1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * PowerNV LPC bus handling.
4   *
5   * Copyright 2013 IBM Corp.
6   */
7  
8  #include <linux/kernel.h>
9  #include <linux/of.h>
10  #include <linux/bug.h>
11  #include <linux/io.h>
12  #include <linux/slab.h>
13  #include <linux/debugfs.h>
14  
15  #include <asm/machdep.h>
16  #include <asm/firmware.h>
17  #include <asm/opal.h>
18  #include <asm/prom.h>
19  #include <linux/uaccess.h>
20  #include <asm/isa-bridge.h>
21  
22  static int opal_lpc_chip_id = -1;
23  
opal_lpc_inb(unsigned long port)24  static u8 opal_lpc_inb(unsigned long port)
25  {
26  	int64_t rc;
27  	__be32 data;
28  
29  	if (opal_lpc_chip_id < 0 || port > 0xffff)
30  		return 0xff;
31  	rc = opal_lpc_read(opal_lpc_chip_id, OPAL_LPC_IO, port, &data, 1);
32  	return rc ? 0xff : be32_to_cpu(data);
33  }
34  
__opal_lpc_inw(unsigned long port)35  static __le16 __opal_lpc_inw(unsigned long port)
36  {
37  	int64_t rc;
38  	__be32 data;
39  
40  	if (opal_lpc_chip_id < 0 || port > 0xfffe)
41  		return 0xffff;
42  	if (port & 1)
43  		return (__le16)opal_lpc_inb(port) << 8 | opal_lpc_inb(port + 1);
44  	rc = opal_lpc_read(opal_lpc_chip_id, OPAL_LPC_IO, port, &data, 2);
45  	return rc ? 0xffff : be32_to_cpu(data);
46  }
opal_lpc_inw(unsigned long port)47  static u16 opal_lpc_inw(unsigned long port)
48  {
49  	return le16_to_cpu(__opal_lpc_inw(port));
50  }
51  
__opal_lpc_inl(unsigned long port)52  static __le32 __opal_lpc_inl(unsigned long port)
53  {
54  	int64_t rc;
55  	__be32 data;
56  
57  	if (opal_lpc_chip_id < 0 || port > 0xfffc)
58  		return 0xffffffff;
59  	if (port & 3)
60  		return (__le32)opal_lpc_inb(port    ) << 24 |
61  		       (__le32)opal_lpc_inb(port + 1) << 16 |
62  		       (__le32)opal_lpc_inb(port + 2) <<  8 |
63  			       opal_lpc_inb(port + 3);
64  	rc = opal_lpc_read(opal_lpc_chip_id, OPAL_LPC_IO, port, &data, 4);
65  	return rc ? 0xffffffff : be32_to_cpu(data);
66  }
67  
opal_lpc_inl(unsigned long port)68  static u32 opal_lpc_inl(unsigned long port)
69  {
70  	return le32_to_cpu(__opal_lpc_inl(port));
71  }
72  
opal_lpc_outb(u8 val,unsigned long port)73  static void opal_lpc_outb(u8 val, unsigned long port)
74  {
75  	if (opal_lpc_chip_id < 0 || port > 0xffff)
76  		return;
77  	opal_lpc_write(opal_lpc_chip_id, OPAL_LPC_IO, port, val, 1);
78  }
79  
__opal_lpc_outw(__le16 val,unsigned long port)80  static void __opal_lpc_outw(__le16 val, unsigned long port)
81  {
82  	if (opal_lpc_chip_id < 0 || port > 0xfffe)
83  		return;
84  	if (port & 1) {
85  		opal_lpc_outb(val >> 8, port);
86  		opal_lpc_outb(val     , port + 1);
87  		return;
88  	}
89  	opal_lpc_write(opal_lpc_chip_id, OPAL_LPC_IO, port, val, 2);
90  }
91  
opal_lpc_outw(u16 val,unsigned long port)92  static void opal_lpc_outw(u16 val, unsigned long port)
93  {
94  	__opal_lpc_outw(cpu_to_le16(val), port);
95  }
96  
__opal_lpc_outl(__le32 val,unsigned long port)97  static void __opal_lpc_outl(__le32 val, unsigned long port)
98  {
99  	if (opal_lpc_chip_id < 0 || port > 0xfffc)
100  		return;
101  	if (port & 3) {
102  		opal_lpc_outb(val >> 24, port);
103  		opal_lpc_outb(val >> 16, port + 1);
104  		opal_lpc_outb(val >>  8, port + 2);
105  		opal_lpc_outb(val      , port + 3);
106  		return;
107  	}
108  	opal_lpc_write(opal_lpc_chip_id, OPAL_LPC_IO, port, val, 4);
109  }
110  
opal_lpc_outl(u32 val,unsigned long port)111  static void opal_lpc_outl(u32 val, unsigned long port)
112  {
113  	__opal_lpc_outl(cpu_to_le32(val), port);
114  }
115  
opal_lpc_insb(unsigned long p,void * b,unsigned long c)116  static void opal_lpc_insb(unsigned long p, void *b, unsigned long c)
117  {
118  	u8 *ptr = b;
119  
120  	while(c--)
121  		*(ptr++) = opal_lpc_inb(p);
122  }
123  
opal_lpc_insw(unsigned long p,void * b,unsigned long c)124  static void opal_lpc_insw(unsigned long p, void *b, unsigned long c)
125  {
126  	__le16 *ptr = b;
127  
128  	while(c--)
129  		*(ptr++) = __opal_lpc_inw(p);
130  }
131  
opal_lpc_insl(unsigned long p,void * b,unsigned long c)132  static void opal_lpc_insl(unsigned long p, void *b, unsigned long c)
133  {
134  	__le32 *ptr = b;
135  
136  	while(c--)
137  		*(ptr++) = __opal_lpc_inl(p);
138  }
139  
opal_lpc_outsb(unsigned long p,const void * b,unsigned long c)140  static void opal_lpc_outsb(unsigned long p, const void *b, unsigned long c)
141  {
142  	const u8 *ptr = b;
143  
144  	while(c--)
145  		opal_lpc_outb(*(ptr++), p);
146  }
147  
opal_lpc_outsw(unsigned long p,const void * b,unsigned long c)148  static void opal_lpc_outsw(unsigned long p, const void *b, unsigned long c)
149  {
150  	const __le16 *ptr = b;
151  
152  	while(c--)
153  		__opal_lpc_outw(*(ptr++), p);
154  }
155  
opal_lpc_outsl(unsigned long p,const void * b,unsigned long c)156  static void opal_lpc_outsl(unsigned long p, const void *b, unsigned long c)
157  {
158  	const __le32 *ptr = b;
159  
160  	while(c--)
161  		__opal_lpc_outl(*(ptr++), p);
162  }
163  
164  static const struct ppc_pci_io opal_lpc_io = {
165  	.inb	= opal_lpc_inb,
166  	.inw	= opal_lpc_inw,
167  	.inl	= opal_lpc_inl,
168  	.outb	= opal_lpc_outb,
169  	.outw	= opal_lpc_outw,
170  	.outl	= opal_lpc_outl,
171  	.insb	= opal_lpc_insb,
172  	.insw	= opal_lpc_insw,
173  	.insl	= opal_lpc_insl,
174  	.outsb	= opal_lpc_outsb,
175  	.outsw	= opal_lpc_outsw,
176  	.outsl	= opal_lpc_outsl,
177  };
178  
179  #ifdef CONFIG_DEBUG_FS
180  struct lpc_debugfs_entry {
181  	enum OpalLPCAddressType lpc_type;
182  };
183  
lpc_debug_read(struct file * filp,char __user * ubuf,size_t count,loff_t * ppos)184  static ssize_t lpc_debug_read(struct file *filp, char __user *ubuf,
185  			      size_t count, loff_t *ppos)
186  {
187  	struct lpc_debugfs_entry *lpc = filp->private_data;
188  	u32 data, pos, len, todo;
189  	int rc;
190  
191  	if (!access_ok(ubuf, count))
192  		return -EFAULT;
193  
194  	todo = count;
195  	while (todo) {
196  		pos = *ppos;
197  
198  		/*
199  		 * Select access size based on count and alignment and
200  		 * access type. IO and MEM only support byte accesses,
201  		 * FW supports all 3.
202  		 */
203  		len = 1;
204  		if (lpc->lpc_type == OPAL_LPC_FW) {
205  			if (todo > 3 && (pos & 3) == 0)
206  				len = 4;
207  			else if (todo > 1 && (pos & 1) == 0)
208  				len = 2;
209  		}
210  		rc = opal_lpc_read(opal_lpc_chip_id, lpc->lpc_type, pos,
211  				   &data, len);
212  		if (rc)
213  			return -ENXIO;
214  
215  		/*
216  		 * Now there is some trickery with the data returned by OPAL
217  		 * as it's the desired data right justified in a 32-bit BE
218  		 * word.
219  		 *
220  		 * This is a very bad interface and I'm to blame for it :-(
221  		 *
222  		 * So we can't just apply a 32-bit swap to what comes from OPAL,
223  		 * because user space expects the *bytes* to be in their proper
224  		 * respective positions (ie, LPC position).
225  		 *
226  		 * So what we really want to do here is to shift data right
227  		 * appropriately on a LE kernel.
228  		 *
229  		 * IE. If the LPC transaction has bytes B0, B1, B2 and B3 in that
230  		 * order, we have in memory written to by OPAL at the "data"
231  		 * pointer:
232  		 *
233  		 *               Bytes:      OPAL "data"   LE "data"
234  		 *   32-bit:   B0 B1 B2 B3   B0B1B2B3      B3B2B1B0
235  		 *   16-bit:   B0 B1         0000B0B1      B1B00000
236  		 *    8-bit:   B0            000000B0      B0000000
237  		 *
238  		 * So a BE kernel will have the leftmost of the above in the MSB
239  		 * and rightmost in the LSB and can just then "cast" the u32 "data"
240  		 * down to the appropriate quantity and write it.
241  		 *
242  		 * However, an LE kernel can't. It doesn't need to swap because a
243  		 * load from data followed by a store to user are going to preserve
244  		 * the byte ordering which is the wire byte order which is what the
245  		 * user wants, but in order to "crop" to the right size, we need to
246  		 * shift right first.
247  		 */
248  		switch(len) {
249  		case 4:
250  			rc = __put_user((u32)data, (u32 __user *)ubuf);
251  			break;
252  		case 2:
253  #ifdef __LITTLE_ENDIAN__
254  			data >>= 16;
255  #endif
256  			rc = __put_user((u16)data, (u16 __user *)ubuf);
257  			break;
258  		default:
259  #ifdef __LITTLE_ENDIAN__
260  			data >>= 24;
261  #endif
262  			rc = __put_user((u8)data, (u8 __user *)ubuf);
263  			break;
264  		}
265  		if (rc)
266  			return -EFAULT;
267  		*ppos += len;
268  		ubuf += len;
269  		todo -= len;
270  	}
271  
272  	return count;
273  }
274  
lpc_debug_write(struct file * filp,const char __user * ubuf,size_t count,loff_t * ppos)275  static ssize_t lpc_debug_write(struct file *filp, const char __user *ubuf,
276  			       size_t count, loff_t *ppos)
277  {
278  	struct lpc_debugfs_entry *lpc = filp->private_data;
279  	u32 data, pos, len, todo;
280  	int rc;
281  
282  	if (!access_ok(ubuf, count))
283  		return -EFAULT;
284  
285  	todo = count;
286  	while (todo) {
287  		pos = *ppos;
288  
289  		/*
290  		 * Select access size based on count and alignment and
291  		 * access type. IO and MEM only support byte acceses,
292  		 * FW supports all 3.
293  		 */
294  		len = 1;
295  		if (lpc->lpc_type == OPAL_LPC_FW) {
296  			if (todo > 3 && (pos & 3) == 0)
297  				len = 4;
298  			else if (todo > 1 && (pos & 1) == 0)
299  				len = 2;
300  		}
301  
302  		/*
303  		 * Similarly to the read case, we have some trickery here but
304  		 * it's different to handle. We need to pass the value to OPAL in
305  		 * a register whose layout depends on the access size. We want
306  		 * to reproduce the memory layout of the user, however we aren't
307  		 * doing a load from user and a store to another memory location
308  		 * which would achieve that. Here we pass the value to OPAL via
309  		 * a register which is expected to contain the "BE" interpretation
310  		 * of the byte sequence. IE: for a 32-bit access, byte 0 should be
311  		 * in the MSB. So here we *do* need to byteswap on LE.
312  		 *
313  		 *           User bytes:    LE "data"  OPAL "data"
314  		 *  32-bit:  B0 B1 B2 B3    B3B2B1B0   B0B1B2B3
315  		 *  16-bit:  B0 B1          0000B1B0   0000B0B1
316  		 *   8-bit:  B0             000000B0   000000B0
317  		 */
318  		switch(len) {
319  		case 4:
320  			rc = __get_user(data, (u32 __user *)ubuf);
321  			data = cpu_to_be32(data);
322  			break;
323  		case 2:
324  			rc = __get_user(data, (u16 __user *)ubuf);
325  			data = cpu_to_be16(data);
326  			break;
327  		default:
328  			rc = __get_user(data, (u8 __user *)ubuf);
329  			break;
330  		}
331  		if (rc)
332  			return -EFAULT;
333  
334  		rc = opal_lpc_write(opal_lpc_chip_id, lpc->lpc_type, pos,
335  				    data, len);
336  		if (rc)
337  			return -ENXIO;
338  		*ppos += len;
339  		ubuf += len;
340  		todo -= len;
341  	}
342  
343  	return count;
344  }
345  
346  static const struct file_operations lpc_fops = {
347  	.read =		lpc_debug_read,
348  	.write =	lpc_debug_write,
349  	.open =		simple_open,
350  	.llseek =	default_llseek,
351  };
352  
opal_lpc_debugfs_create_type(struct dentry * folder,const char * fname,enum OpalLPCAddressType type)353  static int opal_lpc_debugfs_create_type(struct dentry *folder,
354  					const char *fname,
355  					enum OpalLPCAddressType type)
356  {
357  	struct lpc_debugfs_entry *entry;
358  	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
359  	if (!entry)
360  		return -ENOMEM;
361  	entry->lpc_type = type;
362  	debugfs_create_file(fname, 0600, folder, entry, &lpc_fops);
363  	return 0;
364  }
365  
opal_lpc_init_debugfs(void)366  static int opal_lpc_init_debugfs(void)
367  {
368  	struct dentry *root;
369  	int rc = 0;
370  
371  	if (opal_lpc_chip_id < 0)
372  		return -ENODEV;
373  
374  	root = debugfs_create_dir("lpc", arch_debugfs_dir);
375  
376  	rc |= opal_lpc_debugfs_create_type(root, "io", OPAL_LPC_IO);
377  	rc |= opal_lpc_debugfs_create_type(root, "mem", OPAL_LPC_MEM);
378  	rc |= opal_lpc_debugfs_create_type(root, "fw", OPAL_LPC_FW);
379  	return rc;
380  }
381  machine_device_initcall(powernv, opal_lpc_init_debugfs);
382  #endif  /* CONFIG_DEBUG_FS */
383  
opal_lpc_init(void)384  void __init opal_lpc_init(void)
385  {
386  	struct device_node *np;
387  
388  	/*
389  	 * Look for a Power8 LPC bus tagged as "primary",
390  	 * we currently support only one though the OPAL APIs
391  	 * support any number.
392  	 */
393  	for_each_compatible_node(np, NULL, "ibm,power8-lpc") {
394  		if (!of_device_is_available(np))
395  			continue;
396  		if (!of_property_present(np, "primary"))
397  			continue;
398  		opal_lpc_chip_id = of_get_ibm_chip_id(np);
399  		of_node_put(np);
400  		break;
401  	}
402  	if (opal_lpc_chip_id < 0)
403  		return;
404  
405  	/* Does it support direct mapping ? */
406  	if (of_property_present(np, "ranges")) {
407  		pr_info("OPAL: Found memory mapped LPC bus on chip %d\n",
408  			opal_lpc_chip_id);
409  		isa_bridge_init_non_pci(np);
410  	} else {
411  		pr_info("OPAL: Found non-mapped LPC bus on chip %d\n",
412  			opal_lpc_chip_id);
413  
414  		/* Setup special IO ops */
415  		ppc_pci_io = opal_lpc_io;
416  		isa_io_special = true;
417  	}
418  }
419