(slot, &bus->slots, list)
5859 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5860 			goto bus_reset;
5861 
5862 	mutex_unlock(&pci_slot_mutex);
5863 	return 0;
5864 bus_reset:
5865 	mutex_unlock(&pci_slot_mutex);
5866 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5867 }
5868 
5869 /**
5870  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5871  * @bus: PCI bus to probe
5872  *
5873  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5874  */
pci_probe_reset_bus(struct pci_bus * bus)5875 int pci_probe_reset_bus(struct pci_bus *bus)
5876 {
5877 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5878 }
5879 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5880 
5881 /**
5882  * __pci_reset_bus - Try to reset a PCI bus
5883  * @bus: top level PCI bus to reset
5884  *
5885  * Same as above except return -EAGAIN if the bus cannot be locked
5886  */
__pci_reset_bus(struct pci_bus * bus)5887 static int __pci_reset_bus(struct pci_bus *bus)
5888 {
5889 	int rc;
5890 
5891 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5892 	if (rc)
5893 		return rc;
5894 
5895 	if (pci_bus_trylock(bus)) {
5896 		pci_bus_save_and_disable_locked(bus);
5897 		might_sleep();
5898 		rc = pci_bridge_secondary_bus_reset(bus->self);
5899 		pci_bus_restore_locked(bus);
5900 		pci_bus_unlock(bus);
5901 	} else
5902 		rc = -EAGAIN;
5903 
5904 	return rc;
5905 }
5906 
5907 /**
5908  * pci_reset_bus - Try to reset a PCI bus
5909  * @pdev: top level PCI device to reset via slot/bus
5910  *
5911  * Same as above except return -EAGAIN if the bus cannot be locked
5912  */
pci_reset_bus(struct pci_dev * pdev)5913 int pci_reset_bus(struct pci_dev *pdev)
5914 {
5915 	return (!pci_probe_reset_slot(pdev->slot)) ?
5916 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5917 }
5918 EXPORT_SYMBOL_GPL(pci_reset_bus);
5919 
5920 /**
5921  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5922  * @dev: PCI device to query
5923  *
5924  * Returns mmrbc: maximum designed memory read count in bytes or
5925  * appropriate error value.
5926  */
pcix_get_max_mmrbc(struct pci_dev * dev)5927 int pcix_get_max_mmrbc(struct pci_dev *dev)
5928 {
5929 	int cap;
5930 	u32 stat;
5931 
5932 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5933 	if (!cap)
5934 		return -EINVAL;
5935 
5936 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5937 		return -EINVAL;
5938 
5939 	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5940 }
5941 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5942 
5943 /**
5944  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5945  * @dev: PCI device to query
5946  *
5947  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5948  * value.
5949  */
pcix_get_mmrbc(struct pci_dev * dev)5950 int pcix_get_mmrbc(struct pci_dev *dev)
5951 {
5952 	int cap;
5953 	u16 cmd;
5954 
5955 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5956 	if (!cap)
5957 		return -EINVAL;
5958 
5959 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5960 		return -EINVAL;
5961 
5962 	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5963 }
5964 EXPORT_SYMBOL(pcix_get_mmrbc);
5965 
5966 /**
5967  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5968  * @dev: PCI device to query
5969  * @mmrbc: maximum memory read count in bytes
5970  *    valid values are 512, 1024, 2048, 4096
5971  *
5972  * If possible sets maximum memory read byte count, some bridges have errata
5973  * that prevent this.
5974  */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5975 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5976 {
5977 	int cap;
5978 	u32 stat, v, o;
5979 	u16 cmd;
5980 
5981 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5982 		return -EINVAL;
5983 
5984 	v = ffs(mmrbc) - 10;
5985 
5986 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5987 	if (!cap)
5988 		return -EINVAL;
5989 
5990 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5991 		return -EINVAL;
5992 
5993 	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5994 		return -E2BIG;
5995 
5996 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5997 		return -EINVAL;
5998 
5999 	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6000 	if (o != v) {
6001 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6002 			return -EIO;
6003 
6004 		cmd &= ~PCI_X_CMD_MAX_READ;
6005 		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6006 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6007 			return -EIO;
6008 	}
6009 	return 0;
6010 }
6011 EXPORT_SYMBOL(pcix_set_mmrbc);
6012 
6013 /**
6014  * pcie_get_readrq - get PCI Express read request size
6015  * @dev: PCI device to query
6016  *
6017  * Returns maximum memory read request in bytes or appropriate error value.
6018  */
pcie_get_readrq(struct pci_dev * dev)6019 int pcie_get_readrq(struct pci_dev *dev)
6020 {
6021 	u16 ctl;
6022 
6023 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6024 
6025 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6026 }
6027 EXPORT_SYMBOL(pcie_get_readrq);
6028 
6029 /**
6030  * pcie_set_readrq - set PCI Express maximum memory read request
6031  * @dev: PCI device to query
6032  * @rq: maximum memory read count in bytes
6033  *    valid values are 128, 256, 512, 1024, 2048, 4096
6034  *
6035  * If possible sets maximum memory read request in bytes
6036  */
pcie_set_readrq(struct pci_dev * dev,int rq)6037 int pcie_set_readrq(struct pci_dev *dev, int rq)
6038 {
6039 	u16 v;
6040 	int ret;
6041 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6042 
6043 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6044 		return -EINVAL;
6045 
6046 	/*
6047 	 * If using the "performance" PCIe config, we clamp the read rq
6048 	 * size to the max packet size to keep the host bridge from
6049 	 * generating requests larger than we can cope with.
6050 	 */
6051 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6052 		int mps = pcie_get_mps(dev);
6053 
6054 		if (mps < rq)
6055 			rq = mps;
6056 	}
6057 
6058 	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6059 
6060 	if (bridge->no_inc_mrrs) {
6061 		int max_mrrs = pcie_get_readrq(dev);
6062 
6063 		if (rq > max_mrrs) {
6064 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6065 			return -EINVAL;
6066 		}
6067 	}
6068 
6069 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6070 						  PCI_EXP_DEVCTL_READRQ, v);
6071 
6072 	return pcibios_err_to_errno(ret);
6073 }
6074 EXPORT_SYMBOL(pcie_set_readrq);
6075 
6076 /**
6077  * pcie_get_mps - get PCI Express maximum payload size
6078  * @dev: PCI device to query
6079  *
6080  * Returns maximum payload size in bytes
6081  */
pcie_get_mps(struct pci_dev * dev)6082 int pcie_get_mps(struct pci_dev *dev)
6083 {
6084 	u16 ctl;
6085 
6086 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6087 
6088 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6089 }
6090 EXPORT_SYMBOL(pcie_get_mps);
6091 
6092 /**
6093  * pcie_set_mps - set PCI Express maximum payload size
6094  * @dev: PCI device to query
6095  * @mps: maximum payload size in bytes
6096  *    valid values are 128, 256, 512, 1024, 2048, 4096
6097  *
6098  * If possible sets maximum payload size
6099  */
pcie_set_mps(struct pci_dev * dev,int mps)6100 int pcie_set_mps(struct pci_dev *dev, int mps)
6101 {
6102 	u16 v;
6103 	int ret;
6104 
6105 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6106 		return -EINVAL;
6107 
6108 	v = ffs(mps) - 8;
6109 	if (v > dev->pcie_mpss)
6110 		return -EINVAL;
6111 	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6112 
6113 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6114 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6115 
6116 	return pcibios_err_to_errno(ret);
6117 }
6118 EXPORT_SYMBOL(pcie_set_mps);
6119 
to_pcie_link_speed(u16 lnksta)6120 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6121 {
6122 	return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6123 }
6124 
pcie_link_speed_mbps(struct pci_dev * pdev)6125 int pcie_link_speed_mbps(struct pci_dev *pdev)
6126 {
6127 	u16 lnksta;
6128 	int err;
6129 
6130 	err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6131 	if (err)
6132 		return err;
6133 
6134 	return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta));
6135 }
6136 EXPORT_SYMBOL(pcie_link_speed_mbps);
6137 
6138 /**
6139  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6140  *			      device and its bandwidth limitation
6141  * @dev: PCI device to query
6142  * @limiting_dev: storage for device causing the bandwidth limitation
6143  * @speed: storage for speed of limiting device
6144  * @width: storage for width of limiting device
6145  *
6146  * Walk up the PCI device chain and find the point where the minimum
6147  * bandwidth is available.  Return the bandwidth available there and (if
6148  * limiting_dev, speed, and width pointers are supplied) information about
6149  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6150  * raw bandwidth.
6151  */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6152 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6153 			     enum pci_bus_speed *speed,
6154 			     enum pcie_link_width *width)
6155 {
6156 	u16 lnksta;
6157 	enum pci_bus_speed next_speed;
6158 	enum pcie_link_width next_width;
6159 	u32 bw, next_bw;
6160 
6161 	if (speed)
6162 		*speed = PCI_SPEED_UNKNOWN;
6163 	if (width)
6164 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6165 
6166 	bw = 0;
6167 
6168 	while (dev) {
6169 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6170 
6171 		next_speed = to_pcie_link_speed(lnksta);
6172 		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6173 
6174 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6175 
6176 		/* Check if current device limits the total bandwidth */
6177 		if (!bw || next_bw <= bw) {
6178 			bw = next_bw;
6179 
6180 			if (limiting_dev)
6181 				*limiting_dev = dev;
6182 			if (speed)
6183 				*speed = next_speed;
6184 			if (width)
6185 				*width = next_width;
6186 		}
6187 
6188 		dev = pci_upstream_bridge(dev);
6189 	}
6190 
6191 	return bw;
6192 }
6193 EXPORT_SYMBOL(pcie_bandwidth_available);
6194 
6195 /**
6196  * pcie_get_speed_cap - query for the PCI device's link speed capability
6197  * @dev: PCI device to query
6198  *
6199  * Query the PCI device speed capability.  Return the maximum link speed
6200  * supported by the device.
6201  */
pcie_get_speed_cap(struct pci_dev * dev)6202 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6203 {
6204 	u32 lnkcap2, lnkcap;
6205 
6206 	/*
6207 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6208 	 * implementation note there recommends using the Supported Link
6209 	 * Speeds Vector in Link Capabilities 2 when supported.
6210 	 *
6211 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6212 	 * should use the Supported Link Speeds field in Link Capabilities,
6213 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6214 	 */
6215 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6216 
6217 	/* PCIe r3.0-compliant */
6218 	if (lnkcap2)
6219 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6220 
6221 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6222 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6223 		return PCIE_SPEED_5_0GT;
6224 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6225 		return PCIE_SPEED_2_5GT;
6226 
6227 	return PCI_SPEED_UNKNOWN;
6228 }
6229 EXPORT_SYMBOL(pcie_get_speed_cap);
6230 
6231 /**
6232  * pcie_get_width_cap - query for the PCI device's link width capability
6233  * @dev: PCI device to query
6234  *
6235  * Query the PCI device width capability.  Return the maximum link width
6236  * supported by the device.
6237  */
pcie_get_width_cap(struct pci_dev * dev)6238 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6239 {
6240 	u32 lnkcap;
6241 
6242 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6243 	if (lnkcap)
6244 		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6245 
6246 	return PCIE_LNK_WIDTH_UNKNOWN;
6247 }
6248 EXPORT_SYMBOL(pcie_get_width_cap);
6249 
6250 /**
6251  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6252  * @dev: PCI device
6253  * @speed: storage for link speed
6254  * @width: storage for link width
6255  *
6256  * Calculate a PCI device's link bandwidth by querying for its link speed
6257  * and width, multiplying them, and applying encoding overhead.  The result
6258  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6259  */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6260 static u32 pcie_bandwidth_capable(struct pci_dev *dev,
6261 				  enum pci_bus_speed *speed,
6262 				  enum pcie_link_width *width)
6263 {
6264 	*speed = pcie_get_speed_cap(dev);
6265 	*width = pcie_get_width_cap(dev);
6266 
6267 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6268 		return 0;
6269 
6270 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6271 }
6272 
6273 /**
6274  * __pcie_print_link_status - Report the PCI device's link speed and width
6275  * @dev: PCI device to query
6276  * @verbose: Print info even when enough bandwidth is available
6277  *
6278  * If the available bandwidth at the device is less than the device is
6279  * capable of, report the device's maximum possible bandwidth and the
6280  * upstream link that limits its performance.  If @verbose, always print
6281  * the available bandwidth, even if the device isn't constrained.
6282  */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)6283 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6284 {
6285 	enum pcie_link_width width, width_cap;
6286 	enum pci_bus_speed speed, speed_cap;
6287 	struct pci_dev *limiting_dev = NULL;
6288 	u32 bw_avail, bw_cap;
6289 
6290 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6291 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6292 
6293 	if (bw_avail >= bw_cap && verbose)
6294 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6295 			 bw_cap / 1000, bw_cap % 1000,
6296 			 pci_speed_string(speed_cap), width_cap);
6297 	else if (bw_avail < bw_cap)
6298 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6299 			 bw_avail / 1000, bw_avail % 1000,
6300 			 pci_speed_string(speed), width,
6301 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6302 			 bw_cap / 1000, bw_cap % 1000,
6303 			 pci_speed_string(speed_cap), width_cap);
6304 }
6305 
6306 /**
6307  * pcie_print_link_status - Report the PCI device's link speed and width
6308  * @dev: PCI device to query
6309  *
6310  * Report the available bandwidth at the device.
6311  */
pcie_print_link_status(struct pci_dev * dev)6312 void pcie_print_link_status(struct pci_dev *dev)
6313 {
6314 	__pcie_print_link_status(dev, true);
6315 }
6316 EXPORT_SYMBOL(pcie_print_link_status);
6317 
6318 /**
6319  * pci_select_bars - Make BAR mask from the type of resource
6320  * @dev: the PCI device for which BAR mask is made
6321  * @flags: resource type mask to be selected
6322  *
6323  * This helper routine makes bar mask from the type of resource.
6324  */
pci_select_bars(struct pci_dev * dev,unsigned long flags)6325 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6326 {
6327 	int i, bars = 0;
6328 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6329 		if (pci_resource_flags(dev, i) & flags)
6330 			bars |= (1 << i);
6331 	return bars;
6332 }
6333 EXPORT_SYMBOL(pci_select_bars);
6334 
6335 /* Some architectures require additional programming to enable VGA */
6336 static arch_set_vga_state_t arch_set_vga_state;
6337 
pci_register_set_vga_state(arch_set_vga_state_t func)6338 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6339 {
6340 	arch_set_vga_state = func;	/* NULL disables */
6341 }
6342 
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6343 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6344 				  unsigned int command_bits, u32 flags)
6345 {
6346 	if (arch_set_vga_state)
6347 		return arch_set_vga_state(dev, decode, command_bits,
6348 						flags);
6349 	return 0;
6350 }
6351 
6352 /**
6353  * pci_set_vga_state - set VGA decode state on device and parents if requested
6354  * @dev: the PCI device
6355  * @decode: true = enable decoding, false = disable decoding
6356  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6357  * @flags: traverse ancestors and change bridges
6358  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6359  */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6360 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6361 		      unsigned int command_bits, u32 flags)
6362 {
6363 	struct pci_bus *bus;
6364 	struct pci_dev *bridge;
6365 	u16 cmd;
6366 	int rc;
6367 
6368 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6369 
6370 	/* ARCH specific VGA enables */
6371 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6372 	if (rc)
6373 		return rc;
6374 
6375 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6376 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6377 		if (decode)
6378 			cmd |= command_bits;
6379 		else
6380 			cmd &= ~command_bits;
6381 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6382 	}
6383 
6384 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6385 		return 0;
6386 
6387 	bus = dev->bus;
6388 	while (bus) {
6389 		bridge = bus->self;
6390 		if (bridge) {
6391 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6392 					     &cmd);
6393 			if (decode)
6394 				cmd |= PCI_BRIDGE_CTL_VGA;
6395 			else
6396 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6397 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6398 					      cmd);
6399 		}
6400 		bus = bus->parent;
6401 	}
6402 	return 0;
6403 }
6404 
6405 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6406 bool pci_pr3_present(struct pci_dev *pdev)
6407 {
6408 	struct acpi_device *adev;
6409 
6410 	if (acpi_disabled)
6411 		return false;
6412 
6413 	adev = ACPI_COMPANION(&pdev->dev);
6414 	if (!adev)
6415 		return false;
6416 
6417 	return adev->power.flags.power_resources &&
6418 		acpi_has_method(adev->handle, "_PR3");
6419 }
6420 EXPORT_SYMBOL_GPL(pci_pr3_present);
6421 #endif
6422 
6423 /**
6424  * pci_add_dma_alias - Add a DMA devfn alias for a device
6425  * @dev: the PCI device for which alias is added
6426  * @devfn_from: alias slot and function
6427  * @nr_devfns: number of subsequent devfns to alias
6428  *
6429  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6430  * which is used to program permissible bus-devfn source addresses for DMA
6431  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6432  * and are useful for devices generating DMA requests beyond or different
6433  * from their logical bus-devfn.  Examples include device quirks where the
6434  * device simply uses the wrong devfn, as well as non-transparent bridges
6435  * where the alias may be a proxy for devices in another domain.
6436  *
6437  * IOMMU group creation is performed during device discovery or addition,
6438  * prior to any potential DMA mapping and therefore prior to driver probing
6439  * (especially for userspace assigned devices where IOMMU group definition
6440  * cannot be left as a userspace activity).  DMA aliases should therefore
6441  * be configured via quirks, such as the PCI fixup header quirk.
6442  */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned int nr_devfns)6443 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6444 		       unsigned int nr_devfns)
6445 {
6446 	int devfn_to;
6447 
6448 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6449 	devfn_to = devfn_from + nr_devfns - 1;
6450 
6451 	if (!dev->dma_alias_mask)
6452 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6453 	if (!dev->dma_alias_mask) {
6454 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6455 		return;
6456 	}
6457 
6458 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6459 
6460 	if (nr_devfns == 1)
6461 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6462 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6463 	else if (nr_devfns > 1)
6464 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6465 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6466 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6467 }
6468 
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6469 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6470 {
6471 	return (dev1->dma_alias_mask &&
6472 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6473 	       (dev2->dma_alias_mask &&
6474 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6475 	       pci_real_dma_dev(dev1) == dev2 ||
6476 	       pci_real_dma_dev(dev2) == dev1;
6477 }
6478 
pci_device_is_present(struct pci_dev * pdev)6479 bool pci_device_is_present(struct pci_dev *pdev)
6480 {
6481 	u32 v;
6482 
6483 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6484 	pdev = pci_physfn(pdev);
6485 	if (pci_dev_is_disconnected(pdev))
6486 		return false;
6487 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6488 }
6489 EXPORT_SYMBOL_GPL(pci_device_is_present);
6490 
pci_ignore_hotplug(struct pci_dev * dev)6491 void pci_ignore_hotplug(struct pci_dev *dev)
6492 {
6493 	struct pci_dev *bridge = dev->bus->self;
6494 
6495 	dev->ignore_hotplug = 1;
6496 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6497 	if (bridge)
6498 		bridge->ignore_hotplug = 1;
6499 }
6500 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6501 
6502 /**
6503  * pci_real_dma_dev - Get PCI DMA device for PCI device
6504  * @dev: the PCI device that may have a PCI DMA alias
6505  *
6506  * Permits the platform to provide architecture-specific functionality to
6507  * devices needing to alias DMA to another PCI device on another PCI bus. If
6508  * the PCI device is on the same bus, it is recommended to use
6509  * pci_add_dma_alias(). This is the default implementation. Architecture
6510  * implementations can override this.
6511  */
pci_real_dma_dev(struct pci_dev * dev)6512 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6513 {
6514 	return dev;
6515 }
6516 
pcibios_default_alignment(void)6517 resource_size_t __weak pcibios_default_alignment(void)
6518 {
6519 	return 0;
6520 }
6521 
6522 /*
6523  * Arches that don't want to expose struct resource to userland as-is in
6524  * sysfs and /proc can implement their own pci_resource_to_user().
6525  */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6526 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6527 				 const struct resource *rsrc,
6528 				 resource_size_t *start, resource_size_t *end)
6529 {
6530 	*start = rsrc->start;
6531 	*end = rsrc->end;
6532 }
6533 
6534 static char *resource_alignment_param;
6535 static DEFINE_SPINLOCK(resource_alignment_lock);
6536 
6537 /**
6538  * pci_specified_resource_alignment - get resource alignment specified by user.
6539  * @dev: the PCI device to get
6540  * @resize: whether or not to change resources' size when reassigning alignment
6541  *
6542  * RETURNS: Resource alignment if it is specified.
6543  *          Zero if it is not specified.
6544  */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6545 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6546 							bool *resize)
6547 {
6548 	int align_order, count;
6549 	resource_size_t align = pcibios_default_alignment();
6550 	const char *p;
6551 	int ret;
6552 
6553 	spin_lock(&resource_alignment_lock);
6554 	p = resource_alignment_param;
6555 	if (!p || !*p)
6556 		goto out;
6557 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6558 		align = 0;
6559 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6560 		goto out;
6561 	}
6562 
6563 	while (*p) {
6564 		count = 0;
6565 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6566 		    p[count] == '@') {
6567 			p += count + 1;
6568 			if (align_order > 63) {
6569 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6570 				       align_order);
6571 				align_order = PAGE_SHIFT;
6572 			}
6573 		} else {
6574 			align_order = PAGE_SHIFT;
6575 		}
6576 
6577 		ret = pci_dev_str_match(dev, p, &p);
6578 		if (ret == 1) {
6579 			*resize = true;
6580 			align = 1ULL << align_order;
6581 			break;
6582 		} else if (ret < 0) {
6583 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6584 			       p);
6585 			break;
6586 		}
6587 
6588 		if (*p != ';' && *p != ',') {
6589 			/* End of param or invalid format */
6590 			break;
6591 		}
6592 		p++;
6593 	}
6594 out:
6595 	spin_unlock(&resource_alignment_lock);
6596 	return align;
6597 }
6598 
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6599 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6600 					   resource_size_t align, bool resize)
6601 {
6602 	struct resource *r = &dev->resource[bar];
6603 	const char *r_name = pci_resource_name(dev, bar);
6604 	resource_size_t size;
6605 
6606 	if (!(r->flags & IORESOURCE_MEM))
6607 		return;
6608 
6609 	if (r->flags & IORESOURCE_PCI_FIXED) {
6610 		pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6611 			 r_name, r, (unsigned long long)align);
6612 		return;
6613 	}
6614 
6615 	size = resource_size(r);
6616 	if (size >= align)
6617 		return;
6618 
6619 	/*
6620 	 * Increase the alignment of the resource.  There are two ways we
6621 	 * can do this:
6622 	 *
6623 	 * 1) Increase the size of the resource.  BARs are aligned on their
6624 	 *    size, so when we reallocate space for this resource, we'll
6625 	 *    allocate it with the larger alignment.  This also prevents
6626 	 *    assignment of any other BARs inside the alignment region, so
6627 	 *    if we're requesting page alignment, this means no other BARs
6628 	 *    will share the page.
6629 	 *
6630 	 *    The disadvantage is that this makes the resource larger than
6631 	 *    the hardware BAR, which may break drivers that compute things
6632 	 *    based on the resource size, e.g., to find registers at a
6633 	 *    fixed offset before the end of the BAR.
6634 	 *
6635 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6636 	 *    set r->start to the desired alignment.  By itself this
6637 	 *    doesn't prevent other BARs being put inside the alignment
6638 	 *    region, but if we realign *every* resource of every device in
6639 	 *    the system, none of them will share an alignment region.
6640 	 *
6641 	 * When the user has requested alignment for only some devices via
6642 	 * the "pci=resource_alignment" argument, "resize" is true and we
6643 	 * use the first method.  Otherwise we assume we're aligning all
6644 	 * devices and we use the second.
6645 	 */
6646 
6647 	pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6648 		 r_name, r, (unsigned long long)align);
6649 
6650 	if (resize) {
6651 		r->start = 0;
6652 		r->end = align - 1;
6653 	} else {
6654 		r->flags &= ~IORESOURCE_SIZEALIGN;
6655 		r->flags |= IORESOURCE_STARTALIGN;
6656 		r->start = align;
6657 		r->end = r->start + size - 1;
6658 	}
6659 	r->flags |= IORESOURCE_UNSET;
6660 }
6661 
6662 /*
6663  * This function disables memory decoding and releases memory resources
6664  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6665  * It also rounds up size to specified alignment.
6666  * Later on, the kernel will assign page-aligned memory resource back
6667  * to the device.
6668  */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6669 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6670 {
6671 	int i;
6672 	struct resource *r;
6673 	resource_size_t align;
6674 	u16 command;
6675 	bool resize = false;
6676 
6677 	/*
6678 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6679 	 * 3.4.1.11.  Their resources are allocated from the space
6680 	 * described by the VF BARx register in the PF's SR-IOV capability.
6681 	 * We can't influence their alignment here.
6682 	 */
6683 	if (dev->is_virtfn)
6684 		return;
6685 
6686 	/* check if specified PCI is target device to reassign */
6687 	align = pci_specified_resource_alignment(dev, &resize);
6688 	if (!align)
6689 		return;
6690 
6691 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6692 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6693 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6694 		return;
6695 	}
6696 
6697 	pci_read_config_word(dev, PCI_COMMAND, &command);
6698 	command &= ~PCI_COMMAND_MEMORY;
6699 	pci_write_config_word(dev, PCI_COMMAND, command);
6700 
6701 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6702 		pci_request_resource_alignment(dev, i, align, resize);
6703 
6704 	/*
6705 	 * Need to disable bridge's resource window,
6706 	 * to enable the kernel to reassign new resource
6707 	 * window later on.
6708 	 */
6709 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6710 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6711 			r = &dev->resource[i];
6712 			if (!(r->flags & IORESOURCE_MEM))
6713 				continue;
6714 			r->flags |= IORESOURCE_UNSET;
6715 			r->end = resource_size(r) - 1;
6716 			r->start = 0;
6717 		}
6718 		pci_disable_bridge_window(dev);
6719 	}
6720 }
6721 
resource_alignment_show(const struct bus_type * bus,char * buf)6722 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6723 {
6724 	size_t count = 0;
6725 
6726 	spin_lock(&resource_alignment_lock);
6727 	if (resource_alignment_param)
6728 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6729 	spin_unlock(&resource_alignment_lock);
6730 
6731 	return count;
6732 }
6733 
resource_alignment_store(const struct bus_type * bus,const char * buf,size_t count)6734 static ssize_t resource_alignment_store(const struct bus_type *bus,
6735 					const char *buf, size_t count)
6736 {
6737 	char *param, *old, *end;
6738 
6739 	if (count >= (PAGE_SIZE - 1))
6740 		return -EINVAL;
6741 
6742 	param = kstrndup(buf, count, GFP_KERNEL);
6743 	if (!param)
6744 		return -ENOMEM;
6745 
6746 	end = strchr(param, '\n');
6747 	if (end)
6748 		*end = '\0';
6749 
6750 	spin_lock(&resource_alignment_lock);
6751 	old = resource_alignment_param;
6752 	if (strlen(param)) {
6753 		resource_alignment_param = param;
6754 	} else {
6755 		kfree(param);
6756 		resource_alignment_param = NULL;
6757 	}
6758 	spin_unlock(&resource_alignment_lock);
6759 
6760 	kfree(old);
6761 
6762 	return count;
6763 }
6764 
6765 static BUS_ATTR_RW(resource_alignment);
6766 
pci_resource_alignment_sysfs_init(void)6767 static int __init pci_resource_alignment_sysfs_init(void)
6768 {
6769 	return bus_create_file(&pci_bus_type,
6770 					&bus_attr_resource_alignment);
6771 }
6772 late_initcall(pci_resource_alignment_sysfs_init);
6773 
pci_no_domains(void)6774 static void pci_no_domains(void)
6775 {
6776 #ifdef CONFIG_PCI_DOMAINS
6777 	pci_domains_supported = 0;
6778 #endif
6779 }
6780 
6781 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6782 static DEFINE_IDA(pci_domain_nr_static_ida);
6783 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6784 
of_pci_reserve_static_domain_nr(void)6785 static void of_pci_reserve_static_domain_nr(void)
6786 {
6787 	struct device_node *np;
6788 	int domain_nr;
6789 
6790 	for_each_node_by_type(np, "pci") {
6791 		domain_nr = of_get_pci_domain_nr(np);
6792 		if (domain_nr < 0)
6793 			continue;
6794 		/*
6795 		 * Permanently allocate domain_nr in dynamic_ida
6796 		 * to prevent it from dynamic allocation.
6797 		 */
6798 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6799 				domain_nr, domain_nr, GFP_KERNEL);
6800 	}
6801 }
6802 
of_pci_bus_find_domain_nr(struct device * parent)6803 static int of_pci_bus_find_domain_nr(struct device *parent)
6804 {
6805 	static bool static_domains_reserved = false;
6806 	int domain_nr;
6807 
6808 	/* On the first call scan device tree for static allocations. */
6809 	if (!static_domains_reserved) {
6810 		of_pci_reserve_static_domain_nr();
6811 		static_domains_reserved = true;
6812 	}
6813 
6814 	if (parent) {
6815 		/*
6816 		 * If domain is in DT, allocate it in static IDA.  This
6817 		 * prevents duplicate static allocations in case of errors
6818 		 * in DT.
6819 		 */
6820 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6821 		if (domain_nr >= 0)
6822 			return ida_alloc_range(&pci_domain_nr_static_ida,
6823 					       domain_nr, domain_nr,
6824 					       GFP_KERNEL);
6825 	}
6826 
6827 	/*
6828 	 * If domain was not specified in DT, choose a free ID from dynamic
6829 	 * allocations. All domain numbers from DT are permanently in
6830 	 * dynamic allocations to prevent assigning them to other DT nodes
6831 	 * without static domain.
6832 	 */
6833 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6834 }
6835 
of_pci_bus_release_domain_nr(struct device * parent,int domain_nr)6836 static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6837 {
6838 	if (domain_nr < 0)
6839 		return;
6840 
6841 	/* Release domain from IDA where it was allocated. */
6842 	if (of_get_pci_domain_nr(parent->of_node) == domain_nr)
6843 		ida_free(&pci_domain_nr_static_ida, domain_nr);
6844 	else
6845 		ida_free(&pci_domain_nr_dynamic_ida, domain_nr);
6846 }
6847 
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6848 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6849 {
6850 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6851 			       acpi_pci_bus_find_domain_nr(bus);
6852 }
6853 
pci_bus_release_domain_nr(struct device * parent,int domain_nr)6854 void pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6855 {
6856 	if (!acpi_disabled)
6857 		return;
6858 	of_pci_bus_release_domain_nr(parent, domain_nr);
6859 }
6860 #endif
6861 
6862 /**
6863  * pci_ext_cfg_avail - can we access extended PCI config space?
6864  *
6865  * Returns 1 if we can access PCI extended config space (offsets
6866  * greater than 0xff). This is the default implementation. Architecture
6867  * implementations can override this.
6868  */
pci_ext_cfg_avail(void)6869 int __weak pci_ext_cfg_avail(void)
6870 {
6871 	return 1;
6872 }
6873 
pci_fixup_cardbus(struct pci_bus * bus)6874 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6875 {
6876 }
6877 EXPORT_SYMBOL(pci_fixup_cardbus);
6878 
pci_setup(char * str)6879 static int __init pci_setup(char *str)
6880 {
6881 	while (str) {
6882 		char *k = strchr(str, ',');
6883 		if (k)
6884 			*k++ = 0;
6885 		if (*str && (str = pcibios_setup(str)) && *str) {
6886 			if (!strcmp(str, "nomsi")) {
6887 				pci_no_msi();
6888 			} else if (!strncmp(str, "noats", 5)) {
6889 				pr_info("PCIe: ATS is disabled\n");
6890 				pcie_ats_disabled = true;
6891 			} else if (!strcmp(str, "noaer")) {
6892 				pci_no_aer();
6893 			} else if (!strcmp(str, "earlydump")) {
6894 				pci_early_dump = true;
6895 			} else if (!strncmp(str, "realloc=", 8)) {
6896 				pci_realloc_get_opt(str + 8);
6897 			} else if (!strncmp(str, "realloc", 7)) {
6898 				pci_realloc_get_opt("on");
6899 			} else if (!strcmp(str, "nodomains")) {
6900 				pci_no_domains();
6901 			} else if (!strncmp(str, "noari", 5)) {
6902 				pcie_ari_disabled = true;
6903 			} else if (!strncmp(str, "cbiosize=", 9)) {
6904 				pci_cardbus_io_size = memparse(str + 9, &str);
6905 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6906 				pci_cardbus_mem_size = memparse(str + 10, &str);
6907 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6908 				resource_alignment_param = str + 19;
6909 			} else if (!strncmp(str, "ecrc=", 5)) {
6910 				pcie_ecrc_get_policy(str + 5);
6911 			} else if (!strncmp(str, "hpiosize=", 9)) {
6912 				pci_hotplug_io_size = memparse(str + 9, &str);
6913 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6914 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6915 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6916 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6917 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6918 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6919 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6920 			} else if (!strncmp(str, "hpbussize=", 10)) {
6921 				pci_hotplug_bus_size =
6922 					simple_strtoul(str + 10, &str, 0);
6923 				if (pci_hotplug_bus_size > 0xff)
6924 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6925 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6926 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6927 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6928 				pcie_bus_config = PCIE_BUS_SAFE;
6929 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6930 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6931 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6932 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6933 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6934 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6935 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6936 				disable_acs_redir_param = str + 18;
6937 			} else if (!strncmp(str, "config_acs=", 11)) {
6938 				config_acs_param = str + 11;
6939 			} else {
6940 				pr_err("PCI: Unknown option `%s'\n", str);
6941 			}
6942 		}
6943 		str = k;
6944 	}
6945 	return 0;
6946 }
6947 early_param("pci", pci_setup);
6948 
6949 /*
6950  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6951  * in pci_setup(), above, to point to data in the __initdata section which
6952  * will be freed after the init sequence is complete. We can't allocate memory
6953  * in pci_setup() because some architectures do not have any memory allocation
6954  * service available during an early_param() call. So we allocate memory and
6955  * copy the variable here before the init section is freed.
6956  *
6957  */
pci_realloc_setup_params(void)6958 static int __init pci_realloc_setup_params(void)
6959 {
6960 	resource_alignment_param = kstrdup(resource_alignment_param,
6961 					   GFP_KERNEL);
6962 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6963 	config_acs_param = kstrdup(config_acs_param, GFP_KERNEL);
6964 
6965 	return 0;
6966 }
6967 pure_initcall(pci_realloc_setup_params);
6968