1  // SPDX-License-Identifier: GPL-2.0
2  
3  #include <linux/ceph/ceph_debug.h>
4  
5  #include <linux/module.h>
6  #include <linux/slab.h>
7  
8  #include <linux/ceph/libceph.h>
9  #include <linux/ceph/osdmap.h>
10  #include <linux/ceph/decode.h>
11  #include <linux/crush/hash.h>
12  #include <linux/crush/mapper.h>
13  
14  static __printf(2, 3)
osdmap_info(const struct ceph_osdmap * map,const char * fmt,...)15  void osdmap_info(const struct ceph_osdmap *map, const char *fmt, ...)
16  {
17  	struct va_format vaf;
18  	va_list args;
19  
20  	va_start(args, fmt);
21  	vaf.fmt = fmt;
22  	vaf.va = &args;
23  
24  	printk(KERN_INFO "%s (%pU e%u): %pV", KBUILD_MODNAME, &map->fsid,
25  	       map->epoch, &vaf);
26  
27  	va_end(args);
28  }
29  
ceph_osdmap_state_str(char * str,int len,u32 state)30  char *ceph_osdmap_state_str(char *str, int len, u32 state)
31  {
32  	if (!len)
33  		return str;
34  
35  	if ((state & CEPH_OSD_EXISTS) && (state & CEPH_OSD_UP))
36  		snprintf(str, len, "exists, up");
37  	else if (state & CEPH_OSD_EXISTS)
38  		snprintf(str, len, "exists");
39  	else if (state & CEPH_OSD_UP)
40  		snprintf(str, len, "up");
41  	else
42  		snprintf(str, len, "doesn't exist");
43  
44  	return str;
45  }
46  
47  /* maps */
48  
calc_bits_of(unsigned int t)49  static int calc_bits_of(unsigned int t)
50  {
51  	int b = 0;
52  	while (t) {
53  		t = t >> 1;
54  		b++;
55  	}
56  	return b;
57  }
58  
59  /*
60   * the foo_mask is the smallest value 2^n-1 that is >= foo.
61   */
calc_pg_masks(struct ceph_pg_pool_info * pi)62  static void calc_pg_masks(struct ceph_pg_pool_info *pi)
63  {
64  	pi->pg_num_mask = (1 << calc_bits_of(pi->pg_num-1)) - 1;
65  	pi->pgp_num_mask = (1 << calc_bits_of(pi->pgp_num-1)) - 1;
66  }
67  
68  /*
69   * decode crush map
70   */
crush_decode_uniform_bucket(void ** p,void * end,struct crush_bucket_uniform * b)71  static int crush_decode_uniform_bucket(void **p, void *end,
72  				       struct crush_bucket_uniform *b)
73  {
74  	dout("crush_decode_uniform_bucket %p to %p\n", *p, end);
75  	ceph_decode_need(p, end, (1+b->h.size) * sizeof(u32), bad);
76  	b->item_weight = ceph_decode_32(p);
77  	return 0;
78  bad:
79  	return -EINVAL;
80  }
81  
crush_decode_list_bucket(void ** p,void * end,struct crush_bucket_list * b)82  static int crush_decode_list_bucket(void **p, void *end,
83  				    struct crush_bucket_list *b)
84  {
85  	int j;
86  	dout("crush_decode_list_bucket %p to %p\n", *p, end);
87  	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
88  	if (b->item_weights == NULL)
89  		return -ENOMEM;
90  	b->sum_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
91  	if (b->sum_weights == NULL)
92  		return -ENOMEM;
93  	ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
94  	for (j = 0; j < b->h.size; j++) {
95  		b->item_weights[j] = ceph_decode_32(p);
96  		b->sum_weights[j] = ceph_decode_32(p);
97  	}
98  	return 0;
99  bad:
100  	return -EINVAL;
101  }
102  
crush_decode_tree_bucket(void ** p,void * end,struct crush_bucket_tree * b)103  static int crush_decode_tree_bucket(void **p, void *end,
104  				    struct crush_bucket_tree *b)
105  {
106  	int j;
107  	dout("crush_decode_tree_bucket %p to %p\n", *p, end);
108  	ceph_decode_8_safe(p, end, b->num_nodes, bad);
109  	b->node_weights = kcalloc(b->num_nodes, sizeof(u32), GFP_NOFS);
110  	if (b->node_weights == NULL)
111  		return -ENOMEM;
112  	ceph_decode_need(p, end, b->num_nodes * sizeof(u32), bad);
113  	for (j = 0; j < b->num_nodes; j++)
114  		b->node_weights[j] = ceph_decode_32(p);
115  	return 0;
116  bad:
117  	return -EINVAL;
118  }
119  
crush_decode_straw_bucket(void ** p,void * end,struct crush_bucket_straw * b)120  static int crush_decode_straw_bucket(void **p, void *end,
121  				     struct crush_bucket_straw *b)
122  {
123  	int j;
124  	dout("crush_decode_straw_bucket %p to %p\n", *p, end);
125  	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
126  	if (b->item_weights == NULL)
127  		return -ENOMEM;
128  	b->straws = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
129  	if (b->straws == NULL)
130  		return -ENOMEM;
131  	ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
132  	for (j = 0; j < b->h.size; j++) {
133  		b->item_weights[j] = ceph_decode_32(p);
134  		b->straws[j] = ceph_decode_32(p);
135  	}
136  	return 0;
137  bad:
138  	return -EINVAL;
139  }
140  
crush_decode_straw2_bucket(void ** p,void * end,struct crush_bucket_straw2 * b)141  static int crush_decode_straw2_bucket(void **p, void *end,
142  				      struct crush_bucket_straw2 *b)
143  {
144  	int j;
145  	dout("crush_decode_straw2_bucket %p to %p\n", *p, end);
146  	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
147  	if (b->item_weights == NULL)
148  		return -ENOMEM;
149  	ceph_decode_need(p, end, b->h.size * sizeof(u32), bad);
150  	for (j = 0; j < b->h.size; j++)
151  		b->item_weights[j] = ceph_decode_32(p);
152  	return 0;
153  bad:
154  	return -EINVAL;
155  }
156  
157  struct crush_name_node {
158  	struct rb_node cn_node;
159  	int cn_id;
160  	char cn_name[];
161  };
162  
alloc_crush_name(size_t name_len)163  static struct crush_name_node *alloc_crush_name(size_t name_len)
164  {
165  	struct crush_name_node *cn;
166  
167  	cn = kmalloc(sizeof(*cn) + name_len + 1, GFP_NOIO);
168  	if (!cn)
169  		return NULL;
170  
171  	RB_CLEAR_NODE(&cn->cn_node);
172  	return cn;
173  }
174  
free_crush_name(struct crush_name_node * cn)175  static void free_crush_name(struct crush_name_node *cn)
176  {
177  	WARN_ON(!RB_EMPTY_NODE(&cn->cn_node));
178  
179  	kfree(cn);
180  }
181  
DEFINE_RB_FUNCS(crush_name,struct crush_name_node,cn_id,cn_node)182  DEFINE_RB_FUNCS(crush_name, struct crush_name_node, cn_id, cn_node)
183  
184  static int decode_crush_names(void **p, void *end, struct rb_root *root)
185  {
186  	u32 n;
187  
188  	ceph_decode_32_safe(p, end, n, e_inval);
189  	while (n--) {
190  		struct crush_name_node *cn;
191  		int id;
192  		u32 name_len;
193  
194  		ceph_decode_32_safe(p, end, id, e_inval);
195  		ceph_decode_32_safe(p, end, name_len, e_inval);
196  		ceph_decode_need(p, end, name_len, e_inval);
197  
198  		cn = alloc_crush_name(name_len);
199  		if (!cn)
200  			return -ENOMEM;
201  
202  		cn->cn_id = id;
203  		memcpy(cn->cn_name, *p, name_len);
204  		cn->cn_name[name_len] = '\0';
205  		*p += name_len;
206  
207  		if (!__insert_crush_name(root, cn)) {
208  			free_crush_name(cn);
209  			return -EEXIST;
210  		}
211  	}
212  
213  	return 0;
214  
215  e_inval:
216  	return -EINVAL;
217  }
218  
clear_crush_names(struct rb_root * root)219  void clear_crush_names(struct rb_root *root)
220  {
221  	while (!RB_EMPTY_ROOT(root)) {
222  		struct crush_name_node *cn =
223  		    rb_entry(rb_first(root), struct crush_name_node, cn_node);
224  
225  		erase_crush_name(root, cn);
226  		free_crush_name(cn);
227  	}
228  }
229  
alloc_choose_arg_map(void)230  static struct crush_choose_arg_map *alloc_choose_arg_map(void)
231  {
232  	struct crush_choose_arg_map *arg_map;
233  
234  	arg_map = kzalloc(sizeof(*arg_map), GFP_NOIO);
235  	if (!arg_map)
236  		return NULL;
237  
238  	RB_CLEAR_NODE(&arg_map->node);
239  	return arg_map;
240  }
241  
free_choose_arg_map(struct crush_choose_arg_map * arg_map)242  static void free_choose_arg_map(struct crush_choose_arg_map *arg_map)
243  {
244  	if (arg_map) {
245  		int i, j;
246  
247  		WARN_ON(!RB_EMPTY_NODE(&arg_map->node));
248  
249  		for (i = 0; i < arg_map->size; i++) {
250  			struct crush_choose_arg *arg = &arg_map->args[i];
251  
252  			for (j = 0; j < arg->weight_set_size; j++)
253  				kfree(arg->weight_set[j].weights);
254  			kfree(arg->weight_set);
255  			kfree(arg->ids);
256  		}
257  		kfree(arg_map->args);
258  		kfree(arg_map);
259  	}
260  }
261  
262  DEFINE_RB_FUNCS(choose_arg_map, struct crush_choose_arg_map, choose_args_index,
263  		node);
264  
clear_choose_args(struct crush_map * c)265  void clear_choose_args(struct crush_map *c)
266  {
267  	while (!RB_EMPTY_ROOT(&c->choose_args)) {
268  		struct crush_choose_arg_map *arg_map =
269  		    rb_entry(rb_first(&c->choose_args),
270  			     struct crush_choose_arg_map, node);
271  
272  		erase_choose_arg_map(&c->choose_args, arg_map);
273  		free_choose_arg_map(arg_map);
274  	}
275  }
276  
decode_array_32_alloc(void ** p,void * end,u32 * plen)277  static u32 *decode_array_32_alloc(void **p, void *end, u32 *plen)
278  {
279  	u32 *a = NULL;
280  	u32 len;
281  	int ret;
282  
283  	ceph_decode_32_safe(p, end, len, e_inval);
284  	if (len) {
285  		u32 i;
286  
287  		a = kmalloc_array(len, sizeof(u32), GFP_NOIO);
288  		if (!a) {
289  			ret = -ENOMEM;
290  			goto fail;
291  		}
292  
293  		ceph_decode_need(p, end, len * sizeof(u32), e_inval);
294  		for (i = 0; i < len; i++)
295  			a[i] = ceph_decode_32(p);
296  	}
297  
298  	*plen = len;
299  	return a;
300  
301  e_inval:
302  	ret = -EINVAL;
303  fail:
304  	kfree(a);
305  	return ERR_PTR(ret);
306  }
307  
308  /*
309   * Assumes @arg is zero-initialized.
310   */
decode_choose_arg(void ** p,void * end,struct crush_choose_arg * arg)311  static int decode_choose_arg(void **p, void *end, struct crush_choose_arg *arg)
312  {
313  	int ret;
314  
315  	ceph_decode_32_safe(p, end, arg->weight_set_size, e_inval);
316  	if (arg->weight_set_size) {
317  		u32 i;
318  
319  		arg->weight_set = kmalloc_array(arg->weight_set_size,
320  						sizeof(*arg->weight_set),
321  						GFP_NOIO);
322  		if (!arg->weight_set)
323  			return -ENOMEM;
324  
325  		for (i = 0; i < arg->weight_set_size; i++) {
326  			struct crush_weight_set *w = &arg->weight_set[i];
327  
328  			w->weights = decode_array_32_alloc(p, end, &w->size);
329  			if (IS_ERR(w->weights)) {
330  				ret = PTR_ERR(w->weights);
331  				w->weights = NULL;
332  				return ret;
333  			}
334  		}
335  	}
336  
337  	arg->ids = decode_array_32_alloc(p, end, &arg->ids_size);
338  	if (IS_ERR(arg->ids)) {
339  		ret = PTR_ERR(arg->ids);
340  		arg->ids = NULL;
341  		return ret;
342  	}
343  
344  	return 0;
345  
346  e_inval:
347  	return -EINVAL;
348  }
349  
decode_choose_args(void ** p,void * end,struct crush_map * c)350  static int decode_choose_args(void **p, void *end, struct crush_map *c)
351  {
352  	struct crush_choose_arg_map *arg_map = NULL;
353  	u32 num_choose_arg_maps, num_buckets;
354  	int ret;
355  
356  	ceph_decode_32_safe(p, end, num_choose_arg_maps, e_inval);
357  	while (num_choose_arg_maps--) {
358  		arg_map = alloc_choose_arg_map();
359  		if (!arg_map) {
360  			ret = -ENOMEM;
361  			goto fail;
362  		}
363  
364  		ceph_decode_64_safe(p, end, arg_map->choose_args_index,
365  				    e_inval);
366  		arg_map->size = c->max_buckets;
367  		arg_map->args = kcalloc(arg_map->size, sizeof(*arg_map->args),
368  					GFP_NOIO);
369  		if (!arg_map->args) {
370  			ret = -ENOMEM;
371  			goto fail;
372  		}
373  
374  		ceph_decode_32_safe(p, end, num_buckets, e_inval);
375  		while (num_buckets--) {
376  			struct crush_choose_arg *arg;
377  			u32 bucket_index;
378  
379  			ceph_decode_32_safe(p, end, bucket_index, e_inval);
380  			if (bucket_index >= arg_map->size)
381  				goto e_inval;
382  
383  			arg = &arg_map->args[bucket_index];
384  			ret = decode_choose_arg(p, end, arg);
385  			if (ret)
386  				goto fail;
387  
388  			if (arg->ids_size &&
389  			    arg->ids_size != c->buckets[bucket_index]->size)
390  				goto e_inval;
391  		}
392  
393  		insert_choose_arg_map(&c->choose_args, arg_map);
394  	}
395  
396  	return 0;
397  
398  e_inval:
399  	ret = -EINVAL;
400  fail:
401  	free_choose_arg_map(arg_map);
402  	return ret;
403  }
404  
crush_finalize(struct crush_map * c)405  static void crush_finalize(struct crush_map *c)
406  {
407  	__s32 b;
408  
409  	/* Space for the array of pointers to per-bucket workspace */
410  	c->working_size = sizeof(struct crush_work) +
411  	    c->max_buckets * sizeof(struct crush_work_bucket *);
412  
413  	for (b = 0; b < c->max_buckets; b++) {
414  		if (!c->buckets[b])
415  			continue;
416  
417  		switch (c->buckets[b]->alg) {
418  		default:
419  			/*
420  			 * The base case, permutation variables and
421  			 * the pointer to the permutation array.
422  			 */
423  			c->working_size += sizeof(struct crush_work_bucket);
424  			break;
425  		}
426  		/* Every bucket has a permutation array. */
427  		c->working_size += c->buckets[b]->size * sizeof(__u32);
428  	}
429  }
430  
crush_decode(void * pbyval,void * end)431  static struct crush_map *crush_decode(void *pbyval, void *end)
432  {
433  	struct crush_map *c;
434  	int err;
435  	int i, j;
436  	void **p = &pbyval;
437  	void *start = pbyval;
438  	u32 magic;
439  
440  	dout("crush_decode %p to %p len %d\n", *p, end, (int)(end - *p));
441  
442  	c = kzalloc(sizeof(*c), GFP_NOFS);
443  	if (c == NULL)
444  		return ERR_PTR(-ENOMEM);
445  
446  	c->type_names = RB_ROOT;
447  	c->names = RB_ROOT;
448  	c->choose_args = RB_ROOT;
449  
450          /* set tunables to default values */
451          c->choose_local_tries = 2;
452          c->choose_local_fallback_tries = 5;
453          c->choose_total_tries = 19;
454  	c->chooseleaf_descend_once = 0;
455  
456  	ceph_decode_need(p, end, 4*sizeof(u32), bad);
457  	magic = ceph_decode_32(p);
458  	if (magic != CRUSH_MAGIC) {
459  		pr_err("crush_decode magic %x != current %x\n",
460  		       (unsigned int)magic, (unsigned int)CRUSH_MAGIC);
461  		goto bad;
462  	}
463  	c->max_buckets = ceph_decode_32(p);
464  	c->max_rules = ceph_decode_32(p);
465  	c->max_devices = ceph_decode_32(p);
466  
467  	c->buckets = kcalloc(c->max_buckets, sizeof(*c->buckets), GFP_NOFS);
468  	if (c->buckets == NULL)
469  		goto badmem;
470  	c->rules = kcalloc(c->max_rules, sizeof(*c->rules), GFP_NOFS);
471  	if (c->rules == NULL)
472  		goto badmem;
473  
474  	/* buckets */
475  	for (i = 0; i < c->max_buckets; i++) {
476  		int size = 0;
477  		u32 alg;
478  		struct crush_bucket *b;
479  
480  		ceph_decode_32_safe(p, end, alg, bad);
481  		if (alg == 0) {
482  			c->buckets[i] = NULL;
483  			continue;
484  		}
485  		dout("crush_decode bucket %d off %x %p to %p\n",
486  		     i, (int)(*p-start), *p, end);
487  
488  		switch (alg) {
489  		case CRUSH_BUCKET_UNIFORM:
490  			size = sizeof(struct crush_bucket_uniform);
491  			break;
492  		case CRUSH_BUCKET_LIST:
493  			size = sizeof(struct crush_bucket_list);
494  			break;
495  		case CRUSH_BUCKET_TREE:
496  			size = sizeof(struct crush_bucket_tree);
497  			break;
498  		case CRUSH_BUCKET_STRAW:
499  			size = sizeof(struct crush_bucket_straw);
500  			break;
501  		case CRUSH_BUCKET_STRAW2:
502  			size = sizeof(struct crush_bucket_straw2);
503  			break;
504  		default:
505  			goto bad;
506  		}
507  		BUG_ON(size == 0);
508  		b = c->buckets[i] = kzalloc(size, GFP_NOFS);
509  		if (b == NULL)
510  			goto badmem;
511  
512  		ceph_decode_need(p, end, 4*sizeof(u32), bad);
513  		b->id = ceph_decode_32(p);
514  		b->type = ceph_decode_16(p);
515  		b->alg = ceph_decode_8(p);
516  		b->hash = ceph_decode_8(p);
517  		b->weight = ceph_decode_32(p);
518  		b->size = ceph_decode_32(p);
519  
520  		dout("crush_decode bucket size %d off %x %p to %p\n",
521  		     b->size, (int)(*p-start), *p, end);
522  
523  		b->items = kcalloc(b->size, sizeof(__s32), GFP_NOFS);
524  		if (b->items == NULL)
525  			goto badmem;
526  
527  		ceph_decode_need(p, end, b->size*sizeof(u32), bad);
528  		for (j = 0; j < b->size; j++)
529  			b->items[j] = ceph_decode_32(p);
530  
531  		switch (b->alg) {
532  		case CRUSH_BUCKET_UNIFORM:
533  			err = crush_decode_uniform_bucket(p, end,
534  				  (struct crush_bucket_uniform *)b);
535  			if (err < 0)
536  				goto fail;
537  			break;
538  		case CRUSH_BUCKET_LIST:
539  			err = crush_decode_list_bucket(p, end,
540  			       (struct crush_bucket_list *)b);
541  			if (err < 0)
542  				goto fail;
543  			break;
544  		case CRUSH_BUCKET_TREE:
545  			err = crush_decode_tree_bucket(p, end,
546  				(struct crush_bucket_tree *)b);
547  			if (err < 0)
548  				goto fail;
549  			break;
550  		case CRUSH_BUCKET_STRAW:
551  			err = crush_decode_straw_bucket(p, end,
552  				(struct crush_bucket_straw *)b);
553  			if (err < 0)
554  				goto fail;
555  			break;
556  		case CRUSH_BUCKET_STRAW2:
557  			err = crush_decode_straw2_bucket(p, end,
558  				(struct crush_bucket_straw2 *)b);
559  			if (err < 0)
560  				goto fail;
561  			break;
562  		}
563  	}
564  
565  	/* rules */
566  	dout("rule vec is %p\n", c->rules);
567  	for (i = 0; i < c->max_rules; i++) {
568  		u32 yes;
569  		struct crush_rule *r;
570  
571  		ceph_decode_32_safe(p, end, yes, bad);
572  		if (!yes) {
573  			dout("crush_decode NO rule %d off %x %p to %p\n",
574  			     i, (int)(*p-start), *p, end);
575  			c->rules[i] = NULL;
576  			continue;
577  		}
578  
579  		dout("crush_decode rule %d off %x %p to %p\n",
580  		     i, (int)(*p-start), *p, end);
581  
582  		/* len */
583  		ceph_decode_32_safe(p, end, yes, bad);
584  #if BITS_PER_LONG == 32
585  		if (yes > (ULONG_MAX - sizeof(*r))
586  			  / sizeof(struct crush_rule_step))
587  			goto bad;
588  #endif
589  		r = kmalloc(struct_size(r, steps, yes), GFP_NOFS);
590  		if (r == NULL)
591  			goto badmem;
592  		dout(" rule %d is at %p\n", i, r);
593  		c->rules[i] = r;
594  		r->len = yes;
595  		ceph_decode_copy_safe(p, end, &r->mask, 4, bad); /* 4 u8's */
596  		ceph_decode_need(p, end, r->len*3*sizeof(u32), bad);
597  		for (j = 0; j < r->len; j++) {
598  			r->steps[j].op = ceph_decode_32(p);
599  			r->steps[j].arg1 = ceph_decode_32(p);
600  			r->steps[j].arg2 = ceph_decode_32(p);
601  		}
602  	}
603  
604  	err = decode_crush_names(p, end, &c->type_names);
605  	if (err)
606  		goto fail;
607  
608  	err = decode_crush_names(p, end, &c->names);
609  	if (err)
610  		goto fail;
611  
612  	ceph_decode_skip_map(p, end, 32, string, bad); /* rule_name_map */
613  
614          /* tunables */
615          ceph_decode_need(p, end, 3*sizeof(u32), done);
616          c->choose_local_tries = ceph_decode_32(p);
617          c->choose_local_fallback_tries =  ceph_decode_32(p);
618          c->choose_total_tries = ceph_decode_32(p);
619          dout("crush decode tunable choose_local_tries = %d\n",
620               c->choose_local_tries);
621          dout("crush decode tunable choose_local_fallback_tries = %d\n",
622               c->choose_local_fallback_tries);
623          dout("crush decode tunable choose_total_tries = %d\n",
624               c->choose_total_tries);
625  
626  	ceph_decode_need(p, end, sizeof(u32), done);
627  	c->chooseleaf_descend_once = ceph_decode_32(p);
628  	dout("crush decode tunable chooseleaf_descend_once = %d\n",
629  	     c->chooseleaf_descend_once);
630  
631  	ceph_decode_need(p, end, sizeof(u8), done);
632  	c->chooseleaf_vary_r = ceph_decode_8(p);
633  	dout("crush decode tunable chooseleaf_vary_r = %d\n",
634  	     c->chooseleaf_vary_r);
635  
636  	/* skip straw_calc_version, allowed_bucket_algs */
637  	ceph_decode_need(p, end, sizeof(u8) + sizeof(u32), done);
638  	*p += sizeof(u8) + sizeof(u32);
639  
640  	ceph_decode_need(p, end, sizeof(u8), done);
641  	c->chooseleaf_stable = ceph_decode_8(p);
642  	dout("crush decode tunable chooseleaf_stable = %d\n",
643  	     c->chooseleaf_stable);
644  
645  	if (*p != end) {
646  		/* class_map */
647  		ceph_decode_skip_map(p, end, 32, 32, bad);
648  		/* class_name */
649  		ceph_decode_skip_map(p, end, 32, string, bad);
650  		/* class_bucket */
651  		ceph_decode_skip_map_of_map(p, end, 32, 32, 32, bad);
652  	}
653  
654  	if (*p != end) {
655  		err = decode_choose_args(p, end, c);
656  		if (err)
657  			goto fail;
658  	}
659  
660  done:
661  	crush_finalize(c);
662  	dout("crush_decode success\n");
663  	return c;
664  
665  badmem:
666  	err = -ENOMEM;
667  fail:
668  	dout("crush_decode fail %d\n", err);
669  	crush_destroy(c);
670  	return ERR_PTR(err);
671  
672  bad:
673  	err = -EINVAL;
674  	goto fail;
675  }
676  
ceph_pg_compare(const struct ceph_pg * lhs,const struct ceph_pg * rhs)677  int ceph_pg_compare(const struct ceph_pg *lhs, const struct ceph_pg *rhs)
678  {
679  	if (lhs->pool < rhs->pool)
680  		return -1;
681  	if (lhs->pool > rhs->pool)
682  		return 1;
683  	if (lhs->seed < rhs->seed)
684  		return -1;
685  	if (lhs->seed > rhs->seed)
686  		return 1;
687  
688  	return 0;
689  }
690  
ceph_spg_compare(const struct ceph_spg * lhs,const struct ceph_spg * rhs)691  int ceph_spg_compare(const struct ceph_spg *lhs, const struct ceph_spg *rhs)
692  {
693  	int ret;
694  
695  	ret = ceph_pg_compare(&lhs->pgid, &rhs->pgid);
696  	if (ret)
697  		return ret;
698  
699  	if (lhs->shard < rhs->shard)
700  		return -1;
701  	if (lhs->shard > rhs->shard)
702  		return 1;
703  
704  	return 0;
705  }
706  
alloc_pg_mapping(size_t payload_len)707  static struct ceph_pg_mapping *alloc_pg_mapping(size_t payload_len)
708  {
709  	struct ceph_pg_mapping *pg;
710  
711  	pg = kmalloc(sizeof(*pg) + payload_len, GFP_NOIO);
712  	if (!pg)
713  		return NULL;
714  
715  	RB_CLEAR_NODE(&pg->node);
716  	return pg;
717  }
718  
free_pg_mapping(struct ceph_pg_mapping * pg)719  static void free_pg_mapping(struct ceph_pg_mapping *pg)
720  {
721  	WARN_ON(!RB_EMPTY_NODE(&pg->node));
722  
723  	kfree(pg);
724  }
725  
726  /*
727   * rbtree of pg_mapping for handling pg_temp (explicit mapping of pgid
728   * to a set of osds) and primary_temp (explicit primary setting)
729   */
DEFINE_RB_FUNCS2(pg_mapping,struct ceph_pg_mapping,pgid,ceph_pg_compare,RB_BYPTR,const struct ceph_pg *,node)730  DEFINE_RB_FUNCS2(pg_mapping, struct ceph_pg_mapping, pgid, ceph_pg_compare,
731  		 RB_BYPTR, const struct ceph_pg *, node)
732  
733  /*
734   * rbtree of pg pool info
735   */
736  DEFINE_RB_FUNCS(pg_pool, struct ceph_pg_pool_info, id, node)
737  
738  struct ceph_pg_pool_info *ceph_pg_pool_by_id(struct ceph_osdmap *map, u64 id)
739  {
740  	return lookup_pg_pool(&map->pg_pools, id);
741  }
742  
ceph_pg_pool_name_by_id(struct ceph_osdmap * map,u64 id)743  const char *ceph_pg_pool_name_by_id(struct ceph_osdmap *map, u64 id)
744  {
745  	struct ceph_pg_pool_info *pi;
746  
747  	if (id == CEPH_NOPOOL)
748  		return NULL;
749  
750  	if (WARN_ON_ONCE(id > (u64) INT_MAX))
751  		return NULL;
752  
753  	pi = lookup_pg_pool(&map->pg_pools, id);
754  	return pi ? pi->name : NULL;
755  }
756  EXPORT_SYMBOL(ceph_pg_pool_name_by_id);
757  
ceph_pg_poolid_by_name(struct ceph_osdmap * map,const char * name)758  int ceph_pg_poolid_by_name(struct ceph_osdmap *map, const char *name)
759  {
760  	struct rb_node *rbp;
761  
762  	for (rbp = rb_first(&map->pg_pools); rbp; rbp = rb_next(rbp)) {
763  		struct ceph_pg_pool_info *pi =
764  			rb_entry(rbp, struct ceph_pg_pool_info, node);
765  		if (pi->name && strcmp(pi->name, name) == 0)
766  			return pi->id;
767  	}
768  	return -ENOENT;
769  }
770  EXPORT_SYMBOL(ceph_pg_poolid_by_name);
771  
ceph_pg_pool_flags(struct ceph_osdmap * map,u64 id)772  u64 ceph_pg_pool_flags(struct ceph_osdmap *map, u64 id)
773  {
774  	struct ceph_pg_pool_info *pi;
775  
776  	pi = lookup_pg_pool(&map->pg_pools, id);
777  	return pi ? pi->flags : 0;
778  }
779  EXPORT_SYMBOL(ceph_pg_pool_flags);
780  
__remove_pg_pool(struct rb_root * root,struct ceph_pg_pool_info * pi)781  static void __remove_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *pi)
782  {
783  	erase_pg_pool(root, pi);
784  	kfree(pi->name);
785  	kfree(pi);
786  }
787  
decode_pool(void ** p,void * end,struct ceph_pg_pool_info * pi)788  static int decode_pool(void **p, void *end, struct ceph_pg_pool_info *pi)
789  {
790  	u8 ev, cv;
791  	unsigned len, num;
792  	void *pool_end;
793  
794  	ceph_decode_need(p, end, 2 + 4, bad);
795  	ev = ceph_decode_8(p);  /* encoding version */
796  	cv = ceph_decode_8(p); /* compat version */
797  	if (ev < 5) {
798  		pr_warn("got v %d < 5 cv %d of ceph_pg_pool\n", ev, cv);
799  		return -EINVAL;
800  	}
801  	if (cv > 9) {
802  		pr_warn("got v %d cv %d > 9 of ceph_pg_pool\n", ev, cv);
803  		return -EINVAL;
804  	}
805  	len = ceph_decode_32(p);
806  	ceph_decode_need(p, end, len, bad);
807  	pool_end = *p + len;
808  
809  	pi->type = ceph_decode_8(p);
810  	pi->size = ceph_decode_8(p);
811  	pi->crush_ruleset = ceph_decode_8(p);
812  	pi->object_hash = ceph_decode_8(p);
813  
814  	pi->pg_num = ceph_decode_32(p);
815  	pi->pgp_num = ceph_decode_32(p);
816  
817  	*p += 4 + 4;  /* skip lpg* */
818  	*p += 4;      /* skip last_change */
819  	*p += 8 + 4;  /* skip snap_seq, snap_epoch */
820  
821  	/* skip snaps */
822  	num = ceph_decode_32(p);
823  	while (num--) {
824  		*p += 8;  /* snapid key */
825  		*p += 1 + 1; /* versions */
826  		len = ceph_decode_32(p);
827  		*p += len;
828  	}
829  
830  	/* skip removed_snaps */
831  	num = ceph_decode_32(p);
832  	*p += num * (8 + 8);
833  
834  	*p += 8;  /* skip auid */
835  	pi->flags = ceph_decode_64(p);
836  	*p += 4;  /* skip crash_replay_interval */
837  
838  	if (ev >= 7)
839  		pi->min_size = ceph_decode_8(p);
840  	else
841  		pi->min_size = pi->size - pi->size / 2;
842  
843  	if (ev >= 8)
844  		*p += 8 + 8;  /* skip quota_max_* */
845  
846  	if (ev >= 9) {
847  		/* skip tiers */
848  		num = ceph_decode_32(p);
849  		*p += num * 8;
850  
851  		*p += 8;  /* skip tier_of */
852  		*p += 1;  /* skip cache_mode */
853  
854  		pi->read_tier = ceph_decode_64(p);
855  		pi->write_tier = ceph_decode_64(p);
856  	} else {
857  		pi->read_tier = -1;
858  		pi->write_tier = -1;
859  	}
860  
861  	if (ev >= 10) {
862  		/* skip properties */
863  		num = ceph_decode_32(p);
864  		while (num--) {
865  			len = ceph_decode_32(p);
866  			*p += len; /* key */
867  			len = ceph_decode_32(p);
868  			*p += len; /* val */
869  		}
870  	}
871  
872  	if (ev >= 11) {
873  		/* skip hit_set_params */
874  		*p += 1 + 1; /* versions */
875  		len = ceph_decode_32(p);
876  		*p += len;
877  
878  		*p += 4; /* skip hit_set_period */
879  		*p += 4; /* skip hit_set_count */
880  	}
881  
882  	if (ev >= 12)
883  		*p += 4; /* skip stripe_width */
884  
885  	if (ev >= 13) {
886  		*p += 8; /* skip target_max_bytes */
887  		*p += 8; /* skip target_max_objects */
888  		*p += 4; /* skip cache_target_dirty_ratio_micro */
889  		*p += 4; /* skip cache_target_full_ratio_micro */
890  		*p += 4; /* skip cache_min_flush_age */
891  		*p += 4; /* skip cache_min_evict_age */
892  	}
893  
894  	if (ev >=  14) {
895  		/* skip erasure_code_profile */
896  		len = ceph_decode_32(p);
897  		*p += len;
898  	}
899  
900  	/*
901  	 * last_force_op_resend_preluminous, will be overridden if the
902  	 * map was encoded with RESEND_ON_SPLIT
903  	 */
904  	if (ev >= 15)
905  		pi->last_force_request_resend = ceph_decode_32(p);
906  	else
907  		pi->last_force_request_resend = 0;
908  
909  	if (ev >= 16)
910  		*p += 4; /* skip min_read_recency_for_promote */
911  
912  	if (ev >= 17)
913  		*p += 8; /* skip expected_num_objects */
914  
915  	if (ev >= 19)
916  		*p += 4; /* skip cache_target_dirty_high_ratio_micro */
917  
918  	if (ev >= 20)
919  		*p += 4; /* skip min_write_recency_for_promote */
920  
921  	if (ev >= 21)
922  		*p += 1; /* skip use_gmt_hitset */
923  
924  	if (ev >= 22)
925  		*p += 1; /* skip fast_read */
926  
927  	if (ev >= 23) {
928  		*p += 4; /* skip hit_set_grade_decay_rate */
929  		*p += 4; /* skip hit_set_search_last_n */
930  	}
931  
932  	if (ev >= 24) {
933  		/* skip opts */
934  		*p += 1 + 1; /* versions */
935  		len = ceph_decode_32(p);
936  		*p += len;
937  	}
938  
939  	if (ev >= 25)
940  		pi->last_force_request_resend = ceph_decode_32(p);
941  
942  	/* ignore the rest */
943  
944  	*p = pool_end;
945  	calc_pg_masks(pi);
946  	return 0;
947  
948  bad:
949  	return -EINVAL;
950  }
951  
decode_pool_names(void ** p,void * end,struct ceph_osdmap * map)952  static int decode_pool_names(void **p, void *end, struct ceph_osdmap *map)
953  {
954  	struct ceph_pg_pool_info *pi;
955  	u32 num, len;
956  	u64 pool;
957  
958  	ceph_decode_32_safe(p, end, num, bad);
959  	dout(" %d pool names\n", num);
960  	while (num--) {
961  		ceph_decode_64_safe(p, end, pool, bad);
962  		ceph_decode_32_safe(p, end, len, bad);
963  		dout("  pool %llu len %d\n", pool, len);
964  		ceph_decode_need(p, end, len, bad);
965  		pi = lookup_pg_pool(&map->pg_pools, pool);
966  		if (pi) {
967  			char *name = kstrndup(*p, len, GFP_NOFS);
968  
969  			if (!name)
970  				return -ENOMEM;
971  			kfree(pi->name);
972  			pi->name = name;
973  			dout("  name is %s\n", pi->name);
974  		}
975  		*p += len;
976  	}
977  	return 0;
978  
979  bad:
980  	return -EINVAL;
981  }
982  
983  /*
984   * CRUSH workspaces
985   *
986   * workspace_manager framework borrowed from fs/btrfs/compression.c.
987   * Two simplifications: there is only one type of workspace and there
988   * is always at least one workspace.
989   */
alloc_workspace(const struct crush_map * c)990  static struct crush_work *alloc_workspace(const struct crush_map *c)
991  {
992  	struct crush_work *work;
993  	size_t work_size;
994  
995  	WARN_ON(!c->working_size);
996  	work_size = crush_work_size(c, CEPH_PG_MAX_SIZE);
997  	dout("%s work_size %zu bytes\n", __func__, work_size);
998  
999  	work = kvmalloc(work_size, GFP_NOIO);
1000  	if (!work)
1001  		return NULL;
1002  
1003  	INIT_LIST_HEAD(&work->item);
1004  	crush_init_workspace(c, work);
1005  	return work;
1006  }
1007  
free_workspace(struct crush_work * work)1008  static void free_workspace(struct crush_work *work)
1009  {
1010  	WARN_ON(!list_empty(&work->item));
1011  	kvfree(work);
1012  }
1013  
init_workspace_manager(struct workspace_manager * wsm)1014  static void init_workspace_manager(struct workspace_manager *wsm)
1015  {
1016  	INIT_LIST_HEAD(&wsm->idle_ws);
1017  	spin_lock_init(&wsm->ws_lock);
1018  	atomic_set(&wsm->total_ws, 0);
1019  	wsm->free_ws = 0;
1020  	init_waitqueue_head(&wsm->ws_wait);
1021  }
1022  
add_initial_workspace(struct workspace_manager * wsm,struct crush_work * work)1023  static void add_initial_workspace(struct workspace_manager *wsm,
1024  				  struct crush_work *work)
1025  {
1026  	WARN_ON(!list_empty(&wsm->idle_ws));
1027  
1028  	list_add(&work->item, &wsm->idle_ws);
1029  	atomic_set(&wsm->total_ws, 1);
1030  	wsm->free_ws = 1;
1031  }
1032  
cleanup_workspace_manager(struct workspace_manager * wsm)1033  static void cleanup_workspace_manager(struct workspace_manager *wsm)
1034  {
1035  	struct crush_work *work;
1036  
1037  	while (!list_empty(&wsm->idle_ws)) {
1038  		work = list_first_entry(&wsm->idle_ws, struct crush_work,
1039  					item);
1040  		list_del_init(&work->item);
1041  		free_workspace(work);
1042  	}
1043  	atomic_set(&wsm->total_ws, 0);
1044  	wsm->free_ws = 0;
1045  }
1046  
1047  /*
1048   * Finds an available workspace or allocates a new one.  If it's not
1049   * possible to allocate a new one, waits until there is one.
1050   */
get_workspace(struct workspace_manager * wsm,const struct crush_map * c)1051  static struct crush_work *get_workspace(struct workspace_manager *wsm,
1052  					const struct crush_map *c)
1053  {
1054  	struct crush_work *work;
1055  	int cpus = num_online_cpus();
1056  
1057  again:
1058  	spin_lock(&wsm->ws_lock);
1059  	if (!list_empty(&wsm->idle_ws)) {
1060  		work = list_first_entry(&wsm->idle_ws, struct crush_work,
1061  					item);
1062  		list_del_init(&work->item);
1063  		wsm->free_ws--;
1064  		spin_unlock(&wsm->ws_lock);
1065  		return work;
1066  
1067  	}
1068  	if (atomic_read(&wsm->total_ws) > cpus) {
1069  		DEFINE_WAIT(wait);
1070  
1071  		spin_unlock(&wsm->ws_lock);
1072  		prepare_to_wait(&wsm->ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1073  		if (atomic_read(&wsm->total_ws) > cpus && !wsm->free_ws)
1074  			schedule();
1075  		finish_wait(&wsm->ws_wait, &wait);
1076  		goto again;
1077  	}
1078  	atomic_inc(&wsm->total_ws);
1079  	spin_unlock(&wsm->ws_lock);
1080  
1081  	work = alloc_workspace(c);
1082  	if (!work) {
1083  		atomic_dec(&wsm->total_ws);
1084  		wake_up(&wsm->ws_wait);
1085  
1086  		/*
1087  		 * Do not return the error but go back to waiting.  We
1088  		 * have the initial workspace and the CRUSH computation
1089  		 * time is bounded so we will get it eventually.
1090  		 */
1091  		WARN_ON(atomic_read(&wsm->total_ws) < 1);
1092  		goto again;
1093  	}
1094  	return work;
1095  }
1096  
1097  /*
1098   * Puts a workspace back on the list or frees it if we have enough
1099   * idle ones sitting around.
1100   */
put_workspace(struct workspace_manager * wsm,struct crush_work * work)1101  static void put_workspace(struct workspace_manager *wsm,
1102  			  struct crush_work *work)
1103  {
1104  	spin_lock(&wsm->ws_lock);
1105  	if (wsm->free_ws <= num_online_cpus()) {
1106  		list_add(&work->item, &wsm->idle_ws);
1107  		wsm->free_ws++;
1108  		spin_unlock(&wsm->ws_lock);
1109  		goto wake;
1110  	}
1111  	spin_unlock(&wsm->ws_lock);
1112  
1113  	free_workspace(work);
1114  	atomic_dec(&wsm->total_ws);
1115  wake:
1116  	if (wq_has_sleeper(&wsm->ws_wait))
1117  		wake_up(&wsm->ws_wait);
1118  }
1119  
1120  /*
1121   * osd map
1122   */
ceph_osdmap_alloc(void)1123  struct ceph_osdmap *ceph_osdmap_alloc(void)
1124  {
1125  	struct ceph_osdmap *map;
1126  
1127  	map = kzalloc(sizeof(*map), GFP_NOIO);
1128  	if (!map)
1129  		return NULL;
1130  
1131  	map->pg_pools = RB_ROOT;
1132  	map->pool_max = -1;
1133  	map->pg_temp = RB_ROOT;
1134  	map->primary_temp = RB_ROOT;
1135  	map->pg_upmap = RB_ROOT;
1136  	map->pg_upmap_items = RB_ROOT;
1137  
1138  	init_workspace_manager(&map->crush_wsm);
1139  
1140  	return map;
1141  }
1142  
ceph_osdmap_destroy(struct ceph_osdmap * map)1143  void ceph_osdmap_destroy(struct ceph_osdmap *map)
1144  {
1145  	dout("osdmap_destroy %p\n", map);
1146  
1147  	if (map->crush)
1148  		crush_destroy(map->crush);
1149  	cleanup_workspace_manager(&map->crush_wsm);
1150  
1151  	while (!RB_EMPTY_ROOT(&map->pg_temp)) {
1152  		struct ceph_pg_mapping *pg =
1153  			rb_entry(rb_first(&map->pg_temp),
1154  				 struct ceph_pg_mapping, node);
1155  		erase_pg_mapping(&map->pg_temp, pg);
1156  		free_pg_mapping(pg);
1157  	}
1158  	while (!RB_EMPTY_ROOT(&map->primary_temp)) {
1159  		struct ceph_pg_mapping *pg =
1160  			rb_entry(rb_first(&map->primary_temp),
1161  				 struct ceph_pg_mapping, node);
1162  		erase_pg_mapping(&map->primary_temp, pg);
1163  		free_pg_mapping(pg);
1164  	}
1165  	while (!RB_EMPTY_ROOT(&map->pg_upmap)) {
1166  		struct ceph_pg_mapping *pg =
1167  			rb_entry(rb_first(&map->pg_upmap),
1168  				 struct ceph_pg_mapping, node);
1169  		rb_erase(&pg->node, &map->pg_upmap);
1170  		kfree(pg);
1171  	}
1172  	while (!RB_EMPTY_ROOT(&map->pg_upmap_items)) {
1173  		struct ceph_pg_mapping *pg =
1174  			rb_entry(rb_first(&map->pg_upmap_items),
1175  				 struct ceph_pg_mapping, node);
1176  		rb_erase(&pg->node, &map->pg_upmap_items);
1177  		kfree(pg);
1178  	}
1179  	while (!RB_EMPTY_ROOT(&map->pg_pools)) {
1180  		struct ceph_pg_pool_info *pi =
1181  			rb_entry(rb_first(&map->pg_pools),
1182  				 struct ceph_pg_pool_info, node);
1183  		__remove_pg_pool(&map->pg_pools, pi);
1184  	}
1185  	kvfree(map->osd_state);
1186  	kvfree(map->osd_weight);
1187  	kvfree(map->osd_addr);
1188  	kvfree(map->osd_primary_affinity);
1189  	kfree(map);
1190  }
1191  
1192  /*
1193   * Adjust max_osd value, (re)allocate arrays.
1194   *
1195   * The new elements are properly initialized.
1196   */
osdmap_set_max_osd(struct ceph_osdmap * map,u32 max)1197  static int osdmap_set_max_osd(struct ceph_osdmap *map, u32 max)
1198  {
1199  	u32 *state;
1200  	u32 *weight;
1201  	struct ceph_entity_addr *addr;
1202  	u32 to_copy;
1203  	int i;
1204  
1205  	dout("%s old %u new %u\n", __func__, map->max_osd, max);
1206  	if (max == map->max_osd)
1207  		return 0;
1208  
1209  	state = kvmalloc(array_size(max, sizeof(*state)), GFP_NOFS);
1210  	weight = kvmalloc(array_size(max, sizeof(*weight)), GFP_NOFS);
1211  	addr = kvmalloc(array_size(max, sizeof(*addr)), GFP_NOFS);
1212  	if (!state || !weight || !addr) {
1213  		kvfree(state);
1214  		kvfree(weight);
1215  		kvfree(addr);
1216  		return -ENOMEM;
1217  	}
1218  
1219  	to_copy = min(map->max_osd, max);
1220  	if (map->osd_state) {
1221  		memcpy(state, map->osd_state, to_copy * sizeof(*state));
1222  		memcpy(weight, map->osd_weight, to_copy * sizeof(*weight));
1223  		memcpy(addr, map->osd_addr, to_copy * sizeof(*addr));
1224  		kvfree(map->osd_state);
1225  		kvfree(map->osd_weight);
1226  		kvfree(map->osd_addr);
1227  	}
1228  
1229  	map->osd_state = state;
1230  	map->osd_weight = weight;
1231  	map->osd_addr = addr;
1232  	for (i = map->max_osd; i < max; i++) {
1233  		map->osd_state[i] = 0;
1234  		map->osd_weight[i] = CEPH_OSD_OUT;
1235  		memset(map->osd_addr + i, 0, sizeof(*map->osd_addr));
1236  	}
1237  
1238  	if (map->osd_primary_affinity) {
1239  		u32 *affinity;
1240  
1241  		affinity = kvmalloc(array_size(max, sizeof(*affinity)),
1242  					 GFP_NOFS);
1243  		if (!affinity)
1244  			return -ENOMEM;
1245  
1246  		memcpy(affinity, map->osd_primary_affinity,
1247  		       to_copy * sizeof(*affinity));
1248  		kvfree(map->osd_primary_affinity);
1249  
1250  		map->osd_primary_affinity = affinity;
1251  		for (i = map->max_osd; i < max; i++)
1252  			map->osd_primary_affinity[i] =
1253  			    CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1254  	}
1255  
1256  	map->max_osd = max;
1257  
1258  	return 0;
1259  }
1260  
osdmap_set_crush(struct ceph_osdmap * map,struct crush_map * crush)1261  static int osdmap_set_crush(struct ceph_osdmap *map, struct crush_map *crush)
1262  {
1263  	struct crush_work *work;
1264  
1265  	if (IS_ERR(crush))
1266  		return PTR_ERR(crush);
1267  
1268  	work = alloc_workspace(crush);
1269  	if (!work) {
1270  		crush_destroy(crush);
1271  		return -ENOMEM;
1272  	}
1273  
1274  	if (map->crush)
1275  		crush_destroy(map->crush);
1276  	cleanup_workspace_manager(&map->crush_wsm);
1277  	map->crush = crush;
1278  	add_initial_workspace(&map->crush_wsm, work);
1279  	return 0;
1280  }
1281  
1282  #define OSDMAP_WRAPPER_COMPAT_VER	7
1283  #define OSDMAP_CLIENT_DATA_COMPAT_VER	1
1284  
1285  /*
1286   * Return 0 or error.  On success, *v is set to 0 for old (v6) osdmaps,
1287   * to struct_v of the client_data section for new (v7 and above)
1288   * osdmaps.
1289   */
get_osdmap_client_data_v(void ** p,void * end,const char * prefix,u8 * v)1290  static int get_osdmap_client_data_v(void **p, void *end,
1291  				    const char *prefix, u8 *v)
1292  {
1293  	u8 struct_v;
1294  
1295  	ceph_decode_8_safe(p, end, struct_v, e_inval);
1296  	if (struct_v >= 7) {
1297  		u8 struct_compat;
1298  
1299  		ceph_decode_8_safe(p, end, struct_compat, e_inval);
1300  		if (struct_compat > OSDMAP_WRAPPER_COMPAT_VER) {
1301  			pr_warn("got v %d cv %d > %d of %s ceph_osdmap\n",
1302  				struct_v, struct_compat,
1303  				OSDMAP_WRAPPER_COMPAT_VER, prefix);
1304  			return -EINVAL;
1305  		}
1306  		*p += 4; /* ignore wrapper struct_len */
1307  
1308  		ceph_decode_8_safe(p, end, struct_v, e_inval);
1309  		ceph_decode_8_safe(p, end, struct_compat, e_inval);
1310  		if (struct_compat > OSDMAP_CLIENT_DATA_COMPAT_VER) {
1311  			pr_warn("got v %d cv %d > %d of %s ceph_osdmap client data\n",
1312  				struct_v, struct_compat,
1313  				OSDMAP_CLIENT_DATA_COMPAT_VER, prefix);
1314  			return -EINVAL;
1315  		}
1316  		*p += 4; /* ignore client data struct_len */
1317  	} else {
1318  		u16 version;
1319  
1320  		*p -= 1;
1321  		ceph_decode_16_safe(p, end, version, e_inval);
1322  		if (version < 6) {
1323  			pr_warn("got v %d < 6 of %s ceph_osdmap\n",
1324  				version, prefix);
1325  			return -EINVAL;
1326  		}
1327  
1328  		/* old osdmap encoding */
1329  		struct_v = 0;
1330  	}
1331  
1332  	*v = struct_v;
1333  	return 0;
1334  
1335  e_inval:
1336  	return -EINVAL;
1337  }
1338  
__decode_pools(void ** p,void * end,struct ceph_osdmap * map,bool incremental)1339  static int __decode_pools(void **p, void *end, struct ceph_osdmap *map,
1340  			  bool incremental)
1341  {
1342  	u32 n;
1343  
1344  	ceph_decode_32_safe(p, end, n, e_inval);
1345  	while (n--) {
1346  		struct ceph_pg_pool_info *pi;
1347  		u64 pool;
1348  		int ret;
1349  
1350  		ceph_decode_64_safe(p, end, pool, e_inval);
1351  
1352  		pi = lookup_pg_pool(&map->pg_pools, pool);
1353  		if (!incremental || !pi) {
1354  			pi = kzalloc(sizeof(*pi), GFP_NOFS);
1355  			if (!pi)
1356  				return -ENOMEM;
1357  
1358  			RB_CLEAR_NODE(&pi->node);
1359  			pi->id = pool;
1360  
1361  			if (!__insert_pg_pool(&map->pg_pools, pi)) {
1362  				kfree(pi);
1363  				return -EEXIST;
1364  			}
1365  		}
1366  
1367  		ret = decode_pool(p, end, pi);
1368  		if (ret)
1369  			return ret;
1370  	}
1371  
1372  	return 0;
1373  
1374  e_inval:
1375  	return -EINVAL;
1376  }
1377  
decode_pools(void ** p,void * end,struct ceph_osdmap * map)1378  static int decode_pools(void **p, void *end, struct ceph_osdmap *map)
1379  {
1380  	return __decode_pools(p, end, map, false);
1381  }
1382  
decode_new_pools(void ** p,void * end,struct ceph_osdmap * map)1383  static int decode_new_pools(void **p, void *end, struct ceph_osdmap *map)
1384  {
1385  	return __decode_pools(p, end, map, true);
1386  }
1387  
1388  typedef struct ceph_pg_mapping *(*decode_mapping_fn_t)(void **, void *, bool);
1389  
decode_pg_mapping(void ** p,void * end,struct rb_root * mapping_root,decode_mapping_fn_t fn,bool incremental)1390  static int decode_pg_mapping(void **p, void *end, struct rb_root *mapping_root,
1391  			     decode_mapping_fn_t fn, bool incremental)
1392  {
1393  	u32 n;
1394  
1395  	WARN_ON(!incremental && !fn);
1396  
1397  	ceph_decode_32_safe(p, end, n, e_inval);
1398  	while (n--) {
1399  		struct ceph_pg_mapping *pg;
1400  		struct ceph_pg pgid;
1401  		int ret;
1402  
1403  		ret = ceph_decode_pgid(p, end, &pgid);
1404  		if (ret)
1405  			return ret;
1406  
1407  		pg = lookup_pg_mapping(mapping_root, &pgid);
1408  		if (pg) {
1409  			WARN_ON(!incremental);
1410  			erase_pg_mapping(mapping_root, pg);
1411  			free_pg_mapping(pg);
1412  		}
1413  
1414  		if (fn) {
1415  			pg = fn(p, end, incremental);
1416  			if (IS_ERR(pg))
1417  				return PTR_ERR(pg);
1418  
1419  			if (pg) {
1420  				pg->pgid = pgid; /* struct */
1421  				insert_pg_mapping(mapping_root, pg);
1422  			}
1423  		}
1424  	}
1425  
1426  	return 0;
1427  
1428  e_inval:
1429  	return -EINVAL;
1430  }
1431  
__decode_pg_temp(void ** p,void * end,bool incremental)1432  static struct ceph_pg_mapping *__decode_pg_temp(void **p, void *end,
1433  						bool incremental)
1434  {
1435  	struct ceph_pg_mapping *pg;
1436  	u32 len, i;
1437  
1438  	ceph_decode_32_safe(p, end, len, e_inval);
1439  	if (len == 0 && incremental)
1440  		return NULL;	/* new_pg_temp: [] to remove */
1441  	if (len > (SIZE_MAX - sizeof(*pg)) / sizeof(u32))
1442  		return ERR_PTR(-EINVAL);
1443  
1444  	ceph_decode_need(p, end, len * sizeof(u32), e_inval);
1445  	pg = alloc_pg_mapping(len * sizeof(u32));
1446  	if (!pg)
1447  		return ERR_PTR(-ENOMEM);
1448  
1449  	pg->pg_temp.len = len;
1450  	for (i = 0; i < len; i++)
1451  		pg->pg_temp.osds[i] = ceph_decode_32(p);
1452  
1453  	return pg;
1454  
1455  e_inval:
1456  	return ERR_PTR(-EINVAL);
1457  }
1458  
decode_pg_temp(void ** p,void * end,struct ceph_osdmap * map)1459  static int decode_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1460  {
1461  	return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1462  				 false);
1463  }
1464  
decode_new_pg_temp(void ** p,void * end,struct ceph_osdmap * map)1465  static int decode_new_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1466  {
1467  	return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1468  				 true);
1469  }
1470  
__decode_primary_temp(void ** p,void * end,bool incremental)1471  static struct ceph_pg_mapping *__decode_primary_temp(void **p, void *end,
1472  						     bool incremental)
1473  {
1474  	struct ceph_pg_mapping *pg;
1475  	u32 osd;
1476  
1477  	ceph_decode_32_safe(p, end, osd, e_inval);
1478  	if (osd == (u32)-1 && incremental)
1479  		return NULL;	/* new_primary_temp: -1 to remove */
1480  
1481  	pg = alloc_pg_mapping(0);
1482  	if (!pg)
1483  		return ERR_PTR(-ENOMEM);
1484  
1485  	pg->primary_temp.osd = osd;
1486  	return pg;
1487  
1488  e_inval:
1489  	return ERR_PTR(-EINVAL);
1490  }
1491  
decode_primary_temp(void ** p,void * end,struct ceph_osdmap * map)1492  static int decode_primary_temp(void **p, void *end, struct ceph_osdmap *map)
1493  {
1494  	return decode_pg_mapping(p, end, &map->primary_temp,
1495  				 __decode_primary_temp, false);
1496  }
1497  
decode_new_primary_temp(void ** p,void * end,struct ceph_osdmap * map)1498  static int decode_new_primary_temp(void **p, void *end,
1499  				   struct ceph_osdmap *map)
1500  {
1501  	return decode_pg_mapping(p, end, &map->primary_temp,
1502  				 __decode_primary_temp, true);
1503  }
1504  
ceph_get_primary_affinity(struct ceph_osdmap * map,int osd)1505  u32 ceph_get_primary_affinity(struct ceph_osdmap *map, int osd)
1506  {
1507  	BUG_ON(osd >= map->max_osd);
1508  
1509  	if (!map->osd_primary_affinity)
1510  		return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1511  
1512  	return map->osd_primary_affinity[osd];
1513  }
1514  
set_primary_affinity(struct ceph_osdmap * map,int osd,u32 aff)1515  static int set_primary_affinity(struct ceph_osdmap *map, int osd, u32 aff)
1516  {
1517  	BUG_ON(osd >= map->max_osd);
1518  
1519  	if (!map->osd_primary_affinity) {
1520  		int i;
1521  
1522  		map->osd_primary_affinity = kvmalloc(
1523  		    array_size(map->max_osd, sizeof(*map->osd_primary_affinity)),
1524  		    GFP_NOFS);
1525  		if (!map->osd_primary_affinity)
1526  			return -ENOMEM;
1527  
1528  		for (i = 0; i < map->max_osd; i++)
1529  			map->osd_primary_affinity[i] =
1530  			    CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1531  	}
1532  
1533  	map->osd_primary_affinity[osd] = aff;
1534  
1535  	return 0;
1536  }
1537  
decode_primary_affinity(void ** p,void * end,struct ceph_osdmap * map)1538  static int decode_primary_affinity(void **p, void *end,
1539  				   struct ceph_osdmap *map)
1540  {
1541  	u32 len, i;
1542  
1543  	ceph_decode_32_safe(p, end, len, e_inval);
1544  	if (len == 0) {
1545  		kvfree(map->osd_primary_affinity);
1546  		map->osd_primary_affinity = NULL;
1547  		return 0;
1548  	}
1549  	if (len != map->max_osd)
1550  		goto e_inval;
1551  
1552  	ceph_decode_need(p, end, map->max_osd*sizeof(u32), e_inval);
1553  
1554  	for (i = 0; i < map->max_osd; i++) {
1555  		int ret;
1556  
1557  		ret = set_primary_affinity(map, i, ceph_decode_32(p));
1558  		if (ret)
1559  			return ret;
1560  	}
1561  
1562  	return 0;
1563  
1564  e_inval:
1565  	return -EINVAL;
1566  }
1567  
decode_new_primary_affinity(void ** p,void * end,struct ceph_osdmap * map)1568  static int decode_new_primary_affinity(void **p, void *end,
1569  				       struct ceph_osdmap *map)
1570  {
1571  	u32 n;
1572  
1573  	ceph_decode_32_safe(p, end, n, e_inval);
1574  	while (n--) {
1575  		u32 osd, aff;
1576  		int ret;
1577  
1578  		ceph_decode_32_safe(p, end, osd, e_inval);
1579  		ceph_decode_32_safe(p, end, aff, e_inval);
1580  
1581  		ret = set_primary_affinity(map, osd, aff);
1582  		if (ret)
1583  			return ret;
1584  
1585  		osdmap_info(map, "osd%d primary-affinity 0x%x\n", osd, aff);
1586  	}
1587  
1588  	return 0;
1589  
1590  e_inval:
1591  	return -EINVAL;
1592  }
1593  
__decode_pg_upmap(void ** p,void * end,bool __unused)1594  static struct ceph_pg_mapping *__decode_pg_upmap(void **p, void *end,
1595  						 bool __unused)
1596  {
1597  	return __decode_pg_temp(p, end, false);
1598  }
1599  
decode_pg_upmap(void ** p,void * end,struct ceph_osdmap * map)1600  static int decode_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1601  {
1602  	return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1603  				 false);
1604  }
1605  
decode_new_pg_upmap(void ** p,void * end,struct ceph_osdmap * map)1606  static int decode_new_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1607  {
1608  	return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1609  				 true);
1610  }
1611  
decode_old_pg_upmap(void ** p,void * end,struct ceph_osdmap * map)1612  static int decode_old_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1613  {
1614  	return decode_pg_mapping(p, end, &map->pg_upmap, NULL, true);
1615  }
1616  
__decode_pg_upmap_items(void ** p,void * end,bool __unused)1617  static struct ceph_pg_mapping *__decode_pg_upmap_items(void **p, void *end,
1618  						       bool __unused)
1619  {
1620  	struct ceph_pg_mapping *pg;
1621  	u32 len, i;
1622  
1623  	ceph_decode_32_safe(p, end, len, e_inval);
1624  	if (len > (SIZE_MAX - sizeof(*pg)) / (2 * sizeof(u32)))
1625  		return ERR_PTR(-EINVAL);
1626  
1627  	ceph_decode_need(p, end, 2 * len * sizeof(u32), e_inval);
1628  	pg = alloc_pg_mapping(2 * len * sizeof(u32));
1629  	if (!pg)
1630  		return ERR_PTR(-ENOMEM);
1631  
1632  	pg->pg_upmap_items.len = len;
1633  	for (i = 0; i < len; i++) {
1634  		pg->pg_upmap_items.from_to[i][0] = ceph_decode_32(p);
1635  		pg->pg_upmap_items.from_to[i][1] = ceph_decode_32(p);
1636  	}
1637  
1638  	return pg;
1639  
1640  e_inval:
1641  	return ERR_PTR(-EINVAL);
1642  }
1643  
decode_pg_upmap_items(void ** p,void * end,struct ceph_osdmap * map)1644  static int decode_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map)
1645  {
1646  	return decode_pg_mapping(p, end, &map->pg_upmap_items,
1647  				 __decode_pg_upmap_items, false);
1648  }
1649  
decode_new_pg_upmap_items(void ** p,void * end,struct ceph_osdmap * map)1650  static int decode_new_pg_upmap_items(void **p, void *end,
1651  				     struct ceph_osdmap *map)
1652  {
1653  	return decode_pg_mapping(p, end, &map->pg_upmap_items,
1654  				 __decode_pg_upmap_items, true);
1655  }
1656  
decode_old_pg_upmap_items(void ** p,void * end,struct ceph_osdmap * map)1657  static int decode_old_pg_upmap_items(void **p, void *end,
1658  				     struct ceph_osdmap *map)
1659  {
1660  	return decode_pg_mapping(p, end, &map->pg_upmap_items, NULL, true);
1661  }
1662  
1663  /*
1664   * decode a full map.
1665   */
osdmap_decode(void ** p,void * end,bool msgr2,struct ceph_osdmap * map)1666  static int osdmap_decode(void **p, void *end, bool msgr2,
1667  			 struct ceph_osdmap *map)
1668  {
1669  	u8 struct_v;
1670  	u32 epoch = 0;
1671  	void *start = *p;
1672  	u32 max;
1673  	u32 len, i;
1674  	int err;
1675  
1676  	dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1677  
1678  	err = get_osdmap_client_data_v(p, end, "full", &struct_v);
1679  	if (err)
1680  		goto bad;
1681  
1682  	/* fsid, epoch, created, modified */
1683  	ceph_decode_need(p, end, sizeof(map->fsid) + sizeof(u32) +
1684  			 sizeof(map->created) + sizeof(map->modified), e_inval);
1685  	ceph_decode_copy(p, &map->fsid, sizeof(map->fsid));
1686  	epoch = map->epoch = ceph_decode_32(p);
1687  	ceph_decode_copy(p, &map->created, sizeof(map->created));
1688  	ceph_decode_copy(p, &map->modified, sizeof(map->modified));
1689  
1690  	/* pools */
1691  	err = decode_pools(p, end, map);
1692  	if (err)
1693  		goto bad;
1694  
1695  	/* pool_name */
1696  	err = decode_pool_names(p, end, map);
1697  	if (err)
1698  		goto bad;
1699  
1700  	ceph_decode_32_safe(p, end, map->pool_max, e_inval);
1701  
1702  	ceph_decode_32_safe(p, end, map->flags, e_inval);
1703  
1704  	/* max_osd */
1705  	ceph_decode_32_safe(p, end, max, e_inval);
1706  
1707  	/* (re)alloc osd arrays */
1708  	err = osdmap_set_max_osd(map, max);
1709  	if (err)
1710  		goto bad;
1711  
1712  	/* osd_state, osd_weight, osd_addrs->client_addr */
1713  	ceph_decode_need(p, end, 3*sizeof(u32) +
1714  			 map->max_osd*(struct_v >= 5 ? sizeof(u32) :
1715  						       sizeof(u8)) +
1716  				       sizeof(*map->osd_weight), e_inval);
1717  	if (ceph_decode_32(p) != map->max_osd)
1718  		goto e_inval;
1719  
1720  	if (struct_v >= 5) {
1721  		for (i = 0; i < map->max_osd; i++)
1722  			map->osd_state[i] = ceph_decode_32(p);
1723  	} else {
1724  		for (i = 0; i < map->max_osd; i++)
1725  			map->osd_state[i] = ceph_decode_8(p);
1726  	}
1727  
1728  	if (ceph_decode_32(p) != map->max_osd)
1729  		goto e_inval;
1730  
1731  	for (i = 0; i < map->max_osd; i++)
1732  		map->osd_weight[i] = ceph_decode_32(p);
1733  
1734  	if (ceph_decode_32(p) != map->max_osd)
1735  		goto e_inval;
1736  
1737  	for (i = 0; i < map->max_osd; i++) {
1738  		struct ceph_entity_addr *addr = &map->osd_addr[i];
1739  
1740  		if (struct_v >= 8)
1741  			err = ceph_decode_entity_addrvec(p, end, msgr2, addr);
1742  		else
1743  			err = ceph_decode_entity_addr(p, end, addr);
1744  		if (err)
1745  			goto bad;
1746  
1747  		dout("%s osd%d addr %s\n", __func__, i, ceph_pr_addr(addr));
1748  	}
1749  
1750  	/* pg_temp */
1751  	err = decode_pg_temp(p, end, map);
1752  	if (err)
1753  		goto bad;
1754  
1755  	/* primary_temp */
1756  	if (struct_v >= 1) {
1757  		err = decode_primary_temp(p, end, map);
1758  		if (err)
1759  			goto bad;
1760  	}
1761  
1762  	/* primary_affinity */
1763  	if (struct_v >= 2) {
1764  		err = decode_primary_affinity(p, end, map);
1765  		if (err)
1766  			goto bad;
1767  	} else {
1768  		WARN_ON(map->osd_primary_affinity);
1769  	}
1770  
1771  	/* crush */
1772  	ceph_decode_32_safe(p, end, len, e_inval);
1773  	err = osdmap_set_crush(map, crush_decode(*p, min(*p + len, end)));
1774  	if (err)
1775  		goto bad;
1776  
1777  	*p += len;
1778  	if (struct_v >= 3) {
1779  		/* erasure_code_profiles */
1780  		ceph_decode_skip_map_of_map(p, end, string, string, string,
1781  					    e_inval);
1782  	}
1783  
1784  	if (struct_v >= 4) {
1785  		err = decode_pg_upmap(p, end, map);
1786  		if (err)
1787  			goto bad;
1788  
1789  		err = decode_pg_upmap_items(p, end, map);
1790  		if (err)
1791  			goto bad;
1792  	} else {
1793  		WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap));
1794  		WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap_items));
1795  	}
1796  
1797  	/* ignore the rest */
1798  	*p = end;
1799  
1800  	dout("full osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
1801  	return 0;
1802  
1803  e_inval:
1804  	err = -EINVAL;
1805  bad:
1806  	pr_err("corrupt full osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
1807  	       err, epoch, (int)(*p - start), *p, start, end);
1808  	print_hex_dump(KERN_DEBUG, "osdmap: ",
1809  		       DUMP_PREFIX_OFFSET, 16, 1,
1810  		       start, end - start, true);
1811  	return err;
1812  }
1813  
1814  /*
1815   * Allocate and decode a full map.
1816   */
ceph_osdmap_decode(void ** p,void * end,bool msgr2)1817  struct ceph_osdmap *ceph_osdmap_decode(void **p, void *end, bool msgr2)
1818  {
1819  	struct ceph_osdmap *map;
1820  	int ret;
1821  
1822  	map = ceph_osdmap_alloc();
1823  	if (!map)
1824  		return ERR_PTR(-ENOMEM);
1825  
1826  	ret = osdmap_decode(p, end, msgr2, map);
1827  	if (ret) {
1828  		ceph_osdmap_destroy(map);
1829  		return ERR_PTR(ret);
1830  	}
1831  
1832  	return map;
1833  }
1834  
1835  /*
1836   * Encoding order is (new_up_client, new_state, new_weight).  Need to
1837   * apply in the (new_weight, new_state, new_up_client) order, because
1838   * an incremental map may look like e.g.
1839   *
1840   *     new_up_client: { osd=6, addr=... } # set osd_state and addr
1841   *     new_state: { osd=6, xorstate=EXISTS } # clear osd_state
1842   */
decode_new_up_state_weight(void ** p,void * end,u8 struct_v,bool msgr2,struct ceph_osdmap * map)1843  static int decode_new_up_state_weight(void **p, void *end, u8 struct_v,
1844  				      bool msgr2, struct ceph_osdmap *map)
1845  {
1846  	void *new_up_client;
1847  	void *new_state;
1848  	void *new_weight_end;
1849  	u32 len;
1850  	int ret;
1851  	int i;
1852  
1853  	new_up_client = *p;
1854  	ceph_decode_32_safe(p, end, len, e_inval);
1855  	for (i = 0; i < len; ++i) {
1856  		struct ceph_entity_addr addr;
1857  
1858  		ceph_decode_skip_32(p, end, e_inval);
1859  		if (struct_v >= 7)
1860  			ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1861  		else
1862  			ret = ceph_decode_entity_addr(p, end, &addr);
1863  		if (ret)
1864  			return ret;
1865  	}
1866  
1867  	new_state = *p;
1868  	ceph_decode_32_safe(p, end, len, e_inval);
1869  	len *= sizeof(u32) + (struct_v >= 5 ? sizeof(u32) : sizeof(u8));
1870  	ceph_decode_need(p, end, len, e_inval);
1871  	*p += len;
1872  
1873  	/* new_weight */
1874  	ceph_decode_32_safe(p, end, len, e_inval);
1875  	while (len--) {
1876  		s32 osd;
1877  		u32 w;
1878  
1879  		ceph_decode_need(p, end, 2*sizeof(u32), e_inval);
1880  		osd = ceph_decode_32(p);
1881  		w = ceph_decode_32(p);
1882  		BUG_ON(osd >= map->max_osd);
1883  		osdmap_info(map, "osd%d weight 0x%x %s\n", osd, w,
1884  			    w == CEPH_OSD_IN ? "(in)" :
1885  			    (w == CEPH_OSD_OUT ? "(out)" : ""));
1886  		map->osd_weight[osd] = w;
1887  
1888  		/*
1889  		 * If we are marking in, set the EXISTS, and clear the
1890  		 * AUTOOUT and NEW bits.
1891  		 */
1892  		if (w) {
1893  			map->osd_state[osd] |= CEPH_OSD_EXISTS;
1894  			map->osd_state[osd] &= ~(CEPH_OSD_AUTOOUT |
1895  						 CEPH_OSD_NEW);
1896  		}
1897  	}
1898  	new_weight_end = *p;
1899  
1900  	/* new_state (up/down) */
1901  	*p = new_state;
1902  	len = ceph_decode_32(p);
1903  	while (len--) {
1904  		s32 osd;
1905  		u32 xorstate;
1906  
1907  		osd = ceph_decode_32(p);
1908  		if (struct_v >= 5)
1909  			xorstate = ceph_decode_32(p);
1910  		else
1911  			xorstate = ceph_decode_8(p);
1912  		if (xorstate == 0)
1913  			xorstate = CEPH_OSD_UP;
1914  		BUG_ON(osd >= map->max_osd);
1915  		if ((map->osd_state[osd] & CEPH_OSD_UP) &&
1916  		    (xorstate & CEPH_OSD_UP))
1917  			osdmap_info(map, "osd%d down\n", osd);
1918  		if ((map->osd_state[osd] & CEPH_OSD_EXISTS) &&
1919  		    (xorstate & CEPH_OSD_EXISTS)) {
1920  			osdmap_info(map, "osd%d does not exist\n", osd);
1921  			ret = set_primary_affinity(map, osd,
1922  						   CEPH_OSD_DEFAULT_PRIMARY_AFFINITY);
1923  			if (ret)
1924  				return ret;
1925  			memset(map->osd_addr + osd, 0, sizeof(*map->osd_addr));
1926  			map->osd_state[osd] = 0;
1927  		} else {
1928  			map->osd_state[osd] ^= xorstate;
1929  		}
1930  	}
1931  
1932  	/* new_up_client */
1933  	*p = new_up_client;
1934  	len = ceph_decode_32(p);
1935  	while (len--) {
1936  		s32 osd;
1937  		struct ceph_entity_addr addr;
1938  
1939  		osd = ceph_decode_32(p);
1940  		BUG_ON(osd >= map->max_osd);
1941  		if (struct_v >= 7)
1942  			ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1943  		else
1944  			ret = ceph_decode_entity_addr(p, end, &addr);
1945  		if (ret)
1946  			return ret;
1947  
1948  		dout("%s osd%d addr %s\n", __func__, osd, ceph_pr_addr(&addr));
1949  
1950  		osdmap_info(map, "osd%d up\n", osd);
1951  		map->osd_state[osd] |= CEPH_OSD_EXISTS | CEPH_OSD_UP;
1952  		map->osd_addr[osd] = addr;
1953  	}
1954  
1955  	*p = new_weight_end;
1956  	return 0;
1957  
1958  e_inval:
1959  	return -EINVAL;
1960  }
1961  
1962  /*
1963   * decode and apply an incremental map update.
1964   */
osdmap_apply_incremental(void ** p,void * end,bool msgr2,struct ceph_osdmap * map)1965  struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end, bool msgr2,
1966  					     struct ceph_osdmap *map)
1967  {
1968  	struct ceph_fsid fsid;
1969  	u32 epoch = 0;
1970  	struct ceph_timespec modified;
1971  	s32 len;
1972  	u64 pool;
1973  	__s64 new_pool_max;
1974  	__s32 new_flags, max;
1975  	void *start = *p;
1976  	int err;
1977  	u8 struct_v;
1978  
1979  	dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1980  
1981  	err = get_osdmap_client_data_v(p, end, "inc", &struct_v);
1982  	if (err)
1983  		goto bad;
1984  
1985  	/* fsid, epoch, modified, new_pool_max, new_flags */
1986  	ceph_decode_need(p, end, sizeof(fsid) + sizeof(u32) + sizeof(modified) +
1987  			 sizeof(u64) + sizeof(u32), e_inval);
1988  	ceph_decode_copy(p, &fsid, sizeof(fsid));
1989  	epoch = ceph_decode_32(p);
1990  	BUG_ON(epoch != map->epoch+1);
1991  	ceph_decode_copy(p, &modified, sizeof(modified));
1992  	new_pool_max = ceph_decode_64(p);
1993  	new_flags = ceph_decode_32(p);
1994  
1995  	/* full map? */
1996  	ceph_decode_32_safe(p, end, len, e_inval);
1997  	if (len > 0) {
1998  		dout("apply_incremental full map len %d, %p to %p\n",
1999  		     len, *p, end);
2000  		return ceph_osdmap_decode(p, min(*p+len, end), msgr2);
2001  	}
2002  
2003  	/* new crush? */
2004  	ceph_decode_32_safe(p, end, len, e_inval);
2005  	if (len > 0) {
2006  		err = osdmap_set_crush(map,
2007  				       crush_decode(*p, min(*p + len, end)));
2008  		if (err)
2009  			goto bad;
2010  		*p += len;
2011  	}
2012  
2013  	/* new flags? */
2014  	if (new_flags >= 0)
2015  		map->flags = new_flags;
2016  	if (new_pool_max >= 0)
2017  		map->pool_max = new_pool_max;
2018  
2019  	/* new max? */
2020  	ceph_decode_32_safe(p, end, max, e_inval);
2021  	if (max >= 0) {
2022  		err = osdmap_set_max_osd(map, max);
2023  		if (err)
2024  			goto bad;
2025  	}
2026  
2027  	map->epoch++;
2028  	map->modified = modified;
2029  
2030  	/* new_pools */
2031  	err = decode_new_pools(p, end, map);
2032  	if (err)
2033  		goto bad;
2034  
2035  	/* new_pool_names */
2036  	err = decode_pool_names(p, end, map);
2037  	if (err)
2038  		goto bad;
2039  
2040  	/* old_pool */
2041  	ceph_decode_32_safe(p, end, len, e_inval);
2042  	while (len--) {
2043  		struct ceph_pg_pool_info *pi;
2044  
2045  		ceph_decode_64_safe(p, end, pool, e_inval);
2046  		pi = lookup_pg_pool(&map->pg_pools, pool);
2047  		if (pi)
2048  			__remove_pg_pool(&map->pg_pools, pi);
2049  	}
2050  
2051  	/* new_up_client, new_state, new_weight */
2052  	err = decode_new_up_state_weight(p, end, struct_v, msgr2, map);
2053  	if (err)
2054  		goto bad;
2055  
2056  	/* new_pg_temp */
2057  	err = decode_new_pg_temp(p, end, map);
2058  	if (err)
2059  		goto bad;
2060  
2061  	/* new_primary_temp */
2062  	if (struct_v >= 1) {
2063  		err = decode_new_primary_temp(p, end, map);
2064  		if (err)
2065  			goto bad;
2066  	}
2067  
2068  	/* new_primary_affinity */
2069  	if (struct_v >= 2) {
2070  		err = decode_new_primary_affinity(p, end, map);
2071  		if (err)
2072  			goto bad;
2073  	}
2074  
2075  	if (struct_v >= 3) {
2076  		/* new_erasure_code_profiles */
2077  		ceph_decode_skip_map_of_map(p, end, string, string, string,
2078  					    e_inval);
2079  		/* old_erasure_code_profiles */
2080  		ceph_decode_skip_set(p, end, string, e_inval);
2081  	}
2082  
2083  	if (struct_v >= 4) {
2084  		err = decode_new_pg_upmap(p, end, map);
2085  		if (err)
2086  			goto bad;
2087  
2088  		err = decode_old_pg_upmap(p, end, map);
2089  		if (err)
2090  			goto bad;
2091  
2092  		err = decode_new_pg_upmap_items(p, end, map);
2093  		if (err)
2094  			goto bad;
2095  
2096  		err = decode_old_pg_upmap_items(p, end, map);
2097  		if (err)
2098  			goto bad;
2099  	}
2100  
2101  	/* ignore the rest */
2102  	*p = end;
2103  
2104  	dout("inc osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
2105  	return map;
2106  
2107  e_inval:
2108  	err = -EINVAL;
2109  bad:
2110  	pr_err("corrupt inc osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
2111  	       err, epoch, (int)(*p - start), *p, start, end);
2112  	print_hex_dump(KERN_DEBUG, "osdmap: ",
2113  		       DUMP_PREFIX_OFFSET, 16, 1,
2114  		       start, end - start, true);
2115  	return ERR_PTR(err);
2116  }
2117  
ceph_oloc_copy(struct ceph_object_locator * dest,const struct ceph_object_locator * src)2118  void ceph_oloc_copy(struct ceph_object_locator *dest,
2119  		    const struct ceph_object_locator *src)
2120  {
2121  	ceph_oloc_destroy(dest);
2122  
2123  	dest->pool = src->pool;
2124  	if (src->pool_ns)
2125  		dest->pool_ns = ceph_get_string(src->pool_ns);
2126  	else
2127  		dest->pool_ns = NULL;
2128  }
2129  EXPORT_SYMBOL(ceph_oloc_copy);
2130  
ceph_oloc_destroy(struct ceph_object_locator * oloc)2131  void ceph_oloc_destroy(struct ceph_object_locator *oloc)
2132  {
2133  	ceph_put_string(oloc->pool_ns);
2134  }
2135  EXPORT_SYMBOL(ceph_oloc_destroy);
2136  
ceph_oid_copy(struct ceph_object_id * dest,const struct ceph_object_id * src)2137  void ceph_oid_copy(struct ceph_object_id *dest,
2138  		   const struct ceph_object_id *src)
2139  {
2140  	ceph_oid_destroy(dest);
2141  
2142  	if (src->name != src->inline_name) {
2143  		/* very rare, see ceph_object_id definition */
2144  		dest->name = kmalloc(src->name_len + 1,
2145  				     GFP_NOIO | __GFP_NOFAIL);
2146  	} else {
2147  		dest->name = dest->inline_name;
2148  	}
2149  	memcpy(dest->name, src->name, src->name_len + 1);
2150  	dest->name_len = src->name_len;
2151  }
2152  EXPORT_SYMBOL(ceph_oid_copy);
2153  
2154  static __printf(2, 0)
oid_printf_vargs(struct ceph_object_id * oid,const char * fmt,va_list ap)2155  int oid_printf_vargs(struct ceph_object_id *oid, const char *fmt, va_list ap)
2156  {
2157  	int len;
2158  
2159  	WARN_ON(!ceph_oid_empty(oid));
2160  
2161  	len = vsnprintf(oid->inline_name, sizeof(oid->inline_name), fmt, ap);
2162  	if (len >= sizeof(oid->inline_name))
2163  		return len;
2164  
2165  	oid->name_len = len;
2166  	return 0;
2167  }
2168  
2169  /*
2170   * If oid doesn't fit into inline buffer, BUG.
2171   */
ceph_oid_printf(struct ceph_object_id * oid,const char * fmt,...)2172  void ceph_oid_printf(struct ceph_object_id *oid, const char *fmt, ...)
2173  {
2174  	va_list ap;
2175  
2176  	va_start(ap, fmt);
2177  	BUG_ON(oid_printf_vargs(oid, fmt, ap));
2178  	va_end(ap);
2179  }
2180  EXPORT_SYMBOL(ceph_oid_printf);
2181  
2182  static __printf(3, 0)
oid_aprintf_vargs(struct ceph_object_id * oid,gfp_t gfp,const char * fmt,va_list ap)2183  int oid_aprintf_vargs(struct ceph_object_id *oid, gfp_t gfp,
2184  		      const char *fmt, va_list ap)
2185  {
2186  	va_list aq;
2187  	int len;
2188  
2189  	va_copy(aq, ap);
2190  	len = oid_printf_vargs(oid, fmt, aq);
2191  	va_end(aq);
2192  
2193  	if (len) {
2194  		char *external_name;
2195  
2196  		external_name = kmalloc(len + 1, gfp);
2197  		if (!external_name)
2198  			return -ENOMEM;
2199  
2200  		oid->name = external_name;
2201  		WARN_ON(vsnprintf(oid->name, len + 1, fmt, ap) != len);
2202  		oid->name_len = len;
2203  	}
2204  
2205  	return 0;
2206  }
2207  
2208  /*
2209   * If oid doesn't fit into inline buffer, allocate.
2210   */
ceph_oid_aprintf(struct ceph_object_id * oid,gfp_t gfp,const char * fmt,...)2211  int ceph_oid_aprintf(struct ceph_object_id *oid, gfp_t gfp,
2212  		     const char *fmt, ...)
2213  {
2214  	va_list ap;
2215  	int ret;
2216  
2217  	va_start(ap, fmt);
2218  	ret = oid_aprintf_vargs(oid, gfp, fmt, ap);
2219  	va_end(ap);
2220  
2221  	return ret;
2222  }
2223  EXPORT_SYMBOL(ceph_oid_aprintf);
2224  
ceph_oid_destroy(struct ceph_object_id * oid)2225  void ceph_oid_destroy(struct ceph_object_id *oid)
2226  {
2227  	if (oid->name != oid->inline_name)
2228  		kfree(oid->name);
2229  }
2230  EXPORT_SYMBOL(ceph_oid_destroy);
2231  
2232  /*
2233   * osds only
2234   */
__osds_equal(const struct ceph_osds * lhs,const struct ceph_osds * rhs)2235  static bool __osds_equal(const struct ceph_osds *lhs,
2236  			 const struct ceph_osds *rhs)
2237  {
2238  	if (lhs->size == rhs->size &&
2239  	    !memcmp(lhs->osds, rhs->osds, rhs->size * sizeof(rhs->osds[0])))
2240  		return true;
2241  
2242  	return false;
2243  }
2244  
2245  /*
2246   * osds + primary
2247   */
osds_equal(const struct ceph_osds * lhs,const struct ceph_osds * rhs)2248  static bool osds_equal(const struct ceph_osds *lhs,
2249  		       const struct ceph_osds *rhs)
2250  {
2251  	if (__osds_equal(lhs, rhs) &&
2252  	    lhs->primary == rhs->primary)
2253  		return true;
2254  
2255  	return false;
2256  }
2257  
osds_valid(const struct ceph_osds * set)2258  static bool osds_valid(const struct ceph_osds *set)
2259  {
2260  	/* non-empty set */
2261  	if (set->size > 0 && set->primary >= 0)
2262  		return true;
2263  
2264  	/* empty can_shift_osds set */
2265  	if (!set->size && set->primary == -1)
2266  		return true;
2267  
2268  	/* empty !can_shift_osds set - all NONE */
2269  	if (set->size > 0 && set->primary == -1) {
2270  		int i;
2271  
2272  		for (i = 0; i < set->size; i++) {
2273  			if (set->osds[i] != CRUSH_ITEM_NONE)
2274  				break;
2275  		}
2276  		if (i == set->size)
2277  			return true;
2278  	}
2279  
2280  	return false;
2281  }
2282  
ceph_osds_copy(struct ceph_osds * dest,const struct ceph_osds * src)2283  void ceph_osds_copy(struct ceph_osds *dest, const struct ceph_osds *src)
2284  {
2285  	memcpy(dest->osds, src->osds, src->size * sizeof(src->osds[0]));
2286  	dest->size = src->size;
2287  	dest->primary = src->primary;
2288  }
2289  
ceph_pg_is_split(const struct ceph_pg * pgid,u32 old_pg_num,u32 new_pg_num)2290  bool ceph_pg_is_split(const struct ceph_pg *pgid, u32 old_pg_num,
2291  		      u32 new_pg_num)
2292  {
2293  	int old_bits = calc_bits_of(old_pg_num);
2294  	int old_mask = (1 << old_bits) - 1;
2295  	int n;
2296  
2297  	WARN_ON(pgid->seed >= old_pg_num);
2298  	if (new_pg_num <= old_pg_num)
2299  		return false;
2300  
2301  	for (n = 1; ; n++) {
2302  		int next_bit = n << (old_bits - 1);
2303  		u32 s = next_bit | pgid->seed;
2304  
2305  		if (s < old_pg_num || s == pgid->seed)
2306  			continue;
2307  		if (s >= new_pg_num)
2308  			break;
2309  
2310  		s = ceph_stable_mod(s, old_pg_num, old_mask);
2311  		if (s == pgid->seed)
2312  			return true;
2313  	}
2314  
2315  	return false;
2316  }
2317  
ceph_is_new_interval(const struct ceph_osds * old_acting,const struct ceph_osds * new_acting,const struct ceph_osds * old_up,const struct ceph_osds * new_up,int old_size,int new_size,int old_min_size,int new_min_size,u32 old_pg_num,u32 new_pg_num,bool old_sort_bitwise,bool new_sort_bitwise,bool old_recovery_deletes,bool new_recovery_deletes,const struct ceph_pg * pgid)2318  bool ceph_is_new_interval(const struct ceph_osds *old_acting,
2319  			  const struct ceph_osds *new_acting,
2320  			  const struct ceph_osds *old_up,
2321  			  const struct ceph_osds *new_up,
2322  			  int old_size,
2323  			  int new_size,
2324  			  int old_min_size,
2325  			  int new_min_size,
2326  			  u32 old_pg_num,
2327  			  u32 new_pg_num,
2328  			  bool old_sort_bitwise,
2329  			  bool new_sort_bitwise,
2330  			  bool old_recovery_deletes,
2331  			  bool new_recovery_deletes,
2332  			  const struct ceph_pg *pgid)
2333  {
2334  	return !osds_equal(old_acting, new_acting) ||
2335  	       !osds_equal(old_up, new_up) ||
2336  	       old_size != new_size ||
2337  	       old_min_size != new_min_size ||
2338  	       ceph_pg_is_split(pgid, old_pg_num, new_pg_num) ||
2339  	       old_sort_bitwise != new_sort_bitwise ||
2340  	       old_recovery_deletes != new_recovery_deletes;
2341  }
2342  
calc_pg_rank(int osd,const struct ceph_osds * acting)2343  static int calc_pg_rank(int osd, const struct ceph_osds *acting)
2344  {
2345  	int i;
2346  
2347  	for (i = 0; i < acting->size; i++) {
2348  		if (acting->osds[i] == osd)
2349  			return i;
2350  	}
2351  
2352  	return -1;
2353  }
2354  
primary_changed(const struct ceph_osds * old_acting,const struct ceph_osds * new_acting)2355  static bool primary_changed(const struct ceph_osds *old_acting,
2356  			    const struct ceph_osds *new_acting)
2357  {
2358  	if (!old_acting->size && !new_acting->size)
2359  		return false; /* both still empty */
2360  
2361  	if (!old_acting->size ^ !new_acting->size)
2362  		return true; /* was empty, now not, or vice versa */
2363  
2364  	if (old_acting->primary != new_acting->primary)
2365  		return true; /* primary changed */
2366  
2367  	if (calc_pg_rank(old_acting->primary, old_acting) !=
2368  	    calc_pg_rank(new_acting->primary, new_acting))
2369  		return true;
2370  
2371  	return false; /* same primary (tho replicas may have changed) */
2372  }
2373  
ceph_osds_changed(const struct ceph_osds * old_acting,const struct ceph_osds * new_acting,bool any_change)2374  bool ceph_osds_changed(const struct ceph_osds *old_acting,
2375  		       const struct ceph_osds *new_acting,
2376  		       bool any_change)
2377  {
2378  	if (primary_changed(old_acting, new_acting))
2379  		return true;
2380  
2381  	if (any_change && !__osds_equal(old_acting, new_acting))
2382  		return true;
2383  
2384  	return false;
2385  }
2386  
2387  /*
2388   * Map an object into a PG.
2389   *
2390   * Should only be called with target_oid and target_oloc (as opposed to
2391   * base_oid and base_oloc), since tiering isn't taken into account.
2392   */
__ceph_object_locator_to_pg(struct ceph_pg_pool_info * pi,const struct ceph_object_id * oid,const struct ceph_object_locator * oloc,struct ceph_pg * raw_pgid)2393  void __ceph_object_locator_to_pg(struct ceph_pg_pool_info *pi,
2394  				 const struct ceph_object_id *oid,
2395  				 const struct ceph_object_locator *oloc,
2396  				 struct ceph_pg *raw_pgid)
2397  {
2398  	WARN_ON(pi->id != oloc->pool);
2399  
2400  	if (!oloc->pool_ns) {
2401  		raw_pgid->pool = oloc->pool;
2402  		raw_pgid->seed = ceph_str_hash(pi->object_hash, oid->name,
2403  					     oid->name_len);
2404  		dout("%s %s -> raw_pgid %llu.%x\n", __func__, oid->name,
2405  		     raw_pgid->pool, raw_pgid->seed);
2406  	} else {
2407  		char stack_buf[256];
2408  		char *buf = stack_buf;
2409  		int nsl = oloc->pool_ns->len;
2410  		size_t total = nsl + 1 + oid->name_len;
2411  
2412  		if (total > sizeof(stack_buf))
2413  			buf = kmalloc(total, GFP_NOIO | __GFP_NOFAIL);
2414  		memcpy(buf, oloc->pool_ns->str, nsl);
2415  		buf[nsl] = '\037';
2416  		memcpy(buf + nsl + 1, oid->name, oid->name_len);
2417  		raw_pgid->pool = oloc->pool;
2418  		raw_pgid->seed = ceph_str_hash(pi->object_hash, buf, total);
2419  		if (buf != stack_buf)
2420  			kfree(buf);
2421  		dout("%s %s ns %.*s -> raw_pgid %llu.%x\n", __func__,
2422  		     oid->name, nsl, oloc->pool_ns->str,
2423  		     raw_pgid->pool, raw_pgid->seed);
2424  	}
2425  }
2426  
ceph_object_locator_to_pg(struct ceph_osdmap * osdmap,const struct ceph_object_id * oid,const struct ceph_object_locator * oloc,struct ceph_pg * raw_pgid)2427  int ceph_object_locator_to_pg(struct ceph_osdmap *osdmap,
2428  			      const struct ceph_object_id *oid,
2429  			      const struct ceph_object_locator *oloc,
2430  			      struct ceph_pg *raw_pgid)
2431  {
2432  	struct ceph_pg_pool_info *pi;
2433  
2434  	pi = ceph_pg_pool_by_id(osdmap, oloc->pool);
2435  	if (!pi)
2436  		return -ENOENT;
2437  
2438  	__ceph_object_locator_to_pg(pi, oid, oloc, raw_pgid);
2439  	return 0;
2440  }
2441  EXPORT_SYMBOL(ceph_object_locator_to_pg);
2442  
2443  /*
2444   * Map a raw PG (full precision ps) into an actual PG.
2445   */
raw_pg_to_pg(struct ceph_pg_pool_info * pi,const struct ceph_pg * raw_pgid,struct ceph_pg * pgid)2446  static void raw_pg_to_pg(struct ceph_pg_pool_info *pi,
2447  			 const struct ceph_pg *raw_pgid,
2448  			 struct ceph_pg *pgid)
2449  {
2450  	pgid->pool = raw_pgid->pool;
2451  	pgid->seed = ceph_stable_mod(raw_pgid->seed, pi->pg_num,
2452  				     pi->pg_num_mask);
2453  }
2454  
2455  /*
2456   * Map a raw PG (full precision ps) into a placement ps (placement
2457   * seed).  Include pool id in that value so that different pools don't
2458   * use the same seeds.
2459   */
raw_pg_to_pps(struct ceph_pg_pool_info * pi,const struct ceph_pg * raw_pgid)2460  static u32 raw_pg_to_pps(struct ceph_pg_pool_info *pi,
2461  			 const struct ceph_pg *raw_pgid)
2462  {
2463  	if (pi->flags & CEPH_POOL_FLAG_HASHPSPOOL) {
2464  		/* hash pool id and seed so that pool PGs do not overlap */
2465  		return crush_hash32_2(CRUSH_HASH_RJENKINS1,
2466  				      ceph_stable_mod(raw_pgid->seed,
2467  						      pi->pgp_num,
2468  						      pi->pgp_num_mask),
2469  				      raw_pgid->pool);
2470  	} else {
2471  		/*
2472  		 * legacy behavior: add ps and pool together.  this is
2473  		 * not a great approach because the PGs from each pool
2474  		 * will overlap on top of each other: 0.5 == 1.4 ==
2475  		 * 2.3 == ...
2476  		 */
2477  		return ceph_stable_mod(raw_pgid->seed, pi->pgp_num,
2478  				       pi->pgp_num_mask) +
2479  		       (unsigned)raw_pgid->pool;
2480  	}
2481  }
2482  
2483  /*
2484   * Magic value used for a "default" fallback choose_args, used if the
2485   * crush_choose_arg_map passed to do_crush() does not exist.  If this
2486   * also doesn't exist, fall back to canonical weights.
2487   */
2488  #define CEPH_DEFAULT_CHOOSE_ARGS	-1
2489  
do_crush(struct ceph_osdmap * map,int ruleno,int x,int * result,int result_max,const __u32 * weight,int weight_max,s64 choose_args_index)2490  static int do_crush(struct ceph_osdmap *map, int ruleno, int x,
2491  		    int *result, int result_max,
2492  		    const __u32 *weight, int weight_max,
2493  		    s64 choose_args_index)
2494  {
2495  	struct crush_choose_arg_map *arg_map;
2496  	struct crush_work *work;
2497  	int r;
2498  
2499  	BUG_ON(result_max > CEPH_PG_MAX_SIZE);
2500  
2501  	arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2502  					choose_args_index);
2503  	if (!arg_map)
2504  		arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2505  						CEPH_DEFAULT_CHOOSE_ARGS);
2506  
2507  	work = get_workspace(&map->crush_wsm, map->crush);
2508  	r = crush_do_rule(map->crush, ruleno, x, result, result_max,
2509  			  weight, weight_max, work,
2510  			  arg_map ? arg_map->args : NULL);
2511  	put_workspace(&map->crush_wsm, work);
2512  	return r;
2513  }
2514  
remove_nonexistent_osds(struct ceph_osdmap * osdmap,struct ceph_pg_pool_info * pi,struct ceph_osds * set)2515  static void remove_nonexistent_osds(struct ceph_osdmap *osdmap,
2516  				    struct ceph_pg_pool_info *pi,
2517  				    struct ceph_osds *set)
2518  {
2519  	int i;
2520  
2521  	if (ceph_can_shift_osds(pi)) {
2522  		int removed = 0;
2523  
2524  		/* shift left */
2525  		for (i = 0; i < set->size; i++) {
2526  			if (!ceph_osd_exists(osdmap, set->osds[i])) {
2527  				removed++;
2528  				continue;
2529  			}
2530  			if (removed)
2531  				set->osds[i - removed] = set->osds[i];
2532  		}
2533  		set->size -= removed;
2534  	} else {
2535  		/* set dne devices to NONE */
2536  		for (i = 0; i < set->size; i++) {
2537  			if (!ceph_osd_exists(osdmap, set->osds[i]))
2538  				set->osds[i] = CRUSH_ITEM_NONE;
2539  		}
2540  	}
2541  }
2542  
2543  /*
2544   * Calculate raw set (CRUSH output) for given PG and filter out
2545   * nonexistent OSDs.  ->primary is undefined for a raw set.
2546   *
2547   * Placement seed (CRUSH input) is returned through @ppps.
2548   */
pg_to_raw_osds(struct ceph_osdmap * osdmap,struct ceph_pg_pool_info * pi,const struct ceph_pg * raw_pgid,struct ceph_osds * raw,u32 * ppps)2549  static void pg_to_raw_osds(struct ceph_osdmap *osdmap,
2550  			   struct ceph_pg_pool_info *pi,
2551  			   const struct ceph_pg *raw_pgid,
2552  			   struct ceph_osds *raw,
2553  			   u32 *ppps)
2554  {
2555  	u32 pps = raw_pg_to_pps(pi, raw_pgid);
2556  	int ruleno;
2557  	int len;
2558  
2559  	ceph_osds_init(raw);
2560  	if (ppps)
2561  		*ppps = pps;
2562  
2563  	ruleno = crush_find_rule(osdmap->crush, pi->crush_ruleset, pi->type,
2564  				 pi->size);
2565  	if (ruleno < 0) {
2566  		pr_err("no crush rule: pool %lld ruleset %d type %d size %d\n",
2567  		       pi->id, pi->crush_ruleset, pi->type, pi->size);
2568  		return;
2569  	}
2570  
2571  	if (pi->size > ARRAY_SIZE(raw->osds)) {
2572  		pr_err_ratelimited("pool %lld ruleset %d type %d too wide: size %d > %zu\n",
2573  		       pi->id, pi->crush_ruleset, pi->type, pi->size,
2574  		       ARRAY_SIZE(raw->osds));
2575  		return;
2576  	}
2577  
2578  	len = do_crush(osdmap, ruleno, pps, raw->osds, pi->size,
2579  		       osdmap->osd_weight, osdmap->max_osd, pi->id);
2580  	if (len < 0) {
2581  		pr_err("error %d from crush rule %d: pool %lld ruleset %d type %d size %d\n",
2582  		       len, ruleno, pi->id, pi->crush_ruleset, pi->type,
2583  		       pi->size);
2584  		return;
2585  	}
2586  
2587  	raw->size = len;
2588  	remove_nonexistent_osds(osdmap, pi, raw);
2589  }
2590  
2591  /* apply pg_upmap[_items] mappings */
apply_upmap(struct ceph_osdmap * osdmap,const struct ceph_pg * pgid,struct ceph_osds * raw)2592  static void apply_upmap(struct ceph_osdmap *osdmap,
2593  			const struct ceph_pg *pgid,
2594  			struct ceph_osds *raw)
2595  {
2596  	struct ceph_pg_mapping *pg;
2597  	int i, j;
2598  
2599  	pg = lookup_pg_mapping(&osdmap->pg_upmap, pgid);
2600  	if (pg) {
2601  		/* make sure targets aren't marked out */
2602  		for (i = 0; i < pg->pg_upmap.len; i++) {
2603  			int osd = pg->pg_upmap.osds[i];
2604  
2605  			if (osd != CRUSH_ITEM_NONE &&
2606  			    osd < osdmap->max_osd &&
2607  			    osdmap->osd_weight[osd] == 0) {
2608  				/* reject/ignore explicit mapping */
2609  				return;
2610  			}
2611  		}
2612  		for (i = 0; i < pg->pg_upmap.len; i++)
2613  			raw->osds[i] = pg->pg_upmap.osds[i];
2614  		raw->size = pg->pg_upmap.len;
2615  		/* check and apply pg_upmap_items, if any */
2616  	}
2617  
2618  	pg = lookup_pg_mapping(&osdmap->pg_upmap_items, pgid);
2619  	if (pg) {
2620  		/*
2621  		 * Note: this approach does not allow a bidirectional swap,
2622  		 * e.g., [[1,2],[2,1]] applied to [0,1,2] -> [0,2,1].
2623  		 */
2624  		for (i = 0; i < pg->pg_upmap_items.len; i++) {
2625  			int from = pg->pg_upmap_items.from_to[i][0];
2626  			int to = pg->pg_upmap_items.from_to[i][1];
2627  			int pos = -1;
2628  			bool exists = false;
2629  
2630  			/* make sure replacement doesn't already appear */
2631  			for (j = 0; j < raw->size; j++) {
2632  				int osd = raw->osds[j];
2633  
2634  				if (osd == to) {
2635  					exists = true;
2636  					break;
2637  				}
2638  				/* ignore mapping if target is marked out */
2639  				if (osd == from && pos < 0 &&
2640  				    !(to != CRUSH_ITEM_NONE &&
2641  				      to < osdmap->max_osd &&
2642  				      osdmap->osd_weight[to] == 0)) {
2643  					pos = j;
2644  				}
2645  			}
2646  			if (!exists && pos >= 0)
2647  				raw->osds[pos] = to;
2648  		}
2649  	}
2650  }
2651  
2652  /*
2653   * Given raw set, calculate up set and up primary.  By definition of an
2654   * up set, the result won't contain nonexistent or down OSDs.
2655   *
2656   * This is done in-place - on return @set is the up set.  If it's
2657   * empty, ->primary will remain undefined.
2658   */
raw_to_up_osds(struct ceph_osdmap * osdmap,struct ceph_pg_pool_info * pi,struct ceph_osds * set)2659  static void raw_to_up_osds(struct ceph_osdmap *osdmap,
2660  			   struct ceph_pg_pool_info *pi,
2661  			   struct ceph_osds *set)
2662  {
2663  	int i;
2664  
2665  	/* ->primary is undefined for a raw set */
2666  	BUG_ON(set->primary != -1);
2667  
2668  	if (ceph_can_shift_osds(pi)) {
2669  		int removed = 0;
2670  
2671  		/* shift left */
2672  		for (i = 0; i < set->size; i++) {
2673  			if (ceph_osd_is_down(osdmap, set->osds[i])) {
2674  				removed++;
2675  				continue;
2676  			}
2677  			if (removed)
2678  				set->osds[i - removed] = set->osds[i];
2679  		}
2680  		set->size -= removed;
2681  		if (set->size > 0)
2682  			set->primary = set->osds[0];
2683  	} else {
2684  		/* set down/dne devices to NONE */
2685  		for (i = set->size - 1; i >= 0; i--) {
2686  			if (ceph_osd_is_down(osdmap, set->osds[i]))
2687  				set->osds[i] = CRUSH_ITEM_NONE;
2688  			else
2689  				set->primary = set->osds[i];
2690  		}
2691  	}
2692  }
2693  
apply_primary_affinity(struct ceph_osdmap * osdmap,struct ceph_pg_pool_info * pi,u32 pps,struct ceph_osds * up)2694  static void apply_primary_affinity(struct ceph_osdmap *osdmap,
2695  				   struct ceph_pg_pool_info *pi,
2696  				   u32 pps,
2697  				   struct ceph_osds *up)
2698  {
2699  	int i;
2700  	int pos = -1;
2701  
2702  	/*
2703  	 * Do we have any non-default primary_affinity values for these
2704  	 * osds?
2705  	 */
2706  	if (!osdmap->osd_primary_affinity)
2707  		return;
2708  
2709  	for (i = 0; i < up->size; i++) {
2710  		int osd = up->osds[i];
2711  
2712  		if (osd != CRUSH_ITEM_NONE &&
2713  		    osdmap->osd_primary_affinity[osd] !=
2714  					CEPH_OSD_DEFAULT_PRIMARY_AFFINITY) {
2715  			break;
2716  		}
2717  	}
2718  	if (i == up->size)
2719  		return;
2720  
2721  	/*
2722  	 * Pick the primary.  Feed both the seed (for the pg) and the
2723  	 * osd into the hash/rng so that a proportional fraction of an
2724  	 * osd's pgs get rejected as primary.
2725  	 */
2726  	for (i = 0; i < up->size; i++) {
2727  		int osd = up->osds[i];
2728  		u32 aff;
2729  
2730  		if (osd == CRUSH_ITEM_NONE)
2731  			continue;
2732  
2733  		aff = osdmap->osd_primary_affinity[osd];
2734  		if (aff < CEPH_OSD_MAX_PRIMARY_AFFINITY &&
2735  		    (crush_hash32_2(CRUSH_HASH_RJENKINS1,
2736  				    pps, osd) >> 16) >= aff) {
2737  			/*
2738  			 * We chose not to use this primary.  Note it
2739  			 * anyway as a fallback in case we don't pick
2740  			 * anyone else, but keep looking.
2741  			 */
2742  			if (pos < 0)
2743  				pos = i;
2744  		} else {
2745  			pos = i;
2746  			break;
2747  		}
2748  	}
2749  	if (pos < 0)
2750  		return;
2751  
2752  	up->primary = up->osds[pos];
2753  
2754  	if (ceph_can_shift_osds(pi) && pos > 0) {
2755  		/* move the new primary to the front */
2756  		for (i = pos; i > 0; i--)
2757  			up->osds[i] = up->osds[i - 1];
2758  		up->osds[0] = up->primary;
2759  	}
2760  }
2761  
2762  /*
2763   * Get pg_temp and primary_temp mappings for given PG.
2764   *
2765   * Note that a PG may have none, only pg_temp, only primary_temp or
2766   * both pg_temp and primary_temp mappings.  This means @temp isn't
2767   * always a valid OSD set on return: in the "only primary_temp" case,
2768   * @temp will have its ->primary >= 0 but ->size == 0.
2769   */
get_temp_osds(struct ceph_osdmap * osdmap,struct ceph_pg_pool_info * pi,const struct ceph_pg * pgid,struct ceph_osds * temp)2770  static void get_temp_osds(struct ceph_osdmap *osdmap,
2771  			  struct ceph_pg_pool_info *pi,
2772  			  const struct ceph_pg *pgid,
2773  			  struct ceph_osds *temp)
2774  {
2775  	struct ceph_pg_mapping *pg;
2776  	int i;
2777  
2778  	ceph_osds_init(temp);
2779  
2780  	/* pg_temp? */
2781  	pg = lookup_pg_mapping(&osdmap->pg_temp, pgid);
2782  	if (pg) {
2783  		for (i = 0; i < pg->pg_temp.len; i++) {
2784  			if (ceph_osd_is_down(osdmap, pg->pg_temp.osds[i])) {
2785  				if (ceph_can_shift_osds(pi))
2786  					continue;
2787  
2788  				temp->osds[temp->size++] = CRUSH_ITEM_NONE;
2789  			} else {
2790  				temp->osds[temp->size++] = pg->pg_temp.osds[i];
2791  			}
2792  		}
2793  
2794  		/* apply pg_temp's primary */
2795  		for (i = 0; i < temp->size; i++) {
2796  			if (temp->osds[i] != CRUSH_ITEM_NONE) {
2797  				temp->primary = temp->osds[i];
2798  				break;
2799  			}
2800  		}
2801  	}
2802  
2803  	/* primary_temp? */
2804  	pg = lookup_pg_mapping(&osdmap->primary_temp, pgid);
2805  	if (pg)
2806  		temp->primary = pg->primary_temp.osd;
2807  }
2808  
2809  /*
2810   * Map a PG to its acting set as well as its up set.
2811   *
2812   * Acting set is used for data mapping purposes, while up set can be
2813   * recorded for detecting interval changes and deciding whether to
2814   * resend a request.
2815   */
ceph_pg_to_up_acting_osds(struct ceph_osdmap * osdmap,struct ceph_pg_pool_info * pi,const struct ceph_pg * raw_pgid,struct ceph_osds * up,struct ceph_osds * acting)2816  void ceph_pg_to_up_acting_osds(struct ceph_osdmap *osdmap,
2817  			       struct ceph_pg_pool_info *pi,
2818  			       const struct ceph_pg *raw_pgid,
2819  			       struct ceph_osds *up,
2820  			       struct ceph_osds *acting)
2821  {
2822  	struct ceph_pg pgid;
2823  	u32 pps;
2824  
2825  	WARN_ON(pi->id != raw_pgid->pool);
2826  	raw_pg_to_pg(pi, raw_pgid, &pgid);
2827  
2828  	pg_to_raw_osds(osdmap, pi, raw_pgid, up, &pps);
2829  	apply_upmap(osdmap, &pgid, up);
2830  	raw_to_up_osds(osdmap, pi, up);
2831  	apply_primary_affinity(osdmap, pi, pps, up);
2832  	get_temp_osds(osdmap, pi, &pgid, acting);
2833  	if (!acting->size) {
2834  		memcpy(acting->osds, up->osds, up->size * sizeof(up->osds[0]));
2835  		acting->size = up->size;
2836  		if (acting->primary == -1)
2837  			acting->primary = up->primary;
2838  	}
2839  	WARN_ON(!osds_valid(up) || !osds_valid(acting));
2840  }
2841  
ceph_pg_to_primary_shard(struct ceph_osdmap * osdmap,struct ceph_pg_pool_info * pi,const struct ceph_pg * raw_pgid,struct ceph_spg * spgid)2842  bool ceph_pg_to_primary_shard(struct ceph_osdmap *osdmap,
2843  			      struct ceph_pg_pool_info *pi,
2844  			      const struct ceph_pg *raw_pgid,
2845  			      struct ceph_spg *spgid)
2846  {
2847  	struct ceph_pg pgid;
2848  	struct ceph_osds up, acting;
2849  	int i;
2850  
2851  	WARN_ON(pi->id != raw_pgid->pool);
2852  	raw_pg_to_pg(pi, raw_pgid, &pgid);
2853  
2854  	if (ceph_can_shift_osds(pi)) {
2855  		spgid->pgid = pgid; /* struct */
2856  		spgid->shard = CEPH_SPG_NOSHARD;
2857  		return true;
2858  	}
2859  
2860  	ceph_pg_to_up_acting_osds(osdmap, pi, &pgid, &up, &acting);
2861  	for (i = 0; i < acting.size; i++) {
2862  		if (acting.osds[i] == acting.primary) {
2863  			spgid->pgid = pgid; /* struct */
2864  			spgid->shard = i;
2865  			return true;
2866  		}
2867  	}
2868  
2869  	return false;
2870  }
2871  
2872  /*
2873   * Return acting primary for given PG, or -1 if none.
2874   */
ceph_pg_to_acting_primary(struct ceph_osdmap * osdmap,const struct ceph_pg * raw_pgid)2875  int ceph_pg_to_acting_primary(struct ceph_osdmap *osdmap,
2876  			      const struct ceph_pg *raw_pgid)
2877  {
2878  	struct ceph_pg_pool_info *pi;
2879  	struct ceph_osds up, acting;
2880  
2881  	pi = ceph_pg_pool_by_id(osdmap, raw_pgid->pool);
2882  	if (!pi)
2883  		return -1;
2884  
2885  	ceph_pg_to_up_acting_osds(osdmap, pi, raw_pgid, &up, &acting);
2886  	return acting.primary;
2887  }
2888  EXPORT_SYMBOL(ceph_pg_to_acting_primary);
2889  
alloc_crush_loc(size_t type_name_len,size_t name_len)2890  static struct crush_loc_node *alloc_crush_loc(size_t type_name_len,
2891  					      size_t name_len)
2892  {
2893  	struct crush_loc_node *loc;
2894  
2895  	loc = kmalloc(sizeof(*loc) + type_name_len + name_len + 2, GFP_NOIO);
2896  	if (!loc)
2897  		return NULL;
2898  
2899  	RB_CLEAR_NODE(&loc->cl_node);
2900  	return loc;
2901  }
2902  
free_crush_loc(struct crush_loc_node * loc)2903  static void free_crush_loc(struct crush_loc_node *loc)
2904  {
2905  	WARN_ON(!RB_EMPTY_NODE(&loc->cl_node));
2906  
2907  	kfree(loc);
2908  }
2909  
crush_loc_compare(const struct crush_loc * loc1,const struct crush_loc * loc2)2910  static int crush_loc_compare(const struct crush_loc *loc1,
2911  			     const struct crush_loc *loc2)
2912  {
2913  	return strcmp(loc1->cl_type_name, loc2->cl_type_name) ?:
2914  	       strcmp(loc1->cl_name, loc2->cl_name);
2915  }
2916  
DEFINE_RB_FUNCS2(crush_loc,struct crush_loc_node,cl_loc,crush_loc_compare,RB_BYPTR,const struct crush_loc *,cl_node)2917  DEFINE_RB_FUNCS2(crush_loc, struct crush_loc_node, cl_loc, crush_loc_compare,
2918  		 RB_BYPTR, const struct crush_loc *, cl_node)
2919  
2920  /*
2921   * Parses a set of <bucket type name>':'<bucket name> pairs separated
2922   * by '|', e.g. "rack:foo1|rack:foo2|datacenter:bar".
2923   *
2924   * Note that @crush_location is modified by strsep().
2925   */
2926  int ceph_parse_crush_location(char *crush_location, struct rb_root *locs)
2927  {
2928  	struct crush_loc_node *loc;
2929  	const char *type_name, *name, *colon;
2930  	size_t type_name_len, name_len;
2931  
2932  	dout("%s '%s'\n", __func__, crush_location);
2933  	while ((type_name = strsep(&crush_location, "|"))) {
2934  		colon = strchr(type_name, ':');
2935  		if (!colon)
2936  			return -EINVAL;
2937  
2938  		type_name_len = colon - type_name;
2939  		if (type_name_len == 0)
2940  			return -EINVAL;
2941  
2942  		name = colon + 1;
2943  		name_len = strlen(name);
2944  		if (name_len == 0)
2945  			return -EINVAL;
2946  
2947  		loc = alloc_crush_loc(type_name_len, name_len);
2948  		if (!loc)
2949  			return -ENOMEM;
2950  
2951  		loc->cl_loc.cl_type_name = loc->cl_data;
2952  		memcpy(loc->cl_loc.cl_type_name, type_name, type_name_len);
2953  		loc->cl_loc.cl_type_name[type_name_len] = '\0';
2954  
2955  		loc->cl_loc.cl_name = loc->cl_data + type_name_len + 1;
2956  		memcpy(loc->cl_loc.cl_name, name, name_len);
2957  		loc->cl_loc.cl_name[name_len] = '\0';
2958  
2959  		if (!__insert_crush_loc(locs, loc)) {
2960  			free_crush_loc(loc);
2961  			return -EEXIST;
2962  		}
2963  
2964  		dout("%s type_name '%s' name '%s'\n", __func__,
2965  		     loc->cl_loc.cl_type_name, loc->cl_loc.cl_name);
2966  	}
2967  
2968  	return 0;
2969  }
2970  
ceph_compare_crush_locs(struct rb_root * locs1,struct rb_root * locs2)2971  int ceph_compare_crush_locs(struct rb_root *locs1, struct rb_root *locs2)
2972  {
2973  	struct rb_node *n1 = rb_first(locs1);
2974  	struct rb_node *n2 = rb_first(locs2);
2975  	int ret;
2976  
2977  	for ( ; n1 && n2; n1 = rb_next(n1), n2 = rb_next(n2)) {
2978  		struct crush_loc_node *loc1 =
2979  		    rb_entry(n1, struct crush_loc_node, cl_node);
2980  		struct crush_loc_node *loc2 =
2981  		    rb_entry(n2, struct crush_loc_node, cl_node);
2982  
2983  		ret = crush_loc_compare(&loc1->cl_loc, &loc2->cl_loc);
2984  		if (ret)
2985  			return ret;
2986  	}
2987  
2988  	if (!n1 && n2)
2989  		return -1;
2990  	if (n1 && !n2)
2991  		return 1;
2992  	return 0;
2993  }
2994  
ceph_clear_crush_locs(struct rb_root * locs)2995  void ceph_clear_crush_locs(struct rb_root *locs)
2996  {
2997  	while (!RB_EMPTY_ROOT(locs)) {
2998  		struct crush_loc_node *loc =
2999  		    rb_entry(rb_first(locs), struct crush_loc_node, cl_node);
3000  
3001  		erase_crush_loc(locs, loc);
3002  		free_crush_loc(loc);
3003  	}
3004  }
3005  
3006  /*
3007   * [a-zA-Z0-9-_.]+
3008   */
is_valid_crush_name(const char * name)3009  static bool is_valid_crush_name(const char *name)
3010  {
3011  	do {
3012  		if (!('a' <= *name && *name <= 'z') &&
3013  		    !('A' <= *name && *name <= 'Z') &&
3014  		    !('0' <= *name && *name <= '9') &&
3015  		    *name != '-' && *name != '_' && *name != '.')
3016  			return false;
3017  	} while (*++name != '\0');
3018  
3019  	return true;
3020  }
3021  
3022  /*
3023   * Gets the parent of an item.  Returns its id (<0 because the
3024   * parent is always a bucket), type id (>0 for the same reason,
3025   * via @parent_type_id) and location (via @parent_loc).  If no
3026   * parent, returns 0.
3027   *
3028   * Does a linear search, as there are no parent pointers of any
3029   * kind.  Note that the result is ambiguous for items that occur
3030   * multiple times in the map.
3031   */
get_immediate_parent(struct crush_map * c,int id,u16 * parent_type_id,struct crush_loc * parent_loc)3032  static int get_immediate_parent(struct crush_map *c, int id,
3033  				u16 *parent_type_id,
3034  				struct crush_loc *parent_loc)
3035  {
3036  	struct crush_bucket *b;
3037  	struct crush_name_node *type_cn, *cn;
3038  	int i, j;
3039  
3040  	for (i = 0; i < c->max_buckets; i++) {
3041  		b = c->buckets[i];
3042  		if (!b)
3043  			continue;
3044  
3045  		/* ignore per-class shadow hierarchy */
3046  		cn = lookup_crush_name(&c->names, b->id);
3047  		if (!cn || !is_valid_crush_name(cn->cn_name))
3048  			continue;
3049  
3050  		for (j = 0; j < b->size; j++) {
3051  			if (b->items[j] != id)
3052  				continue;
3053  
3054  			*parent_type_id = b->type;
3055  			type_cn = lookup_crush_name(&c->type_names, b->type);
3056  			parent_loc->cl_type_name = type_cn->cn_name;
3057  			parent_loc->cl_name = cn->cn_name;
3058  			return b->id;
3059  		}
3060  	}
3061  
3062  	return 0;  /* no parent */
3063  }
3064  
3065  /*
3066   * Calculates the locality/distance from an item to a client
3067   * location expressed in terms of CRUSH hierarchy as a set of
3068   * (bucket type name, bucket name) pairs.  Specifically, looks
3069   * for the lowest-valued bucket type for which the location of
3070   * @id matches one of the locations in @locs, so for standard
3071   * bucket types (host = 1, rack = 3, datacenter = 8, zone = 9)
3072   * a matching host is closer than a matching rack and a matching
3073   * data center is closer than a matching zone.
3074   *
3075   * Specifying multiple locations (a "multipath" location) such
3076   * as "rack=foo1 rack=foo2 datacenter=bar" is allowed -- @locs
3077   * is a multimap.  The locality will be:
3078   *
3079   * - 3 for OSDs in racks foo1 and foo2
3080   * - 8 for OSDs in data center bar
3081   * - -1 for all other OSDs
3082   *
3083   * The lowest possible bucket type is 1, so the best locality
3084   * for an OSD is 1 (i.e. a matching host).  Locality 0 would be
3085   * the OSD itself.
3086   */
ceph_get_crush_locality(struct ceph_osdmap * osdmap,int id,struct rb_root * locs)3087  int ceph_get_crush_locality(struct ceph_osdmap *osdmap, int id,
3088  			    struct rb_root *locs)
3089  {
3090  	struct crush_loc loc;
3091  	u16 type_id;
3092  
3093  	/*
3094  	 * Instead of repeated get_immediate_parent() calls,
3095  	 * the location of @id could be obtained with a single
3096  	 * depth-first traversal.
3097  	 */
3098  	for (;;) {
3099  		id = get_immediate_parent(osdmap->crush, id, &type_id, &loc);
3100  		if (id >= 0)
3101  			return -1;  /* not local */
3102  
3103  		if (lookup_crush_loc(locs, &loc))
3104  			return type_id;
3105  	}
3106  }
3107