1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale i.MX23/i.MX28 Data Co-Processor driver
4  *
5  * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6  */
7 
8 #include <linux/dma-mapping.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/stmp_device.h>
17 #include <linux/clk.h>
18 #include <soc/fsl/dcp.h>
19 
20 #include <crypto/aes.h>
21 #include <crypto/sha1.h>
22 #include <crypto/sha2.h>
23 #include <crypto/internal/hash.h>
24 #include <crypto/internal/skcipher.h>
25 #include <crypto/scatterwalk.h>
26 
27 #define DCP_MAX_CHANS	4
28 #define DCP_BUF_SZ	PAGE_SIZE
29 #define DCP_SHA_PAY_SZ  64
30 
31 #define DCP_ALIGNMENT	64
32 
33 /*
34  * Null hashes to align with hw behavior on imx6sl and ull
35  * these are flipped for consistency with hw output
36  */
37 static const uint8_t sha1_null_hash[] =
38 	"\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
39 	"\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
40 
41 static const uint8_t sha256_null_hash[] =
42 	"\x55\xb8\x52\x78\x1b\x99\x95\xa4"
43 	"\x4c\x93\x9b\x64\xe4\x41\xae\x27"
44 	"\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
45 	"\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
46 
47 /* DCP DMA descriptor. */
48 struct dcp_dma_desc {
49 	uint32_t	next_cmd_addr;
50 	uint32_t	control0;
51 	uint32_t	control1;
52 	uint32_t	source;
53 	uint32_t	destination;
54 	uint32_t	size;
55 	uint32_t	payload;
56 	uint32_t	status;
57 };
58 
59 /* Coherent aligned block for bounce buffering. */
60 struct dcp_coherent_block {
61 	uint8_t			aes_in_buf[DCP_BUF_SZ];
62 	uint8_t			aes_out_buf[DCP_BUF_SZ];
63 	uint8_t			sha_in_buf[DCP_BUF_SZ];
64 	uint8_t			sha_out_buf[DCP_SHA_PAY_SZ];
65 
66 	uint8_t			aes_key[2 * AES_KEYSIZE_128];
67 
68 	struct dcp_dma_desc	desc[DCP_MAX_CHANS];
69 };
70 
71 struct dcp {
72 	struct device			*dev;
73 	void __iomem			*base;
74 
75 	uint32_t			caps;
76 
77 	struct dcp_coherent_block	*coh;
78 
79 	struct completion		completion[DCP_MAX_CHANS];
80 	spinlock_t			lock[DCP_MAX_CHANS];
81 	struct task_struct		*thread[DCP_MAX_CHANS];
82 	struct crypto_queue		queue[DCP_MAX_CHANS];
83 	struct clk			*dcp_clk;
84 };
85 
86 enum dcp_chan {
87 	DCP_CHAN_HASH_SHA	= 0,
88 	DCP_CHAN_CRYPTO		= 2,
89 };
90 
91 struct dcp_async_ctx {
92 	/* Common context */
93 	enum dcp_chan	chan;
94 	uint32_t	fill;
95 
96 	/* SHA Hash-specific context */
97 	struct mutex			mutex;
98 	uint32_t			alg;
99 	unsigned int			hot:1;
100 
101 	/* Crypto-specific context */
102 	struct crypto_skcipher		*fallback;
103 	unsigned int			key_len;
104 	uint8_t				key[AES_KEYSIZE_128];
105 	bool				key_referenced;
106 };
107 
108 struct dcp_aes_req_ctx {
109 	unsigned int	enc:1;
110 	unsigned int	ecb:1;
111 	struct skcipher_request fallback_req;	// keep at the end
112 };
113 
114 struct dcp_sha_req_ctx {
115 	unsigned int	init:1;
116 	unsigned int	fini:1;
117 };
118 
119 struct dcp_export_state {
120 	struct dcp_sha_req_ctx req_ctx;
121 	struct dcp_async_ctx async_ctx;
122 };
123 
124 /*
125  * There can even be only one instance of the MXS DCP due to the
126  * design of Linux Crypto API.
127  */
128 static struct dcp *global_sdcp;
129 
130 /* DCP register layout. */
131 #define MXS_DCP_CTRL				0x00
132 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES	(1 << 23)
133 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING	(1 << 22)
134 
135 #define MXS_DCP_STAT				0x10
136 #define MXS_DCP_STAT_CLR			0x18
137 #define MXS_DCP_STAT_IRQ_MASK			0xf
138 
139 #define MXS_DCP_CHANNELCTRL			0x20
140 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK	0xff
141 
142 #define MXS_DCP_CAPABILITY1			0x40
143 #define MXS_DCP_CAPABILITY1_SHA256		(4 << 16)
144 #define MXS_DCP_CAPABILITY1_SHA1		(1 << 16)
145 #define MXS_DCP_CAPABILITY1_AES128		(1 << 0)
146 
147 #define MXS_DCP_CONTEXT				0x50
148 
149 #define MXS_DCP_CH_N_CMDPTR(n)			(0x100 + ((n) * 0x40))
150 
151 #define MXS_DCP_CH_N_SEMA(n)			(0x110 + ((n) * 0x40))
152 
153 #define MXS_DCP_CH_N_STAT(n)			(0x120 + ((n) * 0x40))
154 #define MXS_DCP_CH_N_STAT_CLR(n)		(0x128 + ((n) * 0x40))
155 
156 /* DMA descriptor bits. */
157 #define MXS_DCP_CONTROL0_HASH_TERM		(1 << 13)
158 #define MXS_DCP_CONTROL0_HASH_INIT		(1 << 12)
159 #define MXS_DCP_CONTROL0_PAYLOAD_KEY		(1 << 11)
160 #define MXS_DCP_CONTROL0_OTP_KEY		(1 << 10)
161 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT		(1 << 8)
162 #define MXS_DCP_CONTROL0_CIPHER_INIT		(1 << 9)
163 #define MXS_DCP_CONTROL0_ENABLE_HASH		(1 << 6)
164 #define MXS_DCP_CONTROL0_ENABLE_CIPHER		(1 << 5)
165 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE		(1 << 1)
166 #define MXS_DCP_CONTROL0_INTERRUPT		(1 << 0)
167 
168 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256	(2 << 16)
169 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1	(0 << 16)
170 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC	(1 << 4)
171 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB	(0 << 4)
172 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128	(0 << 0)
173 
174 #define MXS_DCP_CONTROL1_KEY_SELECT_SHIFT	8
175 
mxs_dcp_start_dma(struct dcp_async_ctx * actx)176 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
177 {
178 	int dma_err;
179 	struct dcp *sdcp = global_sdcp;
180 	const int chan = actx->chan;
181 	uint32_t stat;
182 	unsigned long ret;
183 	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
184 	dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
185 					      DMA_TO_DEVICE);
186 
187 	dma_err = dma_mapping_error(sdcp->dev, desc_phys);
188 	if (dma_err)
189 		return dma_err;
190 
191 	reinit_completion(&sdcp->completion[chan]);
192 
193 	/* Clear status register. */
194 	writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
195 
196 	/* Load the DMA descriptor. */
197 	writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
198 
199 	/* Increment the semaphore to start the DMA transfer. */
200 	writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
201 
202 	ret = wait_for_completion_timeout(&sdcp->completion[chan],
203 					  msecs_to_jiffies(1000));
204 	if (!ret) {
205 		dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
206 			chan, readl(sdcp->base + MXS_DCP_STAT));
207 		return -ETIMEDOUT;
208 	}
209 
210 	stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
211 	if (stat & 0xff) {
212 		dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
213 			chan, stat);
214 		return -EINVAL;
215 	}
216 
217 	dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
218 
219 	return 0;
220 }
221 
222 /*
223  * Encryption (AES128)
224  */
mxs_dcp_run_aes(struct dcp_async_ctx * actx,struct skcipher_request * req,int init)225 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
226 			   struct skcipher_request *req, int init)
227 {
228 	dma_addr_t key_phys = 0;
229 	dma_addr_t src_phys, dst_phys;
230 	struct dcp *sdcp = global_sdcp;
231 	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
232 	struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
233 	bool key_referenced = actx->key_referenced;
234 	int ret;
235 
236 	if (!key_referenced) {
237 		key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
238 					  2 * AES_KEYSIZE_128, DMA_TO_DEVICE);
239 		ret = dma_mapping_error(sdcp->dev, key_phys);
240 		if (ret)
241 			return ret;
242 	}
243 
244 	src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
245 				  DCP_BUF_SZ, DMA_TO_DEVICE);
246 	ret = dma_mapping_error(sdcp->dev, src_phys);
247 	if (ret)
248 		goto err_src;
249 
250 	dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
251 				  DCP_BUF_SZ, DMA_FROM_DEVICE);
252 	ret = dma_mapping_error(sdcp->dev, dst_phys);
253 	if (ret)
254 		goto err_dst;
255 
256 	if (actx->fill % AES_BLOCK_SIZE) {
257 		dev_err(sdcp->dev, "Invalid block size!\n");
258 		ret = -EINVAL;
259 		goto aes_done_run;
260 	}
261 
262 	/* Fill in the DMA descriptor. */
263 	desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
264 		    MXS_DCP_CONTROL0_INTERRUPT |
265 		    MXS_DCP_CONTROL0_ENABLE_CIPHER;
266 
267 	if (key_referenced)
268 		/* Set OTP key bit to select the key via KEY_SELECT. */
269 		desc->control0 |= MXS_DCP_CONTROL0_OTP_KEY;
270 	else
271 		/* Payload contains the key. */
272 		desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
273 
274 	if (rctx->enc)
275 		desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
276 	if (init)
277 		desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
278 
279 	desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
280 
281 	if (rctx->ecb)
282 		desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
283 	else
284 		desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
285 
286 	if (key_referenced)
287 		desc->control1 |= sdcp->coh->aes_key[0] << MXS_DCP_CONTROL1_KEY_SELECT_SHIFT;
288 
289 	desc->next_cmd_addr = 0;
290 	desc->source = src_phys;
291 	desc->destination = dst_phys;
292 	desc->size = actx->fill;
293 	desc->payload = key_phys;
294 	desc->status = 0;
295 
296 	ret = mxs_dcp_start_dma(actx);
297 
298 aes_done_run:
299 	dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
300 err_dst:
301 	dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
302 err_src:
303 	if (!key_referenced)
304 		dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
305 				 DMA_TO_DEVICE);
306 	return ret;
307 }
308 
mxs_dcp_aes_block_crypt(struct crypto_async_request * arq)309 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
310 {
311 	struct dcp *sdcp = global_sdcp;
312 
313 	struct skcipher_request *req = skcipher_request_cast(arq);
314 	struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
315 	struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
316 
317 	struct scatterlist *dst = req->dst;
318 	struct scatterlist *src = req->src;
319 	int dst_nents = sg_nents(dst);
320 
321 	const int out_off = DCP_BUF_SZ;
322 	uint8_t *in_buf = sdcp->coh->aes_in_buf;
323 	uint8_t *out_buf = sdcp->coh->aes_out_buf;
324 
325 	uint32_t dst_off = 0;
326 	uint8_t *src_buf = NULL;
327 	uint32_t last_out_len = 0;
328 
329 	uint8_t *key = sdcp->coh->aes_key;
330 
331 	int ret = 0;
332 	unsigned int i, len, clen, tlen = 0;
333 	int init = 0;
334 	bool limit_hit = false;
335 
336 	actx->fill = 0;
337 
338 	/* Copy the key from the temporary location. */
339 	memcpy(key, actx->key, actx->key_len);
340 
341 	if (!rctx->ecb) {
342 		/* Copy the CBC IV just past the key. */
343 		memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
344 		/* CBC needs the INIT set. */
345 		init = 1;
346 	} else {
347 		memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
348 	}
349 
350 	for_each_sg(req->src, src, sg_nents(req->src), i) {
351 		src_buf = sg_virt(src);
352 		len = sg_dma_len(src);
353 		tlen += len;
354 		limit_hit = tlen > req->cryptlen;
355 
356 		if (limit_hit)
357 			len = req->cryptlen - (tlen - len);
358 
359 		do {
360 			if (actx->fill + len > out_off)
361 				clen = out_off - actx->fill;
362 			else
363 				clen = len;
364 
365 			memcpy(in_buf + actx->fill, src_buf, clen);
366 			len -= clen;
367 			src_buf += clen;
368 			actx->fill += clen;
369 
370 			/*
371 			 * If we filled the buffer or this is the last SG,
372 			 * submit the buffer.
373 			 */
374 			if (actx->fill == out_off || sg_is_last(src) ||
375 			    limit_hit) {
376 				ret = mxs_dcp_run_aes(actx, req, init);
377 				if (ret)
378 					return ret;
379 				init = 0;
380 
381 				sg_pcopy_from_buffer(dst, dst_nents, out_buf,
382 						     actx->fill, dst_off);
383 				dst_off += actx->fill;
384 				last_out_len = actx->fill;
385 				actx->fill = 0;
386 			}
387 		} while (len);
388 
389 		if (limit_hit)
390 			break;
391 	}
392 
393 	/* Copy the IV for CBC for chaining */
394 	if (!rctx->ecb) {
395 		if (rctx->enc)
396 			memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
397 				AES_BLOCK_SIZE);
398 		else
399 			memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
400 				AES_BLOCK_SIZE);
401 	}
402 
403 	return ret;
404 }
405 
dcp_chan_thread_aes(void * data)406 static int dcp_chan_thread_aes(void *data)
407 {
408 	struct dcp *sdcp = global_sdcp;
409 	const int chan = DCP_CHAN_CRYPTO;
410 
411 	struct crypto_async_request *backlog;
412 	struct crypto_async_request *arq;
413 
414 	int ret;
415 
416 	while (!kthread_should_stop()) {
417 		set_current_state(TASK_INTERRUPTIBLE);
418 
419 		spin_lock(&sdcp->lock[chan]);
420 		backlog = crypto_get_backlog(&sdcp->queue[chan]);
421 		arq = crypto_dequeue_request(&sdcp->queue[chan]);
422 		spin_unlock(&sdcp->lock[chan]);
423 
424 		if (!backlog && !arq) {
425 			schedule();
426 			continue;
427 		}
428 
429 		set_current_state(TASK_RUNNING);
430 
431 		if (backlog)
432 			crypto_request_complete(backlog, -EINPROGRESS);
433 
434 		if (arq) {
435 			ret = mxs_dcp_aes_block_crypt(arq);
436 			crypto_request_complete(arq, ret);
437 		}
438 	}
439 
440 	return 0;
441 }
442 
mxs_dcp_block_fallback(struct skcipher_request * req,int enc)443 static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
444 {
445 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
446 	struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
447 	struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
448 	int ret;
449 
450 	skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
451 	skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
452 				      req->base.complete, req->base.data);
453 	skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
454 				   req->cryptlen, req->iv);
455 
456 	if (enc)
457 		ret = crypto_skcipher_encrypt(&rctx->fallback_req);
458 	else
459 		ret = crypto_skcipher_decrypt(&rctx->fallback_req);
460 
461 	return ret;
462 }
463 
mxs_dcp_aes_enqueue(struct skcipher_request * req,int enc,int ecb)464 static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
465 {
466 	struct dcp *sdcp = global_sdcp;
467 	struct crypto_async_request *arq = &req->base;
468 	struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
469 	struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
470 	int ret;
471 
472 	if (unlikely(actx->key_len != AES_KEYSIZE_128 && !actx->key_referenced))
473 		return mxs_dcp_block_fallback(req, enc);
474 
475 	rctx->enc = enc;
476 	rctx->ecb = ecb;
477 	actx->chan = DCP_CHAN_CRYPTO;
478 
479 	spin_lock(&sdcp->lock[actx->chan]);
480 	ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
481 	spin_unlock(&sdcp->lock[actx->chan]);
482 
483 	wake_up_process(sdcp->thread[actx->chan]);
484 
485 	return ret;
486 }
487 
mxs_dcp_aes_ecb_decrypt(struct skcipher_request * req)488 static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
489 {
490 	return mxs_dcp_aes_enqueue(req, 0, 1);
491 }
492 
mxs_dcp_aes_ecb_encrypt(struct skcipher_request * req)493 static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
494 {
495 	return mxs_dcp_aes_enqueue(req, 1, 1);
496 }
497 
mxs_dcp_aes_cbc_decrypt(struct skcipher_request * req)498 static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
499 {
500 	return mxs_dcp_aes_enqueue(req, 0, 0);
501 }
502 
mxs_dcp_aes_cbc_encrypt(struct skcipher_request * req)503 static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
504 {
505 	return mxs_dcp_aes_enqueue(req, 1, 0);
506 }
507 
mxs_dcp_aes_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int len)508 static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
509 			      unsigned int len)
510 {
511 	struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
512 
513 	/*
514 	 * AES 128 is supposed by the hardware, store key into temporary
515 	 * buffer and exit. We must use the temporary buffer here, since
516 	 * there can still be an operation in progress.
517 	 */
518 	actx->key_len = len;
519 	actx->key_referenced = false;
520 	if (len == AES_KEYSIZE_128) {
521 		memcpy(actx->key, key, len);
522 		return 0;
523 	}
524 
525 	/*
526 	 * If the requested AES key size is not supported by the hardware,
527 	 * but is supported by in-kernel software implementation, we use
528 	 * software fallback.
529 	 */
530 	crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
531 	crypto_skcipher_set_flags(actx->fallback,
532 				  tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
533 	return crypto_skcipher_setkey(actx->fallback, key, len);
534 }
535 
mxs_dcp_aes_setrefkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int len)536 static int mxs_dcp_aes_setrefkey(struct crypto_skcipher *tfm, const u8 *key,
537 				 unsigned int len)
538 {
539 	struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
540 
541 	if (len != DCP_PAES_KEYSIZE)
542 		return -EINVAL;
543 
544 	switch (key[0]) {
545 	case DCP_PAES_KEY_SLOT0:
546 	case DCP_PAES_KEY_SLOT1:
547 	case DCP_PAES_KEY_SLOT2:
548 	case DCP_PAES_KEY_SLOT3:
549 	case DCP_PAES_KEY_UNIQUE:
550 	case DCP_PAES_KEY_OTP:
551 		memcpy(actx->key, key, len);
552 		actx->key_len = len;
553 		actx->key_referenced = true;
554 		break;
555 	default:
556 		return -EINVAL;
557 	}
558 
559 	return 0;
560 }
561 
mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher * tfm)562 static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
563 {
564 	const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
565 	struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
566 	struct crypto_skcipher *blk;
567 
568 	blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
569 	if (IS_ERR(blk))
570 		return PTR_ERR(blk);
571 
572 	actx->fallback = blk;
573 	crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) +
574 					 crypto_skcipher_reqsize(blk));
575 	return 0;
576 }
577 
mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher * tfm)578 static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
579 {
580 	struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
581 
582 	crypto_free_skcipher(actx->fallback);
583 }
584 
mxs_dcp_paes_init_tfm(struct crypto_skcipher * tfm)585 static int mxs_dcp_paes_init_tfm(struct crypto_skcipher *tfm)
586 {
587 	crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx));
588 
589 	return 0;
590 }
591 
592 /*
593  * Hashing (SHA1/SHA256)
594  */
mxs_dcp_run_sha(struct ahash_request * req)595 static int mxs_dcp_run_sha(struct ahash_request *req)
596 {
597 	struct dcp *sdcp = global_sdcp;
598 	int ret;
599 
600 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
601 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
602 	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
603 	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
604 
605 	dma_addr_t digest_phys = 0;
606 	dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
607 					     DCP_BUF_SZ, DMA_TO_DEVICE);
608 
609 	ret = dma_mapping_error(sdcp->dev, buf_phys);
610 	if (ret)
611 		return ret;
612 
613 	/* Fill in the DMA descriptor. */
614 	desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
615 		    MXS_DCP_CONTROL0_INTERRUPT |
616 		    MXS_DCP_CONTROL0_ENABLE_HASH;
617 	if (rctx->init)
618 		desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
619 
620 	desc->control1 = actx->alg;
621 	desc->next_cmd_addr = 0;
622 	desc->source = buf_phys;
623 	desc->destination = 0;
624 	desc->size = actx->fill;
625 	desc->payload = 0;
626 	desc->status = 0;
627 
628 	/*
629 	 * Align driver with hw behavior when generating null hashes
630 	 */
631 	if (rctx->init && rctx->fini && desc->size == 0) {
632 		struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
633 		const uint8_t *sha_buf =
634 			(actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
635 			sha1_null_hash : sha256_null_hash;
636 		memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
637 		ret = 0;
638 		goto done_run;
639 	}
640 
641 	/* Set HASH_TERM bit for last transfer block. */
642 	if (rctx->fini) {
643 		digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
644 					     DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
645 		ret = dma_mapping_error(sdcp->dev, digest_phys);
646 		if (ret)
647 			goto done_run;
648 
649 		desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
650 		desc->payload = digest_phys;
651 	}
652 
653 	ret = mxs_dcp_start_dma(actx);
654 
655 	if (rctx->fini)
656 		dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
657 				 DMA_FROM_DEVICE);
658 
659 done_run:
660 	dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
661 
662 	return ret;
663 }
664 
dcp_sha_req_to_buf(struct crypto_async_request * arq)665 static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
666 {
667 	struct dcp *sdcp = global_sdcp;
668 
669 	struct ahash_request *req = ahash_request_cast(arq);
670 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
671 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
672 	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
673 	struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
674 
675 	uint8_t *in_buf = sdcp->coh->sha_in_buf;
676 	uint8_t *out_buf = sdcp->coh->sha_out_buf;
677 
678 	struct scatterlist *src;
679 
680 	unsigned int i, len, clen, oft = 0;
681 	int ret;
682 
683 	int fin = rctx->fini;
684 	if (fin)
685 		rctx->fini = 0;
686 
687 	src = req->src;
688 	len = req->nbytes;
689 
690 	while (len) {
691 		if (actx->fill + len > DCP_BUF_SZ)
692 			clen = DCP_BUF_SZ - actx->fill;
693 		else
694 			clen = len;
695 
696 		scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
697 					 0);
698 
699 		len -= clen;
700 		oft += clen;
701 		actx->fill += clen;
702 
703 		/*
704 		 * If we filled the buffer and still have some
705 		 * more data, submit the buffer.
706 		 */
707 		if (len && actx->fill == DCP_BUF_SZ) {
708 			ret = mxs_dcp_run_sha(req);
709 			if (ret)
710 				return ret;
711 			actx->fill = 0;
712 			rctx->init = 0;
713 		}
714 	}
715 
716 	if (fin) {
717 		rctx->fini = 1;
718 
719 		/* Submit whatever is left. */
720 		if (!req->result)
721 			return -EINVAL;
722 
723 		ret = mxs_dcp_run_sha(req);
724 		if (ret)
725 			return ret;
726 
727 		actx->fill = 0;
728 
729 		/* For some reason the result is flipped */
730 		for (i = 0; i < halg->digestsize; i++)
731 			req->result[i] = out_buf[halg->digestsize - i - 1];
732 	}
733 
734 	return 0;
735 }
736 
dcp_chan_thread_sha(void * data)737 static int dcp_chan_thread_sha(void *data)
738 {
739 	struct dcp *sdcp = global_sdcp;
740 	const int chan = DCP_CHAN_HASH_SHA;
741 
742 	struct crypto_async_request *backlog;
743 	struct crypto_async_request *arq;
744 	int ret;
745 
746 	while (!kthread_should_stop()) {
747 		set_current_state(TASK_INTERRUPTIBLE);
748 
749 		spin_lock(&sdcp->lock[chan]);
750 		backlog = crypto_get_backlog(&sdcp->queue[chan]);
751 		arq = crypto_dequeue_request(&sdcp->queue[chan]);
752 		spin_unlock(&sdcp->lock[chan]);
753 
754 		if (!backlog && !arq) {
755 			schedule();
756 			continue;
757 		}
758 
759 		set_current_state(TASK_RUNNING);
760 
761 		if (backlog)
762 			crypto_request_complete(backlog, -EINPROGRESS);
763 
764 		if (arq) {
765 			ret = dcp_sha_req_to_buf(arq);
766 			crypto_request_complete(arq, ret);
767 		}
768 	}
769 
770 	return 0;
771 }
772 
dcp_sha_init(struct ahash_request * req)773 static int dcp_sha_init(struct ahash_request *req)
774 {
775 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
776 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
777 
778 	struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
779 
780 	/*
781 	 * Start hashing session. The code below only inits the
782 	 * hashing session context, nothing more.
783 	 */
784 	memset(actx, 0, sizeof(*actx));
785 
786 	if (strcmp(halg->base.cra_name, "sha1") == 0)
787 		actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
788 	else
789 		actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
790 
791 	actx->fill = 0;
792 	actx->hot = 0;
793 	actx->chan = DCP_CHAN_HASH_SHA;
794 
795 	mutex_init(&actx->mutex);
796 
797 	return 0;
798 }
799 
dcp_sha_update_fx(struct ahash_request * req,int fini)800 static int dcp_sha_update_fx(struct ahash_request *req, int fini)
801 {
802 	struct dcp *sdcp = global_sdcp;
803 
804 	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
805 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
806 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
807 
808 	int ret;
809 
810 	/*
811 	 * Ignore requests that have no data in them and are not
812 	 * the trailing requests in the stream of requests.
813 	 */
814 	if (!req->nbytes && !fini)
815 		return 0;
816 
817 	mutex_lock(&actx->mutex);
818 
819 	rctx->fini = fini;
820 
821 	if (!actx->hot) {
822 		actx->hot = 1;
823 		rctx->init = 1;
824 	}
825 
826 	spin_lock(&sdcp->lock[actx->chan]);
827 	ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
828 	spin_unlock(&sdcp->lock[actx->chan]);
829 
830 	wake_up_process(sdcp->thread[actx->chan]);
831 	mutex_unlock(&actx->mutex);
832 
833 	return ret;
834 }
835 
dcp_sha_update(struct ahash_request * req)836 static int dcp_sha_update(struct ahash_request *req)
837 {
838 	return dcp_sha_update_fx(req, 0);
839 }
840 
dcp_sha_final(struct ahash_request * req)841 static int dcp_sha_final(struct ahash_request *req)
842 {
843 	ahash_request_set_crypt(req, NULL, req->result, 0);
844 	req->nbytes = 0;
845 	return dcp_sha_update_fx(req, 1);
846 }
847 
dcp_sha_finup(struct ahash_request * req)848 static int dcp_sha_finup(struct ahash_request *req)
849 {
850 	return dcp_sha_update_fx(req, 1);
851 }
852 
dcp_sha_digest(struct ahash_request * req)853 static int dcp_sha_digest(struct ahash_request *req)
854 {
855 	int ret;
856 
857 	ret = dcp_sha_init(req);
858 	if (ret)
859 		return ret;
860 
861 	return dcp_sha_finup(req);
862 }
863 
dcp_sha_import(struct ahash_request * req,const void * in)864 static int dcp_sha_import(struct ahash_request *req, const void *in)
865 {
866 	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
867 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
868 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
869 	const struct dcp_export_state *export = in;
870 
871 	memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
872 	memset(actx, 0, sizeof(struct dcp_async_ctx));
873 	memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
874 	memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
875 
876 	return 0;
877 }
878 
dcp_sha_export(struct ahash_request * req,void * out)879 static int dcp_sha_export(struct ahash_request *req, void *out)
880 {
881 	struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
882 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
883 	struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
884 	struct dcp_export_state *export = out;
885 
886 	memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
887 	memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
888 
889 	return 0;
890 }
891 
dcp_sha_cra_init(struct crypto_tfm * tfm)892 static int dcp_sha_cra_init(struct crypto_tfm *tfm)
893 {
894 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
895 				 sizeof(struct dcp_sha_req_ctx));
896 	return 0;
897 }
898 
dcp_sha_cra_exit(struct crypto_tfm * tfm)899 static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
900 {
901 }
902 
903 /* AES 128 ECB and AES 128 CBC */
904 static struct skcipher_alg dcp_aes_algs[] = {
905 	{
906 		.base.cra_name		= "ecb(aes)",
907 		.base.cra_driver_name	= "ecb-aes-dcp",
908 		.base.cra_priority	= 400,
909 		.base.cra_alignmask	= 15,
910 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
911 					  CRYPTO_ALG_NEED_FALLBACK,
912 		.base.cra_blocksize	= AES_BLOCK_SIZE,
913 		.base.cra_ctxsize	= sizeof(struct dcp_async_ctx),
914 		.base.cra_module	= THIS_MODULE,
915 
916 		.min_keysize		= AES_MIN_KEY_SIZE,
917 		.max_keysize		= AES_MAX_KEY_SIZE,
918 		.setkey			= mxs_dcp_aes_setkey,
919 		.encrypt		= mxs_dcp_aes_ecb_encrypt,
920 		.decrypt		= mxs_dcp_aes_ecb_decrypt,
921 		.init			= mxs_dcp_aes_fallback_init_tfm,
922 		.exit			= mxs_dcp_aes_fallback_exit_tfm,
923 	}, {
924 		.base.cra_name		= "cbc(aes)",
925 		.base.cra_driver_name	= "cbc-aes-dcp",
926 		.base.cra_priority	= 400,
927 		.base.cra_alignmask	= 15,
928 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
929 					  CRYPTO_ALG_NEED_FALLBACK,
930 		.base.cra_blocksize	= AES_BLOCK_SIZE,
931 		.base.cra_ctxsize	= sizeof(struct dcp_async_ctx),
932 		.base.cra_module	= THIS_MODULE,
933 
934 		.min_keysize		= AES_MIN_KEY_SIZE,
935 		.max_keysize		= AES_MAX_KEY_SIZE,
936 		.setkey			= mxs_dcp_aes_setkey,
937 		.encrypt		= mxs_dcp_aes_cbc_encrypt,
938 		.decrypt		= mxs_dcp_aes_cbc_decrypt,
939 		.ivsize			= AES_BLOCK_SIZE,
940 		.init			= mxs_dcp_aes_fallback_init_tfm,
941 		.exit			= mxs_dcp_aes_fallback_exit_tfm,
942 	}, {
943 		.base.cra_name		= "ecb(paes)",
944 		.base.cra_driver_name	= "ecb-paes-dcp",
945 		.base.cra_priority	= 401,
946 		.base.cra_alignmask	= 15,
947 		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_INTERNAL,
948 		.base.cra_blocksize	= AES_BLOCK_SIZE,
949 		.base.cra_ctxsize	= sizeof(struct dcp_async_ctx),
950 		.base.cra_module	= THIS_MODULE,
951 
952 		.min_keysize		= DCP_PAES_KEYSIZE,
953 		.max_keysize		= DCP_PAES_KEYSIZE,
954 		.setkey			= mxs_dcp_aes_setrefkey,
955 		.encrypt		= mxs_dcp_aes_ecb_encrypt,
956 		.decrypt		= mxs_dcp_aes_ecb_decrypt,
957 		.init			= mxs_dcp_paes_init_tfm,
958 	}, {
959 		.base.cra_name		= "cbc(paes)",
960 		.base.cra_driver_name	= "cbc-paes-dcp",
961 		.base.cra_priority	= 401,
962 		.base.cra_alignmask	= 15,
963 		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_INTERNAL,
964 		.base.cra_blocksize	= AES_BLOCK_SIZE,
965 		.base.cra_ctxsize	= sizeof(struct dcp_async_ctx),
966 		.base.cra_module	= THIS_MODULE,
967 
968 		.min_keysize		= DCP_PAES_KEYSIZE,
969 		.max_keysize		= DCP_PAES_KEYSIZE,
970 		.setkey			= mxs_dcp_aes_setrefkey,
971 		.encrypt		= mxs_dcp_aes_cbc_encrypt,
972 		.decrypt		= mxs_dcp_aes_cbc_decrypt,
973 		.ivsize			= AES_BLOCK_SIZE,
974 		.init			= mxs_dcp_paes_init_tfm,
975 	},
976 };
977 
978 /* SHA1 */
979 static struct ahash_alg dcp_sha1_alg = {
980 	.init	= dcp_sha_init,
981 	.update	= dcp_sha_update,
982 	.final	= dcp_sha_final,
983 	.finup	= dcp_sha_finup,
984 	.digest	= dcp_sha_digest,
985 	.import = dcp_sha_import,
986 	.export = dcp_sha_export,
987 	.halg	= {
988 		.digestsize	= SHA1_DIGEST_SIZE,
989 		.statesize	= sizeof(struct dcp_export_state),
990 		.base		= {
991 			.cra_name		= "sha1",
992 			.cra_driver_name	= "sha1-dcp",
993 			.cra_priority		= 400,
994 			.cra_flags		= CRYPTO_ALG_ASYNC,
995 			.cra_blocksize		= SHA1_BLOCK_SIZE,
996 			.cra_ctxsize		= sizeof(struct dcp_async_ctx),
997 			.cra_module		= THIS_MODULE,
998 			.cra_init		= dcp_sha_cra_init,
999 			.cra_exit		= dcp_sha_cra_exit,
1000 		},
1001 	},
1002 };
1003 
1004 /* SHA256 */
1005 static struct ahash_alg dcp_sha256_alg = {
1006 	.init	= dcp_sha_init,
1007 	.update	= dcp_sha_update,
1008 	.final	= dcp_sha_final,
1009 	.finup	= dcp_sha_finup,
1010 	.digest	= dcp_sha_digest,
1011 	.import = dcp_sha_import,
1012 	.export = dcp_sha_export,
1013 	.halg	= {
1014 		.digestsize	= SHA256_DIGEST_SIZE,
1015 		.statesize	= sizeof(struct dcp_export_state),
1016 		.base		= {
1017 			.cra_name		= "sha256",
1018 			.cra_driver_name	= "sha256-dcp",
1019 			.cra_priority		= 400,
1020 			.cra_flags		= CRYPTO_ALG_ASYNC,
1021 			.cra_blocksize		= SHA256_BLOCK_SIZE,
1022 			.cra_ctxsize		= sizeof(struct dcp_async_ctx),
1023 			.cra_module		= THIS_MODULE,
1024 			.cra_init		= dcp_sha_cra_init,
1025 			.cra_exit		= dcp_sha_cra_exit,
1026 		},
1027 	},
1028 };
1029 
mxs_dcp_irq(int irq,void * context)1030 static irqreturn_t mxs_dcp_irq(int irq, void *context)
1031 {
1032 	struct dcp *sdcp = context;
1033 	uint32_t stat;
1034 	int i;
1035 
1036 	stat = readl(sdcp->base + MXS_DCP_STAT);
1037 	stat &= MXS_DCP_STAT_IRQ_MASK;
1038 	if (!stat)
1039 		return IRQ_NONE;
1040 
1041 	/* Clear the interrupts. */
1042 	writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
1043 
1044 	/* Complete the DMA requests that finished. */
1045 	for (i = 0; i < DCP_MAX_CHANS; i++)
1046 		if (stat & (1 << i))
1047 			complete(&sdcp->completion[i]);
1048 
1049 	return IRQ_HANDLED;
1050 }
1051 
mxs_dcp_probe(struct platform_device * pdev)1052 static int mxs_dcp_probe(struct platform_device *pdev)
1053 {
1054 	struct device *dev = &pdev->dev;
1055 	struct dcp *sdcp = NULL;
1056 	int i, ret;
1057 	int dcp_vmi_irq, dcp_irq;
1058 
1059 	if (global_sdcp) {
1060 		dev_err(dev, "Only one DCP instance allowed!\n");
1061 		return -ENODEV;
1062 	}
1063 
1064 	dcp_vmi_irq = platform_get_irq(pdev, 0);
1065 	if (dcp_vmi_irq < 0)
1066 		return dcp_vmi_irq;
1067 
1068 	dcp_irq = platform_get_irq(pdev, 1);
1069 	if (dcp_irq < 0)
1070 		return dcp_irq;
1071 
1072 	sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
1073 	if (!sdcp)
1074 		return -ENOMEM;
1075 
1076 	sdcp->dev = dev;
1077 	sdcp->base = devm_platform_ioremap_resource(pdev, 0);
1078 	if (IS_ERR(sdcp->base))
1079 		return PTR_ERR(sdcp->base);
1080 
1081 
1082 	ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
1083 			       "dcp-vmi-irq", sdcp);
1084 	if (ret) {
1085 		dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
1086 		return ret;
1087 	}
1088 
1089 	ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1090 			       "dcp-irq", sdcp);
1091 	if (ret) {
1092 		dev_err(dev, "Failed to claim DCP IRQ!\n");
1093 		return ret;
1094 	}
1095 
1096 	/* Allocate coherent helper block. */
1097 	sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1098 				   GFP_KERNEL);
1099 	if (!sdcp->coh)
1100 		return -ENOMEM;
1101 
1102 	/* Re-align the structure so it fits the DCP constraints. */
1103 	sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1104 
1105 	/* DCP clock is optional, only used on some SOCs */
1106 	sdcp->dcp_clk = devm_clk_get_optional_enabled(dev, "dcp");
1107 	if (IS_ERR(sdcp->dcp_clk))
1108 		return PTR_ERR(sdcp->dcp_clk);
1109 
1110 	/* Restart the DCP block. */
1111 	ret = stmp_reset_block(sdcp->base);
1112 	if (ret) {
1113 		dev_err(dev, "Failed reset\n");
1114 		return ret;
1115 	}
1116 
1117 	/* Initialize control register. */
1118 	writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1119 	       MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1120 	       sdcp->base + MXS_DCP_CTRL);
1121 
1122 	/* Enable all DCP DMA channels. */
1123 	writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1124 	       sdcp->base + MXS_DCP_CHANNELCTRL);
1125 
1126 	/*
1127 	 * We do not enable context switching. Give the context buffer a
1128 	 * pointer to an illegal address so if context switching is
1129 	 * inadvertantly enabled, the DCP will return an error instead of
1130 	 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1131 	 * address will do.
1132 	 */
1133 	writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1134 	for (i = 0; i < DCP_MAX_CHANS; i++)
1135 		writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1136 	writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1137 
1138 	global_sdcp = sdcp;
1139 
1140 	platform_set_drvdata(pdev, sdcp);
1141 
1142 	for (i = 0; i < DCP_MAX_CHANS; i++) {
1143 		spin_lock_init(&sdcp->lock[i]);
1144 		init_completion(&sdcp->completion[i]);
1145 		crypto_init_queue(&sdcp->queue[i], 50);
1146 	}
1147 
1148 	/* Create the SHA and AES handler threads. */
1149 	sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1150 						      NULL, "mxs_dcp_chan/sha");
1151 	if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1152 		dev_err(dev, "Error starting SHA thread!\n");
1153 		ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1154 		return ret;
1155 	}
1156 
1157 	sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1158 						    NULL, "mxs_dcp_chan/aes");
1159 	if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1160 		dev_err(dev, "Error starting SHA thread!\n");
1161 		ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1162 		goto err_destroy_sha_thread;
1163 	}
1164 
1165 	/* Register the various crypto algorithms. */
1166 	sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1167 
1168 	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1169 		ret = crypto_register_skciphers(dcp_aes_algs,
1170 						ARRAY_SIZE(dcp_aes_algs));
1171 		if (ret) {
1172 			/* Failed to register algorithm. */
1173 			dev_err(dev, "Failed to register AES crypto!\n");
1174 			goto err_destroy_aes_thread;
1175 		}
1176 	}
1177 
1178 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1179 		ret = crypto_register_ahash(&dcp_sha1_alg);
1180 		if (ret) {
1181 			dev_err(dev, "Failed to register %s hash!\n",
1182 				dcp_sha1_alg.halg.base.cra_name);
1183 			goto err_unregister_aes;
1184 		}
1185 	}
1186 
1187 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1188 		ret = crypto_register_ahash(&dcp_sha256_alg);
1189 		if (ret) {
1190 			dev_err(dev, "Failed to register %s hash!\n",
1191 				dcp_sha256_alg.halg.base.cra_name);
1192 			goto err_unregister_sha1;
1193 		}
1194 	}
1195 
1196 	return 0;
1197 
1198 err_unregister_sha1:
1199 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1200 		crypto_unregister_ahash(&dcp_sha1_alg);
1201 
1202 err_unregister_aes:
1203 	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1204 		crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1205 
1206 err_destroy_aes_thread:
1207 	kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1208 
1209 err_destroy_sha_thread:
1210 	kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1211 
1212 	return ret;
1213 }
1214 
mxs_dcp_remove(struct platform_device * pdev)1215 static void mxs_dcp_remove(struct platform_device *pdev)
1216 {
1217 	struct dcp *sdcp = platform_get_drvdata(pdev);
1218 
1219 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1220 		crypto_unregister_ahash(&dcp_sha256_alg);
1221 
1222 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1223 		crypto_unregister_ahash(&dcp_sha1_alg);
1224 
1225 	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1226 		crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1227 
1228 	kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1229 	kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1230 
1231 	platform_set_drvdata(pdev, NULL);
1232 
1233 	global_sdcp = NULL;
1234 }
1235 
1236 static const struct of_device_id mxs_dcp_dt_ids[] = {
1237 	{ .compatible = "fsl,imx23-dcp", .data = NULL, },
1238 	{ .compatible = "fsl,imx28-dcp", .data = NULL, },
1239 	{ /* sentinel */ }
1240 };
1241 
1242 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1243 
1244 static struct platform_driver mxs_dcp_driver = {
1245 	.probe	= mxs_dcp_probe,
1246 	.remove_new = mxs_dcp_remove,
1247 	.driver	= {
1248 		.name		= "mxs-dcp",
1249 		.of_match_table	= mxs_dcp_dt_ids,
1250 	},
1251 };
1252 
1253 module_platform_driver(mxs_dcp_driver);
1254 
1255 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1256 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1257 MODULE_LICENSE("GPL");
1258 MODULE_ALIAS("platform:mxs-dcp");
1259