1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef __POWERNV_PCI_H
3  #define __POWERNV_PCI_H
4  
5  #include <linux/compiler.h>		/* for __printf */
6  #include <linux/iommu.h>
7  #include <asm/iommu.h>
8  #include <asm/msi_bitmap.h>
9  
10  struct pci_dn;
11  
12  enum pnv_phb_type {
13  	PNV_PHB_IODA2,
14  	PNV_PHB_NPU_OCAPI,
15  };
16  
17  /* Precise PHB model for error management */
18  enum pnv_phb_model {
19  	PNV_PHB_MODEL_UNKNOWN,
20  	PNV_PHB_MODEL_P7IOC,
21  	PNV_PHB_MODEL_PHB3,
22  };
23  
24  #define PNV_PCI_DIAG_BUF_SIZE	8192
25  #define PNV_IODA_PE_DEV		(1 << 0)	/* PE has single PCI device	*/
26  #define PNV_IODA_PE_BUS		(1 << 1)	/* PE has primary PCI bus	*/
27  #define PNV_IODA_PE_BUS_ALL	(1 << 2)	/* PE has subordinate buses	*/
28  #define PNV_IODA_PE_MASTER	(1 << 3)	/* Master PE in compound case	*/
29  #define PNV_IODA_PE_SLAVE	(1 << 4)	/* Slave PE in compound case	*/
30  #define PNV_IODA_PE_VF		(1 << 5)	/* PE for one VF 		*/
31  
32  /*
33   * A brief note on PNV_IODA_PE_BUS_ALL
34   *
35   * This is needed because of the behaviour of PCIe-to-PCI bridges. The PHB uses
36   * the Requester ID field of the PCIe request header to determine the device
37   * (and PE) that initiated a DMA. In legacy PCI individual memory read/write
38   * requests aren't tagged with the RID. To work around this the PCIe-to-PCI
39   * bridge will use (secondary_bus_no << 8) | 0x00 as the RID on the PCIe side.
40   *
41   * PCIe-to-X bridges have a similar issue even though PCI-X requests also have
42   * a RID in the transaction header. The PCIe-to-X bridge is permitted to "take
43   * ownership" of a transaction by a PCI-X device when forwarding it to the PCIe
44   * side of the bridge.
45   *
46   * To work around these problems we use the BUS_ALL flag since every subordinate
47   * bus of the bridge should go into the same PE.
48   */
49  
50  /* Indicates operations are frozen for a PE: MMIO in PESTA & DMA in PESTB. */
51  #define PNV_IODA_STOPPED_STATE	0x8000000000000000
52  
53  /* Data associated with a PE, including IOMMU tracking etc.. */
54  struct pnv_phb;
55  struct pnv_ioda_pe {
56  	unsigned long		flags;
57  	struct pnv_phb		*phb;
58  	int			device_count;
59  
60  	/* A PE can be associated with a single device or an
61  	 * entire bus (& children). In the former case, pdev
62  	 * is populated, in the later case, pbus is.
63  	 */
64  #ifdef CONFIG_PCI_IOV
65  	struct pci_dev          *parent_dev;
66  #endif
67  	struct pci_dev		*pdev;
68  	struct pci_bus		*pbus;
69  
70  	/* Effective RID (device RID for a device PE and base bus
71  	 * RID with devfn 0 for a bus PE)
72  	 */
73  	unsigned int		rid;
74  
75  	/* PE number */
76  	unsigned int		pe_number;
77  
78  	/* "Base" iommu table, ie, 4K TCEs, 32-bit DMA */
79  	struct iommu_table_group table_group;
80  
81  	/* 64-bit TCE bypass region */
82  	bool			tce_bypass_enabled;
83  	uint64_t		tce_bypass_base;
84  
85  	/*
86  	 * Used to track whether we've done DMA setup for this PE or not. We
87  	 * want to defer allocating TCE tables, etc until we've added a
88  	 * non-bridge device to the PE.
89  	 */
90  	bool			dma_setup_done;
91  
92  	/* MSIs. MVE index is identical for 32 and 64 bit MSI
93  	 * and -1 if not supported. (It's actually identical to the
94  	 * PE number)
95  	 */
96  	int			mve_number;
97  
98  	/* PEs in compound case */
99  	struct pnv_ioda_pe	*master;
100  	struct list_head	slaves;
101  
102  	/* Link in list of PE#s */
103  	struct list_head	list;
104  };
105  
106  #define PNV_PHB_FLAG_EEH	(1 << 0)
107  
108  struct pnv_phb {
109  	struct pci_controller	*hose;
110  	enum pnv_phb_type	type;
111  	enum pnv_phb_model	model;
112  	u64			hub_id;
113  	u64			opal_id;
114  	int			flags;
115  	void __iomem		*regs;
116  	u64			regs_phys;
117  	spinlock_t		lock;
118  
119  #ifdef CONFIG_DEBUG_FS
120  	int			has_dbgfs;
121  	struct dentry		*dbgfs;
122  #endif
123  
124  	unsigned int		msi_base;
125  	struct msi_bitmap	msi_bmp;
126  	int (*init_m64)(struct pnv_phb *phb);
127  	int (*get_pe_state)(struct pnv_phb *phb, int pe_no);
128  	void (*freeze_pe)(struct pnv_phb *phb, int pe_no);
129  	int (*unfreeze_pe)(struct pnv_phb *phb, int pe_no, int opt);
130  
131  	struct {
132  		/* Global bridge info */
133  		unsigned int		total_pe_num;
134  		unsigned int		reserved_pe_idx;
135  		unsigned int		root_pe_idx;
136  
137  		/* 32-bit MMIO window */
138  		unsigned int		m32_size;
139  		unsigned int		m32_segsize;
140  		unsigned int		m32_pci_base;
141  
142  		/* 64-bit MMIO window */
143  		unsigned int		m64_bar_idx;
144  		unsigned long		m64_size;
145  		unsigned long		m64_segsize;
146  		unsigned long		m64_base;
147  #define MAX_M64_BARS 64
148  		unsigned long		m64_bar_alloc;
149  
150  		/* IO ports */
151  		unsigned int		io_size;
152  		unsigned int		io_segsize;
153  		unsigned int		io_pci_base;
154  
155  		/* PE allocation */
156  		struct mutex		pe_alloc_mutex;
157  		unsigned long		*pe_alloc;
158  		struct pnv_ioda_pe	*pe_array;
159  
160  		/* M32 & IO segment maps */
161  		unsigned int		*m64_segmap;
162  		unsigned int		*m32_segmap;
163  		unsigned int		*io_segmap;
164  
165  		/* IRQ chip */
166  		int			irq_chip_init;
167  		struct irq_chip		irq_chip;
168  
169  		/* Sorted list of used PE's based
170  		 * on the sequence of creation
171  		 */
172  		struct list_head	pe_list;
173  		struct mutex            pe_list_mutex;
174  
175  		/* Reverse map of PEs, indexed by {bus, devfn} */
176  		unsigned int		pe_rmap[0x10000];
177  	} ioda;
178  
179  	/* PHB and hub diagnostics */
180  	unsigned int		diag_data_size;
181  	u8			*diag_data;
182  };
183  
184  
185  /* IODA PE management */
186  
pnv_pci_is_m64(struct pnv_phb * phb,struct resource * r)187  static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
188  {
189  	/*
190  	 * WARNING: We cannot rely on the resource flags. The Linux PCI
191  	 * allocation code sometimes decides to put a 64-bit prefetchable
192  	 * BAR in the 32-bit window, so we have to compare the addresses.
193  	 *
194  	 * For simplicity we only test resource start.
195  	 */
196  	return (r->start >= phb->ioda.m64_base &&
197  		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
198  }
199  
pnv_pci_is_m64_flags(unsigned long resource_flags)200  static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
201  {
202  	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
203  
204  	return (resource_flags & flags) == flags;
205  }
206  
207  int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
208  int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
209  
210  void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
211  void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe);
212  
213  struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count);
214  void pnv_ioda_free_pe(struct pnv_ioda_pe *pe);
215  
216  #ifdef CONFIG_PCI_IOV
217  /*
218   * For SR-IOV we want to put each VF's MMIO resource in to a separate PE.
219   * This requires a bit of acrobatics with the MMIO -> PE configuration
220   * and this structure is used to keep track of it all.
221   */
222  struct pnv_iov_data {
223  	/* number of VFs enabled */
224  	u16     num_vfs;
225  
226  	/* pointer to the array of VF PEs. num_vfs long*/
227  	struct pnv_ioda_pe *vf_pe_arr;
228  
229  	/* Did we map the VF BAR with single-PE IODA BARs? */
230  	bool    m64_single_mode[PCI_SRIOV_NUM_BARS];
231  
232  	/*
233  	 * True if we're using any segmented windows. In that case we need
234  	 * shift the start of the IOV resource the segment corresponding to
235  	 * the allocated PE.
236  	 */
237  	bool    need_shift;
238  
239  	/*
240  	 * Bit mask used to track which m64 windows are used to map the
241  	 * SR-IOV BARs for this device.
242  	 */
243  	DECLARE_BITMAP(used_m64_bar_mask, MAX_M64_BARS);
244  
245  	/*
246  	 * If we map the SR-IOV BARs with a segmented window then
247  	 * parts of that window will be "claimed" by other PEs.
248  	 *
249  	 * "holes" here is used to reserve the leading portion
250  	 * of the window that is used by other (non VF) PEs.
251  	 */
252  	struct resource holes[PCI_SRIOV_NUM_BARS];
253  };
254  
pnv_iov_get(struct pci_dev * pdev)255  static inline struct pnv_iov_data *pnv_iov_get(struct pci_dev *pdev)
256  {
257  	return pdev->dev.archdata.iov_data;
258  }
259  
260  void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev);
261  resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, int resno);
262  
263  int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs);
264  int pnv_pcibios_sriov_disable(struct pci_dev *pdev);
265  #endif /* CONFIG_PCI_IOV */
266  
267  extern struct pci_ops pnv_pci_ops;
268  
269  void pnv_pci_dump_phb_diag_data(struct pci_controller *hose,
270  				unsigned char *log_buff);
271  int pnv_pci_cfg_read(struct pci_dn *pdn,
272  		     int where, int size, u32 *val);
273  int pnv_pci_cfg_write(struct pci_dn *pdn,
274  		      int where, int size, u32 val);
275  extern struct iommu_table *pnv_pci_table_alloc(int nid);
276  
277  extern void pnv_pci_init_ioda2_phb(struct device_node *np);
278  extern void pnv_pci_init_npu2_opencapi_phb(struct device_node *np);
279  extern void pnv_pci_reset_secondary_bus(struct pci_dev *dev);
280  extern int pnv_eeh_phb_reset(struct pci_controller *hose, int option);
281  
282  extern struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn);
283  extern struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev);
284  extern void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq);
285  extern unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
286  		__u64 window_size, __u32 levels);
287  extern int pnv_eeh_post_init(void);
288  
289  __printf(3, 4)
290  extern void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
291  			    const char *fmt, ...);
292  #define pe_err(pe, fmt, ...)					\
293  	pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
294  #define pe_warn(pe, fmt, ...)					\
295  	pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
296  #define pe_info(pe, fmt, ...)					\
297  	pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
298  
299  /* pci-ioda-tce.c */
300  #define POWERNV_IOMMU_DEFAULT_LEVELS	2
301  #define POWERNV_IOMMU_MAX_LEVELS	5
302  
303  extern int pnv_tce_build(struct iommu_table *tbl, long index, long npages,
304  		unsigned long uaddr, enum dma_data_direction direction,
305  		unsigned long attrs);
306  extern void pnv_tce_free(struct iommu_table *tbl, long index, long npages);
307  extern int pnv_tce_xchg(struct iommu_table *tbl, long index,
308  		unsigned long *hpa, enum dma_data_direction *direction);
309  extern __be64 *pnv_tce_useraddrptr(struct iommu_table *tbl, long index,
310  		bool alloc);
311  extern unsigned long pnv_tce_get(struct iommu_table *tbl, long index);
312  
313  extern long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
314  		__u32 page_shift, __u64 window_size, __u32 levels,
315  		bool alloc_userspace_copy, struct iommu_table *tbl);
316  extern void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
317  
318  extern long pnv_pci_link_table_and_group(int node, int num,
319  		struct iommu_table *tbl,
320  		struct iommu_table_group *table_group);
321  extern void pnv_pci_unlink_table_and_group(struct iommu_table *tbl,
322  		struct iommu_table_group *table_group);
323  extern void pnv_pci_setup_iommu_table(struct iommu_table *tbl,
324  		void *tce_mem, u64 tce_size,
325  		u64 dma_offset, unsigned int page_shift);
326  
327  extern unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
328  
pci_bus_to_pnvhb(struct pci_bus * bus)329  static inline struct pnv_phb *pci_bus_to_pnvhb(struct pci_bus *bus)
330  {
331  	struct pci_controller *hose = bus->sysdata;
332  
333  	if (hose)
334  		return hose->private_data;
335  
336  	return NULL;
337  }
338  
339  #endif /* __POWERNV_PCI_H */
340