1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
18 
19 #include <net/dst.h>
20 #include <net/gso.h>
21 #include <net/ip.h>
22 #include <net/ipv6.h>
23 #include <net/ip6_fib.h>
24 #include <net/checksum.h>
25 #include <net/dsfield.h>
26 #include <net/mpls.h>
27 
28 #if IS_ENABLED(CONFIG_PSAMPLE)
29 #include <net/psample.h>
30 #endif
31 
32 #include <net/sctp/checksum.h>
33 
34 #include "datapath.h"
35 #include "drop.h"
36 #include "flow.h"
37 #include "conntrack.h"
38 #include "vport.h"
39 #include "flow_netlink.h"
40 #include "openvswitch_trace.h"
41 
42 struct deferred_action {
43 	struct sk_buff *skb;
44 	const struct nlattr *actions;
45 	int actions_len;
46 
47 	/* Store pkt_key clone when creating deferred action. */
48 	struct sw_flow_key pkt_key;
49 };
50 
51 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
52 struct ovs_frag_data {
53 	unsigned long dst;
54 	struct vport *vport;
55 	struct ovs_skb_cb cb;
56 	__be16 inner_protocol;
57 	u16 network_offset;	/* valid only for MPLS */
58 	u16 vlan_tci;
59 	__be16 vlan_proto;
60 	unsigned int l2_len;
61 	u8 mac_proto;
62 	u8 l2_data[MAX_L2_LEN];
63 };
64 
65 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
66 
67 #define DEFERRED_ACTION_FIFO_SIZE 10
68 #define OVS_RECURSION_LIMIT 5
69 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
70 struct action_fifo {
71 	int head;
72 	int tail;
73 	/* Deferred action fifo queue storage. */
74 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
75 };
76 
77 struct action_flow_keys {
78 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
79 };
80 
81 static struct action_fifo __percpu *action_fifos;
82 static struct action_flow_keys __percpu *flow_keys;
83 static DEFINE_PER_CPU(int, exec_actions_level);
84 
85 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
86  * space. Return NULL if out of key spaces.
87  */
clone_key(const struct sw_flow_key * key_)88 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
89 {
90 	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
91 	int level = this_cpu_read(exec_actions_level);
92 	struct sw_flow_key *key = NULL;
93 
94 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
95 		key = &keys->key[level - 1];
96 		*key = *key_;
97 	}
98 
99 	return key;
100 }
101 
action_fifo_init(struct action_fifo * fifo)102 static void action_fifo_init(struct action_fifo *fifo)
103 {
104 	fifo->head = 0;
105 	fifo->tail = 0;
106 }
107 
action_fifo_is_empty(const struct action_fifo * fifo)108 static bool action_fifo_is_empty(const struct action_fifo *fifo)
109 {
110 	return (fifo->head == fifo->tail);
111 }
112 
action_fifo_get(struct action_fifo * fifo)113 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
114 {
115 	if (action_fifo_is_empty(fifo))
116 		return NULL;
117 
118 	return &fifo->fifo[fifo->tail++];
119 }
120 
action_fifo_put(struct action_fifo * fifo)121 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
122 {
123 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
124 		return NULL;
125 
126 	return &fifo->fifo[fifo->head++];
127 }
128 
129 /* Return true if fifo is not full */
add_deferred_actions(struct sk_buff * skb,const struct sw_flow_key * key,const struct nlattr * actions,const int actions_len)130 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
131 				    const struct sw_flow_key *key,
132 				    const struct nlattr *actions,
133 				    const int actions_len)
134 {
135 	struct action_fifo *fifo;
136 	struct deferred_action *da;
137 
138 	fifo = this_cpu_ptr(action_fifos);
139 	da = action_fifo_put(fifo);
140 	if (da) {
141 		da->skb = skb;
142 		da->actions = actions;
143 		da->actions_len = actions_len;
144 		da->pkt_key = *key;
145 	}
146 
147 	return da;
148 }
149 
invalidate_flow_key(struct sw_flow_key * key)150 static void invalidate_flow_key(struct sw_flow_key *key)
151 {
152 	key->mac_proto |= SW_FLOW_KEY_INVALID;
153 }
154 
is_flow_key_valid(const struct sw_flow_key * key)155 static bool is_flow_key_valid(const struct sw_flow_key *key)
156 {
157 	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
158 }
159 
160 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
161 			 struct sw_flow_key *key,
162 			 u32 recirc_id,
163 			 const struct nlattr *actions, int len,
164 			 bool last, bool clone_flow_key);
165 
166 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
167 			      struct sw_flow_key *key,
168 			      const struct nlattr *attr, int len);
169 
push_mpls(struct sk_buff * skb,struct sw_flow_key * key,__be32 mpls_lse,__be16 mpls_ethertype,__u16 mac_len)170 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
171 		     __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
172 {
173 	int err;
174 
175 	err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
176 	if (err)
177 		return err;
178 
179 	if (!mac_len)
180 		key->mac_proto = MAC_PROTO_NONE;
181 
182 	invalidate_flow_key(key);
183 	return 0;
184 }
185 
pop_mpls(struct sk_buff * skb,struct sw_flow_key * key,const __be16 ethertype)186 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
187 		    const __be16 ethertype)
188 {
189 	int err;
190 
191 	err = skb_mpls_pop(skb, ethertype, skb->mac_len,
192 			   ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
193 	if (err)
194 		return err;
195 
196 	if (ethertype == htons(ETH_P_TEB))
197 		key->mac_proto = MAC_PROTO_ETHERNET;
198 
199 	invalidate_flow_key(key);
200 	return 0;
201 }
202 
set_mpls(struct sk_buff * skb,struct sw_flow_key * flow_key,const __be32 * mpls_lse,const __be32 * mask)203 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
204 		    const __be32 *mpls_lse, const __be32 *mask)
205 {
206 	struct mpls_shim_hdr *stack;
207 	__be32 lse;
208 	int err;
209 
210 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
211 		return -ENOMEM;
212 
213 	stack = mpls_hdr(skb);
214 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
215 	err = skb_mpls_update_lse(skb, lse);
216 	if (err)
217 		return err;
218 
219 	flow_key->mpls.lse[0] = lse;
220 	return 0;
221 }
222 
pop_vlan(struct sk_buff * skb,struct sw_flow_key * key)223 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
224 {
225 	int err;
226 
227 	err = skb_vlan_pop(skb);
228 	if (skb_vlan_tag_present(skb)) {
229 		invalidate_flow_key(key);
230 	} else {
231 		key->eth.vlan.tci = 0;
232 		key->eth.vlan.tpid = 0;
233 	}
234 	return err;
235 }
236 
push_vlan(struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_action_push_vlan * vlan)237 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
238 		     const struct ovs_action_push_vlan *vlan)
239 {
240 	int err;
241 
242 	if (skb_vlan_tag_present(skb)) {
243 		invalidate_flow_key(key);
244 	} else {
245 		key->eth.vlan.tci = vlan->vlan_tci;
246 		key->eth.vlan.tpid = vlan->vlan_tpid;
247 	}
248 	err = skb_vlan_push(skb, vlan->vlan_tpid,
249 			    ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
250 	skb_reset_mac_len(skb);
251 	return err;
252 }
253 
254 /* 'src' is already properly masked. */
ether_addr_copy_masked(u8 * dst_,const u8 * src_,const u8 * mask_)255 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
256 {
257 	u16 *dst = (u16 *)dst_;
258 	const u16 *src = (const u16 *)src_;
259 	const u16 *mask = (const u16 *)mask_;
260 
261 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
262 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
263 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
264 }
265 
set_eth_addr(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ethernet * key,const struct ovs_key_ethernet * mask)266 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
267 			const struct ovs_key_ethernet *key,
268 			const struct ovs_key_ethernet *mask)
269 {
270 	int err;
271 
272 	err = skb_ensure_writable(skb, ETH_HLEN);
273 	if (unlikely(err))
274 		return err;
275 
276 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
277 
278 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
279 			       mask->eth_src);
280 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
281 			       mask->eth_dst);
282 
283 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
284 
285 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
286 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
287 	return 0;
288 }
289 
290 /* pop_eth does not support VLAN packets as this action is never called
291  * for them.
292  */
pop_eth(struct sk_buff * skb,struct sw_flow_key * key)293 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
294 {
295 	int err;
296 
297 	err = skb_eth_pop(skb);
298 	if (err)
299 		return err;
300 
301 	/* safe right before invalidate_flow_key */
302 	key->mac_proto = MAC_PROTO_NONE;
303 	invalidate_flow_key(key);
304 	return 0;
305 }
306 
push_eth(struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_action_push_eth * ethh)307 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
308 		    const struct ovs_action_push_eth *ethh)
309 {
310 	int err;
311 
312 	err = skb_eth_push(skb, ethh->addresses.eth_dst,
313 			   ethh->addresses.eth_src);
314 	if (err)
315 		return err;
316 
317 	/* safe right before invalidate_flow_key */
318 	key->mac_proto = MAC_PROTO_ETHERNET;
319 	invalidate_flow_key(key);
320 	return 0;
321 }
322 
push_nsh(struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * a)323 static noinline_for_stack int push_nsh(struct sk_buff *skb,
324 				       struct sw_flow_key *key,
325 				       const struct nlattr *a)
326 {
327 	u8 buffer[NSH_HDR_MAX_LEN];
328 	struct nshhdr *nh = (struct nshhdr *)buffer;
329 	int err;
330 
331 	err = nsh_hdr_from_nlattr(a, nh, NSH_HDR_MAX_LEN);
332 	if (err)
333 		return err;
334 
335 	err = nsh_push(skb, nh);
336 	if (err)
337 		return err;
338 
339 	/* safe right before invalidate_flow_key */
340 	key->mac_proto = MAC_PROTO_NONE;
341 	invalidate_flow_key(key);
342 	return 0;
343 }
344 
pop_nsh(struct sk_buff * skb,struct sw_flow_key * key)345 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
346 {
347 	int err;
348 
349 	err = nsh_pop(skb);
350 	if (err)
351 		return err;
352 
353 	/* safe right before invalidate_flow_key */
354 	if (skb->protocol == htons(ETH_P_TEB))
355 		key->mac_proto = MAC_PROTO_ETHERNET;
356 	else
357 		key->mac_proto = MAC_PROTO_NONE;
358 	invalidate_flow_key(key);
359 	return 0;
360 }
361 
update_ip_l4_checksum(struct sk_buff * skb,struct iphdr * nh,__be32 addr,__be32 new_addr)362 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
363 				  __be32 addr, __be32 new_addr)
364 {
365 	int transport_len = skb->len - skb_transport_offset(skb);
366 
367 	if (nh->frag_off & htons(IP_OFFSET))
368 		return;
369 
370 	if (nh->protocol == IPPROTO_TCP) {
371 		if (likely(transport_len >= sizeof(struct tcphdr)))
372 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
373 						 addr, new_addr, true);
374 	} else if (nh->protocol == IPPROTO_UDP) {
375 		if (likely(transport_len >= sizeof(struct udphdr))) {
376 			struct udphdr *uh = udp_hdr(skb);
377 
378 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
379 				inet_proto_csum_replace4(&uh->check, skb,
380 							 addr, new_addr, true);
381 				if (!uh->check)
382 					uh->check = CSUM_MANGLED_0;
383 			}
384 		}
385 	}
386 }
387 
set_ip_addr(struct sk_buff * skb,struct iphdr * nh,__be32 * addr,__be32 new_addr)388 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
389 			__be32 *addr, __be32 new_addr)
390 {
391 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
392 	csum_replace4(&nh->check, *addr, new_addr);
393 	skb_clear_hash(skb);
394 	ovs_ct_clear(skb, NULL);
395 	*addr = new_addr;
396 }
397 
update_ipv6_checksum(struct sk_buff * skb,u8 l4_proto,__be32 addr[4],const __be32 new_addr[4])398 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
399 				 __be32 addr[4], const __be32 new_addr[4])
400 {
401 	int transport_len = skb->len - skb_transport_offset(skb);
402 
403 	if (l4_proto == NEXTHDR_TCP) {
404 		if (likely(transport_len >= sizeof(struct tcphdr)))
405 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
406 						  addr, new_addr, true);
407 	} else if (l4_proto == NEXTHDR_UDP) {
408 		if (likely(transport_len >= sizeof(struct udphdr))) {
409 			struct udphdr *uh = udp_hdr(skb);
410 
411 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
412 				inet_proto_csum_replace16(&uh->check, skb,
413 							  addr, new_addr, true);
414 				if (!uh->check)
415 					uh->check = CSUM_MANGLED_0;
416 			}
417 		}
418 	} else if (l4_proto == NEXTHDR_ICMP) {
419 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
420 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
421 						  skb, addr, new_addr, true);
422 	}
423 }
424 
mask_ipv6_addr(const __be32 old[4],const __be32 addr[4],const __be32 mask[4],__be32 masked[4])425 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
426 			   const __be32 mask[4], __be32 masked[4])
427 {
428 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
429 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
430 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
431 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
432 }
433 
set_ipv6_addr(struct sk_buff * skb,u8 l4_proto,__be32 addr[4],const __be32 new_addr[4],bool recalculate_csum)434 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
435 			  __be32 addr[4], const __be32 new_addr[4],
436 			  bool recalculate_csum)
437 {
438 	if (recalculate_csum)
439 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
440 
441 	skb_clear_hash(skb);
442 	ovs_ct_clear(skb, NULL);
443 	memcpy(addr, new_addr, sizeof(__be32[4]));
444 }
445 
set_ipv6_dsfield(struct sk_buff * skb,struct ipv6hdr * nh,u8 ipv6_tclass,u8 mask)446 static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
447 {
448 	u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
449 
450 	ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
451 
452 	if (skb->ip_summed == CHECKSUM_COMPLETE)
453 		csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
454 			     (__force __wsum)(ipv6_tclass << 12));
455 
456 	ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
457 }
458 
set_ipv6_fl(struct sk_buff * skb,struct ipv6hdr * nh,u32 fl,u32 mask)459 static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
460 {
461 	u32 ofl;
462 
463 	ofl = nh->flow_lbl[0] << 16 |  nh->flow_lbl[1] << 8 |  nh->flow_lbl[2];
464 	fl = OVS_MASKED(ofl, fl, mask);
465 
466 	/* Bits 21-24 are always unmasked, so this retains their values. */
467 	nh->flow_lbl[0] = (u8)(fl >> 16);
468 	nh->flow_lbl[1] = (u8)(fl >> 8);
469 	nh->flow_lbl[2] = (u8)fl;
470 
471 	if (skb->ip_summed == CHECKSUM_COMPLETE)
472 		csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
473 }
474 
set_ipv6_ttl(struct sk_buff * skb,struct ipv6hdr * nh,u8 new_ttl,u8 mask)475 static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
476 {
477 	new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
478 
479 	if (skb->ip_summed == CHECKSUM_COMPLETE)
480 		csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
481 			     (__force __wsum)(new_ttl << 8));
482 	nh->hop_limit = new_ttl;
483 }
484 
set_ip_ttl(struct sk_buff * skb,struct iphdr * nh,u8 new_ttl,u8 mask)485 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
486 		       u8 mask)
487 {
488 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
489 
490 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
491 	nh->ttl = new_ttl;
492 }
493 
set_ipv4(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ipv4 * key,const struct ovs_key_ipv4 * mask)494 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
495 		    const struct ovs_key_ipv4 *key,
496 		    const struct ovs_key_ipv4 *mask)
497 {
498 	struct iphdr *nh;
499 	__be32 new_addr;
500 	int err;
501 
502 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
503 				  sizeof(struct iphdr));
504 	if (unlikely(err))
505 		return err;
506 
507 	nh = ip_hdr(skb);
508 
509 	/* Setting an IP addresses is typically only a side effect of
510 	 * matching on them in the current userspace implementation, so it
511 	 * makes sense to check if the value actually changed.
512 	 */
513 	if (mask->ipv4_src) {
514 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
515 
516 		if (unlikely(new_addr != nh->saddr)) {
517 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
518 			flow_key->ipv4.addr.src = new_addr;
519 		}
520 	}
521 	if (mask->ipv4_dst) {
522 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
523 
524 		if (unlikely(new_addr != nh->daddr)) {
525 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
526 			flow_key->ipv4.addr.dst = new_addr;
527 		}
528 	}
529 	if (mask->ipv4_tos) {
530 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
531 		flow_key->ip.tos = nh->tos;
532 	}
533 	if (mask->ipv4_ttl) {
534 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
535 		flow_key->ip.ttl = nh->ttl;
536 	}
537 
538 	return 0;
539 }
540 
is_ipv6_mask_nonzero(const __be32 addr[4])541 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
542 {
543 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
544 }
545 
set_ipv6(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ipv6 * key,const struct ovs_key_ipv6 * mask)546 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
547 		    const struct ovs_key_ipv6 *key,
548 		    const struct ovs_key_ipv6 *mask)
549 {
550 	struct ipv6hdr *nh;
551 	int err;
552 
553 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
554 				  sizeof(struct ipv6hdr));
555 	if (unlikely(err))
556 		return err;
557 
558 	nh = ipv6_hdr(skb);
559 
560 	/* Setting an IP addresses is typically only a side effect of
561 	 * matching on them in the current userspace implementation, so it
562 	 * makes sense to check if the value actually changed.
563 	 */
564 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
565 		__be32 *saddr = (__be32 *)&nh->saddr;
566 		__be32 masked[4];
567 
568 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
569 
570 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
571 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
572 				      true);
573 			memcpy(&flow_key->ipv6.addr.src, masked,
574 			       sizeof(flow_key->ipv6.addr.src));
575 		}
576 	}
577 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
578 		unsigned int offset = 0;
579 		int flags = IP6_FH_F_SKIP_RH;
580 		bool recalc_csum = true;
581 		__be32 *daddr = (__be32 *)&nh->daddr;
582 		__be32 masked[4];
583 
584 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
585 
586 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
587 			if (ipv6_ext_hdr(nh->nexthdr))
588 				recalc_csum = (ipv6_find_hdr(skb, &offset,
589 							     NEXTHDR_ROUTING,
590 							     NULL, &flags)
591 					       != NEXTHDR_ROUTING);
592 
593 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
594 				      recalc_csum);
595 			memcpy(&flow_key->ipv6.addr.dst, masked,
596 			       sizeof(flow_key->ipv6.addr.dst));
597 		}
598 	}
599 	if (mask->ipv6_tclass) {
600 		set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
601 		flow_key->ip.tos = ipv6_get_dsfield(nh);
602 	}
603 	if (mask->ipv6_label) {
604 		set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
605 			    ntohl(mask->ipv6_label));
606 		flow_key->ipv6.label =
607 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
608 	}
609 	if (mask->ipv6_hlimit) {
610 		set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
611 		flow_key->ip.ttl = nh->hop_limit;
612 	}
613 	return 0;
614 }
615 
set_nsh(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)616 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
617 		   const struct nlattr *a)
618 {
619 	struct nshhdr *nh;
620 	size_t length;
621 	int err;
622 	u8 flags;
623 	u8 ttl;
624 	int i;
625 
626 	struct ovs_key_nsh key;
627 	struct ovs_key_nsh mask;
628 
629 	err = nsh_key_from_nlattr(a, &key, &mask);
630 	if (err)
631 		return err;
632 
633 	/* Make sure the NSH base header is there */
634 	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
635 		return -ENOMEM;
636 
637 	nh = nsh_hdr(skb);
638 	length = nsh_hdr_len(nh);
639 
640 	/* Make sure the whole NSH header is there */
641 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
642 				       length);
643 	if (unlikely(err))
644 		return err;
645 
646 	nh = nsh_hdr(skb);
647 	skb_postpull_rcsum(skb, nh, length);
648 	flags = nsh_get_flags(nh);
649 	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
650 	flow_key->nsh.base.flags = flags;
651 	ttl = nsh_get_ttl(nh);
652 	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
653 	flow_key->nsh.base.ttl = ttl;
654 	nsh_set_flags_and_ttl(nh, flags, ttl);
655 	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
656 				  mask.base.path_hdr);
657 	flow_key->nsh.base.path_hdr = nh->path_hdr;
658 	switch (nh->mdtype) {
659 	case NSH_M_TYPE1:
660 		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
661 			nh->md1.context[i] =
662 			    OVS_MASKED(nh->md1.context[i], key.context[i],
663 				       mask.context[i]);
664 		}
665 		memcpy(flow_key->nsh.context, nh->md1.context,
666 		       sizeof(nh->md1.context));
667 		break;
668 	case NSH_M_TYPE2:
669 		memset(flow_key->nsh.context, 0,
670 		       sizeof(flow_key->nsh.context));
671 		break;
672 	default:
673 		return -EINVAL;
674 	}
675 	skb_postpush_rcsum(skb, nh, length);
676 	return 0;
677 }
678 
679 /* Must follow skb_ensure_writable() since that can move the skb data. */
set_tp_port(struct sk_buff * skb,__be16 * port,__be16 new_port,__sum16 * check)680 static void set_tp_port(struct sk_buff *skb, __be16 *port,
681 			__be16 new_port, __sum16 *check)
682 {
683 	ovs_ct_clear(skb, NULL);
684 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
685 	*port = new_port;
686 }
687 
set_udp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_udp * key,const struct ovs_key_udp * mask)688 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
689 		   const struct ovs_key_udp *key,
690 		   const struct ovs_key_udp *mask)
691 {
692 	struct udphdr *uh;
693 	__be16 src, dst;
694 	int err;
695 
696 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
697 				  sizeof(struct udphdr));
698 	if (unlikely(err))
699 		return err;
700 
701 	uh = udp_hdr(skb);
702 	/* Either of the masks is non-zero, so do not bother checking them. */
703 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
704 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
705 
706 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
707 		if (likely(src != uh->source)) {
708 			set_tp_port(skb, &uh->source, src, &uh->check);
709 			flow_key->tp.src = src;
710 		}
711 		if (likely(dst != uh->dest)) {
712 			set_tp_port(skb, &uh->dest, dst, &uh->check);
713 			flow_key->tp.dst = dst;
714 		}
715 
716 		if (unlikely(!uh->check))
717 			uh->check = CSUM_MANGLED_0;
718 	} else {
719 		uh->source = src;
720 		uh->dest = dst;
721 		flow_key->tp.src = src;
722 		flow_key->tp.dst = dst;
723 		ovs_ct_clear(skb, NULL);
724 	}
725 
726 	skb_clear_hash(skb);
727 
728 	return 0;
729 }
730 
set_tcp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_tcp * key,const struct ovs_key_tcp * mask)731 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
732 		   const struct ovs_key_tcp *key,
733 		   const struct ovs_key_tcp *mask)
734 {
735 	struct tcphdr *th;
736 	__be16 src, dst;
737 	int err;
738 
739 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
740 				  sizeof(struct tcphdr));
741 	if (unlikely(err))
742 		return err;
743 
744 	th = tcp_hdr(skb);
745 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
746 	if (likely(src != th->source)) {
747 		set_tp_port(skb, &th->source, src, &th->check);
748 		flow_key->tp.src = src;
749 	}
750 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
751 	if (likely(dst != th->dest)) {
752 		set_tp_port(skb, &th->dest, dst, &th->check);
753 		flow_key->tp.dst = dst;
754 	}
755 	skb_clear_hash(skb);
756 
757 	return 0;
758 }
759 
set_sctp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_sctp * key,const struct ovs_key_sctp * mask)760 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
761 		    const struct ovs_key_sctp *key,
762 		    const struct ovs_key_sctp *mask)
763 {
764 	unsigned int sctphoff = skb_transport_offset(skb);
765 	struct sctphdr *sh;
766 	__le32 old_correct_csum, new_csum, old_csum;
767 	int err;
768 
769 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
770 	if (unlikely(err))
771 		return err;
772 
773 	sh = sctp_hdr(skb);
774 	old_csum = sh->checksum;
775 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
776 
777 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
778 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
779 
780 	new_csum = sctp_compute_cksum(skb, sctphoff);
781 
782 	/* Carry any checksum errors through. */
783 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
784 
785 	skb_clear_hash(skb);
786 	ovs_ct_clear(skb, NULL);
787 
788 	flow_key->tp.src = sh->source;
789 	flow_key->tp.dst = sh->dest;
790 
791 	return 0;
792 }
793 
ovs_vport_output(struct net * net,struct sock * sk,struct sk_buff * skb)794 static int ovs_vport_output(struct net *net, struct sock *sk,
795 			    struct sk_buff *skb)
796 {
797 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
798 	struct vport *vport = data->vport;
799 
800 	if (skb_cow_head(skb, data->l2_len) < 0) {
801 		kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
802 		return -ENOMEM;
803 	}
804 
805 	__skb_dst_copy(skb, data->dst);
806 	*OVS_CB(skb) = data->cb;
807 	skb->inner_protocol = data->inner_protocol;
808 	if (data->vlan_tci & VLAN_CFI_MASK)
809 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
810 	else
811 		__vlan_hwaccel_clear_tag(skb);
812 
813 	/* Reconstruct the MAC header.  */
814 	skb_push(skb, data->l2_len);
815 	memcpy(skb->data, &data->l2_data, data->l2_len);
816 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
817 	skb_reset_mac_header(skb);
818 
819 	if (eth_p_mpls(skb->protocol)) {
820 		skb->inner_network_header = skb->network_header;
821 		skb_set_network_header(skb, data->network_offset);
822 		skb_reset_mac_len(skb);
823 	}
824 
825 	ovs_vport_send(vport, skb, data->mac_proto);
826 	return 0;
827 }
828 
829 static unsigned int
ovs_dst_get_mtu(const struct dst_entry * dst)830 ovs_dst_get_mtu(const struct dst_entry *dst)
831 {
832 	return dst->dev->mtu;
833 }
834 
835 static struct dst_ops ovs_dst_ops = {
836 	.family = AF_UNSPEC,
837 	.mtu = ovs_dst_get_mtu,
838 };
839 
840 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
841  * ovs_vport_output(), which is called once per fragmented packet.
842  */
prepare_frag(struct vport * vport,struct sk_buff * skb,u16 orig_network_offset,u8 mac_proto)843 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
844 			 u16 orig_network_offset, u8 mac_proto)
845 {
846 	unsigned int hlen = skb_network_offset(skb);
847 	struct ovs_frag_data *data;
848 
849 	data = this_cpu_ptr(&ovs_frag_data_storage);
850 	data->dst = skb->_skb_refdst;
851 	data->vport = vport;
852 	data->cb = *OVS_CB(skb);
853 	data->inner_protocol = skb->inner_protocol;
854 	data->network_offset = orig_network_offset;
855 	if (skb_vlan_tag_present(skb))
856 		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
857 	else
858 		data->vlan_tci = 0;
859 	data->vlan_proto = skb->vlan_proto;
860 	data->mac_proto = mac_proto;
861 	data->l2_len = hlen;
862 	memcpy(&data->l2_data, skb->data, hlen);
863 
864 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
865 	skb_pull(skb, hlen);
866 }
867 
ovs_fragment(struct net * net,struct vport * vport,struct sk_buff * skb,u16 mru,struct sw_flow_key * key)868 static void ovs_fragment(struct net *net, struct vport *vport,
869 			 struct sk_buff *skb, u16 mru,
870 			 struct sw_flow_key *key)
871 {
872 	enum ovs_drop_reason reason;
873 	u16 orig_network_offset = 0;
874 
875 	if (eth_p_mpls(skb->protocol)) {
876 		orig_network_offset = skb_network_offset(skb);
877 		skb->network_header = skb->inner_network_header;
878 	}
879 
880 	if (skb_network_offset(skb) > MAX_L2_LEN) {
881 		OVS_NLERR(1, "L2 header too long to fragment");
882 		reason = OVS_DROP_FRAG_L2_TOO_LONG;
883 		goto err;
884 	}
885 
886 	if (key->eth.type == htons(ETH_P_IP)) {
887 		struct rtable ovs_rt = { 0 };
888 		unsigned long orig_dst;
889 
890 		prepare_frag(vport, skb, orig_network_offset,
891 			     ovs_key_mac_proto(key));
892 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
893 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
894 		ovs_rt.dst.dev = vport->dev;
895 
896 		orig_dst = skb->_skb_refdst;
897 		skb_dst_set_noref(skb, &ovs_rt.dst);
898 		IPCB(skb)->frag_max_size = mru;
899 
900 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
901 		refdst_drop(orig_dst);
902 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
903 		unsigned long orig_dst;
904 		struct rt6_info ovs_rt;
905 
906 		prepare_frag(vport, skb, orig_network_offset,
907 			     ovs_key_mac_proto(key));
908 		memset(&ovs_rt, 0, sizeof(ovs_rt));
909 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
910 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
911 		ovs_rt.dst.dev = vport->dev;
912 
913 		orig_dst = skb->_skb_refdst;
914 		skb_dst_set_noref(skb, &ovs_rt.dst);
915 		IP6CB(skb)->frag_max_size = mru;
916 
917 		ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
918 		refdst_drop(orig_dst);
919 	} else {
920 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
921 			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
922 			  vport->dev->mtu);
923 		reason = OVS_DROP_FRAG_INVALID_PROTO;
924 		goto err;
925 	}
926 
927 	return;
928 err:
929 	ovs_kfree_skb_reason(skb, reason);
930 }
931 
do_output(struct datapath * dp,struct sk_buff * skb,int out_port,struct sw_flow_key * key)932 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
933 		      struct sw_flow_key *key)
934 {
935 	struct vport *vport = ovs_vport_rcu(dp, out_port);
936 
937 	if (likely(vport && netif_carrier_ok(vport->dev))) {
938 		u16 mru = OVS_CB(skb)->mru;
939 		u32 cutlen = OVS_CB(skb)->cutlen;
940 
941 		if (unlikely(cutlen > 0)) {
942 			if (skb->len - cutlen > ovs_mac_header_len(key))
943 				pskb_trim(skb, skb->len - cutlen);
944 			else
945 				pskb_trim(skb, ovs_mac_header_len(key));
946 		}
947 
948 		/* Need to set the pkt_type to involve the routing layer.  The
949 		 * packet movement through the OVS datapath doesn't generally
950 		 * use routing, but this is needed for tunnel cases.
951 		 */
952 		skb->pkt_type = PACKET_OUTGOING;
953 
954 		if (likely(!mru ||
955 		           (skb->len <= mru + vport->dev->hard_header_len))) {
956 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
957 		} else if (mru <= vport->dev->mtu) {
958 			struct net *net = read_pnet(&dp->net);
959 
960 			ovs_fragment(net, vport, skb, mru, key);
961 		} else {
962 			kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
963 		}
964 	} else {
965 		kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
966 	}
967 }
968 
output_userspace(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,const struct nlattr * actions,int actions_len,uint32_t cutlen)969 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
970 			    struct sw_flow_key *key, const struct nlattr *attr,
971 			    const struct nlattr *actions, int actions_len,
972 			    uint32_t cutlen)
973 {
974 	struct dp_upcall_info upcall;
975 	const struct nlattr *a;
976 	int rem;
977 
978 	memset(&upcall, 0, sizeof(upcall));
979 	upcall.cmd = OVS_PACKET_CMD_ACTION;
980 	upcall.mru = OVS_CB(skb)->mru;
981 
982 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
983 	     a = nla_next(a, &rem)) {
984 		switch (nla_type(a)) {
985 		case OVS_USERSPACE_ATTR_USERDATA:
986 			upcall.userdata = a;
987 			break;
988 
989 		case OVS_USERSPACE_ATTR_PID:
990 			if (dp->user_features &
991 			    OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
992 				upcall.portid =
993 				  ovs_dp_get_upcall_portid(dp,
994 							   smp_processor_id());
995 			else
996 				upcall.portid = nla_get_u32(a);
997 			break;
998 
999 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
1000 			/* Get out tunnel info. */
1001 			struct vport *vport;
1002 
1003 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
1004 			if (vport) {
1005 				int err;
1006 
1007 				err = dev_fill_metadata_dst(vport->dev, skb);
1008 				if (!err)
1009 					upcall.egress_tun_info = skb_tunnel_info(skb);
1010 			}
1011 
1012 			break;
1013 		}
1014 
1015 		case OVS_USERSPACE_ATTR_ACTIONS: {
1016 			/* Include actions. */
1017 			upcall.actions = actions;
1018 			upcall.actions_len = actions_len;
1019 			break;
1020 		}
1021 
1022 		} /* End of switch. */
1023 	}
1024 
1025 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1026 }
1027 
dec_ttl_exception_handler(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr)1028 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
1029 				     struct sw_flow_key *key,
1030 				     const struct nlattr *attr)
1031 {
1032 	/* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
1033 	struct nlattr *actions = nla_data(attr);
1034 
1035 	if (nla_len(actions))
1036 		return clone_execute(dp, skb, key, 0, nla_data(actions),
1037 				     nla_len(actions), true, false);
1038 
1039 	ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
1040 	return 0;
1041 }
1042 
1043 /* When 'last' is true, sample() should always consume the 'skb'.
1044  * Otherwise, sample() should keep 'skb' intact regardless what
1045  * actions are executed within sample().
1046  */
sample(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1047 static int sample(struct datapath *dp, struct sk_buff *skb,
1048 		  struct sw_flow_key *key, const struct nlattr *attr,
1049 		  bool last)
1050 {
1051 	struct nlattr *actions;
1052 	struct nlattr *sample_arg;
1053 	int rem = nla_len(attr);
1054 	const struct sample_arg *arg;
1055 	u32 init_probability;
1056 	bool clone_flow_key;
1057 	int err;
1058 
1059 	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1060 	sample_arg = nla_data(attr);
1061 	arg = nla_data(sample_arg);
1062 	actions = nla_next(sample_arg, &rem);
1063 	init_probability = OVS_CB(skb)->probability;
1064 
1065 	if ((arg->probability != U32_MAX) &&
1066 	    (!arg->probability || get_random_u32() > arg->probability)) {
1067 		if (last)
1068 			ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1069 		return 0;
1070 	}
1071 
1072 	OVS_CB(skb)->probability = arg->probability;
1073 
1074 	clone_flow_key = !arg->exec;
1075 	err = clone_execute(dp, skb, key, 0, actions, rem, last,
1076 			    clone_flow_key);
1077 
1078 	if (!last)
1079 		OVS_CB(skb)->probability = init_probability;
1080 
1081 	return err;
1082 }
1083 
1084 /* When 'last' is true, clone() should always consume the 'skb'.
1085  * Otherwise, clone() should keep 'skb' intact regardless what
1086  * actions are executed within clone().
1087  */
clone(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1088 static int clone(struct datapath *dp, struct sk_buff *skb,
1089 		 struct sw_flow_key *key, const struct nlattr *attr,
1090 		 bool last)
1091 {
1092 	struct nlattr *actions;
1093 	struct nlattr *clone_arg;
1094 	int rem = nla_len(attr);
1095 	bool dont_clone_flow_key;
1096 
1097 	/* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1098 	clone_arg = nla_data(attr);
1099 	dont_clone_flow_key = nla_get_u32(clone_arg);
1100 	actions = nla_next(clone_arg, &rem);
1101 
1102 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1103 			     !dont_clone_flow_key);
1104 }
1105 
execute_hash(struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr)1106 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1107 			 const struct nlattr *attr)
1108 {
1109 	struct ovs_action_hash *hash_act = nla_data(attr);
1110 	u32 hash = 0;
1111 
1112 	if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
1113 		/* OVS_HASH_ALG_L4 hasing type. */
1114 		hash = skb_get_hash(skb);
1115 	} else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
1116 		/* OVS_HASH_ALG_SYM_L4 hashing type.  NOTE: this doesn't
1117 		 * extend past an encapsulated header.
1118 		 */
1119 		hash = __skb_get_hash_symmetric(skb);
1120 	}
1121 
1122 	hash = jhash_1word(hash, hash_act->hash_basis);
1123 	if (!hash)
1124 		hash = 0x1;
1125 
1126 	key->ovs_flow_hash = hash;
1127 }
1128 
execute_set_action(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)1129 static int execute_set_action(struct sk_buff *skb,
1130 			      struct sw_flow_key *flow_key,
1131 			      const struct nlattr *a)
1132 {
1133 	/* Only tunnel set execution is supported without a mask. */
1134 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1135 		struct ovs_tunnel_info *tun = nla_data(a);
1136 
1137 		skb_dst_drop(skb);
1138 		dst_hold((struct dst_entry *)tun->tun_dst);
1139 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1140 		return 0;
1141 	}
1142 
1143 	return -EINVAL;
1144 }
1145 
1146 /* Mask is at the midpoint of the data. */
1147 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1148 
execute_masked_set_action(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)1149 static int execute_masked_set_action(struct sk_buff *skb,
1150 				     struct sw_flow_key *flow_key,
1151 				     const struct nlattr *a)
1152 {
1153 	int err = 0;
1154 
1155 	switch (nla_type(a)) {
1156 	case OVS_KEY_ATTR_PRIORITY:
1157 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1158 			       *get_mask(a, u32 *));
1159 		flow_key->phy.priority = skb->priority;
1160 		break;
1161 
1162 	case OVS_KEY_ATTR_SKB_MARK:
1163 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1164 		flow_key->phy.skb_mark = skb->mark;
1165 		break;
1166 
1167 	case OVS_KEY_ATTR_TUNNEL_INFO:
1168 		/* Masked data not supported for tunnel. */
1169 		err = -EINVAL;
1170 		break;
1171 
1172 	case OVS_KEY_ATTR_ETHERNET:
1173 		err = set_eth_addr(skb, flow_key, nla_data(a),
1174 				   get_mask(a, struct ovs_key_ethernet *));
1175 		break;
1176 
1177 	case OVS_KEY_ATTR_NSH:
1178 		err = set_nsh(skb, flow_key, a);
1179 		break;
1180 
1181 	case OVS_KEY_ATTR_IPV4:
1182 		err = set_ipv4(skb, flow_key, nla_data(a),
1183 			       get_mask(a, struct ovs_key_ipv4 *));
1184 		break;
1185 
1186 	case OVS_KEY_ATTR_IPV6:
1187 		err = set_ipv6(skb, flow_key, nla_data(a),
1188 			       get_mask(a, struct ovs_key_ipv6 *));
1189 		break;
1190 
1191 	case OVS_KEY_ATTR_TCP:
1192 		err = set_tcp(skb, flow_key, nla_data(a),
1193 			      get_mask(a, struct ovs_key_tcp *));
1194 		break;
1195 
1196 	case OVS_KEY_ATTR_UDP:
1197 		err = set_udp(skb, flow_key, nla_data(a),
1198 			      get_mask(a, struct ovs_key_udp *));
1199 		break;
1200 
1201 	case OVS_KEY_ATTR_SCTP:
1202 		err = set_sctp(skb, flow_key, nla_data(a),
1203 			       get_mask(a, struct ovs_key_sctp *));
1204 		break;
1205 
1206 	case OVS_KEY_ATTR_MPLS:
1207 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1208 								    __be32 *));
1209 		break;
1210 
1211 	case OVS_KEY_ATTR_CT_STATE:
1212 	case OVS_KEY_ATTR_CT_ZONE:
1213 	case OVS_KEY_ATTR_CT_MARK:
1214 	case OVS_KEY_ATTR_CT_LABELS:
1215 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1216 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1217 		err = -EINVAL;
1218 		break;
1219 	}
1220 
1221 	return err;
1222 }
1223 
execute_recirc(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * a,bool last)1224 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1225 			  struct sw_flow_key *key,
1226 			  const struct nlattr *a, bool last)
1227 {
1228 	u32 recirc_id;
1229 
1230 	if (!is_flow_key_valid(key)) {
1231 		int err;
1232 
1233 		err = ovs_flow_key_update(skb, key);
1234 		if (err)
1235 			return err;
1236 	}
1237 	BUG_ON(!is_flow_key_valid(key));
1238 
1239 	recirc_id = nla_get_u32(a);
1240 	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1241 }
1242 
execute_check_pkt_len(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1243 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1244 				 struct sw_flow_key *key,
1245 				 const struct nlattr *attr, bool last)
1246 {
1247 	struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1248 	const struct nlattr *actions, *cpl_arg;
1249 	int len, max_len, rem = nla_len(attr);
1250 	const struct check_pkt_len_arg *arg;
1251 	bool clone_flow_key;
1252 
1253 	/* The first netlink attribute in 'attr' is always
1254 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1255 	 */
1256 	cpl_arg = nla_data(attr);
1257 	arg = nla_data(cpl_arg);
1258 
1259 	len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1260 	max_len = arg->pkt_len;
1261 
1262 	if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1263 	    len <= max_len) {
1264 		/* Second netlink attribute in 'attr' is always
1265 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1266 		 */
1267 		actions = nla_next(cpl_arg, &rem);
1268 		clone_flow_key = !arg->exec_for_lesser_equal;
1269 	} else {
1270 		/* Third netlink attribute in 'attr' is always
1271 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1272 		 */
1273 		actions = nla_next(cpl_arg, &rem);
1274 		actions = nla_next(actions, &rem);
1275 		clone_flow_key = !arg->exec_for_greater;
1276 	}
1277 
1278 	return clone_execute(dp, skb, key, 0, nla_data(actions),
1279 			     nla_len(actions), last, clone_flow_key);
1280 }
1281 
execute_dec_ttl(struct sk_buff * skb,struct sw_flow_key * key)1282 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1283 {
1284 	int err;
1285 
1286 	if (skb->protocol == htons(ETH_P_IPV6)) {
1287 		struct ipv6hdr *nh;
1288 
1289 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1290 					  sizeof(*nh));
1291 		if (unlikely(err))
1292 			return err;
1293 
1294 		nh = ipv6_hdr(skb);
1295 
1296 		if (nh->hop_limit <= 1)
1297 			return -EHOSTUNREACH;
1298 
1299 		key->ip.ttl = --nh->hop_limit;
1300 	} else if (skb->protocol == htons(ETH_P_IP)) {
1301 		struct iphdr *nh;
1302 		u8 old_ttl;
1303 
1304 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1305 					  sizeof(*nh));
1306 		if (unlikely(err))
1307 			return err;
1308 
1309 		nh = ip_hdr(skb);
1310 		if (nh->ttl <= 1)
1311 			return -EHOSTUNREACH;
1312 
1313 		old_ttl = nh->ttl--;
1314 		csum_replace2(&nh->check, htons(old_ttl << 8),
1315 			      htons(nh->ttl << 8));
1316 		key->ip.ttl = nh->ttl;
1317 	}
1318 	return 0;
1319 }
1320 
1321 #if IS_ENABLED(CONFIG_PSAMPLE)
execute_psample(struct datapath * dp,struct sk_buff * skb,const struct nlattr * attr)1322 static void execute_psample(struct datapath *dp, struct sk_buff *skb,
1323 			    const struct nlattr *attr)
1324 {
1325 	struct psample_group psample_group = {};
1326 	struct psample_metadata md = {};
1327 	const struct nlattr *a;
1328 	u32 rate;
1329 	int rem;
1330 
1331 	nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
1332 		switch (nla_type(a)) {
1333 		case OVS_PSAMPLE_ATTR_GROUP:
1334 			psample_group.group_num = nla_get_u32(a);
1335 			break;
1336 
1337 		case OVS_PSAMPLE_ATTR_COOKIE:
1338 			md.user_cookie = nla_data(a);
1339 			md.user_cookie_len = nla_len(a);
1340 			break;
1341 		}
1342 	}
1343 
1344 	psample_group.net = ovs_dp_get_net(dp);
1345 	md.in_ifindex = OVS_CB(skb)->input_vport->dev->ifindex;
1346 	md.trunc_size = skb->len - OVS_CB(skb)->cutlen;
1347 	md.rate_as_probability = 1;
1348 
1349 	rate = OVS_CB(skb)->probability ? OVS_CB(skb)->probability : U32_MAX;
1350 
1351 	psample_sample_packet(&psample_group, skb, rate, &md);
1352 }
1353 #else
execute_psample(struct datapath * dp,struct sk_buff * skb,const struct nlattr * attr)1354 static void execute_psample(struct datapath *dp, struct sk_buff *skb,
1355 			    const struct nlattr *attr)
1356 {}
1357 #endif
1358 
1359 /* Execute a list of actions against 'skb'. */
do_execute_actions(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,int len)1360 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1361 			      struct sw_flow_key *key,
1362 			      const struct nlattr *attr, int len)
1363 {
1364 	const struct nlattr *a;
1365 	int rem;
1366 
1367 	for (a = attr, rem = len; rem > 0;
1368 	     a = nla_next(a, &rem)) {
1369 		int err = 0;
1370 
1371 		if (trace_ovs_do_execute_action_enabled())
1372 			trace_ovs_do_execute_action(dp, skb, key, a, rem);
1373 
1374 		/* Actions that rightfully have to consume the skb should do it
1375 		 * and return directly.
1376 		 */
1377 		switch (nla_type(a)) {
1378 		case OVS_ACTION_ATTR_OUTPUT: {
1379 			int port = nla_get_u32(a);
1380 			struct sk_buff *clone;
1381 
1382 			/* Every output action needs a separate clone
1383 			 * of 'skb', In case the output action is the
1384 			 * last action, cloning can be avoided.
1385 			 */
1386 			if (nla_is_last(a, rem)) {
1387 				do_output(dp, skb, port, key);
1388 				/* 'skb' has been used for output.
1389 				 */
1390 				return 0;
1391 			}
1392 
1393 			clone = skb_clone(skb, GFP_ATOMIC);
1394 			if (clone)
1395 				do_output(dp, clone, port, key);
1396 			OVS_CB(skb)->cutlen = 0;
1397 			break;
1398 		}
1399 
1400 		case OVS_ACTION_ATTR_TRUNC: {
1401 			struct ovs_action_trunc *trunc = nla_data(a);
1402 
1403 			if (skb->len > trunc->max_len)
1404 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1405 			break;
1406 		}
1407 
1408 		case OVS_ACTION_ATTR_USERSPACE:
1409 			output_userspace(dp, skb, key, a, attr,
1410 						     len, OVS_CB(skb)->cutlen);
1411 			OVS_CB(skb)->cutlen = 0;
1412 			if (nla_is_last(a, rem)) {
1413 				consume_skb(skb);
1414 				return 0;
1415 			}
1416 			break;
1417 
1418 		case OVS_ACTION_ATTR_HASH:
1419 			execute_hash(skb, key, a);
1420 			break;
1421 
1422 		case OVS_ACTION_ATTR_PUSH_MPLS: {
1423 			struct ovs_action_push_mpls *mpls = nla_data(a);
1424 
1425 			err = push_mpls(skb, key, mpls->mpls_lse,
1426 					mpls->mpls_ethertype, skb->mac_len);
1427 			break;
1428 		}
1429 		case OVS_ACTION_ATTR_ADD_MPLS: {
1430 			struct ovs_action_add_mpls *mpls = nla_data(a);
1431 			__u16 mac_len = 0;
1432 
1433 			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1434 				mac_len = skb->mac_len;
1435 
1436 			err = push_mpls(skb, key, mpls->mpls_lse,
1437 					mpls->mpls_ethertype, mac_len);
1438 			break;
1439 		}
1440 		case OVS_ACTION_ATTR_POP_MPLS:
1441 			err = pop_mpls(skb, key, nla_get_be16(a));
1442 			break;
1443 
1444 		case OVS_ACTION_ATTR_PUSH_VLAN:
1445 			err = push_vlan(skb, key, nla_data(a));
1446 			break;
1447 
1448 		case OVS_ACTION_ATTR_POP_VLAN:
1449 			err = pop_vlan(skb, key);
1450 			break;
1451 
1452 		case OVS_ACTION_ATTR_RECIRC: {
1453 			bool last = nla_is_last(a, rem);
1454 
1455 			err = execute_recirc(dp, skb, key, a, last);
1456 			if (last) {
1457 				/* If this is the last action, the skb has
1458 				 * been consumed or freed.
1459 				 * Return immediately.
1460 				 */
1461 				return err;
1462 			}
1463 			break;
1464 		}
1465 
1466 		case OVS_ACTION_ATTR_SET:
1467 			err = execute_set_action(skb, key, nla_data(a));
1468 			break;
1469 
1470 		case OVS_ACTION_ATTR_SET_MASKED:
1471 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1472 			err = execute_masked_set_action(skb, key, nla_data(a));
1473 			break;
1474 
1475 		case OVS_ACTION_ATTR_SAMPLE: {
1476 			bool last = nla_is_last(a, rem);
1477 
1478 			err = sample(dp, skb, key, a, last);
1479 			if (last)
1480 				return err;
1481 
1482 			break;
1483 		}
1484 
1485 		case OVS_ACTION_ATTR_CT:
1486 			if (!is_flow_key_valid(key)) {
1487 				err = ovs_flow_key_update(skb, key);
1488 				if (err)
1489 					return err;
1490 			}
1491 
1492 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1493 					     nla_data(a));
1494 
1495 			/* Hide stolen IP fragments from user space. */
1496 			if (err)
1497 				return err == -EINPROGRESS ? 0 : err;
1498 			break;
1499 
1500 		case OVS_ACTION_ATTR_CT_CLEAR:
1501 			err = ovs_ct_clear(skb, key);
1502 			break;
1503 
1504 		case OVS_ACTION_ATTR_PUSH_ETH:
1505 			err = push_eth(skb, key, nla_data(a));
1506 			break;
1507 
1508 		case OVS_ACTION_ATTR_POP_ETH:
1509 			err = pop_eth(skb, key);
1510 			break;
1511 
1512 		case OVS_ACTION_ATTR_PUSH_NSH:
1513 			err = push_nsh(skb, key, nla_data(a));
1514 			break;
1515 
1516 		case OVS_ACTION_ATTR_POP_NSH:
1517 			err = pop_nsh(skb, key);
1518 			break;
1519 
1520 		case OVS_ACTION_ATTR_METER:
1521 			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1522 				ovs_kfree_skb_reason(skb, OVS_DROP_METER);
1523 				return 0;
1524 			}
1525 			break;
1526 
1527 		case OVS_ACTION_ATTR_CLONE: {
1528 			bool last = nla_is_last(a, rem);
1529 
1530 			err = clone(dp, skb, key, a, last);
1531 			if (last)
1532 				return err;
1533 
1534 			break;
1535 		}
1536 
1537 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1538 			bool last = nla_is_last(a, rem);
1539 
1540 			err = execute_check_pkt_len(dp, skb, key, a, last);
1541 			if (last)
1542 				return err;
1543 
1544 			break;
1545 		}
1546 
1547 		case OVS_ACTION_ATTR_DEC_TTL:
1548 			err = execute_dec_ttl(skb, key);
1549 			if (err == -EHOSTUNREACH)
1550 				return dec_ttl_exception_handler(dp, skb,
1551 								 key, a);
1552 			break;
1553 
1554 		case OVS_ACTION_ATTR_DROP: {
1555 			enum ovs_drop_reason reason = nla_get_u32(a)
1556 				? OVS_DROP_EXPLICIT_WITH_ERROR
1557 				: OVS_DROP_EXPLICIT;
1558 
1559 			ovs_kfree_skb_reason(skb, reason);
1560 			return 0;
1561 		}
1562 
1563 		case OVS_ACTION_ATTR_PSAMPLE:
1564 			execute_psample(dp, skb, a);
1565 			OVS_CB(skb)->cutlen = 0;
1566 			if (nla_is_last(a, rem)) {
1567 				consume_skb(skb);
1568 				return 0;
1569 			}
1570 			break;
1571 		}
1572 
1573 		if (unlikely(err)) {
1574 			ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
1575 			return err;
1576 		}
1577 	}
1578 
1579 	ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1580 	return 0;
1581 }
1582 
1583 /* Execute the actions on the clone of the packet. The effect of the
1584  * execution does not affect the original 'skb' nor the original 'key'.
1585  *
1586  * The execution may be deferred in case the actions can not be executed
1587  * immediately.
1588  */
clone_execute(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,u32 recirc_id,const struct nlattr * actions,int len,bool last,bool clone_flow_key)1589 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1590 			 struct sw_flow_key *key, u32 recirc_id,
1591 			 const struct nlattr *actions, int len,
1592 			 bool last, bool clone_flow_key)
1593 {
1594 	struct deferred_action *da;
1595 	struct sw_flow_key *clone;
1596 
1597 	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1598 	if (!skb) {
1599 		/* Out of memory, skip this action.
1600 		 */
1601 		return 0;
1602 	}
1603 
1604 	/* When clone_flow_key is false, the 'key' will not be change
1605 	 * by the actions, then the 'key' can be used directly.
1606 	 * Otherwise, try to clone key from the next recursion level of
1607 	 * 'flow_keys'. If clone is successful, execute the actions
1608 	 * without deferring.
1609 	 */
1610 	clone = clone_flow_key ? clone_key(key) : key;
1611 	if (clone) {
1612 		int err = 0;
1613 
1614 		if (actions) { /* Sample action */
1615 			if (clone_flow_key)
1616 				__this_cpu_inc(exec_actions_level);
1617 
1618 			err = do_execute_actions(dp, skb, clone,
1619 						 actions, len);
1620 
1621 			if (clone_flow_key)
1622 				__this_cpu_dec(exec_actions_level);
1623 		} else { /* Recirc action */
1624 			clone->recirc_id = recirc_id;
1625 			ovs_dp_process_packet(skb, clone);
1626 		}
1627 		return err;
1628 	}
1629 
1630 	/* Out of 'flow_keys' space. Defer actions */
1631 	da = add_deferred_actions(skb, key, actions, len);
1632 	if (da) {
1633 		if (!actions) { /* Recirc action */
1634 			key = &da->pkt_key;
1635 			key->recirc_id = recirc_id;
1636 		}
1637 	} else {
1638 		/* Out of per CPU action FIFO space. Drop the 'skb' and
1639 		 * log an error.
1640 		 */
1641 		ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
1642 
1643 		if (net_ratelimit()) {
1644 			if (actions) { /* Sample action */
1645 				pr_warn("%s: deferred action limit reached, drop sample action\n",
1646 					ovs_dp_name(dp));
1647 			} else {  /* Recirc action */
1648 				pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1649 					ovs_dp_name(dp), recirc_id);
1650 			}
1651 		}
1652 	}
1653 	return 0;
1654 }
1655 
process_deferred_actions(struct datapath * dp)1656 static void process_deferred_actions(struct datapath *dp)
1657 {
1658 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1659 
1660 	/* Do not touch the FIFO in case there is no deferred actions. */
1661 	if (action_fifo_is_empty(fifo))
1662 		return;
1663 
1664 	/* Finishing executing all deferred actions. */
1665 	do {
1666 		struct deferred_action *da = action_fifo_get(fifo);
1667 		struct sk_buff *skb = da->skb;
1668 		struct sw_flow_key *key = &da->pkt_key;
1669 		const struct nlattr *actions = da->actions;
1670 		int actions_len = da->actions_len;
1671 
1672 		if (actions)
1673 			do_execute_actions(dp, skb, key, actions, actions_len);
1674 		else
1675 			ovs_dp_process_packet(skb, key);
1676 	} while (!action_fifo_is_empty(fifo));
1677 
1678 	/* Reset FIFO for the next packet.  */
1679 	action_fifo_init(fifo);
1680 }
1681 
1682 /* Execute a list of actions against 'skb'. */
ovs_execute_actions(struct datapath * dp,struct sk_buff * skb,const struct sw_flow_actions * acts,struct sw_flow_key * key)1683 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1684 			const struct sw_flow_actions *acts,
1685 			struct sw_flow_key *key)
1686 {
1687 	int err, level;
1688 
1689 	level = __this_cpu_inc_return(exec_actions_level);
1690 	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1691 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1692 				     ovs_dp_name(dp));
1693 		ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
1694 		err = -ENETDOWN;
1695 		goto out;
1696 	}
1697 
1698 	OVS_CB(skb)->acts_origlen = acts->orig_len;
1699 	err = do_execute_actions(dp, skb, key,
1700 				 acts->actions, acts->actions_len);
1701 
1702 	if (level == 1)
1703 		process_deferred_actions(dp);
1704 
1705 out:
1706 	__this_cpu_dec(exec_actions_level);
1707 	return err;
1708 }
1709 
action_fifos_init(void)1710 int action_fifos_init(void)
1711 {
1712 	action_fifos = alloc_percpu(struct action_fifo);
1713 	if (!action_fifos)
1714 		return -ENOMEM;
1715 
1716 	flow_keys = alloc_percpu(struct action_flow_keys);
1717 	if (!flow_keys) {
1718 		free_percpu(action_fifos);
1719 		return -ENOMEM;
1720 	}
1721 
1722 	return 0;
1723 }
1724 
action_fifos_exit(void)1725 void action_fifos_exit(void)
1726 {
1727 	free_percpu(action_fifos);
1728 	free_percpu(flow_keys);
1729 }
1730