1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
4   *
5   * Communication to userspace based on kernel/printk.c
6   */
7  
8  #include <linux/types.h>
9  #include <linux/errno.h>
10  #include <linux/sched.h>
11  #include <linux/kernel.h>
12  #include <linux/of.h>
13  #include <linux/poll.h>
14  #include <linux/proc_fs.h>
15  #include <linux/init.h>
16  #include <linux/vmalloc.h>
17  #include <linux/spinlock.h>
18  #include <linux/cpu.h>
19  #include <linux/workqueue.h>
20  #include <linux/slab.h>
21  #include <linux/topology.h>
22  
23  #include <linux/uaccess.h>
24  #include <asm/io.h>
25  #include <asm/rtas.h>
26  #include <asm/nvram.h>
27  #include <linux/atomic.h>
28  #include <asm/machdep.h>
29  #include <asm/topology.h>
30  
31  
32  static DEFINE_SPINLOCK(rtasd_log_lock);
33  
34  static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
35  
36  static char *rtas_log_buf;
37  static unsigned long rtas_log_start;
38  static unsigned long rtas_log_size;
39  
40  static int surveillance_timeout = -1;
41  
42  static unsigned int rtas_error_log_max;
43  static unsigned int rtas_error_log_buffer_max;
44  
45  /* RTAS service tokens */
46  static unsigned int event_scan;
47  static unsigned int rtas_event_scan_rate;
48  
49  static bool full_rtas_msgs;
50  
51  /* Stop logging to nvram after first fatal error */
52  static int logging_enabled; /* Until we initialize everything,
53                               * make sure we don't try logging
54                               * anything */
55  static int error_log_cnt;
56  
57  /*
58   * Since we use 32 bit RTAS, the physical address of this must be below
59   * 4G or else bad things happen. Allocate this in the kernel data and
60   * make it big enough.
61   */
62  static unsigned char logdata[RTAS_ERROR_LOG_MAX];
63  
64  static char *rtas_type[] = {
65  	"Unknown", "Retry", "TCE Error", "Internal Device Failure",
66  	"Timeout", "Data Parity", "Address Parity", "Cache Parity",
67  	"Address Invalid", "ECC Uncorrected", "ECC Corrupted",
68  };
69  
rtas_event_type(int type)70  static char *rtas_event_type(int type)
71  {
72  	if ((type > 0) && (type < 11))
73  		return rtas_type[type];
74  
75  	switch (type) {
76  		case RTAS_TYPE_EPOW:
77  			return "EPOW";
78  		case RTAS_TYPE_PLATFORM:
79  			return "Platform Error";
80  		case RTAS_TYPE_IO:
81  			return "I/O Event";
82  		case RTAS_TYPE_INFO:
83  			return "Platform Information Event";
84  		case RTAS_TYPE_DEALLOC:
85  			return "Resource Deallocation Event";
86  		case RTAS_TYPE_DUMP:
87  			return "Dump Notification Event";
88  		case RTAS_TYPE_PRRN:
89  			return "Platform Resource Reassignment Event";
90  		case RTAS_TYPE_HOTPLUG:
91  			return "Hotplug Event";
92  	}
93  
94  	return rtas_type[0];
95  }
96  
97  /* To see this info, grep RTAS /var/log/messages and each entry
98   * will be collected together with obvious begin/end.
99   * There will be a unique identifier on the begin and end lines.
100   * This will persist across reboots.
101   *
102   * format of error logs returned from RTAS:
103   * bytes	(size)	: contents
104   * --------------------------------------------------------
105   * 0-7		(8)	: rtas_error_log
106   * 8-47		(40)	: extended info
107   * 48-51	(4)	: vendor id
108   * 52-1023 (vendor specific) : location code and debug data
109   */
printk_log_rtas(char * buf,int len)110  static void printk_log_rtas(char *buf, int len)
111  {
112  
113  	int i,j,n = 0;
114  	int perline = 16;
115  	char buffer[64];
116  	char * str = "RTAS event";
117  
118  	if (full_rtas_msgs) {
119  		printk(RTAS_DEBUG "%d -------- %s begin --------\n",
120  		       error_log_cnt, str);
121  
122  		/*
123  		 * Print perline bytes on each line, each line will start
124  		 * with RTAS and a changing number, so syslogd will
125  		 * print lines that are otherwise the same.  Separate every
126  		 * 4 bytes with a space.
127  		 */
128  		for (i = 0; i < len; i++) {
129  			j = i % perline;
130  			if (j == 0) {
131  				memset(buffer, 0, sizeof(buffer));
132  				n = sprintf(buffer, "RTAS %d:", i/perline);
133  			}
134  
135  			if ((i % 4) == 0)
136  				n += sprintf(buffer+n, " ");
137  
138  			n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
139  
140  			if (j == (perline-1))
141  				printk(KERN_DEBUG "%s\n", buffer);
142  		}
143  		if ((i % perline) != 0)
144  			printk(KERN_DEBUG "%s\n", buffer);
145  
146  		printk(RTAS_DEBUG "%d -------- %s end ----------\n",
147  		       error_log_cnt, str);
148  	} else {
149  		struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
150  
151  		printk(RTAS_DEBUG "event: %d, Type: %s (%d), Severity: %d\n",
152  		       error_log_cnt,
153  		       rtas_event_type(rtas_error_type(errlog)),
154  		       rtas_error_type(errlog),
155  		       rtas_error_severity(errlog));
156  	}
157  }
158  
log_rtas_len(char * buf)159  static int log_rtas_len(char * buf)
160  {
161  	int len;
162  	struct rtas_error_log *err;
163  	uint32_t extended_log_length;
164  
165  	/* rtas fixed header */
166  	len = 8;
167  	err = (struct rtas_error_log *)buf;
168  	extended_log_length = rtas_error_extended_log_length(err);
169  	if (rtas_error_extended(err) && extended_log_length) {
170  
171  		/* extended header */
172  		len += extended_log_length;
173  	}
174  
175  	if (rtas_error_log_max == 0)
176  		rtas_error_log_max = rtas_get_error_log_max();
177  
178  	if (len > rtas_error_log_max)
179  		len = rtas_error_log_max;
180  
181  	return len;
182  }
183  
184  /*
185   * First write to nvram, if fatal error, that is the only
186   * place we log the info.  The error will be picked up
187   * on the next reboot by rtasd.  If not fatal, run the
188   * method for the type of error.  Currently, only RTAS
189   * errors have methods implemented, but in the future
190   * there might be a need to store data in nvram before a
191   * call to panic().
192   *
193   * XXX We write to nvram periodically, to indicate error has
194   * been written and sync'd, but there is a possibility
195   * that if we don't shutdown correctly, a duplicate error
196   * record will be created on next reboot.
197   */
pSeries_log_error(char * buf,unsigned int err_type,int fatal)198  void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
199  {
200  	unsigned long offset;
201  	unsigned long s;
202  	int len = 0;
203  
204  	pr_debug("rtasd: logging event\n");
205  	if (buf == NULL)
206  		return;
207  
208  	spin_lock_irqsave(&rtasd_log_lock, s);
209  
210  	/* get length and increase count */
211  	switch (err_type & ERR_TYPE_MASK) {
212  	case ERR_TYPE_RTAS_LOG:
213  		len = log_rtas_len(buf);
214  		if (!(err_type & ERR_FLAG_BOOT))
215  			error_log_cnt++;
216  		break;
217  	case ERR_TYPE_KERNEL_PANIC:
218  	default:
219  		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
220  		spin_unlock_irqrestore(&rtasd_log_lock, s);
221  		return;
222  	}
223  
224  #ifdef CONFIG_PPC64
225  	/* Write error to NVRAM */
226  	if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
227  		nvram_write_error_log(buf, len, err_type, error_log_cnt);
228  #endif /* CONFIG_PPC64 */
229  
230  	/*
231  	 * rtas errors can occur during boot, and we do want to capture
232  	 * those somewhere, even if nvram isn't ready (why not?), and even
233  	 * if rtasd isn't ready. Put them into the boot log, at least.
234  	 */
235  	if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
236  		printk_log_rtas(buf, len);
237  
238  	/* Check to see if we need to or have stopped logging */
239  	if (fatal || !logging_enabled) {
240  		logging_enabled = 0;
241  		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
242  		spin_unlock_irqrestore(&rtasd_log_lock, s);
243  		return;
244  	}
245  
246  	/* call type specific method for error */
247  	switch (err_type & ERR_TYPE_MASK) {
248  	case ERR_TYPE_RTAS_LOG:
249  		offset = rtas_error_log_buffer_max *
250  			((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
251  
252  		/* First copy over sequence number */
253  		memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
254  
255  		/* Second copy over error log data */
256  		offset += sizeof(int);
257  		memcpy(&rtas_log_buf[offset], buf, len);
258  
259  		if (rtas_log_size < LOG_NUMBER)
260  			rtas_log_size += 1;
261  		else
262  			rtas_log_start += 1;
263  
264  		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
265  		spin_unlock_irqrestore(&rtasd_log_lock, s);
266  		wake_up_interruptible(&rtas_log_wait);
267  		break;
268  	case ERR_TYPE_KERNEL_PANIC:
269  	default:
270  		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
271  		spin_unlock_irqrestore(&rtasd_log_lock, s);
272  		return;
273  	}
274  }
275  
handle_rtas_event(const struct rtas_error_log * log)276  static void handle_rtas_event(const struct rtas_error_log *log)
277  {
278  	if (!machine_is(pseries))
279  		return;
280  
281  	if (rtas_error_type(log) == RTAS_TYPE_PRRN)
282  		pr_info_ratelimited("Platform resource reassignment ignored.\n");
283  }
284  
rtas_log_open(struct inode * inode,struct file * file)285  static int rtas_log_open(struct inode * inode, struct file * file)
286  {
287  	return 0;
288  }
289  
rtas_log_release(struct inode * inode,struct file * file)290  static int rtas_log_release(struct inode * inode, struct file * file)
291  {
292  	return 0;
293  }
294  
295  /* This will check if all events are logged, if they are then, we
296   * know that we can safely clear the events in NVRAM.
297   * Next we'll sit and wait for something else to log.
298   */
rtas_log_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)299  static ssize_t rtas_log_read(struct file * file, char __user * buf,
300  			 size_t count, loff_t *ppos)
301  {
302  	int error;
303  	char *tmp;
304  	unsigned long s;
305  	unsigned long offset;
306  
307  	if (!buf || count < rtas_error_log_buffer_max)
308  		return -EINVAL;
309  
310  	count = rtas_error_log_buffer_max;
311  
312  	if (!access_ok(buf, count))
313  		return -EFAULT;
314  
315  	tmp = kmalloc(count, GFP_KERNEL);
316  	if (!tmp)
317  		return -ENOMEM;
318  
319  	spin_lock_irqsave(&rtasd_log_lock, s);
320  
321  	/* if it's 0, then we know we got the last one (the one in NVRAM) */
322  	while (rtas_log_size == 0) {
323  		if (file->f_flags & O_NONBLOCK) {
324  			spin_unlock_irqrestore(&rtasd_log_lock, s);
325  			error = -EAGAIN;
326  			goto out;
327  		}
328  
329  		if (!logging_enabled) {
330  			spin_unlock_irqrestore(&rtasd_log_lock, s);
331  			error = -ENODATA;
332  			goto out;
333  		}
334  #ifdef CONFIG_PPC64
335  		nvram_clear_error_log();
336  #endif /* CONFIG_PPC64 */
337  
338  		spin_unlock_irqrestore(&rtasd_log_lock, s);
339  		error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
340  		if (error)
341  			goto out;
342  		spin_lock_irqsave(&rtasd_log_lock, s);
343  	}
344  
345  	offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
346  	memcpy(tmp, &rtas_log_buf[offset], count);
347  
348  	rtas_log_start += 1;
349  	rtas_log_size -= 1;
350  	spin_unlock_irqrestore(&rtasd_log_lock, s);
351  
352  	error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
353  out:
354  	kfree(tmp);
355  	return error;
356  }
357  
rtas_log_poll(struct file * file,poll_table * wait)358  static __poll_t rtas_log_poll(struct file *file, poll_table * wait)
359  {
360  	poll_wait(file, &rtas_log_wait, wait);
361  	if (rtas_log_size)
362  		return EPOLLIN | EPOLLRDNORM;
363  	return 0;
364  }
365  
366  static const struct proc_ops rtas_log_proc_ops = {
367  	.proc_read	= rtas_log_read,
368  	.proc_poll	= rtas_log_poll,
369  	.proc_open	= rtas_log_open,
370  	.proc_release	= rtas_log_release,
371  	.proc_lseek	= noop_llseek,
372  };
373  
enable_surveillance(int timeout)374  static int enable_surveillance(int timeout)
375  {
376  	int error;
377  
378  	error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
379  
380  	if (error == 0)
381  		return 0;
382  
383  	if (error == -EINVAL) {
384  		printk(KERN_DEBUG "rtasd: surveillance not supported\n");
385  		return 0;
386  	}
387  
388  	printk(KERN_ERR "rtasd: could not update surveillance\n");
389  	return -1;
390  }
391  
do_event_scan(void)392  static void do_event_scan(void)
393  {
394  	int error;
395  	do {
396  		memset(logdata, 0, rtas_error_log_max);
397  		error = rtas_call(event_scan, 4, 1, NULL,
398  				  RTAS_EVENT_SCAN_ALL_EVENTS, 0,
399  				  __pa(logdata), rtas_error_log_max);
400  		if (error == -1) {
401  			printk(KERN_ERR "event-scan failed\n");
402  			break;
403  		}
404  
405  		if (error == 0) {
406  			if (rtas_error_type((struct rtas_error_log *)logdata) !=
407  			    RTAS_TYPE_PRRN)
408  				pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG,
409  						  0);
410  			handle_rtas_event((struct rtas_error_log *)logdata);
411  		}
412  
413  	} while(error == 0);
414  }
415  
416  static void rtas_event_scan(struct work_struct *w);
417  static DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);
418  
419  /*
420   * Delay should be at least one second since some machines have problems if
421   * we call event-scan too quickly.
422   */
423  static unsigned long event_scan_delay = 1*HZ;
424  static int first_pass = 1;
425  
rtas_event_scan(struct work_struct * w)426  static void rtas_event_scan(struct work_struct *w)
427  {
428  	unsigned int cpu;
429  
430  	do_event_scan();
431  
432  	cpus_read_lock();
433  
434  	/* raw_ OK because just using CPU as starting point. */
435  	cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
436          if (cpu >= nr_cpu_ids) {
437  		cpu = cpumask_first(cpu_online_mask);
438  
439  		if (first_pass) {
440  			first_pass = 0;
441  			event_scan_delay = 30*HZ/rtas_event_scan_rate;
442  
443  			if (surveillance_timeout != -1) {
444  				pr_debug("rtasd: enabling surveillance\n");
445  				enable_surveillance(surveillance_timeout);
446  				pr_debug("rtasd: surveillance enabled\n");
447  			}
448  		}
449  	}
450  
451  	schedule_delayed_work_on(cpu, &event_scan_work,
452  		__round_jiffies_relative(event_scan_delay, cpu));
453  
454  	cpus_read_unlock();
455  }
456  
457  #ifdef CONFIG_PPC64
retrieve_nvram_error_log(void)458  static void __init retrieve_nvram_error_log(void)
459  {
460  	unsigned int err_type ;
461  	int rc ;
462  
463  	/* See if we have any error stored in NVRAM */
464  	memset(logdata, 0, rtas_error_log_max);
465  	rc = nvram_read_error_log(logdata, rtas_error_log_max,
466  	                          &err_type, &error_log_cnt);
467  	/* We can use rtas_log_buf now */
468  	logging_enabled = 1;
469  	if (!rc) {
470  		if (err_type != ERR_FLAG_ALREADY_LOGGED) {
471  			pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
472  		}
473  	}
474  }
475  #else /* CONFIG_PPC64 */
retrieve_nvram_error_log(void)476  static void __init retrieve_nvram_error_log(void)
477  {
478  }
479  #endif /* CONFIG_PPC64 */
480  
start_event_scan(void)481  static void __init start_event_scan(void)
482  {
483  	printk(KERN_DEBUG "RTAS daemon started\n");
484  	pr_debug("rtasd: will sleep for %d milliseconds\n",
485  		 (30000 / rtas_event_scan_rate));
486  
487  	/* Retrieve errors from nvram if any */
488  	retrieve_nvram_error_log();
489  
490  	schedule_delayed_work_on(cpumask_first(cpu_online_mask),
491  				 &event_scan_work, event_scan_delay);
492  }
493  
494  /* Cancel the rtas event scan work */
rtas_cancel_event_scan(void)495  void rtas_cancel_event_scan(void)
496  {
497  	cancel_delayed_work_sync(&event_scan_work);
498  }
499  EXPORT_SYMBOL_GPL(rtas_cancel_event_scan);
500  
rtas_event_scan_init(void)501  static int __init rtas_event_scan_init(void)
502  {
503  	int err;
504  
505  	if (!machine_is(pseries) && !machine_is(chrp))
506  		return 0;
507  
508  	/* No RTAS */
509  	event_scan = rtas_function_token(RTAS_FN_EVENT_SCAN);
510  	if (event_scan == RTAS_UNKNOWN_SERVICE) {
511  		printk(KERN_INFO "rtasd: No event-scan on system\n");
512  		return -ENODEV;
513  	}
514  
515  	err = of_property_read_u32(rtas.dev, "rtas-event-scan-rate", &rtas_event_scan_rate);
516  	if (err) {
517  		printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
518  		return -ENODEV;
519  	}
520  
521  	if (!rtas_event_scan_rate) {
522  		/* Broken firmware: take a rate of zero to mean don't scan */
523  		printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n");
524  		return 0;
525  	}
526  
527  	/* Make room for the sequence number */
528  	rtas_error_log_max = rtas_get_error_log_max();
529  	rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
530  
531  	rtas_log_buf = vmalloc(array_size(LOG_NUMBER,
532  					  rtas_error_log_buffer_max));
533  	if (!rtas_log_buf) {
534  		printk(KERN_ERR "rtasd: no memory\n");
535  		return -ENOMEM;
536  	}
537  
538  	start_event_scan();
539  
540  	return 0;
541  }
542  arch_initcall(rtas_event_scan_init);
543  
rtas_init(void)544  static int __init rtas_init(void)
545  {
546  	struct proc_dir_entry *entry;
547  
548  	if (!machine_is(pseries) && !machine_is(chrp))
549  		return 0;
550  
551  	if (!rtas_log_buf)
552  		return -ENODEV;
553  
554  	entry = proc_create("powerpc/rtas/error_log", 0400, NULL,
555  			    &rtas_log_proc_ops);
556  	if (!entry)
557  		printk(KERN_ERR "Failed to create error_log proc entry\n");
558  
559  	return 0;
560  }
561  __initcall(rtas_init);
562  
surveillance_setup(char * str)563  static int __init surveillance_setup(char *str)
564  {
565  	int i;
566  
567  	/* We only do surveillance on pseries */
568  	if (!machine_is(pseries))
569  		return 0;
570  
571  	if (get_option(&str,&i)) {
572  		if (i >= 0 && i <= 255)
573  			surveillance_timeout = i;
574  	}
575  
576  	return 1;
577  }
578  __setup("surveillance=", surveillance_setup);
579  
rtasmsgs_setup(char * str)580  static int __init rtasmsgs_setup(char *str)
581  {
582  	return (kstrtobool(str, &full_rtas_msgs) == 0);
583  }
584  __setup("rtasmsgs=", rtasmsgs_setup);
585