1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/fs/exec.c
4   *
5   *  Copyright (C) 1991, 1992  Linus Torvalds
6   */
7  
8  /*
9   * #!-checking implemented by tytso.
10   */
11  /*
12   * Demand-loading implemented 01.12.91 - no need to read anything but
13   * the header into memory. The inode of the executable is put into
14   * "current->executable", and page faults do the actual loading. Clean.
15   *
16   * Once more I can proudly say that linux stood up to being changed: it
17   * was less than 2 hours work to get demand-loading completely implemented.
18   *
19   * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20   * current->executable is only used by the procfs.  This allows a dispatch
21   * table to check for several different types  of binary formats.  We keep
22   * trying until we recognize the file or we run out of supported binary
23   * formats.
24   */
25  
26  #include <linux/kernel_read_file.h>
27  #include <linux/slab.h>
28  #include <linux/file.h>
29  #include <linux/fdtable.h>
30  #include <linux/mm.h>
31  #include <linux/stat.h>
32  #include <linux/fcntl.h>
33  #include <linux/swap.h>
34  #include <linux/string.h>
35  #include <linux/init.h>
36  #include <linux/sched/mm.h>
37  #include <linux/sched/coredump.h>
38  #include <linux/sched/signal.h>
39  #include <linux/sched/numa_balancing.h>
40  #include <linux/sched/task.h>
41  #include <linux/pagemap.h>
42  #include <linux/perf_event.h>
43  #include <linux/highmem.h>
44  #include <linux/spinlock.h>
45  #include <linux/key.h>
46  #include <linux/personality.h>
47  #include <linux/binfmts.h>
48  #include <linux/utsname.h>
49  #include <linux/pid_namespace.h>
50  #include <linux/module.h>
51  #include <linux/namei.h>
52  #include <linux/mount.h>
53  #include <linux/security.h>
54  #include <linux/syscalls.h>
55  #include <linux/tsacct_kern.h>
56  #include <linux/cn_proc.h>
57  #include <linux/audit.h>
58  #include <linux/kmod.h>
59  #include <linux/fsnotify.h>
60  #include <linux/fs_struct.h>
61  #include <linux/oom.h>
62  #include <linux/compat.h>
63  #include <linux/vmalloc.h>
64  #include <linux/io_uring.h>
65  #include <linux/syscall_user_dispatch.h>
66  #include <linux/coredump.h>
67  #include <linux/time_namespace.h>
68  #include <linux/user_events.h>
69  #include <linux/rseq.h>
70  #include <linux/ksm.h>
71  
72  #include <linux/uaccess.h>
73  #include <asm/mmu_context.h>
74  #include <asm/tlb.h>
75  
76  #include <trace/events/task.h>
77  #include "internal.h"
78  
79  #include <trace/events/sched.h>
80  
81  static int bprm_creds_from_file(struct linux_binprm *bprm);
82  
83  int suid_dumpable = 0;
84  
85  static LIST_HEAD(formats);
86  static DEFINE_RWLOCK(binfmt_lock);
87  
__register_binfmt(struct linux_binfmt * fmt,int insert)88  void __register_binfmt(struct linux_binfmt * fmt, int insert)
89  {
90  	write_lock(&binfmt_lock);
91  	insert ? list_add(&fmt->lh, &formats) :
92  		 list_add_tail(&fmt->lh, &formats);
93  	write_unlock(&binfmt_lock);
94  }
95  
96  EXPORT_SYMBOL(__register_binfmt);
97  
unregister_binfmt(struct linux_binfmt * fmt)98  void unregister_binfmt(struct linux_binfmt * fmt)
99  {
100  	write_lock(&binfmt_lock);
101  	list_del(&fmt->lh);
102  	write_unlock(&binfmt_lock);
103  }
104  
105  EXPORT_SYMBOL(unregister_binfmt);
106  
put_binfmt(struct linux_binfmt * fmt)107  static inline void put_binfmt(struct linux_binfmt * fmt)
108  {
109  	module_put(fmt->module);
110  }
111  
path_noexec(const struct path * path)112  bool path_noexec(const struct path *path)
113  {
114  	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115  	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116  }
117  
118  #ifdef CONFIG_USELIB
119  /*
120   * Note that a shared library must be both readable and executable due to
121   * security reasons.
122   *
123   * Also note that we take the address to load from the file itself.
124   */
SYSCALL_DEFINE1(uselib,const char __user *,library)125  SYSCALL_DEFINE1(uselib, const char __user *, library)
126  {
127  	struct linux_binfmt *fmt;
128  	struct file *file;
129  	struct filename *tmp = getname(library);
130  	int error = PTR_ERR(tmp);
131  	static const struct open_flags uselib_flags = {
132  		.open_flag = O_LARGEFILE | O_RDONLY,
133  		.acc_mode = MAY_READ | MAY_EXEC,
134  		.intent = LOOKUP_OPEN,
135  		.lookup_flags = LOOKUP_FOLLOW,
136  	};
137  
138  	if (IS_ERR(tmp))
139  		goto out;
140  
141  	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142  	putname(tmp);
143  	error = PTR_ERR(file);
144  	if (IS_ERR(file))
145  		goto out;
146  
147  	/*
148  	 * Check do_open_execat() for an explanation.
149  	 */
150  	error = -EACCES;
151  	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
152  	    path_noexec(&file->f_path))
153  		goto exit;
154  
155  	error = -ENOEXEC;
156  
157  	read_lock(&binfmt_lock);
158  	list_for_each_entry(fmt, &formats, lh) {
159  		if (!fmt->load_shlib)
160  			continue;
161  		if (!try_module_get(fmt->module))
162  			continue;
163  		read_unlock(&binfmt_lock);
164  		error = fmt->load_shlib(file);
165  		read_lock(&binfmt_lock);
166  		put_binfmt(fmt);
167  		if (error != -ENOEXEC)
168  			break;
169  	}
170  	read_unlock(&binfmt_lock);
171  exit:
172  	fput(file);
173  out:
174  	return error;
175  }
176  #endif /* #ifdef CONFIG_USELIB */
177  
178  #ifdef CONFIG_MMU
179  /*
180   * The nascent bprm->mm is not visible until exec_mmap() but it can
181   * use a lot of memory, account these pages in current->mm temporary
182   * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
183   * change the counter back via acct_arg_size(0).
184   */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)185  static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
186  {
187  	struct mm_struct *mm = current->mm;
188  	long diff = (long)(pages - bprm->vma_pages);
189  
190  	if (!mm || !diff)
191  		return;
192  
193  	bprm->vma_pages = pages;
194  	add_mm_counter(mm, MM_ANONPAGES, diff);
195  }
196  
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)197  static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
198  		int write)
199  {
200  	struct page *page;
201  	struct vm_area_struct *vma = bprm->vma;
202  	struct mm_struct *mm = bprm->mm;
203  	int ret;
204  
205  	/*
206  	 * Avoid relying on expanding the stack down in GUP (which
207  	 * does not work for STACK_GROWSUP anyway), and just do it
208  	 * by hand ahead of time.
209  	 */
210  	if (write && pos < vma->vm_start) {
211  		mmap_write_lock(mm);
212  		ret = expand_downwards(vma, pos);
213  		if (unlikely(ret < 0)) {
214  			mmap_write_unlock(mm);
215  			return NULL;
216  		}
217  		mmap_write_downgrade(mm);
218  	} else
219  		mmap_read_lock(mm);
220  
221  	/*
222  	 * We are doing an exec().  'current' is the process
223  	 * doing the exec and 'mm' is the new process's mm.
224  	 */
225  	ret = get_user_pages_remote(mm, pos, 1,
226  			write ? FOLL_WRITE : 0,
227  			&page, NULL);
228  	mmap_read_unlock(mm);
229  	if (ret <= 0)
230  		return NULL;
231  
232  	if (write)
233  		acct_arg_size(bprm, vma_pages(vma));
234  
235  	return page;
236  }
237  
put_arg_page(struct page * page)238  static void put_arg_page(struct page *page)
239  {
240  	put_page(page);
241  }
242  
free_arg_pages(struct linux_binprm * bprm)243  static void free_arg_pages(struct linux_binprm *bprm)
244  {
245  }
246  
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)247  static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
248  		struct page *page)
249  {
250  	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
251  }
252  
__bprm_mm_init(struct linux_binprm * bprm)253  static int __bprm_mm_init(struct linux_binprm *bprm)
254  {
255  	int err;
256  	struct vm_area_struct *vma = NULL;
257  	struct mm_struct *mm = bprm->mm;
258  
259  	bprm->vma = vma = vm_area_alloc(mm);
260  	if (!vma)
261  		return -ENOMEM;
262  	vma_set_anonymous(vma);
263  
264  	if (mmap_write_lock_killable(mm)) {
265  		err = -EINTR;
266  		goto err_free;
267  	}
268  
269  	/*
270  	 * Need to be called with mmap write lock
271  	 * held, to avoid race with ksmd.
272  	 */
273  	err = ksm_execve(mm);
274  	if (err)
275  		goto err_ksm;
276  
277  	/*
278  	 * Place the stack at the largest stack address the architecture
279  	 * supports. Later, we'll move this to an appropriate place. We don't
280  	 * use STACK_TOP because that can depend on attributes which aren't
281  	 * configured yet.
282  	 */
283  	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
284  	vma->vm_end = STACK_TOP_MAX;
285  	vma->vm_start = vma->vm_end - PAGE_SIZE;
286  	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
287  	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
288  
289  	err = insert_vm_struct(mm, vma);
290  	if (err)
291  		goto err;
292  
293  	mm->stack_vm = mm->total_vm = 1;
294  	mmap_write_unlock(mm);
295  	bprm->p = vma->vm_end - sizeof(void *);
296  	return 0;
297  err:
298  	ksm_exit(mm);
299  err_ksm:
300  	mmap_write_unlock(mm);
301  err_free:
302  	bprm->vma = NULL;
303  	vm_area_free(vma);
304  	return err;
305  }
306  
valid_arg_len(struct linux_binprm * bprm,long len)307  static bool valid_arg_len(struct linux_binprm *bprm, long len)
308  {
309  	return len <= MAX_ARG_STRLEN;
310  }
311  
312  #else
313  
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)314  static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
315  {
316  }
317  
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)318  static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
319  		int write)
320  {
321  	struct page *page;
322  
323  	page = bprm->page[pos / PAGE_SIZE];
324  	if (!page && write) {
325  		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
326  		if (!page)
327  			return NULL;
328  		bprm->page[pos / PAGE_SIZE] = page;
329  	}
330  
331  	return page;
332  }
333  
put_arg_page(struct page * page)334  static void put_arg_page(struct page *page)
335  {
336  }
337  
free_arg_page(struct linux_binprm * bprm,int i)338  static void free_arg_page(struct linux_binprm *bprm, int i)
339  {
340  	if (bprm->page[i]) {
341  		__free_page(bprm->page[i]);
342  		bprm->page[i] = NULL;
343  	}
344  }
345  
free_arg_pages(struct linux_binprm * bprm)346  static void free_arg_pages(struct linux_binprm *bprm)
347  {
348  	int i;
349  
350  	for (i = 0; i < MAX_ARG_PAGES; i++)
351  		free_arg_page(bprm, i);
352  }
353  
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)354  static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
355  		struct page *page)
356  {
357  }
358  
__bprm_mm_init(struct linux_binprm * bprm)359  static int __bprm_mm_init(struct linux_binprm *bprm)
360  {
361  	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
362  	return 0;
363  }
364  
valid_arg_len(struct linux_binprm * bprm,long len)365  static bool valid_arg_len(struct linux_binprm *bprm, long len)
366  {
367  	return len <= bprm->p;
368  }
369  
370  #endif /* CONFIG_MMU */
371  
372  /*
373   * Create a new mm_struct and populate it with a temporary stack
374   * vm_area_struct.  We don't have enough context at this point to set the stack
375   * flags, permissions, and offset, so we use temporary values.  We'll update
376   * them later in setup_arg_pages().
377   */
bprm_mm_init(struct linux_binprm * bprm)378  static int bprm_mm_init(struct linux_binprm *bprm)
379  {
380  	int err;
381  	struct mm_struct *mm = NULL;
382  
383  	bprm->mm = mm = mm_alloc();
384  	err = -ENOMEM;
385  	if (!mm)
386  		goto err;
387  
388  	/* Save current stack limit for all calculations made during exec. */
389  	task_lock(current->group_leader);
390  	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
391  	task_unlock(current->group_leader);
392  
393  	err = __bprm_mm_init(bprm);
394  	if (err)
395  		goto err;
396  
397  	return 0;
398  
399  err:
400  	if (mm) {
401  		bprm->mm = NULL;
402  		mmdrop(mm);
403  	}
404  
405  	return err;
406  }
407  
408  struct user_arg_ptr {
409  #ifdef CONFIG_COMPAT
410  	bool is_compat;
411  #endif
412  	union {
413  		const char __user *const __user *native;
414  #ifdef CONFIG_COMPAT
415  		const compat_uptr_t __user *compat;
416  #endif
417  	} ptr;
418  };
419  
get_user_arg_ptr(struct user_arg_ptr argv,int nr)420  static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
421  {
422  	const char __user *native;
423  
424  #ifdef CONFIG_COMPAT
425  	if (unlikely(argv.is_compat)) {
426  		compat_uptr_t compat;
427  
428  		if (get_user(compat, argv.ptr.compat + nr))
429  			return ERR_PTR(-EFAULT);
430  
431  		return compat_ptr(compat);
432  	}
433  #endif
434  
435  	if (get_user(native, argv.ptr.native + nr))
436  		return ERR_PTR(-EFAULT);
437  
438  	return native;
439  }
440  
441  /*
442   * count() counts the number of strings in array ARGV.
443   */
count(struct user_arg_ptr argv,int max)444  static int count(struct user_arg_ptr argv, int max)
445  {
446  	int i = 0;
447  
448  	if (argv.ptr.native != NULL) {
449  		for (;;) {
450  			const char __user *p = get_user_arg_ptr(argv, i);
451  
452  			if (!p)
453  				break;
454  
455  			if (IS_ERR(p))
456  				return -EFAULT;
457  
458  			if (i >= max)
459  				return -E2BIG;
460  			++i;
461  
462  			if (fatal_signal_pending(current))
463  				return -ERESTARTNOHAND;
464  			cond_resched();
465  		}
466  	}
467  	return i;
468  }
469  
count_strings_kernel(const char * const * argv)470  static int count_strings_kernel(const char *const *argv)
471  {
472  	int i;
473  
474  	if (!argv)
475  		return 0;
476  
477  	for (i = 0; argv[i]; ++i) {
478  		if (i >= MAX_ARG_STRINGS)
479  			return -E2BIG;
480  		if (fatal_signal_pending(current))
481  			return -ERESTARTNOHAND;
482  		cond_resched();
483  	}
484  	return i;
485  }
486  
bprm_set_stack_limit(struct linux_binprm * bprm,unsigned long limit)487  static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
488  				       unsigned long limit)
489  {
490  #ifdef CONFIG_MMU
491  	/* Avoid a pathological bprm->p. */
492  	if (bprm->p < limit)
493  		return -E2BIG;
494  	bprm->argmin = bprm->p - limit;
495  #endif
496  	return 0;
497  }
bprm_hit_stack_limit(struct linux_binprm * bprm)498  static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
499  {
500  #ifdef CONFIG_MMU
501  	return bprm->p < bprm->argmin;
502  #else
503  	return false;
504  #endif
505  }
506  
507  /*
508   * Calculate bprm->argmin from:
509   * - _STK_LIM
510   * - ARG_MAX
511   * - bprm->rlim_stack.rlim_cur
512   * - bprm->argc
513   * - bprm->envc
514   * - bprm->p
515   */
bprm_stack_limits(struct linux_binprm * bprm)516  static int bprm_stack_limits(struct linux_binprm *bprm)
517  {
518  	unsigned long limit, ptr_size;
519  
520  	/*
521  	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
522  	 * (whichever is smaller) for the argv+env strings.
523  	 * This ensures that:
524  	 *  - the remaining binfmt code will not run out of stack space,
525  	 *  - the program will have a reasonable amount of stack left
526  	 *    to work from.
527  	 */
528  	limit = _STK_LIM / 4 * 3;
529  	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
530  	/*
531  	 * We've historically supported up to 32 pages (ARG_MAX)
532  	 * of argument strings even with small stacks
533  	 */
534  	limit = max_t(unsigned long, limit, ARG_MAX);
535  	/* Reject totally pathological counts. */
536  	if (bprm->argc < 0 || bprm->envc < 0)
537  		return -E2BIG;
538  	/*
539  	 * We must account for the size of all the argv and envp pointers to
540  	 * the argv and envp strings, since they will also take up space in
541  	 * the stack. They aren't stored until much later when we can't
542  	 * signal to the parent that the child has run out of stack space.
543  	 * Instead, calculate it here so it's possible to fail gracefully.
544  	 *
545  	 * In the case of argc = 0, make sure there is space for adding a
546  	 * empty string (which will bump argc to 1), to ensure confused
547  	 * userspace programs don't start processing from argv[1], thinking
548  	 * argc can never be 0, to keep them from walking envp by accident.
549  	 * See do_execveat_common().
550  	 */
551  	if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
552  	    check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
553  		return -E2BIG;
554  	if (limit <= ptr_size)
555  		return -E2BIG;
556  	limit -= ptr_size;
557  
558  	return bprm_set_stack_limit(bprm, limit);
559  }
560  
561  /*
562   * 'copy_strings()' copies argument/environment strings from the old
563   * processes's memory to the new process's stack.  The call to get_user_pages()
564   * ensures the destination page is created and not swapped out.
565   */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)566  static int copy_strings(int argc, struct user_arg_ptr argv,
567  			struct linux_binprm *bprm)
568  {
569  	struct page *kmapped_page = NULL;
570  	char *kaddr = NULL;
571  	unsigned long kpos = 0;
572  	int ret;
573  
574  	while (argc-- > 0) {
575  		const char __user *str;
576  		int len;
577  		unsigned long pos;
578  
579  		ret = -EFAULT;
580  		str = get_user_arg_ptr(argv, argc);
581  		if (IS_ERR(str))
582  			goto out;
583  
584  		len = strnlen_user(str, MAX_ARG_STRLEN);
585  		if (!len)
586  			goto out;
587  
588  		ret = -E2BIG;
589  		if (!valid_arg_len(bprm, len))
590  			goto out;
591  
592  		/* We're going to work our way backwards. */
593  		pos = bprm->p;
594  		str += len;
595  		bprm->p -= len;
596  		if (bprm_hit_stack_limit(bprm))
597  			goto out;
598  
599  		while (len > 0) {
600  			int offset, bytes_to_copy;
601  
602  			if (fatal_signal_pending(current)) {
603  				ret = -ERESTARTNOHAND;
604  				goto out;
605  			}
606  			cond_resched();
607  
608  			offset = pos % PAGE_SIZE;
609  			if (offset == 0)
610  				offset = PAGE_SIZE;
611  
612  			bytes_to_copy = offset;
613  			if (bytes_to_copy > len)
614  				bytes_to_copy = len;
615  
616  			offset -= bytes_to_copy;
617  			pos -= bytes_to_copy;
618  			str -= bytes_to_copy;
619  			len -= bytes_to_copy;
620  
621  			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
622  				struct page *page;
623  
624  				page = get_arg_page(bprm, pos, 1);
625  				if (!page) {
626  					ret = -E2BIG;
627  					goto out;
628  				}
629  
630  				if (kmapped_page) {
631  					flush_dcache_page(kmapped_page);
632  					kunmap_local(kaddr);
633  					put_arg_page(kmapped_page);
634  				}
635  				kmapped_page = page;
636  				kaddr = kmap_local_page(kmapped_page);
637  				kpos = pos & PAGE_MASK;
638  				flush_arg_page(bprm, kpos, kmapped_page);
639  			}
640  			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
641  				ret = -EFAULT;
642  				goto out;
643  			}
644  		}
645  	}
646  	ret = 0;
647  out:
648  	if (kmapped_page) {
649  		flush_dcache_page(kmapped_page);
650  		kunmap_local(kaddr);
651  		put_arg_page(kmapped_page);
652  	}
653  	return ret;
654  }
655  
656  /*
657   * Copy and argument/environment string from the kernel to the processes stack.
658   */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)659  int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
660  {
661  	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
662  	unsigned long pos = bprm->p;
663  
664  	if (len == 0)
665  		return -EFAULT;
666  	if (!valid_arg_len(bprm, len))
667  		return -E2BIG;
668  
669  	/* We're going to work our way backwards. */
670  	arg += len;
671  	bprm->p -= len;
672  	if (bprm_hit_stack_limit(bprm))
673  		return -E2BIG;
674  
675  	while (len > 0) {
676  		unsigned int bytes_to_copy = min_t(unsigned int, len,
677  				min_not_zero(offset_in_page(pos), PAGE_SIZE));
678  		struct page *page;
679  
680  		pos -= bytes_to_copy;
681  		arg -= bytes_to_copy;
682  		len -= bytes_to_copy;
683  
684  		page = get_arg_page(bprm, pos, 1);
685  		if (!page)
686  			return -E2BIG;
687  		flush_arg_page(bprm, pos & PAGE_MASK, page);
688  		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
689  		put_arg_page(page);
690  	}
691  
692  	return 0;
693  }
694  EXPORT_SYMBOL(copy_string_kernel);
695  
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)696  static int copy_strings_kernel(int argc, const char *const *argv,
697  			       struct linux_binprm *bprm)
698  {
699  	while (argc-- > 0) {
700  		int ret = copy_string_kernel(argv[argc], bprm);
701  		if (ret < 0)
702  			return ret;
703  		if (fatal_signal_pending(current))
704  			return -ERESTARTNOHAND;
705  		cond_resched();
706  	}
707  	return 0;
708  }
709  
710  #ifdef CONFIG_MMU
711  
712  /*
713   * Finalizes the stack vm_area_struct. The flags and permissions are updated,
714   * the stack is optionally relocated, and some extra space is added.
715   */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)716  int setup_arg_pages(struct linux_binprm *bprm,
717  		    unsigned long stack_top,
718  		    int executable_stack)
719  {
720  	unsigned long ret;
721  	unsigned long stack_shift;
722  	struct mm_struct *mm = current->mm;
723  	struct vm_area_struct *vma = bprm->vma;
724  	struct vm_area_struct *prev = NULL;
725  	unsigned long vm_flags;
726  	unsigned long stack_base;
727  	unsigned long stack_size;
728  	unsigned long stack_expand;
729  	unsigned long rlim_stack;
730  	struct mmu_gather tlb;
731  	struct vma_iterator vmi;
732  
733  #ifdef CONFIG_STACK_GROWSUP
734  	/* Limit stack size */
735  	stack_base = bprm->rlim_stack.rlim_max;
736  
737  	stack_base = calc_max_stack_size(stack_base);
738  
739  	/* Add space for stack randomization. */
740  	if (current->flags & PF_RANDOMIZE)
741  		stack_base += (STACK_RND_MASK << PAGE_SHIFT);
742  
743  	/* Make sure we didn't let the argument array grow too large. */
744  	if (vma->vm_end - vma->vm_start > stack_base)
745  		return -ENOMEM;
746  
747  	stack_base = PAGE_ALIGN(stack_top - stack_base);
748  
749  	stack_shift = vma->vm_start - stack_base;
750  	mm->arg_start = bprm->p - stack_shift;
751  	bprm->p = vma->vm_end - stack_shift;
752  #else
753  	stack_top = arch_align_stack(stack_top);
754  	stack_top = PAGE_ALIGN(stack_top);
755  
756  	if (unlikely(stack_top < mmap_min_addr) ||
757  	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
758  		return -ENOMEM;
759  
760  	stack_shift = vma->vm_end - stack_top;
761  
762  	bprm->p -= stack_shift;
763  	mm->arg_start = bprm->p;
764  #endif
765  
766  	if (bprm->loader)
767  		bprm->loader -= stack_shift;
768  	bprm->exec -= stack_shift;
769  
770  	if (mmap_write_lock_killable(mm))
771  		return -EINTR;
772  
773  	vm_flags = VM_STACK_FLAGS;
774  
775  	/*
776  	 * Adjust stack execute permissions; explicitly enable for
777  	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
778  	 * (arch default) otherwise.
779  	 */
780  	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
781  		vm_flags |= VM_EXEC;
782  	else if (executable_stack == EXSTACK_DISABLE_X)
783  		vm_flags &= ~VM_EXEC;
784  	vm_flags |= mm->def_flags;
785  	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
786  
787  	vma_iter_init(&vmi, mm, vma->vm_start);
788  
789  	tlb_gather_mmu(&tlb, mm);
790  	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
791  			vm_flags);
792  	tlb_finish_mmu(&tlb);
793  
794  	if (ret)
795  		goto out_unlock;
796  	BUG_ON(prev != vma);
797  
798  	if (unlikely(vm_flags & VM_EXEC)) {
799  		pr_warn_once("process '%pD4' started with executable stack\n",
800  			     bprm->file);
801  	}
802  
803  	/* Move stack pages down in memory. */
804  	if (stack_shift) {
805  		/*
806  		 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
807  		 * the binfmt code determines where the new stack should reside, we shift it to
808  		 * its final location.
809  		 */
810  		ret = relocate_vma_down(vma, stack_shift);
811  		if (ret)
812  			goto out_unlock;
813  	}
814  
815  	/* mprotect_fixup is overkill to remove the temporary stack flags */
816  	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
817  
818  	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
819  	stack_size = vma->vm_end - vma->vm_start;
820  	/*
821  	 * Align this down to a page boundary as expand_stack
822  	 * will align it up.
823  	 */
824  	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
825  
826  	stack_expand = min(rlim_stack, stack_size + stack_expand);
827  
828  #ifdef CONFIG_STACK_GROWSUP
829  	stack_base = vma->vm_start + stack_expand;
830  #else
831  	stack_base = vma->vm_end - stack_expand;
832  #endif
833  	current->mm->start_stack = bprm->p;
834  	ret = expand_stack_locked(vma, stack_base);
835  	if (ret)
836  		ret = -EFAULT;
837  
838  out_unlock:
839  	mmap_write_unlock(mm);
840  	return ret;
841  }
842  EXPORT_SYMBOL(setup_arg_pages);
843  
844  #else
845  
846  /*
847   * Transfer the program arguments and environment from the holding pages
848   * onto the stack. The provided stack pointer is adjusted accordingly.
849   */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)850  int transfer_args_to_stack(struct linux_binprm *bprm,
851  			   unsigned long *sp_location)
852  {
853  	unsigned long index, stop, sp;
854  	int ret = 0;
855  
856  	stop = bprm->p >> PAGE_SHIFT;
857  	sp = *sp_location;
858  
859  	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
860  		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
861  		char *src = kmap_local_page(bprm->page[index]) + offset;
862  		sp -= PAGE_SIZE - offset;
863  		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
864  			ret = -EFAULT;
865  		kunmap_local(src);
866  		if (ret)
867  			goto out;
868  	}
869  
870  	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
871  	*sp_location = sp;
872  
873  out:
874  	return ret;
875  }
876  EXPORT_SYMBOL(transfer_args_to_stack);
877  
878  #endif /* CONFIG_MMU */
879  
880  /*
881   * On success, caller must call do_close_execat() on the returned
882   * struct file to close it.
883   */
do_open_execat(int fd,struct filename * name,int flags)884  static struct file *do_open_execat(int fd, struct filename *name, int flags)
885  {
886  	struct file *file;
887  	struct open_flags open_exec_flags = {
888  		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
889  		.acc_mode = MAY_EXEC,
890  		.intent = LOOKUP_OPEN,
891  		.lookup_flags = LOOKUP_FOLLOW,
892  	};
893  
894  	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
895  		return ERR_PTR(-EINVAL);
896  	if (flags & AT_SYMLINK_NOFOLLOW)
897  		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
898  	if (flags & AT_EMPTY_PATH)
899  		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
900  
901  	file = do_filp_open(fd, name, &open_exec_flags);
902  	if (IS_ERR(file))
903  		return file;
904  
905  	/*
906  	 * In the past the regular type check was here. It moved to may_open() in
907  	 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
908  	 * an invariant that all non-regular files error out before we get here.
909  	 */
910  	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
911  	    path_noexec(&file->f_path)) {
912  		fput(file);
913  		return ERR_PTR(-EACCES);
914  	}
915  
916  	return file;
917  }
918  
919  /**
920   * open_exec - Open a path name for execution
921   *
922   * @name: path name to open with the intent of executing it.
923   *
924   * Returns ERR_PTR on failure or allocated struct file on success.
925   *
926   * As this is a wrapper for the internal do_open_execat(). Also see
927   * do_close_execat().
928   */
open_exec(const char * name)929  struct file *open_exec(const char *name)
930  {
931  	struct filename *filename = getname_kernel(name);
932  	struct file *f = ERR_CAST(filename);
933  
934  	if (!IS_ERR(filename)) {
935  		f = do_open_execat(AT_FDCWD, filename, 0);
936  		putname(filename);
937  	}
938  	return f;
939  }
940  EXPORT_SYMBOL(open_exec);
941  
942  #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)943  ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
944  {
945  	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
946  	if (res > 0)
947  		flush_icache_user_range(addr, addr + len);
948  	return res;
949  }
950  EXPORT_SYMBOL(read_code);
951  #endif
952  
953  /*
954   * Maps the mm_struct mm into the current task struct.
955   * On success, this function returns with exec_update_lock
956   * held for writing.
957   */
exec_mmap(struct mm_struct * mm)958  static int exec_mmap(struct mm_struct *mm)
959  {
960  	struct task_struct *tsk;
961  	struct mm_struct *old_mm, *active_mm;
962  	int ret;
963  
964  	/* Notify parent that we're no longer interested in the old VM */
965  	tsk = current;
966  	old_mm = current->mm;
967  	exec_mm_release(tsk, old_mm);
968  
969  	ret = down_write_killable(&tsk->signal->exec_update_lock);
970  	if (ret)
971  		return ret;
972  
973  	if (old_mm) {
974  		/*
975  		 * If there is a pending fatal signal perhaps a signal
976  		 * whose default action is to create a coredump get
977  		 * out and die instead of going through with the exec.
978  		 */
979  		ret = mmap_read_lock_killable(old_mm);
980  		if (ret) {
981  			up_write(&tsk->signal->exec_update_lock);
982  			return ret;
983  		}
984  	}
985  
986  	task_lock(tsk);
987  	membarrier_exec_mmap(mm);
988  
989  	local_irq_disable();
990  	active_mm = tsk->active_mm;
991  	tsk->active_mm = mm;
992  	tsk->mm = mm;
993  	mm_init_cid(mm);
994  	/*
995  	 * This prevents preemption while active_mm is being loaded and
996  	 * it and mm are being updated, which could cause problems for
997  	 * lazy tlb mm refcounting when these are updated by context
998  	 * switches. Not all architectures can handle irqs off over
999  	 * activate_mm yet.
1000  	 */
1001  	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1002  		local_irq_enable();
1003  	activate_mm(active_mm, mm);
1004  	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1005  		local_irq_enable();
1006  	lru_gen_add_mm(mm);
1007  	task_unlock(tsk);
1008  	lru_gen_use_mm(mm);
1009  	if (old_mm) {
1010  		mmap_read_unlock(old_mm);
1011  		BUG_ON(active_mm != old_mm);
1012  		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1013  		mm_update_next_owner(old_mm);
1014  		mmput(old_mm);
1015  		return 0;
1016  	}
1017  	mmdrop_lazy_tlb(active_mm);
1018  	return 0;
1019  }
1020  
de_thread(struct task_struct * tsk)1021  static int de_thread(struct task_struct *tsk)
1022  {
1023  	struct signal_struct *sig = tsk->signal;
1024  	struct sighand_struct *oldsighand = tsk->sighand;
1025  	spinlock_t *lock = &oldsighand->siglock;
1026  
1027  	if (thread_group_empty(tsk))
1028  		goto no_thread_group;
1029  
1030  	/*
1031  	 * Kill all other threads in the thread group.
1032  	 */
1033  	spin_lock_irq(lock);
1034  	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1035  		/*
1036  		 * Another group action in progress, just
1037  		 * return so that the signal is processed.
1038  		 */
1039  		spin_unlock_irq(lock);
1040  		return -EAGAIN;
1041  	}
1042  
1043  	sig->group_exec_task = tsk;
1044  	sig->notify_count = zap_other_threads(tsk);
1045  	if (!thread_group_leader(tsk))
1046  		sig->notify_count--;
1047  
1048  	while (sig->notify_count) {
1049  		__set_current_state(TASK_KILLABLE);
1050  		spin_unlock_irq(lock);
1051  		schedule();
1052  		if (__fatal_signal_pending(tsk))
1053  			goto killed;
1054  		spin_lock_irq(lock);
1055  	}
1056  	spin_unlock_irq(lock);
1057  
1058  	/*
1059  	 * At this point all other threads have exited, all we have to
1060  	 * do is to wait for the thread group leader to become inactive,
1061  	 * and to assume its PID:
1062  	 */
1063  	if (!thread_group_leader(tsk)) {
1064  		struct task_struct *leader = tsk->group_leader;
1065  
1066  		for (;;) {
1067  			cgroup_threadgroup_change_begin(tsk);
1068  			write_lock_irq(&tasklist_lock);
1069  			/*
1070  			 * Do this under tasklist_lock to ensure that
1071  			 * exit_notify() can't miss ->group_exec_task
1072  			 */
1073  			sig->notify_count = -1;
1074  			if (likely(leader->exit_state))
1075  				break;
1076  			__set_current_state(TASK_KILLABLE);
1077  			write_unlock_irq(&tasklist_lock);
1078  			cgroup_threadgroup_change_end(tsk);
1079  			schedule();
1080  			if (__fatal_signal_pending(tsk))
1081  				goto killed;
1082  		}
1083  
1084  		/*
1085  		 * The only record we have of the real-time age of a
1086  		 * process, regardless of execs it's done, is start_time.
1087  		 * All the past CPU time is accumulated in signal_struct
1088  		 * from sister threads now dead.  But in this non-leader
1089  		 * exec, nothing survives from the original leader thread,
1090  		 * whose birth marks the true age of this process now.
1091  		 * When we take on its identity by switching to its PID, we
1092  		 * also take its birthdate (always earlier than our own).
1093  		 */
1094  		tsk->start_time = leader->start_time;
1095  		tsk->start_boottime = leader->start_boottime;
1096  
1097  		BUG_ON(!same_thread_group(leader, tsk));
1098  		/*
1099  		 * An exec() starts a new thread group with the
1100  		 * TGID of the previous thread group. Rehash the
1101  		 * two threads with a switched PID, and release
1102  		 * the former thread group leader:
1103  		 */
1104  
1105  		/* Become a process group leader with the old leader's pid.
1106  		 * The old leader becomes a thread of the this thread group.
1107  		 */
1108  		exchange_tids(tsk, leader);
1109  		transfer_pid(leader, tsk, PIDTYPE_TGID);
1110  		transfer_pid(leader, tsk, PIDTYPE_PGID);
1111  		transfer_pid(leader, tsk, PIDTYPE_SID);
1112  
1113  		list_replace_rcu(&leader->tasks, &tsk->tasks);
1114  		list_replace_init(&leader->sibling, &tsk->sibling);
1115  
1116  		tsk->group_leader = tsk;
1117  		leader->group_leader = tsk;
1118  
1119  		tsk->exit_signal = SIGCHLD;
1120  		leader->exit_signal = -1;
1121  
1122  		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1123  		leader->exit_state = EXIT_DEAD;
1124  		/*
1125  		 * We are going to release_task()->ptrace_unlink() silently,
1126  		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1127  		 * the tracer won't block again waiting for this thread.
1128  		 */
1129  		if (unlikely(leader->ptrace))
1130  			__wake_up_parent(leader, leader->parent);
1131  		write_unlock_irq(&tasklist_lock);
1132  		cgroup_threadgroup_change_end(tsk);
1133  
1134  		release_task(leader);
1135  	}
1136  
1137  	sig->group_exec_task = NULL;
1138  	sig->notify_count = 0;
1139  
1140  no_thread_group:
1141  	/* we have changed execution domain */
1142  	tsk->exit_signal = SIGCHLD;
1143  
1144  	BUG_ON(!thread_group_leader(tsk));
1145  	return 0;
1146  
1147  killed:
1148  	/* protects against exit_notify() and __exit_signal() */
1149  	read_lock(&tasklist_lock);
1150  	sig->group_exec_task = NULL;
1151  	sig->notify_count = 0;
1152  	read_unlock(&tasklist_lock);
1153  	return -EAGAIN;
1154  }
1155  
1156  
1157  /*
1158   * This function makes sure the current process has its own signal table,
1159   * so that flush_signal_handlers can later reset the handlers without
1160   * disturbing other processes.  (Other processes might share the signal
1161   * table via the CLONE_SIGHAND option to clone().)
1162   */
unshare_sighand(struct task_struct * me)1163  static int unshare_sighand(struct task_struct *me)
1164  {
1165  	struct sighand_struct *oldsighand = me->sighand;
1166  
1167  	if (refcount_read(&oldsighand->count) != 1) {
1168  		struct sighand_struct *newsighand;
1169  		/*
1170  		 * This ->sighand is shared with the CLONE_SIGHAND
1171  		 * but not CLONE_THREAD task, switch to the new one.
1172  		 */
1173  		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1174  		if (!newsighand)
1175  			return -ENOMEM;
1176  
1177  		refcount_set(&newsighand->count, 1);
1178  
1179  		write_lock_irq(&tasklist_lock);
1180  		spin_lock(&oldsighand->siglock);
1181  		memcpy(newsighand->action, oldsighand->action,
1182  		       sizeof(newsighand->action));
1183  		rcu_assign_pointer(me->sighand, newsighand);
1184  		spin_unlock(&oldsighand->siglock);
1185  		write_unlock_irq(&tasklist_lock);
1186  
1187  		__cleanup_sighand(oldsighand);
1188  	}
1189  	return 0;
1190  }
1191  
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1192  char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1193  {
1194  	task_lock(tsk);
1195  	/* Always NUL terminated and zero-padded */
1196  	strscpy_pad(buf, tsk->comm, buf_size);
1197  	task_unlock(tsk);
1198  	return buf;
1199  }
1200  EXPORT_SYMBOL_GPL(__get_task_comm);
1201  
1202  /*
1203   * These functions flushes out all traces of the currently running executable
1204   * so that a new one can be started
1205   */
1206  
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1207  void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1208  {
1209  	task_lock(tsk);
1210  	trace_task_rename(tsk, buf);
1211  	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1212  	task_unlock(tsk);
1213  	perf_event_comm(tsk, exec);
1214  }
1215  
1216  /*
1217   * Calling this is the point of no return. None of the failures will be
1218   * seen by userspace since either the process is already taking a fatal
1219   * signal (via de_thread() or coredump), or will have SEGV raised
1220   * (after exec_mmap()) by search_binary_handler (see below).
1221   */
begin_new_exec(struct linux_binprm * bprm)1222  int begin_new_exec(struct linux_binprm * bprm)
1223  {
1224  	struct task_struct *me = current;
1225  	int retval;
1226  
1227  	/* Once we are committed compute the creds */
1228  	retval = bprm_creds_from_file(bprm);
1229  	if (retval)
1230  		return retval;
1231  
1232  	/*
1233  	 * This tracepoint marks the point before flushing the old exec where
1234  	 * the current task is still unchanged, but errors are fatal (point of
1235  	 * no return). The later "sched_process_exec" tracepoint is called after
1236  	 * the current task has successfully switched to the new exec.
1237  	 */
1238  	trace_sched_prepare_exec(current, bprm);
1239  
1240  	/*
1241  	 * Ensure all future errors are fatal.
1242  	 */
1243  	bprm->point_of_no_return = true;
1244  
1245  	/*
1246  	 * Make this the only thread in the thread group.
1247  	 */
1248  	retval = de_thread(me);
1249  	if (retval)
1250  		goto out;
1251  
1252  	/*
1253  	 * Cancel any io_uring activity across execve
1254  	 */
1255  	io_uring_task_cancel();
1256  
1257  	/* Ensure the files table is not shared. */
1258  	retval = unshare_files();
1259  	if (retval)
1260  		goto out;
1261  
1262  	/*
1263  	 * Must be called _before_ exec_mmap() as bprm->mm is
1264  	 * not visible until then. Doing it here also ensures
1265  	 * we don't race against replace_mm_exe_file().
1266  	 */
1267  	retval = set_mm_exe_file(bprm->mm, bprm->file);
1268  	if (retval)
1269  		goto out;
1270  
1271  	/* If the binary is not readable then enforce mm->dumpable=0 */
1272  	would_dump(bprm, bprm->file);
1273  	if (bprm->have_execfd)
1274  		would_dump(bprm, bprm->executable);
1275  
1276  	/*
1277  	 * Release all of the old mmap stuff
1278  	 */
1279  	acct_arg_size(bprm, 0);
1280  	retval = exec_mmap(bprm->mm);
1281  	if (retval)
1282  		goto out;
1283  
1284  	bprm->mm = NULL;
1285  
1286  	retval = exec_task_namespaces();
1287  	if (retval)
1288  		goto out_unlock;
1289  
1290  #ifdef CONFIG_POSIX_TIMERS
1291  	spin_lock_irq(&me->sighand->siglock);
1292  	posix_cpu_timers_exit(me);
1293  	spin_unlock_irq(&me->sighand->siglock);
1294  	exit_itimers(me);
1295  	flush_itimer_signals();
1296  #endif
1297  
1298  	/*
1299  	 * Make the signal table private.
1300  	 */
1301  	retval = unshare_sighand(me);
1302  	if (retval)
1303  		goto out_unlock;
1304  
1305  	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1306  					PF_NOFREEZE | PF_NO_SETAFFINITY);
1307  	flush_thread();
1308  	me->personality &= ~bprm->per_clear;
1309  
1310  	clear_syscall_work_syscall_user_dispatch(me);
1311  
1312  	/*
1313  	 * We have to apply CLOEXEC before we change whether the process is
1314  	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1315  	 * trying to access the should-be-closed file descriptors of a process
1316  	 * undergoing exec(2).
1317  	 */
1318  	do_close_on_exec(me->files);
1319  
1320  	if (bprm->secureexec) {
1321  		/* Make sure parent cannot signal privileged process. */
1322  		me->pdeath_signal = 0;
1323  
1324  		/*
1325  		 * For secureexec, reset the stack limit to sane default to
1326  		 * avoid bad behavior from the prior rlimits. This has to
1327  		 * happen before arch_pick_mmap_layout(), which examines
1328  		 * RLIMIT_STACK, but after the point of no return to avoid
1329  		 * needing to clean up the change on failure.
1330  		 */
1331  		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1332  			bprm->rlim_stack.rlim_cur = _STK_LIM;
1333  	}
1334  
1335  	me->sas_ss_sp = me->sas_ss_size = 0;
1336  
1337  	/*
1338  	 * Figure out dumpability. Note that this checking only of current
1339  	 * is wrong, but userspace depends on it. This should be testing
1340  	 * bprm->secureexec instead.
1341  	 */
1342  	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1343  	    !(uid_eq(current_euid(), current_uid()) &&
1344  	      gid_eq(current_egid(), current_gid())))
1345  		set_dumpable(current->mm, suid_dumpable);
1346  	else
1347  		set_dumpable(current->mm, SUID_DUMP_USER);
1348  
1349  	perf_event_exec();
1350  	__set_task_comm(me, kbasename(bprm->filename), true);
1351  
1352  	/* An exec changes our domain. We are no longer part of the thread
1353  	   group */
1354  	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1355  	flush_signal_handlers(me, 0);
1356  
1357  	retval = set_cred_ucounts(bprm->cred);
1358  	if (retval < 0)
1359  		goto out_unlock;
1360  
1361  	/*
1362  	 * install the new credentials for this executable
1363  	 */
1364  	security_bprm_committing_creds(bprm);
1365  
1366  	commit_creds(bprm->cred);
1367  	bprm->cred = NULL;
1368  
1369  	/*
1370  	 * Disable monitoring for regular users
1371  	 * when executing setuid binaries. Must
1372  	 * wait until new credentials are committed
1373  	 * by commit_creds() above
1374  	 */
1375  	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1376  		perf_event_exit_task(me);
1377  	/*
1378  	 * cred_guard_mutex must be held at least to this point to prevent
1379  	 * ptrace_attach() from altering our determination of the task's
1380  	 * credentials; any time after this it may be unlocked.
1381  	 */
1382  	security_bprm_committed_creds(bprm);
1383  
1384  	/* Pass the opened binary to the interpreter. */
1385  	if (bprm->have_execfd) {
1386  		retval = get_unused_fd_flags(0);
1387  		if (retval < 0)
1388  			goto out_unlock;
1389  		fd_install(retval, bprm->executable);
1390  		bprm->executable = NULL;
1391  		bprm->execfd = retval;
1392  	}
1393  	return 0;
1394  
1395  out_unlock:
1396  	up_write(&me->signal->exec_update_lock);
1397  	if (!bprm->cred)
1398  		mutex_unlock(&me->signal->cred_guard_mutex);
1399  
1400  out:
1401  	return retval;
1402  }
1403  EXPORT_SYMBOL(begin_new_exec);
1404  
would_dump(struct linux_binprm * bprm,struct file * file)1405  void would_dump(struct linux_binprm *bprm, struct file *file)
1406  {
1407  	struct inode *inode = file_inode(file);
1408  	struct mnt_idmap *idmap = file_mnt_idmap(file);
1409  	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1410  		struct user_namespace *old, *user_ns;
1411  		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1412  
1413  		/* Ensure mm->user_ns contains the executable */
1414  		user_ns = old = bprm->mm->user_ns;
1415  		while ((user_ns != &init_user_ns) &&
1416  		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1417  			user_ns = user_ns->parent;
1418  
1419  		if (old != user_ns) {
1420  			bprm->mm->user_ns = get_user_ns(user_ns);
1421  			put_user_ns(old);
1422  		}
1423  	}
1424  }
1425  EXPORT_SYMBOL(would_dump);
1426  
setup_new_exec(struct linux_binprm * bprm)1427  void setup_new_exec(struct linux_binprm * bprm)
1428  {
1429  	/* Setup things that can depend upon the personality */
1430  	struct task_struct *me = current;
1431  
1432  	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1433  
1434  	arch_setup_new_exec();
1435  
1436  	/* Set the new mm task size. We have to do that late because it may
1437  	 * depend on TIF_32BIT which is only updated in flush_thread() on
1438  	 * some architectures like powerpc
1439  	 */
1440  	me->mm->task_size = TASK_SIZE;
1441  	up_write(&me->signal->exec_update_lock);
1442  	mutex_unlock(&me->signal->cred_guard_mutex);
1443  }
1444  EXPORT_SYMBOL(setup_new_exec);
1445  
1446  /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1447  void finalize_exec(struct linux_binprm *bprm)
1448  {
1449  	/* Store any stack rlimit changes before starting thread. */
1450  	task_lock(current->group_leader);
1451  	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1452  	task_unlock(current->group_leader);
1453  }
1454  EXPORT_SYMBOL(finalize_exec);
1455  
1456  /*
1457   * Prepare credentials and lock ->cred_guard_mutex.
1458   * setup_new_exec() commits the new creds and drops the lock.
1459   * Or, if exec fails before, free_bprm() should release ->cred
1460   * and unlock.
1461   */
prepare_bprm_creds(struct linux_binprm * bprm)1462  static int prepare_bprm_creds(struct linux_binprm *bprm)
1463  {
1464  	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1465  		return -ERESTARTNOINTR;
1466  
1467  	bprm->cred = prepare_exec_creds();
1468  	if (likely(bprm->cred))
1469  		return 0;
1470  
1471  	mutex_unlock(&current->signal->cred_guard_mutex);
1472  	return -ENOMEM;
1473  }
1474  
1475  /* Matches do_open_execat() */
do_close_execat(struct file * file)1476  static void do_close_execat(struct file *file)
1477  {
1478  	if (file)
1479  		fput(file);
1480  }
1481  
free_bprm(struct linux_binprm * bprm)1482  static void free_bprm(struct linux_binprm *bprm)
1483  {
1484  	if (bprm->mm) {
1485  		acct_arg_size(bprm, 0);
1486  		mmput(bprm->mm);
1487  	}
1488  	free_arg_pages(bprm);
1489  	if (bprm->cred) {
1490  		mutex_unlock(&current->signal->cred_guard_mutex);
1491  		abort_creds(bprm->cred);
1492  	}
1493  	do_close_execat(bprm->file);
1494  	if (bprm->executable)
1495  		fput(bprm->executable);
1496  	/* If a binfmt changed the interp, free it. */
1497  	if (bprm->interp != bprm->filename)
1498  		kfree(bprm->interp);
1499  	kfree(bprm->fdpath);
1500  	kfree(bprm);
1501  }
1502  
alloc_bprm(int fd,struct filename * filename,int flags)1503  static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1504  {
1505  	struct linux_binprm *bprm;
1506  	struct file *file;
1507  	int retval = -ENOMEM;
1508  
1509  	file = do_open_execat(fd, filename, flags);
1510  	if (IS_ERR(file))
1511  		return ERR_CAST(file);
1512  
1513  	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1514  	if (!bprm) {
1515  		do_close_execat(file);
1516  		return ERR_PTR(-ENOMEM);
1517  	}
1518  
1519  	bprm->file = file;
1520  
1521  	if (fd == AT_FDCWD || filename->name[0] == '/') {
1522  		bprm->filename = filename->name;
1523  	} else {
1524  		if (filename->name[0] == '\0')
1525  			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1526  		else
1527  			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1528  						  fd, filename->name);
1529  		if (!bprm->fdpath)
1530  			goto out_free;
1531  
1532  		/*
1533  		 * Record that a name derived from an O_CLOEXEC fd will be
1534  		 * inaccessible after exec.  This allows the code in exec to
1535  		 * choose to fail when the executable is not mmaped into the
1536  		 * interpreter and an open file descriptor is not passed to
1537  		 * the interpreter.  This makes for a better user experience
1538  		 * than having the interpreter start and then immediately fail
1539  		 * when it finds the executable is inaccessible.
1540  		 */
1541  		if (get_close_on_exec(fd))
1542  			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1543  
1544  		bprm->filename = bprm->fdpath;
1545  	}
1546  	bprm->interp = bprm->filename;
1547  
1548  	retval = bprm_mm_init(bprm);
1549  	if (!retval)
1550  		return bprm;
1551  
1552  out_free:
1553  	free_bprm(bprm);
1554  	return ERR_PTR(retval);
1555  }
1556  
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1557  int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1558  {
1559  	/* If a binfmt changed the interp, free it first. */
1560  	if (bprm->interp != bprm->filename)
1561  		kfree(bprm->interp);
1562  	bprm->interp = kstrdup(interp, GFP_KERNEL);
1563  	if (!bprm->interp)
1564  		return -ENOMEM;
1565  	return 0;
1566  }
1567  EXPORT_SYMBOL(bprm_change_interp);
1568  
1569  /*
1570   * determine how safe it is to execute the proposed program
1571   * - the caller must hold ->cred_guard_mutex to protect against
1572   *   PTRACE_ATTACH or seccomp thread-sync
1573   */
check_unsafe_exec(struct linux_binprm * bprm)1574  static void check_unsafe_exec(struct linux_binprm *bprm)
1575  {
1576  	struct task_struct *p = current, *t;
1577  	unsigned n_fs;
1578  
1579  	if (p->ptrace)
1580  		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1581  
1582  	/*
1583  	 * This isn't strictly necessary, but it makes it harder for LSMs to
1584  	 * mess up.
1585  	 */
1586  	if (task_no_new_privs(current))
1587  		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1588  
1589  	/*
1590  	 * If another task is sharing our fs, we cannot safely
1591  	 * suid exec because the differently privileged task
1592  	 * will be able to manipulate the current directory, etc.
1593  	 * It would be nice to force an unshare instead...
1594  	 */
1595  	n_fs = 1;
1596  	spin_lock(&p->fs->lock);
1597  	rcu_read_lock();
1598  	for_other_threads(p, t) {
1599  		if (t->fs == p->fs)
1600  			n_fs++;
1601  	}
1602  	rcu_read_unlock();
1603  
1604  	/* "users" and "in_exec" locked for copy_fs() */
1605  	if (p->fs->users > n_fs)
1606  		bprm->unsafe |= LSM_UNSAFE_SHARE;
1607  	else
1608  		p->fs->in_exec = 1;
1609  	spin_unlock(&p->fs->lock);
1610  }
1611  
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1612  static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1613  {
1614  	/* Handle suid and sgid on files */
1615  	struct mnt_idmap *idmap;
1616  	struct inode *inode = file_inode(file);
1617  	unsigned int mode;
1618  	vfsuid_t vfsuid;
1619  	vfsgid_t vfsgid;
1620  	int err;
1621  
1622  	if (!mnt_may_suid(file->f_path.mnt))
1623  		return;
1624  
1625  	if (task_no_new_privs(current))
1626  		return;
1627  
1628  	mode = READ_ONCE(inode->i_mode);
1629  	if (!(mode & (S_ISUID|S_ISGID)))
1630  		return;
1631  
1632  	idmap = file_mnt_idmap(file);
1633  
1634  	/* Be careful if suid/sgid is set */
1635  	inode_lock(inode);
1636  
1637  	/* Atomically reload and check mode/uid/gid now that lock held. */
1638  	mode = inode->i_mode;
1639  	vfsuid = i_uid_into_vfsuid(idmap, inode);
1640  	vfsgid = i_gid_into_vfsgid(idmap, inode);
1641  	err = inode_permission(idmap, inode, MAY_EXEC);
1642  	inode_unlock(inode);
1643  
1644  	/* Did the exec bit vanish out from under us? Give up. */
1645  	if (err)
1646  		return;
1647  
1648  	/* We ignore suid/sgid if there are no mappings for them in the ns */
1649  	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1650  	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1651  		return;
1652  
1653  	if (mode & S_ISUID) {
1654  		bprm->per_clear |= PER_CLEAR_ON_SETID;
1655  		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1656  	}
1657  
1658  	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1659  		bprm->per_clear |= PER_CLEAR_ON_SETID;
1660  		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1661  	}
1662  }
1663  
1664  /*
1665   * Compute brpm->cred based upon the final binary.
1666   */
bprm_creds_from_file(struct linux_binprm * bprm)1667  static int bprm_creds_from_file(struct linux_binprm *bprm)
1668  {
1669  	/* Compute creds based on which file? */
1670  	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1671  
1672  	bprm_fill_uid(bprm, file);
1673  	return security_bprm_creds_from_file(bprm, file);
1674  }
1675  
1676  /*
1677   * Fill the binprm structure from the inode.
1678   * Read the first BINPRM_BUF_SIZE bytes
1679   *
1680   * This may be called multiple times for binary chains (scripts for example).
1681   */
prepare_binprm(struct linux_binprm * bprm)1682  static int prepare_binprm(struct linux_binprm *bprm)
1683  {
1684  	loff_t pos = 0;
1685  
1686  	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1687  	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1688  }
1689  
1690  /*
1691   * Arguments are '\0' separated strings found at the location bprm->p
1692   * points to; chop off the first by relocating brpm->p to right after
1693   * the first '\0' encountered.
1694   */
remove_arg_zero(struct linux_binprm * bprm)1695  int remove_arg_zero(struct linux_binprm *bprm)
1696  {
1697  	unsigned long offset;
1698  	char *kaddr;
1699  	struct page *page;
1700  
1701  	if (!bprm->argc)
1702  		return 0;
1703  
1704  	do {
1705  		offset = bprm->p & ~PAGE_MASK;
1706  		page = get_arg_page(bprm, bprm->p, 0);
1707  		if (!page)
1708  			return -EFAULT;
1709  		kaddr = kmap_local_page(page);
1710  
1711  		for (; offset < PAGE_SIZE && kaddr[offset];
1712  				offset++, bprm->p++)
1713  			;
1714  
1715  		kunmap_local(kaddr);
1716  		put_arg_page(page);
1717  	} while (offset == PAGE_SIZE);
1718  
1719  	bprm->p++;
1720  	bprm->argc--;
1721  
1722  	return 0;
1723  }
1724  EXPORT_SYMBOL(remove_arg_zero);
1725  
1726  #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1727  /*
1728   * cycle the list of binary formats handler, until one recognizes the image
1729   */
search_binary_handler(struct linux_binprm * bprm)1730  static int search_binary_handler(struct linux_binprm *bprm)
1731  {
1732  	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1733  	struct linux_binfmt *fmt;
1734  	int retval;
1735  
1736  	retval = prepare_binprm(bprm);
1737  	if (retval < 0)
1738  		return retval;
1739  
1740  	retval = security_bprm_check(bprm);
1741  	if (retval)
1742  		return retval;
1743  
1744  	retval = -ENOENT;
1745   retry:
1746  	read_lock(&binfmt_lock);
1747  	list_for_each_entry(fmt, &formats, lh) {
1748  		if (!try_module_get(fmt->module))
1749  			continue;
1750  		read_unlock(&binfmt_lock);
1751  
1752  		retval = fmt->load_binary(bprm);
1753  
1754  		read_lock(&binfmt_lock);
1755  		put_binfmt(fmt);
1756  		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1757  			read_unlock(&binfmt_lock);
1758  			return retval;
1759  		}
1760  	}
1761  	read_unlock(&binfmt_lock);
1762  
1763  	if (need_retry) {
1764  		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1765  		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1766  			return retval;
1767  		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1768  			return retval;
1769  		need_retry = false;
1770  		goto retry;
1771  	}
1772  
1773  	return retval;
1774  }
1775  
1776  /* binfmt handlers will call back into begin_new_exec() on success. */
exec_binprm(struct linux_binprm * bprm)1777  static int exec_binprm(struct linux_binprm *bprm)
1778  {
1779  	pid_t old_pid, old_vpid;
1780  	int ret, depth;
1781  
1782  	/* Need to fetch pid before load_binary changes it */
1783  	old_pid = current->pid;
1784  	rcu_read_lock();
1785  	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1786  	rcu_read_unlock();
1787  
1788  	/* This allows 4 levels of binfmt rewrites before failing hard. */
1789  	for (depth = 0;; depth++) {
1790  		struct file *exec;
1791  		if (depth > 5)
1792  			return -ELOOP;
1793  
1794  		ret = search_binary_handler(bprm);
1795  		if (ret < 0)
1796  			return ret;
1797  		if (!bprm->interpreter)
1798  			break;
1799  
1800  		exec = bprm->file;
1801  		bprm->file = bprm->interpreter;
1802  		bprm->interpreter = NULL;
1803  
1804  		if (unlikely(bprm->have_execfd)) {
1805  			if (bprm->executable) {
1806  				fput(exec);
1807  				return -ENOEXEC;
1808  			}
1809  			bprm->executable = exec;
1810  		} else
1811  			fput(exec);
1812  	}
1813  
1814  	audit_bprm(bprm);
1815  	trace_sched_process_exec(current, old_pid, bprm);
1816  	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1817  	proc_exec_connector(current);
1818  	return 0;
1819  }
1820  
bprm_execve(struct linux_binprm * bprm)1821  static int bprm_execve(struct linux_binprm *bprm)
1822  {
1823  	int retval;
1824  
1825  	retval = prepare_bprm_creds(bprm);
1826  	if (retval)
1827  		return retval;
1828  
1829  	/*
1830  	 * Check for unsafe execution states before exec_binprm(), which
1831  	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1832  	 * where setuid-ness is evaluated.
1833  	 */
1834  	check_unsafe_exec(bprm);
1835  	current->in_execve = 1;
1836  	sched_mm_cid_before_execve(current);
1837  
1838  	sched_exec();
1839  
1840  	/* Set the unchanging part of bprm->cred */
1841  	retval = security_bprm_creds_for_exec(bprm);
1842  	if (retval)
1843  		goto out;
1844  
1845  	retval = exec_binprm(bprm);
1846  	if (retval < 0)
1847  		goto out;
1848  
1849  	sched_mm_cid_after_execve(current);
1850  	/* execve succeeded */
1851  	current->fs->in_exec = 0;
1852  	current->in_execve = 0;
1853  	rseq_execve(current);
1854  	user_events_execve(current);
1855  	acct_update_integrals(current);
1856  	task_numa_free(current, false);
1857  	return retval;
1858  
1859  out:
1860  	/*
1861  	 * If past the point of no return ensure the code never
1862  	 * returns to the userspace process.  Use an existing fatal
1863  	 * signal if present otherwise terminate the process with
1864  	 * SIGSEGV.
1865  	 */
1866  	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1867  		force_fatal_sig(SIGSEGV);
1868  
1869  	sched_mm_cid_after_execve(current);
1870  	current->fs->in_exec = 0;
1871  	current->in_execve = 0;
1872  
1873  	return retval;
1874  }
1875  
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1876  static int do_execveat_common(int fd, struct filename *filename,
1877  			      struct user_arg_ptr argv,
1878  			      struct user_arg_ptr envp,
1879  			      int flags)
1880  {
1881  	struct linux_binprm *bprm;
1882  	int retval;
1883  
1884  	if (IS_ERR(filename))
1885  		return PTR_ERR(filename);
1886  
1887  	/*
1888  	 * We move the actual failure in case of RLIMIT_NPROC excess from
1889  	 * set*uid() to execve() because too many poorly written programs
1890  	 * don't check setuid() return code.  Here we additionally recheck
1891  	 * whether NPROC limit is still exceeded.
1892  	 */
1893  	if ((current->flags & PF_NPROC_EXCEEDED) &&
1894  	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1895  		retval = -EAGAIN;
1896  		goto out_ret;
1897  	}
1898  
1899  	/* We're below the limit (still or again), so we don't want to make
1900  	 * further execve() calls fail. */
1901  	current->flags &= ~PF_NPROC_EXCEEDED;
1902  
1903  	bprm = alloc_bprm(fd, filename, flags);
1904  	if (IS_ERR(bprm)) {
1905  		retval = PTR_ERR(bprm);
1906  		goto out_ret;
1907  	}
1908  
1909  	retval = count(argv, MAX_ARG_STRINGS);
1910  	if (retval == 0)
1911  		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1912  			     current->comm, bprm->filename);
1913  	if (retval < 0)
1914  		goto out_free;
1915  	bprm->argc = retval;
1916  
1917  	retval = count(envp, MAX_ARG_STRINGS);
1918  	if (retval < 0)
1919  		goto out_free;
1920  	bprm->envc = retval;
1921  
1922  	retval = bprm_stack_limits(bprm);
1923  	if (retval < 0)
1924  		goto out_free;
1925  
1926  	retval = copy_string_kernel(bprm->filename, bprm);
1927  	if (retval < 0)
1928  		goto out_free;
1929  	bprm->exec = bprm->p;
1930  
1931  	retval = copy_strings(bprm->envc, envp, bprm);
1932  	if (retval < 0)
1933  		goto out_free;
1934  
1935  	retval = copy_strings(bprm->argc, argv, bprm);
1936  	if (retval < 0)
1937  		goto out_free;
1938  
1939  	/*
1940  	 * When argv is empty, add an empty string ("") as argv[0] to
1941  	 * ensure confused userspace programs that start processing
1942  	 * from argv[1] won't end up walking envp. See also
1943  	 * bprm_stack_limits().
1944  	 */
1945  	if (bprm->argc == 0) {
1946  		retval = copy_string_kernel("", bprm);
1947  		if (retval < 0)
1948  			goto out_free;
1949  		bprm->argc = 1;
1950  	}
1951  
1952  	retval = bprm_execve(bprm);
1953  out_free:
1954  	free_bprm(bprm);
1955  
1956  out_ret:
1957  	putname(filename);
1958  	return retval;
1959  }
1960  
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1961  int kernel_execve(const char *kernel_filename,
1962  		  const char *const *argv, const char *const *envp)
1963  {
1964  	struct filename *filename;
1965  	struct linux_binprm *bprm;
1966  	int fd = AT_FDCWD;
1967  	int retval;
1968  
1969  	/* It is non-sense for kernel threads to call execve */
1970  	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1971  		return -EINVAL;
1972  
1973  	filename = getname_kernel(kernel_filename);
1974  	if (IS_ERR(filename))
1975  		return PTR_ERR(filename);
1976  
1977  	bprm = alloc_bprm(fd, filename, 0);
1978  	if (IS_ERR(bprm)) {
1979  		retval = PTR_ERR(bprm);
1980  		goto out_ret;
1981  	}
1982  
1983  	retval = count_strings_kernel(argv);
1984  	if (WARN_ON_ONCE(retval == 0))
1985  		retval = -EINVAL;
1986  	if (retval < 0)
1987  		goto out_free;
1988  	bprm->argc = retval;
1989  
1990  	retval = count_strings_kernel(envp);
1991  	if (retval < 0)
1992  		goto out_free;
1993  	bprm->envc = retval;
1994  
1995  	retval = bprm_stack_limits(bprm);
1996  	if (retval < 0)
1997  		goto out_free;
1998  
1999  	retval = copy_string_kernel(bprm->filename, bprm);
2000  	if (retval < 0)
2001  		goto out_free;
2002  	bprm->exec = bprm->p;
2003  
2004  	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2005  	if (retval < 0)
2006  		goto out_free;
2007  
2008  	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2009  	if (retval < 0)
2010  		goto out_free;
2011  
2012  	retval = bprm_execve(bprm);
2013  out_free:
2014  	free_bprm(bprm);
2015  out_ret:
2016  	putname(filename);
2017  	return retval;
2018  }
2019  
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2020  static int do_execve(struct filename *filename,
2021  	const char __user *const __user *__argv,
2022  	const char __user *const __user *__envp)
2023  {
2024  	struct user_arg_ptr argv = { .ptr.native = __argv };
2025  	struct user_arg_ptr envp = { .ptr.native = __envp };
2026  	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2027  }
2028  
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2029  static int do_execveat(int fd, struct filename *filename,
2030  		const char __user *const __user *__argv,
2031  		const char __user *const __user *__envp,
2032  		int flags)
2033  {
2034  	struct user_arg_ptr argv = { .ptr.native = __argv };
2035  	struct user_arg_ptr envp = { .ptr.native = __envp };
2036  
2037  	return do_execveat_common(fd, filename, argv, envp, flags);
2038  }
2039  
2040  #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2041  static int compat_do_execve(struct filename *filename,
2042  	const compat_uptr_t __user *__argv,
2043  	const compat_uptr_t __user *__envp)
2044  {
2045  	struct user_arg_ptr argv = {
2046  		.is_compat = true,
2047  		.ptr.compat = __argv,
2048  	};
2049  	struct user_arg_ptr envp = {
2050  		.is_compat = true,
2051  		.ptr.compat = __envp,
2052  	};
2053  	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2054  }
2055  
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2056  static int compat_do_execveat(int fd, struct filename *filename,
2057  			      const compat_uptr_t __user *__argv,
2058  			      const compat_uptr_t __user *__envp,
2059  			      int flags)
2060  {
2061  	struct user_arg_ptr argv = {
2062  		.is_compat = true,
2063  		.ptr.compat = __argv,
2064  	};
2065  	struct user_arg_ptr envp = {
2066  		.is_compat = true,
2067  		.ptr.compat = __envp,
2068  	};
2069  	return do_execveat_common(fd, filename, argv, envp, flags);
2070  }
2071  #endif
2072  
set_binfmt(struct linux_binfmt * new)2073  void set_binfmt(struct linux_binfmt *new)
2074  {
2075  	struct mm_struct *mm = current->mm;
2076  
2077  	if (mm->binfmt)
2078  		module_put(mm->binfmt->module);
2079  
2080  	mm->binfmt = new;
2081  	if (new)
2082  		__module_get(new->module);
2083  }
2084  EXPORT_SYMBOL(set_binfmt);
2085  
2086  /*
2087   * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2088   */
set_dumpable(struct mm_struct * mm,int value)2089  void set_dumpable(struct mm_struct *mm, int value)
2090  {
2091  	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2092  		return;
2093  
2094  	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2095  }
2096  
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2097  SYSCALL_DEFINE3(execve,
2098  		const char __user *, filename,
2099  		const char __user *const __user *, argv,
2100  		const char __user *const __user *, envp)
2101  {
2102  	return do_execve(getname(filename), argv, envp);
2103  }
2104  
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2105  SYSCALL_DEFINE5(execveat,
2106  		int, fd, const char __user *, filename,
2107  		const char __user *const __user *, argv,
2108  		const char __user *const __user *, envp,
2109  		int, flags)
2110  {
2111  	return do_execveat(fd,
2112  			   getname_uflags(filename, flags),
2113  			   argv, envp, flags);
2114  }
2115  
2116  #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2117  COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2118  	const compat_uptr_t __user *, argv,
2119  	const compat_uptr_t __user *, envp)
2120  {
2121  	return compat_do_execve(getname(filename), argv, envp);
2122  }
2123  
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2124  COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2125  		       const char __user *, filename,
2126  		       const compat_uptr_t __user *, argv,
2127  		       const compat_uptr_t __user *, envp,
2128  		       int,  flags)
2129  {
2130  	return compat_do_execveat(fd,
2131  				  getname_uflags(filename, flags),
2132  				  argv, envp, flags);
2133  }
2134  #endif
2135  
2136  #ifdef CONFIG_SYSCTL
2137  
proc_dointvec_minmax_coredump(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2138  static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
2139  		void *buffer, size_t *lenp, loff_t *ppos)
2140  {
2141  	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2142  
2143  	if (!error)
2144  		validate_coredump_safety();
2145  	return error;
2146  }
2147  
2148  static struct ctl_table fs_exec_sysctls[] = {
2149  	{
2150  		.procname	= "suid_dumpable",
2151  		.data		= &suid_dumpable,
2152  		.maxlen		= sizeof(int),
2153  		.mode		= 0644,
2154  		.proc_handler	= proc_dointvec_minmax_coredump,
2155  		.extra1		= SYSCTL_ZERO,
2156  		.extra2		= SYSCTL_TWO,
2157  	},
2158  };
2159  
init_fs_exec_sysctls(void)2160  static int __init init_fs_exec_sysctls(void)
2161  {
2162  	register_sysctl_init("fs", fs_exec_sysctls);
2163  	return 0;
2164  }
2165  
2166  fs_initcall(init_fs_exec_sysctls);
2167  #endif /* CONFIG_SYSCTL */
2168  
2169  #ifdef CONFIG_EXEC_KUNIT_TEST
2170  #include "tests/exec_kunit.c"
2171  #endif
2172