1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Macros for manipulating and testing page->flags 4 */ 5 6 #ifndef PAGE_FLAGS_H 7 #define PAGE_FLAGS_H 8 9 #include <linux/types.h> 10 #include <linux/bug.h> 11 #include <linux/mmdebug.h> 12 #ifndef __GENERATING_BOUNDS_H 13 #include <linux/mm_types.h> 14 #include <generated/bounds.h> 15 #endif /* !__GENERATING_BOUNDS_H */ 16 17 /* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages. The "struct page" of such a page 21 * should in general not be touched (e.g. set dirty) except by its owner. 22 * Pages marked as PG_reserved include: 23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, 24 * initrd, HW tables) 25 * - Pages reserved or allocated early during boot (before the page allocator 26 * was initialized). This includes (depending on the architecture) the 27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much 28 * much more. Once (if ever) freed, PG_reserved is cleared and they will 29 * be given to the page allocator. 30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying 31 * to read/write these pages might end badly. Don't touch! 32 * - The zero page(s) 33 * - Pages allocated in the context of kexec/kdump (loaded kernel image, 34 * control pages, vmcoreinfo) 35 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are 36 * not marked PG_reserved (as they might be in use by somebody else who does 37 * not respect the caching strategy). 38 * - MCA pages on ia64 39 * - Pages holding CPU notes for POWER Firmware Assisted Dump 40 * - Device memory (e.g. PMEM, DAX, HMM) 41 * Some PG_reserved pages will be excluded from the hibernation image. 42 * PG_reserved does in general not hinder anybody from dumping or swapping 43 * and is no longer required for remap_pfn_range(). ioremap might require it. 44 * Consequently, PG_reserved for a page mapped into user space can indicate 45 * the zero page, the vDSO, MMIO pages or device memory. 46 * 47 * The PG_private bitflag is set on pagecache pages if they contain filesystem 48 * specific data (which is normally at page->private). It can be used by 49 * private allocations for its own usage. 50 * 51 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 52 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 53 * is set before writeback starts and cleared when it finishes. 54 * 55 * PG_locked also pins a page in pagecache, and blocks truncation of the file 56 * while it is held. 57 * 58 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 59 * to become unlocked. 60 * 61 * PG_swapbacked is set when a page uses swap as a backing storage. This are 62 * usually PageAnon or shmem pages but please note that even anonymous pages 63 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as 64 * a result of MADV_FREE). 65 * 66 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 67 * file-backed pagecache (see mm/vmscan.c). 68 * 69 * PG_arch_1 is an architecture specific page state bit. The generic code 70 * guarantees that this bit is cleared for a page when it first is entered into 71 * the page cache. 72 * 73 * PG_hwpoison indicates that a page got corrupted in hardware and contains 74 * data with incorrect ECC bits that triggered a machine check. Accessing is 75 * not safe since it may cause another machine check. Don't touch! 76 */ 77 78 /* 79 * Don't use the pageflags directly. Use the PageFoo macros. 80 * 81 * The page flags field is split into two parts, the main flags area 82 * which extends from the low bits upwards, and the fields area which 83 * extends from the high bits downwards. 84 * 85 * | FIELD | ... | FLAGS | 86 * N-1 ^ 0 87 * (NR_PAGEFLAGS) 88 * 89 * The fields area is reserved for fields mapping zone, node (for NUMA) and 90 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 91 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 92 */ 93 enum pageflags { 94 PG_locked, /* Page is locked. Don't touch. */ 95 PG_writeback, /* Page is under writeback */ 96 PG_referenced, 97 PG_uptodate, 98 PG_dirty, 99 PG_lru, 100 PG_head, /* Must be in bit 6 */ 101 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 102 PG_active, 103 PG_workingset, 104 PG_owner_priv_1, /* Owner use. If pagecache, fs may use */ 105 PG_owner_2, /* Owner use. If pagecache, fs may use */ 106 PG_arch_1, 107 PG_reserved, 108 PG_private, /* If pagecache, has fs-private data */ 109 PG_private_2, /* If pagecache, has fs aux data */ 110 PG_reclaim, /* To be reclaimed asap */ 111 PG_swapbacked, /* Page is backed by RAM/swap */ 112 PG_unevictable, /* Page is "unevictable" */ 113 #ifdef CONFIG_MMU 114 PG_mlocked, /* Page is vma mlocked */ 115 #endif 116 #ifdef CONFIG_MEMORY_FAILURE 117 PG_hwpoison, /* hardware poisoned page. Don't touch */ 118 #endif 119 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 120 PG_young, 121 PG_idle, 122 #endif 123 #ifdef CONFIG_ARCH_USES_PG_ARCH_2 124 PG_arch_2, 125 #endif 126 #ifdef CONFIG_ARCH_USES_PG_ARCH_3 127 PG_arch_3, 128 #endif 129 __NR_PAGEFLAGS, 130 131 PG_readahead = PG_reclaim, 132 133 /* Anonymous memory (and shmem) */ 134 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 135 /* Some filesystems */ 136 PG_checked = PG_owner_priv_1, 137 138 /* 139 * Depending on the way an anonymous folio can be mapped into a page 140 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped 141 * THP), PG_anon_exclusive may be set only for the head page or for 142 * tail pages of an anonymous folio. For now, we only expect it to be 143 * set on tail pages for PTE-mapped THP. 144 */ 145 PG_anon_exclusive = PG_owner_2, 146 147 /* 148 * Set if all buffer heads in the folio are mapped. 149 * Filesystems which do not use BHs can use it for their own purpose. 150 */ 151 PG_mappedtodisk = PG_owner_2, 152 153 /* Two page bits are conscripted by FS-Cache to maintain local caching 154 * state. These bits are set on pages belonging to the netfs's inodes 155 * when those inodes are being locally cached. 156 */ 157 PG_fscache = PG_private_2, /* page backed by cache */ 158 159 /* XEN */ 160 /* Pinned in Xen as a read-only pagetable page. */ 161 PG_pinned = PG_owner_priv_1, 162 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 163 PG_savepinned = PG_dirty, 164 /* Has a grant mapping of another (foreign) domain's page. */ 165 PG_foreign = PG_owner_priv_1, 166 /* Remapped by swiotlb-xen. */ 167 PG_xen_remapped = PG_owner_priv_1, 168 169 /* non-lru isolated movable page */ 170 PG_isolated = PG_reclaim, 171 172 /* Only valid for buddy pages. Used to track pages that are reported */ 173 PG_reported = PG_uptodate, 174 175 #ifdef CONFIG_MEMORY_HOTPLUG 176 /* For self-hosted memmap pages */ 177 PG_vmemmap_self_hosted = PG_owner_priv_1, 178 #endif 179 180 /* 181 * Flags only valid for compound pages. Stored in first tail page's 182 * flags word. Cannot use the first 8 flags or any flag marked as 183 * PF_ANY. 184 */ 185 186 /* At least one page in this folio has the hwpoison flag set */ 187 PG_has_hwpoisoned = PG_active, 188 PG_large_rmappable = PG_workingset, /* anon or file-backed */ 189 PG_partially_mapped = PG_reclaim, /* was identified to be partially mapped */ 190 }; 191 192 #define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1) 193 194 #ifndef __GENERATING_BOUNDS_H 195 196 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP 197 DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key); 198 199 /* 200 * Return the real head page struct iff the @page is a fake head page, otherwise 201 * return the @page itself. See Documentation/mm/vmemmap_dedup.rst. 202 */ page_fixed_fake_head(const struct page * page)203 static __always_inline const struct page *page_fixed_fake_head(const struct page *page) 204 { 205 if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key)) 206 return page; 207 208 /* 209 * Only addresses aligned with PAGE_SIZE of struct page may be fake head 210 * struct page. The alignment check aims to avoid access the fields ( 211 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly) 212 * cold cacheline in some cases. 213 */ 214 if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) && 215 test_bit(PG_head, &page->flags)) { 216 /* 217 * We can safely access the field of the @page[1] with PG_head 218 * because the @page is a compound page composed with at least 219 * two contiguous pages. 220 */ 221 unsigned long head = READ_ONCE(page[1].compound_head); 222 223 if (likely(head & 1)) 224 return (const struct page *)(head - 1); 225 } 226 return page; 227 } 228 #else page_fixed_fake_head(const struct page * page)229 static inline const struct page *page_fixed_fake_head(const struct page *page) 230 { 231 return page; 232 } 233 #endif 234 page_is_fake_head(const struct page * page)235 static __always_inline int page_is_fake_head(const struct page *page) 236 { 237 return page_fixed_fake_head(page) != page; 238 } 239 _compound_head(const struct page * page)240 static __always_inline unsigned long _compound_head(const struct page *page) 241 { 242 unsigned long head = READ_ONCE(page->compound_head); 243 244 if (unlikely(head & 1)) 245 return head - 1; 246 return (unsigned long)page_fixed_fake_head(page); 247 } 248 249 #define compound_head(page) ((typeof(page))_compound_head(page)) 250 251 /** 252 * page_folio - Converts from page to folio. 253 * @p: The page. 254 * 255 * Every page is part of a folio. This function cannot be called on a 256 * NULL pointer. 257 * 258 * Context: No reference, nor lock is required on @page. If the caller 259 * does not hold a reference, this call may race with a folio split, so 260 * it should re-check the folio still contains this page after gaining 261 * a reference on the folio. 262 * Return: The folio which contains this page. 263 */ 264 #define page_folio(p) (_Generic((p), \ 265 const struct page *: (const struct folio *)_compound_head(p), \ 266 struct page *: (struct folio *)_compound_head(p))) 267 268 /** 269 * folio_page - Return a page from a folio. 270 * @folio: The folio. 271 * @n: The page number to return. 272 * 273 * @n is relative to the start of the folio. This function does not 274 * check that the page number lies within @folio; the caller is presumed 275 * to have a reference to the page. 276 */ 277 #define folio_page(folio, n) nth_page(&(folio)->page, n) 278 PageTail(const struct page * page)279 static __always_inline int PageTail(const struct page *page) 280 { 281 return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page); 282 } 283 PageCompound(const struct page * page)284 static __always_inline int PageCompound(const struct page *page) 285 { 286 return test_bit(PG_head, &page->flags) || 287 READ_ONCE(page->compound_head) & 1; 288 } 289 290 #define PAGE_POISON_PATTERN -1l PagePoisoned(const struct page * page)291 static inline int PagePoisoned(const struct page *page) 292 { 293 return READ_ONCE(page->flags) == PAGE_POISON_PATTERN; 294 } 295 296 #ifdef CONFIG_DEBUG_VM 297 void page_init_poison(struct page *page, size_t size); 298 #else page_init_poison(struct page * page,size_t size)299 static inline void page_init_poison(struct page *page, size_t size) 300 { 301 } 302 #endif 303 const_folio_flags(const struct folio * folio,unsigned n)304 static const unsigned long *const_folio_flags(const struct folio *folio, 305 unsigned n) 306 { 307 const struct page *page = &folio->page; 308 309 VM_BUG_ON_PGFLAGS(PageTail(page), page); 310 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 311 return &page[n].flags; 312 } 313 folio_flags(struct folio * folio,unsigned n)314 static unsigned long *folio_flags(struct folio *folio, unsigned n) 315 { 316 struct page *page = &folio->page; 317 318 VM_BUG_ON_PGFLAGS(PageTail(page), page); 319 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 320 return &page[n].flags; 321 } 322 323 /* 324 * Page flags policies wrt compound pages 325 * 326 * PF_POISONED_CHECK 327 * check if this struct page poisoned/uninitialized 328 * 329 * PF_ANY: 330 * the page flag is relevant for small, head and tail pages. 331 * 332 * PF_HEAD: 333 * for compound page all operations related to the page flag applied to 334 * head page. 335 * 336 * PF_NO_TAIL: 337 * modifications of the page flag must be done on small or head pages, 338 * checks can be done on tail pages too. 339 * 340 * PF_NO_COMPOUND: 341 * the page flag is not relevant for compound pages. 342 * 343 * PF_SECOND: 344 * the page flag is stored in the first tail page. 345 */ 346 #define PF_POISONED_CHECK(page) ({ \ 347 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 348 page; }) 349 #define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 350 #define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 351 #define PF_NO_TAIL(page, enforce) ({ \ 352 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 353 PF_POISONED_CHECK(compound_head(page)); }) 354 #define PF_NO_COMPOUND(page, enforce) ({ \ 355 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 356 PF_POISONED_CHECK(page); }) 357 #define PF_SECOND(page, enforce) ({ \ 358 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \ 359 PF_POISONED_CHECK(&page[1]); }) 360 361 /* Which page is the flag stored in */ 362 #define FOLIO_PF_ANY 0 363 #define FOLIO_PF_HEAD 0 364 #define FOLIO_PF_NO_TAIL 0 365 #define FOLIO_PF_NO_COMPOUND 0 366 #define FOLIO_PF_SECOND 1 367 368 #define FOLIO_HEAD_PAGE 0 369 #define FOLIO_SECOND_PAGE 1 370 371 /* 372 * Macros to create function definitions for page flags 373 */ 374 #define FOLIO_TEST_FLAG(name, page) \ 375 static __always_inline bool folio_test_##name(const struct folio *folio) \ 376 { return test_bit(PG_##name, const_folio_flags(folio, page)); } 377 378 #define FOLIO_SET_FLAG(name, page) \ 379 static __always_inline void folio_set_##name(struct folio *folio) \ 380 { set_bit(PG_##name, folio_flags(folio, page)); } 381 382 #define FOLIO_CLEAR_FLAG(name, page) \ 383 static __always_inline void folio_clear_##name(struct folio *folio) \ 384 { clear_bit(PG_##name, folio_flags(folio, page)); } 385 386 #define __FOLIO_SET_FLAG(name, page) \ 387 static __always_inline void __folio_set_##name(struct folio *folio) \ 388 { __set_bit(PG_##name, folio_flags(folio, page)); } 389 390 #define __FOLIO_CLEAR_FLAG(name, page) \ 391 static __always_inline void __folio_clear_##name(struct folio *folio) \ 392 { __clear_bit(PG_##name, folio_flags(folio, page)); } 393 394 #define FOLIO_TEST_SET_FLAG(name, page) \ 395 static __always_inline bool folio_test_set_##name(struct folio *folio) \ 396 { return test_and_set_bit(PG_##name, folio_flags(folio, page)); } 397 398 #define FOLIO_TEST_CLEAR_FLAG(name, page) \ 399 static __always_inline bool folio_test_clear_##name(struct folio *folio) \ 400 { return test_and_clear_bit(PG_##name, folio_flags(folio, page)); } 401 402 #define FOLIO_FLAG(name, page) \ 403 FOLIO_TEST_FLAG(name, page) \ 404 FOLIO_SET_FLAG(name, page) \ 405 FOLIO_CLEAR_FLAG(name, page) 406 407 #define TESTPAGEFLAG(uname, lname, policy) \ 408 FOLIO_TEST_FLAG(lname, FOLIO_##policy) \ 409 static __always_inline int Page##uname(const struct page *page) \ 410 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 411 412 #define SETPAGEFLAG(uname, lname, policy) \ 413 FOLIO_SET_FLAG(lname, FOLIO_##policy) \ 414 static __always_inline void SetPage##uname(struct page *page) \ 415 { set_bit(PG_##lname, &policy(page, 1)->flags); } 416 417 #define CLEARPAGEFLAG(uname, lname, policy) \ 418 FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \ 419 static __always_inline void ClearPage##uname(struct page *page) \ 420 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 421 422 #define __SETPAGEFLAG(uname, lname, policy) \ 423 __FOLIO_SET_FLAG(lname, FOLIO_##policy) \ 424 static __always_inline void __SetPage##uname(struct page *page) \ 425 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 426 427 #define __CLEARPAGEFLAG(uname, lname, policy) \ 428 __FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \ 429 static __always_inline void __ClearPage##uname(struct page *page) \ 430 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 431 432 #define TESTSETFLAG(uname, lname, policy) \ 433 FOLIO_TEST_SET_FLAG(lname, FOLIO_##policy) \ 434 static __always_inline int TestSetPage##uname(struct page *page) \ 435 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 436 437 #define TESTCLEARFLAG(uname, lname, policy) \ 438 FOLIO_TEST_CLEAR_FLAG(lname, FOLIO_##policy) \ 439 static __always_inline int TestClearPage##uname(struct page *page) \ 440 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 441 442 #define PAGEFLAG(uname, lname, policy) \ 443 TESTPAGEFLAG(uname, lname, policy) \ 444 SETPAGEFLAG(uname, lname, policy) \ 445 CLEARPAGEFLAG(uname, lname, policy) 446 447 #define __PAGEFLAG(uname, lname, policy) \ 448 TESTPAGEFLAG(uname, lname, policy) \ 449 __SETPAGEFLAG(uname, lname, policy) \ 450 __CLEARPAGEFLAG(uname, lname, policy) 451 452 #define TESTSCFLAG(uname, lname, policy) \ 453 TESTSETFLAG(uname, lname, policy) \ 454 TESTCLEARFLAG(uname, lname, policy) 455 456 #define FOLIO_TEST_FLAG_FALSE(name) \ 457 static inline bool folio_test_##name(const struct folio *folio) \ 458 { return false; } 459 #define FOLIO_SET_FLAG_NOOP(name) \ 460 static inline void folio_set_##name(struct folio *folio) { } 461 #define FOLIO_CLEAR_FLAG_NOOP(name) \ 462 static inline void folio_clear_##name(struct folio *folio) { } 463 #define __FOLIO_SET_FLAG_NOOP(name) \ 464 static inline void __folio_set_##name(struct folio *folio) { } 465 #define __FOLIO_CLEAR_FLAG_NOOP(name) \ 466 static inline void __folio_clear_##name(struct folio *folio) { } 467 #define FOLIO_TEST_SET_FLAG_FALSE(name) \ 468 static inline bool folio_test_set_##name(struct folio *folio) \ 469 { return false; } 470 #define FOLIO_TEST_CLEAR_FLAG_FALSE(name) \ 471 static inline bool folio_test_clear_##name(struct folio *folio) \ 472 { return false; } 473 474 #define FOLIO_FLAG_FALSE(name) \ 475 FOLIO_TEST_FLAG_FALSE(name) \ 476 FOLIO_SET_FLAG_NOOP(name) \ 477 FOLIO_CLEAR_FLAG_NOOP(name) 478 479 #define TESTPAGEFLAG_FALSE(uname, lname) \ 480 FOLIO_TEST_FLAG_FALSE(lname) \ 481 static inline int Page##uname(const struct page *page) { return 0; } 482 483 #define SETPAGEFLAG_NOOP(uname, lname) \ 484 FOLIO_SET_FLAG_NOOP(lname) \ 485 static inline void SetPage##uname(struct page *page) { } 486 487 #define CLEARPAGEFLAG_NOOP(uname, lname) \ 488 FOLIO_CLEAR_FLAG_NOOP(lname) \ 489 static inline void ClearPage##uname(struct page *page) { } 490 491 #define __CLEARPAGEFLAG_NOOP(uname, lname) \ 492 __FOLIO_CLEAR_FLAG_NOOP(lname) \ 493 static inline void __ClearPage##uname(struct page *page) { } 494 495 #define TESTSETFLAG_FALSE(uname, lname) \ 496 FOLIO_TEST_SET_FLAG_FALSE(lname) \ 497 static inline int TestSetPage##uname(struct page *page) { return 0; } 498 499 #define TESTCLEARFLAG_FALSE(uname, lname) \ 500 FOLIO_TEST_CLEAR_FLAG_FALSE(lname) \ 501 static inline int TestClearPage##uname(struct page *page) { return 0; } 502 503 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \ 504 SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname) 505 506 #define TESTSCFLAG_FALSE(uname, lname) \ 507 TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname) 508 509 __PAGEFLAG(Locked, locked, PF_NO_TAIL) 510 FOLIO_FLAG(waiters, FOLIO_HEAD_PAGE) 511 FOLIO_FLAG(referenced, FOLIO_HEAD_PAGE) 512 FOLIO_TEST_CLEAR_FLAG(referenced, FOLIO_HEAD_PAGE) 513 __FOLIO_SET_FLAG(referenced, FOLIO_HEAD_PAGE) 514 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 515 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 516 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 517 TESTCLEARFLAG(LRU, lru, PF_HEAD) 518 FOLIO_FLAG(active, FOLIO_HEAD_PAGE) 519 __FOLIO_CLEAR_FLAG(active, FOLIO_HEAD_PAGE) 520 FOLIO_TEST_CLEAR_FLAG(active, FOLIO_HEAD_PAGE) 521 PAGEFLAG(Workingset, workingset, PF_HEAD) 522 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 523 PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 524 525 /* Xen */ 526 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 527 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 528 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 529 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); PAGEFLAG(XenRemapped,xen_remapped,PF_NO_COMPOUND)530 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 531 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 532 533 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 534 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 535 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 536 FOLIO_FLAG(swapbacked, FOLIO_HEAD_PAGE) 537 __FOLIO_CLEAR_FLAG(swapbacked, FOLIO_HEAD_PAGE) 538 __FOLIO_SET_FLAG(swapbacked, FOLIO_HEAD_PAGE) 539 540 /* 541 * Private page markings that may be used by the filesystem that owns the page 542 * for its own purposes. 543 * - PG_private and PG_private_2 cause release_folio() and co to be invoked 544 */ 545 PAGEFLAG(Private, private, PF_ANY) 546 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 547 548 /* owner_2 can be set on tail pages for anon memory */ 549 FOLIO_FLAG(owner_2, FOLIO_HEAD_PAGE) 550 551 /* 552 * Only test-and-set exist for PG_writeback. The unconditional operators are 553 * risky: they bypass page accounting. 554 */ 555 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 556 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 557 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 558 559 /* PG_readahead is only used for reads; PG_reclaim is only for writes */ 560 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 561 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 562 FOLIO_FLAG(readahead, FOLIO_HEAD_PAGE) 563 FOLIO_TEST_CLEAR_FLAG(readahead, FOLIO_HEAD_PAGE) 564 565 #ifdef CONFIG_HIGHMEM 566 /* 567 * Must use a macro here due to header dependency issues. page_zone() is not 568 * available at this point. 569 */ 570 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 571 #define folio_test_highmem(__f) is_highmem_idx(folio_zonenum(__f)) 572 #else 573 PAGEFLAG_FALSE(HighMem, highmem) 574 #endif 575 576 #ifdef CONFIG_SWAP 577 static __always_inline bool folio_test_swapcache(const struct folio *folio) 578 { 579 return folio_test_swapbacked(folio) && 580 test_bit(PG_swapcache, const_folio_flags(folio, 0)); 581 } 582 FOLIO_SET_FLAG(swapcache,FOLIO_HEAD_PAGE)583 FOLIO_SET_FLAG(swapcache, FOLIO_HEAD_PAGE) 584 FOLIO_CLEAR_FLAG(swapcache, FOLIO_HEAD_PAGE) 585 #else 586 FOLIO_FLAG_FALSE(swapcache) 587 #endif 588 589 FOLIO_FLAG(unevictable, FOLIO_HEAD_PAGE) 590 __FOLIO_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE) 591 FOLIO_TEST_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE) 592 593 #ifdef CONFIG_MMU 594 FOLIO_FLAG(mlocked, FOLIO_HEAD_PAGE) 595 __FOLIO_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE) 596 FOLIO_TEST_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE) 597 FOLIO_TEST_SET_FLAG(mlocked, FOLIO_HEAD_PAGE) 598 #else 599 FOLIO_FLAG_FALSE(mlocked) 600 __FOLIO_CLEAR_FLAG_NOOP(mlocked) 601 FOLIO_TEST_CLEAR_FLAG_FALSE(mlocked) 602 FOLIO_TEST_SET_FLAG_FALSE(mlocked) 603 #endif 604 605 #ifdef CONFIG_MEMORY_FAILURE 606 PAGEFLAG(HWPoison, hwpoison, PF_ANY) 607 TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 608 #define __PG_HWPOISON (1UL << PG_hwpoison) 609 #else 610 PAGEFLAG_FALSE(HWPoison, hwpoison) 611 #define __PG_HWPOISON 0 612 #endif 613 614 #ifdef CONFIG_PAGE_IDLE_FLAG 615 #ifdef CONFIG_64BIT 616 FOLIO_TEST_FLAG(young, FOLIO_HEAD_PAGE) 617 FOLIO_SET_FLAG(young, FOLIO_HEAD_PAGE) 618 FOLIO_TEST_CLEAR_FLAG(young, FOLIO_HEAD_PAGE) 619 FOLIO_FLAG(idle, FOLIO_HEAD_PAGE) 620 #endif 621 /* See page_idle.h for !64BIT workaround */ 622 #else /* !CONFIG_PAGE_IDLE_FLAG */ 623 FOLIO_FLAG_FALSE(young) 624 FOLIO_TEST_CLEAR_FLAG_FALSE(young) 625 FOLIO_FLAG_FALSE(idle) 626 #endif 627 628 /* 629 * PageReported() is used to track reported free pages within the Buddy 630 * allocator. We can use the non-atomic version of the test and set 631 * operations as both should be shielded with the zone lock to prevent 632 * any possible races on the setting or clearing of the bit. 633 */ 634 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND) 635 636 #ifdef CONFIG_MEMORY_HOTPLUG 637 PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY) 638 #else 639 PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted) 640 #endif 641 642 /* 643 * On an anonymous folio mapped into a user virtual memory area, 644 * folio->mapping points to its anon_vma, not to a struct address_space; 645 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 646 * 647 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 648 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 649 * bit; and then folio->mapping points, not to an anon_vma, but to a private 650 * structure which KSM associates with that merged page. See ksm.h. 651 * 652 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 653 * page and then folio->mapping points to a struct movable_operations. 654 * 655 * Please note that, confusingly, "folio_mapping" refers to the inode 656 * address_space which maps the folio from disk; whereas "folio_mapped" 657 * refers to user virtual address space into which the folio is mapped. 658 * 659 * For slab pages, since slab reuses the bits in struct page to store its 660 * internal states, the folio->mapping does not exist as such, nor do 661 * these flags below. So in order to avoid testing non-existent bits, 662 * please make sure that folio_test_slab(folio) actually evaluates to 663 * false before calling the following functions (e.g., folio_test_anon). 664 * See mm/slab.h. 665 */ 666 #define PAGE_MAPPING_ANON 0x1 667 #define PAGE_MAPPING_MOVABLE 0x2 668 #define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 669 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 670 671 /* 672 * Different with flags above, this flag is used only for fsdax mode. It 673 * indicates that this page->mapping is now under reflink case. 674 */ 675 #define PAGE_MAPPING_DAX_SHARED ((void *)0x1) 676 677 static __always_inline bool folio_mapping_flags(const struct folio *folio) 678 { 679 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0; 680 } 681 PageMappingFlags(const struct page * page)682 static __always_inline bool PageMappingFlags(const struct page *page) 683 { 684 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 685 } 686 folio_test_anon(const struct folio * folio)687 static __always_inline bool folio_test_anon(const struct folio *folio) 688 { 689 return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0; 690 } 691 PageAnon(const struct page * page)692 static __always_inline bool PageAnon(const struct page *page) 693 { 694 return folio_test_anon(page_folio(page)); 695 } 696 __folio_test_movable(const struct folio * folio)697 static __always_inline bool __folio_test_movable(const struct folio *folio) 698 { 699 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == 700 PAGE_MAPPING_MOVABLE; 701 } 702 __PageMovable(const struct page * page)703 static __always_inline bool __PageMovable(const struct page *page) 704 { 705 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 706 PAGE_MAPPING_MOVABLE; 707 } 708 709 #ifdef CONFIG_KSM 710 /* 711 * A KSM page is one of those write-protected "shared pages" or "merged pages" 712 * which KSM maps into multiple mms, wherever identical anonymous page content 713 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 714 * anon_vma, but to that page's node of the stable tree. 715 */ folio_test_ksm(const struct folio * folio)716 static __always_inline bool folio_test_ksm(const struct folio *folio) 717 { 718 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == 719 PAGE_MAPPING_KSM; 720 } 721 PageKsm(const struct page * page)722 static __always_inline bool PageKsm(const struct page *page) 723 { 724 return folio_test_ksm(page_folio(page)); 725 } 726 #else 727 TESTPAGEFLAG_FALSE(Ksm, ksm) 728 #endif 729 730 u64 stable_page_flags(const struct page *page); 731 732 /** 733 * folio_xor_flags_has_waiters - Change some folio flags. 734 * @folio: The folio. 735 * @mask: Bits set in this word will be changed. 736 * 737 * This must only be used for flags which are changed with the folio 738 * lock held. For example, it is unsafe to use for PG_dirty as that 739 * can be set without the folio lock held. It can also only be used 740 * on flags which are in the range 0-6 as some of the implementations 741 * only affect those bits. 742 * 743 * Return: Whether there are tasks waiting on the folio. 744 */ folio_xor_flags_has_waiters(struct folio * folio,unsigned long mask)745 static inline bool folio_xor_flags_has_waiters(struct folio *folio, 746 unsigned long mask) 747 { 748 return xor_unlock_is_negative_byte(mask, folio_flags(folio, 0)); 749 } 750 751 /** 752 * folio_test_uptodate - Is this folio up to date? 753 * @folio: The folio. 754 * 755 * The uptodate flag is set on a folio when every byte in the folio is 756 * at least as new as the corresponding bytes on storage. Anonymous 757 * and CoW folios are always uptodate. If the folio is not uptodate, 758 * some of the bytes in it may be; see the is_partially_uptodate() 759 * address_space operation. 760 */ folio_test_uptodate(const struct folio * folio)761 static inline bool folio_test_uptodate(const struct folio *folio) 762 { 763 bool ret = test_bit(PG_uptodate, const_folio_flags(folio, 0)); 764 /* 765 * Must ensure that the data we read out of the folio is loaded 766 * _after_ we've loaded folio->flags to check the uptodate bit. 767 * We can skip the barrier if the folio is not uptodate, because 768 * we wouldn't be reading anything from it. 769 * 770 * See folio_mark_uptodate() for the other side of the story. 771 */ 772 if (ret) 773 smp_rmb(); 774 775 return ret; 776 } 777 PageUptodate(const struct page * page)778 static inline bool PageUptodate(const struct page *page) 779 { 780 return folio_test_uptodate(page_folio(page)); 781 } 782 __folio_mark_uptodate(struct folio * folio)783 static __always_inline void __folio_mark_uptodate(struct folio *folio) 784 { 785 smp_wmb(); 786 __set_bit(PG_uptodate, folio_flags(folio, 0)); 787 } 788 folio_mark_uptodate(struct folio * folio)789 static __always_inline void folio_mark_uptodate(struct folio *folio) 790 { 791 /* 792 * Memory barrier must be issued before setting the PG_uptodate bit, 793 * so that all previous stores issued in order to bring the folio 794 * uptodate are actually visible before folio_test_uptodate becomes true. 795 */ 796 smp_wmb(); 797 set_bit(PG_uptodate, folio_flags(folio, 0)); 798 } 799 __SetPageUptodate(struct page * page)800 static __always_inline void __SetPageUptodate(struct page *page) 801 { 802 __folio_mark_uptodate((struct folio *)page); 803 } 804 SetPageUptodate(struct page * page)805 static __always_inline void SetPageUptodate(struct page *page) 806 { 807 folio_mark_uptodate((struct folio *)page); 808 } 809 810 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 811 812 void __folio_start_writeback(struct folio *folio, bool keep_write); 813 void set_page_writeback(struct page *page); 814 815 #define folio_start_writeback(folio) \ 816 __folio_start_writeback(folio, false) 817 #define folio_start_writeback_keepwrite(folio) \ 818 __folio_start_writeback(folio, true) 819 folio_test_head(const struct folio * folio)820 static __always_inline bool folio_test_head(const struct folio *folio) 821 { 822 return test_bit(PG_head, const_folio_flags(folio, FOLIO_PF_ANY)); 823 } 824 PageHead(const struct page * page)825 static __always_inline int PageHead(const struct page *page) 826 { 827 PF_POISONED_CHECK(page); 828 return test_bit(PG_head, &page->flags) && !page_is_fake_head(page); 829 } 830 __SETPAGEFLAG(Head,head,PF_ANY)831 __SETPAGEFLAG(Head, head, PF_ANY) 832 __CLEARPAGEFLAG(Head, head, PF_ANY) 833 CLEARPAGEFLAG(Head, head, PF_ANY) 834 835 /** 836 * folio_test_large() - Does this folio contain more than one page? 837 * @folio: The folio to test. 838 * 839 * Return: True if the folio is larger than one page. 840 */ 841 static inline bool folio_test_large(const struct folio *folio) 842 { 843 return folio_test_head(folio); 844 } 845 set_compound_head(struct page * page,struct page * head)846 static __always_inline void set_compound_head(struct page *page, struct page *head) 847 { 848 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 849 } 850 clear_compound_head(struct page * page)851 static __always_inline void clear_compound_head(struct page *page) 852 { 853 WRITE_ONCE(page->compound_head, 0); 854 } 855 856 #ifdef CONFIG_TRANSPARENT_HUGEPAGE ClearPageCompound(struct page * page)857 static inline void ClearPageCompound(struct page *page) 858 { 859 BUG_ON(!PageHead(page)); 860 ClearPageHead(page); 861 } FOLIO_FLAG(large_rmappable,FOLIO_SECOND_PAGE)862 FOLIO_FLAG(large_rmappable, FOLIO_SECOND_PAGE) 863 FOLIO_TEST_FLAG(partially_mapped, FOLIO_SECOND_PAGE) 864 /* 865 * PG_partially_mapped is protected by deferred_split split_queue_lock, 866 * so its safe to use non-atomic set/clear. 867 */ 868 __FOLIO_SET_FLAG(partially_mapped, FOLIO_SECOND_PAGE) 869 __FOLIO_CLEAR_FLAG(partially_mapped, FOLIO_SECOND_PAGE) 870 #else 871 FOLIO_FLAG_FALSE(large_rmappable) 872 FOLIO_TEST_FLAG_FALSE(partially_mapped) 873 __FOLIO_SET_FLAG_NOOP(partially_mapped) 874 __FOLIO_CLEAR_FLAG_NOOP(partially_mapped) 875 #endif 876 877 #define PG_head_mask ((1UL << PG_head)) 878 879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 880 /* 881 * PageHuge() only returns true for hugetlbfs pages, but not for 882 * normal or transparent huge pages. 883 * 884 * PageTransHuge() returns true for both transparent huge and 885 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 886 * called only in the core VM paths where hugetlbfs pages can't exist. 887 */ 888 static inline int PageTransHuge(const struct page *page) 889 { 890 VM_BUG_ON_PAGE(PageTail(page), page); 891 return PageHead(page); 892 } 893 894 /* 895 * PageTransCompound returns true for both transparent huge pages 896 * and hugetlbfs pages, so it should only be called when it's known 897 * that hugetlbfs pages aren't involved. 898 */ PageTransCompound(const struct page * page)899 static inline int PageTransCompound(const struct page *page) 900 { 901 return PageCompound(page); 902 } 903 904 /* 905 * PageTransTail returns true for both transparent huge pages 906 * and hugetlbfs pages, so it should only be called when it's known 907 * that hugetlbfs pages aren't involved. 908 */ PageTransTail(const struct page * page)909 static inline int PageTransTail(const struct page *page) 910 { 911 return PageTail(page); 912 } 913 #else 914 TESTPAGEFLAG_FALSE(TransHuge, transhuge) 915 TESTPAGEFLAG_FALSE(TransCompound, transcompound) 916 TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap) 917 TESTPAGEFLAG_FALSE(TransTail, transtail) 918 #endif 919 920 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 921 /* 922 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the 923 * compound page. 924 * 925 * This flag is set by hwpoison handler. Cleared by THP split or free page. 926 */ 927 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 928 TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 929 #else 930 PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) 931 TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) 932 #endif 933 934 /* 935 * For pages that do not use mapcount, page_type may be used. 936 * The low 24 bits of pagetype may be used for your own purposes, as long 937 * as you are careful to not affect the top 8 bits. The low bits of 938 * pagetype will be overwritten when you clear the page_type from the page. 939 */ 940 enum pagetype { 941 /* 0x00-0x7f are positive numbers, ie mapcount */ 942 /* Reserve 0x80-0xef for mapcount overflow. */ 943 PGTY_buddy = 0xf0, 944 PGTY_offline = 0xf1, 945 PGTY_table = 0xf2, 946 PGTY_guard = 0xf3, 947 PGTY_hugetlb = 0xf4, 948 PGTY_slab = 0xf5, 949 PGTY_zsmalloc = 0xf6, 950 PGTY_unaccepted = 0xf7, 951 952 PGTY_mapcount_underflow = 0xff 953 }; 954 page_type_has_type(int page_type)955 static inline bool page_type_has_type(int page_type) 956 { 957 return page_type < (PGTY_mapcount_underflow << 24); 958 } 959 960 /* This takes a mapcount which is one more than page->_mapcount */ page_mapcount_is_type(unsigned int mapcount)961 static inline bool page_mapcount_is_type(unsigned int mapcount) 962 { 963 return page_type_has_type(mapcount - 1); 964 } 965 page_has_type(const struct page * page)966 static inline bool page_has_type(const struct page *page) 967 { 968 return page_mapcount_is_type(data_race(page->page_type)); 969 } 970 971 #define FOLIO_TYPE_OPS(lname, fname) \ 972 static __always_inline bool folio_test_##fname(const struct folio *folio) \ 973 { \ 974 return data_race(folio->page.page_type >> 24) == PGTY_##lname; \ 975 } \ 976 static __always_inline void __folio_set_##fname(struct folio *folio) \ 977 { \ 978 if (folio_test_##fname(folio)) \ 979 return; \ 980 VM_BUG_ON_FOLIO(data_race(folio->page.page_type) != UINT_MAX, \ 981 folio); \ 982 folio->page.page_type = (unsigned int)PGTY_##lname << 24; \ 983 } \ 984 static __always_inline void __folio_clear_##fname(struct folio *folio) \ 985 { \ 986 if (folio->page.page_type == UINT_MAX) \ 987 return; \ 988 VM_BUG_ON_FOLIO(!folio_test_##fname(folio), folio); \ 989 folio->page.page_type = UINT_MAX; \ 990 } 991 992 #define PAGE_TYPE_OPS(uname, lname, fname) \ 993 FOLIO_TYPE_OPS(lname, fname) \ 994 static __always_inline int Page##uname(const struct page *page) \ 995 { \ 996 return data_race(page->page_type >> 24) == PGTY_##lname; \ 997 } \ 998 static __always_inline void __SetPage##uname(struct page *page) \ 999 { \ 1000 if (Page##uname(page)) \ 1001 return; \ 1002 VM_BUG_ON_PAGE(data_race(page->page_type) != UINT_MAX, page); \ 1003 page->page_type = (unsigned int)PGTY_##lname << 24; \ 1004 } \ 1005 static __always_inline void __ClearPage##uname(struct page *page) \ 1006 { \ 1007 if (page->page_type == UINT_MAX) \ 1008 return; \ 1009 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 1010 page->page_type = UINT_MAX; \ 1011 } 1012 1013 /* 1014 * PageBuddy() indicates that the page is free and in the buddy system 1015 * (see mm/page_alloc.c). 1016 */ 1017 PAGE_TYPE_OPS(Buddy, buddy, buddy) 1018 1019 /* 1020 * PageOffline() indicates that the page is logically offline although the 1021 * containing section is online. (e.g. inflated in a balloon driver or 1022 * not onlined when onlining the section). 1023 * The content of these pages is effectively stale. Such pages should not 1024 * be touched (read/write/dump/save) except by their owner. 1025 * 1026 * When a memory block gets onlined, all pages are initialized with a 1027 * refcount of 1 and PageOffline(). generic_online_page() will 1028 * take care of clearing PageOffline(). 1029 * 1030 * If a driver wants to allow to offline unmovable PageOffline() pages without 1031 * putting them back to the buddy, it can do so via the memory notifier by 1032 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the 1033 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() 1034 * pages (now with a reference count of zero) are treated like free (unmanaged) 1035 * pages, allowing the containing memory block to get offlined. A driver that 1036 * relies on this feature is aware that re-onlining the memory block will 1037 * require not giving them to the buddy via generic_online_page(). 1038 * 1039 * Memory offlining code will not adjust the managed page count for any 1040 * PageOffline() pages, treating them like they were never exposed to the 1041 * buddy using generic_online_page(). 1042 * 1043 * There are drivers that mark a page PageOffline() and expect there won't be 1044 * any further access to page content. PFN walkers that read content of random 1045 * pages should check PageOffline() and synchronize with such drivers using 1046 * page_offline_freeze()/page_offline_thaw(). 1047 */ 1048 PAGE_TYPE_OPS(Offline, offline, offline) 1049 1050 extern void page_offline_freeze(void); 1051 extern void page_offline_thaw(void); 1052 extern void page_offline_begin(void); 1053 extern void page_offline_end(void); 1054 1055 /* 1056 * Marks pages in use as page tables. 1057 */ PAGE_TYPE_OPS(Table,table,pgtable)1058 PAGE_TYPE_OPS(Table, table, pgtable) 1059 1060 /* 1061 * Marks guardpages used with debug_pagealloc. 1062 */ 1063 PAGE_TYPE_OPS(Guard, guard, guard) 1064 1065 FOLIO_TYPE_OPS(slab, slab) 1066 1067 /** 1068 * PageSlab - Determine if the page belongs to the slab allocator 1069 * @page: The page to test. 1070 * 1071 * Context: Any context. 1072 * Return: True for slab pages, false for any other kind of page. 1073 */ 1074 static inline bool PageSlab(const struct page *page) 1075 { 1076 return folio_test_slab(page_folio(page)); 1077 } 1078 1079 #ifdef CONFIG_HUGETLB_PAGE FOLIO_TYPE_OPS(hugetlb,hugetlb)1080 FOLIO_TYPE_OPS(hugetlb, hugetlb) 1081 #else 1082 FOLIO_TEST_FLAG_FALSE(hugetlb) 1083 #endif 1084 1085 PAGE_TYPE_OPS(Zsmalloc, zsmalloc, zsmalloc) 1086 1087 /* 1088 * Mark pages that has to be accepted before touched for the first time. 1089 * 1090 * Serialized with zone lock. 1091 */ 1092 PAGE_TYPE_OPS(Unaccepted, unaccepted, unaccepted) 1093 1094 /** 1095 * PageHuge - Determine if the page belongs to hugetlbfs 1096 * @page: The page to test. 1097 * 1098 * Context: Any context. 1099 * Return: True for hugetlbfs pages, false for anon pages or pages 1100 * belonging to other filesystems. 1101 */ 1102 static inline bool PageHuge(const struct page *page) 1103 { 1104 return folio_test_hugetlb(page_folio(page)); 1105 } 1106 1107 /* 1108 * Check if a page is currently marked HWPoisoned. Note that this check is 1109 * best effort only and inherently racy: there is no way to synchronize with 1110 * failing hardware. 1111 */ is_page_hwpoison(const struct page * page)1112 static inline bool is_page_hwpoison(const struct page *page) 1113 { 1114 const struct folio *folio; 1115 1116 if (PageHWPoison(page)) 1117 return true; 1118 folio = page_folio(page); 1119 return folio_test_hugetlb(folio) && PageHWPoison(&folio->page); 1120 } 1121 1122 bool is_free_buddy_page(const struct page *page); 1123 1124 PAGEFLAG(Isolated, isolated, PF_ANY); 1125 PageAnonExclusive(const struct page * page)1126 static __always_inline int PageAnonExclusive(const struct page *page) 1127 { 1128 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1129 /* 1130 * HugeTLB stores this information on the head page; THP keeps it per 1131 * page 1132 */ 1133 if (PageHuge(page)) 1134 page = compound_head(page); 1135 return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1136 } 1137 SetPageAnonExclusive(struct page * page)1138 static __always_inline void SetPageAnonExclusive(struct page *page) 1139 { 1140 VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page); 1141 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1142 set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1143 } 1144 ClearPageAnonExclusive(struct page * page)1145 static __always_inline void ClearPageAnonExclusive(struct page *page) 1146 { 1147 VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page); 1148 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1149 clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1150 } 1151 __ClearPageAnonExclusive(struct page * page)1152 static __always_inline void __ClearPageAnonExclusive(struct page *page) 1153 { 1154 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1155 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1156 __clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1157 } 1158 1159 #ifdef CONFIG_MMU 1160 #define __PG_MLOCKED (1UL << PG_mlocked) 1161 #else 1162 #define __PG_MLOCKED 0 1163 #endif 1164 1165 /* 1166 * Flags checked when a page is freed. Pages being freed should not have 1167 * these flags set. If they are, there is a problem. 1168 */ 1169 #define PAGE_FLAGS_CHECK_AT_FREE \ 1170 (1UL << PG_lru | 1UL << PG_locked | \ 1171 1UL << PG_private | 1UL << PG_private_2 | \ 1172 1UL << PG_writeback | 1UL << PG_reserved | \ 1173 1UL << PG_active | \ 1174 1UL << PG_unevictable | __PG_MLOCKED | LRU_GEN_MASK) 1175 1176 /* 1177 * Flags checked when a page is prepped for return by the page allocator. 1178 * Pages being prepped should not have these flags set. If they are set, 1179 * there has been a kernel bug or struct page corruption. 1180 * 1181 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 1182 * alloc-free cycle to prevent from reusing the page. 1183 */ 1184 #define PAGE_FLAGS_CHECK_AT_PREP \ 1185 ((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK) 1186 1187 /* 1188 * Flags stored in the second page of a compound page. They may overlap 1189 * the CHECK_AT_FREE flags above, so need to be cleared. 1190 */ 1191 #define PAGE_FLAGS_SECOND \ 1192 (0xffUL /* order */ | 1UL << PG_has_hwpoisoned | \ 1193 1UL << PG_large_rmappable | 1UL << PG_partially_mapped) 1194 1195 #define PAGE_FLAGS_PRIVATE \ 1196 (1UL << PG_private | 1UL << PG_private_2) 1197 /** 1198 * folio_has_private - Determine if folio has private stuff 1199 * @folio: The folio to be checked 1200 * 1201 * Determine if a folio has private stuff, indicating that release routines 1202 * should be invoked upon it. 1203 */ folio_has_private(const struct folio * folio)1204 static inline int folio_has_private(const struct folio *folio) 1205 { 1206 return !!(folio->flags & PAGE_FLAGS_PRIVATE); 1207 } 1208 1209 #undef PF_ANY 1210 #undef PF_HEAD 1211 #undef PF_NO_TAIL 1212 #undef PF_NO_COMPOUND 1213 #undef PF_SECOND 1214 #endif /* !__GENERATING_BOUNDS_H */ 1215 1216 #endif /* PAGE_FLAGS_H */ 1217