1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * journal.c
4   *
5   * Defines functions of journalling api
6   *
7   * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
8   */
9  
10  #include <linux/fs.h>
11  #include <linux/types.h>
12  #include <linux/slab.h>
13  #include <linux/highmem.h>
14  #include <linux/kthread.h>
15  #include <linux/time.h>
16  #include <linux/random.h>
17  #include <linux/delay.h>
18  #include <linux/writeback.h>
19  
20  #include <cluster/masklog.h>
21  
22  #include "ocfs2.h"
23  
24  #include "alloc.h"
25  #include "blockcheck.h"
26  #include "dir.h"
27  #include "dlmglue.h"
28  #include "extent_map.h"
29  #include "heartbeat.h"
30  #include "inode.h"
31  #include "journal.h"
32  #include "localalloc.h"
33  #include "slot_map.h"
34  #include "super.h"
35  #include "sysfile.h"
36  #include "uptodate.h"
37  #include "quota.h"
38  #include "file.h"
39  #include "namei.h"
40  
41  #include "buffer_head_io.h"
42  #include "ocfs2_trace.h"
43  
44  DEFINE_SPINLOCK(trans_inc_lock);
45  
46  #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
47  
48  static int ocfs2_force_read_journal(struct inode *inode);
49  static int ocfs2_recover_node(struct ocfs2_super *osb,
50  			      int node_num, int slot_num);
51  static int __ocfs2_recovery_thread(void *arg);
52  static int ocfs2_commit_cache(struct ocfs2_super *osb);
53  static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
54  static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
55  				      int dirty, int replayed);
56  static int ocfs2_trylock_journal(struct ocfs2_super *osb,
57  				 int slot_num);
58  static int ocfs2_recover_orphans(struct ocfs2_super *osb,
59  				 int slot,
60  				 enum ocfs2_orphan_reco_type orphan_reco_type);
61  static int ocfs2_commit_thread(void *arg);
62  static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
63  					    int slot_num,
64  					    struct ocfs2_dinode *la_dinode,
65  					    struct ocfs2_dinode *tl_dinode,
66  					    struct ocfs2_quota_recovery *qrec,
67  					    enum ocfs2_orphan_reco_type orphan_reco_type);
68  
ocfs2_wait_on_mount(struct ocfs2_super * osb)69  static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
70  {
71  	return __ocfs2_wait_on_mount(osb, 0);
72  }
73  
ocfs2_wait_on_quotas(struct ocfs2_super * osb)74  static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
75  {
76  	return __ocfs2_wait_on_mount(osb, 1);
77  }
78  
79  /*
80   * This replay_map is to track online/offline slots, so we could recover
81   * offline slots during recovery and mount
82   */
83  
84  enum ocfs2_replay_state {
85  	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
86  	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
87  	REPLAY_DONE 		/* Replay was already queued */
88  };
89  
90  struct ocfs2_replay_map {
91  	unsigned int rm_slots;
92  	enum ocfs2_replay_state rm_state;
93  	unsigned char rm_replay_slots[] __counted_by(rm_slots);
94  };
95  
ocfs2_replay_map_set_state(struct ocfs2_super * osb,int state)96  static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
97  {
98  	if (!osb->replay_map)
99  		return;
100  
101  	/* If we've already queued the replay, we don't have any more to do */
102  	if (osb->replay_map->rm_state == REPLAY_DONE)
103  		return;
104  
105  	osb->replay_map->rm_state = state;
106  }
107  
ocfs2_compute_replay_slots(struct ocfs2_super * osb)108  int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
109  {
110  	struct ocfs2_replay_map *replay_map;
111  	int i, node_num;
112  
113  	/* If replay map is already set, we don't do it again */
114  	if (osb->replay_map)
115  		return 0;
116  
117  	replay_map = kzalloc(struct_size(replay_map, rm_replay_slots,
118  					 osb->max_slots),
119  			     GFP_KERNEL);
120  	if (!replay_map) {
121  		mlog_errno(-ENOMEM);
122  		return -ENOMEM;
123  	}
124  
125  	spin_lock(&osb->osb_lock);
126  
127  	replay_map->rm_slots = osb->max_slots;
128  	replay_map->rm_state = REPLAY_UNNEEDED;
129  
130  	/* set rm_replay_slots for offline slot(s) */
131  	for (i = 0; i < replay_map->rm_slots; i++) {
132  		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
133  			replay_map->rm_replay_slots[i] = 1;
134  	}
135  
136  	osb->replay_map = replay_map;
137  	spin_unlock(&osb->osb_lock);
138  	return 0;
139  }
140  
ocfs2_queue_replay_slots(struct ocfs2_super * osb,enum ocfs2_orphan_reco_type orphan_reco_type)141  static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
142  		enum ocfs2_orphan_reco_type orphan_reco_type)
143  {
144  	struct ocfs2_replay_map *replay_map = osb->replay_map;
145  	int i;
146  
147  	if (!replay_map)
148  		return;
149  
150  	if (replay_map->rm_state != REPLAY_NEEDED)
151  		return;
152  
153  	for (i = 0; i < replay_map->rm_slots; i++)
154  		if (replay_map->rm_replay_slots[i])
155  			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
156  							NULL, NULL,
157  							orphan_reco_type);
158  	replay_map->rm_state = REPLAY_DONE;
159  }
160  
ocfs2_free_replay_slots(struct ocfs2_super * osb)161  void ocfs2_free_replay_slots(struct ocfs2_super *osb)
162  {
163  	struct ocfs2_replay_map *replay_map = osb->replay_map;
164  
165  	if (!osb->replay_map)
166  		return;
167  
168  	kfree(replay_map);
169  	osb->replay_map = NULL;
170  }
171  
ocfs2_recovery_init(struct ocfs2_super * osb)172  int ocfs2_recovery_init(struct ocfs2_super *osb)
173  {
174  	struct ocfs2_recovery_map *rm;
175  
176  	mutex_init(&osb->recovery_lock);
177  	osb->disable_recovery = 0;
178  	osb->recovery_thread_task = NULL;
179  	init_waitqueue_head(&osb->recovery_event);
180  
181  	rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots),
182  		     GFP_KERNEL);
183  	if (!rm) {
184  		mlog_errno(-ENOMEM);
185  		return -ENOMEM;
186  	}
187  
188  	osb->recovery_map = rm;
189  
190  	return 0;
191  }
192  
193  /* we can't grab the goofy sem lock from inside wait_event, so we use
194   * memory barriers to make sure that we'll see the null task before
195   * being woken up */
ocfs2_recovery_thread_running(struct ocfs2_super * osb)196  static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
197  {
198  	mb();
199  	return osb->recovery_thread_task != NULL;
200  }
201  
ocfs2_recovery_exit(struct ocfs2_super * osb)202  void ocfs2_recovery_exit(struct ocfs2_super *osb)
203  {
204  	struct ocfs2_recovery_map *rm;
205  
206  	/* disable any new recovery threads and wait for any currently
207  	 * running ones to exit. Do this before setting the vol_state. */
208  	mutex_lock(&osb->recovery_lock);
209  	osb->disable_recovery = 1;
210  	mutex_unlock(&osb->recovery_lock);
211  	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
212  
213  	/* At this point, we know that no more recovery threads can be
214  	 * launched, so wait for any recovery completion work to
215  	 * complete. */
216  	if (osb->ocfs2_wq)
217  		flush_workqueue(osb->ocfs2_wq);
218  
219  	/*
220  	 * Now that recovery is shut down, and the osb is about to be
221  	 * freed,  the osb_lock is not taken here.
222  	 */
223  	rm = osb->recovery_map;
224  	/* XXX: Should we bug if there are dirty entries? */
225  
226  	kfree(rm);
227  }
228  
__ocfs2_recovery_map_test(struct ocfs2_super * osb,unsigned int node_num)229  static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
230  				     unsigned int node_num)
231  {
232  	int i;
233  	struct ocfs2_recovery_map *rm = osb->recovery_map;
234  
235  	assert_spin_locked(&osb->osb_lock);
236  
237  	for (i = 0; i < rm->rm_used; i++) {
238  		if (rm->rm_entries[i] == node_num)
239  			return 1;
240  	}
241  
242  	return 0;
243  }
244  
245  /* Behaves like test-and-set.  Returns the previous value */
ocfs2_recovery_map_set(struct ocfs2_super * osb,unsigned int node_num)246  static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
247  				  unsigned int node_num)
248  {
249  	struct ocfs2_recovery_map *rm = osb->recovery_map;
250  
251  	spin_lock(&osb->osb_lock);
252  	if (__ocfs2_recovery_map_test(osb, node_num)) {
253  		spin_unlock(&osb->osb_lock);
254  		return 1;
255  	}
256  
257  	/* XXX: Can this be exploited? Not from o2dlm... */
258  	BUG_ON(rm->rm_used >= osb->max_slots);
259  
260  	rm->rm_entries[rm->rm_used] = node_num;
261  	rm->rm_used++;
262  	spin_unlock(&osb->osb_lock);
263  
264  	return 0;
265  }
266  
ocfs2_recovery_map_clear(struct ocfs2_super * osb,unsigned int node_num)267  static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
268  				     unsigned int node_num)
269  {
270  	int i;
271  	struct ocfs2_recovery_map *rm = osb->recovery_map;
272  
273  	spin_lock(&osb->osb_lock);
274  
275  	for (i = 0; i < rm->rm_used; i++) {
276  		if (rm->rm_entries[i] == node_num)
277  			break;
278  	}
279  
280  	if (i < rm->rm_used) {
281  		/* XXX: be careful with the pointer math */
282  		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
283  			(rm->rm_used - i - 1) * sizeof(unsigned int));
284  		rm->rm_used--;
285  	}
286  
287  	spin_unlock(&osb->osb_lock);
288  }
289  
ocfs2_commit_cache(struct ocfs2_super * osb)290  static int ocfs2_commit_cache(struct ocfs2_super *osb)
291  {
292  	int status = 0;
293  	unsigned int flushed;
294  	struct ocfs2_journal *journal = NULL;
295  
296  	journal = osb->journal;
297  
298  	/* Flush all pending commits and checkpoint the journal. */
299  	down_write(&journal->j_trans_barrier);
300  
301  	flushed = atomic_read(&journal->j_num_trans);
302  	trace_ocfs2_commit_cache_begin(flushed);
303  	if (flushed == 0) {
304  		up_write(&journal->j_trans_barrier);
305  		goto finally;
306  	}
307  
308  	jbd2_journal_lock_updates(journal->j_journal);
309  	status = jbd2_journal_flush(journal->j_journal, 0);
310  	jbd2_journal_unlock_updates(journal->j_journal);
311  	if (status < 0) {
312  		up_write(&journal->j_trans_barrier);
313  		mlog_errno(status);
314  		goto finally;
315  	}
316  
317  	ocfs2_inc_trans_id(journal);
318  
319  	flushed = atomic_read(&journal->j_num_trans);
320  	atomic_set(&journal->j_num_trans, 0);
321  	up_write(&journal->j_trans_barrier);
322  
323  	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
324  
325  	ocfs2_wake_downconvert_thread(osb);
326  	wake_up(&journal->j_checkpointed);
327  finally:
328  	return status;
329  }
330  
ocfs2_start_trans(struct ocfs2_super * osb,int max_buffs)331  handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
332  {
333  	journal_t *journal = osb->journal->j_journal;
334  	handle_t *handle;
335  
336  	BUG_ON(!osb || !osb->journal->j_journal);
337  
338  	if (ocfs2_is_hard_readonly(osb))
339  		return ERR_PTR(-EROFS);
340  
341  	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
342  	BUG_ON(max_buffs <= 0);
343  
344  	/* Nested transaction? Just return the handle... */
345  	if (journal_current_handle())
346  		return jbd2_journal_start(journal, max_buffs);
347  
348  	sb_start_intwrite(osb->sb);
349  
350  	down_read(&osb->journal->j_trans_barrier);
351  
352  	handle = jbd2_journal_start(journal, max_buffs);
353  	if (IS_ERR(handle)) {
354  		up_read(&osb->journal->j_trans_barrier);
355  		sb_end_intwrite(osb->sb);
356  
357  		mlog_errno(PTR_ERR(handle));
358  
359  		if (is_journal_aborted(journal)) {
360  			ocfs2_abort(osb->sb, "Detected aborted journal\n");
361  			handle = ERR_PTR(-EROFS);
362  		}
363  	} else {
364  		if (!ocfs2_mount_local(osb))
365  			atomic_inc(&(osb->journal->j_num_trans));
366  	}
367  
368  	return handle;
369  }
370  
ocfs2_commit_trans(struct ocfs2_super * osb,handle_t * handle)371  int ocfs2_commit_trans(struct ocfs2_super *osb,
372  		       handle_t *handle)
373  {
374  	int ret, nested;
375  	struct ocfs2_journal *journal = osb->journal;
376  
377  	BUG_ON(!handle);
378  
379  	nested = handle->h_ref > 1;
380  	ret = jbd2_journal_stop(handle);
381  	if (ret < 0)
382  		mlog_errno(ret);
383  
384  	if (!nested) {
385  		up_read(&journal->j_trans_barrier);
386  		sb_end_intwrite(osb->sb);
387  	}
388  
389  	return ret;
390  }
391  
392  /*
393   * 'nblocks' is what you want to add to the current transaction.
394   *
395   * This might call jbd2_journal_restart() which will commit dirty buffers
396   * and then restart the transaction. Before calling
397   * ocfs2_extend_trans(), any changed blocks should have been
398   * dirtied. After calling it, all blocks which need to be changed must
399   * go through another set of journal_access/journal_dirty calls.
400   *
401   * WARNING: This will not release any semaphores or disk locks taken
402   * during the transaction, so make sure they were taken *before*
403   * start_trans or we'll have ordering deadlocks.
404   *
405   * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
406   * good because transaction ids haven't yet been recorded on the
407   * cluster locks associated with this handle.
408   */
ocfs2_extend_trans(handle_t * handle,int nblocks)409  int ocfs2_extend_trans(handle_t *handle, int nblocks)
410  {
411  	int status, old_nblocks;
412  
413  	BUG_ON(!handle);
414  	BUG_ON(nblocks < 0);
415  
416  	if (!nblocks)
417  		return 0;
418  
419  	old_nblocks = jbd2_handle_buffer_credits(handle);
420  
421  	trace_ocfs2_extend_trans(old_nblocks, nblocks);
422  
423  #ifdef CONFIG_OCFS2_DEBUG_FS
424  	status = 1;
425  #else
426  	status = jbd2_journal_extend(handle, nblocks, 0);
427  	if (status < 0) {
428  		mlog_errno(status);
429  		goto bail;
430  	}
431  #endif
432  
433  	if (status > 0) {
434  		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
435  		status = jbd2_journal_restart(handle,
436  					      old_nblocks + nblocks);
437  		if (status < 0) {
438  			mlog_errno(status);
439  			goto bail;
440  		}
441  	}
442  
443  	status = 0;
444  bail:
445  	return status;
446  }
447  
448  /*
449   * Make sure handle has at least 'nblocks' credits available. If it does not
450   * have that many credits available, we will try to extend the handle to have
451   * enough credits. If that fails, we will restart transaction to have enough
452   * credits. Similar notes regarding data consistency and locking implications
453   * as for ocfs2_extend_trans() apply here.
454   */
ocfs2_assure_trans_credits(handle_t * handle,int nblocks)455  int ocfs2_assure_trans_credits(handle_t *handle, int nblocks)
456  {
457  	int old_nblks = jbd2_handle_buffer_credits(handle);
458  
459  	trace_ocfs2_assure_trans_credits(old_nblks);
460  	if (old_nblks >= nblocks)
461  		return 0;
462  	return ocfs2_extend_trans(handle, nblocks - old_nblks);
463  }
464  
465  /*
466   * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467   * If that fails, restart the transaction & regain write access for the
468   * buffer head which is used for metadata modifications.
469   * Taken from Ext4: extend_or_restart_transaction()
470   */
ocfs2_allocate_extend_trans(handle_t * handle,int thresh)471  int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472  {
473  	int status, old_nblks;
474  
475  	BUG_ON(!handle);
476  
477  	old_nblks = jbd2_handle_buffer_credits(handle);
478  	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479  
480  	if (old_nblks < thresh)
481  		return 0;
482  
483  	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
484  	if (status < 0) {
485  		mlog_errno(status);
486  		goto bail;
487  	}
488  
489  	if (status > 0) {
490  		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491  		if (status < 0)
492  			mlog_errno(status);
493  	}
494  
495  bail:
496  	return status;
497  }
498  
to_ocfs2_trigger(struct jbd2_buffer_trigger_type * triggers)499  static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
500  {
501  	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
502  }
503  
ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)504  static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
505  				 struct buffer_head *bh,
506  				 void *data, size_t size)
507  {
508  	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
509  
510  	/*
511  	 * We aren't guaranteed to have the superblock here, so we
512  	 * must unconditionally compute the ecc data.
513  	 * __ocfs2_journal_access() will only set the triggers if
514  	 * metaecc is enabled.
515  	 */
516  	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
517  }
518  
519  /*
520   * Quota blocks have their own trigger because the struct ocfs2_block_check
521   * offset depends on the blocksize.
522   */
ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)523  static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
524  				 struct buffer_head *bh,
525  				 void *data, size_t size)
526  {
527  	struct ocfs2_disk_dqtrailer *dqt =
528  		ocfs2_block_dqtrailer(size, data);
529  
530  	/*
531  	 * We aren't guaranteed to have the superblock here, so we
532  	 * must unconditionally compute the ecc data.
533  	 * __ocfs2_journal_access() will only set the triggers if
534  	 * metaecc is enabled.
535  	 */
536  	ocfs2_block_check_compute(data, size, &dqt->dq_check);
537  }
538  
539  /*
540   * Directory blocks also have their own trigger because the
541   * struct ocfs2_block_check offset depends on the blocksize.
542   */
ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)543  static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
544  				 struct buffer_head *bh,
545  				 void *data, size_t size)
546  {
547  	struct ocfs2_dir_block_trailer *trailer =
548  		ocfs2_dir_trailer_from_size(size, data);
549  
550  	/*
551  	 * We aren't guaranteed to have the superblock here, so we
552  	 * must unconditionally compute the ecc data.
553  	 * __ocfs2_journal_access() will only set the triggers if
554  	 * metaecc is enabled.
555  	 */
556  	ocfs2_block_check_compute(data, size, &trailer->db_check);
557  }
558  
ocfs2_abort_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh)559  static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
560  				struct buffer_head *bh)
561  {
562  	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
563  
564  	mlog(ML_ERROR,
565  	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
566  	     "bh->b_blocknr = %llu\n",
567  	     (unsigned long)bh,
568  	     (unsigned long long)bh->b_blocknr);
569  
570  	ocfs2_error(ot->sb,
571  		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
572  }
573  
ocfs2_setup_csum_triggers(struct super_block * sb,enum ocfs2_journal_trigger_type type,struct ocfs2_triggers * ot)574  static void ocfs2_setup_csum_triggers(struct super_block *sb,
575  				      enum ocfs2_journal_trigger_type type,
576  				      struct ocfs2_triggers *ot)
577  {
578  	BUG_ON(type >= OCFS2_JOURNAL_TRIGGER_COUNT);
579  
580  	switch (type) {
581  	case OCFS2_JTR_DI:
582  		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
583  		ot->ot_offset = offsetof(struct ocfs2_dinode, i_check);
584  		break;
585  	case OCFS2_JTR_EB:
586  		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
587  		ot->ot_offset = offsetof(struct ocfs2_extent_block, h_check);
588  		break;
589  	case OCFS2_JTR_RB:
590  		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
591  		ot->ot_offset = offsetof(struct ocfs2_refcount_block, rf_check);
592  		break;
593  	case OCFS2_JTR_GD:
594  		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
595  		ot->ot_offset = offsetof(struct ocfs2_group_desc, bg_check);
596  		break;
597  	case OCFS2_JTR_DB:
598  		ot->ot_triggers.t_frozen = ocfs2_db_frozen_trigger;
599  		break;
600  	case OCFS2_JTR_XB:
601  		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
602  		ot->ot_offset = offsetof(struct ocfs2_xattr_block, xb_check);
603  		break;
604  	case OCFS2_JTR_DQ:
605  		ot->ot_triggers.t_frozen = ocfs2_dq_frozen_trigger;
606  		break;
607  	case OCFS2_JTR_DR:
608  		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
609  		ot->ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check);
610  		break;
611  	case OCFS2_JTR_DL:
612  		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
613  		ot->ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check);
614  		break;
615  	case OCFS2_JTR_NONE:
616  		/* To make compiler happy... */
617  		return;
618  	}
619  
620  	ot->ot_triggers.t_abort = ocfs2_abort_trigger;
621  	ot->sb = sb;
622  }
623  
ocfs2_initialize_journal_triggers(struct super_block * sb,struct ocfs2_triggers triggers[])624  void ocfs2_initialize_journal_triggers(struct super_block *sb,
625  				       struct ocfs2_triggers triggers[])
626  {
627  	enum ocfs2_journal_trigger_type type;
628  
629  	for (type = OCFS2_JTR_DI; type < OCFS2_JOURNAL_TRIGGER_COUNT; type++)
630  		ocfs2_setup_csum_triggers(sb, type, &triggers[type]);
631  }
632  
__ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,struct ocfs2_triggers * triggers,int type)633  static int __ocfs2_journal_access(handle_t *handle,
634  				  struct ocfs2_caching_info *ci,
635  				  struct buffer_head *bh,
636  				  struct ocfs2_triggers *triggers,
637  				  int type)
638  {
639  	int status;
640  	struct ocfs2_super *osb =
641  		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
642  
643  	BUG_ON(!ci || !ci->ci_ops);
644  	BUG_ON(!handle);
645  	BUG_ON(!bh);
646  
647  	trace_ocfs2_journal_access(
648  		(unsigned long long)ocfs2_metadata_cache_owner(ci),
649  		(unsigned long long)bh->b_blocknr, type, bh->b_size);
650  
651  	/* we can safely remove this assertion after testing. */
652  	if (!buffer_uptodate(bh)) {
653  		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
654  		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
655  		     (unsigned long long)bh->b_blocknr, bh->b_state);
656  
657  		lock_buffer(bh);
658  		/*
659  		 * A previous transaction with a couple of buffer heads fail
660  		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
661  		 * For current transaction, the bh is just among those error
662  		 * bhs which previous transaction handle. We can't just clear
663  		 * its BH_Write_EIO and reuse directly, since other bhs are
664  		 * not written to disk yet and that will cause metadata
665  		 * inconsistency. So we should set fs read-only to avoid
666  		 * further damage.
667  		 */
668  		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
669  			unlock_buffer(bh);
670  			return ocfs2_error(osb->sb, "A previous attempt to "
671  					"write this buffer head failed\n");
672  		}
673  		unlock_buffer(bh);
674  	}
675  
676  	/* Set the current transaction information on the ci so
677  	 * that the locking code knows whether it can drop it's locks
678  	 * on this ci or not. We're protected from the commit
679  	 * thread updating the current transaction id until
680  	 * ocfs2_commit_trans() because ocfs2_start_trans() took
681  	 * j_trans_barrier for us. */
682  	ocfs2_set_ci_lock_trans(osb->journal, ci);
683  
684  	ocfs2_metadata_cache_io_lock(ci);
685  	switch (type) {
686  	case OCFS2_JOURNAL_ACCESS_CREATE:
687  	case OCFS2_JOURNAL_ACCESS_WRITE:
688  		status = jbd2_journal_get_write_access(handle, bh);
689  		break;
690  
691  	case OCFS2_JOURNAL_ACCESS_UNDO:
692  		status = jbd2_journal_get_undo_access(handle, bh);
693  		break;
694  
695  	default:
696  		status = -EINVAL;
697  		mlog(ML_ERROR, "Unknown access type!\n");
698  	}
699  	if (!status && ocfs2_meta_ecc(osb) && triggers)
700  		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
701  	ocfs2_metadata_cache_io_unlock(ci);
702  
703  	if (status < 0)
704  		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
705  		     status, type);
706  
707  	return status;
708  }
709  
ocfs2_journal_access_di(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)710  int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
711  			    struct buffer_head *bh, int type)
712  {
713  	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
714  
715  	return __ocfs2_journal_access(handle, ci, bh,
716  				      &osb->s_journal_triggers[OCFS2_JTR_DI],
717  				      type);
718  }
719  
ocfs2_journal_access_eb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)720  int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
721  			    struct buffer_head *bh, int type)
722  {
723  	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
724  
725  	return __ocfs2_journal_access(handle, ci, bh,
726  				      &osb->s_journal_triggers[OCFS2_JTR_EB],
727  				      type);
728  }
729  
ocfs2_journal_access_rb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)730  int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
731  			    struct buffer_head *bh, int type)
732  {
733  	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
734  
735  	return __ocfs2_journal_access(handle, ci, bh,
736  				      &osb->s_journal_triggers[OCFS2_JTR_RB],
737  				      type);
738  }
739  
ocfs2_journal_access_gd(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)740  int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
741  			    struct buffer_head *bh, int type)
742  {
743  	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
744  
745  	return __ocfs2_journal_access(handle, ci, bh,
746  				     &osb->s_journal_triggers[OCFS2_JTR_GD],
747  				     type);
748  }
749  
ocfs2_journal_access_db(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)750  int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
751  			    struct buffer_head *bh, int type)
752  {
753  	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
754  
755  	return __ocfs2_journal_access(handle, ci, bh,
756  				     &osb->s_journal_triggers[OCFS2_JTR_DB],
757  				     type);
758  }
759  
ocfs2_journal_access_xb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)760  int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
761  			    struct buffer_head *bh, int type)
762  {
763  	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
764  
765  	return __ocfs2_journal_access(handle, ci, bh,
766  				     &osb->s_journal_triggers[OCFS2_JTR_XB],
767  				     type);
768  }
769  
ocfs2_journal_access_dq(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)770  int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
771  			    struct buffer_head *bh, int type)
772  {
773  	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
774  
775  	return __ocfs2_journal_access(handle, ci, bh,
776  				     &osb->s_journal_triggers[OCFS2_JTR_DQ],
777  				     type);
778  }
779  
ocfs2_journal_access_dr(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)780  int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
781  			    struct buffer_head *bh, int type)
782  {
783  	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
784  
785  	return __ocfs2_journal_access(handle, ci, bh,
786  				     &osb->s_journal_triggers[OCFS2_JTR_DR],
787  				     type);
788  }
789  
ocfs2_journal_access_dl(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)790  int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
791  			    struct buffer_head *bh, int type)
792  {
793  	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
794  
795  	return __ocfs2_journal_access(handle, ci, bh,
796  				     &osb->s_journal_triggers[OCFS2_JTR_DL],
797  				     type);
798  }
799  
ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)800  int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
801  			 struct buffer_head *bh, int type)
802  {
803  	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
804  }
805  
ocfs2_journal_dirty(handle_t * handle,struct buffer_head * bh)806  void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
807  {
808  	int status;
809  
810  	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
811  
812  	status = jbd2_journal_dirty_metadata(handle, bh);
813  	if (status) {
814  		mlog_errno(status);
815  		if (!is_handle_aborted(handle)) {
816  			journal_t *journal = handle->h_transaction->t_journal;
817  
818  			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed: "
819  			     "handle type %u started at line %u, credits %u/%u "
820  			     "errcode %d. Aborting transaction and journal.\n",
821  			     handle->h_type, handle->h_line_no,
822  			     handle->h_requested_credits,
823  			     jbd2_handle_buffer_credits(handle), status);
824  			handle->h_err = status;
825  			jbd2_journal_abort_handle(handle);
826  			jbd2_journal_abort(journal, status);
827  		}
828  	}
829  }
830  
831  #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
832  
ocfs2_set_journal_params(struct ocfs2_super * osb)833  void ocfs2_set_journal_params(struct ocfs2_super *osb)
834  {
835  	journal_t *journal = osb->journal->j_journal;
836  	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
837  
838  	if (osb->osb_commit_interval)
839  		commit_interval = osb->osb_commit_interval;
840  
841  	write_lock(&journal->j_state_lock);
842  	journal->j_commit_interval = commit_interval;
843  	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
844  		journal->j_flags |= JBD2_BARRIER;
845  	else
846  		journal->j_flags &= ~JBD2_BARRIER;
847  	write_unlock(&journal->j_state_lock);
848  }
849  
850  /*
851   * alloc & initialize skeleton for journal structure.
852   * ocfs2_journal_init() will make fs have journal ability.
853   */
ocfs2_journal_alloc(struct ocfs2_super * osb)854  int ocfs2_journal_alloc(struct ocfs2_super *osb)
855  {
856  	int status = 0;
857  	struct ocfs2_journal *journal;
858  
859  	journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
860  	if (!journal) {
861  		mlog(ML_ERROR, "unable to alloc journal\n");
862  		status = -ENOMEM;
863  		goto bail;
864  	}
865  	osb->journal = journal;
866  	journal->j_osb = osb;
867  
868  	atomic_set(&journal->j_num_trans, 0);
869  	init_rwsem(&journal->j_trans_barrier);
870  	init_waitqueue_head(&journal->j_checkpointed);
871  	spin_lock_init(&journal->j_lock);
872  	journal->j_trans_id = 1UL;
873  	INIT_LIST_HEAD(&journal->j_la_cleanups);
874  	INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
875  	journal->j_state = OCFS2_JOURNAL_FREE;
876  
877  bail:
878  	return status;
879  }
880  
ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)881  static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
882  {
883  	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
884  	struct writeback_control wbc = {
885  		.sync_mode =  WB_SYNC_ALL,
886  		.nr_to_write = mapping->nrpages * 2,
887  		.range_start = jinode->i_dirty_start,
888  		.range_end = jinode->i_dirty_end,
889  	};
890  
891  	return filemap_fdatawrite_wbc(mapping, &wbc);
892  }
893  
ocfs2_journal_init(struct ocfs2_super * osb,int * dirty)894  int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
895  {
896  	int status = -1;
897  	struct inode *inode = NULL; /* the journal inode */
898  	journal_t *j_journal = NULL;
899  	struct ocfs2_journal *journal = osb->journal;
900  	struct ocfs2_dinode *di = NULL;
901  	struct buffer_head *bh = NULL;
902  	int inode_lock = 0;
903  
904  	BUG_ON(!journal);
905  	/* already have the inode for our journal */
906  	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
907  					    osb->slot_num);
908  	if (inode == NULL) {
909  		status = -EACCES;
910  		mlog_errno(status);
911  		goto done;
912  	}
913  	if (is_bad_inode(inode)) {
914  		mlog(ML_ERROR, "access error (bad inode)\n");
915  		iput(inode);
916  		inode = NULL;
917  		status = -EACCES;
918  		goto done;
919  	}
920  
921  	SET_INODE_JOURNAL(inode);
922  	OCFS2_I(inode)->ip_open_count++;
923  
924  	/* Skip recovery waits here - journal inode metadata never
925  	 * changes in a live cluster so it can be considered an
926  	 * exception to the rule. */
927  	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
928  	if (status < 0) {
929  		if (status != -ERESTARTSYS)
930  			mlog(ML_ERROR, "Could not get lock on journal!\n");
931  		goto done;
932  	}
933  
934  	inode_lock = 1;
935  	di = (struct ocfs2_dinode *)bh->b_data;
936  
937  	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
938  		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
939  		     i_size_read(inode));
940  		status = -EINVAL;
941  		goto done;
942  	}
943  
944  	trace_ocfs2_journal_init(i_size_read(inode),
945  				 (unsigned long long)inode->i_blocks,
946  				 OCFS2_I(inode)->ip_clusters);
947  
948  	/* call the kernels journal init function now */
949  	j_journal = jbd2_journal_init_inode(inode);
950  	if (IS_ERR(j_journal)) {
951  		mlog(ML_ERROR, "Linux journal layer error\n");
952  		status = PTR_ERR(j_journal);
953  		goto done;
954  	}
955  
956  	trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
957  
958  	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
959  		  OCFS2_JOURNAL_DIRTY_FL);
960  
961  	journal->j_journal = j_journal;
962  	journal->j_journal->j_submit_inode_data_buffers =
963  		ocfs2_journal_submit_inode_data_buffers;
964  	journal->j_journal->j_finish_inode_data_buffers =
965  		jbd2_journal_finish_inode_data_buffers;
966  	journal->j_inode = inode;
967  	journal->j_bh = bh;
968  
969  	ocfs2_set_journal_params(osb);
970  
971  	journal->j_state = OCFS2_JOURNAL_LOADED;
972  
973  	status = 0;
974  done:
975  	if (status < 0) {
976  		if (inode_lock)
977  			ocfs2_inode_unlock(inode, 1);
978  		brelse(bh);
979  		if (inode) {
980  			OCFS2_I(inode)->ip_open_count--;
981  			iput(inode);
982  		}
983  	}
984  
985  	return status;
986  }
987  
ocfs2_bump_recovery_generation(struct ocfs2_dinode * di)988  static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
989  {
990  	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
991  }
992  
ocfs2_get_recovery_generation(struct ocfs2_dinode * di)993  static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
994  {
995  	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
996  }
997  
ocfs2_journal_toggle_dirty(struct ocfs2_super * osb,int dirty,int replayed)998  static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
999  				      int dirty, int replayed)
1000  {
1001  	int status;
1002  	unsigned int flags;
1003  	struct ocfs2_journal *journal = osb->journal;
1004  	struct buffer_head *bh = journal->j_bh;
1005  	struct ocfs2_dinode *fe;
1006  
1007  	fe = (struct ocfs2_dinode *)bh->b_data;
1008  
1009  	/* The journal bh on the osb always comes from ocfs2_journal_init()
1010  	 * and was validated there inside ocfs2_inode_lock_full().  It's a
1011  	 * code bug if we mess it up. */
1012  	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
1013  
1014  	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1015  	if (dirty)
1016  		flags |= OCFS2_JOURNAL_DIRTY_FL;
1017  	else
1018  		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1019  	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1020  
1021  	if (replayed)
1022  		ocfs2_bump_recovery_generation(fe);
1023  
1024  	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1025  	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
1026  	if (status < 0)
1027  		mlog_errno(status);
1028  
1029  	return status;
1030  }
1031  
1032  /*
1033   * If the journal has been kmalloc'd it needs to be freed after this
1034   * call.
1035   */
ocfs2_journal_shutdown(struct ocfs2_super * osb)1036  void ocfs2_journal_shutdown(struct ocfs2_super *osb)
1037  {
1038  	struct ocfs2_journal *journal = NULL;
1039  	int status = 0;
1040  	struct inode *inode = NULL;
1041  	int num_running_trans = 0;
1042  
1043  	BUG_ON(!osb);
1044  
1045  	journal = osb->journal;
1046  	if (!journal)
1047  		goto done;
1048  
1049  	inode = journal->j_inode;
1050  
1051  	if (journal->j_state != OCFS2_JOURNAL_LOADED)
1052  		goto done;
1053  
1054  	/* need to inc inode use count - jbd2_journal_destroy will iput. */
1055  	if (!igrab(inode))
1056  		BUG();
1057  
1058  	num_running_trans = atomic_read(&(journal->j_num_trans));
1059  	trace_ocfs2_journal_shutdown(num_running_trans);
1060  
1061  	/* Do a commit_cache here. It will flush our journal, *and*
1062  	 * release any locks that are still held.
1063  	 * set the SHUTDOWN flag and release the trans lock.
1064  	 * the commit thread will take the trans lock for us below. */
1065  	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1066  
1067  	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1068  	 * drop the trans_lock (which we want to hold until we
1069  	 * completely destroy the journal. */
1070  	if (osb->commit_task) {
1071  		/* Wait for the commit thread */
1072  		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1073  		kthread_stop(osb->commit_task);
1074  		osb->commit_task = NULL;
1075  	}
1076  
1077  	BUG_ON(atomic_read(&(journal->j_num_trans)) != 0);
1078  
1079  	if (ocfs2_mount_local(osb) &&
1080  	    (journal->j_journal->j_flags & JBD2_LOADED)) {
1081  		jbd2_journal_lock_updates(journal->j_journal);
1082  		status = jbd2_journal_flush(journal->j_journal, 0);
1083  		jbd2_journal_unlock_updates(journal->j_journal);
1084  		if (status < 0)
1085  			mlog_errno(status);
1086  	}
1087  
1088  	/* Shutdown the kernel journal system */
1089  	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1090  		/*
1091  		 * Do not toggle if flush was unsuccessful otherwise
1092  		 * will leave dirty metadata in a "clean" journal
1093  		 */
1094  		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1095  		if (status < 0)
1096  			mlog_errno(status);
1097  	}
1098  	journal->j_journal = NULL;
1099  
1100  	OCFS2_I(inode)->ip_open_count--;
1101  
1102  	/* unlock our journal */
1103  	ocfs2_inode_unlock(inode, 1);
1104  
1105  	brelse(journal->j_bh);
1106  	journal->j_bh = NULL;
1107  
1108  	journal->j_state = OCFS2_JOURNAL_FREE;
1109  
1110  done:
1111  	iput(inode);
1112  	kfree(journal);
1113  	osb->journal = NULL;
1114  }
1115  
ocfs2_clear_journal_error(struct super_block * sb,journal_t * journal,int slot)1116  static void ocfs2_clear_journal_error(struct super_block *sb,
1117  				      journal_t *journal,
1118  				      int slot)
1119  {
1120  	int olderr;
1121  
1122  	olderr = jbd2_journal_errno(journal);
1123  	if (olderr) {
1124  		mlog(ML_ERROR, "File system error %d recorded in "
1125  		     "journal %u.\n", olderr, slot);
1126  		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1127  		     sb->s_id);
1128  
1129  		jbd2_journal_ack_err(journal);
1130  		jbd2_journal_clear_err(journal);
1131  	}
1132  }
1133  
ocfs2_journal_load(struct ocfs2_journal * journal,int local,int replayed)1134  int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1135  {
1136  	int status = 0;
1137  	struct ocfs2_super *osb;
1138  
1139  	BUG_ON(!journal);
1140  
1141  	osb = journal->j_osb;
1142  
1143  	status = jbd2_journal_load(journal->j_journal);
1144  	if (status < 0) {
1145  		mlog(ML_ERROR, "Failed to load journal!\n");
1146  		goto done;
1147  	}
1148  
1149  	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1150  
1151  	if (replayed) {
1152  		jbd2_journal_lock_updates(journal->j_journal);
1153  		status = jbd2_journal_flush(journal->j_journal, 0);
1154  		jbd2_journal_unlock_updates(journal->j_journal);
1155  		if (status < 0)
1156  			mlog_errno(status);
1157  	}
1158  
1159  	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1160  	if (status < 0) {
1161  		mlog_errno(status);
1162  		goto done;
1163  	}
1164  
1165  	/* Launch the commit thread */
1166  	if (!local) {
1167  		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1168  				"ocfs2cmt-%s", osb->uuid_str);
1169  		if (IS_ERR(osb->commit_task)) {
1170  			status = PTR_ERR(osb->commit_task);
1171  			osb->commit_task = NULL;
1172  			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1173  			     "error=%d", status);
1174  			goto done;
1175  		}
1176  	} else
1177  		osb->commit_task = NULL;
1178  
1179  done:
1180  	return status;
1181  }
1182  
1183  
1184  /* 'full' flag tells us whether we clear out all blocks or if we just
1185   * mark the journal clean */
ocfs2_journal_wipe(struct ocfs2_journal * journal,int full)1186  int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1187  {
1188  	int status;
1189  
1190  	BUG_ON(!journal);
1191  
1192  	status = jbd2_journal_wipe(journal->j_journal, full);
1193  	if (status < 0) {
1194  		mlog_errno(status);
1195  		goto bail;
1196  	}
1197  
1198  	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1199  	if (status < 0)
1200  		mlog_errno(status);
1201  
1202  bail:
1203  	return status;
1204  }
1205  
ocfs2_recovery_completed(struct ocfs2_super * osb)1206  static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1207  {
1208  	int empty;
1209  	struct ocfs2_recovery_map *rm = osb->recovery_map;
1210  
1211  	spin_lock(&osb->osb_lock);
1212  	empty = (rm->rm_used == 0);
1213  	spin_unlock(&osb->osb_lock);
1214  
1215  	return empty;
1216  }
1217  
ocfs2_wait_for_recovery(struct ocfs2_super * osb)1218  void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1219  {
1220  	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1221  }
1222  
1223  /*
1224   * JBD Might read a cached version of another nodes journal file. We
1225   * don't want this as this file changes often and we get no
1226   * notification on those changes. The only way to be sure that we've
1227   * got the most up to date version of those blocks then is to force
1228   * read them off disk. Just searching through the buffer cache won't
1229   * work as there may be pages backing this file which are still marked
1230   * up to date. We know things can't change on this file underneath us
1231   * as we have the lock by now :)
1232   */
ocfs2_force_read_journal(struct inode * inode)1233  static int ocfs2_force_read_journal(struct inode *inode)
1234  {
1235  	int status = 0;
1236  	int i;
1237  	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1238  	struct buffer_head *bh = NULL;
1239  	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1240  
1241  	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1242  	v_blkno = 0;
1243  	while (v_blkno < num_blocks) {
1244  		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1245  						     &p_blkno, &p_blocks, NULL);
1246  		if (status < 0) {
1247  			mlog_errno(status);
1248  			goto bail;
1249  		}
1250  
1251  		for (i = 0; i < p_blocks; i++, p_blkno++) {
1252  			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1253  					osb->sb->s_blocksize);
1254  			/* block not cached. */
1255  			if (!bh)
1256  				continue;
1257  
1258  			brelse(bh);
1259  			bh = NULL;
1260  			/* We are reading journal data which should not
1261  			 * be put in the uptodate cache.
1262  			 */
1263  			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1264  			if (status < 0) {
1265  				mlog_errno(status);
1266  				goto bail;
1267  			}
1268  
1269  			brelse(bh);
1270  			bh = NULL;
1271  		}
1272  
1273  		v_blkno += p_blocks;
1274  	}
1275  
1276  bail:
1277  	return status;
1278  }
1279  
1280  struct ocfs2_la_recovery_item {
1281  	struct list_head	lri_list;
1282  	int			lri_slot;
1283  	struct ocfs2_dinode	*lri_la_dinode;
1284  	struct ocfs2_dinode	*lri_tl_dinode;
1285  	struct ocfs2_quota_recovery *lri_qrec;
1286  	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1287  };
1288  
1289  /* Does the second half of the recovery process. By this point, the
1290   * node is marked clean and can actually be considered recovered,
1291   * hence it's no longer in the recovery map, but there's still some
1292   * cleanup we can do which shouldn't happen within the recovery thread
1293   * as locking in that context becomes very difficult if we are to take
1294   * recovering nodes into account.
1295   *
1296   * NOTE: This function can and will sleep on recovery of other nodes
1297   * during cluster locking, just like any other ocfs2 process.
1298   */
ocfs2_complete_recovery(struct work_struct * work)1299  void ocfs2_complete_recovery(struct work_struct *work)
1300  {
1301  	int ret = 0;
1302  	struct ocfs2_journal *journal =
1303  		container_of(work, struct ocfs2_journal, j_recovery_work);
1304  	struct ocfs2_super *osb = journal->j_osb;
1305  	struct ocfs2_dinode *la_dinode, *tl_dinode;
1306  	struct ocfs2_la_recovery_item *item, *n;
1307  	struct ocfs2_quota_recovery *qrec;
1308  	enum ocfs2_orphan_reco_type orphan_reco_type;
1309  	LIST_HEAD(tmp_la_list);
1310  
1311  	trace_ocfs2_complete_recovery(
1312  		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1313  
1314  	spin_lock(&journal->j_lock);
1315  	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1316  	spin_unlock(&journal->j_lock);
1317  
1318  	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1319  		list_del_init(&item->lri_list);
1320  
1321  		ocfs2_wait_on_quotas(osb);
1322  
1323  		la_dinode = item->lri_la_dinode;
1324  		tl_dinode = item->lri_tl_dinode;
1325  		qrec = item->lri_qrec;
1326  		orphan_reco_type = item->lri_orphan_reco_type;
1327  
1328  		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1329  			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1330  			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1331  			qrec);
1332  
1333  		if (la_dinode) {
1334  			ret = ocfs2_complete_local_alloc_recovery(osb,
1335  								  la_dinode);
1336  			if (ret < 0)
1337  				mlog_errno(ret);
1338  
1339  			kfree(la_dinode);
1340  		}
1341  
1342  		if (tl_dinode) {
1343  			ret = ocfs2_complete_truncate_log_recovery(osb,
1344  								   tl_dinode);
1345  			if (ret < 0)
1346  				mlog_errno(ret);
1347  
1348  			kfree(tl_dinode);
1349  		}
1350  
1351  		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1352  				orphan_reco_type);
1353  		if (ret < 0)
1354  			mlog_errno(ret);
1355  
1356  		if (qrec) {
1357  			ret = ocfs2_finish_quota_recovery(osb, qrec,
1358  							  item->lri_slot);
1359  			if (ret < 0)
1360  				mlog_errno(ret);
1361  			/* Recovery info is already freed now */
1362  		}
1363  
1364  		kfree(item);
1365  	}
1366  
1367  	trace_ocfs2_complete_recovery_end(ret);
1368  }
1369  
1370  /* NOTE: This function always eats your references to la_dinode and
1371   * tl_dinode, either manually on error, or by passing them to
1372   * ocfs2_complete_recovery */
ocfs2_queue_recovery_completion(struct ocfs2_journal * journal,int slot_num,struct ocfs2_dinode * la_dinode,struct ocfs2_dinode * tl_dinode,struct ocfs2_quota_recovery * qrec,enum ocfs2_orphan_reco_type orphan_reco_type)1373  static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1374  					    int slot_num,
1375  					    struct ocfs2_dinode *la_dinode,
1376  					    struct ocfs2_dinode *tl_dinode,
1377  					    struct ocfs2_quota_recovery *qrec,
1378  					    enum ocfs2_orphan_reco_type orphan_reco_type)
1379  {
1380  	struct ocfs2_la_recovery_item *item;
1381  
1382  	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1383  	if (!item) {
1384  		/* Though we wish to avoid it, we are in fact safe in
1385  		 * skipping local alloc cleanup as fsck.ocfs2 is more
1386  		 * than capable of reclaiming unused space. */
1387  		kfree(la_dinode);
1388  		kfree(tl_dinode);
1389  
1390  		if (qrec)
1391  			ocfs2_free_quota_recovery(qrec);
1392  
1393  		mlog_errno(-ENOMEM);
1394  		return;
1395  	}
1396  
1397  	INIT_LIST_HEAD(&item->lri_list);
1398  	item->lri_la_dinode = la_dinode;
1399  	item->lri_slot = slot_num;
1400  	item->lri_tl_dinode = tl_dinode;
1401  	item->lri_qrec = qrec;
1402  	item->lri_orphan_reco_type = orphan_reco_type;
1403  
1404  	spin_lock(&journal->j_lock);
1405  	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1406  	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1407  	spin_unlock(&journal->j_lock);
1408  }
1409  
1410  /* Called by the mount code to queue recovery the last part of
1411   * recovery for it's own and offline slot(s). */
ocfs2_complete_mount_recovery(struct ocfs2_super * osb)1412  void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1413  {
1414  	struct ocfs2_journal *journal = osb->journal;
1415  
1416  	if (ocfs2_is_hard_readonly(osb))
1417  		return;
1418  
1419  	/* No need to queue up our truncate_log as regular cleanup will catch
1420  	 * that */
1421  	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1422  					osb->local_alloc_copy, NULL, NULL,
1423  					ORPHAN_NEED_TRUNCATE);
1424  	ocfs2_schedule_truncate_log_flush(osb, 0);
1425  
1426  	osb->local_alloc_copy = NULL;
1427  
1428  	/* queue to recover orphan slots for all offline slots */
1429  	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1430  	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1431  	ocfs2_free_replay_slots(osb);
1432  }
1433  
ocfs2_complete_quota_recovery(struct ocfs2_super * osb)1434  void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1435  {
1436  	if (osb->quota_rec) {
1437  		ocfs2_queue_recovery_completion(osb->journal,
1438  						osb->slot_num,
1439  						NULL,
1440  						NULL,
1441  						osb->quota_rec,
1442  						ORPHAN_NEED_TRUNCATE);
1443  		osb->quota_rec = NULL;
1444  	}
1445  }
1446  
__ocfs2_recovery_thread(void * arg)1447  static int __ocfs2_recovery_thread(void *arg)
1448  {
1449  	int status, node_num, slot_num;
1450  	struct ocfs2_super *osb = arg;
1451  	struct ocfs2_recovery_map *rm = osb->recovery_map;
1452  	int *rm_quota = NULL;
1453  	int rm_quota_used = 0, i;
1454  	struct ocfs2_quota_recovery *qrec;
1455  
1456  	/* Whether the quota supported. */
1457  	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1458  			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1459  		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1460  			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1461  
1462  	status = ocfs2_wait_on_mount(osb);
1463  	if (status < 0) {
1464  		goto bail;
1465  	}
1466  
1467  	if (quota_enabled) {
1468  		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1469  		if (!rm_quota) {
1470  			status = -ENOMEM;
1471  			goto bail;
1472  		}
1473  	}
1474  restart:
1475  	status = ocfs2_super_lock(osb, 1);
1476  	if (status < 0) {
1477  		mlog_errno(status);
1478  		goto bail;
1479  	}
1480  
1481  	status = ocfs2_compute_replay_slots(osb);
1482  	if (status < 0)
1483  		mlog_errno(status);
1484  
1485  	/* queue recovery for our own slot */
1486  	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1487  					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1488  
1489  	spin_lock(&osb->osb_lock);
1490  	while (rm->rm_used) {
1491  		/* It's always safe to remove entry zero, as we won't
1492  		 * clear it until ocfs2_recover_node() has succeeded. */
1493  		node_num = rm->rm_entries[0];
1494  		spin_unlock(&osb->osb_lock);
1495  		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1496  		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1497  		if (slot_num == -ENOENT) {
1498  			status = 0;
1499  			goto skip_recovery;
1500  		}
1501  
1502  		/* It is a bit subtle with quota recovery. We cannot do it
1503  		 * immediately because we have to obtain cluster locks from
1504  		 * quota files and we also don't want to just skip it because
1505  		 * then quota usage would be out of sync until some node takes
1506  		 * the slot. So we remember which nodes need quota recovery
1507  		 * and when everything else is done, we recover quotas. */
1508  		if (quota_enabled) {
1509  			for (i = 0; i < rm_quota_used
1510  					&& rm_quota[i] != slot_num; i++)
1511  				;
1512  
1513  			if (i == rm_quota_used)
1514  				rm_quota[rm_quota_used++] = slot_num;
1515  		}
1516  
1517  		status = ocfs2_recover_node(osb, node_num, slot_num);
1518  skip_recovery:
1519  		if (!status) {
1520  			ocfs2_recovery_map_clear(osb, node_num);
1521  		} else {
1522  			mlog(ML_ERROR,
1523  			     "Error %d recovering node %d on device (%u,%u)!\n",
1524  			     status, node_num,
1525  			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1526  			mlog(ML_ERROR, "Volume requires unmount.\n");
1527  		}
1528  
1529  		spin_lock(&osb->osb_lock);
1530  	}
1531  	spin_unlock(&osb->osb_lock);
1532  	trace_ocfs2_recovery_thread_end(status);
1533  
1534  	/* Refresh all journal recovery generations from disk */
1535  	status = ocfs2_check_journals_nolocks(osb);
1536  	status = (status == -EROFS) ? 0 : status;
1537  	if (status < 0)
1538  		mlog_errno(status);
1539  
1540  	/* Now it is right time to recover quotas... We have to do this under
1541  	 * superblock lock so that no one can start using the slot (and crash)
1542  	 * before we recover it */
1543  	if (quota_enabled) {
1544  		for (i = 0; i < rm_quota_used; i++) {
1545  			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1546  			if (IS_ERR(qrec)) {
1547  				status = PTR_ERR(qrec);
1548  				mlog_errno(status);
1549  				continue;
1550  			}
1551  			ocfs2_queue_recovery_completion(osb->journal,
1552  					rm_quota[i],
1553  					NULL, NULL, qrec,
1554  					ORPHAN_NEED_TRUNCATE);
1555  		}
1556  	}
1557  
1558  	ocfs2_super_unlock(osb, 1);
1559  
1560  	/* queue recovery for offline slots */
1561  	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1562  
1563  bail:
1564  	mutex_lock(&osb->recovery_lock);
1565  	if (!status && !ocfs2_recovery_completed(osb)) {
1566  		mutex_unlock(&osb->recovery_lock);
1567  		goto restart;
1568  	}
1569  
1570  	ocfs2_free_replay_slots(osb);
1571  	osb->recovery_thread_task = NULL;
1572  	mb(); /* sync with ocfs2_recovery_thread_running */
1573  	wake_up(&osb->recovery_event);
1574  
1575  	mutex_unlock(&osb->recovery_lock);
1576  
1577  	if (quota_enabled)
1578  		kfree(rm_quota);
1579  
1580  	return status;
1581  }
1582  
ocfs2_recovery_thread(struct ocfs2_super * osb,int node_num)1583  void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1584  {
1585  	mutex_lock(&osb->recovery_lock);
1586  
1587  	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1588  		osb->disable_recovery, osb->recovery_thread_task,
1589  		osb->disable_recovery ?
1590  		-1 : ocfs2_recovery_map_set(osb, node_num));
1591  
1592  	if (osb->disable_recovery)
1593  		goto out;
1594  
1595  	if (osb->recovery_thread_task)
1596  		goto out;
1597  
1598  	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1599  			"ocfs2rec-%s", osb->uuid_str);
1600  	if (IS_ERR(osb->recovery_thread_task)) {
1601  		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1602  		osb->recovery_thread_task = NULL;
1603  	}
1604  
1605  out:
1606  	mutex_unlock(&osb->recovery_lock);
1607  	wake_up(&osb->recovery_event);
1608  }
1609  
ocfs2_read_journal_inode(struct ocfs2_super * osb,int slot_num,struct buffer_head ** bh,struct inode ** ret_inode)1610  static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1611  				    int slot_num,
1612  				    struct buffer_head **bh,
1613  				    struct inode **ret_inode)
1614  {
1615  	int status = -EACCES;
1616  	struct inode *inode = NULL;
1617  
1618  	BUG_ON(slot_num >= osb->max_slots);
1619  
1620  	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1621  					    slot_num);
1622  	if (!inode || is_bad_inode(inode)) {
1623  		mlog_errno(status);
1624  		goto bail;
1625  	}
1626  	SET_INODE_JOURNAL(inode);
1627  
1628  	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1629  	if (status < 0) {
1630  		mlog_errno(status);
1631  		goto bail;
1632  	}
1633  
1634  	status = 0;
1635  
1636  bail:
1637  	if (inode) {
1638  		if (status || !ret_inode)
1639  			iput(inode);
1640  		else
1641  			*ret_inode = inode;
1642  	}
1643  	return status;
1644  }
1645  
1646  /* Does the actual journal replay and marks the journal inode as
1647   * clean. Will only replay if the journal inode is marked dirty. */
ocfs2_replay_journal(struct ocfs2_super * osb,int node_num,int slot_num)1648  static int ocfs2_replay_journal(struct ocfs2_super *osb,
1649  				int node_num,
1650  				int slot_num)
1651  {
1652  	int status;
1653  	int got_lock = 0;
1654  	unsigned int flags;
1655  	struct inode *inode = NULL;
1656  	struct ocfs2_dinode *fe;
1657  	journal_t *journal = NULL;
1658  	struct buffer_head *bh = NULL;
1659  	u32 slot_reco_gen;
1660  
1661  	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1662  	if (status) {
1663  		mlog_errno(status);
1664  		goto done;
1665  	}
1666  
1667  	fe = (struct ocfs2_dinode *)bh->b_data;
1668  	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1669  	brelse(bh);
1670  	bh = NULL;
1671  
1672  	/*
1673  	 * As the fs recovery is asynchronous, there is a small chance that
1674  	 * another node mounted (and recovered) the slot before the recovery
1675  	 * thread could get the lock. To handle that, we dirty read the journal
1676  	 * inode for that slot to get the recovery generation. If it is
1677  	 * different than what we expected, the slot has been recovered.
1678  	 * If not, it needs recovery.
1679  	 */
1680  	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1681  		trace_ocfs2_replay_journal_recovered(slot_num,
1682  		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1683  		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1684  		status = -EBUSY;
1685  		goto done;
1686  	}
1687  
1688  	/* Continue with recovery as the journal has not yet been recovered */
1689  
1690  	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1691  	if (status < 0) {
1692  		trace_ocfs2_replay_journal_lock_err(status);
1693  		if (status != -ERESTARTSYS)
1694  			mlog(ML_ERROR, "Could not lock journal!\n");
1695  		goto done;
1696  	}
1697  	got_lock = 1;
1698  
1699  	fe = (struct ocfs2_dinode *) bh->b_data;
1700  
1701  	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1702  	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1703  
1704  	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1705  		trace_ocfs2_replay_journal_skip(node_num);
1706  		/* Refresh recovery generation for the slot */
1707  		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1708  		goto done;
1709  	}
1710  
1711  	/* we need to run complete recovery for offline orphan slots */
1712  	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1713  
1714  	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1715  	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1716  	       MINOR(osb->sb->s_dev));
1717  
1718  	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1719  
1720  	status = ocfs2_force_read_journal(inode);
1721  	if (status < 0) {
1722  		mlog_errno(status);
1723  		goto done;
1724  	}
1725  
1726  	journal = jbd2_journal_init_inode(inode);
1727  	if (IS_ERR(journal)) {
1728  		mlog(ML_ERROR, "Linux journal layer error\n");
1729  		status = PTR_ERR(journal);
1730  		goto done;
1731  	}
1732  
1733  	status = jbd2_journal_load(journal);
1734  	if (status < 0) {
1735  		mlog_errno(status);
1736  		BUG_ON(!igrab(inode));
1737  		jbd2_journal_destroy(journal);
1738  		goto done;
1739  	}
1740  
1741  	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1742  
1743  	/* wipe the journal */
1744  	jbd2_journal_lock_updates(journal);
1745  	status = jbd2_journal_flush(journal, 0);
1746  	jbd2_journal_unlock_updates(journal);
1747  	if (status < 0)
1748  		mlog_errno(status);
1749  
1750  	/* This will mark the node clean */
1751  	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1752  	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1753  	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1754  
1755  	/* Increment recovery generation to indicate successful recovery */
1756  	ocfs2_bump_recovery_generation(fe);
1757  	osb->slot_recovery_generations[slot_num] =
1758  					ocfs2_get_recovery_generation(fe);
1759  
1760  	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1761  	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1762  	if (status < 0)
1763  		mlog_errno(status);
1764  
1765  	BUG_ON(!igrab(inode));
1766  
1767  	jbd2_journal_destroy(journal);
1768  
1769  	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1770  	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1771  	       MINOR(osb->sb->s_dev));
1772  done:
1773  	/* drop the lock on this nodes journal */
1774  	if (got_lock)
1775  		ocfs2_inode_unlock(inode, 1);
1776  
1777  	iput(inode);
1778  	brelse(bh);
1779  
1780  	return status;
1781  }
1782  
1783  /*
1784   * Do the most important parts of node recovery:
1785   *  - Replay it's journal
1786   *  - Stamp a clean local allocator file
1787   *  - Stamp a clean truncate log
1788   *  - Mark the node clean
1789   *
1790   * If this function completes without error, a node in OCFS2 can be
1791   * said to have been safely recovered. As a result, failure during the
1792   * second part of a nodes recovery process (local alloc recovery) is
1793   * far less concerning.
1794   */
ocfs2_recover_node(struct ocfs2_super * osb,int node_num,int slot_num)1795  static int ocfs2_recover_node(struct ocfs2_super *osb,
1796  			      int node_num, int slot_num)
1797  {
1798  	int status = 0;
1799  	struct ocfs2_dinode *la_copy = NULL;
1800  	struct ocfs2_dinode *tl_copy = NULL;
1801  
1802  	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1803  
1804  	/* Should not ever be called to recover ourselves -- in that
1805  	 * case we should've called ocfs2_journal_load instead. */
1806  	BUG_ON(osb->node_num == node_num);
1807  
1808  	status = ocfs2_replay_journal(osb, node_num, slot_num);
1809  	if (status < 0) {
1810  		if (status == -EBUSY) {
1811  			trace_ocfs2_recover_node_skip(slot_num, node_num);
1812  			status = 0;
1813  			goto done;
1814  		}
1815  		mlog_errno(status);
1816  		goto done;
1817  	}
1818  
1819  	/* Stamp a clean local alloc file AFTER recovering the journal... */
1820  	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1821  	if (status < 0) {
1822  		mlog_errno(status);
1823  		goto done;
1824  	}
1825  
1826  	/* An error from begin_truncate_log_recovery is not
1827  	 * serious enough to warrant halting the rest of
1828  	 * recovery. */
1829  	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1830  	if (status < 0)
1831  		mlog_errno(status);
1832  
1833  	/* Likewise, this would be a strange but ultimately not so
1834  	 * harmful place to get an error... */
1835  	status = ocfs2_clear_slot(osb, slot_num);
1836  	if (status < 0)
1837  		mlog_errno(status);
1838  
1839  	/* This will kfree the memory pointed to by la_copy and tl_copy */
1840  	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1841  					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1842  
1843  	status = 0;
1844  done:
1845  
1846  	return status;
1847  }
1848  
1849  /* Test node liveness by trylocking his journal. If we get the lock,
1850   * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1851   * still alive (we couldn't get the lock) and < 0 on error. */
ocfs2_trylock_journal(struct ocfs2_super * osb,int slot_num)1852  static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1853  				 int slot_num)
1854  {
1855  	int status, flags;
1856  	struct inode *inode = NULL;
1857  
1858  	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1859  					    slot_num);
1860  	if (inode == NULL) {
1861  		mlog(ML_ERROR, "access error\n");
1862  		status = -EACCES;
1863  		goto bail;
1864  	}
1865  	if (is_bad_inode(inode)) {
1866  		mlog(ML_ERROR, "access error (bad inode)\n");
1867  		iput(inode);
1868  		inode = NULL;
1869  		status = -EACCES;
1870  		goto bail;
1871  	}
1872  	SET_INODE_JOURNAL(inode);
1873  
1874  	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1875  	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1876  	if (status < 0) {
1877  		if (status != -EAGAIN)
1878  			mlog_errno(status);
1879  		goto bail;
1880  	}
1881  
1882  	ocfs2_inode_unlock(inode, 1);
1883  bail:
1884  	iput(inode);
1885  
1886  	return status;
1887  }
1888  
1889  /* Call this underneath ocfs2_super_lock. It also assumes that the
1890   * slot info struct has been updated from disk. */
ocfs2_mark_dead_nodes(struct ocfs2_super * osb)1891  int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1892  {
1893  	unsigned int node_num;
1894  	int status, i;
1895  	u32 gen;
1896  	struct buffer_head *bh = NULL;
1897  	struct ocfs2_dinode *di;
1898  
1899  	/* This is called with the super block cluster lock, so we
1900  	 * know that the slot map can't change underneath us. */
1901  
1902  	for (i = 0; i < osb->max_slots; i++) {
1903  		/* Read journal inode to get the recovery generation */
1904  		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1905  		if (status) {
1906  			mlog_errno(status);
1907  			goto bail;
1908  		}
1909  		di = (struct ocfs2_dinode *)bh->b_data;
1910  		gen = ocfs2_get_recovery_generation(di);
1911  		brelse(bh);
1912  		bh = NULL;
1913  
1914  		spin_lock(&osb->osb_lock);
1915  		osb->slot_recovery_generations[i] = gen;
1916  
1917  		trace_ocfs2_mark_dead_nodes(i,
1918  					    osb->slot_recovery_generations[i]);
1919  
1920  		if (i == osb->slot_num) {
1921  			spin_unlock(&osb->osb_lock);
1922  			continue;
1923  		}
1924  
1925  		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1926  		if (status == -ENOENT) {
1927  			spin_unlock(&osb->osb_lock);
1928  			continue;
1929  		}
1930  
1931  		if (__ocfs2_recovery_map_test(osb, node_num)) {
1932  			spin_unlock(&osb->osb_lock);
1933  			continue;
1934  		}
1935  		spin_unlock(&osb->osb_lock);
1936  
1937  		/* Ok, we have a slot occupied by another node which
1938  		 * is not in the recovery map. We trylock his journal
1939  		 * file here to test if he's alive. */
1940  		status = ocfs2_trylock_journal(osb, i);
1941  		if (!status) {
1942  			/* Since we're called from mount, we know that
1943  			 * the recovery thread can't race us on
1944  			 * setting / checking the recovery bits. */
1945  			ocfs2_recovery_thread(osb, node_num);
1946  		} else if ((status < 0) && (status != -EAGAIN)) {
1947  			mlog_errno(status);
1948  			goto bail;
1949  		}
1950  	}
1951  
1952  	status = 0;
1953  bail:
1954  	return status;
1955  }
1956  
1957  /*
1958   * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1959   * randomness to the timeout to minimize multple nodes firing the timer at the
1960   * same time.
1961   */
ocfs2_orphan_scan_timeout(void)1962  static inline unsigned long ocfs2_orphan_scan_timeout(void)
1963  {
1964  	unsigned long time;
1965  
1966  	get_random_bytes(&time, sizeof(time));
1967  	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1968  	return msecs_to_jiffies(time);
1969  }
1970  
1971  /*
1972   * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1973   * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1974   * is done to catch any orphans that are left over in orphan directories.
1975   *
1976   * It scans all slots, even ones that are in use. It does so to handle the
1977   * case described below:
1978   *
1979   *   Node 1 has an inode it was using. The dentry went away due to memory
1980   *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1981   *   has the open lock.
1982   *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1983   *   but node 1 has no dentry and doesn't get the message. It trylocks the
1984   *   open lock, sees that another node has a PR, and does nothing.
1985   *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1986   *   open lock, sees the PR still, and does nothing.
1987   *   Basically, we have to trigger an orphan iput on node 1. The only way
1988   *   for this to happen is if node 1 runs node 2's orphan dir.
1989   *
1990   * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1991   * seconds.  It gets an EX lock on os_lockres and checks sequence number
1992   * stored in LVB. If the sequence number has changed, it means some other
1993   * node has done the scan.  This node skips the scan and tracks the
1994   * sequence number.  If the sequence number didn't change, it means a scan
1995   * hasn't happened.  The node queues a scan and increments the
1996   * sequence number in the LVB.
1997   */
ocfs2_queue_orphan_scan(struct ocfs2_super * osb)1998  static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1999  {
2000  	struct ocfs2_orphan_scan *os;
2001  	int status, i;
2002  	u32 seqno = 0;
2003  
2004  	os = &osb->osb_orphan_scan;
2005  
2006  	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2007  		goto out;
2008  
2009  	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
2010  					    atomic_read(&os->os_state));
2011  
2012  	status = ocfs2_orphan_scan_lock(osb, &seqno);
2013  	if (status < 0) {
2014  		if (status != -EAGAIN)
2015  			mlog_errno(status);
2016  		goto out;
2017  	}
2018  
2019  	/* Do no queue the tasks if the volume is being umounted */
2020  	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2021  		goto unlock;
2022  
2023  	if (os->os_seqno != seqno) {
2024  		os->os_seqno = seqno;
2025  		goto unlock;
2026  	}
2027  
2028  	for (i = 0; i < osb->max_slots; i++)
2029  		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
2030  						NULL, ORPHAN_NO_NEED_TRUNCATE);
2031  	/*
2032  	 * We queued a recovery on orphan slots, increment the sequence
2033  	 * number and update LVB so other node will skip the scan for a while
2034  	 */
2035  	seqno++;
2036  	os->os_count++;
2037  	os->os_scantime = ktime_get_seconds();
2038  unlock:
2039  	ocfs2_orphan_scan_unlock(osb, seqno);
2040  out:
2041  	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
2042  					  atomic_read(&os->os_state));
2043  	return;
2044  }
2045  
2046  /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
ocfs2_orphan_scan_work(struct work_struct * work)2047  static void ocfs2_orphan_scan_work(struct work_struct *work)
2048  {
2049  	struct ocfs2_orphan_scan *os;
2050  	struct ocfs2_super *osb;
2051  
2052  	os = container_of(work, struct ocfs2_orphan_scan,
2053  			  os_orphan_scan_work.work);
2054  	osb = os->os_osb;
2055  
2056  	mutex_lock(&os->os_lock);
2057  	ocfs2_queue_orphan_scan(osb);
2058  	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2059  		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2060  				      ocfs2_orphan_scan_timeout());
2061  	mutex_unlock(&os->os_lock);
2062  }
2063  
ocfs2_orphan_scan_stop(struct ocfs2_super * osb)2064  void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2065  {
2066  	struct ocfs2_orphan_scan *os;
2067  
2068  	os = &osb->osb_orphan_scan;
2069  	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2070  		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2071  		mutex_lock(&os->os_lock);
2072  		cancel_delayed_work(&os->os_orphan_scan_work);
2073  		mutex_unlock(&os->os_lock);
2074  	}
2075  }
2076  
ocfs2_orphan_scan_init(struct ocfs2_super * osb)2077  void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2078  {
2079  	struct ocfs2_orphan_scan *os;
2080  
2081  	os = &osb->osb_orphan_scan;
2082  	os->os_osb = osb;
2083  	os->os_count = 0;
2084  	os->os_seqno = 0;
2085  	mutex_init(&os->os_lock);
2086  	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2087  }
2088  
ocfs2_orphan_scan_start(struct ocfs2_super * osb)2089  void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2090  {
2091  	struct ocfs2_orphan_scan *os;
2092  
2093  	os = &osb->osb_orphan_scan;
2094  	os->os_scantime = ktime_get_seconds();
2095  	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2096  		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2097  	else {
2098  		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2099  		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2100  				   ocfs2_orphan_scan_timeout());
2101  	}
2102  }
2103  
2104  struct ocfs2_orphan_filldir_priv {
2105  	struct dir_context	ctx;
2106  	struct inode		*head;
2107  	struct ocfs2_super	*osb;
2108  	enum ocfs2_orphan_reco_type orphan_reco_type;
2109  };
2110  
ocfs2_orphan_filldir(struct dir_context * ctx,const char * name,int name_len,loff_t pos,u64 ino,unsigned type)2111  static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2112  				int name_len, loff_t pos, u64 ino,
2113  				unsigned type)
2114  {
2115  	struct ocfs2_orphan_filldir_priv *p =
2116  		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2117  	struct inode *iter;
2118  
2119  	if (name_len == 1 && !strncmp(".", name, 1))
2120  		return true;
2121  	if (name_len == 2 && !strncmp("..", name, 2))
2122  		return true;
2123  
2124  	/* do not include dio entry in case of orphan scan */
2125  	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2126  			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2127  			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2128  		return true;
2129  
2130  	/* Skip bad inodes so that recovery can continue */
2131  	iter = ocfs2_iget(p->osb, ino,
2132  			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2133  	if (IS_ERR(iter))
2134  		return true;
2135  
2136  	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2137  			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2138  		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2139  
2140  	/* Skip inodes which are already added to recover list, since dio may
2141  	 * happen concurrently with unlink/rename */
2142  	if (OCFS2_I(iter)->ip_next_orphan) {
2143  		iput(iter);
2144  		return true;
2145  	}
2146  
2147  	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2148  	/* No locking is required for the next_orphan queue as there
2149  	 * is only ever a single process doing orphan recovery. */
2150  	OCFS2_I(iter)->ip_next_orphan = p->head;
2151  	p->head = iter;
2152  
2153  	return true;
2154  }
2155  
ocfs2_queue_orphans(struct ocfs2_super * osb,int slot,struct inode ** head,enum ocfs2_orphan_reco_type orphan_reco_type)2156  static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2157  			       int slot,
2158  			       struct inode **head,
2159  			       enum ocfs2_orphan_reco_type orphan_reco_type)
2160  {
2161  	int status;
2162  	struct inode *orphan_dir_inode = NULL;
2163  	struct ocfs2_orphan_filldir_priv priv = {
2164  		.ctx.actor = ocfs2_orphan_filldir,
2165  		.osb = osb,
2166  		.head = *head,
2167  		.orphan_reco_type = orphan_reco_type
2168  	};
2169  
2170  	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2171  						       ORPHAN_DIR_SYSTEM_INODE,
2172  						       slot);
2173  	if  (!orphan_dir_inode) {
2174  		status = -ENOENT;
2175  		mlog_errno(status);
2176  		return status;
2177  	}
2178  
2179  	inode_lock(orphan_dir_inode);
2180  	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2181  	if (status < 0) {
2182  		mlog_errno(status);
2183  		goto out;
2184  	}
2185  
2186  	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2187  	if (status) {
2188  		mlog_errno(status);
2189  		goto out_cluster;
2190  	}
2191  
2192  	*head = priv.head;
2193  
2194  out_cluster:
2195  	ocfs2_inode_unlock(orphan_dir_inode, 0);
2196  out:
2197  	inode_unlock(orphan_dir_inode);
2198  	iput(orphan_dir_inode);
2199  	return status;
2200  }
2201  
ocfs2_orphan_recovery_can_continue(struct ocfs2_super * osb,int slot)2202  static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2203  					      int slot)
2204  {
2205  	int ret;
2206  
2207  	spin_lock(&osb->osb_lock);
2208  	ret = !osb->osb_orphan_wipes[slot];
2209  	spin_unlock(&osb->osb_lock);
2210  	return ret;
2211  }
2212  
ocfs2_mark_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2213  static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2214  					     int slot)
2215  {
2216  	spin_lock(&osb->osb_lock);
2217  	/* Mark ourselves such that new processes in delete_inode()
2218  	 * know to quit early. */
2219  	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2220  	while (osb->osb_orphan_wipes[slot]) {
2221  		/* If any processes are already in the middle of an
2222  		 * orphan wipe on this dir, then we need to wait for
2223  		 * them. */
2224  		spin_unlock(&osb->osb_lock);
2225  		wait_event_interruptible(osb->osb_wipe_event,
2226  					 ocfs2_orphan_recovery_can_continue(osb, slot));
2227  		spin_lock(&osb->osb_lock);
2228  	}
2229  	spin_unlock(&osb->osb_lock);
2230  }
2231  
ocfs2_clear_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2232  static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2233  					      int slot)
2234  {
2235  	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2236  }
2237  
2238  /*
2239   * Orphan recovery. Each mounted node has it's own orphan dir which we
2240   * must run during recovery. Our strategy here is to build a list of
2241   * the inodes in the orphan dir and iget/iput them. The VFS does
2242   * (most) of the rest of the work.
2243   *
2244   * Orphan recovery can happen at any time, not just mount so we have a
2245   * couple of extra considerations.
2246   *
2247   * - We grab as many inodes as we can under the orphan dir lock -
2248   *   doing iget() outside the orphan dir risks getting a reference on
2249   *   an invalid inode.
2250   * - We must be sure not to deadlock with other processes on the
2251   *   system wanting to run delete_inode(). This can happen when they go
2252   *   to lock the orphan dir and the orphan recovery process attempts to
2253   *   iget() inside the orphan dir lock. This can be avoided by
2254   *   advertising our state to ocfs2_delete_inode().
2255   */
ocfs2_recover_orphans(struct ocfs2_super * osb,int slot,enum ocfs2_orphan_reco_type orphan_reco_type)2256  static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2257  				 int slot,
2258  				 enum ocfs2_orphan_reco_type orphan_reco_type)
2259  {
2260  	int ret = 0;
2261  	struct inode *inode = NULL;
2262  	struct inode *iter;
2263  	struct ocfs2_inode_info *oi;
2264  	struct buffer_head *di_bh = NULL;
2265  	struct ocfs2_dinode *di = NULL;
2266  
2267  	trace_ocfs2_recover_orphans(slot);
2268  
2269  	ocfs2_mark_recovering_orphan_dir(osb, slot);
2270  	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2271  	ocfs2_clear_recovering_orphan_dir(osb, slot);
2272  
2273  	/* Error here should be noted, but we want to continue with as
2274  	 * many queued inodes as we've got. */
2275  	if (ret)
2276  		mlog_errno(ret);
2277  
2278  	while (inode) {
2279  		oi = OCFS2_I(inode);
2280  		trace_ocfs2_recover_orphans_iput(
2281  					(unsigned long long)oi->ip_blkno);
2282  
2283  		iter = oi->ip_next_orphan;
2284  		oi->ip_next_orphan = NULL;
2285  
2286  		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2287  			inode_lock(inode);
2288  			ret = ocfs2_rw_lock(inode, 1);
2289  			if (ret < 0) {
2290  				mlog_errno(ret);
2291  				goto unlock_mutex;
2292  			}
2293  			/*
2294  			 * We need to take and drop the inode lock to
2295  			 * force read inode from disk.
2296  			 */
2297  			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2298  			if (ret) {
2299  				mlog_errno(ret);
2300  				goto unlock_rw;
2301  			}
2302  
2303  			di = (struct ocfs2_dinode *)di_bh->b_data;
2304  
2305  			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2306  				ret = ocfs2_truncate_file(inode, di_bh,
2307  						i_size_read(inode));
2308  				if (ret < 0) {
2309  					if (ret != -ENOSPC)
2310  						mlog_errno(ret);
2311  					goto unlock_inode;
2312  				}
2313  
2314  				ret = ocfs2_del_inode_from_orphan(osb, inode,
2315  						di_bh, 0, 0);
2316  				if (ret)
2317  					mlog_errno(ret);
2318  			}
2319  unlock_inode:
2320  			ocfs2_inode_unlock(inode, 1);
2321  			brelse(di_bh);
2322  			di_bh = NULL;
2323  unlock_rw:
2324  			ocfs2_rw_unlock(inode, 1);
2325  unlock_mutex:
2326  			inode_unlock(inode);
2327  
2328  			/* clear dio flag in ocfs2_inode_info */
2329  			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2330  		} else {
2331  			spin_lock(&oi->ip_lock);
2332  			/* Set the proper information to get us going into
2333  			 * ocfs2_delete_inode. */
2334  			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2335  			spin_unlock(&oi->ip_lock);
2336  		}
2337  
2338  		iput(inode);
2339  		inode = iter;
2340  	}
2341  
2342  	return ret;
2343  }
2344  
__ocfs2_wait_on_mount(struct ocfs2_super * osb,int quota)2345  static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2346  {
2347  	/* This check is good because ocfs2 will wait on our recovery
2348  	 * thread before changing it to something other than MOUNTED
2349  	 * or DISABLED. */
2350  	wait_event(osb->osb_mount_event,
2351  		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2352  		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2353  		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2354  
2355  	/* If there's an error on mount, then we may never get to the
2356  	 * MOUNTED flag, but this is set right before
2357  	 * dismount_volume() so we can trust it. */
2358  	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2359  		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2360  		mlog(0, "mount error, exiting!\n");
2361  		return -EBUSY;
2362  	}
2363  
2364  	return 0;
2365  }
2366  
ocfs2_commit_thread(void * arg)2367  static int ocfs2_commit_thread(void *arg)
2368  {
2369  	int status;
2370  	struct ocfs2_super *osb = arg;
2371  	struct ocfs2_journal *journal = osb->journal;
2372  
2373  	/* we can trust j_num_trans here because _should_stop() is only set in
2374  	 * shutdown and nobody other than ourselves should be able to start
2375  	 * transactions.  committing on shutdown might take a few iterations
2376  	 * as final transactions put deleted inodes on the list */
2377  	while (!(kthread_should_stop() &&
2378  		 atomic_read(&journal->j_num_trans) == 0)) {
2379  
2380  		wait_event_interruptible(osb->checkpoint_event,
2381  					 atomic_read(&journal->j_num_trans)
2382  					 || kthread_should_stop());
2383  
2384  		status = ocfs2_commit_cache(osb);
2385  		if (status < 0) {
2386  			static unsigned long abort_warn_time;
2387  
2388  			/* Warn about this once per minute */
2389  			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2390  				mlog(ML_ERROR, "status = %d, journal is "
2391  						"already aborted.\n", status);
2392  			/*
2393  			 * After ocfs2_commit_cache() fails, j_num_trans has a
2394  			 * non-zero value.  Sleep here to avoid a busy-wait
2395  			 * loop.
2396  			 */
2397  			msleep_interruptible(1000);
2398  		}
2399  
2400  		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2401  			mlog(ML_KTHREAD,
2402  			     "commit_thread: %u transactions pending on "
2403  			     "shutdown\n",
2404  			     atomic_read(&journal->j_num_trans));
2405  		}
2406  	}
2407  
2408  	return 0;
2409  }
2410  
2411  /* Reads all the journal inodes without taking any cluster locks. Used
2412   * for hard readonly access to determine whether any journal requires
2413   * recovery. Also used to refresh the recovery generation numbers after
2414   * a journal has been recovered by another node.
2415   */
ocfs2_check_journals_nolocks(struct ocfs2_super * osb)2416  int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2417  {
2418  	int ret = 0;
2419  	unsigned int slot;
2420  	struct buffer_head *di_bh = NULL;
2421  	struct ocfs2_dinode *di;
2422  	int journal_dirty = 0;
2423  
2424  	for(slot = 0; slot < osb->max_slots; slot++) {
2425  		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2426  		if (ret) {
2427  			mlog_errno(ret);
2428  			goto out;
2429  		}
2430  
2431  		di = (struct ocfs2_dinode *) di_bh->b_data;
2432  
2433  		osb->slot_recovery_generations[slot] =
2434  					ocfs2_get_recovery_generation(di);
2435  
2436  		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2437  		    OCFS2_JOURNAL_DIRTY_FL)
2438  			journal_dirty = 1;
2439  
2440  		brelse(di_bh);
2441  		di_bh = NULL;
2442  	}
2443  
2444  out:
2445  	if (journal_dirty)
2446  		ret = -EROFS;
2447  	return ret;
2448  }
2449