1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 35 struct mempolicy; 36 struct anon_vma; 37 struct anon_vma_chain; 38 struct user_struct; 39 struct pt_regs; 40 struct folio_batch; 41 42 extern int sysctl_page_lock_unfairness; 43 44 void mm_core_init(void); 45 void init_mm_internals(void); 46 47 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 48 extern unsigned long max_mapnr; 49 set_max_mapnr(unsigned long limit)50 static inline void set_max_mapnr(unsigned long limit) 51 { 52 max_mapnr = limit; 53 } 54 #else set_max_mapnr(unsigned long limit)55 static inline void set_max_mapnr(unsigned long limit) { } 56 #endif 57 58 extern atomic_long_t _totalram_pages; totalram_pages(void)59 static inline unsigned long totalram_pages(void) 60 { 61 return (unsigned long)atomic_long_read(&_totalram_pages); 62 } 63 totalram_pages_inc(void)64 static inline void totalram_pages_inc(void) 65 { 66 atomic_long_inc(&_totalram_pages); 67 } 68 totalram_pages_dec(void)69 static inline void totalram_pages_dec(void) 70 { 71 atomic_long_dec(&_totalram_pages); 72 } 73 totalram_pages_add(long count)74 static inline void totalram_pages_add(long count) 75 { 76 atomic_long_add(count, &_totalram_pages); 77 } 78 79 extern void * high_memory; 80 extern int page_cluster; 81 extern const int page_cluster_max; 82 83 #ifdef CONFIG_SYSCTL 84 extern int sysctl_legacy_va_layout; 85 #else 86 #define sysctl_legacy_va_layout 0 87 #endif 88 89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 90 extern const int mmap_rnd_bits_min; 91 extern int mmap_rnd_bits_max __ro_after_init; 92 extern int mmap_rnd_bits __read_mostly; 93 #endif 94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 95 extern const int mmap_rnd_compat_bits_min; 96 extern const int mmap_rnd_compat_bits_max; 97 extern int mmap_rnd_compat_bits __read_mostly; 98 #endif 99 100 #ifndef PHYSMEM_END 101 # ifdef MAX_PHYSMEM_BITS 102 # define PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 103 # else 104 # define PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 105 # endif 106 #endif 107 108 #include <asm/page.h> 109 #include <asm/processor.h> 110 111 #ifndef __pa_symbol 112 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 113 #endif 114 115 #ifndef page_to_virt 116 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 117 #endif 118 119 #ifndef lm_alias 120 #define lm_alias(x) __va(__pa_symbol(x)) 121 #endif 122 123 /* 124 * To prevent common memory management code establishing 125 * a zero page mapping on a read fault. 126 * This macro should be defined within <asm/pgtable.h>. 127 * s390 does this to prevent multiplexing of hardware bits 128 * related to the physical page in case of virtualization. 129 */ 130 #ifndef mm_forbids_zeropage 131 #define mm_forbids_zeropage(X) (0) 132 #endif 133 134 /* 135 * On some architectures it is expensive to call memset() for small sizes. 136 * If an architecture decides to implement their own version of 137 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 138 * define their own version of this macro in <asm/pgtable.h> 139 */ 140 #if BITS_PER_LONG == 64 141 /* This function must be updated when the size of struct page grows above 96 142 * or reduces below 56. The idea that compiler optimizes out switch() 143 * statement, and only leaves move/store instructions. Also the compiler can 144 * combine write statements if they are both assignments and can be reordered, 145 * this can result in several of the writes here being dropped. 146 */ 147 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) __mm_zero_struct_page(struct page * page)148 static inline void __mm_zero_struct_page(struct page *page) 149 { 150 unsigned long *_pp = (void *)page; 151 152 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 153 BUILD_BUG_ON(sizeof(struct page) & 7); 154 BUILD_BUG_ON(sizeof(struct page) < 56); 155 BUILD_BUG_ON(sizeof(struct page) > 96); 156 157 switch (sizeof(struct page)) { 158 case 96: 159 _pp[11] = 0; 160 fallthrough; 161 case 88: 162 _pp[10] = 0; 163 fallthrough; 164 case 80: 165 _pp[9] = 0; 166 fallthrough; 167 case 72: 168 _pp[8] = 0; 169 fallthrough; 170 case 64: 171 _pp[7] = 0; 172 fallthrough; 173 case 56: 174 _pp[6] = 0; 175 _pp[5] = 0; 176 _pp[4] = 0; 177 _pp[3] = 0; 178 _pp[2] = 0; 179 _pp[1] = 0; 180 _pp[0] = 0; 181 } 182 } 183 #else 184 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 185 #endif 186 187 /* 188 * Default maximum number of active map areas, this limits the number of vmas 189 * per mm struct. Users can overwrite this number by sysctl but there is a 190 * problem. 191 * 192 * When a program's coredump is generated as ELF format, a section is created 193 * per a vma. In ELF, the number of sections is represented in unsigned short. 194 * This means the number of sections should be smaller than 65535 at coredump. 195 * Because the kernel adds some informative sections to a image of program at 196 * generating coredump, we need some margin. The number of extra sections is 197 * 1-3 now and depends on arch. We use "5" as safe margin, here. 198 * 199 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 200 * not a hard limit any more. Although some userspace tools can be surprised by 201 * that. 202 */ 203 #define MAPCOUNT_ELF_CORE_MARGIN (5) 204 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 205 206 extern int sysctl_max_map_count; 207 208 extern unsigned long sysctl_user_reserve_kbytes; 209 extern unsigned long sysctl_admin_reserve_kbytes; 210 211 extern int sysctl_overcommit_memory; 212 extern int sysctl_overcommit_ratio; 213 extern unsigned long sysctl_overcommit_kbytes; 214 215 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *, 216 loff_t *); 217 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *, 218 loff_t *); 219 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *, 220 loff_t *); 221 222 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 223 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 224 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 225 #else 226 #define nth_page(page,n) ((page) + (n)) 227 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 228 #endif 229 230 /* to align the pointer to the (next) page boundary */ 231 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 232 233 /* to align the pointer to the (prev) page boundary */ 234 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 235 236 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 237 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 238 lru_to_folio(struct list_head * head)239 static inline struct folio *lru_to_folio(struct list_head *head) 240 { 241 return list_entry((head)->prev, struct folio, lru); 242 } 243 244 void setup_initial_init_mm(void *start_code, void *end_code, 245 void *end_data, void *brk); 246 247 /* 248 * Linux kernel virtual memory manager primitives. 249 * The idea being to have a "virtual" mm in the same way 250 * we have a virtual fs - giving a cleaner interface to the 251 * mm details, and allowing different kinds of memory mappings 252 * (from shared memory to executable loading to arbitrary 253 * mmap() functions). 254 */ 255 256 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 257 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 258 void vm_area_free(struct vm_area_struct *); 259 /* Use only if VMA has no other users */ 260 void __vm_area_free(struct vm_area_struct *vma); 261 262 #ifndef CONFIG_MMU 263 extern struct rb_root nommu_region_tree; 264 extern struct rw_semaphore nommu_region_sem; 265 266 extern unsigned int kobjsize(const void *objp); 267 #endif 268 269 /* 270 * vm_flags in vm_area_struct, see mm_types.h. 271 * When changing, update also include/trace/events/mmflags.h 272 */ 273 #define VM_NONE 0x00000000 274 275 #define VM_READ 0x00000001 /* currently active flags */ 276 #define VM_WRITE 0x00000002 277 #define VM_EXEC 0x00000004 278 #define VM_SHARED 0x00000008 279 280 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 281 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 282 #define VM_MAYWRITE 0x00000020 283 #define VM_MAYEXEC 0x00000040 284 #define VM_MAYSHARE 0x00000080 285 286 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 287 #ifdef CONFIG_MMU 288 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 289 #else /* CONFIG_MMU */ 290 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 291 #define VM_UFFD_MISSING 0 292 #endif /* CONFIG_MMU */ 293 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 294 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 295 296 #define VM_LOCKED 0x00002000 297 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 298 299 /* Used by sys_madvise() */ 300 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 301 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 302 303 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 304 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 305 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 306 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 307 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 308 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 309 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 310 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 311 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 312 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 313 314 #ifdef CONFIG_MEM_SOFT_DIRTY 315 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 316 #else 317 # define VM_SOFTDIRTY 0 318 #endif 319 320 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 321 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 322 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 323 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 324 325 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 326 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 327 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 328 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 329 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 330 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 331 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 332 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 333 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 334 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 335 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 336 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 337 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 338 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 339 340 #ifdef CONFIG_ARCH_HAS_PKEYS 341 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 342 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 343 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 344 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 345 #if CONFIG_ARCH_PKEY_BITS > 3 346 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 347 #else 348 # define VM_PKEY_BIT3 0 349 #endif 350 #if CONFIG_ARCH_PKEY_BITS > 4 351 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 352 #else 353 # define VM_PKEY_BIT4 0 354 #endif 355 #endif /* CONFIG_ARCH_HAS_PKEYS */ 356 357 #ifdef CONFIG_X86_USER_SHADOW_STACK 358 /* 359 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 360 * support core mm. 361 * 362 * These VMAs will get a single end guard page. This helps userspace protect 363 * itself from attacks. A single page is enough for current shadow stack archs 364 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 365 * for more details on the guard size. 366 */ 367 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 368 #else 369 # define VM_SHADOW_STACK VM_NONE 370 #endif 371 372 #if defined(CONFIG_X86) 373 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 374 #elif defined(CONFIG_PPC64) 375 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 376 #elif defined(CONFIG_PARISC) 377 # define VM_GROWSUP VM_ARCH_1 378 #elif defined(CONFIG_SPARC64) 379 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 380 # define VM_ARCH_CLEAR VM_SPARC_ADI 381 #elif defined(CONFIG_ARM64) 382 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 383 # define VM_ARCH_CLEAR VM_ARM64_BTI 384 #elif !defined(CONFIG_MMU) 385 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 386 #endif 387 388 #if defined(CONFIG_ARM64_MTE) 389 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 390 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 391 #else 392 # define VM_MTE VM_NONE 393 # define VM_MTE_ALLOWED VM_NONE 394 #endif 395 396 #ifndef VM_GROWSUP 397 # define VM_GROWSUP VM_NONE 398 #endif 399 400 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 401 # define VM_UFFD_MINOR_BIT 38 402 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 403 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 404 # define VM_UFFD_MINOR VM_NONE 405 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 406 407 /* 408 * This flag is used to connect VFIO to arch specific KVM code. It 409 * indicates that the memory under this VMA is safe for use with any 410 * non-cachable memory type inside KVM. Some VFIO devices, on some 411 * platforms, are thought to be unsafe and can cause machine crashes 412 * if KVM does not lock down the memory type. 413 */ 414 #ifdef CONFIG_64BIT 415 #define VM_ALLOW_ANY_UNCACHED_BIT 39 416 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 417 #else 418 #define VM_ALLOW_ANY_UNCACHED VM_NONE 419 #endif 420 421 #ifdef CONFIG_64BIT 422 #define VM_DROPPABLE_BIT 40 423 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 424 #elif defined(CONFIG_PPC32) 425 #define VM_DROPPABLE VM_ARCH_1 426 #else 427 #define VM_DROPPABLE VM_NONE 428 #endif 429 430 #ifdef CONFIG_64BIT 431 /* VM is sealed, in vm_flags */ 432 #define VM_SEALED _BITUL(63) 433 #endif 434 435 /* Bits set in the VMA until the stack is in its final location */ 436 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 437 438 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 439 440 /* Common data flag combinations */ 441 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 442 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 443 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 444 VM_MAYWRITE | VM_MAYEXEC) 445 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 446 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 447 448 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 449 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 450 #endif 451 452 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 453 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 454 #endif 455 456 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 457 458 #ifdef CONFIG_STACK_GROWSUP 459 #define VM_STACK VM_GROWSUP 460 #define VM_STACK_EARLY VM_GROWSDOWN 461 #else 462 #define VM_STACK VM_GROWSDOWN 463 #define VM_STACK_EARLY 0 464 #endif 465 466 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 467 468 /* VMA basic access permission flags */ 469 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 470 471 472 /* 473 * Special vmas that are non-mergable, non-mlock()able. 474 */ 475 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 476 477 /* This mask prevents VMA from being scanned with khugepaged */ 478 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 479 480 /* This mask defines which mm->def_flags a process can inherit its parent */ 481 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 482 483 /* This mask represents all the VMA flag bits used by mlock */ 484 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 485 486 /* Arch-specific flags to clear when updating VM flags on protection change */ 487 #ifndef VM_ARCH_CLEAR 488 # define VM_ARCH_CLEAR VM_NONE 489 #endif 490 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 491 492 /* 493 * mapping from the currently active vm_flags protection bits (the 494 * low four bits) to a page protection mask.. 495 */ 496 497 /* 498 * The default fault flags that should be used by most of the 499 * arch-specific page fault handlers. 500 */ 501 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 502 FAULT_FLAG_KILLABLE | \ 503 FAULT_FLAG_INTERRUPTIBLE) 504 505 /** 506 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 507 * @flags: Fault flags. 508 * 509 * This is mostly used for places where we want to try to avoid taking 510 * the mmap_lock for too long a time when waiting for another condition 511 * to change, in which case we can try to be polite to release the 512 * mmap_lock in the first round to avoid potential starvation of other 513 * processes that would also want the mmap_lock. 514 * 515 * Return: true if the page fault allows retry and this is the first 516 * attempt of the fault handling; false otherwise. 517 */ fault_flag_allow_retry_first(enum fault_flag flags)518 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 519 { 520 return (flags & FAULT_FLAG_ALLOW_RETRY) && 521 (!(flags & FAULT_FLAG_TRIED)); 522 } 523 524 #define FAULT_FLAG_TRACE \ 525 { FAULT_FLAG_WRITE, "WRITE" }, \ 526 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 527 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 528 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 529 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 530 { FAULT_FLAG_TRIED, "TRIED" }, \ 531 { FAULT_FLAG_USER, "USER" }, \ 532 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 533 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 534 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 535 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 536 537 /* 538 * vm_fault is filled by the pagefault handler and passed to the vma's 539 * ->fault function. The vma's ->fault is responsible for returning a bitmask 540 * of VM_FAULT_xxx flags that give details about how the fault was handled. 541 * 542 * MM layer fills up gfp_mask for page allocations but fault handler might 543 * alter it if its implementation requires a different allocation context. 544 * 545 * pgoff should be used in favour of virtual_address, if possible. 546 */ 547 struct vm_fault { 548 const struct { 549 struct vm_area_struct *vma; /* Target VMA */ 550 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 551 pgoff_t pgoff; /* Logical page offset based on vma */ 552 unsigned long address; /* Faulting virtual address - masked */ 553 unsigned long real_address; /* Faulting virtual address - unmasked */ 554 }; 555 enum fault_flag flags; /* FAULT_FLAG_xxx flags 556 * XXX: should really be 'const' */ 557 pmd_t *pmd; /* Pointer to pmd entry matching 558 * the 'address' */ 559 pud_t *pud; /* Pointer to pud entry matching 560 * the 'address' 561 */ 562 union { 563 pte_t orig_pte; /* Value of PTE at the time of fault */ 564 pmd_t orig_pmd; /* Value of PMD at the time of fault, 565 * used by PMD fault only. 566 */ 567 }; 568 569 struct page *cow_page; /* Page handler may use for COW fault */ 570 struct page *page; /* ->fault handlers should return a 571 * page here, unless VM_FAULT_NOPAGE 572 * is set (which is also implied by 573 * VM_FAULT_ERROR). 574 */ 575 /* These three entries are valid only while holding ptl lock */ 576 pte_t *pte; /* Pointer to pte entry matching 577 * the 'address'. NULL if the page 578 * table hasn't been allocated. 579 */ 580 spinlock_t *ptl; /* Page table lock. 581 * Protects pte page table if 'pte' 582 * is not NULL, otherwise pmd. 583 */ 584 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 585 * vm_ops->map_pages() sets up a page 586 * table from atomic context. 587 * do_fault_around() pre-allocates 588 * page table to avoid allocation from 589 * atomic context. 590 */ 591 }; 592 593 /* 594 * These are the virtual MM functions - opening of an area, closing and 595 * unmapping it (needed to keep files on disk up-to-date etc), pointer 596 * to the functions called when a no-page or a wp-page exception occurs. 597 */ 598 struct vm_operations_struct { 599 void (*open)(struct vm_area_struct * area); 600 /** 601 * @close: Called when the VMA is being removed from the MM. 602 * Context: User context. May sleep. Caller holds mmap_lock. 603 */ 604 void (*close)(struct vm_area_struct * area); 605 /* Called any time before splitting to check if it's allowed */ 606 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 607 int (*mremap)(struct vm_area_struct *area); 608 /* 609 * Called by mprotect() to make driver-specific permission 610 * checks before mprotect() is finalised. The VMA must not 611 * be modified. Returns 0 if mprotect() can proceed. 612 */ 613 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 614 unsigned long end, unsigned long newflags); 615 vm_fault_t (*fault)(struct vm_fault *vmf); 616 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 617 vm_fault_t (*map_pages)(struct vm_fault *vmf, 618 pgoff_t start_pgoff, pgoff_t end_pgoff); 619 unsigned long (*pagesize)(struct vm_area_struct * area); 620 621 /* notification that a previously read-only page is about to become 622 * writable, if an error is returned it will cause a SIGBUS */ 623 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 624 625 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 626 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 627 628 /* called by access_process_vm when get_user_pages() fails, typically 629 * for use by special VMAs. See also generic_access_phys() for a generic 630 * implementation useful for any iomem mapping. 631 */ 632 int (*access)(struct vm_area_struct *vma, unsigned long addr, 633 void *buf, int len, int write); 634 635 /* Called by the /proc/PID/maps code to ask the vma whether it 636 * has a special name. Returning non-NULL will also cause this 637 * vma to be dumped unconditionally. */ 638 const char *(*name)(struct vm_area_struct *vma); 639 640 #ifdef CONFIG_NUMA 641 /* 642 * set_policy() op must add a reference to any non-NULL @new mempolicy 643 * to hold the policy upon return. Caller should pass NULL @new to 644 * remove a policy and fall back to surrounding context--i.e. do not 645 * install a MPOL_DEFAULT policy, nor the task or system default 646 * mempolicy. 647 */ 648 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 649 650 /* 651 * get_policy() op must add reference [mpol_get()] to any policy at 652 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 653 * in mm/mempolicy.c will do this automatically. 654 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 655 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 656 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 657 * must return NULL--i.e., do not "fallback" to task or system default 658 * policy. 659 */ 660 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 661 unsigned long addr, pgoff_t *ilx); 662 #endif 663 /* 664 * Called by vm_normal_page() for special PTEs to find the 665 * page for @addr. This is useful if the default behavior 666 * (using pte_page()) would not find the correct page. 667 */ 668 struct page *(*find_special_page)(struct vm_area_struct *vma, 669 unsigned long addr); 670 }; 671 672 #ifdef CONFIG_NUMA_BALANCING vma_numab_state_init(struct vm_area_struct * vma)673 static inline void vma_numab_state_init(struct vm_area_struct *vma) 674 { 675 vma->numab_state = NULL; 676 } vma_numab_state_free(struct vm_area_struct * vma)677 static inline void vma_numab_state_free(struct vm_area_struct *vma) 678 { 679 kfree(vma->numab_state); 680 } 681 #else vma_numab_state_init(struct vm_area_struct * vma)682 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} vma_numab_state_free(struct vm_area_struct * vma)683 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 684 #endif /* CONFIG_NUMA_BALANCING */ 685 686 #ifdef CONFIG_PER_VMA_LOCK 687 /* 688 * Try to read-lock a vma. The function is allowed to occasionally yield false 689 * locked result to avoid performance overhead, in which case we fall back to 690 * using mmap_lock. The function should never yield false unlocked result. 691 */ vma_start_read(struct vm_area_struct * vma)692 static inline bool vma_start_read(struct vm_area_struct *vma) 693 { 694 /* 695 * Check before locking. A race might cause false locked result. 696 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 697 * ACQUIRE semantics, because this is just a lockless check whose result 698 * we don't rely on for anything - the mm_lock_seq read against which we 699 * need ordering is below. 700 */ 701 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 702 return false; 703 704 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 705 return false; 706 707 /* 708 * Overflow might produce false locked result. 709 * False unlocked result is impossible because we modify and check 710 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 711 * modification invalidates all existing locks. 712 * 713 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 714 * racing with vma_end_write_all(), we only start reading from the VMA 715 * after it has been unlocked. 716 * This pairs with RELEASE semantics in vma_end_write_all(). 717 */ 718 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 719 up_read(&vma->vm_lock->lock); 720 return false; 721 } 722 return true; 723 } 724 vma_end_read(struct vm_area_struct * vma)725 static inline void vma_end_read(struct vm_area_struct *vma) 726 { 727 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 728 up_read(&vma->vm_lock->lock); 729 rcu_read_unlock(); 730 } 731 732 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ __is_vma_write_locked(struct vm_area_struct * vma,int * mm_lock_seq)733 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 734 { 735 mmap_assert_write_locked(vma->vm_mm); 736 737 /* 738 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 739 * mm->mm_lock_seq can't be concurrently modified. 740 */ 741 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 742 return (vma->vm_lock_seq == *mm_lock_seq); 743 } 744 745 /* 746 * Begin writing to a VMA. 747 * Exclude concurrent readers under the per-VMA lock until the currently 748 * write-locked mmap_lock is dropped or downgraded. 749 */ vma_start_write(struct vm_area_struct * vma)750 static inline void vma_start_write(struct vm_area_struct *vma) 751 { 752 int mm_lock_seq; 753 754 if (__is_vma_write_locked(vma, &mm_lock_seq)) 755 return; 756 757 down_write(&vma->vm_lock->lock); 758 /* 759 * We should use WRITE_ONCE() here because we can have concurrent reads 760 * from the early lockless pessimistic check in vma_start_read(). 761 * We don't really care about the correctness of that early check, but 762 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 763 */ 764 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 765 up_write(&vma->vm_lock->lock); 766 } 767 vma_assert_write_locked(struct vm_area_struct * vma)768 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 769 { 770 int mm_lock_seq; 771 772 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 773 } 774 vma_assert_locked(struct vm_area_struct * vma)775 static inline void vma_assert_locked(struct vm_area_struct *vma) 776 { 777 if (!rwsem_is_locked(&vma->vm_lock->lock)) 778 vma_assert_write_locked(vma); 779 } 780 vma_mark_detached(struct vm_area_struct * vma,bool detached)781 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 782 { 783 /* When detaching vma should be write-locked */ 784 if (detached) 785 vma_assert_write_locked(vma); 786 vma->detached = detached; 787 } 788 release_fault_lock(struct vm_fault * vmf)789 static inline void release_fault_lock(struct vm_fault *vmf) 790 { 791 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 792 vma_end_read(vmf->vma); 793 else 794 mmap_read_unlock(vmf->vma->vm_mm); 795 } 796 assert_fault_locked(struct vm_fault * vmf)797 static inline void assert_fault_locked(struct vm_fault *vmf) 798 { 799 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 800 vma_assert_locked(vmf->vma); 801 else 802 mmap_assert_locked(vmf->vma->vm_mm); 803 } 804 805 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 806 unsigned long address); 807 808 #else /* CONFIG_PER_VMA_LOCK */ 809 vma_start_read(struct vm_area_struct * vma)810 static inline bool vma_start_read(struct vm_area_struct *vma) 811 { return false; } vma_end_read(struct vm_area_struct * vma)812 static inline void vma_end_read(struct vm_area_struct *vma) {} vma_start_write(struct vm_area_struct * vma)813 static inline void vma_start_write(struct vm_area_struct *vma) {} vma_assert_write_locked(struct vm_area_struct * vma)814 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 815 { mmap_assert_write_locked(vma->vm_mm); } vma_mark_detached(struct vm_area_struct * vma,bool detached)816 static inline void vma_mark_detached(struct vm_area_struct *vma, 817 bool detached) {} 818 lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)819 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 820 unsigned long address) 821 { 822 return NULL; 823 } 824 vma_assert_locked(struct vm_area_struct * vma)825 static inline void vma_assert_locked(struct vm_area_struct *vma) 826 { 827 mmap_assert_locked(vma->vm_mm); 828 } 829 release_fault_lock(struct vm_fault * vmf)830 static inline void release_fault_lock(struct vm_fault *vmf) 831 { 832 mmap_read_unlock(vmf->vma->vm_mm); 833 } 834 assert_fault_locked(struct vm_fault * vmf)835 static inline void assert_fault_locked(struct vm_fault *vmf) 836 { 837 mmap_assert_locked(vmf->vma->vm_mm); 838 } 839 840 #endif /* CONFIG_PER_VMA_LOCK */ 841 842 extern const struct vm_operations_struct vma_dummy_vm_ops; 843 844 /* 845 * WARNING: vma_init does not initialize vma->vm_lock. 846 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 847 */ vma_init(struct vm_area_struct * vma,struct mm_struct * mm)848 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 849 { 850 memset(vma, 0, sizeof(*vma)); 851 vma->vm_mm = mm; 852 vma->vm_ops = &vma_dummy_vm_ops; 853 INIT_LIST_HEAD(&vma->anon_vma_chain); 854 vma_mark_detached(vma, false); 855 vma_numab_state_init(vma); 856 } 857 858 /* Use when VMA is not part of the VMA tree and needs no locking */ vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)859 static inline void vm_flags_init(struct vm_area_struct *vma, 860 vm_flags_t flags) 861 { 862 ACCESS_PRIVATE(vma, __vm_flags) = flags; 863 } 864 865 /* 866 * Use when VMA is part of the VMA tree and modifications need coordination 867 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 868 * it should be locked explicitly beforehand. 869 */ vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)870 static inline void vm_flags_reset(struct vm_area_struct *vma, 871 vm_flags_t flags) 872 { 873 vma_assert_write_locked(vma); 874 vm_flags_init(vma, flags); 875 } 876 vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)877 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 878 vm_flags_t flags) 879 { 880 vma_assert_write_locked(vma); 881 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 882 } 883 vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)884 static inline void vm_flags_set(struct vm_area_struct *vma, 885 vm_flags_t flags) 886 { 887 vma_start_write(vma); 888 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 889 } 890 vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)891 static inline void vm_flags_clear(struct vm_area_struct *vma, 892 vm_flags_t flags) 893 { 894 vma_start_write(vma); 895 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 896 } 897 898 /* 899 * Use only if VMA is not part of the VMA tree or has no other users and 900 * therefore needs no locking. 901 */ __vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)902 static inline void __vm_flags_mod(struct vm_area_struct *vma, 903 vm_flags_t set, vm_flags_t clear) 904 { 905 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 906 } 907 908 /* 909 * Use only when the order of set/clear operations is unimportant, otherwise 910 * use vm_flags_{set|clear} explicitly. 911 */ vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)912 static inline void vm_flags_mod(struct vm_area_struct *vma, 913 vm_flags_t set, vm_flags_t clear) 914 { 915 vma_start_write(vma); 916 __vm_flags_mod(vma, set, clear); 917 } 918 vma_set_anonymous(struct vm_area_struct * vma)919 static inline void vma_set_anonymous(struct vm_area_struct *vma) 920 { 921 vma->vm_ops = NULL; 922 } 923 vma_is_anonymous(struct vm_area_struct * vma)924 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 925 { 926 return !vma->vm_ops; 927 } 928 929 /* 930 * Indicate if the VMA is a heap for the given task; for 931 * /proc/PID/maps that is the heap of the main task. 932 */ vma_is_initial_heap(const struct vm_area_struct * vma)933 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 934 { 935 return vma->vm_start < vma->vm_mm->brk && 936 vma->vm_end > vma->vm_mm->start_brk; 937 } 938 939 /* 940 * Indicate if the VMA is a stack for the given task; for 941 * /proc/PID/maps that is the stack of the main task. 942 */ vma_is_initial_stack(const struct vm_area_struct * vma)943 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 944 { 945 /* 946 * We make no effort to guess what a given thread considers to be 947 * its "stack". It's not even well-defined for programs written 948 * languages like Go. 949 */ 950 return vma->vm_start <= vma->vm_mm->start_stack && 951 vma->vm_end >= vma->vm_mm->start_stack; 952 } 953 vma_is_temporary_stack(struct vm_area_struct * vma)954 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 955 { 956 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 957 958 if (!maybe_stack) 959 return false; 960 961 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 962 VM_STACK_INCOMPLETE_SETUP) 963 return true; 964 965 return false; 966 } 967 vma_is_foreign(struct vm_area_struct * vma)968 static inline bool vma_is_foreign(struct vm_area_struct *vma) 969 { 970 if (!current->mm) 971 return true; 972 973 if (current->mm != vma->vm_mm) 974 return true; 975 976 return false; 977 } 978 vma_is_accessible(struct vm_area_struct * vma)979 static inline bool vma_is_accessible(struct vm_area_struct *vma) 980 { 981 return vma->vm_flags & VM_ACCESS_FLAGS; 982 } 983 is_shared_maywrite(vm_flags_t vm_flags)984 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 985 { 986 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 987 (VM_SHARED | VM_MAYWRITE); 988 } 989 vma_is_shared_maywrite(struct vm_area_struct * vma)990 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 991 { 992 return is_shared_maywrite(vma->vm_flags); 993 } 994 995 static inline vma_find(struct vma_iterator * vmi,unsigned long max)996 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 997 { 998 return mas_find(&vmi->mas, max - 1); 999 } 1000 vma_next(struct vma_iterator * vmi)1001 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 1002 { 1003 /* 1004 * Uses mas_find() to get the first VMA when the iterator starts. 1005 * Calling mas_next() could skip the first entry. 1006 */ 1007 return mas_find(&vmi->mas, ULONG_MAX); 1008 } 1009 1010 static inline vma_iter_next_range(struct vma_iterator * vmi)1011 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1012 { 1013 return mas_next_range(&vmi->mas, ULONG_MAX); 1014 } 1015 1016 vma_prev(struct vma_iterator * vmi)1017 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1018 { 1019 return mas_prev(&vmi->mas, 0); 1020 } 1021 vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)1022 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1023 unsigned long start, unsigned long end, gfp_t gfp) 1024 { 1025 __mas_set_range(&vmi->mas, start, end - 1); 1026 mas_store_gfp(&vmi->mas, NULL, gfp); 1027 if (unlikely(mas_is_err(&vmi->mas))) 1028 return -ENOMEM; 1029 1030 return 0; 1031 } 1032 1033 /* Free any unused preallocations */ vma_iter_free(struct vma_iterator * vmi)1034 static inline void vma_iter_free(struct vma_iterator *vmi) 1035 { 1036 mas_destroy(&vmi->mas); 1037 } 1038 vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)1039 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1040 struct vm_area_struct *vma) 1041 { 1042 vmi->mas.index = vma->vm_start; 1043 vmi->mas.last = vma->vm_end - 1; 1044 mas_store(&vmi->mas, vma); 1045 if (unlikely(mas_is_err(&vmi->mas))) 1046 return -ENOMEM; 1047 1048 return 0; 1049 } 1050 vma_iter_invalidate(struct vma_iterator * vmi)1051 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1052 { 1053 mas_pause(&vmi->mas); 1054 } 1055 vma_iter_set(struct vma_iterator * vmi,unsigned long addr)1056 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1057 { 1058 mas_set(&vmi->mas, addr); 1059 } 1060 1061 #define for_each_vma(__vmi, __vma) \ 1062 while (((__vma) = vma_next(&(__vmi))) != NULL) 1063 1064 /* The MM code likes to work with exclusive end addresses */ 1065 #define for_each_vma_range(__vmi, __vma, __end) \ 1066 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1067 1068 #ifdef CONFIG_SHMEM 1069 /* 1070 * The vma_is_shmem is not inline because it is used only by slow 1071 * paths in userfault. 1072 */ 1073 bool vma_is_shmem(struct vm_area_struct *vma); 1074 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1075 #else vma_is_shmem(struct vm_area_struct * vma)1076 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } vma_is_anon_shmem(struct vm_area_struct * vma)1077 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1078 #endif 1079 1080 int vma_is_stack_for_current(struct vm_area_struct *vma); 1081 1082 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1083 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1084 1085 struct mmu_gather; 1086 struct inode; 1087 1088 /* 1089 * compound_order() can be called without holding a reference, which means 1090 * that niceties like page_folio() don't work. These callers should be 1091 * prepared to handle wild return values. For example, PG_head may be 1092 * set before the order is initialised, or this may be a tail page. 1093 * See compaction.c for some good examples. 1094 */ compound_order(struct page * page)1095 static inline unsigned int compound_order(struct page *page) 1096 { 1097 struct folio *folio = (struct folio *)page; 1098 1099 if (!test_bit(PG_head, &folio->flags)) 1100 return 0; 1101 return folio->_flags_1 & 0xff; 1102 } 1103 1104 /** 1105 * folio_order - The allocation order of a folio. 1106 * @folio: The folio. 1107 * 1108 * A folio is composed of 2^order pages. See get_order() for the definition 1109 * of order. 1110 * 1111 * Return: The order of the folio. 1112 */ folio_order(const struct folio * folio)1113 static inline unsigned int folio_order(const struct folio *folio) 1114 { 1115 if (!folio_test_large(folio)) 1116 return 0; 1117 return folio->_flags_1 & 0xff; 1118 } 1119 1120 #include <linux/huge_mm.h> 1121 1122 /* 1123 * Methods to modify the page usage count. 1124 * 1125 * What counts for a page usage: 1126 * - cache mapping (page->mapping) 1127 * - private data (page->private) 1128 * - page mapped in a task's page tables, each mapping 1129 * is counted separately 1130 * 1131 * Also, many kernel routines increase the page count before a critical 1132 * routine so they can be sure the page doesn't go away from under them. 1133 */ 1134 1135 /* 1136 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1137 */ put_page_testzero(struct page * page)1138 static inline int put_page_testzero(struct page *page) 1139 { 1140 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1141 return page_ref_dec_and_test(page); 1142 } 1143 folio_put_testzero(struct folio * folio)1144 static inline int folio_put_testzero(struct folio *folio) 1145 { 1146 return put_page_testzero(&folio->page); 1147 } 1148 1149 /* 1150 * Try to grab a ref unless the page has a refcount of zero, return false if 1151 * that is the case. 1152 * This can be called when MMU is off so it must not access 1153 * any of the virtual mappings. 1154 */ get_page_unless_zero(struct page * page)1155 static inline bool get_page_unless_zero(struct page *page) 1156 { 1157 return page_ref_add_unless(page, 1, 0); 1158 } 1159 folio_get_nontail_page(struct page * page)1160 static inline struct folio *folio_get_nontail_page(struct page *page) 1161 { 1162 if (unlikely(!get_page_unless_zero(page))) 1163 return NULL; 1164 return (struct folio *)page; 1165 } 1166 1167 extern int page_is_ram(unsigned long pfn); 1168 1169 enum { 1170 REGION_INTERSECTS, 1171 REGION_DISJOINT, 1172 REGION_MIXED, 1173 }; 1174 1175 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1176 unsigned long desc); 1177 1178 /* Support for virtually mapped pages */ 1179 struct page *vmalloc_to_page(const void *addr); 1180 unsigned long vmalloc_to_pfn(const void *addr); 1181 1182 /* 1183 * Determine if an address is within the vmalloc range 1184 * 1185 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1186 * is no special casing required. 1187 */ 1188 #ifdef CONFIG_MMU 1189 extern bool is_vmalloc_addr(const void *x); 1190 extern int is_vmalloc_or_module_addr(const void *x); 1191 #else is_vmalloc_addr(const void * x)1192 static inline bool is_vmalloc_addr(const void *x) 1193 { 1194 return false; 1195 } is_vmalloc_or_module_addr(const void * x)1196 static inline int is_vmalloc_or_module_addr(const void *x) 1197 { 1198 return 0; 1199 } 1200 #endif 1201 1202 /* 1203 * How many times the entire folio is mapped as a single unit (eg by a 1204 * PMD or PUD entry). This is probably not what you want, except for 1205 * debugging purposes or implementation of other core folio_*() primitives. 1206 */ folio_entire_mapcount(const struct folio * folio)1207 static inline int folio_entire_mapcount(const struct folio *folio) 1208 { 1209 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1210 return atomic_read(&folio->_entire_mapcount) + 1; 1211 } 1212 folio_large_mapcount(const struct folio * folio)1213 static inline int folio_large_mapcount(const struct folio *folio) 1214 { 1215 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1216 return atomic_read(&folio->_large_mapcount) + 1; 1217 } 1218 1219 /** 1220 * folio_mapcount() - Number of mappings of this folio. 1221 * @folio: The folio. 1222 * 1223 * The folio mapcount corresponds to the number of present user page table 1224 * entries that reference any part of a folio. Each such present user page 1225 * table entry must be paired with exactly on folio reference. 1226 * 1227 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1228 * exactly once. 1229 * 1230 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1231 * references the entire folio counts exactly once, even when such special 1232 * page table entries are comprised of multiple ordinary page table entries. 1233 * 1234 * Will report 0 for pages which cannot be mapped into userspace, such as 1235 * slab, page tables and similar. 1236 * 1237 * Return: The number of times this folio is mapped. 1238 */ folio_mapcount(const struct folio * folio)1239 static inline int folio_mapcount(const struct folio *folio) 1240 { 1241 int mapcount; 1242 1243 if (likely(!folio_test_large(folio))) { 1244 mapcount = atomic_read(&folio->_mapcount) + 1; 1245 if (page_mapcount_is_type(mapcount)) 1246 mapcount = 0; 1247 return mapcount; 1248 } 1249 return folio_large_mapcount(folio); 1250 } 1251 1252 /** 1253 * folio_mapped - Is this folio mapped into userspace? 1254 * @folio: The folio. 1255 * 1256 * Return: True if any page in this folio is referenced by user page tables. 1257 */ folio_mapped(const struct folio * folio)1258 static inline bool folio_mapped(const struct folio *folio) 1259 { 1260 return folio_mapcount(folio) >= 1; 1261 } 1262 1263 /* 1264 * Return true if this page is mapped into pagetables. 1265 * For compound page it returns true if any sub-page of compound page is mapped, 1266 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1267 */ page_mapped(const struct page * page)1268 static inline bool page_mapped(const struct page *page) 1269 { 1270 return folio_mapped(page_folio(page)); 1271 } 1272 virt_to_head_page(const void * x)1273 static inline struct page *virt_to_head_page(const void *x) 1274 { 1275 struct page *page = virt_to_page(x); 1276 1277 return compound_head(page); 1278 } 1279 virt_to_folio(const void * x)1280 static inline struct folio *virt_to_folio(const void *x) 1281 { 1282 struct page *page = virt_to_page(x); 1283 1284 return page_folio(page); 1285 } 1286 1287 void __folio_put(struct folio *folio); 1288 1289 void put_pages_list(struct list_head *pages); 1290 1291 void split_page(struct page *page, unsigned int order); 1292 void folio_copy(struct folio *dst, struct folio *src); 1293 int folio_mc_copy(struct folio *dst, struct folio *src); 1294 1295 unsigned long nr_free_buffer_pages(void); 1296 1297 /* Returns the number of bytes in this potentially compound page. */ page_size(struct page * page)1298 static inline unsigned long page_size(struct page *page) 1299 { 1300 return PAGE_SIZE << compound_order(page); 1301 } 1302 1303 /* Returns the number of bits needed for the number of bytes in a page */ page_shift(struct page * page)1304 static inline unsigned int page_shift(struct page *page) 1305 { 1306 return PAGE_SHIFT + compound_order(page); 1307 } 1308 1309 /** 1310 * thp_order - Order of a transparent huge page. 1311 * @page: Head page of a transparent huge page. 1312 */ thp_order(struct page * page)1313 static inline unsigned int thp_order(struct page *page) 1314 { 1315 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1316 return compound_order(page); 1317 } 1318 1319 /** 1320 * thp_size - Size of a transparent huge page. 1321 * @page: Head page of a transparent huge page. 1322 * 1323 * Return: Number of bytes in this page. 1324 */ thp_size(struct page * page)1325 static inline unsigned long thp_size(struct page *page) 1326 { 1327 return PAGE_SIZE << thp_order(page); 1328 } 1329 1330 #ifdef CONFIG_MMU 1331 /* 1332 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1333 * servicing faults for write access. In the normal case, do always want 1334 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1335 * that do not have writing enabled, when used by access_process_vm. 1336 */ maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1337 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1338 { 1339 if (likely(vma->vm_flags & VM_WRITE)) 1340 pte = pte_mkwrite(pte, vma); 1341 return pte; 1342 } 1343 1344 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1345 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1346 struct page *page, unsigned int nr, unsigned long addr); 1347 1348 vm_fault_t finish_fault(struct vm_fault *vmf); 1349 #endif 1350 1351 /* 1352 * Multiple processes may "see" the same page. E.g. for untouched 1353 * mappings of /dev/null, all processes see the same page full of 1354 * zeroes, and text pages of executables and shared libraries have 1355 * only one copy in memory, at most, normally. 1356 * 1357 * For the non-reserved pages, page_count(page) denotes a reference count. 1358 * page_count() == 0 means the page is free. page->lru is then used for 1359 * freelist management in the buddy allocator. 1360 * page_count() > 0 means the page has been allocated. 1361 * 1362 * Pages are allocated by the slab allocator in order to provide memory 1363 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1364 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1365 * unless a particular usage is carefully commented. (the responsibility of 1366 * freeing the kmalloc memory is the caller's, of course). 1367 * 1368 * A page may be used by anyone else who does a __get_free_page(). 1369 * In this case, page_count still tracks the references, and should only 1370 * be used through the normal accessor functions. The top bits of page->flags 1371 * and page->virtual store page management information, but all other fields 1372 * are unused and could be used privately, carefully. The management of this 1373 * page is the responsibility of the one who allocated it, and those who have 1374 * subsequently been given references to it. 1375 * 1376 * The other pages (we may call them "pagecache pages") are completely 1377 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1378 * The following discussion applies only to them. 1379 * 1380 * A pagecache page contains an opaque `private' member, which belongs to the 1381 * page's address_space. Usually, this is the address of a circular list of 1382 * the page's disk buffers. PG_private must be set to tell the VM to call 1383 * into the filesystem to release these pages. 1384 * 1385 * A page may belong to an inode's memory mapping. In this case, page->mapping 1386 * is the pointer to the inode, and page->index is the file offset of the page, 1387 * in units of PAGE_SIZE. 1388 * 1389 * If pagecache pages are not associated with an inode, they are said to be 1390 * anonymous pages. These may become associated with the swapcache, and in that 1391 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1392 * 1393 * In either case (swapcache or inode backed), the pagecache itself holds one 1394 * reference to the page. Setting PG_private should also increment the 1395 * refcount. The each user mapping also has a reference to the page. 1396 * 1397 * The pagecache pages are stored in a per-mapping radix tree, which is 1398 * rooted at mapping->i_pages, and indexed by offset. 1399 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1400 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1401 * 1402 * All pagecache pages may be subject to I/O: 1403 * - inode pages may need to be read from disk, 1404 * - inode pages which have been modified and are MAP_SHARED may need 1405 * to be written back to the inode on disk, 1406 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1407 * modified may need to be swapped out to swap space and (later) to be read 1408 * back into memory. 1409 */ 1410 1411 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1412 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1413 1414 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); put_devmap_managed_folio_refs(struct folio * folio,int refs)1415 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1416 { 1417 if (!static_branch_unlikely(&devmap_managed_key)) 1418 return false; 1419 if (!folio_is_zone_device(folio)) 1420 return false; 1421 return __put_devmap_managed_folio_refs(folio, refs); 1422 } 1423 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ put_devmap_managed_folio_refs(struct folio * folio,int refs)1424 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1425 { 1426 return false; 1427 } 1428 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1429 1430 /* 127: arbitrary random number, small enough to assemble well */ 1431 #define folio_ref_zero_or_close_to_overflow(folio) \ 1432 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1433 1434 /** 1435 * folio_get - Increment the reference count on a folio. 1436 * @folio: The folio. 1437 * 1438 * Context: May be called in any context, as long as you know that 1439 * you have a refcount on the folio. If you do not already have one, 1440 * folio_try_get() may be the right interface for you to use. 1441 */ folio_get(struct folio * folio)1442 static inline void folio_get(struct folio *folio) 1443 { 1444 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1445 folio_ref_inc(folio); 1446 } 1447 get_page(struct page * page)1448 static inline void get_page(struct page *page) 1449 { 1450 folio_get(page_folio(page)); 1451 } 1452 try_get_page(struct page * page)1453 static inline __must_check bool try_get_page(struct page *page) 1454 { 1455 page = compound_head(page); 1456 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1457 return false; 1458 page_ref_inc(page); 1459 return true; 1460 } 1461 1462 /** 1463 * folio_put - Decrement the reference count on a folio. 1464 * @folio: The folio. 1465 * 1466 * If the folio's reference count reaches zero, the memory will be 1467 * released back to the page allocator and may be used by another 1468 * allocation immediately. Do not access the memory or the struct folio 1469 * after calling folio_put() unless you can be sure that it wasn't the 1470 * last reference. 1471 * 1472 * Context: May be called in process or interrupt context, but not in NMI 1473 * context. May be called while holding a spinlock. 1474 */ folio_put(struct folio * folio)1475 static inline void folio_put(struct folio *folio) 1476 { 1477 if (folio_put_testzero(folio)) 1478 __folio_put(folio); 1479 } 1480 1481 /** 1482 * folio_put_refs - Reduce the reference count on a folio. 1483 * @folio: The folio. 1484 * @refs: The amount to subtract from the folio's reference count. 1485 * 1486 * If the folio's reference count reaches zero, the memory will be 1487 * released back to the page allocator and may be used by another 1488 * allocation immediately. Do not access the memory or the struct folio 1489 * after calling folio_put_refs() unless you can be sure that these weren't 1490 * the last references. 1491 * 1492 * Context: May be called in process or interrupt context, but not in NMI 1493 * context. May be called while holding a spinlock. 1494 */ folio_put_refs(struct folio * folio,int refs)1495 static inline void folio_put_refs(struct folio *folio, int refs) 1496 { 1497 if (folio_ref_sub_and_test(folio, refs)) 1498 __folio_put(folio); 1499 } 1500 1501 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1502 1503 /* 1504 * union release_pages_arg - an array of pages or folios 1505 * 1506 * release_pages() releases a simple array of multiple pages, and 1507 * accepts various different forms of said page array: either 1508 * a regular old boring array of pages, an array of folios, or 1509 * an array of encoded page pointers. 1510 * 1511 * The transparent union syntax for this kind of "any of these 1512 * argument types" is all kinds of ugly, so look away. 1513 */ 1514 typedef union { 1515 struct page **pages; 1516 struct folio **folios; 1517 struct encoded_page **encoded_pages; 1518 } release_pages_arg __attribute__ ((__transparent_union__)); 1519 1520 void release_pages(release_pages_arg, int nr); 1521 1522 /** 1523 * folios_put - Decrement the reference count on an array of folios. 1524 * @folios: The folios. 1525 * 1526 * Like folio_put(), but for a batch of folios. This is more efficient 1527 * than writing the loop yourself as it will optimise the locks which need 1528 * to be taken if the folios are freed. The folios batch is returned 1529 * empty and ready to be reused for another batch; there is no need to 1530 * reinitialise it. 1531 * 1532 * Context: May be called in process or interrupt context, but not in NMI 1533 * context. May be called while holding a spinlock. 1534 */ folios_put(struct folio_batch * folios)1535 static inline void folios_put(struct folio_batch *folios) 1536 { 1537 folios_put_refs(folios, NULL); 1538 } 1539 put_page(struct page * page)1540 static inline void put_page(struct page *page) 1541 { 1542 struct folio *folio = page_folio(page); 1543 1544 /* 1545 * For some devmap managed pages we need to catch refcount transition 1546 * from 2 to 1: 1547 */ 1548 if (put_devmap_managed_folio_refs(folio, 1)) 1549 return; 1550 folio_put(folio); 1551 } 1552 1553 /* 1554 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1555 * the page's refcount so that two separate items are tracked: the original page 1556 * reference count, and also a new count of how many pin_user_pages() calls were 1557 * made against the page. ("gup-pinned" is another term for the latter). 1558 * 1559 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1560 * distinct from normal pages. As such, the unpin_user_page() call (and its 1561 * variants) must be used in order to release gup-pinned pages. 1562 * 1563 * Choice of value: 1564 * 1565 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1566 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1567 * simpler, due to the fact that adding an even power of two to the page 1568 * refcount has the effect of using only the upper N bits, for the code that 1569 * counts up using the bias value. This means that the lower bits are left for 1570 * the exclusive use of the original code that increments and decrements by one 1571 * (or at least, by much smaller values than the bias value). 1572 * 1573 * Of course, once the lower bits overflow into the upper bits (and this is 1574 * OK, because subtraction recovers the original values), then visual inspection 1575 * no longer suffices to directly view the separate counts. However, for normal 1576 * applications that don't have huge page reference counts, this won't be an 1577 * issue. 1578 * 1579 * Locking: the lockless algorithm described in folio_try_get_rcu() 1580 * provides safe operation for get_user_pages(), folio_mkclean() and 1581 * other calls that race to set up page table entries. 1582 */ 1583 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1584 1585 void unpin_user_page(struct page *page); 1586 void unpin_folio(struct folio *folio); 1587 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1588 bool make_dirty); 1589 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1590 bool make_dirty); 1591 void unpin_user_pages(struct page **pages, unsigned long npages); 1592 void unpin_user_folio(struct folio *folio, unsigned long npages); 1593 void unpin_folios(struct folio **folios, unsigned long nfolios); 1594 is_cow_mapping(vm_flags_t flags)1595 static inline bool is_cow_mapping(vm_flags_t flags) 1596 { 1597 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1598 } 1599 1600 #ifndef CONFIG_MMU is_nommu_shared_mapping(vm_flags_t flags)1601 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1602 { 1603 /* 1604 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1605 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1606 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1607 * underlying memory if ptrace is active, so this is only possible if 1608 * ptrace does not apply. Note that there is no mprotect() to upgrade 1609 * write permissions later. 1610 */ 1611 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1612 } 1613 #endif 1614 1615 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1616 #define SECTION_IN_PAGE_FLAGS 1617 #endif 1618 1619 /* 1620 * The identification function is mainly used by the buddy allocator for 1621 * determining if two pages could be buddies. We are not really identifying 1622 * the zone since we could be using the section number id if we do not have 1623 * node id available in page flags. 1624 * We only guarantee that it will return the same value for two combinable 1625 * pages in a zone. 1626 */ page_zone_id(struct page * page)1627 static inline int page_zone_id(struct page *page) 1628 { 1629 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1630 } 1631 1632 #ifdef NODE_NOT_IN_PAGE_FLAGS 1633 int page_to_nid(const struct page *page); 1634 #else page_to_nid(const struct page * page)1635 static inline int page_to_nid(const struct page *page) 1636 { 1637 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1638 } 1639 #endif 1640 folio_nid(const struct folio * folio)1641 static inline int folio_nid(const struct folio *folio) 1642 { 1643 return page_to_nid(&folio->page); 1644 } 1645 1646 #ifdef CONFIG_NUMA_BALANCING 1647 /* page access time bits needs to hold at least 4 seconds */ 1648 #define PAGE_ACCESS_TIME_MIN_BITS 12 1649 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1650 #define PAGE_ACCESS_TIME_BUCKETS \ 1651 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1652 #else 1653 #define PAGE_ACCESS_TIME_BUCKETS 0 1654 #endif 1655 1656 #define PAGE_ACCESS_TIME_MASK \ 1657 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1658 cpu_pid_to_cpupid(int cpu,int pid)1659 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1660 { 1661 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1662 } 1663 cpupid_to_pid(int cpupid)1664 static inline int cpupid_to_pid(int cpupid) 1665 { 1666 return cpupid & LAST__PID_MASK; 1667 } 1668 cpupid_to_cpu(int cpupid)1669 static inline int cpupid_to_cpu(int cpupid) 1670 { 1671 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1672 } 1673 cpupid_to_nid(int cpupid)1674 static inline int cpupid_to_nid(int cpupid) 1675 { 1676 return cpu_to_node(cpupid_to_cpu(cpupid)); 1677 } 1678 cpupid_pid_unset(int cpupid)1679 static inline bool cpupid_pid_unset(int cpupid) 1680 { 1681 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1682 } 1683 cpupid_cpu_unset(int cpupid)1684 static inline bool cpupid_cpu_unset(int cpupid) 1685 { 1686 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1687 } 1688 __cpupid_match_pid(pid_t task_pid,int cpupid)1689 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1690 { 1691 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1692 } 1693 1694 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1695 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS folio_xchg_last_cpupid(struct folio * folio,int cpupid)1696 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1697 { 1698 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1699 } 1700 folio_last_cpupid(struct folio * folio)1701 static inline int folio_last_cpupid(struct folio *folio) 1702 { 1703 return folio->_last_cpupid; 1704 } page_cpupid_reset_last(struct page * page)1705 static inline void page_cpupid_reset_last(struct page *page) 1706 { 1707 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1708 } 1709 #else folio_last_cpupid(struct folio * folio)1710 static inline int folio_last_cpupid(struct folio *folio) 1711 { 1712 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1713 } 1714 1715 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1716 page_cpupid_reset_last(struct page * page)1717 static inline void page_cpupid_reset_last(struct page *page) 1718 { 1719 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1720 } 1721 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1722 folio_xchg_access_time(struct folio * folio,int time)1723 static inline int folio_xchg_access_time(struct folio *folio, int time) 1724 { 1725 int last_time; 1726 1727 last_time = folio_xchg_last_cpupid(folio, 1728 time >> PAGE_ACCESS_TIME_BUCKETS); 1729 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1730 } 1731 vma_set_access_pid_bit(struct vm_area_struct * vma)1732 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1733 { 1734 unsigned int pid_bit; 1735 1736 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1737 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1738 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1739 } 1740 } 1741 1742 bool folio_use_access_time(struct folio *folio); 1743 #else /* !CONFIG_NUMA_BALANCING */ folio_xchg_last_cpupid(struct folio * folio,int cpupid)1744 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1745 { 1746 return folio_nid(folio); /* XXX */ 1747 } 1748 folio_xchg_access_time(struct folio * folio,int time)1749 static inline int folio_xchg_access_time(struct folio *folio, int time) 1750 { 1751 return 0; 1752 } 1753 folio_last_cpupid(struct folio * folio)1754 static inline int folio_last_cpupid(struct folio *folio) 1755 { 1756 return folio_nid(folio); /* XXX */ 1757 } 1758 cpupid_to_nid(int cpupid)1759 static inline int cpupid_to_nid(int cpupid) 1760 { 1761 return -1; 1762 } 1763 cpupid_to_pid(int cpupid)1764 static inline int cpupid_to_pid(int cpupid) 1765 { 1766 return -1; 1767 } 1768 cpupid_to_cpu(int cpupid)1769 static inline int cpupid_to_cpu(int cpupid) 1770 { 1771 return -1; 1772 } 1773 cpu_pid_to_cpupid(int nid,int pid)1774 static inline int cpu_pid_to_cpupid(int nid, int pid) 1775 { 1776 return -1; 1777 } 1778 cpupid_pid_unset(int cpupid)1779 static inline bool cpupid_pid_unset(int cpupid) 1780 { 1781 return true; 1782 } 1783 page_cpupid_reset_last(struct page * page)1784 static inline void page_cpupid_reset_last(struct page *page) 1785 { 1786 } 1787 cpupid_match_pid(struct task_struct * task,int cpupid)1788 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1789 { 1790 return false; 1791 } 1792 vma_set_access_pid_bit(struct vm_area_struct * vma)1793 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1794 { 1795 } folio_use_access_time(struct folio * folio)1796 static inline bool folio_use_access_time(struct folio *folio) 1797 { 1798 return false; 1799 } 1800 #endif /* CONFIG_NUMA_BALANCING */ 1801 1802 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1803 1804 /* 1805 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1806 * setting tags for all pages to native kernel tag value 0xff, as the default 1807 * value 0x00 maps to 0xff. 1808 */ 1809 page_kasan_tag(const struct page * page)1810 static inline u8 page_kasan_tag(const struct page *page) 1811 { 1812 u8 tag = KASAN_TAG_KERNEL; 1813 1814 if (kasan_enabled()) { 1815 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1816 tag ^= 0xff; 1817 } 1818 1819 return tag; 1820 } 1821 page_kasan_tag_set(struct page * page,u8 tag)1822 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1823 { 1824 unsigned long old_flags, flags; 1825 1826 if (!kasan_enabled()) 1827 return; 1828 1829 tag ^= 0xff; 1830 old_flags = READ_ONCE(page->flags); 1831 do { 1832 flags = old_flags; 1833 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1834 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1835 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1836 } 1837 page_kasan_tag_reset(struct page * page)1838 static inline void page_kasan_tag_reset(struct page *page) 1839 { 1840 if (kasan_enabled()) 1841 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1842 } 1843 1844 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1845 page_kasan_tag(const struct page * page)1846 static inline u8 page_kasan_tag(const struct page *page) 1847 { 1848 return 0xff; 1849 } 1850 page_kasan_tag_set(struct page * page,u8 tag)1851 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } page_kasan_tag_reset(struct page * page)1852 static inline void page_kasan_tag_reset(struct page *page) { } 1853 1854 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1855 page_zone(const struct page * page)1856 static inline struct zone *page_zone(const struct page *page) 1857 { 1858 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1859 } 1860 page_pgdat(const struct page * page)1861 static inline pg_data_t *page_pgdat(const struct page *page) 1862 { 1863 return NODE_DATA(page_to_nid(page)); 1864 } 1865 folio_zone(const struct folio * folio)1866 static inline struct zone *folio_zone(const struct folio *folio) 1867 { 1868 return page_zone(&folio->page); 1869 } 1870 folio_pgdat(const struct folio * folio)1871 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1872 { 1873 return page_pgdat(&folio->page); 1874 } 1875 1876 #ifdef SECTION_IN_PAGE_FLAGS set_page_section(struct page * page,unsigned long section)1877 static inline void set_page_section(struct page *page, unsigned long section) 1878 { 1879 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1880 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1881 } 1882 page_to_section(const struct page * page)1883 static inline unsigned long page_to_section(const struct page *page) 1884 { 1885 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1886 } 1887 #endif 1888 1889 /** 1890 * folio_pfn - Return the Page Frame Number of a folio. 1891 * @folio: The folio. 1892 * 1893 * A folio may contain multiple pages. The pages have consecutive 1894 * Page Frame Numbers. 1895 * 1896 * Return: The Page Frame Number of the first page in the folio. 1897 */ folio_pfn(struct folio * folio)1898 static inline unsigned long folio_pfn(struct folio *folio) 1899 { 1900 return page_to_pfn(&folio->page); 1901 } 1902 pfn_folio(unsigned long pfn)1903 static inline struct folio *pfn_folio(unsigned long pfn) 1904 { 1905 return page_folio(pfn_to_page(pfn)); 1906 } 1907 1908 /** 1909 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1910 * @folio: The folio. 1911 * 1912 * This function checks if a folio has been pinned via a call to 1913 * a function in the pin_user_pages() family. 1914 * 1915 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1916 * because it means "definitely not pinned for DMA", but true means "probably 1917 * pinned for DMA, but possibly a false positive due to having at least 1918 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1919 * 1920 * False positives are OK, because: a) it's unlikely for a folio to 1921 * get that many refcounts, and b) all the callers of this routine are 1922 * expected to be able to deal gracefully with a false positive. 1923 * 1924 * For large folios, the result will be exactly correct. That's because 1925 * we have more tracking data available: the _pincount field is used 1926 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1927 * 1928 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1929 * 1930 * Return: True, if it is likely that the folio has been "dma-pinned". 1931 * False, if the folio is definitely not dma-pinned. 1932 */ folio_maybe_dma_pinned(struct folio * folio)1933 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1934 { 1935 if (folio_test_large(folio)) 1936 return atomic_read(&folio->_pincount) > 0; 1937 1938 /* 1939 * folio_ref_count() is signed. If that refcount overflows, then 1940 * folio_ref_count() returns a negative value, and callers will avoid 1941 * further incrementing the refcount. 1942 * 1943 * Here, for that overflow case, use the sign bit to count a little 1944 * bit higher via unsigned math, and thus still get an accurate result. 1945 */ 1946 return ((unsigned int)folio_ref_count(folio)) >= 1947 GUP_PIN_COUNTING_BIAS; 1948 } 1949 1950 /* 1951 * This should most likely only be called during fork() to see whether we 1952 * should break the cow immediately for an anon page on the src mm. 1953 * 1954 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1955 */ folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)1956 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1957 struct folio *folio) 1958 { 1959 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1960 1961 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1962 return false; 1963 1964 return folio_maybe_dma_pinned(folio); 1965 } 1966 1967 /** 1968 * is_zero_page - Query if a page is a zero page 1969 * @page: The page to query 1970 * 1971 * This returns true if @page is one of the permanent zero pages. 1972 */ is_zero_page(const struct page * page)1973 static inline bool is_zero_page(const struct page *page) 1974 { 1975 return is_zero_pfn(page_to_pfn(page)); 1976 } 1977 1978 /** 1979 * is_zero_folio - Query if a folio is a zero page 1980 * @folio: The folio to query 1981 * 1982 * This returns true if @folio is one of the permanent zero pages. 1983 */ is_zero_folio(const struct folio * folio)1984 static inline bool is_zero_folio(const struct folio *folio) 1985 { 1986 return is_zero_page(&folio->page); 1987 } 1988 1989 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1990 #ifdef CONFIG_MIGRATION folio_is_longterm_pinnable(struct folio * folio)1991 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1992 { 1993 #ifdef CONFIG_CMA 1994 int mt = folio_migratetype(folio); 1995 1996 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1997 return false; 1998 #endif 1999 /* The zero page can be "pinned" but gets special handling. */ 2000 if (is_zero_folio(folio)) 2001 return true; 2002 2003 /* Coherent device memory must always allow eviction. */ 2004 if (folio_is_device_coherent(folio)) 2005 return false; 2006 2007 /* Otherwise, non-movable zone folios can be pinned. */ 2008 return !folio_is_zone_movable(folio); 2009 2010 } 2011 #else folio_is_longterm_pinnable(struct folio * folio)2012 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2013 { 2014 return true; 2015 } 2016 #endif 2017 set_page_zone(struct page * page,enum zone_type zone)2018 static inline void set_page_zone(struct page *page, enum zone_type zone) 2019 { 2020 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2021 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2022 } 2023 set_page_node(struct page * page,unsigned long node)2024 static inline void set_page_node(struct page *page, unsigned long node) 2025 { 2026 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2027 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2028 } 2029 set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)2030 static inline void set_page_links(struct page *page, enum zone_type zone, 2031 unsigned long node, unsigned long pfn) 2032 { 2033 set_page_zone(page, zone); 2034 set_page_node(page, node); 2035 #ifdef SECTION_IN_PAGE_FLAGS 2036 set_page_section(page, pfn_to_section_nr(pfn)); 2037 #endif 2038 } 2039 2040 /** 2041 * folio_nr_pages - The number of pages in the folio. 2042 * @folio: The folio. 2043 * 2044 * Return: A positive power of two. 2045 */ folio_nr_pages(const struct folio * folio)2046 static inline long folio_nr_pages(const struct folio *folio) 2047 { 2048 if (!folio_test_large(folio)) 2049 return 1; 2050 #ifdef CONFIG_64BIT 2051 return folio->_folio_nr_pages; 2052 #else 2053 return 1L << (folio->_flags_1 & 0xff); 2054 #endif 2055 } 2056 2057 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2058 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2059 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2060 #else 2061 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2062 #endif 2063 2064 /* 2065 * compound_nr() returns the number of pages in this potentially compound 2066 * page. compound_nr() can be called on a tail page, and is defined to 2067 * return 1 in that case. 2068 */ compound_nr(struct page * page)2069 static inline unsigned long compound_nr(struct page *page) 2070 { 2071 struct folio *folio = (struct folio *)page; 2072 2073 if (!test_bit(PG_head, &folio->flags)) 2074 return 1; 2075 #ifdef CONFIG_64BIT 2076 return folio->_folio_nr_pages; 2077 #else 2078 return 1L << (folio->_flags_1 & 0xff); 2079 #endif 2080 } 2081 2082 /** 2083 * thp_nr_pages - The number of regular pages in this huge page. 2084 * @page: The head page of a huge page. 2085 */ thp_nr_pages(struct page * page)2086 static inline int thp_nr_pages(struct page *page) 2087 { 2088 return folio_nr_pages((struct folio *)page); 2089 } 2090 2091 /** 2092 * folio_next - Move to the next physical folio. 2093 * @folio: The folio we're currently operating on. 2094 * 2095 * If you have physically contiguous memory which may span more than 2096 * one folio (eg a &struct bio_vec), use this function to move from one 2097 * folio to the next. Do not use it if the memory is only virtually 2098 * contiguous as the folios are almost certainly not adjacent to each 2099 * other. This is the folio equivalent to writing ``page++``. 2100 * 2101 * Context: We assume that the folios are refcounted and/or locked at a 2102 * higher level and do not adjust the reference counts. 2103 * Return: The next struct folio. 2104 */ folio_next(struct folio * folio)2105 static inline struct folio *folio_next(struct folio *folio) 2106 { 2107 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2108 } 2109 2110 /** 2111 * folio_shift - The size of the memory described by this folio. 2112 * @folio: The folio. 2113 * 2114 * A folio represents a number of bytes which is a power-of-two in size. 2115 * This function tells you which power-of-two the folio is. See also 2116 * folio_size() and folio_order(). 2117 * 2118 * Context: The caller should have a reference on the folio to prevent 2119 * it from being split. It is not necessary for the folio to be locked. 2120 * Return: The base-2 logarithm of the size of this folio. 2121 */ folio_shift(const struct folio * folio)2122 static inline unsigned int folio_shift(const struct folio *folio) 2123 { 2124 return PAGE_SHIFT + folio_order(folio); 2125 } 2126 2127 /** 2128 * folio_size - The number of bytes in a folio. 2129 * @folio: The folio. 2130 * 2131 * Context: The caller should have a reference on the folio to prevent 2132 * it from being split. It is not necessary for the folio to be locked. 2133 * Return: The number of bytes in this folio. 2134 */ folio_size(const struct folio * folio)2135 static inline size_t folio_size(const struct folio *folio) 2136 { 2137 return PAGE_SIZE << folio_order(folio); 2138 } 2139 2140 /** 2141 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page 2142 * tables of more than one MM 2143 * @folio: The folio. 2144 * 2145 * This function checks if the folio is currently mapped into more than one 2146 * MM ("mapped shared"), or if the folio is only mapped into a single MM 2147 * ("mapped exclusively"). 2148 * 2149 * For KSM folios, this function also returns "mapped shared" when a folio is 2150 * mapped multiple times into the same MM, because the individual page mappings 2151 * are independent. 2152 * 2153 * As precise information is not easily available for all folios, this function 2154 * estimates the number of MMs ("sharers") that are currently mapping a folio 2155 * using the number of times the first page of the folio is currently mapped 2156 * into page tables. 2157 * 2158 * For small anonymous folios and anonymous hugetlb folios, the return 2159 * value will be exactly correct: non-KSM folios can only be mapped at most once 2160 * into an MM, and they cannot be partially mapped. KSM folios are 2161 * considered shared even if mapped multiple times into the same MM. 2162 * 2163 * For other folios, the result can be fuzzy: 2164 * #. For partially-mappable large folios (THP), the return value can wrongly 2165 * indicate "mapped exclusively" (false negative) when the folio is 2166 * only partially mapped into at least one MM. 2167 * #. For pagecache folios (including hugetlb), the return value can wrongly 2168 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2169 * cover the same file range. 2170 * 2171 * Further, this function only considers current page table mappings that 2172 * are tracked using the folio mapcount(s). 2173 * 2174 * This function does not consider: 2175 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2176 * pagecache, temporary unmapping for migration). 2177 * #. If the folio is mapped differently (VM_PFNMAP). 2178 * #. If hugetlb page table sharing applies. Callers might want to check 2179 * hugetlb_pmd_shared(). 2180 * 2181 * Return: Whether the folio is estimated to be mapped into more than one MM. 2182 */ folio_likely_mapped_shared(struct folio * folio)2183 static inline bool folio_likely_mapped_shared(struct folio *folio) 2184 { 2185 int mapcount = folio_mapcount(folio); 2186 2187 /* Only partially-mappable folios require more care. */ 2188 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2189 return mapcount > 1; 2190 2191 /* A single mapping implies "mapped exclusively". */ 2192 if (mapcount <= 1) 2193 return false; 2194 2195 /* If any page is mapped more than once we treat it "mapped shared". */ 2196 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) 2197 return true; 2198 2199 /* Let's guess based on the first subpage. */ 2200 return atomic_read(&folio->_mapcount) > 0; 2201 } 2202 2203 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE arch_make_folio_accessible(struct folio * folio)2204 static inline int arch_make_folio_accessible(struct folio *folio) 2205 { 2206 return 0; 2207 } 2208 #endif 2209 2210 /* 2211 * Some inline functions in vmstat.h depend on page_zone() 2212 */ 2213 #include <linux/vmstat.h> 2214 2215 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2216 #define HASHED_PAGE_VIRTUAL 2217 #endif 2218 2219 #if defined(WANT_PAGE_VIRTUAL) page_address(const struct page * page)2220 static inline void *page_address(const struct page *page) 2221 { 2222 return page->virtual; 2223 } set_page_address(struct page * page,void * address)2224 static inline void set_page_address(struct page *page, void *address) 2225 { 2226 page->virtual = address; 2227 } 2228 #define page_address_init() do { } while(0) 2229 #endif 2230 2231 #if defined(HASHED_PAGE_VIRTUAL) 2232 void *page_address(const struct page *page); 2233 void set_page_address(struct page *page, void *virtual); 2234 void page_address_init(void); 2235 #endif 2236 lowmem_page_address(const struct page * page)2237 static __always_inline void *lowmem_page_address(const struct page *page) 2238 { 2239 return page_to_virt(page); 2240 } 2241 2242 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2243 #define page_address(page) lowmem_page_address(page) 2244 #define set_page_address(page, address) do { } while(0) 2245 #define page_address_init() do { } while(0) 2246 #endif 2247 folio_address(const struct folio * folio)2248 static inline void *folio_address(const struct folio *folio) 2249 { 2250 return page_address(&folio->page); 2251 } 2252 2253 /* 2254 * Return true only if the page has been allocated with 2255 * ALLOC_NO_WATERMARKS and the low watermark was not 2256 * met implying that the system is under some pressure. 2257 */ page_is_pfmemalloc(const struct page * page)2258 static inline bool page_is_pfmemalloc(const struct page *page) 2259 { 2260 /* 2261 * lru.next has bit 1 set if the page is allocated from the 2262 * pfmemalloc reserves. Callers may simply overwrite it if 2263 * they do not need to preserve that information. 2264 */ 2265 return (uintptr_t)page->lru.next & BIT(1); 2266 } 2267 2268 /* 2269 * Return true only if the folio has been allocated with 2270 * ALLOC_NO_WATERMARKS and the low watermark was not 2271 * met implying that the system is under some pressure. 2272 */ folio_is_pfmemalloc(const struct folio * folio)2273 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2274 { 2275 /* 2276 * lru.next has bit 1 set if the page is allocated from the 2277 * pfmemalloc reserves. Callers may simply overwrite it if 2278 * they do not need to preserve that information. 2279 */ 2280 return (uintptr_t)folio->lru.next & BIT(1); 2281 } 2282 2283 /* 2284 * Only to be called by the page allocator on a freshly allocated 2285 * page. 2286 */ set_page_pfmemalloc(struct page * page)2287 static inline void set_page_pfmemalloc(struct page *page) 2288 { 2289 page->lru.next = (void *)BIT(1); 2290 } 2291 clear_page_pfmemalloc(struct page * page)2292 static inline void clear_page_pfmemalloc(struct page *page) 2293 { 2294 page->lru.next = NULL; 2295 } 2296 2297 /* 2298 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2299 */ 2300 extern void pagefault_out_of_memory(void); 2301 2302 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2303 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2304 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2305 2306 /* 2307 * Parameter block passed down to zap_pte_range in exceptional cases. 2308 */ 2309 struct zap_details { 2310 struct folio *single_folio; /* Locked folio to be unmapped */ 2311 bool even_cows; /* Zap COWed private pages too? */ 2312 zap_flags_t zap_flags; /* Extra flags for zapping */ 2313 }; 2314 2315 /* 2316 * Whether to drop the pte markers, for example, the uffd-wp information for 2317 * file-backed memory. This should only be specified when we will completely 2318 * drop the page in the mm, either by truncation or unmapping of the vma. By 2319 * default, the flag is not set. 2320 */ 2321 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2322 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2323 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2324 2325 #ifdef CONFIG_SCHED_MM_CID 2326 void sched_mm_cid_before_execve(struct task_struct *t); 2327 void sched_mm_cid_after_execve(struct task_struct *t); 2328 void sched_mm_cid_fork(struct task_struct *t); 2329 void sched_mm_cid_exit_signals(struct task_struct *t); task_mm_cid(struct task_struct * t)2330 static inline int task_mm_cid(struct task_struct *t) 2331 { 2332 return t->mm_cid; 2333 } 2334 #else sched_mm_cid_before_execve(struct task_struct * t)2335 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } sched_mm_cid_after_execve(struct task_struct * t)2336 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } sched_mm_cid_fork(struct task_struct * t)2337 static inline void sched_mm_cid_fork(struct task_struct *t) { } sched_mm_cid_exit_signals(struct task_struct * t)2338 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } task_mm_cid(struct task_struct * t)2339 static inline int task_mm_cid(struct task_struct *t) 2340 { 2341 /* 2342 * Use the processor id as a fall-back when the mm cid feature is 2343 * disabled. This provides functional per-cpu data structure accesses 2344 * in user-space, althrough it won't provide the memory usage benefits. 2345 */ 2346 return raw_smp_processor_id(); 2347 } 2348 #endif 2349 2350 #ifdef CONFIG_MMU 2351 extern bool can_do_mlock(void); 2352 #else can_do_mlock(void)2353 static inline bool can_do_mlock(void) { return false; } 2354 #endif 2355 extern int user_shm_lock(size_t, struct ucounts *); 2356 extern void user_shm_unlock(size_t, struct ucounts *); 2357 2358 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2359 pte_t pte); 2360 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2361 pte_t pte); 2362 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2363 unsigned long addr, pmd_t pmd); 2364 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2365 pmd_t pmd); 2366 2367 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2368 unsigned long size); 2369 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2370 unsigned long size, struct zap_details *details); zap_vma_pages(struct vm_area_struct * vma)2371 static inline void zap_vma_pages(struct vm_area_struct *vma) 2372 { 2373 zap_page_range_single(vma, vma->vm_start, 2374 vma->vm_end - vma->vm_start, NULL); 2375 } 2376 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2377 struct vm_area_struct *start_vma, unsigned long start, 2378 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2379 2380 struct mmu_notifier_range; 2381 2382 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2383 unsigned long end, unsigned long floor, unsigned long ceiling); 2384 int 2385 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2386 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2387 void *buf, int len, int write); 2388 2389 struct follow_pfnmap_args { 2390 /** 2391 * Inputs: 2392 * @vma: Pointer to @vm_area_struct struct 2393 * @address: the virtual address to walk 2394 */ 2395 struct vm_area_struct *vma; 2396 unsigned long address; 2397 /** 2398 * Internals: 2399 * 2400 * The caller shouldn't touch any of these. 2401 */ 2402 spinlock_t *lock; 2403 pte_t *ptep; 2404 /** 2405 * Outputs: 2406 * 2407 * @pfn: the PFN of the address 2408 * @pgprot: the pgprot_t of the mapping 2409 * @writable: whether the mapping is writable 2410 * @special: whether the mapping is a special mapping (real PFN maps) 2411 */ 2412 unsigned long pfn; 2413 pgprot_t pgprot; 2414 bool writable; 2415 bool special; 2416 }; 2417 int follow_pfnmap_start(struct follow_pfnmap_args *args); 2418 void follow_pfnmap_end(struct follow_pfnmap_args *args); 2419 2420 extern void truncate_pagecache(struct inode *inode, loff_t new); 2421 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2422 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2423 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2424 int generic_error_remove_folio(struct address_space *mapping, 2425 struct folio *folio); 2426 2427 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2428 unsigned long address, struct pt_regs *regs); 2429 2430 #ifdef CONFIG_MMU 2431 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2432 unsigned long address, unsigned int flags, 2433 struct pt_regs *regs); 2434 extern int fixup_user_fault(struct mm_struct *mm, 2435 unsigned long address, unsigned int fault_flags, 2436 bool *unlocked); 2437 void unmap_mapping_pages(struct address_space *mapping, 2438 pgoff_t start, pgoff_t nr, bool even_cows); 2439 void unmap_mapping_range(struct address_space *mapping, 2440 loff_t const holebegin, loff_t const holelen, int even_cows); 2441 #else handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2442 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2443 unsigned long address, unsigned int flags, 2444 struct pt_regs *regs) 2445 { 2446 /* should never happen if there's no MMU */ 2447 BUG(); 2448 return VM_FAULT_SIGBUS; 2449 } fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2450 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2451 unsigned int fault_flags, bool *unlocked) 2452 { 2453 /* should never happen if there's no MMU */ 2454 BUG(); 2455 return -EFAULT; 2456 } unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2457 static inline void unmap_mapping_pages(struct address_space *mapping, 2458 pgoff_t start, pgoff_t nr, bool even_cows) { } unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2459 static inline void unmap_mapping_range(struct address_space *mapping, 2460 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2461 #endif 2462 unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2463 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2464 loff_t const holebegin, loff_t const holelen) 2465 { 2466 unmap_mapping_range(mapping, holebegin, holelen, 0); 2467 } 2468 2469 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2470 unsigned long addr); 2471 2472 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2473 void *buf, int len, unsigned int gup_flags); 2474 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2475 void *buf, int len, unsigned int gup_flags); 2476 2477 long get_user_pages_remote(struct mm_struct *mm, 2478 unsigned long start, unsigned long nr_pages, 2479 unsigned int gup_flags, struct page **pages, 2480 int *locked); 2481 long pin_user_pages_remote(struct mm_struct *mm, 2482 unsigned long start, unsigned long nr_pages, 2483 unsigned int gup_flags, struct page **pages, 2484 int *locked); 2485 2486 /* 2487 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2488 */ get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2489 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2490 unsigned long addr, 2491 int gup_flags, 2492 struct vm_area_struct **vmap) 2493 { 2494 struct page *page; 2495 struct vm_area_struct *vma; 2496 int got; 2497 2498 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2499 return ERR_PTR(-EINVAL); 2500 2501 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2502 2503 if (got < 0) 2504 return ERR_PTR(got); 2505 2506 vma = vma_lookup(mm, addr); 2507 if (WARN_ON_ONCE(!vma)) { 2508 put_page(page); 2509 return ERR_PTR(-EINVAL); 2510 } 2511 2512 *vmap = vma; 2513 return page; 2514 } 2515 2516 long get_user_pages(unsigned long start, unsigned long nr_pages, 2517 unsigned int gup_flags, struct page **pages); 2518 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2519 unsigned int gup_flags, struct page **pages); 2520 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2521 struct page **pages, unsigned int gup_flags); 2522 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2523 struct page **pages, unsigned int gup_flags); 2524 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2525 struct folio **folios, unsigned int max_folios, 2526 pgoff_t *offset); 2527 2528 int get_user_pages_fast(unsigned long start, int nr_pages, 2529 unsigned int gup_flags, struct page **pages); 2530 int pin_user_pages_fast(unsigned long start, int nr_pages, 2531 unsigned int gup_flags, struct page **pages); 2532 void folio_add_pin(struct folio *folio); 2533 2534 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2535 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2536 struct task_struct *task, bool bypass_rlim); 2537 2538 struct kvec; 2539 struct page *get_dump_page(unsigned long addr); 2540 2541 bool folio_mark_dirty(struct folio *folio); 2542 bool set_page_dirty(struct page *page); 2543 int set_page_dirty_lock(struct page *page); 2544 2545 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2546 2547 /* 2548 * Flags used by change_protection(). For now we make it a bitmap so 2549 * that we can pass in multiple flags just like parameters. However 2550 * for now all the callers are only use one of the flags at the same 2551 * time. 2552 */ 2553 /* 2554 * Whether we should manually check if we can map individual PTEs writable, 2555 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2556 * PTEs automatically in a writable mapping. 2557 */ 2558 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2559 /* Whether this protection change is for NUMA hints */ 2560 #define MM_CP_PROT_NUMA (1UL << 1) 2561 /* Whether this change is for write protecting */ 2562 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2563 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2564 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2565 MM_CP_UFFD_WP_RESOLVE) 2566 2567 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2568 pte_t pte); 2569 extern long change_protection(struct mmu_gather *tlb, 2570 struct vm_area_struct *vma, unsigned long start, 2571 unsigned long end, unsigned long cp_flags); 2572 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2573 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2574 unsigned long start, unsigned long end, unsigned long newflags); 2575 2576 /* 2577 * doesn't attempt to fault and will return short. 2578 */ 2579 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2580 unsigned int gup_flags, struct page **pages); 2581 get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2582 static inline bool get_user_page_fast_only(unsigned long addr, 2583 unsigned int gup_flags, struct page **pagep) 2584 { 2585 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2586 } 2587 /* 2588 * per-process(per-mm_struct) statistics. 2589 */ get_mm_counter(struct mm_struct * mm,int member)2590 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2591 { 2592 return percpu_counter_read_positive(&mm->rss_stat[member]); 2593 } 2594 2595 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2596 add_mm_counter(struct mm_struct * mm,int member,long value)2597 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2598 { 2599 percpu_counter_add(&mm->rss_stat[member], value); 2600 2601 mm_trace_rss_stat(mm, member); 2602 } 2603 inc_mm_counter(struct mm_struct * mm,int member)2604 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2605 { 2606 percpu_counter_inc(&mm->rss_stat[member]); 2607 2608 mm_trace_rss_stat(mm, member); 2609 } 2610 dec_mm_counter(struct mm_struct * mm,int member)2611 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2612 { 2613 percpu_counter_dec(&mm->rss_stat[member]); 2614 2615 mm_trace_rss_stat(mm, member); 2616 } 2617 2618 /* Optimized variant when folio is already known not to be anon */ mm_counter_file(struct folio * folio)2619 static inline int mm_counter_file(struct folio *folio) 2620 { 2621 if (folio_test_swapbacked(folio)) 2622 return MM_SHMEMPAGES; 2623 return MM_FILEPAGES; 2624 } 2625 mm_counter(struct folio * folio)2626 static inline int mm_counter(struct folio *folio) 2627 { 2628 if (folio_test_anon(folio)) 2629 return MM_ANONPAGES; 2630 return mm_counter_file(folio); 2631 } 2632 get_mm_rss(struct mm_struct * mm)2633 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2634 { 2635 return get_mm_counter(mm, MM_FILEPAGES) + 2636 get_mm_counter(mm, MM_ANONPAGES) + 2637 get_mm_counter(mm, MM_SHMEMPAGES); 2638 } 2639 get_mm_hiwater_rss(struct mm_struct * mm)2640 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2641 { 2642 return max(mm->hiwater_rss, get_mm_rss(mm)); 2643 } 2644 get_mm_hiwater_vm(struct mm_struct * mm)2645 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2646 { 2647 return max(mm->hiwater_vm, mm->total_vm); 2648 } 2649 update_hiwater_rss(struct mm_struct * mm)2650 static inline void update_hiwater_rss(struct mm_struct *mm) 2651 { 2652 unsigned long _rss = get_mm_rss(mm); 2653 2654 if ((mm)->hiwater_rss < _rss) 2655 (mm)->hiwater_rss = _rss; 2656 } 2657 update_hiwater_vm(struct mm_struct * mm)2658 static inline void update_hiwater_vm(struct mm_struct *mm) 2659 { 2660 if (mm->hiwater_vm < mm->total_vm) 2661 mm->hiwater_vm = mm->total_vm; 2662 } 2663 reset_mm_hiwater_rss(struct mm_struct * mm)2664 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2665 { 2666 mm->hiwater_rss = get_mm_rss(mm); 2667 } 2668 setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2669 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2670 struct mm_struct *mm) 2671 { 2672 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2673 2674 if (*maxrss < hiwater_rss) 2675 *maxrss = hiwater_rss; 2676 } 2677 2678 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL pte_special(pte_t pte)2679 static inline int pte_special(pte_t pte) 2680 { 2681 return 0; 2682 } 2683 pte_mkspecial(pte_t pte)2684 static inline pte_t pte_mkspecial(pte_t pte) 2685 { 2686 return pte; 2687 } 2688 #endif 2689 2690 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP pmd_special(pmd_t pmd)2691 static inline bool pmd_special(pmd_t pmd) 2692 { 2693 return false; 2694 } 2695 pmd_mkspecial(pmd_t pmd)2696 static inline pmd_t pmd_mkspecial(pmd_t pmd) 2697 { 2698 return pmd; 2699 } 2700 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2701 2702 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP pud_special(pud_t pud)2703 static inline bool pud_special(pud_t pud) 2704 { 2705 return false; 2706 } 2707 pud_mkspecial(pud_t pud)2708 static inline pud_t pud_mkspecial(pud_t pud) 2709 { 2710 return pud; 2711 } 2712 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2713 2714 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP pte_devmap(pte_t pte)2715 static inline int pte_devmap(pte_t pte) 2716 { 2717 return 0; 2718 } 2719 #endif 2720 2721 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2722 spinlock_t **ptl); get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2723 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2724 spinlock_t **ptl) 2725 { 2726 pte_t *ptep; 2727 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2728 return ptep; 2729 } 2730 2731 #ifdef __PAGETABLE_P4D_FOLDED __p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2732 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2733 unsigned long address) 2734 { 2735 return 0; 2736 } 2737 #else 2738 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2739 #endif 2740 2741 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) __pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2742 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2743 unsigned long address) 2744 { 2745 return 0; 2746 } mm_inc_nr_puds(struct mm_struct * mm)2747 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} mm_dec_nr_puds(struct mm_struct * mm)2748 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2749 2750 #else 2751 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2752 mm_inc_nr_puds(struct mm_struct * mm)2753 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2754 { 2755 if (mm_pud_folded(mm)) 2756 return; 2757 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2758 } 2759 mm_dec_nr_puds(struct mm_struct * mm)2760 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2761 { 2762 if (mm_pud_folded(mm)) 2763 return; 2764 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2765 } 2766 #endif 2767 2768 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) __pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2769 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2770 unsigned long address) 2771 { 2772 return 0; 2773 } 2774 mm_inc_nr_pmds(struct mm_struct * mm)2775 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} mm_dec_nr_pmds(struct mm_struct * mm)2776 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2777 2778 #else 2779 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2780 mm_inc_nr_pmds(struct mm_struct * mm)2781 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2782 { 2783 if (mm_pmd_folded(mm)) 2784 return; 2785 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2786 } 2787 mm_dec_nr_pmds(struct mm_struct * mm)2788 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2789 { 2790 if (mm_pmd_folded(mm)) 2791 return; 2792 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2793 } 2794 #endif 2795 2796 #ifdef CONFIG_MMU mm_pgtables_bytes_init(struct mm_struct * mm)2797 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2798 { 2799 atomic_long_set(&mm->pgtables_bytes, 0); 2800 } 2801 mm_pgtables_bytes(const struct mm_struct * mm)2802 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2803 { 2804 return atomic_long_read(&mm->pgtables_bytes); 2805 } 2806 mm_inc_nr_ptes(struct mm_struct * mm)2807 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2808 { 2809 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2810 } 2811 mm_dec_nr_ptes(struct mm_struct * mm)2812 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2813 { 2814 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2815 } 2816 #else 2817 mm_pgtables_bytes_init(struct mm_struct * mm)2818 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} mm_pgtables_bytes(const struct mm_struct * mm)2819 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2820 { 2821 return 0; 2822 } 2823 mm_inc_nr_ptes(struct mm_struct * mm)2824 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} mm_dec_nr_ptes(struct mm_struct * mm)2825 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2826 #endif 2827 2828 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2829 int __pte_alloc_kernel(pmd_t *pmd); 2830 2831 #if defined(CONFIG_MMU) 2832 p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2833 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2834 unsigned long address) 2835 { 2836 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2837 NULL : p4d_offset(pgd, address); 2838 } 2839 pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2840 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2841 unsigned long address) 2842 { 2843 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2844 NULL : pud_offset(p4d, address); 2845 } 2846 pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2847 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2848 { 2849 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2850 NULL: pmd_offset(pud, address); 2851 } 2852 #endif /* CONFIG_MMU */ 2853 virt_to_ptdesc(const void * x)2854 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2855 { 2856 return page_ptdesc(virt_to_page(x)); 2857 } 2858 ptdesc_to_virt(const struct ptdesc * pt)2859 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2860 { 2861 return page_to_virt(ptdesc_page(pt)); 2862 } 2863 ptdesc_address(const struct ptdesc * pt)2864 static inline void *ptdesc_address(const struct ptdesc *pt) 2865 { 2866 return folio_address(ptdesc_folio(pt)); 2867 } 2868 pagetable_is_reserved(struct ptdesc * pt)2869 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2870 { 2871 return folio_test_reserved(ptdesc_folio(pt)); 2872 } 2873 2874 /** 2875 * pagetable_alloc - Allocate pagetables 2876 * @gfp: GFP flags 2877 * @order: desired pagetable order 2878 * 2879 * pagetable_alloc allocates memory for page tables as well as a page table 2880 * descriptor to describe that memory. 2881 * 2882 * Return: The ptdesc describing the allocated page tables. 2883 */ pagetable_alloc_noprof(gfp_t gfp,unsigned int order)2884 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2885 { 2886 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2887 2888 return page_ptdesc(page); 2889 } 2890 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2891 2892 /** 2893 * pagetable_free - Free pagetables 2894 * @pt: The page table descriptor 2895 * 2896 * pagetable_free frees the memory of all page tables described by a page 2897 * table descriptor and the memory for the descriptor itself. 2898 */ pagetable_free(struct ptdesc * pt)2899 static inline void pagetable_free(struct ptdesc *pt) 2900 { 2901 struct page *page = ptdesc_page(pt); 2902 2903 __free_pages(page, compound_order(page)); 2904 } 2905 2906 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) 2907 #if ALLOC_SPLIT_PTLOCKS 2908 void __init ptlock_cache_init(void); 2909 bool ptlock_alloc(struct ptdesc *ptdesc); 2910 void ptlock_free(struct ptdesc *ptdesc); 2911 ptlock_ptr(struct ptdesc * ptdesc)2912 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2913 { 2914 return ptdesc->ptl; 2915 } 2916 #else /* ALLOC_SPLIT_PTLOCKS */ ptlock_cache_init(void)2917 static inline void ptlock_cache_init(void) 2918 { 2919 } 2920 ptlock_alloc(struct ptdesc * ptdesc)2921 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2922 { 2923 return true; 2924 } 2925 ptlock_free(struct ptdesc * ptdesc)2926 static inline void ptlock_free(struct ptdesc *ptdesc) 2927 { 2928 } 2929 ptlock_ptr(struct ptdesc * ptdesc)2930 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2931 { 2932 return &ptdesc->ptl; 2933 } 2934 #endif /* ALLOC_SPLIT_PTLOCKS */ 2935 pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2936 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2937 { 2938 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2939 } 2940 ptep_lockptr(struct mm_struct * mm,pte_t * pte)2941 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2942 { 2943 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 2944 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 2945 return ptlock_ptr(virt_to_ptdesc(pte)); 2946 } 2947 ptlock_init(struct ptdesc * ptdesc)2948 static inline bool ptlock_init(struct ptdesc *ptdesc) 2949 { 2950 /* 2951 * prep_new_page() initialize page->private (and therefore page->ptl) 2952 * with 0. Make sure nobody took it in use in between. 2953 * 2954 * It can happen if arch try to use slab for page table allocation: 2955 * slab code uses page->slab_cache, which share storage with page->ptl. 2956 */ 2957 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2958 if (!ptlock_alloc(ptdesc)) 2959 return false; 2960 spin_lock_init(ptlock_ptr(ptdesc)); 2961 return true; 2962 } 2963 2964 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2965 /* 2966 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2967 */ pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2968 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2969 { 2970 return &mm->page_table_lock; 2971 } ptep_lockptr(struct mm_struct * mm,pte_t * pte)2972 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2973 { 2974 return &mm->page_table_lock; 2975 } ptlock_cache_init(void)2976 static inline void ptlock_cache_init(void) {} ptlock_init(struct ptdesc * ptdesc)2977 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } ptlock_free(struct ptdesc * ptdesc)2978 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2979 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2980 pagetable_pte_ctor(struct ptdesc * ptdesc)2981 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2982 { 2983 struct folio *folio = ptdesc_folio(ptdesc); 2984 2985 if (!ptlock_init(ptdesc)) 2986 return false; 2987 __folio_set_pgtable(folio); 2988 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2989 return true; 2990 } 2991 pagetable_pte_dtor(struct ptdesc * ptdesc)2992 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 2993 { 2994 struct folio *folio = ptdesc_folio(ptdesc); 2995 2996 ptlock_free(ptdesc); 2997 __folio_clear_pgtable(folio); 2998 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2999 } 3000 3001 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); pte_offset_map(pmd_t * pmd,unsigned long addr)3002 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3003 { 3004 return __pte_offset_map(pmd, addr, NULL); 3005 } 3006 3007 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3008 unsigned long addr, spinlock_t **ptlp); pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)3009 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3010 unsigned long addr, spinlock_t **ptlp) 3011 { 3012 pte_t *pte; 3013 3014 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 3015 return pte; 3016 } 3017 3018 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 3019 unsigned long addr, spinlock_t **ptlp); 3020 3021 #define pte_unmap_unlock(pte, ptl) do { \ 3022 spin_unlock(ptl); \ 3023 pte_unmap(pte); \ 3024 } while (0) 3025 3026 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3027 3028 #define pte_alloc_map(mm, pmd, address) \ 3029 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3030 3031 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3032 (pte_alloc(mm, pmd) ? \ 3033 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3034 3035 #define pte_alloc_kernel(pmd, address) \ 3036 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3037 NULL: pte_offset_kernel(pmd, address)) 3038 3039 #if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3040 pmd_pgtable_page(pmd_t * pmd)3041 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3042 { 3043 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3044 return virt_to_page((void *)((unsigned long) pmd & mask)); 3045 } 3046 pmd_ptdesc(pmd_t * pmd)3047 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3048 { 3049 return page_ptdesc(pmd_pgtable_page(pmd)); 3050 } 3051 pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3052 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3053 { 3054 return ptlock_ptr(pmd_ptdesc(pmd)); 3055 } 3056 pmd_ptlock_init(struct ptdesc * ptdesc)3057 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3058 { 3059 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3060 ptdesc->pmd_huge_pte = NULL; 3061 #endif 3062 return ptlock_init(ptdesc); 3063 } 3064 pmd_ptlock_free(struct ptdesc * ptdesc)3065 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 3066 { 3067 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3068 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3069 #endif 3070 ptlock_free(ptdesc); 3071 } 3072 3073 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3074 3075 #else 3076 pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3077 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3078 { 3079 return &mm->page_table_lock; 3080 } 3081 pmd_ptlock_init(struct ptdesc * ptdesc)3082 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } pmd_ptlock_free(struct ptdesc * ptdesc)3083 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3084 3085 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3086 3087 #endif 3088 pmd_lock(struct mm_struct * mm,pmd_t * pmd)3089 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3090 { 3091 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3092 spin_lock(ptl); 3093 return ptl; 3094 } 3095 pagetable_pmd_ctor(struct ptdesc * ptdesc)3096 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3097 { 3098 struct folio *folio = ptdesc_folio(ptdesc); 3099 3100 if (!pmd_ptlock_init(ptdesc)) 3101 return false; 3102 __folio_set_pgtable(folio); 3103 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3104 return true; 3105 } 3106 pagetable_pmd_dtor(struct ptdesc * ptdesc)3107 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3108 { 3109 struct folio *folio = ptdesc_folio(ptdesc); 3110 3111 pmd_ptlock_free(ptdesc); 3112 __folio_clear_pgtable(folio); 3113 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3114 } 3115 3116 /* 3117 * No scalability reason to split PUD locks yet, but follow the same pattern 3118 * as the PMD locks to make it easier if we decide to. The VM should not be 3119 * considered ready to switch to split PUD locks yet; there may be places 3120 * which need to be converted from page_table_lock. 3121 */ pud_lockptr(struct mm_struct * mm,pud_t * pud)3122 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3123 { 3124 return &mm->page_table_lock; 3125 } 3126 pud_lock(struct mm_struct * mm,pud_t * pud)3127 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3128 { 3129 spinlock_t *ptl = pud_lockptr(mm, pud); 3130 3131 spin_lock(ptl); 3132 return ptl; 3133 } 3134 pagetable_pud_ctor(struct ptdesc * ptdesc)3135 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3136 { 3137 struct folio *folio = ptdesc_folio(ptdesc); 3138 3139 __folio_set_pgtable(folio); 3140 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3141 } 3142 pagetable_pud_dtor(struct ptdesc * ptdesc)3143 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3144 { 3145 struct folio *folio = ptdesc_folio(ptdesc); 3146 3147 __folio_clear_pgtable(folio); 3148 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3149 } 3150 3151 extern void __init pagecache_init(void); 3152 extern void free_initmem(void); 3153 3154 /* 3155 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3156 * into the buddy system. The freed pages will be poisoned with pattern 3157 * "poison" if it's within range [0, UCHAR_MAX]. 3158 * Return pages freed into the buddy system. 3159 */ 3160 extern unsigned long free_reserved_area(void *start, void *end, 3161 int poison, const char *s); 3162 3163 extern void adjust_managed_page_count(struct page *page, long count); 3164 3165 extern void reserve_bootmem_region(phys_addr_t start, 3166 phys_addr_t end, int nid); 3167 3168 /* Free the reserved page into the buddy system, so it gets managed. */ 3169 void free_reserved_page(struct page *page); 3170 #define free_highmem_page(page) free_reserved_page(page) 3171 mark_page_reserved(struct page * page)3172 static inline void mark_page_reserved(struct page *page) 3173 { 3174 SetPageReserved(page); 3175 adjust_managed_page_count(page, -1); 3176 } 3177 free_reserved_ptdesc(struct ptdesc * pt)3178 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3179 { 3180 free_reserved_page(ptdesc_page(pt)); 3181 } 3182 3183 /* 3184 * Default method to free all the __init memory into the buddy system. 3185 * The freed pages will be poisoned with pattern "poison" if it's within 3186 * range [0, UCHAR_MAX]. 3187 * Return pages freed into the buddy system. 3188 */ free_initmem_default(int poison)3189 static inline unsigned long free_initmem_default(int poison) 3190 { 3191 extern char __init_begin[], __init_end[]; 3192 3193 return free_reserved_area(&__init_begin, &__init_end, 3194 poison, "unused kernel image (initmem)"); 3195 } 3196 get_num_physpages(void)3197 static inline unsigned long get_num_physpages(void) 3198 { 3199 int nid; 3200 unsigned long phys_pages = 0; 3201 3202 for_each_online_node(nid) 3203 phys_pages += node_present_pages(nid); 3204 3205 return phys_pages; 3206 } 3207 3208 /* 3209 * Using memblock node mappings, an architecture may initialise its 3210 * zones, allocate the backing mem_map and account for memory holes in an 3211 * architecture independent manner. 3212 * 3213 * An architecture is expected to register range of page frames backed by 3214 * physical memory with memblock_add[_node]() before calling 3215 * free_area_init() passing in the PFN each zone ends at. At a basic 3216 * usage, an architecture is expected to do something like 3217 * 3218 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3219 * max_highmem_pfn}; 3220 * for_each_valid_physical_page_range() 3221 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3222 * free_area_init(max_zone_pfns); 3223 */ 3224 void free_area_init(unsigned long *max_zone_pfn); 3225 unsigned long node_map_pfn_alignment(void); 3226 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3227 unsigned long end_pfn); 3228 extern void get_pfn_range_for_nid(unsigned int nid, 3229 unsigned long *start_pfn, unsigned long *end_pfn); 3230 3231 #ifndef CONFIG_NUMA early_pfn_to_nid(unsigned long pfn)3232 static inline int early_pfn_to_nid(unsigned long pfn) 3233 { 3234 return 0; 3235 } 3236 #else 3237 /* please see mm/page_alloc.c */ 3238 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3239 #endif 3240 3241 extern void mem_init(void); 3242 extern void __init mmap_init(void); 3243 3244 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); show_mem(void)3245 static inline void show_mem(void) 3246 { 3247 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3248 } 3249 extern long si_mem_available(void); 3250 extern void si_meminfo(struct sysinfo * val); 3251 extern void si_meminfo_node(struct sysinfo *val, int nid); 3252 3253 extern __printf(3, 4) 3254 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3255 3256 extern void setup_per_cpu_pageset(void); 3257 3258 /* nommu.c */ 3259 extern atomic_long_t mmap_pages_allocated; 3260 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3261 3262 /* interval_tree.c */ 3263 void vma_interval_tree_insert(struct vm_area_struct *node, 3264 struct rb_root_cached *root); 3265 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3266 struct vm_area_struct *prev, 3267 struct rb_root_cached *root); 3268 void vma_interval_tree_remove(struct vm_area_struct *node, 3269 struct rb_root_cached *root); 3270 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3271 unsigned long start, unsigned long last); 3272 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3273 unsigned long start, unsigned long last); 3274 3275 #define vma_interval_tree_foreach(vma, root, start, last) \ 3276 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3277 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3278 3279 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3280 struct rb_root_cached *root); 3281 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3282 struct rb_root_cached *root); 3283 struct anon_vma_chain * 3284 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3285 unsigned long start, unsigned long last); 3286 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3287 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3288 #ifdef CONFIG_DEBUG_VM_RB 3289 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3290 #endif 3291 3292 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3293 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3294 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3295 3296 /* mmap.c */ 3297 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3298 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3299 extern void exit_mmap(struct mm_struct *); 3300 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 3301 check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3302 static inline int check_data_rlimit(unsigned long rlim, 3303 unsigned long new, 3304 unsigned long start, 3305 unsigned long end_data, 3306 unsigned long start_data) 3307 { 3308 if (rlim < RLIM_INFINITY) { 3309 if (((new - start) + (end_data - start_data)) > rlim) 3310 return -ENOSPC; 3311 } 3312 3313 return 0; 3314 } 3315 3316 extern int mm_take_all_locks(struct mm_struct *mm); 3317 extern void mm_drop_all_locks(struct mm_struct *mm); 3318 3319 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3320 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3321 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3322 extern struct file *get_task_exe_file(struct task_struct *task); 3323 3324 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3325 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3326 3327 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3328 const struct vm_special_mapping *sm); 3329 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3330 unsigned long addr, unsigned long len, 3331 unsigned long flags, 3332 const struct vm_special_mapping *spec); 3333 3334 unsigned long randomize_stack_top(unsigned long stack_top); 3335 unsigned long randomize_page(unsigned long start, unsigned long range); 3336 3337 unsigned long 3338 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3339 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3340 3341 static inline unsigned long get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3342 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3343 unsigned long pgoff, unsigned long flags) 3344 { 3345 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3346 } 3347 3348 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3349 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3350 struct list_head *uf); 3351 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3352 unsigned long len, unsigned long prot, unsigned long flags, 3353 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3354 struct list_head *uf); 3355 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3356 unsigned long start, size_t len, struct list_head *uf, 3357 bool unlock); 3358 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3359 struct mm_struct *mm, unsigned long start, 3360 unsigned long end, struct list_head *uf, bool unlock); 3361 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3362 struct list_head *uf); 3363 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3364 3365 #ifdef CONFIG_MMU 3366 extern int __mm_populate(unsigned long addr, unsigned long len, 3367 int ignore_errors); mm_populate(unsigned long addr,unsigned long len)3368 static inline void mm_populate(unsigned long addr, unsigned long len) 3369 { 3370 /* Ignore errors */ 3371 (void) __mm_populate(addr, len, 1); 3372 } 3373 #else mm_populate(unsigned long addr,unsigned long len)3374 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3375 #endif 3376 3377 /* This takes the mm semaphore itself */ 3378 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3379 extern int vm_munmap(unsigned long, size_t); 3380 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3381 unsigned long, unsigned long, 3382 unsigned long, unsigned long); 3383 3384 struct vm_unmapped_area_info { 3385 #define VM_UNMAPPED_AREA_TOPDOWN 1 3386 unsigned long flags; 3387 unsigned long length; 3388 unsigned long low_limit; 3389 unsigned long high_limit; 3390 unsigned long align_mask; 3391 unsigned long align_offset; 3392 unsigned long start_gap; 3393 }; 3394 3395 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3396 3397 /* truncate.c */ 3398 extern void truncate_inode_pages(struct address_space *, loff_t); 3399 extern void truncate_inode_pages_range(struct address_space *, 3400 loff_t lstart, loff_t lend); 3401 extern void truncate_inode_pages_final(struct address_space *); 3402 3403 /* generic vm_area_ops exported for stackable file systems */ 3404 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3405 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3406 pgoff_t start_pgoff, pgoff_t end_pgoff); 3407 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3408 3409 extern unsigned long stack_guard_gap; 3410 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3411 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3412 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3413 3414 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3415 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3416 3417 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3418 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3419 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3420 struct vm_area_struct **pprev); 3421 3422 /* 3423 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3424 * NULL if none. Assume start_addr < end_addr. 3425 */ 3426 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3427 unsigned long start_addr, unsigned long end_addr); 3428 3429 /** 3430 * vma_lookup() - Find a VMA at a specific address 3431 * @mm: The process address space. 3432 * @addr: The user address. 3433 * 3434 * Return: The vm_area_struct at the given address, %NULL otherwise. 3435 */ 3436 static inline vma_lookup(struct mm_struct * mm,unsigned long addr)3437 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3438 { 3439 return mtree_load(&mm->mm_mt, addr); 3440 } 3441 stack_guard_start_gap(struct vm_area_struct * vma)3442 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3443 { 3444 if (vma->vm_flags & VM_GROWSDOWN) 3445 return stack_guard_gap; 3446 3447 /* See reasoning around the VM_SHADOW_STACK definition */ 3448 if (vma->vm_flags & VM_SHADOW_STACK) 3449 return PAGE_SIZE; 3450 3451 return 0; 3452 } 3453 vm_start_gap(struct vm_area_struct * vma)3454 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3455 { 3456 unsigned long gap = stack_guard_start_gap(vma); 3457 unsigned long vm_start = vma->vm_start; 3458 3459 vm_start -= gap; 3460 if (vm_start > vma->vm_start) 3461 vm_start = 0; 3462 return vm_start; 3463 } 3464 vm_end_gap(struct vm_area_struct * vma)3465 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3466 { 3467 unsigned long vm_end = vma->vm_end; 3468 3469 if (vma->vm_flags & VM_GROWSUP) { 3470 vm_end += stack_guard_gap; 3471 if (vm_end < vma->vm_end) 3472 vm_end = -PAGE_SIZE; 3473 } 3474 return vm_end; 3475 } 3476 vma_pages(struct vm_area_struct * vma)3477 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3478 { 3479 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3480 } 3481 3482 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3483 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3484 unsigned long vm_start, unsigned long vm_end) 3485 { 3486 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3487 3488 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3489 vma = NULL; 3490 3491 return vma; 3492 } 3493 range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)3494 static inline bool range_in_vma(struct vm_area_struct *vma, 3495 unsigned long start, unsigned long end) 3496 { 3497 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3498 } 3499 3500 #ifdef CONFIG_MMU 3501 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3502 void vma_set_page_prot(struct vm_area_struct *vma); 3503 #else vm_get_page_prot(unsigned long vm_flags)3504 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3505 { 3506 return __pgprot(0); 3507 } vma_set_page_prot(struct vm_area_struct * vma)3508 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3509 { 3510 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3511 } 3512 #endif 3513 3514 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3515 3516 #ifdef CONFIG_NUMA_BALANCING 3517 unsigned long change_prot_numa(struct vm_area_struct *vma, 3518 unsigned long start, unsigned long end); 3519 #endif 3520 3521 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3522 unsigned long addr); 3523 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3524 unsigned long pfn, unsigned long size, pgprot_t); 3525 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3526 unsigned long pfn, unsigned long size, pgprot_t prot); 3527 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3528 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3529 struct page **pages, unsigned long *num); 3530 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3531 unsigned long num); 3532 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3533 unsigned long num); 3534 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3535 unsigned long pfn); 3536 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3537 unsigned long pfn, pgprot_t pgprot); 3538 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3539 pfn_t pfn); 3540 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3541 unsigned long addr, pfn_t pfn); 3542 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3543 vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3544 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3545 unsigned long addr, struct page *page) 3546 { 3547 int err = vm_insert_page(vma, addr, page); 3548 3549 if (err == -ENOMEM) 3550 return VM_FAULT_OOM; 3551 if (err < 0 && err != -EBUSY) 3552 return VM_FAULT_SIGBUS; 3553 3554 return VM_FAULT_NOPAGE; 3555 } 3556 3557 #ifndef io_remap_pfn_range io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3558 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3559 unsigned long addr, unsigned long pfn, 3560 unsigned long size, pgprot_t prot) 3561 { 3562 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3563 } 3564 #endif 3565 vmf_error(int err)3566 static inline vm_fault_t vmf_error(int err) 3567 { 3568 if (err == -ENOMEM) 3569 return VM_FAULT_OOM; 3570 else if (err == -EHWPOISON) 3571 return VM_FAULT_HWPOISON; 3572 return VM_FAULT_SIGBUS; 3573 } 3574 3575 /* 3576 * Convert errno to return value for ->page_mkwrite() calls. 3577 * 3578 * This should eventually be merged with vmf_error() above, but will need a 3579 * careful audit of all vmf_error() callers. 3580 */ vmf_fs_error(int err)3581 static inline vm_fault_t vmf_fs_error(int err) 3582 { 3583 if (err == 0) 3584 return VM_FAULT_LOCKED; 3585 if (err == -EFAULT || err == -EAGAIN) 3586 return VM_FAULT_NOPAGE; 3587 if (err == -ENOMEM) 3588 return VM_FAULT_OOM; 3589 /* -ENOSPC, -EDQUOT, -EIO ... */ 3590 return VM_FAULT_SIGBUS; 3591 } 3592 vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3593 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3594 { 3595 if (vm_fault & VM_FAULT_OOM) 3596 return -ENOMEM; 3597 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3598 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3599 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3600 return -EFAULT; 3601 return 0; 3602 } 3603 3604 /* 3605 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3606 * a (NUMA hinting) fault is required. 3607 */ gup_can_follow_protnone(struct vm_area_struct * vma,unsigned int flags)3608 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3609 unsigned int flags) 3610 { 3611 /* 3612 * If callers don't want to honor NUMA hinting faults, no need to 3613 * determine if we would actually have to trigger a NUMA hinting fault. 3614 */ 3615 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3616 return true; 3617 3618 /* 3619 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3620 * 3621 * Requiring a fault here even for inaccessible VMAs would mean that 3622 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3623 * refuses to process NUMA hinting faults in inaccessible VMAs. 3624 */ 3625 return !vma_is_accessible(vma); 3626 } 3627 3628 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3629 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3630 unsigned long size, pte_fn_t fn, void *data); 3631 extern int apply_to_existing_page_range(struct mm_struct *mm, 3632 unsigned long address, unsigned long size, 3633 pte_fn_t fn, void *data); 3634 3635 #ifdef CONFIG_PAGE_POISONING 3636 extern void __kernel_poison_pages(struct page *page, int numpages); 3637 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3638 extern bool _page_poisoning_enabled_early; 3639 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); page_poisoning_enabled(void)3640 static inline bool page_poisoning_enabled(void) 3641 { 3642 return _page_poisoning_enabled_early; 3643 } 3644 /* 3645 * For use in fast paths after init_mem_debugging() has run, or when a 3646 * false negative result is not harmful when called too early. 3647 */ page_poisoning_enabled_static(void)3648 static inline bool page_poisoning_enabled_static(void) 3649 { 3650 return static_branch_unlikely(&_page_poisoning_enabled); 3651 } kernel_poison_pages(struct page * page,int numpages)3652 static inline void kernel_poison_pages(struct page *page, int numpages) 3653 { 3654 if (page_poisoning_enabled_static()) 3655 __kernel_poison_pages(page, numpages); 3656 } kernel_unpoison_pages(struct page * page,int numpages)3657 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3658 { 3659 if (page_poisoning_enabled_static()) 3660 __kernel_unpoison_pages(page, numpages); 3661 } 3662 #else page_poisoning_enabled(void)3663 static inline bool page_poisoning_enabled(void) { return false; } page_poisoning_enabled_static(void)3664 static inline bool page_poisoning_enabled_static(void) { return false; } __kernel_poison_pages(struct page * page,int nunmpages)3665 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } kernel_poison_pages(struct page * page,int numpages)3666 static inline void kernel_poison_pages(struct page *page, int numpages) { } kernel_unpoison_pages(struct page * page,int numpages)3667 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3668 #endif 3669 3670 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); want_init_on_alloc(gfp_t flags)3671 static inline bool want_init_on_alloc(gfp_t flags) 3672 { 3673 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3674 &init_on_alloc)) 3675 return true; 3676 return flags & __GFP_ZERO; 3677 } 3678 3679 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); want_init_on_free(void)3680 static inline bool want_init_on_free(void) 3681 { 3682 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3683 &init_on_free); 3684 } 3685 3686 extern bool _debug_pagealloc_enabled_early; 3687 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3688 debug_pagealloc_enabled(void)3689 static inline bool debug_pagealloc_enabled(void) 3690 { 3691 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3692 _debug_pagealloc_enabled_early; 3693 } 3694 3695 /* 3696 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3697 * or when a false negative result is not harmful when called too early. 3698 */ debug_pagealloc_enabled_static(void)3699 static inline bool debug_pagealloc_enabled_static(void) 3700 { 3701 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3702 return false; 3703 3704 return static_branch_unlikely(&_debug_pagealloc_enabled); 3705 } 3706 3707 /* 3708 * To support DEBUG_PAGEALLOC architecture must ensure that 3709 * __kernel_map_pages() never fails 3710 */ 3711 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3712 #ifdef CONFIG_DEBUG_PAGEALLOC debug_pagealloc_map_pages(struct page * page,int numpages)3713 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3714 { 3715 if (debug_pagealloc_enabled_static()) 3716 __kernel_map_pages(page, numpages, 1); 3717 } 3718 debug_pagealloc_unmap_pages(struct page * page,int numpages)3719 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3720 { 3721 if (debug_pagealloc_enabled_static()) 3722 __kernel_map_pages(page, numpages, 0); 3723 } 3724 3725 extern unsigned int _debug_guardpage_minorder; 3726 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3727 debug_guardpage_minorder(void)3728 static inline unsigned int debug_guardpage_minorder(void) 3729 { 3730 return _debug_guardpage_minorder; 3731 } 3732 debug_guardpage_enabled(void)3733 static inline bool debug_guardpage_enabled(void) 3734 { 3735 return static_branch_unlikely(&_debug_guardpage_enabled); 3736 } 3737 page_is_guard(struct page * page)3738 static inline bool page_is_guard(struct page *page) 3739 { 3740 if (!debug_guardpage_enabled()) 3741 return false; 3742 3743 return PageGuard(page); 3744 } 3745 3746 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); set_page_guard(struct zone * zone,struct page * page,unsigned int order)3747 static inline bool set_page_guard(struct zone *zone, struct page *page, 3748 unsigned int order) 3749 { 3750 if (!debug_guardpage_enabled()) 3751 return false; 3752 return __set_page_guard(zone, page, order); 3753 } 3754 3755 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3756 static inline void clear_page_guard(struct zone *zone, struct page *page, 3757 unsigned int order) 3758 { 3759 if (!debug_guardpage_enabled()) 3760 return; 3761 __clear_page_guard(zone, page, order); 3762 } 3763 3764 #else /* CONFIG_DEBUG_PAGEALLOC */ debug_pagealloc_map_pages(struct page * page,int numpages)3765 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} debug_pagealloc_unmap_pages(struct page * page,int numpages)3766 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} debug_guardpage_minorder(void)3767 static inline unsigned int debug_guardpage_minorder(void) { return 0; } debug_guardpage_enabled(void)3768 static inline bool debug_guardpage_enabled(void) { return false; } page_is_guard(struct page * page)3769 static inline bool page_is_guard(struct page *page) { return false; } set_page_guard(struct zone * zone,struct page * page,unsigned int order)3770 static inline bool set_page_guard(struct zone *zone, struct page *page, 3771 unsigned int order) { return false; } clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3772 static inline void clear_page_guard(struct zone *zone, struct page *page, 3773 unsigned int order) {} 3774 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3775 3776 #ifdef __HAVE_ARCH_GATE_AREA 3777 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3778 extern int in_gate_area_no_mm(unsigned long addr); 3779 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3780 #else get_gate_vma(struct mm_struct * mm)3781 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3782 { 3783 return NULL; 3784 } in_gate_area_no_mm(unsigned long addr)3785 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } in_gate_area(struct mm_struct * mm,unsigned long addr)3786 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3787 { 3788 return 0; 3789 } 3790 #endif /* __HAVE_ARCH_GATE_AREA */ 3791 3792 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3793 3794 #ifdef CONFIG_SYSCTL 3795 extern int sysctl_drop_caches; 3796 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *, 3797 loff_t *); 3798 #endif 3799 3800 void drop_slab(void); 3801 3802 #ifndef CONFIG_MMU 3803 #define randomize_va_space 0 3804 #else 3805 extern int randomize_va_space; 3806 #endif 3807 3808 const char * arch_vma_name(struct vm_area_struct *vma); 3809 #ifdef CONFIG_MMU 3810 void print_vma_addr(char *prefix, unsigned long rip); 3811 #else print_vma_addr(char * prefix,unsigned long rip)3812 static inline void print_vma_addr(char *prefix, unsigned long rip) 3813 { 3814 } 3815 #endif 3816 3817 void *sparse_buffer_alloc(unsigned long size); 3818 struct page * __populate_section_memmap(unsigned long pfn, 3819 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3820 struct dev_pagemap *pgmap); 3821 void pud_init(void *addr); 3822 void pmd_init(void *addr); 3823 void kernel_pte_init(void *addr); 3824 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3825 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3826 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3827 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3828 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3829 struct vmem_altmap *altmap, struct page *reuse); 3830 void *vmemmap_alloc_block(unsigned long size, int node); 3831 struct vmem_altmap; 3832 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3833 struct vmem_altmap *altmap); 3834 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3835 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3836 unsigned long addr, unsigned long next); 3837 int vmemmap_check_pmd(pmd_t *pmd, int node, 3838 unsigned long addr, unsigned long next); 3839 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3840 int node, struct vmem_altmap *altmap); 3841 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3842 int node, struct vmem_altmap *altmap); 3843 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3844 struct vmem_altmap *altmap); 3845 void vmemmap_populate_print_last(void); 3846 #ifdef CONFIG_MEMORY_HOTPLUG 3847 void vmemmap_free(unsigned long start, unsigned long end, 3848 struct vmem_altmap *altmap); 3849 #endif 3850 3851 #ifdef CONFIG_SPARSEMEM_VMEMMAP vmem_altmap_offset(struct vmem_altmap * altmap)3852 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3853 { 3854 /* number of pfns from base where pfn_to_page() is valid */ 3855 if (altmap) 3856 return altmap->reserve + altmap->free; 3857 return 0; 3858 } 3859 vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3860 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3861 unsigned long nr_pfns) 3862 { 3863 altmap->alloc -= nr_pfns; 3864 } 3865 #else vmem_altmap_offset(struct vmem_altmap * altmap)3866 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3867 { 3868 return 0; 3869 } 3870 vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3871 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3872 unsigned long nr_pfns) 3873 { 3874 } 3875 #endif 3876 3877 #define VMEMMAP_RESERVE_NR 2 3878 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP __vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3879 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3880 struct dev_pagemap *pgmap) 3881 { 3882 unsigned long nr_pages; 3883 unsigned long nr_vmemmap_pages; 3884 3885 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3886 return false; 3887 3888 nr_pages = pgmap_vmemmap_nr(pgmap); 3889 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3890 /* 3891 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3892 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3893 */ 3894 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3895 } 3896 /* 3897 * If we don't have an architecture override, use the generic rule 3898 */ 3899 #ifndef vmemmap_can_optimize 3900 #define vmemmap_can_optimize __vmemmap_can_optimize 3901 #endif 3902 3903 #else vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3904 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3905 struct dev_pagemap *pgmap) 3906 { 3907 return false; 3908 } 3909 #endif 3910 3911 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3912 unsigned long nr_pages); 3913 3914 enum mf_flags { 3915 MF_COUNT_INCREASED = 1 << 0, 3916 MF_ACTION_REQUIRED = 1 << 1, 3917 MF_MUST_KILL = 1 << 2, 3918 MF_SOFT_OFFLINE = 1 << 3, 3919 MF_UNPOISON = 1 << 4, 3920 MF_SW_SIMULATED = 1 << 5, 3921 MF_NO_RETRY = 1 << 6, 3922 MF_MEM_PRE_REMOVE = 1 << 7, 3923 }; 3924 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3925 unsigned long count, int mf_flags); 3926 extern int memory_failure(unsigned long pfn, int flags); 3927 extern void memory_failure_queue_kick(int cpu); 3928 extern int unpoison_memory(unsigned long pfn); 3929 extern atomic_long_t num_poisoned_pages __read_mostly; 3930 extern int soft_offline_page(unsigned long pfn, int flags); 3931 #ifdef CONFIG_MEMORY_FAILURE 3932 /* 3933 * Sysfs entries for memory failure handling statistics. 3934 */ 3935 extern const struct attribute_group memory_failure_attr_group; 3936 extern void memory_failure_queue(unsigned long pfn, int flags); 3937 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3938 bool *migratable_cleared); 3939 void num_poisoned_pages_inc(unsigned long pfn); 3940 void num_poisoned_pages_sub(unsigned long pfn, long i); 3941 #else memory_failure_queue(unsigned long pfn,int flags)3942 static inline void memory_failure_queue(unsigned long pfn, int flags) 3943 { 3944 } 3945 __get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)3946 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3947 bool *migratable_cleared) 3948 { 3949 return 0; 3950 } 3951 num_poisoned_pages_inc(unsigned long pfn)3952 static inline void num_poisoned_pages_inc(unsigned long pfn) 3953 { 3954 } 3955 num_poisoned_pages_sub(unsigned long pfn,long i)3956 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3957 { 3958 } 3959 #endif 3960 3961 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3962 extern void memblk_nr_poison_inc(unsigned long pfn); 3963 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3964 #else memblk_nr_poison_inc(unsigned long pfn)3965 static inline void memblk_nr_poison_inc(unsigned long pfn) 3966 { 3967 } 3968 memblk_nr_poison_sub(unsigned long pfn,long i)3969 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3970 { 3971 } 3972 #endif 3973 3974 #ifndef arch_memory_failure arch_memory_failure(unsigned long pfn,int flags)3975 static inline int arch_memory_failure(unsigned long pfn, int flags) 3976 { 3977 return -ENXIO; 3978 } 3979 #endif 3980 3981 #ifndef arch_is_platform_page arch_is_platform_page(u64 paddr)3982 static inline bool arch_is_platform_page(u64 paddr) 3983 { 3984 return false; 3985 } 3986 #endif 3987 3988 /* 3989 * Error handlers for various types of pages. 3990 */ 3991 enum mf_result { 3992 MF_IGNORED, /* Error: cannot be handled */ 3993 MF_FAILED, /* Error: handling failed */ 3994 MF_DELAYED, /* Will be handled later */ 3995 MF_RECOVERED, /* Successfully recovered */ 3996 }; 3997 3998 enum mf_action_page_type { 3999 MF_MSG_KERNEL, 4000 MF_MSG_KERNEL_HIGH_ORDER, 4001 MF_MSG_DIFFERENT_COMPOUND, 4002 MF_MSG_HUGE, 4003 MF_MSG_FREE_HUGE, 4004 MF_MSG_GET_HWPOISON, 4005 MF_MSG_UNMAP_FAILED, 4006 MF_MSG_DIRTY_SWAPCACHE, 4007 MF_MSG_CLEAN_SWAPCACHE, 4008 MF_MSG_DIRTY_MLOCKED_LRU, 4009 MF_MSG_CLEAN_MLOCKED_LRU, 4010 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4011 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4012 MF_MSG_DIRTY_LRU, 4013 MF_MSG_CLEAN_LRU, 4014 MF_MSG_TRUNCATED_LRU, 4015 MF_MSG_BUDDY, 4016 MF_MSG_DAX, 4017 MF_MSG_UNSPLIT_THP, 4018 MF_MSG_ALREADY_POISONED, 4019 MF_MSG_UNKNOWN, 4020 }; 4021 4022 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4023 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4024 int copy_user_large_folio(struct folio *dst, struct folio *src, 4025 unsigned long addr_hint, 4026 struct vm_area_struct *vma); 4027 long copy_folio_from_user(struct folio *dst_folio, 4028 const void __user *usr_src, 4029 bool allow_pagefault); 4030 4031 /** 4032 * vma_is_special_huge - Are transhuge page-table entries considered special? 4033 * @vma: Pointer to the struct vm_area_struct to consider 4034 * 4035 * Whether transhuge page-table entries are considered "special" following 4036 * the definition in vm_normal_page(). 4037 * 4038 * Return: true if transhuge page-table entries should be considered special, 4039 * false otherwise. 4040 */ vma_is_special_huge(const struct vm_area_struct * vma)4041 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4042 { 4043 return vma_is_dax(vma) || (vma->vm_file && 4044 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4045 } 4046 4047 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4048 4049 #if MAX_NUMNODES > 1 4050 void __init setup_nr_node_ids(void); 4051 #else setup_nr_node_ids(void)4052 static inline void setup_nr_node_ids(void) {} 4053 #endif 4054 4055 extern int memcmp_pages(struct page *page1, struct page *page2); 4056 pages_identical(struct page * page1,struct page * page2)4057 static inline int pages_identical(struct page *page1, struct page *page2) 4058 { 4059 return !memcmp_pages(page1, page2); 4060 } 4061 4062 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4063 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4064 pgoff_t first_index, pgoff_t nr, 4065 pgoff_t bitmap_pgoff, 4066 unsigned long *bitmap, 4067 pgoff_t *start, 4068 pgoff_t *end); 4069 4070 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4071 pgoff_t first_index, pgoff_t nr); 4072 #endif 4073 4074 extern int sysctl_nr_trim_pages; 4075 4076 #ifdef CONFIG_PRINTK 4077 void mem_dump_obj(void *object); 4078 #else mem_dump_obj(void * object)4079 static inline void mem_dump_obj(void *object) {} 4080 #endif 4081 4082 /** 4083 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4084 * handle them. 4085 * @seals: the seals to check 4086 * @vma: the vma to operate on 4087 * 4088 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4089 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4090 */ seal_check_write(int seals,struct vm_area_struct * vma)4091 static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4092 { 4093 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 4094 /* 4095 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4096 * write seals are active. 4097 */ 4098 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4099 return -EPERM; 4100 4101 /* 4102 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4103 * MAP_SHARED and read-only, take care to not allow mprotect to 4104 * revert protections on such mappings. Do this only for shared 4105 * mappings. For private mappings, don't need to mask 4106 * VM_MAYWRITE as we still want them to be COW-writable. 4107 */ 4108 if (vma->vm_flags & VM_SHARED) 4109 vm_flags_clear(vma, VM_MAYWRITE); 4110 } 4111 4112 return 0; 4113 } 4114 4115 #ifdef CONFIG_ANON_VMA_NAME 4116 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4117 unsigned long len_in, 4118 struct anon_vma_name *anon_name); 4119 #else 4120 static inline int madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)4121 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4122 unsigned long len_in, struct anon_vma_name *anon_name) { 4123 return 0; 4124 } 4125 #endif 4126 4127 #ifdef CONFIG_UNACCEPTED_MEMORY 4128 4129 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4130 void accept_memory(phys_addr_t start, unsigned long size); 4131 4132 #else 4133 range_contains_unaccepted_memory(phys_addr_t start,unsigned long size)4134 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4135 unsigned long size) 4136 { 4137 return false; 4138 } 4139 accept_memory(phys_addr_t start,unsigned long size)4140 static inline void accept_memory(phys_addr_t start, unsigned long size) 4141 { 4142 } 4143 4144 #endif 4145 pfn_is_unaccepted_memory(unsigned long pfn)4146 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4147 { 4148 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4149 } 4150 4151 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4152 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4153 4154 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4155 4156 #ifdef CONFIG_64BIT 4157 int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4158 #else do_mseal(unsigned long start,size_t len_in,unsigned long flags)4159 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4160 { 4161 /* noop on 32 bit */ 4162 return 0; 4163 } 4164 #endif 4165 4166 #ifdef CONFIG_MEM_ALLOC_PROFILING pgalloc_tag_split(struct folio * folio,int old_order,int new_order)4167 static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order) 4168 { 4169 int i; 4170 struct alloc_tag *tag; 4171 unsigned int nr_pages = 1 << new_order; 4172 4173 if (!mem_alloc_profiling_enabled()) 4174 return; 4175 4176 tag = pgalloc_tag_get(&folio->page); 4177 if (!tag) 4178 return; 4179 4180 for (i = nr_pages; i < (1 << old_order); i += nr_pages) { 4181 union codetag_ref *ref = get_page_tag_ref(folio_page(folio, i)); 4182 4183 if (ref) { 4184 /* Set new reference to point to the original tag */ 4185 alloc_tag_ref_set(ref, tag); 4186 put_page_tag_ref(ref); 4187 } 4188 } 4189 } 4190 pgalloc_tag_copy(struct folio * new,struct folio * old)4191 static inline void pgalloc_tag_copy(struct folio *new, struct folio *old) 4192 { 4193 struct alloc_tag *tag; 4194 union codetag_ref *ref; 4195 4196 tag = pgalloc_tag_get(&old->page); 4197 if (!tag) 4198 return; 4199 4200 ref = get_page_tag_ref(&new->page); 4201 if (!ref) 4202 return; 4203 4204 /* Clear the old ref to the original allocation tag. */ 4205 clear_page_tag_ref(&old->page); 4206 /* Decrement the counters of the tag on get_new_folio. */ 4207 alloc_tag_sub(ref, folio_nr_pages(new)); 4208 4209 __alloc_tag_ref_set(ref, tag); 4210 4211 put_page_tag_ref(ref); 4212 } 4213 #else /* !CONFIG_MEM_ALLOC_PROFILING */ pgalloc_tag_split(struct folio * folio,int old_order,int new_order)4214 static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order) 4215 { 4216 } 4217 pgalloc_tag_copy(struct folio * new,struct folio * old)4218 static inline void pgalloc_tag_copy(struct folio *new, struct folio *old) 4219 { 4220 } 4221 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 4222 4223 #endif /* _LINUX_MM_H */ 4224