1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * NVM Express device driver
4   * Copyright (c) 2011-2014, Intel Corporation.
5   */
6  
7  #include <linux/async.h>
8  #include <linux/blkdev.h>
9  #include <linux/blk-mq.h>
10  #include <linux/blk-integrity.h>
11  #include <linux/compat.h>
12  #include <linux/delay.h>
13  #include <linux/errno.h>
14  #include <linux/hdreg.h>
15  #include <linux/kernel.h>
16  #include <linux/module.h>
17  #include <linux/backing-dev.h>
18  #include <linux/slab.h>
19  #include <linux/types.h>
20  #include <linux/pr.h>
21  #include <linux/ptrace.h>
22  #include <linux/nvme_ioctl.h>
23  #include <linux/pm_qos.h>
24  #include <linux/ratelimit.h>
25  #include <linux/unaligned.h>
26  
27  #include "nvme.h"
28  #include "fabrics.h"
29  #include <linux/nvme-auth.h>
30  
31  #define CREATE_TRACE_POINTS
32  #include "trace.h"
33  
34  #define NVME_MINORS		(1U << MINORBITS)
35  
36  struct nvme_ns_info {
37  	struct nvme_ns_ids ids;
38  	u32 nsid;
39  	__le32 anagrpid;
40  	u8 pi_offset;
41  	bool is_shared;
42  	bool is_readonly;
43  	bool is_ready;
44  	bool is_removed;
45  };
46  
47  unsigned int admin_timeout = 60;
48  module_param(admin_timeout, uint, 0644);
49  MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
50  EXPORT_SYMBOL_GPL(admin_timeout);
51  
52  unsigned int nvme_io_timeout = 30;
53  module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
54  MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
55  EXPORT_SYMBOL_GPL(nvme_io_timeout);
56  
57  static unsigned char shutdown_timeout = 5;
58  module_param(shutdown_timeout, byte, 0644);
59  MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
60  
61  static u8 nvme_max_retries = 5;
62  module_param_named(max_retries, nvme_max_retries, byte, 0644);
63  MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
64  
65  static unsigned long default_ps_max_latency_us = 100000;
66  module_param(default_ps_max_latency_us, ulong, 0644);
67  MODULE_PARM_DESC(default_ps_max_latency_us,
68  		 "max power saving latency for new devices; use PM QOS to change per device");
69  
70  static bool force_apst;
71  module_param(force_apst, bool, 0644);
72  MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
73  
74  static unsigned long apst_primary_timeout_ms = 100;
75  module_param(apst_primary_timeout_ms, ulong, 0644);
76  MODULE_PARM_DESC(apst_primary_timeout_ms,
77  	"primary APST timeout in ms");
78  
79  static unsigned long apst_secondary_timeout_ms = 2000;
80  module_param(apst_secondary_timeout_ms, ulong, 0644);
81  MODULE_PARM_DESC(apst_secondary_timeout_ms,
82  	"secondary APST timeout in ms");
83  
84  static unsigned long apst_primary_latency_tol_us = 15000;
85  module_param(apst_primary_latency_tol_us, ulong, 0644);
86  MODULE_PARM_DESC(apst_primary_latency_tol_us,
87  	"primary APST latency tolerance in us");
88  
89  static unsigned long apst_secondary_latency_tol_us = 100000;
90  module_param(apst_secondary_latency_tol_us, ulong, 0644);
91  MODULE_PARM_DESC(apst_secondary_latency_tol_us,
92  	"secondary APST latency tolerance in us");
93  
94  /*
95   * Older kernels didn't enable protection information if it was at an offset.
96   * Newer kernels do, so it breaks reads on the upgrade if such formats were
97   * used in prior kernels since the metadata written did not contain a valid
98   * checksum.
99   */
100  static bool disable_pi_offsets = false;
101  module_param(disable_pi_offsets, bool, 0444);
102  MODULE_PARM_DESC(disable_pi_offsets,
103  	"disable protection information if it has an offset");
104  
105  /*
106   * nvme_wq - hosts nvme related works that are not reset or delete
107   * nvme_reset_wq - hosts nvme reset works
108   * nvme_delete_wq - hosts nvme delete works
109   *
110   * nvme_wq will host works such as scan, aen handling, fw activation,
111   * keep-alive, periodic reconnects etc. nvme_reset_wq
112   * runs reset works which also flush works hosted on nvme_wq for
113   * serialization purposes. nvme_delete_wq host controller deletion
114   * works which flush reset works for serialization.
115   */
116  struct workqueue_struct *nvme_wq;
117  EXPORT_SYMBOL_GPL(nvme_wq);
118  
119  struct workqueue_struct *nvme_reset_wq;
120  EXPORT_SYMBOL_GPL(nvme_reset_wq);
121  
122  struct workqueue_struct *nvme_delete_wq;
123  EXPORT_SYMBOL_GPL(nvme_delete_wq);
124  
125  static LIST_HEAD(nvme_subsystems);
126  DEFINE_MUTEX(nvme_subsystems_lock);
127  
128  static DEFINE_IDA(nvme_instance_ida);
129  static dev_t nvme_ctrl_base_chr_devt;
130  static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
131  static const struct class nvme_class = {
132  	.name = "nvme",
133  	.dev_uevent = nvme_class_uevent,
134  };
135  
136  static const struct class nvme_subsys_class = {
137  	.name = "nvme-subsystem",
138  };
139  
140  static DEFINE_IDA(nvme_ns_chr_minor_ida);
141  static dev_t nvme_ns_chr_devt;
142  static const struct class nvme_ns_chr_class = {
143  	.name = "nvme-generic",
144  };
145  
146  static void nvme_put_subsystem(struct nvme_subsystem *subsys);
147  static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
148  					   unsigned nsid);
149  static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
150  				   struct nvme_command *cmd);
151  
nvme_queue_scan(struct nvme_ctrl * ctrl)152  void nvme_queue_scan(struct nvme_ctrl *ctrl)
153  {
154  	/*
155  	 * Only new queue scan work when admin and IO queues are both alive
156  	 */
157  	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
158  		queue_work(nvme_wq, &ctrl->scan_work);
159  }
160  
161  /*
162   * Use this function to proceed with scheduling reset_work for a controller
163   * that had previously been set to the resetting state. This is intended for
164   * code paths that can't be interrupted by other reset attempts. A hot removal
165   * may prevent this from succeeding.
166   */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)167  int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
168  {
169  	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
170  		return -EBUSY;
171  	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
172  		return -EBUSY;
173  	return 0;
174  }
175  EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
176  
nvme_failfast_work(struct work_struct * work)177  static void nvme_failfast_work(struct work_struct *work)
178  {
179  	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
180  			struct nvme_ctrl, failfast_work);
181  
182  	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
183  		return;
184  
185  	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
186  	dev_info(ctrl->device, "failfast expired\n");
187  	nvme_kick_requeue_lists(ctrl);
188  }
189  
nvme_start_failfast_work(struct nvme_ctrl * ctrl)190  static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
191  {
192  	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
193  		return;
194  
195  	schedule_delayed_work(&ctrl->failfast_work,
196  			      ctrl->opts->fast_io_fail_tmo * HZ);
197  }
198  
nvme_stop_failfast_work(struct nvme_ctrl * ctrl)199  static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
200  {
201  	if (!ctrl->opts)
202  		return;
203  
204  	cancel_delayed_work_sync(&ctrl->failfast_work);
205  	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
206  }
207  
208  
nvme_reset_ctrl(struct nvme_ctrl * ctrl)209  int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
210  {
211  	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
212  		return -EBUSY;
213  	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
214  		return -EBUSY;
215  	return 0;
216  }
217  EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
218  
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)219  int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
220  {
221  	int ret;
222  
223  	ret = nvme_reset_ctrl(ctrl);
224  	if (!ret) {
225  		flush_work(&ctrl->reset_work);
226  		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
227  			ret = -ENETRESET;
228  	}
229  
230  	return ret;
231  }
232  
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)233  static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
234  {
235  	dev_info(ctrl->device,
236  		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
237  
238  	flush_work(&ctrl->reset_work);
239  	nvme_stop_ctrl(ctrl);
240  	nvme_remove_namespaces(ctrl);
241  	ctrl->ops->delete_ctrl(ctrl);
242  	nvme_uninit_ctrl(ctrl);
243  }
244  
nvme_delete_ctrl_work(struct work_struct * work)245  static void nvme_delete_ctrl_work(struct work_struct *work)
246  {
247  	struct nvme_ctrl *ctrl =
248  		container_of(work, struct nvme_ctrl, delete_work);
249  
250  	nvme_do_delete_ctrl(ctrl);
251  }
252  
nvme_delete_ctrl(struct nvme_ctrl * ctrl)253  int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
254  {
255  	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
256  		return -EBUSY;
257  	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
258  		return -EBUSY;
259  	return 0;
260  }
261  EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
262  
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)263  void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
264  {
265  	/*
266  	 * Keep a reference until nvme_do_delete_ctrl() complete,
267  	 * since ->delete_ctrl can free the controller.
268  	 */
269  	nvme_get_ctrl(ctrl);
270  	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
271  		nvme_do_delete_ctrl(ctrl);
272  	nvme_put_ctrl(ctrl);
273  }
274  
nvme_error_status(u16 status)275  static blk_status_t nvme_error_status(u16 status)
276  {
277  	switch (status & NVME_SCT_SC_MASK) {
278  	case NVME_SC_SUCCESS:
279  		return BLK_STS_OK;
280  	case NVME_SC_CAP_EXCEEDED:
281  		return BLK_STS_NOSPC;
282  	case NVME_SC_LBA_RANGE:
283  	case NVME_SC_CMD_INTERRUPTED:
284  	case NVME_SC_NS_NOT_READY:
285  		return BLK_STS_TARGET;
286  	case NVME_SC_BAD_ATTRIBUTES:
287  	case NVME_SC_ONCS_NOT_SUPPORTED:
288  	case NVME_SC_INVALID_OPCODE:
289  	case NVME_SC_INVALID_FIELD:
290  	case NVME_SC_INVALID_NS:
291  		return BLK_STS_NOTSUPP;
292  	case NVME_SC_WRITE_FAULT:
293  	case NVME_SC_READ_ERROR:
294  	case NVME_SC_UNWRITTEN_BLOCK:
295  	case NVME_SC_ACCESS_DENIED:
296  	case NVME_SC_READ_ONLY:
297  	case NVME_SC_COMPARE_FAILED:
298  		return BLK_STS_MEDIUM;
299  	case NVME_SC_GUARD_CHECK:
300  	case NVME_SC_APPTAG_CHECK:
301  	case NVME_SC_REFTAG_CHECK:
302  	case NVME_SC_INVALID_PI:
303  		return BLK_STS_PROTECTION;
304  	case NVME_SC_RESERVATION_CONFLICT:
305  		return BLK_STS_RESV_CONFLICT;
306  	case NVME_SC_HOST_PATH_ERROR:
307  		return BLK_STS_TRANSPORT;
308  	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
309  		return BLK_STS_ZONE_ACTIVE_RESOURCE;
310  	case NVME_SC_ZONE_TOO_MANY_OPEN:
311  		return BLK_STS_ZONE_OPEN_RESOURCE;
312  	default:
313  		return BLK_STS_IOERR;
314  	}
315  }
316  
nvme_retry_req(struct request * req)317  static void nvme_retry_req(struct request *req)
318  {
319  	unsigned long delay = 0;
320  	u16 crd;
321  
322  	/* The mask and shift result must be <= 3 */
323  	crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
324  	if (crd)
325  		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
326  
327  	nvme_req(req)->retries++;
328  	blk_mq_requeue_request(req, false);
329  	blk_mq_delay_kick_requeue_list(req->q, delay);
330  }
331  
nvme_log_error(struct request * req)332  static void nvme_log_error(struct request *req)
333  {
334  	struct nvme_ns *ns = req->q->queuedata;
335  	struct nvme_request *nr = nvme_req(req);
336  
337  	if (ns) {
338  		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
339  		       ns->disk ? ns->disk->disk_name : "?",
340  		       nvme_get_opcode_str(nr->cmd->common.opcode),
341  		       nr->cmd->common.opcode,
342  		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
343  		       blk_rq_bytes(req) >> ns->head->lba_shift,
344  		       nvme_get_error_status_str(nr->status),
345  		       NVME_SCT(nr->status),		/* Status Code Type */
346  		       nr->status & NVME_SC_MASK,	/* Status Code */
347  		       nr->status & NVME_STATUS_MORE ? "MORE " : "",
348  		       nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
349  		return;
350  	}
351  
352  	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
353  			   dev_name(nr->ctrl->device),
354  			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
355  			   nr->cmd->common.opcode,
356  			   nvme_get_error_status_str(nr->status),
357  			   NVME_SCT(nr->status),	/* Status Code Type */
358  			   nr->status & NVME_SC_MASK,	/* Status Code */
359  			   nr->status & NVME_STATUS_MORE ? "MORE " : "",
360  			   nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
361  }
362  
nvme_log_err_passthru(struct request * req)363  static void nvme_log_err_passthru(struct request *req)
364  {
365  	struct nvme_ns *ns = req->q->queuedata;
366  	struct nvme_request *nr = nvme_req(req);
367  
368  	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
369  		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
370  		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
371  		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
372  		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
373  		nr->cmd->common.opcode,
374  		nvme_get_error_status_str(nr->status),
375  		NVME_SCT(nr->status),		/* Status Code Type */
376  		nr->status & NVME_SC_MASK,	/* Status Code */
377  		nr->status & NVME_STATUS_MORE ? "MORE " : "",
378  		nr->status & NVME_STATUS_DNR  ? "DNR "  : "",
379  		nr->cmd->common.cdw10,
380  		nr->cmd->common.cdw11,
381  		nr->cmd->common.cdw12,
382  		nr->cmd->common.cdw13,
383  		nr->cmd->common.cdw14,
384  		nr->cmd->common.cdw14);
385  }
386  
387  enum nvme_disposition {
388  	COMPLETE,
389  	RETRY,
390  	FAILOVER,
391  	AUTHENTICATE,
392  };
393  
nvme_decide_disposition(struct request * req)394  static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
395  {
396  	if (likely(nvme_req(req)->status == 0))
397  		return COMPLETE;
398  
399  	if (blk_noretry_request(req) ||
400  	    (nvme_req(req)->status & NVME_STATUS_DNR) ||
401  	    nvme_req(req)->retries >= nvme_max_retries)
402  		return COMPLETE;
403  
404  	if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
405  		return AUTHENTICATE;
406  
407  	if (req->cmd_flags & REQ_NVME_MPATH) {
408  		if (nvme_is_path_error(nvme_req(req)->status) ||
409  		    blk_queue_dying(req->q))
410  			return FAILOVER;
411  	} else {
412  		if (blk_queue_dying(req->q))
413  			return COMPLETE;
414  	}
415  
416  	return RETRY;
417  }
418  
nvme_end_req_zoned(struct request * req)419  static inline void nvme_end_req_zoned(struct request *req)
420  {
421  	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
422  	    req_op(req) == REQ_OP_ZONE_APPEND) {
423  		struct nvme_ns *ns = req->q->queuedata;
424  
425  		req->__sector = nvme_lba_to_sect(ns->head,
426  			le64_to_cpu(nvme_req(req)->result.u64));
427  	}
428  }
429  
__nvme_end_req(struct request * req)430  static inline void __nvme_end_req(struct request *req)
431  {
432  	nvme_end_req_zoned(req);
433  	nvme_trace_bio_complete(req);
434  	if (req->cmd_flags & REQ_NVME_MPATH)
435  		nvme_mpath_end_request(req);
436  }
437  
nvme_end_req(struct request * req)438  void nvme_end_req(struct request *req)
439  {
440  	blk_status_t status = nvme_error_status(nvme_req(req)->status);
441  
442  	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
443  		if (blk_rq_is_passthrough(req))
444  			nvme_log_err_passthru(req);
445  		else
446  			nvme_log_error(req);
447  	}
448  	__nvme_end_req(req);
449  	blk_mq_end_request(req, status);
450  }
451  
nvme_complete_rq(struct request * req)452  void nvme_complete_rq(struct request *req)
453  {
454  	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
455  
456  	trace_nvme_complete_rq(req);
457  	nvme_cleanup_cmd(req);
458  
459  	/*
460  	 * Completions of long-running commands should not be able to
461  	 * defer sending of periodic keep alives, since the controller
462  	 * may have completed processing such commands a long time ago
463  	 * (arbitrarily close to command submission time).
464  	 * req->deadline - req->timeout is the command submission time
465  	 * in jiffies.
466  	 */
467  	if (ctrl->kas &&
468  	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
469  		ctrl->comp_seen = true;
470  
471  	switch (nvme_decide_disposition(req)) {
472  	case COMPLETE:
473  		nvme_end_req(req);
474  		return;
475  	case RETRY:
476  		nvme_retry_req(req);
477  		return;
478  	case FAILOVER:
479  		nvme_failover_req(req);
480  		return;
481  	case AUTHENTICATE:
482  #ifdef CONFIG_NVME_HOST_AUTH
483  		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
484  		nvme_retry_req(req);
485  #else
486  		nvme_end_req(req);
487  #endif
488  		return;
489  	}
490  }
491  EXPORT_SYMBOL_GPL(nvme_complete_rq);
492  
nvme_complete_batch_req(struct request * req)493  void nvme_complete_batch_req(struct request *req)
494  {
495  	trace_nvme_complete_rq(req);
496  	nvme_cleanup_cmd(req);
497  	__nvme_end_req(req);
498  }
499  EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
500  
501  /*
502   * Called to unwind from ->queue_rq on a failed command submission so that the
503   * multipathing code gets called to potentially failover to another path.
504   * The caller needs to unwind all transport specific resource allocations and
505   * must return propagate the return value.
506   */
nvme_host_path_error(struct request * req)507  blk_status_t nvme_host_path_error(struct request *req)
508  {
509  	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
510  	blk_mq_set_request_complete(req);
511  	nvme_complete_rq(req);
512  	return BLK_STS_OK;
513  }
514  EXPORT_SYMBOL_GPL(nvme_host_path_error);
515  
nvme_cancel_request(struct request * req,void * data)516  bool nvme_cancel_request(struct request *req, void *data)
517  {
518  	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
519  				"Cancelling I/O %d", req->tag);
520  
521  	/* don't abort one completed or idle request */
522  	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
523  		return true;
524  
525  	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
526  	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
527  	blk_mq_complete_request(req);
528  	return true;
529  }
530  EXPORT_SYMBOL_GPL(nvme_cancel_request);
531  
nvme_cancel_tagset(struct nvme_ctrl * ctrl)532  void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
533  {
534  	if (ctrl->tagset) {
535  		blk_mq_tagset_busy_iter(ctrl->tagset,
536  				nvme_cancel_request, ctrl);
537  		blk_mq_tagset_wait_completed_request(ctrl->tagset);
538  	}
539  }
540  EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
541  
nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)542  void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
543  {
544  	if (ctrl->admin_tagset) {
545  		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
546  				nvme_cancel_request, ctrl);
547  		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
548  	}
549  }
550  EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
551  
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)552  bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
553  		enum nvme_ctrl_state new_state)
554  {
555  	enum nvme_ctrl_state old_state;
556  	unsigned long flags;
557  	bool changed = false;
558  
559  	spin_lock_irqsave(&ctrl->lock, flags);
560  
561  	old_state = nvme_ctrl_state(ctrl);
562  	switch (new_state) {
563  	case NVME_CTRL_LIVE:
564  		switch (old_state) {
565  		case NVME_CTRL_NEW:
566  		case NVME_CTRL_RESETTING:
567  		case NVME_CTRL_CONNECTING:
568  			changed = true;
569  			fallthrough;
570  		default:
571  			break;
572  		}
573  		break;
574  	case NVME_CTRL_RESETTING:
575  		switch (old_state) {
576  		case NVME_CTRL_NEW:
577  		case NVME_CTRL_LIVE:
578  			changed = true;
579  			fallthrough;
580  		default:
581  			break;
582  		}
583  		break;
584  	case NVME_CTRL_CONNECTING:
585  		switch (old_state) {
586  		case NVME_CTRL_NEW:
587  		case NVME_CTRL_RESETTING:
588  			changed = true;
589  			fallthrough;
590  		default:
591  			break;
592  		}
593  		break;
594  	case NVME_CTRL_DELETING:
595  		switch (old_state) {
596  		case NVME_CTRL_LIVE:
597  		case NVME_CTRL_RESETTING:
598  		case NVME_CTRL_CONNECTING:
599  			changed = true;
600  			fallthrough;
601  		default:
602  			break;
603  		}
604  		break;
605  	case NVME_CTRL_DELETING_NOIO:
606  		switch (old_state) {
607  		case NVME_CTRL_DELETING:
608  		case NVME_CTRL_DEAD:
609  			changed = true;
610  			fallthrough;
611  		default:
612  			break;
613  		}
614  		break;
615  	case NVME_CTRL_DEAD:
616  		switch (old_state) {
617  		case NVME_CTRL_DELETING:
618  			changed = true;
619  			fallthrough;
620  		default:
621  			break;
622  		}
623  		break;
624  	default:
625  		break;
626  	}
627  
628  	if (changed) {
629  		WRITE_ONCE(ctrl->state, new_state);
630  		wake_up_all(&ctrl->state_wq);
631  	}
632  
633  	spin_unlock_irqrestore(&ctrl->lock, flags);
634  	if (!changed)
635  		return false;
636  
637  	if (new_state == NVME_CTRL_LIVE) {
638  		if (old_state == NVME_CTRL_CONNECTING)
639  			nvme_stop_failfast_work(ctrl);
640  		nvme_kick_requeue_lists(ctrl);
641  	} else if (new_state == NVME_CTRL_CONNECTING &&
642  		old_state == NVME_CTRL_RESETTING) {
643  		nvme_start_failfast_work(ctrl);
644  	}
645  	return changed;
646  }
647  EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
648  
649  /*
650   * Waits for the controller state to be resetting, or returns false if it is
651   * not possible to ever transition to that state.
652   */
nvme_wait_reset(struct nvme_ctrl * ctrl)653  bool nvme_wait_reset(struct nvme_ctrl *ctrl)
654  {
655  	wait_event(ctrl->state_wq,
656  		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
657  		   nvme_state_terminal(ctrl));
658  	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
659  }
660  EXPORT_SYMBOL_GPL(nvme_wait_reset);
661  
nvme_free_ns_head(struct kref * ref)662  static void nvme_free_ns_head(struct kref *ref)
663  {
664  	struct nvme_ns_head *head =
665  		container_of(ref, struct nvme_ns_head, ref);
666  
667  	nvme_mpath_remove_disk(head);
668  	ida_free(&head->subsys->ns_ida, head->instance);
669  	cleanup_srcu_struct(&head->srcu);
670  	nvme_put_subsystem(head->subsys);
671  	kfree(head);
672  }
673  
nvme_tryget_ns_head(struct nvme_ns_head * head)674  bool nvme_tryget_ns_head(struct nvme_ns_head *head)
675  {
676  	return kref_get_unless_zero(&head->ref);
677  }
678  
nvme_put_ns_head(struct nvme_ns_head * head)679  void nvme_put_ns_head(struct nvme_ns_head *head)
680  {
681  	kref_put(&head->ref, nvme_free_ns_head);
682  }
683  
nvme_free_ns(struct kref * kref)684  static void nvme_free_ns(struct kref *kref)
685  {
686  	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
687  
688  	put_disk(ns->disk);
689  	nvme_put_ns_head(ns->head);
690  	nvme_put_ctrl(ns->ctrl);
691  	kfree(ns);
692  }
693  
nvme_get_ns(struct nvme_ns * ns)694  bool nvme_get_ns(struct nvme_ns *ns)
695  {
696  	return kref_get_unless_zero(&ns->kref);
697  }
698  
nvme_put_ns(struct nvme_ns * ns)699  void nvme_put_ns(struct nvme_ns *ns)
700  {
701  	kref_put(&ns->kref, nvme_free_ns);
702  }
703  EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
704  
nvme_clear_nvme_request(struct request * req)705  static inline void nvme_clear_nvme_request(struct request *req)
706  {
707  	nvme_req(req)->status = 0;
708  	nvme_req(req)->retries = 0;
709  	nvme_req(req)->flags = 0;
710  	req->rq_flags |= RQF_DONTPREP;
711  }
712  
713  /* initialize a passthrough request */
nvme_init_request(struct request * req,struct nvme_command * cmd)714  void nvme_init_request(struct request *req, struct nvme_command *cmd)
715  {
716  	struct nvme_request *nr = nvme_req(req);
717  	bool logging_enabled;
718  
719  	if (req->q->queuedata) {
720  		struct nvme_ns *ns = req->q->disk->private_data;
721  
722  		logging_enabled = ns->head->passthru_err_log_enabled;
723  		req->timeout = NVME_IO_TIMEOUT;
724  	} else { /* no queuedata implies admin queue */
725  		logging_enabled = nr->ctrl->passthru_err_log_enabled;
726  		req->timeout = NVME_ADMIN_TIMEOUT;
727  	}
728  
729  	if (!logging_enabled)
730  		req->rq_flags |= RQF_QUIET;
731  
732  	/* passthru commands should let the driver set the SGL flags */
733  	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
734  
735  	req->cmd_flags |= REQ_FAILFAST_DRIVER;
736  	if (req->mq_hctx->type == HCTX_TYPE_POLL)
737  		req->cmd_flags |= REQ_POLLED;
738  	nvme_clear_nvme_request(req);
739  	memcpy(nr->cmd, cmd, sizeof(*cmd));
740  }
741  EXPORT_SYMBOL_GPL(nvme_init_request);
742  
743  /*
744   * For something we're not in a state to send to the device the default action
745   * is to busy it and retry it after the controller state is recovered.  However,
746   * if the controller is deleting or if anything is marked for failfast or
747   * nvme multipath it is immediately failed.
748   *
749   * Note: commands used to initialize the controller will be marked for failfast.
750   * Note: nvme cli/ioctl commands are marked for failfast.
751   */
nvme_fail_nonready_command(struct nvme_ctrl * ctrl,struct request * rq)752  blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
753  		struct request *rq)
754  {
755  	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
756  
757  	if (state != NVME_CTRL_DELETING_NOIO &&
758  	    state != NVME_CTRL_DELETING &&
759  	    state != NVME_CTRL_DEAD &&
760  	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
761  	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
762  		return BLK_STS_RESOURCE;
763  	return nvme_host_path_error(rq);
764  }
765  EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
766  
__nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live,enum nvme_ctrl_state state)767  bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
768  		bool queue_live, enum nvme_ctrl_state state)
769  {
770  	struct nvme_request *req = nvme_req(rq);
771  
772  	/*
773  	 * currently we have a problem sending passthru commands
774  	 * on the admin_q if the controller is not LIVE because we can't
775  	 * make sure that they are going out after the admin connect,
776  	 * controller enable and/or other commands in the initialization
777  	 * sequence. until the controller will be LIVE, fail with
778  	 * BLK_STS_RESOURCE so that they will be rescheduled.
779  	 */
780  	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
781  		return false;
782  
783  	if (ctrl->ops->flags & NVME_F_FABRICS) {
784  		/*
785  		 * Only allow commands on a live queue, except for the connect
786  		 * command, which is require to set the queue live in the
787  		 * appropinquate states.
788  		 */
789  		switch (state) {
790  		case NVME_CTRL_CONNECTING:
791  			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
792  			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
793  			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
794  			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
795  				return true;
796  			break;
797  		default:
798  			break;
799  		case NVME_CTRL_DEAD:
800  			return false;
801  		}
802  	}
803  
804  	return queue_live;
805  }
806  EXPORT_SYMBOL_GPL(__nvme_check_ready);
807  
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)808  static inline void nvme_setup_flush(struct nvme_ns *ns,
809  		struct nvme_command *cmnd)
810  {
811  	memset(cmnd, 0, sizeof(*cmnd));
812  	cmnd->common.opcode = nvme_cmd_flush;
813  	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
814  }
815  
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)816  static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
817  		struct nvme_command *cmnd)
818  {
819  	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
820  	struct nvme_dsm_range *range;
821  	struct bio *bio;
822  
823  	/*
824  	 * Some devices do not consider the DSM 'Number of Ranges' field when
825  	 * determining how much data to DMA. Always allocate memory for maximum
826  	 * number of segments to prevent device reading beyond end of buffer.
827  	 */
828  	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
829  
830  	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
831  	if (!range) {
832  		/*
833  		 * If we fail allocation our range, fallback to the controller
834  		 * discard page. If that's also busy, it's safe to return
835  		 * busy, as we know we can make progress once that's freed.
836  		 */
837  		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
838  			return BLK_STS_RESOURCE;
839  
840  		range = page_address(ns->ctrl->discard_page);
841  	}
842  
843  	if (queue_max_discard_segments(req->q) == 1) {
844  		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
845  		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
846  
847  		range[0].cattr = cpu_to_le32(0);
848  		range[0].nlb = cpu_to_le32(nlb);
849  		range[0].slba = cpu_to_le64(slba);
850  		n = 1;
851  	} else {
852  		__rq_for_each_bio(bio, req) {
853  			u64 slba = nvme_sect_to_lba(ns->head,
854  						    bio->bi_iter.bi_sector);
855  			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
856  
857  			if (n < segments) {
858  				range[n].cattr = cpu_to_le32(0);
859  				range[n].nlb = cpu_to_le32(nlb);
860  				range[n].slba = cpu_to_le64(slba);
861  			}
862  			n++;
863  		}
864  	}
865  
866  	if (WARN_ON_ONCE(n != segments)) {
867  		if (virt_to_page(range) == ns->ctrl->discard_page)
868  			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
869  		else
870  			kfree(range);
871  		return BLK_STS_IOERR;
872  	}
873  
874  	memset(cmnd, 0, sizeof(*cmnd));
875  	cmnd->dsm.opcode = nvme_cmd_dsm;
876  	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
877  	cmnd->dsm.nr = cpu_to_le32(segments - 1);
878  	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
879  
880  	bvec_set_virt(&req->special_vec, range, alloc_size);
881  	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
882  
883  	return BLK_STS_OK;
884  }
885  
nvme_set_ref_tag(struct nvme_ns * ns,struct nvme_command * cmnd,struct request * req)886  static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
887  			      struct request *req)
888  {
889  	u32 upper, lower;
890  	u64 ref48;
891  
892  	/* both rw and write zeroes share the same reftag format */
893  	switch (ns->head->guard_type) {
894  	case NVME_NVM_NS_16B_GUARD:
895  		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
896  		break;
897  	case NVME_NVM_NS_64B_GUARD:
898  		ref48 = ext_pi_ref_tag(req);
899  		lower = lower_32_bits(ref48);
900  		upper = upper_32_bits(ref48);
901  
902  		cmnd->rw.reftag = cpu_to_le32(lower);
903  		cmnd->rw.cdw3 = cpu_to_le32(upper);
904  		break;
905  	default:
906  		break;
907  	}
908  }
909  
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)910  static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
911  		struct request *req, struct nvme_command *cmnd)
912  {
913  	memset(cmnd, 0, sizeof(*cmnd));
914  
915  	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
916  		return nvme_setup_discard(ns, req, cmnd);
917  
918  	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
919  	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
920  	cmnd->write_zeroes.slba =
921  		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
922  	cmnd->write_zeroes.length =
923  		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
924  
925  	if (!(req->cmd_flags & REQ_NOUNMAP) &&
926  	    (ns->head->features & NVME_NS_DEAC))
927  		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
928  
929  	if (nvme_ns_has_pi(ns->head)) {
930  		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
931  
932  		switch (ns->head->pi_type) {
933  		case NVME_NS_DPS_PI_TYPE1:
934  		case NVME_NS_DPS_PI_TYPE2:
935  			nvme_set_ref_tag(ns, cmnd, req);
936  			break;
937  		}
938  	}
939  
940  	return BLK_STS_OK;
941  }
942  
943  /*
944   * NVMe does not support a dedicated command to issue an atomic write. A write
945   * which does adhere to the device atomic limits will silently be executed
946   * non-atomically. The request issuer should ensure that the write is within
947   * the queue atomic writes limits, but just validate this in case it is not.
948   */
nvme_valid_atomic_write(struct request * req)949  static bool nvme_valid_atomic_write(struct request *req)
950  {
951  	struct request_queue *q = req->q;
952  	u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
953  
954  	if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
955  		return false;
956  
957  	if (boundary_bytes) {
958  		u64 mask = boundary_bytes - 1, imask = ~mask;
959  		u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
960  		u64 end = start + blk_rq_bytes(req) - 1;
961  
962  		/* If greater then must be crossing a boundary */
963  		if (blk_rq_bytes(req) > boundary_bytes)
964  			return false;
965  
966  		if ((start & imask) != (end & imask))
967  			return false;
968  	}
969  
970  	return true;
971  }
972  
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)973  static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
974  		struct request *req, struct nvme_command *cmnd,
975  		enum nvme_opcode op)
976  {
977  	u16 control = 0;
978  	u32 dsmgmt = 0;
979  
980  	if (req->cmd_flags & REQ_FUA)
981  		control |= NVME_RW_FUA;
982  	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
983  		control |= NVME_RW_LR;
984  
985  	if (req->cmd_flags & REQ_RAHEAD)
986  		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
987  
988  	if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
989  		return BLK_STS_INVAL;
990  
991  	cmnd->rw.opcode = op;
992  	cmnd->rw.flags = 0;
993  	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
994  	cmnd->rw.cdw2 = 0;
995  	cmnd->rw.cdw3 = 0;
996  	cmnd->rw.metadata = 0;
997  	cmnd->rw.slba =
998  		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
999  	cmnd->rw.length =
1000  		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1001  	cmnd->rw.reftag = 0;
1002  	cmnd->rw.lbat = 0;
1003  	cmnd->rw.lbatm = 0;
1004  
1005  	if (ns->head->ms) {
1006  		/*
1007  		 * If formated with metadata, the block layer always provides a
1008  		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
1009  		 * we enable the PRACT bit for protection information or set the
1010  		 * namespace capacity to zero to prevent any I/O.
1011  		 */
1012  		if (!blk_integrity_rq(req)) {
1013  			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1014  				return BLK_STS_NOTSUPP;
1015  			control |= NVME_RW_PRINFO_PRACT;
1016  		}
1017  
1018  		switch (ns->head->pi_type) {
1019  		case NVME_NS_DPS_PI_TYPE3:
1020  			control |= NVME_RW_PRINFO_PRCHK_GUARD;
1021  			break;
1022  		case NVME_NS_DPS_PI_TYPE1:
1023  		case NVME_NS_DPS_PI_TYPE2:
1024  			control |= NVME_RW_PRINFO_PRCHK_GUARD |
1025  					NVME_RW_PRINFO_PRCHK_REF;
1026  			if (op == nvme_cmd_zone_append)
1027  				control |= NVME_RW_APPEND_PIREMAP;
1028  			nvme_set_ref_tag(ns, cmnd, req);
1029  			break;
1030  		}
1031  	}
1032  
1033  	cmnd->rw.control = cpu_to_le16(control);
1034  	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1035  	return 0;
1036  }
1037  
nvme_cleanup_cmd(struct request * req)1038  void nvme_cleanup_cmd(struct request *req)
1039  {
1040  	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1041  		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1042  
1043  		if (req->special_vec.bv_page == ctrl->discard_page)
1044  			clear_bit_unlock(0, &ctrl->discard_page_busy);
1045  		else
1046  			kfree(bvec_virt(&req->special_vec));
1047  		req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1048  	}
1049  }
1050  EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1051  
nvme_setup_cmd(struct nvme_ns * ns,struct request * req)1052  blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1053  {
1054  	struct nvme_command *cmd = nvme_req(req)->cmd;
1055  	blk_status_t ret = BLK_STS_OK;
1056  
1057  	if (!(req->rq_flags & RQF_DONTPREP))
1058  		nvme_clear_nvme_request(req);
1059  
1060  	switch (req_op(req)) {
1061  	case REQ_OP_DRV_IN:
1062  	case REQ_OP_DRV_OUT:
1063  		/* these are setup prior to execution in nvme_init_request() */
1064  		break;
1065  	case REQ_OP_FLUSH:
1066  		nvme_setup_flush(ns, cmd);
1067  		break;
1068  	case REQ_OP_ZONE_RESET_ALL:
1069  	case REQ_OP_ZONE_RESET:
1070  		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1071  		break;
1072  	case REQ_OP_ZONE_OPEN:
1073  		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1074  		break;
1075  	case REQ_OP_ZONE_CLOSE:
1076  		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1077  		break;
1078  	case REQ_OP_ZONE_FINISH:
1079  		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1080  		break;
1081  	case REQ_OP_WRITE_ZEROES:
1082  		ret = nvme_setup_write_zeroes(ns, req, cmd);
1083  		break;
1084  	case REQ_OP_DISCARD:
1085  		ret = nvme_setup_discard(ns, req, cmd);
1086  		break;
1087  	case REQ_OP_READ:
1088  		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1089  		break;
1090  	case REQ_OP_WRITE:
1091  		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1092  		break;
1093  	case REQ_OP_ZONE_APPEND:
1094  		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1095  		break;
1096  	default:
1097  		WARN_ON_ONCE(1);
1098  		return BLK_STS_IOERR;
1099  	}
1100  
1101  	cmd->common.command_id = nvme_cid(req);
1102  	trace_nvme_setup_cmd(req, cmd);
1103  	return ret;
1104  }
1105  EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1106  
1107  /*
1108   * Return values:
1109   * 0:  success
1110   * >0: nvme controller's cqe status response
1111   * <0: kernel error in lieu of controller response
1112   */
nvme_execute_rq(struct request * rq,bool at_head)1113  int nvme_execute_rq(struct request *rq, bool at_head)
1114  {
1115  	blk_status_t status;
1116  
1117  	status = blk_execute_rq(rq, at_head);
1118  	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1119  		return -EINTR;
1120  	if (nvme_req(rq)->status)
1121  		return nvme_req(rq)->status;
1122  	return blk_status_to_errno(status);
1123  }
1124  EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1125  
1126  /*
1127   * Returns 0 on success.  If the result is negative, it's a Linux error code;
1128   * if the result is positive, it's an NVM Express status code
1129   */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,int qid,nvme_submit_flags_t flags)1130  int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1131  		union nvme_result *result, void *buffer, unsigned bufflen,
1132  		int qid, nvme_submit_flags_t flags)
1133  {
1134  	struct request *req;
1135  	int ret;
1136  	blk_mq_req_flags_t blk_flags = 0;
1137  
1138  	if (flags & NVME_SUBMIT_NOWAIT)
1139  		blk_flags |= BLK_MQ_REQ_NOWAIT;
1140  	if (flags & NVME_SUBMIT_RESERVED)
1141  		blk_flags |= BLK_MQ_REQ_RESERVED;
1142  	if (qid == NVME_QID_ANY)
1143  		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1144  	else
1145  		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1146  						qid - 1);
1147  
1148  	if (IS_ERR(req))
1149  		return PTR_ERR(req);
1150  	nvme_init_request(req, cmd);
1151  	if (flags & NVME_SUBMIT_RETRY)
1152  		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1153  
1154  	if (buffer && bufflen) {
1155  		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1156  		if (ret)
1157  			goto out;
1158  	}
1159  
1160  	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1161  	if (result && ret >= 0)
1162  		*result = nvme_req(req)->result;
1163   out:
1164  	blk_mq_free_request(req);
1165  	return ret;
1166  }
1167  EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1168  
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)1169  int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1170  		void *buffer, unsigned bufflen)
1171  {
1172  	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1173  			NVME_QID_ANY, 0);
1174  }
1175  EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1176  
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1177  u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1178  {
1179  	u32 effects = 0;
1180  
1181  	if (ns) {
1182  		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1183  		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1184  			dev_warn_once(ctrl->device,
1185  				"IO command:%02x has unusual effects:%08x\n",
1186  				opcode, effects);
1187  
1188  		/*
1189  		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1190  		 * which would deadlock when done on an I/O command.  Note that
1191  		 * We already warn about an unusual effect above.
1192  		 */
1193  		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1194  	} else {
1195  		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1196  
1197  		/* Ignore execution restrictions if any relaxation bits are set */
1198  		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1199  			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1200  	}
1201  
1202  	return effects;
1203  }
1204  EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1205  
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1206  u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1207  {
1208  	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1209  
1210  	/*
1211  	 * For simplicity, IO to all namespaces is quiesced even if the command
1212  	 * effects say only one namespace is affected.
1213  	 */
1214  	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1215  		mutex_lock(&ctrl->scan_lock);
1216  		mutex_lock(&ctrl->subsys->lock);
1217  		nvme_mpath_start_freeze(ctrl->subsys);
1218  		nvme_mpath_wait_freeze(ctrl->subsys);
1219  		nvme_start_freeze(ctrl);
1220  		nvme_wait_freeze(ctrl);
1221  	}
1222  	return effects;
1223  }
1224  EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1225  
nvme_passthru_end(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u32 effects,struct nvme_command * cmd,int status)1226  void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1227  		       struct nvme_command *cmd, int status)
1228  {
1229  	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1230  		nvme_unfreeze(ctrl);
1231  		nvme_mpath_unfreeze(ctrl->subsys);
1232  		mutex_unlock(&ctrl->subsys->lock);
1233  		mutex_unlock(&ctrl->scan_lock);
1234  	}
1235  	if (effects & NVME_CMD_EFFECTS_CCC) {
1236  		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1237  				      &ctrl->flags)) {
1238  			dev_info(ctrl->device,
1239  "controller capabilities changed, reset may be required to take effect.\n");
1240  		}
1241  	}
1242  	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1243  		nvme_queue_scan(ctrl);
1244  		flush_work(&ctrl->scan_work);
1245  	}
1246  	if (ns)
1247  		return;
1248  
1249  	switch (cmd->common.opcode) {
1250  	case nvme_admin_set_features:
1251  		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1252  		case NVME_FEAT_KATO:
1253  			/*
1254  			 * Keep alive commands interval on the host should be
1255  			 * updated when KATO is modified by Set Features
1256  			 * commands.
1257  			 */
1258  			if (!status)
1259  				nvme_update_keep_alive(ctrl, cmd);
1260  			break;
1261  		default:
1262  			break;
1263  		}
1264  		break;
1265  	default:
1266  		break;
1267  	}
1268  }
1269  EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1270  
1271  /*
1272   * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1273   *
1274   *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1275   *   accounting for transport roundtrip times [..].
1276   */
nvme_keep_alive_work_period(struct nvme_ctrl * ctrl)1277  static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1278  {
1279  	unsigned long delay = ctrl->kato * HZ / 2;
1280  
1281  	/*
1282  	 * When using Traffic Based Keep Alive, we need to run
1283  	 * nvme_keep_alive_work at twice the normal frequency, as one
1284  	 * command completion can postpone sending a keep alive command
1285  	 * by up to twice the delay between runs.
1286  	 */
1287  	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1288  		delay /= 2;
1289  	return delay;
1290  }
1291  
nvme_queue_keep_alive_work(struct nvme_ctrl * ctrl)1292  static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1293  {
1294  	unsigned long now = jiffies;
1295  	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1296  	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1297  
1298  	if (time_after(now, ka_next_check_tm))
1299  		delay = 0;
1300  	else
1301  		delay = ka_next_check_tm - now;
1302  
1303  	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1304  }
1305  
nvme_keep_alive_finish(struct request * rq,blk_status_t status,struct nvme_ctrl * ctrl)1306  static void nvme_keep_alive_finish(struct request *rq,
1307  		blk_status_t status, struct nvme_ctrl *ctrl)
1308  {
1309  	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1310  	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1311  	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1312  
1313  	/*
1314  	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1315  	 * at the desired frequency.
1316  	 */
1317  	if (rtt <= delay) {
1318  		delay -= rtt;
1319  	} else {
1320  		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1321  			 jiffies_to_msecs(rtt));
1322  		delay = 0;
1323  	}
1324  
1325  	if (status) {
1326  		dev_err(ctrl->device,
1327  			"failed nvme_keep_alive_end_io error=%d\n",
1328  				status);
1329  		return;
1330  	}
1331  
1332  	ctrl->ka_last_check_time = jiffies;
1333  	ctrl->comp_seen = false;
1334  	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1335  		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1336  }
1337  
nvme_keep_alive_work(struct work_struct * work)1338  static void nvme_keep_alive_work(struct work_struct *work)
1339  {
1340  	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1341  			struct nvme_ctrl, ka_work);
1342  	bool comp_seen = ctrl->comp_seen;
1343  	struct request *rq;
1344  	blk_status_t status;
1345  
1346  	ctrl->ka_last_check_time = jiffies;
1347  
1348  	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1349  		dev_dbg(ctrl->device,
1350  			"reschedule traffic based keep-alive timer\n");
1351  		ctrl->comp_seen = false;
1352  		nvme_queue_keep_alive_work(ctrl);
1353  		return;
1354  	}
1355  
1356  	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1357  				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1358  	if (IS_ERR(rq)) {
1359  		/* allocation failure, reset the controller */
1360  		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1361  		nvme_reset_ctrl(ctrl);
1362  		return;
1363  	}
1364  	nvme_init_request(rq, &ctrl->ka_cmd);
1365  
1366  	rq->timeout = ctrl->kato * HZ;
1367  	status = blk_execute_rq(rq, false);
1368  	nvme_keep_alive_finish(rq, status, ctrl);
1369  	blk_mq_free_request(rq);
1370  }
1371  
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1372  static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1373  {
1374  	if (unlikely(ctrl->kato == 0))
1375  		return;
1376  
1377  	nvme_queue_keep_alive_work(ctrl);
1378  }
1379  
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1380  void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1381  {
1382  	if (unlikely(ctrl->kato == 0))
1383  		return;
1384  
1385  	cancel_delayed_work_sync(&ctrl->ka_work);
1386  }
1387  EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1388  
nvme_update_keep_alive(struct nvme_ctrl * ctrl,struct nvme_command * cmd)1389  static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1390  				   struct nvme_command *cmd)
1391  {
1392  	unsigned int new_kato =
1393  		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1394  
1395  	dev_info(ctrl->device,
1396  		 "keep alive interval updated from %u ms to %u ms\n",
1397  		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1398  
1399  	nvme_stop_keep_alive(ctrl);
1400  	ctrl->kato = new_kato;
1401  	nvme_start_keep_alive(ctrl);
1402  }
1403  
nvme_id_cns_ok(struct nvme_ctrl * ctrl,u8 cns)1404  static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1405  {
1406  	/*
1407  	 * The CNS field occupies a full byte starting with NVMe 1.2
1408  	 */
1409  	if (ctrl->vs >= NVME_VS(1, 2, 0))
1410  		return true;
1411  
1412  	/*
1413  	 * NVMe 1.1 expanded the CNS value to two bits, which means values
1414  	 * larger than that could get truncated and treated as an incorrect
1415  	 * value.
1416  	 *
1417  	 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1418  	 * compliance, so they need to be quirked here.
1419  	 */
1420  	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1421  	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1422  		return cns <= 3;
1423  
1424  	/*
1425  	 * NVMe 1.0 used a single bit for the CNS value.
1426  	 */
1427  	return cns <= 1;
1428  }
1429  
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1430  static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1431  {
1432  	struct nvme_command c = { };
1433  	int error;
1434  
1435  	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1436  	c.identify.opcode = nvme_admin_identify;
1437  	c.identify.cns = NVME_ID_CNS_CTRL;
1438  
1439  	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1440  	if (!*id)
1441  		return -ENOMEM;
1442  
1443  	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1444  			sizeof(struct nvme_id_ctrl));
1445  	if (error) {
1446  		kfree(*id);
1447  		*id = NULL;
1448  	}
1449  	return error;
1450  }
1451  
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1452  static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1453  		struct nvme_ns_id_desc *cur, bool *csi_seen)
1454  {
1455  	const char *warn_str = "ctrl returned bogus length:";
1456  	void *data = cur;
1457  
1458  	switch (cur->nidt) {
1459  	case NVME_NIDT_EUI64:
1460  		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1461  			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1462  				 warn_str, cur->nidl);
1463  			return -1;
1464  		}
1465  		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1466  			return NVME_NIDT_EUI64_LEN;
1467  		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1468  		return NVME_NIDT_EUI64_LEN;
1469  	case NVME_NIDT_NGUID:
1470  		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1471  			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1472  				 warn_str, cur->nidl);
1473  			return -1;
1474  		}
1475  		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1476  			return NVME_NIDT_NGUID_LEN;
1477  		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1478  		return NVME_NIDT_NGUID_LEN;
1479  	case NVME_NIDT_UUID:
1480  		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1481  			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1482  				 warn_str, cur->nidl);
1483  			return -1;
1484  		}
1485  		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1486  			return NVME_NIDT_UUID_LEN;
1487  		uuid_copy(&ids->uuid, data + sizeof(*cur));
1488  		return NVME_NIDT_UUID_LEN;
1489  	case NVME_NIDT_CSI:
1490  		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1491  			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1492  				 warn_str, cur->nidl);
1493  			return -1;
1494  		}
1495  		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1496  		*csi_seen = true;
1497  		return NVME_NIDT_CSI_LEN;
1498  	default:
1499  		/* Skip unknown types */
1500  		return cur->nidl;
1501  	}
1502  }
1503  
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1504  static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1505  		struct nvme_ns_info *info)
1506  {
1507  	struct nvme_command c = { };
1508  	bool csi_seen = false;
1509  	int status, pos, len;
1510  	void *data;
1511  
1512  	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1513  		return 0;
1514  	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1515  		return 0;
1516  
1517  	c.identify.opcode = nvme_admin_identify;
1518  	c.identify.nsid = cpu_to_le32(info->nsid);
1519  	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1520  
1521  	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1522  	if (!data)
1523  		return -ENOMEM;
1524  
1525  	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1526  				      NVME_IDENTIFY_DATA_SIZE);
1527  	if (status) {
1528  		dev_warn(ctrl->device,
1529  			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1530  			info->nsid, status);
1531  		goto free_data;
1532  	}
1533  
1534  	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1535  		struct nvme_ns_id_desc *cur = data + pos;
1536  
1537  		if (cur->nidl == 0)
1538  			break;
1539  
1540  		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1541  		if (len < 0)
1542  			break;
1543  
1544  		len += sizeof(*cur);
1545  	}
1546  
1547  	if (nvme_multi_css(ctrl) && !csi_seen) {
1548  		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1549  			 info->nsid);
1550  		status = -EINVAL;
1551  	}
1552  
1553  free_data:
1554  	kfree(data);
1555  	return status;
1556  }
1557  
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns ** id)1558  int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1559  			struct nvme_id_ns **id)
1560  {
1561  	struct nvme_command c = { };
1562  	int error;
1563  
1564  	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1565  	c.identify.opcode = nvme_admin_identify;
1566  	c.identify.nsid = cpu_to_le32(nsid);
1567  	c.identify.cns = NVME_ID_CNS_NS;
1568  
1569  	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1570  	if (!*id)
1571  		return -ENOMEM;
1572  
1573  	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1574  	if (error) {
1575  		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1576  		kfree(*id);
1577  		*id = NULL;
1578  	}
1579  	return error;
1580  }
1581  
nvme_ns_info_from_identify(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1582  static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1583  		struct nvme_ns_info *info)
1584  {
1585  	struct nvme_ns_ids *ids = &info->ids;
1586  	struct nvme_id_ns *id;
1587  	int ret;
1588  
1589  	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1590  	if (ret)
1591  		return ret;
1592  
1593  	if (id->ncap == 0) {
1594  		/* namespace not allocated or attached */
1595  		info->is_removed = true;
1596  		ret = -ENODEV;
1597  		goto error;
1598  	}
1599  
1600  	info->anagrpid = id->anagrpid;
1601  	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1602  	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1603  	info->is_ready = true;
1604  	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1605  		dev_info(ctrl->device,
1606  			 "Ignoring bogus Namespace Identifiers\n");
1607  	} else {
1608  		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1609  		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1610  			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1611  		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1612  		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1613  			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1614  	}
1615  
1616  error:
1617  	kfree(id);
1618  	return ret;
1619  }
1620  
nvme_ns_info_from_id_cs_indep(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1621  static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1622  		struct nvme_ns_info *info)
1623  {
1624  	struct nvme_id_ns_cs_indep *id;
1625  	struct nvme_command c = {
1626  		.identify.opcode	= nvme_admin_identify,
1627  		.identify.nsid		= cpu_to_le32(info->nsid),
1628  		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1629  	};
1630  	int ret;
1631  
1632  	id = kmalloc(sizeof(*id), GFP_KERNEL);
1633  	if (!id)
1634  		return -ENOMEM;
1635  
1636  	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1637  	if (!ret) {
1638  		info->anagrpid = id->anagrpid;
1639  		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1640  		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1641  		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1642  	}
1643  	kfree(id);
1644  	return ret;
1645  }
1646  
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1647  static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1648  		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1649  {
1650  	union nvme_result res = { 0 };
1651  	struct nvme_command c = { };
1652  	int ret;
1653  
1654  	c.features.opcode = op;
1655  	c.features.fid = cpu_to_le32(fid);
1656  	c.features.dword11 = cpu_to_le32(dword11);
1657  
1658  	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1659  			buffer, buflen, NVME_QID_ANY, 0);
1660  	if (ret >= 0 && result)
1661  		*result = le32_to_cpu(res.u32);
1662  	return ret;
1663  }
1664  
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1665  int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1666  		      unsigned int dword11, void *buffer, size_t buflen,
1667  		      u32 *result)
1668  {
1669  	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1670  			     buflen, result);
1671  }
1672  EXPORT_SYMBOL_GPL(nvme_set_features);
1673  
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1674  int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1675  		      unsigned int dword11, void *buffer, size_t buflen,
1676  		      u32 *result)
1677  {
1678  	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1679  			     buflen, result);
1680  }
1681  EXPORT_SYMBOL_GPL(nvme_get_features);
1682  
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1683  int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1684  {
1685  	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1686  	u32 result;
1687  	int status, nr_io_queues;
1688  
1689  	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1690  			&result);
1691  	if (status < 0)
1692  		return status;
1693  
1694  	/*
1695  	 * Degraded controllers might return an error when setting the queue
1696  	 * count.  We still want to be able to bring them online and offer
1697  	 * access to the admin queue, as that might be only way to fix them up.
1698  	 */
1699  	if (status > 0) {
1700  		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1701  		*count = 0;
1702  	} else {
1703  		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1704  		*count = min(*count, nr_io_queues);
1705  	}
1706  
1707  	return 0;
1708  }
1709  EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1710  
1711  #define NVME_AEN_SUPPORTED \
1712  	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1713  	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1714  
nvme_enable_aen(struct nvme_ctrl * ctrl)1715  static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1716  {
1717  	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1718  	int status;
1719  
1720  	if (!supported_aens)
1721  		return;
1722  
1723  	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1724  			NULL, 0, &result);
1725  	if (status)
1726  		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1727  			 supported_aens);
1728  
1729  	queue_work(nvme_wq, &ctrl->async_event_work);
1730  }
1731  
nvme_ns_open(struct nvme_ns * ns)1732  static int nvme_ns_open(struct nvme_ns *ns)
1733  {
1734  
1735  	/* should never be called due to GENHD_FL_HIDDEN */
1736  	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1737  		goto fail;
1738  	if (!nvme_get_ns(ns))
1739  		goto fail;
1740  	if (!try_module_get(ns->ctrl->ops->module))
1741  		goto fail_put_ns;
1742  
1743  	return 0;
1744  
1745  fail_put_ns:
1746  	nvme_put_ns(ns);
1747  fail:
1748  	return -ENXIO;
1749  }
1750  
nvme_ns_release(struct nvme_ns * ns)1751  static void nvme_ns_release(struct nvme_ns *ns)
1752  {
1753  
1754  	module_put(ns->ctrl->ops->module);
1755  	nvme_put_ns(ns);
1756  }
1757  
nvme_open(struct gendisk * disk,blk_mode_t mode)1758  static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1759  {
1760  	return nvme_ns_open(disk->private_data);
1761  }
1762  
nvme_release(struct gendisk * disk)1763  static void nvme_release(struct gendisk *disk)
1764  {
1765  	nvme_ns_release(disk->private_data);
1766  }
1767  
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1768  int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1769  {
1770  	/* some standard values */
1771  	geo->heads = 1 << 6;
1772  	geo->sectors = 1 << 5;
1773  	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1774  	return 0;
1775  }
1776  
nvme_init_integrity(struct nvme_ns_head * head,struct queue_limits * lim,struct nvme_ns_info * info)1777  static bool nvme_init_integrity(struct nvme_ns_head *head,
1778  		struct queue_limits *lim, struct nvme_ns_info *info)
1779  {
1780  	struct blk_integrity *bi = &lim->integrity;
1781  
1782  	memset(bi, 0, sizeof(*bi));
1783  
1784  	if (!head->ms)
1785  		return true;
1786  
1787  	/*
1788  	 * PI can always be supported as we can ask the controller to simply
1789  	 * insert/strip it, which is not possible for other kinds of metadata.
1790  	 */
1791  	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1792  	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1793  		return nvme_ns_has_pi(head);
1794  
1795  	switch (head->pi_type) {
1796  	case NVME_NS_DPS_PI_TYPE3:
1797  		switch (head->guard_type) {
1798  		case NVME_NVM_NS_16B_GUARD:
1799  			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1800  			bi->tag_size = sizeof(u16) + sizeof(u32);
1801  			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1802  			break;
1803  		case NVME_NVM_NS_64B_GUARD:
1804  			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1805  			bi->tag_size = sizeof(u16) + 6;
1806  			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1807  			break;
1808  		default:
1809  			break;
1810  		}
1811  		break;
1812  	case NVME_NS_DPS_PI_TYPE1:
1813  	case NVME_NS_DPS_PI_TYPE2:
1814  		switch (head->guard_type) {
1815  		case NVME_NVM_NS_16B_GUARD:
1816  			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1817  			bi->tag_size = sizeof(u16);
1818  			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1819  				     BLK_INTEGRITY_REF_TAG;
1820  			break;
1821  		case NVME_NVM_NS_64B_GUARD:
1822  			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1823  			bi->tag_size = sizeof(u16);
1824  			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1825  				     BLK_INTEGRITY_REF_TAG;
1826  			break;
1827  		default:
1828  			break;
1829  		}
1830  		break;
1831  	default:
1832  		break;
1833  	}
1834  
1835  	bi->tuple_size = head->ms;
1836  	bi->pi_offset = info->pi_offset;
1837  	return true;
1838  }
1839  
nvme_config_discard(struct nvme_ns * ns,struct queue_limits * lim)1840  static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1841  {
1842  	struct nvme_ctrl *ctrl = ns->ctrl;
1843  
1844  	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1845  		lim->max_hw_discard_sectors =
1846  			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1847  	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1848  		lim->max_hw_discard_sectors = UINT_MAX;
1849  	else
1850  		lim->max_hw_discard_sectors = 0;
1851  
1852  	lim->discard_granularity = lim->logical_block_size;
1853  
1854  	if (ctrl->dmrl)
1855  		lim->max_discard_segments = ctrl->dmrl;
1856  	else
1857  		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1858  }
1859  
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1860  static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1861  {
1862  	return uuid_equal(&a->uuid, &b->uuid) &&
1863  		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1864  		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1865  		a->csi == b->csi;
1866  }
1867  
nvme_identify_ns_nvm(struct nvme_ctrl * ctrl,unsigned int nsid,struct nvme_id_ns_nvm ** nvmp)1868  static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1869  		struct nvme_id_ns_nvm **nvmp)
1870  {
1871  	struct nvme_command c = {
1872  		.identify.opcode	= nvme_admin_identify,
1873  		.identify.nsid		= cpu_to_le32(nsid),
1874  		.identify.cns		= NVME_ID_CNS_CS_NS,
1875  		.identify.csi		= NVME_CSI_NVM,
1876  	};
1877  	struct nvme_id_ns_nvm *nvm;
1878  	int ret;
1879  
1880  	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1881  	if (!nvm)
1882  		return -ENOMEM;
1883  
1884  	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1885  	if (ret)
1886  		kfree(nvm);
1887  	else
1888  		*nvmp = nvm;
1889  	return ret;
1890  }
1891  
nvme_configure_pi_elbas(struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm)1892  static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1893  		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1894  {
1895  	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1896  	u8 guard_type;
1897  
1898  	/* no support for storage tag formats right now */
1899  	if (nvme_elbaf_sts(elbaf))
1900  		return;
1901  
1902  	guard_type = nvme_elbaf_guard_type(elbaf);
1903  	if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1904  	     guard_type == NVME_NVM_NS_QTYPE_GUARD)
1905  		guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1906  
1907  	head->guard_type = guard_type;
1908  	switch (head->guard_type) {
1909  	case NVME_NVM_NS_64B_GUARD:
1910  		head->pi_size = sizeof(struct crc64_pi_tuple);
1911  		break;
1912  	case NVME_NVM_NS_16B_GUARD:
1913  		head->pi_size = sizeof(struct t10_pi_tuple);
1914  		break;
1915  	default:
1916  		break;
1917  	}
1918  }
1919  
nvme_configure_metadata(struct nvme_ctrl * ctrl,struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm,struct nvme_ns_info * info)1920  static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1921  		struct nvme_ns_head *head, struct nvme_id_ns *id,
1922  		struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1923  {
1924  	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1925  	head->pi_type = 0;
1926  	head->pi_size = 0;
1927  	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1928  	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1929  		return;
1930  
1931  	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1932  		nvme_configure_pi_elbas(head, id, nvm);
1933  	} else {
1934  		head->pi_size = sizeof(struct t10_pi_tuple);
1935  		head->guard_type = NVME_NVM_NS_16B_GUARD;
1936  	}
1937  
1938  	if (head->pi_size && head->ms >= head->pi_size)
1939  		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1940  	if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1941  		if (disable_pi_offsets)
1942  			head->pi_type = 0;
1943  		else
1944  			info->pi_offset = head->ms - head->pi_size;
1945  	}
1946  
1947  	if (ctrl->ops->flags & NVME_F_FABRICS) {
1948  		/*
1949  		 * The NVMe over Fabrics specification only supports metadata as
1950  		 * part of the extended data LBA.  We rely on HCA/HBA support to
1951  		 * remap the separate metadata buffer from the block layer.
1952  		 */
1953  		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1954  			return;
1955  
1956  		head->features |= NVME_NS_EXT_LBAS;
1957  
1958  		/*
1959  		 * The current fabrics transport drivers support namespace
1960  		 * metadata formats only if nvme_ns_has_pi() returns true.
1961  		 * Suppress support for all other formats so the namespace will
1962  		 * have a 0 capacity and not be usable through the block stack.
1963  		 *
1964  		 * Note, this check will need to be modified if any drivers
1965  		 * gain the ability to use other metadata formats.
1966  		 */
1967  		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1968  			head->features |= NVME_NS_METADATA_SUPPORTED;
1969  	} else {
1970  		/*
1971  		 * For PCIe controllers, we can't easily remap the separate
1972  		 * metadata buffer from the block layer and thus require a
1973  		 * separate metadata buffer for block layer metadata/PI support.
1974  		 * We allow extended LBAs for the passthrough interface, though.
1975  		 */
1976  		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1977  			head->features |= NVME_NS_EXT_LBAS;
1978  		else
1979  			head->features |= NVME_NS_METADATA_SUPPORTED;
1980  	}
1981  }
1982  
1983  
nvme_update_atomic_write_disk_info(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim,u32 bs,u32 atomic_bs)1984  static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns,
1985  			struct nvme_id_ns *id, struct queue_limits *lim,
1986  			u32 bs, u32 atomic_bs)
1987  {
1988  	unsigned int boundary = 0;
1989  
1990  	if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) {
1991  		if (le16_to_cpu(id->nabspf))
1992  			boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
1993  	}
1994  	lim->atomic_write_hw_max = atomic_bs;
1995  	lim->atomic_write_hw_boundary = boundary;
1996  	lim->atomic_write_hw_unit_min = bs;
1997  	lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
1998  }
1999  
nvme_max_drv_segments(struct nvme_ctrl * ctrl)2000  static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2001  {
2002  	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2003  }
2004  
nvme_set_ctrl_limits(struct nvme_ctrl * ctrl,struct queue_limits * lim)2005  static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2006  		struct queue_limits *lim)
2007  {
2008  	lim->max_hw_sectors = ctrl->max_hw_sectors;
2009  	lim->max_segments = min_t(u32, USHRT_MAX,
2010  		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2011  	lim->max_integrity_segments = ctrl->max_integrity_segments;
2012  	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2013  	lim->max_segment_size = UINT_MAX;
2014  	lim->dma_alignment = 3;
2015  }
2016  
nvme_update_disk_info(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2017  static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2018  		struct queue_limits *lim)
2019  {
2020  	struct nvme_ns_head *head = ns->head;
2021  	u32 bs = 1U << head->lba_shift;
2022  	u32 atomic_bs, phys_bs, io_opt = 0;
2023  	bool valid = true;
2024  
2025  	/*
2026  	 * The block layer can't support LBA sizes larger than the page size
2027  	 * or smaller than a sector size yet, so catch this early and don't
2028  	 * allow block I/O.
2029  	 */
2030  	if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
2031  		bs = (1 << 9);
2032  		valid = false;
2033  	}
2034  
2035  	atomic_bs = phys_bs = bs;
2036  	if (id->nabo == 0) {
2037  		/*
2038  		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2039  		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2040  		 * 0 then AWUPF must be used instead.
2041  		 */
2042  		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2043  			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2044  		else
2045  			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2046  
2047  		nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs);
2048  	}
2049  
2050  	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2051  		/* NPWG = Namespace Preferred Write Granularity */
2052  		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2053  		/* NOWS = Namespace Optimal Write Size */
2054  		if (id->nows)
2055  			io_opt = bs * (1 + le16_to_cpu(id->nows));
2056  	}
2057  
2058  	/*
2059  	 * Linux filesystems assume writing a single physical block is
2060  	 * an atomic operation. Hence limit the physical block size to the
2061  	 * value of the Atomic Write Unit Power Fail parameter.
2062  	 */
2063  	lim->logical_block_size = bs;
2064  	lim->physical_block_size = min(phys_bs, atomic_bs);
2065  	lim->io_min = phys_bs;
2066  	lim->io_opt = io_opt;
2067  	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
2068  		lim->max_write_zeroes_sectors = UINT_MAX;
2069  	else
2070  		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2071  	return valid;
2072  }
2073  
nvme_ns_is_readonly(struct nvme_ns * ns,struct nvme_ns_info * info)2074  static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2075  {
2076  	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2077  }
2078  
nvme_first_scan(struct gendisk * disk)2079  static inline bool nvme_first_scan(struct gendisk *disk)
2080  {
2081  	/* nvme_alloc_ns() scans the disk prior to adding it */
2082  	return !disk_live(disk);
2083  }
2084  
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2085  static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2086  		struct queue_limits *lim)
2087  {
2088  	struct nvme_ctrl *ctrl = ns->ctrl;
2089  	u32 iob;
2090  
2091  	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2092  	    is_power_of_2(ctrl->max_hw_sectors))
2093  		iob = ctrl->max_hw_sectors;
2094  	else
2095  		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2096  
2097  	if (!iob)
2098  		return;
2099  
2100  	if (!is_power_of_2(iob)) {
2101  		if (nvme_first_scan(ns->disk))
2102  			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2103  				ns->disk->disk_name, iob);
2104  		return;
2105  	}
2106  
2107  	if (blk_queue_is_zoned(ns->disk->queue)) {
2108  		if (nvme_first_scan(ns->disk))
2109  			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2110  				ns->disk->disk_name);
2111  		return;
2112  	}
2113  
2114  	lim->chunk_sectors = iob;
2115  }
2116  
nvme_update_ns_info_generic(struct nvme_ns * ns,struct nvme_ns_info * info)2117  static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2118  		struct nvme_ns_info *info)
2119  {
2120  	struct queue_limits lim;
2121  	int ret;
2122  
2123  	blk_mq_freeze_queue(ns->disk->queue);
2124  	lim = queue_limits_start_update(ns->disk->queue);
2125  	nvme_set_ctrl_limits(ns->ctrl, &lim);
2126  	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2127  	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2128  	blk_mq_unfreeze_queue(ns->disk->queue);
2129  
2130  	/* Hide the block-interface for these devices */
2131  	if (!ret)
2132  		ret = -ENODEV;
2133  	return ret;
2134  }
2135  
nvme_update_ns_info_block(struct nvme_ns * ns,struct nvme_ns_info * info)2136  static int nvme_update_ns_info_block(struct nvme_ns *ns,
2137  		struct nvme_ns_info *info)
2138  {
2139  	struct queue_limits lim;
2140  	struct nvme_id_ns_nvm *nvm = NULL;
2141  	struct nvme_zone_info zi = {};
2142  	struct nvme_id_ns *id;
2143  	sector_t capacity;
2144  	unsigned lbaf;
2145  	int ret;
2146  
2147  	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2148  	if (ret)
2149  		return ret;
2150  
2151  	if (id->ncap == 0) {
2152  		/* namespace not allocated or attached */
2153  		info->is_removed = true;
2154  		ret = -ENXIO;
2155  		goto out;
2156  	}
2157  	lbaf = nvme_lbaf_index(id->flbas);
2158  
2159  	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2160  		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2161  		if (ret < 0)
2162  			goto out;
2163  	}
2164  
2165  	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2166  	    ns->head->ids.csi == NVME_CSI_ZNS) {
2167  		ret = nvme_query_zone_info(ns, lbaf, &zi);
2168  		if (ret < 0)
2169  			goto out;
2170  	}
2171  
2172  	blk_mq_freeze_queue(ns->disk->queue);
2173  	ns->head->lba_shift = id->lbaf[lbaf].ds;
2174  	ns->head->nuse = le64_to_cpu(id->nuse);
2175  	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2176  
2177  	lim = queue_limits_start_update(ns->disk->queue);
2178  	nvme_set_ctrl_limits(ns->ctrl, &lim);
2179  	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2180  	nvme_set_chunk_sectors(ns, id, &lim);
2181  	if (!nvme_update_disk_info(ns, id, &lim))
2182  		capacity = 0;
2183  	nvme_config_discard(ns, &lim);
2184  	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2185  	    ns->head->ids.csi == NVME_CSI_ZNS)
2186  		nvme_update_zone_info(ns, &lim, &zi);
2187  
2188  	if (ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2189  		lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2190  	else
2191  		lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2192  
2193  	/*
2194  	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2195  	 * metadata masquerading as Type 0 if supported, otherwise reject block
2196  	 * I/O to namespaces with metadata except when the namespace supports
2197  	 * PI, as it can strip/insert in that case.
2198  	 */
2199  	if (!nvme_init_integrity(ns->head, &lim, info))
2200  		capacity = 0;
2201  
2202  	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2203  	if (ret) {
2204  		blk_mq_unfreeze_queue(ns->disk->queue);
2205  		goto out;
2206  	}
2207  
2208  	set_capacity_and_notify(ns->disk, capacity);
2209  
2210  	/*
2211  	 * Only set the DEAC bit if the device guarantees that reads from
2212  	 * deallocated data return zeroes.  While the DEAC bit does not
2213  	 * require that, it must be a no-op if reads from deallocated data
2214  	 * do not return zeroes.
2215  	 */
2216  	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2217  		ns->head->features |= NVME_NS_DEAC;
2218  	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2219  	set_bit(NVME_NS_READY, &ns->flags);
2220  	blk_mq_unfreeze_queue(ns->disk->queue);
2221  
2222  	if (blk_queue_is_zoned(ns->queue)) {
2223  		ret = blk_revalidate_disk_zones(ns->disk);
2224  		if (ret && !nvme_first_scan(ns->disk))
2225  			goto out;
2226  	}
2227  
2228  	ret = 0;
2229  out:
2230  	kfree(nvm);
2231  	kfree(id);
2232  	return ret;
2233  }
2234  
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_ns_info * info)2235  static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2236  {
2237  	bool unsupported = false;
2238  	int ret;
2239  
2240  	switch (info->ids.csi) {
2241  	case NVME_CSI_ZNS:
2242  		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2243  			dev_info(ns->ctrl->device,
2244  	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2245  				info->nsid);
2246  			ret = nvme_update_ns_info_generic(ns, info);
2247  			break;
2248  		}
2249  		ret = nvme_update_ns_info_block(ns, info);
2250  		break;
2251  	case NVME_CSI_NVM:
2252  		ret = nvme_update_ns_info_block(ns, info);
2253  		break;
2254  	default:
2255  		dev_info(ns->ctrl->device,
2256  			"block device for nsid %u not supported (csi %u)\n",
2257  			info->nsid, info->ids.csi);
2258  		ret = nvme_update_ns_info_generic(ns, info);
2259  		break;
2260  	}
2261  
2262  	/*
2263  	 * If probing fails due an unsupported feature, hide the block device,
2264  	 * but still allow other access.
2265  	 */
2266  	if (ret == -ENODEV) {
2267  		ns->disk->flags |= GENHD_FL_HIDDEN;
2268  		set_bit(NVME_NS_READY, &ns->flags);
2269  		unsupported = true;
2270  		ret = 0;
2271  	}
2272  
2273  	if (!ret && nvme_ns_head_multipath(ns->head)) {
2274  		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2275  		struct queue_limits lim;
2276  
2277  		blk_mq_freeze_queue(ns->head->disk->queue);
2278  		/*
2279  		 * queue_limits mixes values that are the hardware limitations
2280  		 * for bio splitting with what is the device configuration.
2281  		 *
2282  		 * For NVMe the device configuration can change after e.g. a
2283  		 * Format command, and we really want to pick up the new format
2284  		 * value here.  But we must still stack the queue limits to the
2285  		 * least common denominator for multipathing to split the bios
2286  		 * properly.
2287  		 *
2288  		 * To work around this, we explicitly set the device
2289  		 * configuration to those that we just queried, but only stack
2290  		 * the splitting limits in to make sure we still obey possibly
2291  		 * lower limitations of other controllers.
2292  		 */
2293  		lim = queue_limits_start_update(ns->head->disk->queue);
2294  		lim.logical_block_size = ns_lim->logical_block_size;
2295  		lim.physical_block_size = ns_lim->physical_block_size;
2296  		lim.io_min = ns_lim->io_min;
2297  		lim.io_opt = ns_lim->io_opt;
2298  		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2299  					ns->head->disk->disk_name);
2300  		if (unsupported)
2301  			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2302  		else
2303  			nvme_init_integrity(ns->head, &lim, info);
2304  		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2305  
2306  		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2307  		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2308  		nvme_mpath_revalidate_paths(ns);
2309  
2310  		blk_mq_unfreeze_queue(ns->head->disk->queue);
2311  	}
2312  
2313  	return ret;
2314  }
2315  
nvme_ns_get_unique_id(struct nvme_ns * ns,u8 id[16],enum blk_unique_id type)2316  int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2317  		enum blk_unique_id type)
2318  {
2319  	struct nvme_ns_ids *ids = &ns->head->ids;
2320  
2321  	if (type != BLK_UID_EUI64)
2322  		return -EINVAL;
2323  
2324  	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2325  		memcpy(id, &ids->nguid, sizeof(ids->nguid));
2326  		return sizeof(ids->nguid);
2327  	}
2328  	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2329  		memcpy(id, &ids->eui64, sizeof(ids->eui64));
2330  		return sizeof(ids->eui64);
2331  	}
2332  
2333  	return -EINVAL;
2334  }
2335  
nvme_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)2336  static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2337  		enum blk_unique_id type)
2338  {
2339  	return nvme_ns_get_unique_id(disk->private_data, id, type);
2340  }
2341  
2342  #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2343  static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2344  		bool send)
2345  {
2346  	struct nvme_ctrl *ctrl = data;
2347  	struct nvme_command cmd = { };
2348  
2349  	if (send)
2350  		cmd.common.opcode = nvme_admin_security_send;
2351  	else
2352  		cmd.common.opcode = nvme_admin_security_recv;
2353  	cmd.common.nsid = 0;
2354  	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2355  	cmd.common.cdw11 = cpu_to_le32(len);
2356  
2357  	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2358  			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2359  }
2360  
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2361  static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2362  {
2363  	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2364  		if (!ctrl->opal_dev)
2365  			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2366  		else if (was_suspended)
2367  			opal_unlock_from_suspend(ctrl->opal_dev);
2368  	} else {
2369  		free_opal_dev(ctrl->opal_dev);
2370  		ctrl->opal_dev = NULL;
2371  	}
2372  }
2373  #else
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2374  static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2375  {
2376  }
2377  #endif /* CONFIG_BLK_SED_OPAL */
2378  
2379  #ifdef CONFIG_BLK_DEV_ZONED
nvme_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)2380  static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2381  		unsigned int nr_zones, report_zones_cb cb, void *data)
2382  {
2383  	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2384  			data);
2385  }
2386  #else
2387  #define nvme_report_zones	NULL
2388  #endif /* CONFIG_BLK_DEV_ZONED */
2389  
2390  const struct block_device_operations nvme_bdev_ops = {
2391  	.owner		= THIS_MODULE,
2392  	.ioctl		= nvme_ioctl,
2393  	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2394  	.open		= nvme_open,
2395  	.release	= nvme_release,
2396  	.getgeo		= nvme_getgeo,
2397  	.get_unique_id	= nvme_get_unique_id,
2398  	.report_zones	= nvme_report_zones,
2399  	.pr_ops		= &nvme_pr_ops,
2400  };
2401  
nvme_wait_ready(struct nvme_ctrl * ctrl,u32 mask,u32 val,u32 timeout,const char * op)2402  static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2403  		u32 timeout, const char *op)
2404  {
2405  	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2406  	u32 csts;
2407  	int ret;
2408  
2409  	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2410  		if (csts == ~0)
2411  			return -ENODEV;
2412  		if ((csts & mask) == val)
2413  			break;
2414  
2415  		usleep_range(1000, 2000);
2416  		if (fatal_signal_pending(current))
2417  			return -EINTR;
2418  		if (time_after(jiffies, timeout_jiffies)) {
2419  			dev_err(ctrl->device,
2420  				"Device not ready; aborting %s, CSTS=0x%x\n",
2421  				op, csts);
2422  			return -ENODEV;
2423  		}
2424  	}
2425  
2426  	return ret;
2427  }
2428  
nvme_disable_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2429  int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2430  {
2431  	int ret;
2432  
2433  	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2434  	if (shutdown)
2435  		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2436  	else
2437  		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2438  
2439  	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2440  	if (ret)
2441  		return ret;
2442  
2443  	if (shutdown) {
2444  		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2445  				       NVME_CSTS_SHST_CMPLT,
2446  				       ctrl->shutdown_timeout, "shutdown");
2447  	}
2448  	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2449  		msleep(NVME_QUIRK_DELAY_AMOUNT);
2450  	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2451  			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2452  }
2453  EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2454  
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2455  int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2456  {
2457  	unsigned dev_page_min;
2458  	u32 timeout;
2459  	int ret;
2460  
2461  	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2462  	if (ret) {
2463  		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2464  		return ret;
2465  	}
2466  	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2467  
2468  	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2469  		dev_err(ctrl->device,
2470  			"Minimum device page size %u too large for host (%u)\n",
2471  			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2472  		return -ENODEV;
2473  	}
2474  
2475  	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2476  		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2477  	else
2478  		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2479  
2480  	/*
2481  	 * Setting CRIME results in CSTS.RDY before the media is ready. This
2482  	 * makes it possible for media related commands to return the error
2483  	 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2484  	 * restructured to handle retries, disable CC.CRIME.
2485  	 */
2486  	ctrl->ctrl_config &= ~NVME_CC_CRIME;
2487  
2488  	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2489  	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2490  	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2491  	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2492  	if (ret)
2493  		return ret;
2494  
2495  	/* CAP value may change after initial CC write */
2496  	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2497  	if (ret)
2498  		return ret;
2499  
2500  	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2501  	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2502  		u32 crto, ready_timeout;
2503  
2504  		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2505  		if (ret) {
2506  			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2507  				ret);
2508  			return ret;
2509  		}
2510  
2511  		/*
2512  		 * CRTO should always be greater or equal to CAP.TO, but some
2513  		 * devices are known to get this wrong. Use the larger of the
2514  		 * two values.
2515  		 */
2516  		ready_timeout = NVME_CRTO_CRWMT(crto);
2517  
2518  		if (ready_timeout < timeout)
2519  			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2520  				      crto, ctrl->cap);
2521  		else
2522  			timeout = ready_timeout;
2523  	}
2524  
2525  	ctrl->ctrl_config |= NVME_CC_ENABLE;
2526  	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2527  	if (ret)
2528  		return ret;
2529  	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2530  			       (timeout + 1) / 2, "initialisation");
2531  }
2532  EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2533  
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2534  static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2535  {
2536  	__le64 ts;
2537  	int ret;
2538  
2539  	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2540  		return 0;
2541  
2542  	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2543  	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2544  			NULL);
2545  	if (ret)
2546  		dev_warn_once(ctrl->device,
2547  			"could not set timestamp (%d)\n", ret);
2548  	return ret;
2549  }
2550  
nvme_configure_host_options(struct nvme_ctrl * ctrl)2551  static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2552  {
2553  	struct nvme_feat_host_behavior *host;
2554  	u8 acre = 0, lbafee = 0;
2555  	int ret;
2556  
2557  	/* Don't bother enabling the feature if retry delay is not reported */
2558  	if (ctrl->crdt[0])
2559  		acre = NVME_ENABLE_ACRE;
2560  	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2561  		lbafee = NVME_ENABLE_LBAFEE;
2562  
2563  	if (!acre && !lbafee)
2564  		return 0;
2565  
2566  	host = kzalloc(sizeof(*host), GFP_KERNEL);
2567  	if (!host)
2568  		return 0;
2569  
2570  	host->acre = acre;
2571  	host->lbafee = lbafee;
2572  	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2573  				host, sizeof(*host), NULL);
2574  	kfree(host);
2575  	return ret;
2576  }
2577  
2578  /*
2579   * The function checks whether the given total (exlat + enlat) latency of
2580   * a power state allows the latter to be used as an APST transition target.
2581   * It does so by comparing the latency to the primary and secondary latency
2582   * tolerances defined by module params. If there's a match, the corresponding
2583   * timeout value is returned and the matching tolerance index (1 or 2) is
2584   * reported.
2585   */
nvme_apst_get_transition_time(u64 total_latency,u64 * transition_time,unsigned * last_index)2586  static bool nvme_apst_get_transition_time(u64 total_latency,
2587  		u64 *transition_time, unsigned *last_index)
2588  {
2589  	if (total_latency <= apst_primary_latency_tol_us) {
2590  		if (*last_index == 1)
2591  			return false;
2592  		*last_index = 1;
2593  		*transition_time = apst_primary_timeout_ms;
2594  		return true;
2595  	}
2596  	if (apst_secondary_timeout_ms &&
2597  		total_latency <= apst_secondary_latency_tol_us) {
2598  		if (*last_index <= 2)
2599  			return false;
2600  		*last_index = 2;
2601  		*transition_time = apst_secondary_timeout_ms;
2602  		return true;
2603  	}
2604  	return false;
2605  }
2606  
2607  /*
2608   * APST (Autonomous Power State Transition) lets us program a table of power
2609   * state transitions that the controller will perform automatically.
2610   *
2611   * Depending on module params, one of the two supported techniques will be used:
2612   *
2613   * - If the parameters provide explicit timeouts and tolerances, they will be
2614   *   used to build a table with up to 2 non-operational states to transition to.
2615   *   The default parameter values were selected based on the values used by
2616   *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2617   *   regeneration of the APST table in the event of switching between external
2618   *   and battery power, the timeouts and tolerances reflect a compromise
2619   *   between values used by Microsoft for AC and battery scenarios.
2620   * - If not, we'll configure the table with a simple heuristic: we are willing
2621   *   to spend at most 2% of the time transitioning between power states.
2622   *   Therefore, when running in any given state, we will enter the next
2623   *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2624   *   microseconds, as long as that state's exit latency is under the requested
2625   *   maximum latency.
2626   *
2627   * We will not autonomously enter any non-operational state for which the total
2628   * latency exceeds ps_max_latency_us.
2629   *
2630   * Users can set ps_max_latency_us to zero to turn off APST.
2631   */
nvme_configure_apst(struct nvme_ctrl * ctrl)2632  static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2633  {
2634  	struct nvme_feat_auto_pst *table;
2635  	unsigned apste = 0;
2636  	u64 max_lat_us = 0;
2637  	__le64 target = 0;
2638  	int max_ps = -1;
2639  	int state;
2640  	int ret;
2641  	unsigned last_lt_index = UINT_MAX;
2642  
2643  	/*
2644  	 * If APST isn't supported or if we haven't been initialized yet,
2645  	 * then don't do anything.
2646  	 */
2647  	if (!ctrl->apsta)
2648  		return 0;
2649  
2650  	if (ctrl->npss > 31) {
2651  		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2652  		return 0;
2653  	}
2654  
2655  	table = kzalloc(sizeof(*table), GFP_KERNEL);
2656  	if (!table)
2657  		return 0;
2658  
2659  	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2660  		/* Turn off APST. */
2661  		dev_dbg(ctrl->device, "APST disabled\n");
2662  		goto done;
2663  	}
2664  
2665  	/*
2666  	 * Walk through all states from lowest- to highest-power.
2667  	 * According to the spec, lower-numbered states use more power.  NPSS,
2668  	 * despite the name, is the index of the lowest-power state, not the
2669  	 * number of states.
2670  	 */
2671  	for (state = (int)ctrl->npss; state >= 0; state--) {
2672  		u64 total_latency_us, exit_latency_us, transition_ms;
2673  
2674  		if (target)
2675  			table->entries[state] = target;
2676  
2677  		/*
2678  		 * Don't allow transitions to the deepest state if it's quirked
2679  		 * off.
2680  		 */
2681  		if (state == ctrl->npss &&
2682  		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2683  			continue;
2684  
2685  		/*
2686  		 * Is this state a useful non-operational state for higher-power
2687  		 * states to autonomously transition to?
2688  		 */
2689  		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2690  			continue;
2691  
2692  		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2693  		if (exit_latency_us > ctrl->ps_max_latency_us)
2694  			continue;
2695  
2696  		total_latency_us = exit_latency_us +
2697  			le32_to_cpu(ctrl->psd[state].entry_lat);
2698  
2699  		/*
2700  		 * This state is good. It can be used as the APST idle target
2701  		 * for higher power states.
2702  		 */
2703  		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2704  			if (!nvme_apst_get_transition_time(total_latency_us,
2705  					&transition_ms, &last_lt_index))
2706  				continue;
2707  		} else {
2708  			transition_ms = total_latency_us + 19;
2709  			do_div(transition_ms, 20);
2710  			if (transition_ms > (1 << 24) - 1)
2711  				transition_ms = (1 << 24) - 1;
2712  		}
2713  
2714  		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2715  		if (max_ps == -1)
2716  			max_ps = state;
2717  		if (total_latency_us > max_lat_us)
2718  			max_lat_us = total_latency_us;
2719  	}
2720  
2721  	if (max_ps == -1)
2722  		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2723  	else
2724  		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2725  			max_ps, max_lat_us, (int)sizeof(*table), table);
2726  	apste = 1;
2727  
2728  done:
2729  	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2730  				table, sizeof(*table), NULL);
2731  	if (ret)
2732  		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2733  	kfree(table);
2734  	return ret;
2735  }
2736  
nvme_set_latency_tolerance(struct device * dev,s32 val)2737  static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2738  {
2739  	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2740  	u64 latency;
2741  
2742  	switch (val) {
2743  	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2744  	case PM_QOS_LATENCY_ANY:
2745  		latency = U64_MAX;
2746  		break;
2747  
2748  	default:
2749  		latency = val;
2750  	}
2751  
2752  	if (ctrl->ps_max_latency_us != latency) {
2753  		ctrl->ps_max_latency_us = latency;
2754  		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2755  			nvme_configure_apst(ctrl);
2756  	}
2757  }
2758  
2759  struct nvme_core_quirk_entry {
2760  	/*
2761  	 * NVMe model and firmware strings are padded with spaces.  For
2762  	 * simplicity, strings in the quirk table are padded with NULLs
2763  	 * instead.
2764  	 */
2765  	u16 vid;
2766  	const char *mn;
2767  	const char *fr;
2768  	unsigned long quirks;
2769  };
2770  
2771  static const struct nvme_core_quirk_entry core_quirks[] = {
2772  	{
2773  		/*
2774  		 * This Toshiba device seems to die using any APST states.  See:
2775  		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2776  		 */
2777  		.vid = 0x1179,
2778  		.mn = "THNSF5256GPUK TOSHIBA",
2779  		.quirks = NVME_QUIRK_NO_APST,
2780  	},
2781  	{
2782  		/*
2783  		 * This LiteON CL1-3D*-Q11 firmware version has a race
2784  		 * condition associated with actions related to suspend to idle
2785  		 * LiteON has resolved the problem in future firmware
2786  		 */
2787  		.vid = 0x14a4,
2788  		.fr = "22301111",
2789  		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2790  	},
2791  	{
2792  		/*
2793  		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2794  		 * aborts I/O during any load, but more easily reproducible
2795  		 * with discards (fstrim).
2796  		 *
2797  		 * The device is left in a state where it is also not possible
2798  		 * to use "nvme set-feature" to disable APST, but booting with
2799  		 * nvme_core.default_ps_max_latency=0 works.
2800  		 */
2801  		.vid = 0x1e0f,
2802  		.mn = "KCD6XVUL6T40",
2803  		.quirks = NVME_QUIRK_NO_APST,
2804  	},
2805  	{
2806  		/*
2807  		 * The external Samsung X5 SSD fails initialization without a
2808  		 * delay before checking if it is ready and has a whole set of
2809  		 * other problems.  To make this even more interesting, it
2810  		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2811  		 * does not need or want these quirks.
2812  		 */
2813  		.vid = 0x144d,
2814  		.mn = "Samsung Portable SSD X5",
2815  		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2816  			  NVME_QUIRK_NO_DEEPEST_PS |
2817  			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2818  	}
2819  };
2820  
2821  /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)2822  static bool string_matches(const char *idstr, const char *match, size_t len)
2823  {
2824  	size_t matchlen;
2825  
2826  	if (!match)
2827  		return true;
2828  
2829  	matchlen = strlen(match);
2830  	WARN_ON_ONCE(matchlen > len);
2831  
2832  	if (memcmp(idstr, match, matchlen))
2833  		return false;
2834  
2835  	for (; matchlen < len; matchlen++)
2836  		if (idstr[matchlen] != ' ')
2837  			return false;
2838  
2839  	return true;
2840  }
2841  
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)2842  static bool quirk_matches(const struct nvme_id_ctrl *id,
2843  			  const struct nvme_core_quirk_entry *q)
2844  {
2845  	return q->vid == le16_to_cpu(id->vid) &&
2846  		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2847  		string_matches(id->fr, q->fr, sizeof(id->fr));
2848  }
2849  
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2850  static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2851  		struct nvme_id_ctrl *id)
2852  {
2853  	size_t nqnlen;
2854  	int off;
2855  
2856  	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2857  		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2858  		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2859  			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2860  			return;
2861  		}
2862  
2863  		if (ctrl->vs >= NVME_VS(1, 2, 1))
2864  			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2865  	}
2866  
2867  	/*
2868  	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2869  	 * Base Specification 2.0.  It is slightly different from the format
2870  	 * specified there due to historic reasons, and we can't change it now.
2871  	 */
2872  	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2873  			"nqn.2014.08.org.nvmexpress:%04x%04x",
2874  			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2875  	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2876  	off += sizeof(id->sn);
2877  	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2878  	off += sizeof(id->mn);
2879  	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2880  }
2881  
nvme_release_subsystem(struct device * dev)2882  static void nvme_release_subsystem(struct device *dev)
2883  {
2884  	struct nvme_subsystem *subsys =
2885  		container_of(dev, struct nvme_subsystem, dev);
2886  
2887  	if (subsys->instance >= 0)
2888  		ida_free(&nvme_instance_ida, subsys->instance);
2889  	kfree(subsys);
2890  }
2891  
nvme_destroy_subsystem(struct kref * ref)2892  static void nvme_destroy_subsystem(struct kref *ref)
2893  {
2894  	struct nvme_subsystem *subsys =
2895  			container_of(ref, struct nvme_subsystem, ref);
2896  
2897  	mutex_lock(&nvme_subsystems_lock);
2898  	list_del(&subsys->entry);
2899  	mutex_unlock(&nvme_subsystems_lock);
2900  
2901  	ida_destroy(&subsys->ns_ida);
2902  	device_del(&subsys->dev);
2903  	put_device(&subsys->dev);
2904  }
2905  
nvme_put_subsystem(struct nvme_subsystem * subsys)2906  static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2907  {
2908  	kref_put(&subsys->ref, nvme_destroy_subsystem);
2909  }
2910  
__nvme_find_get_subsystem(const char * subsysnqn)2911  static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2912  {
2913  	struct nvme_subsystem *subsys;
2914  
2915  	lockdep_assert_held(&nvme_subsystems_lock);
2916  
2917  	/*
2918  	 * Fail matches for discovery subsystems. This results
2919  	 * in each discovery controller bound to a unique subsystem.
2920  	 * This avoids issues with validating controller values
2921  	 * that can only be true when there is a single unique subsystem.
2922  	 * There may be multiple and completely independent entities
2923  	 * that provide discovery controllers.
2924  	 */
2925  	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2926  		return NULL;
2927  
2928  	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2929  		if (strcmp(subsys->subnqn, subsysnqn))
2930  			continue;
2931  		if (!kref_get_unless_zero(&subsys->ref))
2932  			continue;
2933  		return subsys;
2934  	}
2935  
2936  	return NULL;
2937  }
2938  
nvme_discovery_ctrl(struct nvme_ctrl * ctrl)2939  static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2940  {
2941  	return ctrl->opts && ctrl->opts->discovery_nqn;
2942  }
2943  
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2944  static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2945  		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2946  {
2947  	struct nvme_ctrl *tmp;
2948  
2949  	lockdep_assert_held(&nvme_subsystems_lock);
2950  
2951  	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2952  		if (nvme_state_terminal(tmp))
2953  			continue;
2954  
2955  		if (tmp->cntlid == ctrl->cntlid) {
2956  			dev_err(ctrl->device,
2957  				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2958  				ctrl->cntlid, dev_name(tmp->device),
2959  				subsys->subnqn);
2960  			return false;
2961  		}
2962  
2963  		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2964  		    nvme_discovery_ctrl(ctrl))
2965  			continue;
2966  
2967  		dev_err(ctrl->device,
2968  			"Subsystem does not support multiple controllers\n");
2969  		return false;
2970  	}
2971  
2972  	return true;
2973  }
2974  
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2975  static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2976  {
2977  	struct nvme_subsystem *subsys, *found;
2978  	int ret;
2979  
2980  	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2981  	if (!subsys)
2982  		return -ENOMEM;
2983  
2984  	subsys->instance = -1;
2985  	mutex_init(&subsys->lock);
2986  	kref_init(&subsys->ref);
2987  	INIT_LIST_HEAD(&subsys->ctrls);
2988  	INIT_LIST_HEAD(&subsys->nsheads);
2989  	nvme_init_subnqn(subsys, ctrl, id);
2990  	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2991  	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2992  	subsys->vendor_id = le16_to_cpu(id->vid);
2993  	subsys->cmic = id->cmic;
2994  
2995  	/* Versions prior to 1.4 don't necessarily report a valid type */
2996  	if (id->cntrltype == NVME_CTRL_DISC ||
2997  	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2998  		subsys->subtype = NVME_NQN_DISC;
2999  	else
3000  		subsys->subtype = NVME_NQN_NVME;
3001  
3002  	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3003  		dev_err(ctrl->device,
3004  			"Subsystem %s is not a discovery controller",
3005  			subsys->subnqn);
3006  		kfree(subsys);
3007  		return -EINVAL;
3008  	}
3009  	subsys->awupf = le16_to_cpu(id->awupf);
3010  	nvme_mpath_default_iopolicy(subsys);
3011  
3012  	subsys->dev.class = &nvme_subsys_class;
3013  	subsys->dev.release = nvme_release_subsystem;
3014  	subsys->dev.groups = nvme_subsys_attrs_groups;
3015  	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
3016  	device_initialize(&subsys->dev);
3017  
3018  	mutex_lock(&nvme_subsystems_lock);
3019  	found = __nvme_find_get_subsystem(subsys->subnqn);
3020  	if (found) {
3021  		put_device(&subsys->dev);
3022  		subsys = found;
3023  
3024  		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3025  			ret = -EINVAL;
3026  			goto out_put_subsystem;
3027  		}
3028  	} else {
3029  		ret = device_add(&subsys->dev);
3030  		if (ret) {
3031  			dev_err(ctrl->device,
3032  				"failed to register subsystem device.\n");
3033  			put_device(&subsys->dev);
3034  			goto out_unlock;
3035  		}
3036  		ida_init(&subsys->ns_ida);
3037  		list_add_tail(&subsys->entry, &nvme_subsystems);
3038  	}
3039  
3040  	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3041  				dev_name(ctrl->device));
3042  	if (ret) {
3043  		dev_err(ctrl->device,
3044  			"failed to create sysfs link from subsystem.\n");
3045  		goto out_put_subsystem;
3046  	}
3047  
3048  	if (!found)
3049  		subsys->instance = ctrl->instance;
3050  	ctrl->subsys = subsys;
3051  	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3052  	mutex_unlock(&nvme_subsystems_lock);
3053  	return 0;
3054  
3055  out_put_subsystem:
3056  	nvme_put_subsystem(subsys);
3057  out_unlock:
3058  	mutex_unlock(&nvme_subsystems_lock);
3059  	return ret;
3060  }
3061  
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)3062  int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3063  		void *log, size_t size, u64 offset)
3064  {
3065  	struct nvme_command c = { };
3066  	u32 dwlen = nvme_bytes_to_numd(size);
3067  
3068  	c.get_log_page.opcode = nvme_admin_get_log_page;
3069  	c.get_log_page.nsid = cpu_to_le32(nsid);
3070  	c.get_log_page.lid = log_page;
3071  	c.get_log_page.lsp = lsp;
3072  	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3073  	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3074  	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3075  	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3076  	c.get_log_page.csi = csi;
3077  
3078  	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3079  }
3080  
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3081  static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3082  				struct nvme_effects_log **log)
3083  {
3084  	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
3085  	int ret;
3086  
3087  	if (cel)
3088  		goto out;
3089  
3090  	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3091  	if (!cel)
3092  		return -ENOMEM;
3093  
3094  	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3095  			cel, sizeof(*cel), 0);
3096  	if (ret) {
3097  		kfree(cel);
3098  		return ret;
3099  	}
3100  
3101  	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3102  out:
3103  	*log = cel;
3104  	return 0;
3105  }
3106  
nvme_mps_to_sectors(struct nvme_ctrl * ctrl,u32 units)3107  static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3108  {
3109  	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3110  
3111  	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3112  		return UINT_MAX;
3113  	return val;
3114  }
3115  
nvme_init_non_mdts_limits(struct nvme_ctrl * ctrl)3116  static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3117  {
3118  	struct nvme_command c = { };
3119  	struct nvme_id_ctrl_nvm *id;
3120  	int ret;
3121  
3122  	/*
3123  	 * Even though NVMe spec explicitly states that MDTS is not applicable
3124  	 * to the write-zeroes, we are cautious and limit the size to the
3125  	 * controllers max_hw_sectors value, which is based on the MDTS field
3126  	 * and possibly other limiting factors.
3127  	 */
3128  	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3129  	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3130  		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3131  	else
3132  		ctrl->max_zeroes_sectors = 0;
3133  
3134  	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3135  	    !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) ||
3136  	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3137  		return 0;
3138  
3139  	id = kzalloc(sizeof(*id), GFP_KERNEL);
3140  	if (!id)
3141  		return -ENOMEM;
3142  
3143  	c.identify.opcode = nvme_admin_identify;
3144  	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3145  	c.identify.csi = NVME_CSI_NVM;
3146  
3147  	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3148  	if (ret)
3149  		goto free_data;
3150  
3151  	ctrl->dmrl = id->dmrl;
3152  	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3153  	if (id->wzsl)
3154  		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3155  
3156  free_data:
3157  	if (ret > 0)
3158  		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3159  	kfree(id);
3160  	return ret;
3161  }
3162  
nvme_init_known_nvm_effects(struct nvme_ctrl * ctrl)3163  static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3164  {
3165  	struct nvme_effects_log	*log = ctrl->effects;
3166  
3167  	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3168  						NVME_CMD_EFFECTS_NCC |
3169  						NVME_CMD_EFFECTS_CSE_MASK);
3170  	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3171  						NVME_CMD_EFFECTS_CSE_MASK);
3172  
3173  	/*
3174  	 * The spec says the result of a security receive command depends on
3175  	 * the previous security send command. As such, many vendors log this
3176  	 * command as one to submitted only when no other commands to the same
3177  	 * namespace are outstanding. The intention is to tell the host to
3178  	 * prevent mixing security send and receive.
3179  	 *
3180  	 * This driver can only enforce such exclusive access against IO
3181  	 * queues, though. We are not readily able to enforce such a rule for
3182  	 * two commands to the admin queue, which is the only queue that
3183  	 * matters for this command.
3184  	 *
3185  	 * Rather than blindly freezing the IO queues for this effect that
3186  	 * doesn't even apply to IO, mask it off.
3187  	 */
3188  	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3189  
3190  	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3191  	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3192  	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3193  }
3194  
nvme_init_effects(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3195  static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3196  {
3197  	int ret = 0;
3198  
3199  	if (ctrl->effects)
3200  		return 0;
3201  
3202  	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3203  		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3204  		if (ret < 0)
3205  			return ret;
3206  	}
3207  
3208  	if (!ctrl->effects) {
3209  		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3210  		if (!ctrl->effects)
3211  			return -ENOMEM;
3212  		xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3213  	}
3214  
3215  	nvme_init_known_nvm_effects(ctrl);
3216  	return 0;
3217  }
3218  
nvme_check_ctrl_fabric_info(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3219  static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3220  {
3221  	/*
3222  	 * In fabrics we need to verify the cntlid matches the
3223  	 * admin connect
3224  	 */
3225  	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3226  		dev_err(ctrl->device,
3227  			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3228  			ctrl->cntlid, le16_to_cpu(id->cntlid));
3229  		return -EINVAL;
3230  	}
3231  
3232  	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3233  		dev_err(ctrl->device,
3234  			"keep-alive support is mandatory for fabrics\n");
3235  		return -EINVAL;
3236  	}
3237  
3238  	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3239  		dev_err(ctrl->device,
3240  			"I/O queue command capsule supported size %d < 4\n",
3241  			ctrl->ioccsz);
3242  		return -EINVAL;
3243  	}
3244  
3245  	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3246  		dev_err(ctrl->device,
3247  			"I/O queue response capsule supported size %d < 1\n",
3248  			ctrl->iorcsz);
3249  		return -EINVAL;
3250  	}
3251  
3252  	if (!ctrl->maxcmd) {
3253  		dev_err(ctrl->device, "Maximum outstanding commands is 0\n");
3254  		return -EINVAL;
3255  	}
3256  
3257  	return 0;
3258  }
3259  
nvme_init_identify(struct nvme_ctrl * ctrl)3260  static int nvme_init_identify(struct nvme_ctrl *ctrl)
3261  {
3262  	struct queue_limits lim;
3263  	struct nvme_id_ctrl *id;
3264  	u32 max_hw_sectors;
3265  	bool prev_apst_enabled;
3266  	int ret;
3267  
3268  	ret = nvme_identify_ctrl(ctrl, &id);
3269  	if (ret) {
3270  		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3271  		return -EIO;
3272  	}
3273  
3274  	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3275  		ctrl->cntlid = le16_to_cpu(id->cntlid);
3276  
3277  	if (!ctrl->identified) {
3278  		unsigned int i;
3279  
3280  		/*
3281  		 * Check for quirks.  Quirk can depend on firmware version,
3282  		 * so, in principle, the set of quirks present can change
3283  		 * across a reset.  As a possible future enhancement, we
3284  		 * could re-scan for quirks every time we reinitialize
3285  		 * the device, but we'd have to make sure that the driver
3286  		 * behaves intelligently if the quirks change.
3287  		 */
3288  		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3289  			if (quirk_matches(id, &core_quirks[i]))
3290  				ctrl->quirks |= core_quirks[i].quirks;
3291  		}
3292  
3293  		ret = nvme_init_subsystem(ctrl, id);
3294  		if (ret)
3295  			goto out_free;
3296  
3297  		ret = nvme_init_effects(ctrl, id);
3298  		if (ret)
3299  			goto out_free;
3300  	}
3301  	memcpy(ctrl->subsys->firmware_rev, id->fr,
3302  	       sizeof(ctrl->subsys->firmware_rev));
3303  
3304  	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3305  		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3306  		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3307  	}
3308  
3309  	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3310  	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3311  	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3312  
3313  	ctrl->oacs = le16_to_cpu(id->oacs);
3314  	ctrl->oncs = le16_to_cpu(id->oncs);
3315  	ctrl->mtfa = le16_to_cpu(id->mtfa);
3316  	ctrl->oaes = le32_to_cpu(id->oaes);
3317  	ctrl->wctemp = le16_to_cpu(id->wctemp);
3318  	ctrl->cctemp = le16_to_cpu(id->cctemp);
3319  
3320  	atomic_set(&ctrl->abort_limit, id->acl + 1);
3321  	ctrl->vwc = id->vwc;
3322  	if (id->mdts)
3323  		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3324  	else
3325  		max_hw_sectors = UINT_MAX;
3326  	ctrl->max_hw_sectors =
3327  		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3328  
3329  	lim = queue_limits_start_update(ctrl->admin_q);
3330  	nvme_set_ctrl_limits(ctrl, &lim);
3331  	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3332  	if (ret)
3333  		goto out_free;
3334  
3335  	ctrl->sgls = le32_to_cpu(id->sgls);
3336  	ctrl->kas = le16_to_cpu(id->kas);
3337  	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3338  	ctrl->ctratt = le32_to_cpu(id->ctratt);
3339  
3340  	ctrl->cntrltype = id->cntrltype;
3341  	ctrl->dctype = id->dctype;
3342  
3343  	if (id->rtd3e) {
3344  		/* us -> s */
3345  		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3346  
3347  		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3348  						 shutdown_timeout, 60);
3349  
3350  		if (ctrl->shutdown_timeout != shutdown_timeout)
3351  			dev_info(ctrl->device,
3352  				 "D3 entry latency set to %u seconds\n",
3353  				 ctrl->shutdown_timeout);
3354  	} else
3355  		ctrl->shutdown_timeout = shutdown_timeout;
3356  
3357  	ctrl->npss = id->npss;
3358  	ctrl->apsta = id->apsta;
3359  	prev_apst_enabled = ctrl->apst_enabled;
3360  	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3361  		if (force_apst && id->apsta) {
3362  			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3363  			ctrl->apst_enabled = true;
3364  		} else {
3365  			ctrl->apst_enabled = false;
3366  		}
3367  	} else {
3368  		ctrl->apst_enabled = id->apsta;
3369  	}
3370  	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3371  
3372  	if (ctrl->ops->flags & NVME_F_FABRICS) {
3373  		ctrl->icdoff = le16_to_cpu(id->icdoff);
3374  		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3375  		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3376  		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3377  
3378  		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3379  		if (ret)
3380  			goto out_free;
3381  	} else {
3382  		ctrl->hmpre = le32_to_cpu(id->hmpre);
3383  		ctrl->hmmin = le32_to_cpu(id->hmmin);
3384  		ctrl->hmminds = le32_to_cpu(id->hmminds);
3385  		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3386  	}
3387  
3388  	ret = nvme_mpath_init_identify(ctrl, id);
3389  	if (ret < 0)
3390  		goto out_free;
3391  
3392  	if (ctrl->apst_enabled && !prev_apst_enabled)
3393  		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3394  	else if (!ctrl->apst_enabled && prev_apst_enabled)
3395  		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3396  
3397  out_free:
3398  	kfree(id);
3399  	return ret;
3400  }
3401  
3402  /*
3403   * Initialize the cached copies of the Identify data and various controller
3404   * register in our nvme_ctrl structure.  This should be called as soon as
3405   * the admin queue is fully up and running.
3406   */
nvme_init_ctrl_finish(struct nvme_ctrl * ctrl,bool was_suspended)3407  int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3408  {
3409  	int ret;
3410  
3411  	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3412  	if (ret) {
3413  		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3414  		return ret;
3415  	}
3416  
3417  	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3418  
3419  	if (ctrl->vs >= NVME_VS(1, 1, 0))
3420  		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3421  
3422  	ret = nvme_init_identify(ctrl);
3423  	if (ret)
3424  		return ret;
3425  
3426  	ret = nvme_configure_apst(ctrl);
3427  	if (ret < 0)
3428  		return ret;
3429  
3430  	ret = nvme_configure_timestamp(ctrl);
3431  	if (ret < 0)
3432  		return ret;
3433  
3434  	ret = nvme_configure_host_options(ctrl);
3435  	if (ret < 0)
3436  		return ret;
3437  
3438  	nvme_configure_opal(ctrl, was_suspended);
3439  
3440  	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3441  		/*
3442  		 * Do not return errors unless we are in a controller reset,
3443  		 * the controller works perfectly fine without hwmon.
3444  		 */
3445  		ret = nvme_hwmon_init(ctrl);
3446  		if (ret == -EINTR)
3447  			return ret;
3448  	}
3449  
3450  	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3451  	ctrl->identified = true;
3452  
3453  	nvme_start_keep_alive(ctrl);
3454  
3455  	return 0;
3456  }
3457  EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3458  
nvme_dev_open(struct inode * inode,struct file * file)3459  static int nvme_dev_open(struct inode *inode, struct file *file)
3460  {
3461  	struct nvme_ctrl *ctrl =
3462  		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3463  
3464  	switch (nvme_ctrl_state(ctrl)) {
3465  	case NVME_CTRL_LIVE:
3466  		break;
3467  	default:
3468  		return -EWOULDBLOCK;
3469  	}
3470  
3471  	nvme_get_ctrl(ctrl);
3472  	if (!try_module_get(ctrl->ops->module)) {
3473  		nvme_put_ctrl(ctrl);
3474  		return -EINVAL;
3475  	}
3476  
3477  	file->private_data = ctrl;
3478  	return 0;
3479  }
3480  
nvme_dev_release(struct inode * inode,struct file * file)3481  static int nvme_dev_release(struct inode *inode, struct file *file)
3482  {
3483  	struct nvme_ctrl *ctrl =
3484  		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3485  
3486  	module_put(ctrl->ops->module);
3487  	nvme_put_ctrl(ctrl);
3488  	return 0;
3489  }
3490  
3491  static const struct file_operations nvme_dev_fops = {
3492  	.owner		= THIS_MODULE,
3493  	.open		= nvme_dev_open,
3494  	.release	= nvme_dev_release,
3495  	.unlocked_ioctl	= nvme_dev_ioctl,
3496  	.compat_ioctl	= compat_ptr_ioctl,
3497  	.uring_cmd	= nvme_dev_uring_cmd,
3498  };
3499  
nvme_find_ns_head(struct nvme_ctrl * ctrl,unsigned nsid)3500  static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3501  		unsigned nsid)
3502  {
3503  	struct nvme_ns_head *h;
3504  
3505  	lockdep_assert_held(&ctrl->subsys->lock);
3506  
3507  	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3508  		/*
3509  		 * Private namespaces can share NSIDs under some conditions.
3510  		 * In that case we can't use the same ns_head for namespaces
3511  		 * with the same NSID.
3512  		 */
3513  		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3514  			continue;
3515  		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3516  			return h;
3517  	}
3518  
3519  	return NULL;
3520  }
3521  
nvme_subsys_check_duplicate_ids(struct nvme_subsystem * subsys,struct nvme_ns_ids * ids)3522  static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3523  		struct nvme_ns_ids *ids)
3524  {
3525  	bool has_uuid = !uuid_is_null(&ids->uuid);
3526  	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3527  	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3528  	struct nvme_ns_head *h;
3529  
3530  	lockdep_assert_held(&subsys->lock);
3531  
3532  	list_for_each_entry(h, &subsys->nsheads, entry) {
3533  		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3534  			return -EINVAL;
3535  		if (has_nguid &&
3536  		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3537  			return -EINVAL;
3538  		if (has_eui64 &&
3539  		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3540  			return -EINVAL;
3541  	}
3542  
3543  	return 0;
3544  }
3545  
nvme_cdev_rel(struct device * dev)3546  static void nvme_cdev_rel(struct device *dev)
3547  {
3548  	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3549  }
3550  
nvme_cdev_del(struct cdev * cdev,struct device * cdev_device)3551  void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3552  {
3553  	cdev_device_del(cdev, cdev_device);
3554  	put_device(cdev_device);
3555  }
3556  
nvme_cdev_add(struct cdev * cdev,struct device * cdev_device,const struct file_operations * fops,struct module * owner)3557  int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3558  		const struct file_operations *fops, struct module *owner)
3559  {
3560  	int minor, ret;
3561  
3562  	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3563  	if (minor < 0)
3564  		return minor;
3565  	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3566  	cdev_device->class = &nvme_ns_chr_class;
3567  	cdev_device->release = nvme_cdev_rel;
3568  	device_initialize(cdev_device);
3569  	cdev_init(cdev, fops);
3570  	cdev->owner = owner;
3571  	ret = cdev_device_add(cdev, cdev_device);
3572  	if (ret)
3573  		put_device(cdev_device);
3574  
3575  	return ret;
3576  }
3577  
nvme_ns_chr_open(struct inode * inode,struct file * file)3578  static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3579  {
3580  	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3581  }
3582  
nvme_ns_chr_release(struct inode * inode,struct file * file)3583  static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3584  {
3585  	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3586  	return 0;
3587  }
3588  
3589  static const struct file_operations nvme_ns_chr_fops = {
3590  	.owner		= THIS_MODULE,
3591  	.open		= nvme_ns_chr_open,
3592  	.release	= nvme_ns_chr_release,
3593  	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3594  	.compat_ioctl	= compat_ptr_ioctl,
3595  	.uring_cmd	= nvme_ns_chr_uring_cmd,
3596  	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3597  };
3598  
nvme_add_ns_cdev(struct nvme_ns * ns)3599  static int nvme_add_ns_cdev(struct nvme_ns *ns)
3600  {
3601  	int ret;
3602  
3603  	ns->cdev_device.parent = ns->ctrl->device;
3604  	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3605  			   ns->ctrl->instance, ns->head->instance);
3606  	if (ret)
3607  		return ret;
3608  
3609  	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3610  			     ns->ctrl->ops->module);
3611  }
3612  
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3613  static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3614  		struct nvme_ns_info *info)
3615  {
3616  	struct nvme_ns_head *head;
3617  	size_t size = sizeof(*head);
3618  	int ret = -ENOMEM;
3619  
3620  #ifdef CONFIG_NVME_MULTIPATH
3621  	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3622  #endif
3623  
3624  	head = kzalloc(size, GFP_KERNEL);
3625  	if (!head)
3626  		goto out;
3627  	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3628  	if (ret < 0)
3629  		goto out_free_head;
3630  	head->instance = ret;
3631  	INIT_LIST_HEAD(&head->list);
3632  	ret = init_srcu_struct(&head->srcu);
3633  	if (ret)
3634  		goto out_ida_remove;
3635  	head->subsys = ctrl->subsys;
3636  	head->ns_id = info->nsid;
3637  	head->ids = info->ids;
3638  	head->shared = info->is_shared;
3639  	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3640  	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3641  	kref_init(&head->ref);
3642  
3643  	if (head->ids.csi) {
3644  		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3645  		if (ret)
3646  			goto out_cleanup_srcu;
3647  	} else
3648  		head->effects = ctrl->effects;
3649  
3650  	ret = nvme_mpath_alloc_disk(ctrl, head);
3651  	if (ret)
3652  		goto out_cleanup_srcu;
3653  
3654  	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3655  
3656  	kref_get(&ctrl->subsys->ref);
3657  
3658  	return head;
3659  out_cleanup_srcu:
3660  	cleanup_srcu_struct(&head->srcu);
3661  out_ida_remove:
3662  	ida_free(&ctrl->subsys->ns_ida, head->instance);
3663  out_free_head:
3664  	kfree(head);
3665  out:
3666  	if (ret > 0)
3667  		ret = blk_status_to_errno(nvme_error_status(ret));
3668  	return ERR_PTR(ret);
3669  }
3670  
nvme_global_check_duplicate_ids(struct nvme_subsystem * this,struct nvme_ns_ids * ids)3671  static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3672  		struct nvme_ns_ids *ids)
3673  {
3674  	struct nvme_subsystem *s;
3675  	int ret = 0;
3676  
3677  	/*
3678  	 * Note that this check is racy as we try to avoid holding the global
3679  	 * lock over the whole ns_head creation.  But it is only intended as
3680  	 * a sanity check anyway.
3681  	 */
3682  	mutex_lock(&nvme_subsystems_lock);
3683  	list_for_each_entry(s, &nvme_subsystems, entry) {
3684  		if (s == this)
3685  			continue;
3686  		mutex_lock(&s->lock);
3687  		ret = nvme_subsys_check_duplicate_ids(s, ids);
3688  		mutex_unlock(&s->lock);
3689  		if (ret)
3690  			break;
3691  	}
3692  	mutex_unlock(&nvme_subsystems_lock);
3693  
3694  	return ret;
3695  }
3696  
nvme_init_ns_head(struct nvme_ns * ns,struct nvme_ns_info * info)3697  static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3698  {
3699  	struct nvme_ctrl *ctrl = ns->ctrl;
3700  	struct nvme_ns_head *head = NULL;
3701  	int ret;
3702  
3703  	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3704  	if (ret) {
3705  		/*
3706  		 * We've found two different namespaces on two different
3707  		 * subsystems that report the same ID.  This is pretty nasty
3708  		 * for anything that actually requires unique device
3709  		 * identification.  In the kernel we need this for multipathing,
3710  		 * and in user space the /dev/disk/by-id/ links rely on it.
3711  		 *
3712  		 * If the device also claims to be multi-path capable back off
3713  		 * here now and refuse the probe the second device as this is a
3714  		 * recipe for data corruption.  If not this is probably a
3715  		 * cheap consumer device if on the PCIe bus, so let the user
3716  		 * proceed and use the shiny toy, but warn that with changing
3717  		 * probing order (which due to our async probing could just be
3718  		 * device taking longer to startup) the other device could show
3719  		 * up at any time.
3720  		 */
3721  		nvme_print_device_info(ctrl);
3722  		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3723  		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3724  		     info->is_shared)) {
3725  			dev_err(ctrl->device,
3726  				"ignoring nsid %d because of duplicate IDs\n",
3727  				info->nsid);
3728  			return ret;
3729  		}
3730  
3731  		dev_err(ctrl->device,
3732  			"clearing duplicate IDs for nsid %d\n", info->nsid);
3733  		dev_err(ctrl->device,
3734  			"use of /dev/disk/by-id/ may cause data corruption\n");
3735  		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3736  		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3737  		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3738  		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3739  	}
3740  
3741  	mutex_lock(&ctrl->subsys->lock);
3742  	head = nvme_find_ns_head(ctrl, info->nsid);
3743  	if (!head) {
3744  		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3745  		if (ret) {
3746  			dev_err(ctrl->device,
3747  				"duplicate IDs in subsystem for nsid %d\n",
3748  				info->nsid);
3749  			goto out_unlock;
3750  		}
3751  		head = nvme_alloc_ns_head(ctrl, info);
3752  		if (IS_ERR(head)) {
3753  			ret = PTR_ERR(head);
3754  			goto out_unlock;
3755  		}
3756  	} else {
3757  		ret = -EINVAL;
3758  		if (!info->is_shared || !head->shared) {
3759  			dev_err(ctrl->device,
3760  				"Duplicate unshared namespace %d\n",
3761  				info->nsid);
3762  			goto out_put_ns_head;
3763  		}
3764  		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3765  			dev_err(ctrl->device,
3766  				"IDs don't match for shared namespace %d\n",
3767  					info->nsid);
3768  			goto out_put_ns_head;
3769  		}
3770  
3771  		if (!multipath) {
3772  			dev_warn(ctrl->device,
3773  				"Found shared namespace %d, but multipathing not supported.\n",
3774  				info->nsid);
3775  			dev_warn_once(ctrl->device,
3776  				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3777  		}
3778  	}
3779  
3780  	list_add_tail_rcu(&ns->siblings, &head->list);
3781  	ns->head = head;
3782  	mutex_unlock(&ctrl->subsys->lock);
3783  	return 0;
3784  
3785  out_put_ns_head:
3786  	nvme_put_ns_head(head);
3787  out_unlock:
3788  	mutex_unlock(&ctrl->subsys->lock);
3789  	return ret;
3790  }
3791  
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)3792  struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3793  {
3794  	struct nvme_ns *ns, *ret = NULL;
3795  	int srcu_idx;
3796  
3797  	srcu_idx = srcu_read_lock(&ctrl->srcu);
3798  	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
3799  				 srcu_read_lock_held(&ctrl->srcu)) {
3800  		if (ns->head->ns_id == nsid) {
3801  			if (!nvme_get_ns(ns))
3802  				continue;
3803  			ret = ns;
3804  			break;
3805  		}
3806  		if (ns->head->ns_id > nsid)
3807  			break;
3808  	}
3809  	srcu_read_unlock(&ctrl->srcu, srcu_idx);
3810  	return ret;
3811  }
3812  EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3813  
3814  /*
3815   * Add the namespace to the controller list while keeping the list ordered.
3816   */
nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)3817  static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3818  {
3819  	struct nvme_ns *tmp;
3820  
3821  	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3822  		if (tmp->head->ns_id < ns->head->ns_id) {
3823  			list_add_rcu(&ns->list, &tmp->list);
3824  			return;
3825  		}
3826  	}
3827  	list_add(&ns->list, &ns->ctrl->namespaces);
3828  }
3829  
nvme_alloc_ns(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3830  static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3831  {
3832  	struct queue_limits lim = { };
3833  	struct nvme_ns *ns;
3834  	struct gendisk *disk;
3835  	int node = ctrl->numa_node;
3836  
3837  	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3838  	if (!ns)
3839  		return;
3840  
3841  	if (ctrl->opts && ctrl->opts->data_digest)
3842  		lim.features |= BLK_FEAT_STABLE_WRITES;
3843  	if (ctrl->ops->supports_pci_p2pdma &&
3844  	    ctrl->ops->supports_pci_p2pdma(ctrl))
3845  		lim.features |= BLK_FEAT_PCI_P2PDMA;
3846  
3847  	disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
3848  	if (IS_ERR(disk))
3849  		goto out_free_ns;
3850  	disk->fops = &nvme_bdev_ops;
3851  	disk->private_data = ns;
3852  
3853  	ns->disk = disk;
3854  	ns->queue = disk->queue;
3855  	ns->ctrl = ctrl;
3856  	kref_init(&ns->kref);
3857  
3858  	if (nvme_init_ns_head(ns, info))
3859  		goto out_cleanup_disk;
3860  
3861  	/*
3862  	 * If multipathing is enabled, the device name for all disks and not
3863  	 * just those that represent shared namespaces needs to be based on the
3864  	 * subsystem instance.  Using the controller instance for private
3865  	 * namespaces could lead to naming collisions between shared and private
3866  	 * namespaces if they don't use a common numbering scheme.
3867  	 *
3868  	 * If multipathing is not enabled, disk names must use the controller
3869  	 * instance as shared namespaces will show up as multiple block
3870  	 * devices.
3871  	 */
3872  	if (nvme_ns_head_multipath(ns->head)) {
3873  		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3874  			ctrl->instance, ns->head->instance);
3875  		disk->flags |= GENHD_FL_HIDDEN;
3876  	} else if (multipath) {
3877  		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3878  			ns->head->instance);
3879  	} else {
3880  		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3881  			ns->head->instance);
3882  	}
3883  
3884  	if (nvme_update_ns_info(ns, info))
3885  		goto out_unlink_ns;
3886  
3887  	mutex_lock(&ctrl->namespaces_lock);
3888  	/*
3889  	 * Ensure that no namespaces are added to the ctrl list after the queues
3890  	 * are frozen, thereby avoiding a deadlock between scan and reset.
3891  	 */
3892  	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3893  		mutex_unlock(&ctrl->namespaces_lock);
3894  		goto out_unlink_ns;
3895  	}
3896  	nvme_ns_add_to_ctrl_list(ns);
3897  	mutex_unlock(&ctrl->namespaces_lock);
3898  	synchronize_srcu(&ctrl->srcu);
3899  	nvme_get_ctrl(ctrl);
3900  
3901  	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3902  		goto out_cleanup_ns_from_list;
3903  
3904  	if (!nvme_ns_head_multipath(ns->head))
3905  		nvme_add_ns_cdev(ns);
3906  
3907  	nvme_mpath_add_disk(ns, info->anagrpid);
3908  	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3909  
3910  	/*
3911  	 * Set ns->disk->device->driver_data to ns so we can access
3912  	 * ns->head->passthru_err_log_enabled in
3913  	 * nvme_io_passthru_err_log_enabled_[store | show]().
3914  	 */
3915  	dev_set_drvdata(disk_to_dev(ns->disk), ns);
3916  
3917  	return;
3918  
3919   out_cleanup_ns_from_list:
3920  	nvme_put_ctrl(ctrl);
3921  	mutex_lock(&ctrl->namespaces_lock);
3922  	list_del_rcu(&ns->list);
3923  	mutex_unlock(&ctrl->namespaces_lock);
3924  	synchronize_srcu(&ctrl->srcu);
3925   out_unlink_ns:
3926  	mutex_lock(&ctrl->subsys->lock);
3927  	list_del_rcu(&ns->siblings);
3928  	if (list_empty(&ns->head->list))
3929  		list_del_init(&ns->head->entry);
3930  	mutex_unlock(&ctrl->subsys->lock);
3931  	nvme_put_ns_head(ns->head);
3932   out_cleanup_disk:
3933  	put_disk(disk);
3934   out_free_ns:
3935  	kfree(ns);
3936  }
3937  
nvme_ns_remove(struct nvme_ns * ns)3938  static void nvme_ns_remove(struct nvme_ns *ns)
3939  {
3940  	bool last_path = false;
3941  
3942  	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3943  		return;
3944  
3945  	clear_bit(NVME_NS_READY, &ns->flags);
3946  	set_capacity(ns->disk, 0);
3947  	nvme_fault_inject_fini(&ns->fault_inject);
3948  
3949  	/*
3950  	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3951  	 * this ns going back into current_path.
3952  	 */
3953  	synchronize_srcu(&ns->head->srcu);
3954  
3955  	/* wait for concurrent submissions */
3956  	if (nvme_mpath_clear_current_path(ns))
3957  		synchronize_srcu(&ns->head->srcu);
3958  
3959  	mutex_lock(&ns->ctrl->subsys->lock);
3960  	list_del_rcu(&ns->siblings);
3961  	if (list_empty(&ns->head->list)) {
3962  		list_del_init(&ns->head->entry);
3963  		last_path = true;
3964  	}
3965  	mutex_unlock(&ns->ctrl->subsys->lock);
3966  
3967  	/* guarantee not available in head->list */
3968  	synchronize_srcu(&ns->head->srcu);
3969  
3970  	if (!nvme_ns_head_multipath(ns->head))
3971  		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3972  	del_gendisk(ns->disk);
3973  
3974  	mutex_lock(&ns->ctrl->namespaces_lock);
3975  	list_del_rcu(&ns->list);
3976  	mutex_unlock(&ns->ctrl->namespaces_lock);
3977  	synchronize_srcu(&ns->ctrl->srcu);
3978  
3979  	if (last_path)
3980  		nvme_mpath_shutdown_disk(ns->head);
3981  	nvme_put_ns(ns);
3982  }
3983  
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)3984  static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3985  {
3986  	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3987  
3988  	if (ns) {
3989  		nvme_ns_remove(ns);
3990  		nvme_put_ns(ns);
3991  	}
3992  }
3993  
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_info * info)3994  static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3995  {
3996  	int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
3997  
3998  	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3999  		dev_err(ns->ctrl->device,
4000  			"identifiers changed for nsid %d\n", ns->head->ns_id);
4001  		goto out;
4002  	}
4003  
4004  	ret = nvme_update_ns_info(ns, info);
4005  out:
4006  	/*
4007  	 * Only remove the namespace if we got a fatal error back from the
4008  	 * device, otherwise ignore the error and just move on.
4009  	 *
4010  	 * TODO: we should probably schedule a delayed retry here.
4011  	 */
4012  	if (ret > 0 && (ret & NVME_STATUS_DNR))
4013  		nvme_ns_remove(ns);
4014  }
4015  
nvme_scan_ns(struct nvme_ctrl * ctrl,unsigned nsid)4016  static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4017  {
4018  	struct nvme_ns_info info = { .nsid = nsid };
4019  	struct nvme_ns *ns;
4020  	int ret;
4021  
4022  	if (nvme_identify_ns_descs(ctrl, &info))
4023  		return;
4024  
4025  	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4026  		dev_warn(ctrl->device,
4027  			"command set not reported for nsid: %d\n", nsid);
4028  		return;
4029  	}
4030  
4031  	/*
4032  	 * If available try to use the Command Set Idependent Identify Namespace
4033  	 * data structure to find all the generic information that is needed to
4034  	 * set up a namespace.  If not fall back to the legacy version.
4035  	 */
4036  	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4037  	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
4038  		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4039  	else
4040  		ret = nvme_ns_info_from_identify(ctrl, &info);
4041  
4042  	if (info.is_removed)
4043  		nvme_ns_remove_by_nsid(ctrl, nsid);
4044  
4045  	/*
4046  	 * Ignore the namespace if it is not ready. We will get an AEN once it
4047  	 * becomes ready and restart the scan.
4048  	 */
4049  	if (ret || !info.is_ready)
4050  		return;
4051  
4052  	ns = nvme_find_get_ns(ctrl, nsid);
4053  	if (ns) {
4054  		nvme_validate_ns(ns, &info);
4055  		nvme_put_ns(ns);
4056  	} else {
4057  		nvme_alloc_ns(ctrl, &info);
4058  	}
4059  }
4060  
4061  /**
4062   * struct async_scan_info - keeps track of controller & NSIDs to scan
4063   * @ctrl:	Controller on which namespaces are being scanned
4064   * @next_nsid:	Index of next NSID to scan in ns_list
4065   * @ns_list:	Pointer to list of NSIDs to scan
4066   *
4067   * Note: There is a single async_scan_info structure shared by all instances
4068   * of nvme_scan_ns_async() scanning a given controller, so the atomic
4069   * operations on next_nsid are critical to ensure each instance scans a unique
4070   * NSID.
4071   */
4072  struct async_scan_info {
4073  	struct nvme_ctrl *ctrl;
4074  	atomic_t next_nsid;
4075  	__le32 *ns_list;
4076  };
4077  
nvme_scan_ns_async(void * data,async_cookie_t cookie)4078  static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4079  {
4080  	struct async_scan_info *scan_info = data;
4081  	int idx;
4082  	u32 nsid;
4083  
4084  	idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4085  	nsid = le32_to_cpu(scan_info->ns_list[idx]);
4086  
4087  	nvme_scan_ns(scan_info->ctrl, nsid);
4088  }
4089  
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)4090  static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4091  					unsigned nsid)
4092  {
4093  	struct nvme_ns *ns, *next;
4094  	LIST_HEAD(rm_list);
4095  
4096  	mutex_lock(&ctrl->namespaces_lock);
4097  	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4098  		if (ns->head->ns_id > nsid) {
4099  			list_del_rcu(&ns->list);
4100  			synchronize_srcu(&ctrl->srcu);
4101  			list_add_tail_rcu(&ns->list, &rm_list);
4102  		}
4103  	}
4104  	mutex_unlock(&ctrl->namespaces_lock);
4105  
4106  	list_for_each_entry_safe(ns, next, &rm_list, list)
4107  		nvme_ns_remove(ns);
4108  }
4109  
nvme_scan_ns_list(struct nvme_ctrl * ctrl)4110  static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4111  {
4112  	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4113  	__le32 *ns_list;
4114  	u32 prev = 0;
4115  	int ret = 0, i;
4116  	ASYNC_DOMAIN(domain);
4117  	struct async_scan_info scan_info;
4118  
4119  	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4120  	if (!ns_list)
4121  		return -ENOMEM;
4122  
4123  	scan_info.ctrl = ctrl;
4124  	scan_info.ns_list = ns_list;
4125  	for (;;) {
4126  		struct nvme_command cmd = {
4127  			.identify.opcode	= nvme_admin_identify,
4128  			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4129  			.identify.nsid		= cpu_to_le32(prev),
4130  		};
4131  
4132  		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4133  					    NVME_IDENTIFY_DATA_SIZE);
4134  		if (ret) {
4135  			dev_warn(ctrl->device,
4136  				"Identify NS List failed (status=0x%x)\n", ret);
4137  			goto free;
4138  		}
4139  
4140  		atomic_set(&scan_info.next_nsid, 0);
4141  		for (i = 0; i < nr_entries; i++) {
4142  			u32 nsid = le32_to_cpu(ns_list[i]);
4143  
4144  			if (!nsid)	/* end of the list? */
4145  				goto out;
4146  			async_schedule_domain(nvme_scan_ns_async, &scan_info,
4147  						&domain);
4148  			while (++prev < nsid)
4149  				nvme_ns_remove_by_nsid(ctrl, prev);
4150  		}
4151  		async_synchronize_full_domain(&domain);
4152  	}
4153   out:
4154  	nvme_remove_invalid_namespaces(ctrl, prev);
4155   free:
4156  	async_synchronize_full_domain(&domain);
4157  	kfree(ns_list);
4158  	return ret;
4159  }
4160  
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)4161  static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4162  {
4163  	struct nvme_id_ctrl *id;
4164  	u32 nn, i;
4165  
4166  	if (nvme_identify_ctrl(ctrl, &id))
4167  		return;
4168  	nn = le32_to_cpu(id->nn);
4169  	kfree(id);
4170  
4171  	for (i = 1; i <= nn; i++)
4172  		nvme_scan_ns(ctrl, i);
4173  
4174  	nvme_remove_invalid_namespaces(ctrl, nn);
4175  }
4176  
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)4177  static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4178  {
4179  	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4180  	__le32 *log;
4181  	int error;
4182  
4183  	log = kzalloc(log_size, GFP_KERNEL);
4184  	if (!log)
4185  		return;
4186  
4187  	/*
4188  	 * We need to read the log to clear the AEN, but we don't want to rely
4189  	 * on it for the changed namespace information as userspace could have
4190  	 * raced with us in reading the log page, which could cause us to miss
4191  	 * updates.
4192  	 */
4193  	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4194  			NVME_CSI_NVM, log, log_size, 0);
4195  	if (error)
4196  		dev_warn(ctrl->device,
4197  			"reading changed ns log failed: %d\n", error);
4198  
4199  	kfree(log);
4200  }
4201  
nvme_scan_work(struct work_struct * work)4202  static void nvme_scan_work(struct work_struct *work)
4203  {
4204  	struct nvme_ctrl *ctrl =
4205  		container_of(work, struct nvme_ctrl, scan_work);
4206  	int ret;
4207  
4208  	/* No tagset on a live ctrl means IO queues could not created */
4209  	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4210  		return;
4211  
4212  	/*
4213  	 * Identify controller limits can change at controller reset due to
4214  	 * new firmware download, even though it is not common we cannot ignore
4215  	 * such scenario. Controller's non-mdts limits are reported in the unit
4216  	 * of logical blocks that is dependent on the format of attached
4217  	 * namespace. Hence re-read the limits at the time of ns allocation.
4218  	 */
4219  	ret = nvme_init_non_mdts_limits(ctrl);
4220  	if (ret < 0) {
4221  		dev_warn(ctrl->device,
4222  			"reading non-mdts-limits failed: %d\n", ret);
4223  		return;
4224  	}
4225  
4226  	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4227  		dev_info(ctrl->device, "rescanning namespaces.\n");
4228  		nvme_clear_changed_ns_log(ctrl);
4229  	}
4230  
4231  	mutex_lock(&ctrl->scan_lock);
4232  	if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) {
4233  		nvme_scan_ns_sequential(ctrl);
4234  	} else {
4235  		/*
4236  		 * Fall back to sequential scan if DNR is set to handle broken
4237  		 * devices which should support Identify NS List (as per the VS
4238  		 * they report) but don't actually support it.
4239  		 */
4240  		ret = nvme_scan_ns_list(ctrl);
4241  		if (ret > 0 && ret & NVME_STATUS_DNR)
4242  			nvme_scan_ns_sequential(ctrl);
4243  	}
4244  	mutex_unlock(&ctrl->scan_lock);
4245  }
4246  
4247  /*
4248   * This function iterates the namespace list unlocked to allow recovery from
4249   * controller failure. It is up to the caller to ensure the namespace list is
4250   * not modified by scan work while this function is executing.
4251   */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)4252  void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4253  {
4254  	struct nvme_ns *ns, *next;
4255  	LIST_HEAD(ns_list);
4256  
4257  	/*
4258  	 * make sure to requeue I/O to all namespaces as these
4259  	 * might result from the scan itself and must complete
4260  	 * for the scan_work to make progress
4261  	 */
4262  	nvme_mpath_clear_ctrl_paths(ctrl);
4263  
4264  	/*
4265  	 * Unquiesce io queues so any pending IO won't hang, especially
4266  	 * those submitted from scan work
4267  	 */
4268  	nvme_unquiesce_io_queues(ctrl);
4269  
4270  	/* prevent racing with ns scanning */
4271  	flush_work(&ctrl->scan_work);
4272  
4273  	/*
4274  	 * The dead states indicates the controller was not gracefully
4275  	 * disconnected. In that case, we won't be able to flush any data while
4276  	 * removing the namespaces' disks; fail all the queues now to avoid
4277  	 * potentially having to clean up the failed sync later.
4278  	 */
4279  	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4280  		nvme_mark_namespaces_dead(ctrl);
4281  
4282  	/* this is a no-op when called from the controller reset handler */
4283  	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4284  
4285  	mutex_lock(&ctrl->namespaces_lock);
4286  	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4287  	mutex_unlock(&ctrl->namespaces_lock);
4288  	synchronize_srcu(&ctrl->srcu);
4289  
4290  	list_for_each_entry_safe(ns, next, &ns_list, list)
4291  		nvme_ns_remove(ns);
4292  }
4293  EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4294  
nvme_class_uevent(const struct device * dev,struct kobj_uevent_env * env)4295  static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4296  {
4297  	const struct nvme_ctrl *ctrl =
4298  		container_of(dev, struct nvme_ctrl, ctrl_device);
4299  	struct nvmf_ctrl_options *opts = ctrl->opts;
4300  	int ret;
4301  
4302  	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4303  	if (ret)
4304  		return ret;
4305  
4306  	if (opts) {
4307  		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4308  		if (ret)
4309  			return ret;
4310  
4311  		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4312  				opts->trsvcid ?: "none");
4313  		if (ret)
4314  			return ret;
4315  
4316  		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4317  				opts->host_traddr ?: "none");
4318  		if (ret)
4319  			return ret;
4320  
4321  		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4322  				opts->host_iface ?: "none");
4323  	}
4324  	return ret;
4325  }
4326  
nvme_change_uevent(struct nvme_ctrl * ctrl,char * envdata)4327  static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4328  {
4329  	char *envp[2] = { envdata, NULL };
4330  
4331  	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4332  }
4333  
nvme_aen_uevent(struct nvme_ctrl * ctrl)4334  static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4335  {
4336  	char *envp[2] = { NULL, NULL };
4337  	u32 aen_result = ctrl->aen_result;
4338  
4339  	ctrl->aen_result = 0;
4340  	if (!aen_result)
4341  		return;
4342  
4343  	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4344  	if (!envp[0])
4345  		return;
4346  	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4347  	kfree(envp[0]);
4348  }
4349  
nvme_async_event_work(struct work_struct * work)4350  static void nvme_async_event_work(struct work_struct *work)
4351  {
4352  	struct nvme_ctrl *ctrl =
4353  		container_of(work, struct nvme_ctrl, async_event_work);
4354  
4355  	nvme_aen_uevent(ctrl);
4356  
4357  	/*
4358  	 * The transport drivers must guarantee AER submission here is safe by
4359  	 * flushing ctrl async_event_work after changing the controller state
4360  	 * from LIVE and before freeing the admin queue.
4361  	*/
4362  	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4363  		ctrl->ops->submit_async_event(ctrl);
4364  }
4365  
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4366  static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4367  {
4368  
4369  	u32 csts;
4370  
4371  	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4372  		return false;
4373  
4374  	if (csts == ~0)
4375  		return false;
4376  
4377  	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4378  }
4379  
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4380  static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4381  {
4382  	struct nvme_fw_slot_info_log *log;
4383  	u8 next_fw_slot, cur_fw_slot;
4384  
4385  	log = kmalloc(sizeof(*log), GFP_KERNEL);
4386  	if (!log)
4387  		return;
4388  
4389  	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4390  			 log, sizeof(*log), 0)) {
4391  		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4392  		goto out_free_log;
4393  	}
4394  
4395  	cur_fw_slot = log->afi & 0x7;
4396  	next_fw_slot = (log->afi & 0x70) >> 4;
4397  	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4398  		dev_info(ctrl->device,
4399  			 "Firmware is activated after next Controller Level Reset\n");
4400  		goto out_free_log;
4401  	}
4402  
4403  	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4404  		sizeof(ctrl->subsys->firmware_rev));
4405  
4406  out_free_log:
4407  	kfree(log);
4408  }
4409  
nvme_fw_act_work(struct work_struct * work)4410  static void nvme_fw_act_work(struct work_struct *work)
4411  {
4412  	struct nvme_ctrl *ctrl = container_of(work,
4413  				struct nvme_ctrl, fw_act_work);
4414  	unsigned long fw_act_timeout;
4415  
4416  	nvme_auth_stop(ctrl);
4417  
4418  	if (ctrl->mtfa)
4419  		fw_act_timeout = jiffies +
4420  				msecs_to_jiffies(ctrl->mtfa * 100);
4421  	else
4422  		fw_act_timeout = jiffies +
4423  				msecs_to_jiffies(admin_timeout * 1000);
4424  
4425  	nvme_quiesce_io_queues(ctrl);
4426  	while (nvme_ctrl_pp_status(ctrl)) {
4427  		if (time_after(jiffies, fw_act_timeout)) {
4428  			dev_warn(ctrl->device,
4429  				"Fw activation timeout, reset controller\n");
4430  			nvme_try_sched_reset(ctrl);
4431  			return;
4432  		}
4433  		msleep(100);
4434  	}
4435  
4436  	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4437  		return;
4438  
4439  	nvme_unquiesce_io_queues(ctrl);
4440  	/* read FW slot information to clear the AER */
4441  	nvme_get_fw_slot_info(ctrl);
4442  
4443  	queue_work(nvme_wq, &ctrl->async_event_work);
4444  }
4445  
nvme_aer_type(u32 result)4446  static u32 nvme_aer_type(u32 result)
4447  {
4448  	return result & 0x7;
4449  }
4450  
nvme_aer_subtype(u32 result)4451  static u32 nvme_aer_subtype(u32 result)
4452  {
4453  	return (result & 0xff00) >> 8;
4454  }
4455  
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4456  static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4457  {
4458  	u32 aer_notice_type = nvme_aer_subtype(result);
4459  	bool requeue = true;
4460  
4461  	switch (aer_notice_type) {
4462  	case NVME_AER_NOTICE_NS_CHANGED:
4463  		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4464  		nvme_queue_scan(ctrl);
4465  		break;
4466  	case NVME_AER_NOTICE_FW_ACT_STARTING:
4467  		/*
4468  		 * We are (ab)using the RESETTING state to prevent subsequent
4469  		 * recovery actions from interfering with the controller's
4470  		 * firmware activation.
4471  		 */
4472  		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4473  			requeue = false;
4474  			queue_work(nvme_wq, &ctrl->fw_act_work);
4475  		}
4476  		break;
4477  #ifdef CONFIG_NVME_MULTIPATH
4478  	case NVME_AER_NOTICE_ANA:
4479  		if (!ctrl->ana_log_buf)
4480  			break;
4481  		queue_work(nvme_wq, &ctrl->ana_work);
4482  		break;
4483  #endif
4484  	case NVME_AER_NOTICE_DISC_CHANGED:
4485  		ctrl->aen_result = result;
4486  		break;
4487  	default:
4488  		dev_warn(ctrl->device, "async event result %08x\n", result);
4489  	}
4490  	return requeue;
4491  }
4492  
nvme_handle_aer_persistent_error(struct nvme_ctrl * ctrl)4493  static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4494  {
4495  	dev_warn(ctrl->device,
4496  		"resetting controller due to persistent internal error\n");
4497  	nvme_reset_ctrl(ctrl);
4498  }
4499  
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4500  void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4501  		volatile union nvme_result *res)
4502  {
4503  	u32 result = le32_to_cpu(res->u32);
4504  	u32 aer_type = nvme_aer_type(result);
4505  	u32 aer_subtype = nvme_aer_subtype(result);
4506  	bool requeue = true;
4507  
4508  	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4509  		return;
4510  
4511  	trace_nvme_async_event(ctrl, result);
4512  	switch (aer_type) {
4513  	case NVME_AER_NOTICE:
4514  		requeue = nvme_handle_aen_notice(ctrl, result);
4515  		break;
4516  	case NVME_AER_ERROR:
4517  		/*
4518  		 * For a persistent internal error, don't run async_event_work
4519  		 * to submit a new AER. The controller reset will do it.
4520  		 */
4521  		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4522  			nvme_handle_aer_persistent_error(ctrl);
4523  			return;
4524  		}
4525  		fallthrough;
4526  	case NVME_AER_SMART:
4527  	case NVME_AER_CSS:
4528  	case NVME_AER_VS:
4529  		ctrl->aen_result = result;
4530  		break;
4531  	default:
4532  		break;
4533  	}
4534  
4535  	if (requeue)
4536  		queue_work(nvme_wq, &ctrl->async_event_work);
4537  }
4538  EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4539  
nvme_alloc_admin_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int cmd_size)4540  int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4541  		const struct blk_mq_ops *ops, unsigned int cmd_size)
4542  {
4543  	struct queue_limits lim = {};
4544  	int ret;
4545  
4546  	memset(set, 0, sizeof(*set));
4547  	set->ops = ops;
4548  	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4549  	if (ctrl->ops->flags & NVME_F_FABRICS)
4550  		/* Reserved for fabric connect and keep alive */
4551  		set->reserved_tags = 2;
4552  	set->numa_node = ctrl->numa_node;
4553  	set->flags = BLK_MQ_F_NO_SCHED;
4554  	if (ctrl->ops->flags & NVME_F_BLOCKING)
4555  		set->flags |= BLK_MQ_F_BLOCKING;
4556  	set->cmd_size = cmd_size;
4557  	set->driver_data = ctrl;
4558  	set->nr_hw_queues = 1;
4559  	set->timeout = NVME_ADMIN_TIMEOUT;
4560  	ret = blk_mq_alloc_tag_set(set);
4561  	if (ret)
4562  		return ret;
4563  
4564  	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4565  	if (IS_ERR(ctrl->admin_q)) {
4566  		ret = PTR_ERR(ctrl->admin_q);
4567  		goto out_free_tagset;
4568  	}
4569  
4570  	if (ctrl->ops->flags & NVME_F_FABRICS) {
4571  		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4572  		if (IS_ERR(ctrl->fabrics_q)) {
4573  			ret = PTR_ERR(ctrl->fabrics_q);
4574  			goto out_cleanup_admin_q;
4575  		}
4576  	}
4577  
4578  	ctrl->admin_tagset = set;
4579  	return 0;
4580  
4581  out_cleanup_admin_q:
4582  	blk_mq_destroy_queue(ctrl->admin_q);
4583  	blk_put_queue(ctrl->admin_q);
4584  out_free_tagset:
4585  	blk_mq_free_tag_set(set);
4586  	ctrl->admin_q = NULL;
4587  	ctrl->fabrics_q = NULL;
4588  	return ret;
4589  }
4590  EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4591  
nvme_remove_admin_tag_set(struct nvme_ctrl * ctrl)4592  void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4593  {
4594  	blk_mq_destroy_queue(ctrl->admin_q);
4595  	blk_put_queue(ctrl->admin_q);
4596  	if (ctrl->ops->flags & NVME_F_FABRICS) {
4597  		blk_mq_destroy_queue(ctrl->fabrics_q);
4598  		blk_put_queue(ctrl->fabrics_q);
4599  	}
4600  	blk_mq_free_tag_set(ctrl->admin_tagset);
4601  }
4602  EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4603  
nvme_alloc_io_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int nr_maps,unsigned int cmd_size)4604  int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4605  		const struct blk_mq_ops *ops, unsigned int nr_maps,
4606  		unsigned int cmd_size)
4607  {
4608  	int ret;
4609  
4610  	memset(set, 0, sizeof(*set));
4611  	set->ops = ops;
4612  	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4613  	/*
4614  	 * Some Apple controllers requires tags to be unique across admin and
4615  	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4616  	 */
4617  	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4618  		set->reserved_tags = NVME_AQ_DEPTH;
4619  	else if (ctrl->ops->flags & NVME_F_FABRICS)
4620  		/* Reserved for fabric connect */
4621  		set->reserved_tags = 1;
4622  	set->numa_node = ctrl->numa_node;
4623  	set->flags = BLK_MQ_F_SHOULD_MERGE;
4624  	if (ctrl->ops->flags & NVME_F_BLOCKING)
4625  		set->flags |= BLK_MQ_F_BLOCKING;
4626  	set->cmd_size = cmd_size;
4627  	set->driver_data = ctrl;
4628  	set->nr_hw_queues = ctrl->queue_count - 1;
4629  	set->timeout = NVME_IO_TIMEOUT;
4630  	set->nr_maps = nr_maps;
4631  	ret = blk_mq_alloc_tag_set(set);
4632  	if (ret)
4633  		return ret;
4634  
4635  	if (ctrl->ops->flags & NVME_F_FABRICS) {
4636  		struct queue_limits lim = {
4637  			.features	= BLK_FEAT_SKIP_TAGSET_QUIESCE,
4638  		};
4639  
4640  		ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4641          	if (IS_ERR(ctrl->connect_q)) {
4642  			ret = PTR_ERR(ctrl->connect_q);
4643  			goto out_free_tag_set;
4644  		}
4645  	}
4646  
4647  	ctrl->tagset = set;
4648  	return 0;
4649  
4650  out_free_tag_set:
4651  	blk_mq_free_tag_set(set);
4652  	ctrl->connect_q = NULL;
4653  	return ret;
4654  }
4655  EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4656  
nvme_remove_io_tag_set(struct nvme_ctrl * ctrl)4657  void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4658  {
4659  	if (ctrl->ops->flags & NVME_F_FABRICS) {
4660  		blk_mq_destroy_queue(ctrl->connect_q);
4661  		blk_put_queue(ctrl->connect_q);
4662  	}
4663  	blk_mq_free_tag_set(ctrl->tagset);
4664  }
4665  EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4666  
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4667  void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4668  {
4669  	nvme_mpath_stop(ctrl);
4670  	nvme_auth_stop(ctrl);
4671  	nvme_stop_failfast_work(ctrl);
4672  	flush_work(&ctrl->async_event_work);
4673  	cancel_work_sync(&ctrl->fw_act_work);
4674  	if (ctrl->ops->stop_ctrl)
4675  		ctrl->ops->stop_ctrl(ctrl);
4676  }
4677  EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4678  
nvme_start_ctrl(struct nvme_ctrl * ctrl)4679  void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4680  {
4681  	nvme_enable_aen(ctrl);
4682  
4683  	/*
4684  	 * persistent discovery controllers need to send indication to userspace
4685  	 * to re-read the discovery log page to learn about possible changes
4686  	 * that were missed. We identify persistent discovery controllers by
4687  	 * checking that they started once before, hence are reconnecting back.
4688  	 */
4689  	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4690  	    nvme_discovery_ctrl(ctrl))
4691  		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4692  
4693  	if (ctrl->queue_count > 1) {
4694  		nvme_queue_scan(ctrl);
4695  		nvme_unquiesce_io_queues(ctrl);
4696  		nvme_mpath_update(ctrl);
4697  	}
4698  
4699  	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4700  	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4701  }
4702  EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4703  
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)4704  void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4705  {
4706  	nvme_stop_keep_alive(ctrl);
4707  	nvme_hwmon_exit(ctrl);
4708  	nvme_fault_inject_fini(&ctrl->fault_inject);
4709  	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4710  	cdev_device_del(&ctrl->cdev, ctrl->device);
4711  	nvme_put_ctrl(ctrl);
4712  }
4713  EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4714  
nvme_free_cels(struct nvme_ctrl * ctrl)4715  static void nvme_free_cels(struct nvme_ctrl *ctrl)
4716  {
4717  	struct nvme_effects_log	*cel;
4718  	unsigned long i;
4719  
4720  	xa_for_each(&ctrl->cels, i, cel) {
4721  		xa_erase(&ctrl->cels, i);
4722  		kfree(cel);
4723  	}
4724  
4725  	xa_destroy(&ctrl->cels);
4726  }
4727  
nvme_free_ctrl(struct device * dev)4728  static void nvme_free_ctrl(struct device *dev)
4729  {
4730  	struct nvme_ctrl *ctrl =
4731  		container_of(dev, struct nvme_ctrl, ctrl_device);
4732  	struct nvme_subsystem *subsys = ctrl->subsys;
4733  
4734  	if (!subsys || ctrl->instance != subsys->instance)
4735  		ida_free(&nvme_instance_ida, ctrl->instance);
4736  	nvme_free_cels(ctrl);
4737  	nvme_mpath_uninit(ctrl);
4738  	cleanup_srcu_struct(&ctrl->srcu);
4739  	nvme_auth_stop(ctrl);
4740  	nvme_auth_free(ctrl);
4741  	__free_page(ctrl->discard_page);
4742  	free_opal_dev(ctrl->opal_dev);
4743  
4744  	if (subsys) {
4745  		mutex_lock(&nvme_subsystems_lock);
4746  		list_del(&ctrl->subsys_entry);
4747  		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4748  		mutex_unlock(&nvme_subsystems_lock);
4749  	}
4750  
4751  	ctrl->ops->free_ctrl(ctrl);
4752  
4753  	if (subsys)
4754  		nvme_put_subsystem(subsys);
4755  }
4756  
4757  /*
4758   * Initialize a NVMe controller structures.  This needs to be called during
4759   * earliest initialization so that we have the initialized structured around
4760   * during probing.
4761   *
4762   * On success, the caller must use the nvme_put_ctrl() to release this when
4763   * needed, which also invokes the ops->free_ctrl() callback.
4764   */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)4765  int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4766  		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4767  {
4768  	int ret;
4769  
4770  	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4771  	ctrl->passthru_err_log_enabled = false;
4772  	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4773  	spin_lock_init(&ctrl->lock);
4774  	mutex_init(&ctrl->namespaces_lock);
4775  
4776  	ret = init_srcu_struct(&ctrl->srcu);
4777  	if (ret)
4778  		return ret;
4779  
4780  	mutex_init(&ctrl->scan_lock);
4781  	INIT_LIST_HEAD(&ctrl->namespaces);
4782  	xa_init(&ctrl->cels);
4783  	ctrl->dev = dev;
4784  	ctrl->ops = ops;
4785  	ctrl->quirks = quirks;
4786  	ctrl->numa_node = NUMA_NO_NODE;
4787  	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4788  	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4789  	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4790  	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4791  	init_waitqueue_head(&ctrl->state_wq);
4792  
4793  	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4794  	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4795  	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4796  	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4797  	ctrl->ka_last_check_time = jiffies;
4798  
4799  	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4800  			PAGE_SIZE);
4801  	ctrl->discard_page = alloc_page(GFP_KERNEL);
4802  	if (!ctrl->discard_page) {
4803  		ret = -ENOMEM;
4804  		goto out;
4805  	}
4806  
4807  	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4808  	if (ret < 0)
4809  		goto out;
4810  	ctrl->instance = ret;
4811  
4812  	ret = nvme_auth_init_ctrl(ctrl);
4813  	if (ret)
4814  		goto out_release_instance;
4815  
4816  	nvme_mpath_init_ctrl(ctrl);
4817  
4818  	device_initialize(&ctrl->ctrl_device);
4819  	ctrl->device = &ctrl->ctrl_device;
4820  	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4821  			ctrl->instance);
4822  	ctrl->device->class = &nvme_class;
4823  	ctrl->device->parent = ctrl->dev;
4824  	if (ops->dev_attr_groups)
4825  		ctrl->device->groups = ops->dev_attr_groups;
4826  	else
4827  		ctrl->device->groups = nvme_dev_attr_groups;
4828  	ctrl->device->release = nvme_free_ctrl;
4829  	dev_set_drvdata(ctrl->device, ctrl);
4830  
4831  	return ret;
4832  
4833  out_release_instance:
4834  	ida_free(&nvme_instance_ida, ctrl->instance);
4835  out:
4836  	if (ctrl->discard_page)
4837  		__free_page(ctrl->discard_page);
4838  	cleanup_srcu_struct(&ctrl->srcu);
4839  	return ret;
4840  }
4841  EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4842  
4843  /*
4844   * On success, returns with an elevated controller reference and caller must
4845   * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
4846   */
nvme_add_ctrl(struct nvme_ctrl * ctrl)4847  int nvme_add_ctrl(struct nvme_ctrl *ctrl)
4848  {
4849  	int ret;
4850  
4851  	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4852  	if (ret)
4853  		return ret;
4854  
4855  	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4856  	ctrl->cdev.owner = ctrl->ops->module;
4857  	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4858  	if (ret)
4859  		return ret;
4860  
4861  	/*
4862  	 * Initialize latency tolerance controls.  The sysfs files won't
4863  	 * be visible to userspace unless the device actually supports APST.
4864  	 */
4865  	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4866  	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4867  		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4868  
4869  	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4870  	nvme_get_ctrl(ctrl);
4871  
4872  	return 0;
4873  }
4874  EXPORT_SYMBOL_GPL(nvme_add_ctrl);
4875  
4876  /* let I/O to all namespaces fail in preparation for surprise removal */
nvme_mark_namespaces_dead(struct nvme_ctrl * ctrl)4877  void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4878  {
4879  	struct nvme_ns *ns;
4880  	int srcu_idx;
4881  
4882  	srcu_idx = srcu_read_lock(&ctrl->srcu);
4883  	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4884  				 srcu_read_lock_held(&ctrl->srcu))
4885  		blk_mark_disk_dead(ns->disk);
4886  	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4887  }
4888  EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4889  
nvme_unfreeze(struct nvme_ctrl * ctrl)4890  void nvme_unfreeze(struct nvme_ctrl *ctrl)
4891  {
4892  	struct nvme_ns *ns;
4893  	int srcu_idx;
4894  
4895  	srcu_idx = srcu_read_lock(&ctrl->srcu);
4896  	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4897  				 srcu_read_lock_held(&ctrl->srcu))
4898  		blk_mq_unfreeze_queue(ns->queue);
4899  	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4900  	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4901  }
4902  EXPORT_SYMBOL_GPL(nvme_unfreeze);
4903  
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)4904  int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4905  {
4906  	struct nvme_ns *ns;
4907  	int srcu_idx;
4908  
4909  	srcu_idx = srcu_read_lock(&ctrl->srcu);
4910  	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4911  				 srcu_read_lock_held(&ctrl->srcu)) {
4912  		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4913  		if (timeout <= 0)
4914  			break;
4915  	}
4916  	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4917  	return timeout;
4918  }
4919  EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4920  
nvme_wait_freeze(struct nvme_ctrl * ctrl)4921  void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4922  {
4923  	struct nvme_ns *ns;
4924  	int srcu_idx;
4925  
4926  	srcu_idx = srcu_read_lock(&ctrl->srcu);
4927  	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4928  				 srcu_read_lock_held(&ctrl->srcu))
4929  		blk_mq_freeze_queue_wait(ns->queue);
4930  	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4931  }
4932  EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4933  
nvme_start_freeze(struct nvme_ctrl * ctrl)4934  void nvme_start_freeze(struct nvme_ctrl *ctrl)
4935  {
4936  	struct nvme_ns *ns;
4937  	int srcu_idx;
4938  
4939  	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4940  	srcu_idx = srcu_read_lock(&ctrl->srcu);
4941  	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4942  				 srcu_read_lock_held(&ctrl->srcu))
4943  		blk_freeze_queue_start(ns->queue);
4944  	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4945  }
4946  EXPORT_SYMBOL_GPL(nvme_start_freeze);
4947  
nvme_quiesce_io_queues(struct nvme_ctrl * ctrl)4948  void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4949  {
4950  	if (!ctrl->tagset)
4951  		return;
4952  	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4953  		blk_mq_quiesce_tagset(ctrl->tagset);
4954  	else
4955  		blk_mq_wait_quiesce_done(ctrl->tagset);
4956  }
4957  EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4958  
nvme_unquiesce_io_queues(struct nvme_ctrl * ctrl)4959  void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4960  {
4961  	if (!ctrl->tagset)
4962  		return;
4963  	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4964  		blk_mq_unquiesce_tagset(ctrl->tagset);
4965  }
4966  EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4967  
nvme_quiesce_admin_queue(struct nvme_ctrl * ctrl)4968  void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4969  {
4970  	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4971  		blk_mq_quiesce_queue(ctrl->admin_q);
4972  	else
4973  		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4974  }
4975  EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4976  
nvme_unquiesce_admin_queue(struct nvme_ctrl * ctrl)4977  void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4978  {
4979  	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4980  		blk_mq_unquiesce_queue(ctrl->admin_q);
4981  }
4982  EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4983  
nvme_sync_io_queues(struct nvme_ctrl * ctrl)4984  void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4985  {
4986  	struct nvme_ns *ns;
4987  	int srcu_idx;
4988  
4989  	srcu_idx = srcu_read_lock(&ctrl->srcu);
4990  	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4991  				 srcu_read_lock_held(&ctrl->srcu))
4992  		blk_sync_queue(ns->queue);
4993  	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4994  }
4995  EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4996  
nvme_sync_queues(struct nvme_ctrl * ctrl)4997  void nvme_sync_queues(struct nvme_ctrl *ctrl)
4998  {
4999  	nvme_sync_io_queues(ctrl);
5000  	if (ctrl->admin_q)
5001  		blk_sync_queue(ctrl->admin_q);
5002  }
5003  EXPORT_SYMBOL_GPL(nvme_sync_queues);
5004  
nvme_ctrl_from_file(struct file * file)5005  struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5006  {
5007  	if (file->f_op != &nvme_dev_fops)
5008  		return NULL;
5009  	return file->private_data;
5010  }
5011  EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
5012  
5013  /*
5014   * Check we didn't inadvertently grow the command structure sizes:
5015   */
_nvme_check_size(void)5016  static inline void _nvme_check_size(void)
5017  {
5018  	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5019  	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5020  	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5021  	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5022  	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5023  	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5024  	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5025  	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5026  	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5027  	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5028  	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5029  	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5030  	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5031  	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5032  			NVME_IDENTIFY_DATA_SIZE);
5033  	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5034  	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5035  	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5036  	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5037  	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5038  	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5039  	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5040  	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5041  	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5042  }
5043  
5044  
nvme_core_init(void)5045  static int __init nvme_core_init(void)
5046  {
5047  	int result = -ENOMEM;
5048  
5049  	_nvme_check_size();
5050  
5051  	nvme_wq = alloc_workqueue("nvme-wq",
5052  			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5053  	if (!nvme_wq)
5054  		goto out;
5055  
5056  	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
5057  			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5058  	if (!nvme_reset_wq)
5059  		goto destroy_wq;
5060  
5061  	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
5062  			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5063  	if (!nvme_delete_wq)
5064  		goto destroy_reset_wq;
5065  
5066  	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5067  			NVME_MINORS, "nvme");
5068  	if (result < 0)
5069  		goto destroy_delete_wq;
5070  
5071  	result = class_register(&nvme_class);
5072  	if (result)
5073  		goto unregister_chrdev;
5074  
5075  	result = class_register(&nvme_subsys_class);
5076  	if (result)
5077  		goto destroy_class;
5078  
5079  	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5080  				     "nvme-generic");
5081  	if (result < 0)
5082  		goto destroy_subsys_class;
5083  
5084  	result = class_register(&nvme_ns_chr_class);
5085  	if (result)
5086  		goto unregister_generic_ns;
5087  
5088  	result = nvme_init_auth();
5089  	if (result)
5090  		goto destroy_ns_chr;
5091  	return 0;
5092  
5093  destroy_ns_chr:
5094  	class_unregister(&nvme_ns_chr_class);
5095  unregister_generic_ns:
5096  	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5097  destroy_subsys_class:
5098  	class_unregister(&nvme_subsys_class);
5099  destroy_class:
5100  	class_unregister(&nvme_class);
5101  unregister_chrdev:
5102  	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5103  destroy_delete_wq:
5104  	destroy_workqueue(nvme_delete_wq);
5105  destroy_reset_wq:
5106  	destroy_workqueue(nvme_reset_wq);
5107  destroy_wq:
5108  	destroy_workqueue(nvme_wq);
5109  out:
5110  	return result;
5111  }
5112  
nvme_core_exit(void)5113  static void __exit nvme_core_exit(void)
5114  {
5115  	nvme_exit_auth();
5116  	class_unregister(&nvme_ns_chr_class);
5117  	class_unregister(&nvme_subsys_class);
5118  	class_unregister(&nvme_class);
5119  	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5120  	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5121  	destroy_workqueue(nvme_delete_wq);
5122  	destroy_workqueue(nvme_reset_wq);
5123  	destroy_workqueue(nvme_wq);
5124  	ida_destroy(&nvme_ns_chr_minor_ida);
5125  	ida_destroy(&nvme_instance_ida);
5126  }
5127  
5128  MODULE_LICENSE("GPL");
5129  MODULE_VERSION("1.0");
5130  MODULE_DESCRIPTION("NVMe host core framework");
5131  module_init(nvme_core_init);
5132  module_exit(nvme_core_exit);
5133