1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVEC: NVIDIA compliant embedded controller interface
4  *
5  * Copyright (C) 2011 The AC100 Kernel Team <ac100@lists.lauchpad.net>
6  *
7  * Authors:  Pierre-Hugues Husson <phhusson@free.fr>
8  *           Ilya Petrov <ilya.muromec@gmail.com>
9  *           Marc Dietrich <marvin24@gmx.de>
10  *           Julian Andres Klode <jak@jak-linux.org>
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/atomic.h>
16 #include <linux/clk.h>
17 #include <linux/completion.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/irq.h>
24 #include <linux/of.h>
25 #include <linux/list.h>
26 #include <linux/mfd/core.h>
27 #include <linux/mutex.h>
28 #include <linux/notifier.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/workqueue.h>
32 
33 #include "nvec.h"
34 
35 #define I2C_CNFG			0x00
36 #define I2C_CNFG_PACKET_MODE_EN		BIT(10)
37 #define I2C_CNFG_NEW_MASTER_SFM		BIT(11)
38 #define I2C_CNFG_DEBOUNCE_CNT_SHIFT	12
39 
40 #define I2C_SL_CNFG		0x20
41 #define I2C_SL_NEWSL		BIT(2)
42 #define I2C_SL_NACK		BIT(1)
43 #define I2C_SL_RESP		BIT(0)
44 #define I2C_SL_IRQ		BIT(3)
45 #define END_TRANS		BIT(4)
46 #define RCVD			BIT(2)
47 #define RNW			BIT(1)
48 
49 #define I2C_SL_RCVD		0x24
50 #define I2C_SL_STATUS		0x28
51 #define I2C_SL_ADDR1		0x2c
52 #define I2C_SL_ADDR2		0x30
53 #define I2C_SL_DELAY_COUNT	0x3c
54 
55 /**
56  * enum nvec_msg_category - Message categories for nvec_msg_alloc()
57  * @NVEC_MSG_RX: The message is an incoming message (from EC)
58  * @NVEC_MSG_TX: The message is an outgoing message (to EC)
59  */
60 enum nvec_msg_category  {
61 	NVEC_MSG_RX,
62 	NVEC_MSG_TX,
63 };
64 
65 enum nvec_sleep_subcmds {
66 	GLOBAL_EVENTS,
67 	AP_PWR_DOWN,
68 	AP_SUSPEND,
69 };
70 
71 #define CNF_EVENT_REPORTING 0x01
72 #define GET_FIRMWARE_VERSION 0x15
73 #define LID_SWITCH BIT(1)
74 #define PWR_BUTTON BIT(15)
75 
76 static struct nvec_chip *nvec_power_handle;
77 
78 static const struct mfd_cell nvec_devices[] = {
79 	{
80 		.name = "nvec-kbd",
81 	},
82 	{
83 		.name = "nvec-mouse",
84 	},
85 	{
86 		.name = "nvec-power",
87 		.id = 0,
88 	},
89 	{
90 		.name = "nvec-power",
91 		.id = 1,
92 	},
93 	{
94 		.name = "nvec-paz00",
95 	},
96 };
97 
98 /**
99  * nvec_register_notifier - Register a notifier with nvec
100  * @nvec: A &struct nvec_chip
101  * @nb: The notifier block to register
102  * @events: Unused
103  *
104  * Registers a notifier with @nvec. The notifier will be added to an atomic
105  * notifier chain that is called for all received messages except those that
106  * correspond to a request initiated by nvec_write_sync().
107  */
nvec_register_notifier(struct nvec_chip * nvec,struct notifier_block * nb,unsigned int events)108 int nvec_register_notifier(struct nvec_chip *nvec, struct notifier_block *nb,
109 			   unsigned int events)
110 {
111 	return atomic_notifier_chain_register(&nvec->notifier_list, nb);
112 }
113 EXPORT_SYMBOL_GPL(nvec_register_notifier);
114 
115 /**
116  * nvec_unregister_notifier - Unregister a notifier with nvec
117  * @nvec: A &struct nvec_chip
118  * @nb: The notifier block to unregister
119  *
120  * Unregisters a notifier with @nvec. The notifier will be removed from the
121  * atomic notifier chain.
122  */
nvec_unregister_notifier(struct nvec_chip * nvec,struct notifier_block * nb)123 int nvec_unregister_notifier(struct nvec_chip *nvec, struct notifier_block *nb)
124 {
125 	return atomic_notifier_chain_unregister(&nvec->notifier_list, nb);
126 }
127 EXPORT_SYMBOL_GPL(nvec_unregister_notifier);
128 
129 /*
130  * nvec_status_notifier - The final notifier
131  *
132  * Prints a message about control events not handled in the notifier
133  * chain.
134  */
nvec_status_notifier(struct notifier_block * nb,unsigned long event_type,void * data)135 static int nvec_status_notifier(struct notifier_block *nb,
136 				unsigned long event_type, void *data)
137 {
138 	struct nvec_chip *nvec = container_of(nb, struct nvec_chip,
139 						nvec_status_notifier);
140 	unsigned char *msg = data;
141 
142 	if (event_type != NVEC_CNTL)
143 		return NOTIFY_DONE;
144 
145 	dev_warn(nvec->dev, "unhandled msg type %ld\n", event_type);
146 	print_hex_dump(KERN_WARNING, "payload: ", DUMP_PREFIX_NONE, 16, 1,
147 		       msg, msg[1] + 2, true);
148 
149 	return NOTIFY_OK;
150 }
151 
152 /**
153  * nvec_msg_alloc:
154  * @nvec: A &struct nvec_chip
155  * @category: Pool category, see &enum nvec_msg_category
156  *
157  * Allocate a single &struct nvec_msg object from the message pool of
158  * @nvec. The result shall be passed to nvec_msg_free() if no longer
159  * used.
160  *
161  * Outgoing messages are placed in the upper 75% of the pool, keeping the
162  * lower 25% available for RX buffers only. The reason is to prevent a
163  * situation where all buffers are full and a message is thus endlessly
164  * retried because the response could never be processed.
165  */
nvec_msg_alloc(struct nvec_chip * nvec,enum nvec_msg_category category)166 static struct nvec_msg *nvec_msg_alloc(struct nvec_chip *nvec,
167 				       enum nvec_msg_category category)
168 {
169 	int i = (category == NVEC_MSG_TX) ? (NVEC_POOL_SIZE / 4) : 0;
170 
171 	for (; i < NVEC_POOL_SIZE; i++) {
172 		if (atomic_xchg(&nvec->msg_pool[i].used, 1) == 0) {
173 			dev_vdbg(nvec->dev, "INFO: Allocate %i\n", i);
174 			return &nvec->msg_pool[i];
175 		}
176 	}
177 
178 	dev_err(nvec->dev, "Could not allocate %s buffer\n",
179 		(category == NVEC_MSG_TX) ? "TX" : "RX");
180 
181 	return NULL;
182 }
183 
184 /**
185  * nvec_msg_free:
186  * @nvec: A &struct nvec_chip
187  * @msg:  A message (must be allocated by nvec_msg_alloc() and belong to @nvec)
188  *
189  * Free the given message
190  */
nvec_msg_free(struct nvec_chip * nvec,struct nvec_msg * msg)191 void nvec_msg_free(struct nvec_chip *nvec, struct nvec_msg *msg)
192 {
193 	if (msg != &nvec->tx_scratch)
194 		dev_vdbg(nvec->dev, "INFO: Free %ti\n", msg - nvec->msg_pool);
195 	atomic_set(&msg->used, 0);
196 }
197 EXPORT_SYMBOL_GPL(nvec_msg_free);
198 
199 /**
200  * nvec_msg_is_event - Return %true if @msg is an event
201  * @msg: A message
202  */
nvec_msg_is_event(struct nvec_msg * msg)203 static bool nvec_msg_is_event(struct nvec_msg *msg)
204 {
205 	return msg->data[0] >> 7;
206 }
207 
208 /**
209  * nvec_msg_size - Get the size of a message
210  * @msg: The message to get the size for
211  *
212  * This only works for received messages, not for outgoing messages.
213  */
nvec_msg_size(struct nvec_msg * msg)214 static size_t nvec_msg_size(struct nvec_msg *msg)
215 {
216 	bool is_event = nvec_msg_is_event(msg);
217 	int event_length = (msg->data[0] & 0x60) >> 5;
218 
219 	/* for variable size, payload size in byte 1 + count (1) + cmd (1) */
220 	if (!is_event || event_length == NVEC_VAR_SIZE)
221 		return (msg->pos || msg->size) ? (msg->data[1] + 2) : 0;
222 	else if (event_length == NVEC_2BYTES)
223 		return 2;
224 	else if (event_length == NVEC_3BYTES)
225 		return 3;
226 	return 0;
227 }
228 
229 /**
230  * nvec_gpio_set_value - Set the GPIO value
231  * @nvec: A &struct nvec_chip
232  * @value: The value to write (0 or 1)
233  *
234  * Like gpio_set_value(), but generating debugging information
235  */
nvec_gpio_set_value(struct nvec_chip * nvec,int value)236 static void nvec_gpio_set_value(struct nvec_chip *nvec, int value)
237 {
238 	dev_dbg(nvec->dev, "GPIO changed from %u to %u\n",
239 		gpiod_get_value(nvec->gpiod), value);
240 	gpiod_set_value(nvec->gpiod, value);
241 }
242 
243 /**
244  * nvec_write_async - Asynchronously write a message to NVEC
245  * @nvec: An nvec_chip instance
246  * @data: The message data, starting with the request type
247  * @size: The size of @data
248  *
249  * Queue a single message to be transferred to the embedded controller
250  * and return immediately.
251  *
252  * Returns: 0 on success, a negative error code on failure. If a failure
253  * occurred, the nvec driver may print an error.
254  */
nvec_write_async(struct nvec_chip * nvec,const unsigned char * data,short size)255 int nvec_write_async(struct nvec_chip *nvec, const unsigned char *data,
256 		     short size)
257 {
258 	struct nvec_msg *msg;
259 	unsigned long flags;
260 
261 	msg = nvec_msg_alloc(nvec, NVEC_MSG_TX);
262 
263 	if (!msg)
264 		return -ENOMEM;
265 
266 	msg->data[0] = size;
267 	memcpy(msg->data + 1, data, size);
268 	msg->size = size + 1;
269 
270 	spin_lock_irqsave(&nvec->tx_lock, flags);
271 	list_add_tail(&msg->node, &nvec->tx_data);
272 	spin_unlock_irqrestore(&nvec->tx_lock, flags);
273 
274 	schedule_work(&nvec->tx_work);
275 
276 	return 0;
277 }
278 EXPORT_SYMBOL(nvec_write_async);
279 
280 /**
281  * nvec_write_sync - Write a message to nvec and read the response
282  * @nvec: An &struct nvec_chip
283  * @data: The data to write
284  * @size: The size of @data
285  * @msg:  The response message received
286  *
287  * This is similar to nvec_write_async(), but waits for the
288  * request to be answered before returning. This function
289  * uses a mutex and can thus not be called from e.g.
290  * interrupt handlers.
291  *
292  * Returns: 0 on success, a negative error code on failure.
293  * The response message is returned in @msg. Shall be freed
294  * with nvec_msg_free() once no longer used.
295  *
296  */
nvec_write_sync(struct nvec_chip * nvec,const unsigned char * data,short size,struct nvec_msg ** msg)297 int nvec_write_sync(struct nvec_chip *nvec,
298 		    const unsigned char *data, short size,
299 		    struct nvec_msg **msg)
300 {
301 	mutex_lock(&nvec->sync_write_mutex);
302 
303 	if (msg)
304 		*msg = NULL;
305 
306 	nvec->sync_write_pending = (data[1] << 8) + data[0];
307 
308 	if (nvec_write_async(nvec, data, size) < 0) {
309 		mutex_unlock(&nvec->sync_write_mutex);
310 		return -ENOMEM;
311 	}
312 
313 	dev_dbg(nvec->dev, "nvec_sync_write: 0x%04x\n",
314 		nvec->sync_write_pending);
315 	if (!(wait_for_completion_timeout(&nvec->sync_write,
316 					  msecs_to_jiffies(2000)))) {
317 		dev_warn(nvec->dev,
318 			 "Timeout waiting for sync write to complete\n");
319 		mutex_unlock(&nvec->sync_write_mutex);
320 		return -ETIMEDOUT;
321 	}
322 
323 	dev_dbg(nvec->dev, "nvec_sync_write: pong!\n");
324 
325 	if (msg)
326 		*msg = nvec->last_sync_msg;
327 	else
328 		nvec_msg_free(nvec, nvec->last_sync_msg);
329 
330 	mutex_unlock(&nvec->sync_write_mutex);
331 
332 	return 0;
333 }
334 EXPORT_SYMBOL(nvec_write_sync);
335 
336 /**
337  * nvec_toggle_global_events - enables or disables global event reporting
338  * @nvec: nvec handle
339  * @state: true for enable, false for disable
340  *
341  * This switches on/off global event reports by the embedded controller.
342  */
nvec_toggle_global_events(struct nvec_chip * nvec,bool state)343 static void nvec_toggle_global_events(struct nvec_chip *nvec, bool state)
344 {
345 	unsigned char global_events[] = { NVEC_SLEEP, GLOBAL_EVENTS, state };
346 
347 	nvec_write_async(nvec, global_events, 3);
348 }
349 
350 /**
351  * nvec_event_mask - fill the command string with event bitfield
352  * @ev: points to event command string
353  * @mask: bit to insert into the event mask
354  *
355  * Configure event command expects a 32 bit bitfield which describes
356  * which events to enable. The bitfield has the following structure
357  * (from highest byte to lowest):
358  *	system state bits 7-0
359  *	system state bits 15-8
360  *	oem system state bits 7-0
361  *	oem system state bits 15-8
362  */
nvec_event_mask(char * ev,u32 mask)363 static void nvec_event_mask(char *ev, u32 mask)
364 {
365 	ev[3] = mask >> 16 & 0xff;
366 	ev[4] = mask >> 24 & 0xff;
367 	ev[5] = mask >> 0  & 0xff;
368 	ev[6] = mask >> 8  & 0xff;
369 }
370 
371 /**
372  * nvec_request_master - Process outgoing messages
373  * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
374  *
375  * Processes all outgoing requests by sending the request and awaiting the
376  * response, then continuing with the next request. Once a request has a
377  * matching response, it will be freed and removed from the list.
378  */
nvec_request_master(struct work_struct * work)379 static void nvec_request_master(struct work_struct *work)
380 {
381 	struct nvec_chip *nvec = container_of(work, struct nvec_chip, tx_work);
382 	unsigned long flags;
383 	long err;
384 	struct nvec_msg *msg;
385 
386 	spin_lock_irqsave(&nvec->tx_lock, flags);
387 	while (!list_empty(&nvec->tx_data)) {
388 		msg = list_first_entry(&nvec->tx_data, struct nvec_msg, node);
389 		spin_unlock_irqrestore(&nvec->tx_lock, flags);
390 		nvec_gpio_set_value(nvec, 0);
391 		err = wait_for_completion_interruptible_timeout(&nvec->ec_transfer,
392 								msecs_to_jiffies(5000));
393 
394 		if (err == 0) {
395 			dev_warn(nvec->dev, "Timeout waiting for ec transfer\n");
396 			nvec_gpio_set_value(nvec, 1);
397 			msg->pos = 0;
398 		}
399 
400 		spin_lock_irqsave(&nvec->tx_lock, flags);
401 
402 		if (err > 0) {
403 			list_del_init(&msg->node);
404 			nvec_msg_free(nvec, msg);
405 		}
406 	}
407 	spin_unlock_irqrestore(&nvec->tx_lock, flags);
408 }
409 
410 /**
411  * parse_msg - Print some information and call the notifiers on an RX message
412  * @nvec: A &struct nvec_chip
413  * @msg: A message received by @nvec
414  *
415  * Paarse some pieces of the message and then call the chain of notifiers
416  * registered via nvec_register_notifier.
417  */
parse_msg(struct nvec_chip * nvec,struct nvec_msg * msg)418 static int parse_msg(struct nvec_chip *nvec, struct nvec_msg *msg)
419 {
420 	if ((msg->data[0] & 1 << 7) == 0 && msg->data[3]) {
421 		dev_err(nvec->dev, "ec responded %*ph\n", 4, msg->data);
422 		return -EINVAL;
423 	}
424 
425 	if ((msg->data[0] >> 7) == 1 && (msg->data[0] & 0x0f) == 5)
426 		print_hex_dump(KERN_WARNING, "ec system event ",
427 			       DUMP_PREFIX_NONE, 16, 1, msg->data,
428 			       msg->data[1] + 2, true);
429 
430 	atomic_notifier_call_chain(&nvec->notifier_list, msg->data[0] & 0x8f,
431 				   msg->data);
432 
433 	return 0;
434 }
435 
436 /**
437  * nvec_dispatch - Process messages received from the EC
438  * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
439  *
440  * Process messages previously received from the EC and put into the RX
441  * queue of the &struct nvec_chip instance associated with @work.
442  */
nvec_dispatch(struct work_struct * work)443 static void nvec_dispatch(struct work_struct *work)
444 {
445 	struct nvec_chip *nvec = container_of(work, struct nvec_chip, rx_work);
446 	unsigned long flags;
447 	struct nvec_msg *msg;
448 
449 	spin_lock_irqsave(&nvec->rx_lock, flags);
450 	while (!list_empty(&nvec->rx_data)) {
451 		msg = list_first_entry(&nvec->rx_data, struct nvec_msg, node);
452 		list_del_init(&msg->node);
453 		spin_unlock_irqrestore(&nvec->rx_lock, flags);
454 
455 		if (nvec->sync_write_pending ==
456 		      (msg->data[2] << 8) + msg->data[0]) {
457 			dev_dbg(nvec->dev, "Sync write completed!\n");
458 			nvec->sync_write_pending = 0;
459 			nvec->last_sync_msg = msg;
460 			complete(&nvec->sync_write);
461 		} else {
462 			parse_msg(nvec, msg);
463 			nvec_msg_free(nvec, msg);
464 		}
465 		spin_lock_irqsave(&nvec->rx_lock, flags);
466 	}
467 	spin_unlock_irqrestore(&nvec->rx_lock, flags);
468 }
469 
470 /**
471  * nvec_tx_completed - Complete the current transfer
472  * @nvec: A &struct nvec_chip
473  *
474  * This is called when we have received an END_TRANS on a TX transfer.
475  */
nvec_tx_completed(struct nvec_chip * nvec)476 static void nvec_tx_completed(struct nvec_chip *nvec)
477 {
478 	/* We got an END_TRANS, let's skip this, maybe there's an event */
479 	if (nvec->tx->pos != nvec->tx->size) {
480 		dev_err(nvec->dev, "Premature END_TRANS, resending\n");
481 		nvec->tx->pos = 0;
482 		nvec_gpio_set_value(nvec, 0);
483 	} else {
484 		nvec->state = 0;
485 	}
486 }
487 
488 /**
489  * nvec_rx_completed - Complete the current transfer
490  * @nvec: A &struct nvec_chip
491  *
492  * This is called when we have received an END_TRANS on a RX transfer.
493  */
nvec_rx_completed(struct nvec_chip * nvec)494 static void nvec_rx_completed(struct nvec_chip *nvec)
495 {
496 	if (nvec->rx->pos != nvec_msg_size(nvec->rx)) {
497 		dev_err(nvec->dev, "RX incomplete: Expected %u bytes, got %u\n",
498 			(uint)nvec_msg_size(nvec->rx),
499 			(uint)nvec->rx->pos);
500 
501 		nvec_msg_free(nvec, nvec->rx);
502 		nvec->state = 0;
503 
504 		/* Battery quirk - Often incomplete, and likes to crash */
505 		if (nvec->rx->data[0] == NVEC_BAT)
506 			complete(&nvec->ec_transfer);
507 
508 		return;
509 	}
510 
511 	spin_lock(&nvec->rx_lock);
512 
513 	/*
514 	 * Add the received data to the work list and move the ring buffer
515 	 * pointer to the next entry.
516 	 */
517 	list_add_tail(&nvec->rx->node, &nvec->rx_data);
518 
519 	spin_unlock(&nvec->rx_lock);
520 
521 	nvec->state = 0;
522 
523 	if (!nvec_msg_is_event(nvec->rx))
524 		complete(&nvec->ec_transfer);
525 
526 	schedule_work(&nvec->rx_work);
527 }
528 
529 /**
530  * nvec_invalid_flags - Send an error message about invalid flags and jump
531  * @nvec: The nvec device
532  * @status: The status flags
533  * @reset: Whether we shall jump to state 0.
534  */
nvec_invalid_flags(struct nvec_chip * nvec,unsigned int status,bool reset)535 static void nvec_invalid_flags(struct nvec_chip *nvec, unsigned int status,
536 			       bool reset)
537 {
538 	dev_err(nvec->dev, "unexpected status flags 0x%02x during state %i\n",
539 		status, nvec->state);
540 	if (reset)
541 		nvec->state = 0;
542 }
543 
544 /**
545  * nvec_tx_set - Set the message to transfer (nvec->tx)
546  * @nvec: A &struct nvec_chip
547  *
548  * Gets the first entry from the tx_data list of @nvec and sets the
549  * tx member to it. If the tx_data list is empty, this uses the
550  * tx_scratch message to send a no operation message.
551  */
nvec_tx_set(struct nvec_chip * nvec)552 static void nvec_tx_set(struct nvec_chip *nvec)
553 {
554 	spin_lock(&nvec->tx_lock);
555 	if (list_empty(&nvec->tx_data)) {
556 		dev_err(nvec->dev, "empty tx - sending no-op\n");
557 		memcpy(nvec->tx_scratch.data, "\x02\x07\x02", 3);
558 		nvec->tx_scratch.size = 3;
559 		nvec->tx_scratch.pos = 0;
560 		nvec->tx = &nvec->tx_scratch;
561 		list_add_tail(&nvec->tx->node, &nvec->tx_data);
562 	} else {
563 		nvec->tx = list_first_entry(&nvec->tx_data, struct nvec_msg,
564 					    node);
565 		nvec->tx->pos = 0;
566 	}
567 	spin_unlock(&nvec->tx_lock);
568 
569 	dev_dbg(nvec->dev, "Sending message of length %u, command 0x%x\n",
570 		(uint)nvec->tx->size, nvec->tx->data[1]);
571 }
572 
573 /**
574  * tegra_i2c_writel - safely write to an I2C client controller register
575  * @val: value to be written
576  * @reg: register to write to
577  *
578  * A write to an I2C controller register needs to be read back to make sure
579  * that the value has arrived.
580  */
tegra_i2c_writel(u32 val,void * reg)581 static void tegra_i2c_writel(u32 val, void *reg)
582 {
583 	writel_relaxed(val, reg);
584 
585 	/* read back register to make sure that register writes completed */
586 	readl_relaxed(reg);
587 }
588 
589 /**
590  * nvec_interrupt - Interrupt handler
591  * @irq: The IRQ
592  * @dev: The nvec device
593  *
594  * Interrupt handler that fills our RX buffers and empties our TX
595  * buffers. This uses a finite state machine with ridiculous amounts
596  * of error checking, in order to be fairly reliable.
597  */
nvec_interrupt(int irq,void * dev)598 static irqreturn_t nvec_interrupt(int irq, void *dev)
599 {
600 	unsigned long status;
601 	unsigned int received = 0;
602 	unsigned char to_send = 0xff;
603 	const unsigned long irq_mask = I2C_SL_IRQ | END_TRANS | RCVD | RNW;
604 	struct nvec_chip *nvec = dev;
605 	unsigned int state = nvec->state;
606 
607 	status = readl(nvec->base + I2C_SL_STATUS);
608 
609 	/* Filter out some errors */
610 	if ((status & irq_mask) == 0 && (status & ~irq_mask) != 0) {
611 		dev_err(nvec->dev, "Unexpected irq mask %lx\n", status);
612 		return IRQ_HANDLED;
613 	}
614 	if ((status & I2C_SL_IRQ) == 0) {
615 		dev_err(nvec->dev, "Spurious IRQ\n");
616 		return IRQ_HANDLED;
617 	}
618 
619 	/* The EC did not request a read, so it send us something, read it */
620 	if ((status & RNW) == 0) {
621 		received = readl(nvec->base + I2C_SL_RCVD);
622 		if (status & RCVD)
623 			tegra_i2c_writel(0, nvec->base + I2C_SL_RCVD);
624 	}
625 
626 	if (status == (I2C_SL_IRQ | RCVD))
627 		nvec->state = 0;
628 
629 	switch (nvec->state) {
630 	case 0:		/* Verify that its a transfer start, the rest later */
631 		if (status != (I2C_SL_IRQ | RCVD))
632 			nvec_invalid_flags(nvec, status, false);
633 		break;
634 	case 1:		/* Command byte */
635 		if (status != I2C_SL_IRQ) {
636 			nvec_invalid_flags(nvec, status, true);
637 		} else {
638 			nvec->rx = nvec_msg_alloc(nvec, NVEC_MSG_RX);
639 			/* Should not happen in a normal world */
640 			if (unlikely(!nvec->rx)) {
641 				nvec->state = 0;
642 				break;
643 			}
644 			nvec->rx->data[0] = received;
645 			nvec->rx->pos = 1;
646 			nvec->state = 2;
647 		}
648 		break;
649 	case 2:		/* first byte after command */
650 		if (status == (I2C_SL_IRQ | RNW | RCVD)) {
651 			udelay(33);
652 			if (nvec->rx->data[0] != 0x01) {
653 				dev_err(nvec->dev,
654 					"Read without prior read command\n");
655 				nvec->state = 0;
656 				break;
657 			}
658 			nvec_msg_free(nvec, nvec->rx);
659 			nvec->state = 3;
660 			nvec_tx_set(nvec);
661 			to_send = nvec->tx->data[0];
662 			nvec->tx->pos = 1;
663 		} else if (status == (I2C_SL_IRQ)) {
664 			nvec->rx->data[1] = received;
665 			nvec->rx->pos = 2;
666 			nvec->state = 4;
667 		} else {
668 			nvec_invalid_flags(nvec, status, true);
669 		}
670 		break;
671 	case 3:		/* EC does a block read, we transmit data */
672 		if (status & END_TRANS) {
673 			nvec_tx_completed(nvec);
674 		} else if ((status & RNW) == 0 || (status & RCVD)) {
675 			nvec_invalid_flags(nvec, status, true);
676 		} else if (nvec->tx && nvec->tx->pos < nvec->tx->size) {
677 			to_send = nvec->tx->data[nvec->tx->pos++];
678 		} else {
679 			dev_err(nvec->dev,
680 				"tx buffer underflow on %p (%u > %u)\n",
681 				nvec->tx,
682 				(uint)(nvec->tx ? nvec->tx->pos : 0),
683 				(uint)(nvec->tx ? nvec->tx->size : 0));
684 			nvec->state = 0;
685 		}
686 		break;
687 	case 4:		/* EC does some write, we read the data */
688 		if ((status & (END_TRANS | RNW)) == END_TRANS)
689 			nvec_rx_completed(nvec);
690 		else if (status & (RNW | RCVD))
691 			nvec_invalid_flags(nvec, status, true);
692 		else if (nvec->rx && nvec->rx->pos < NVEC_MSG_SIZE)
693 			nvec->rx->data[nvec->rx->pos++] = received;
694 		else
695 			dev_err(nvec->dev,
696 				"RX buffer overflow on %p: Trying to write byte %u of %u\n",
697 				nvec->rx, nvec->rx ? nvec->rx->pos : 0,
698 				NVEC_MSG_SIZE);
699 		break;
700 	default:
701 		nvec->state = 0;
702 	}
703 
704 	/* If we are told that a new transfer starts, verify it */
705 	if ((status & (RCVD | RNW)) == RCVD) {
706 		if (received != nvec->i2c_addr)
707 			dev_err(nvec->dev,
708 				"received address 0x%02x, expected 0x%02x\n",
709 				received, nvec->i2c_addr);
710 		nvec->state = 1;
711 	}
712 
713 	/* Send data if requested, but not on end of transmission */
714 	if ((status & (RNW | END_TRANS)) == RNW)
715 		tegra_i2c_writel(to_send, nvec->base + I2C_SL_RCVD);
716 
717 	/* If we have send the first byte */
718 	if (status == (I2C_SL_IRQ | RNW | RCVD))
719 		nvec_gpio_set_value(nvec, 1);
720 
721 	dev_dbg(nvec->dev,
722 		"Handled: %s 0x%02x, %s 0x%02x in state %u [%s%s%s]\n",
723 		(status & RNW) == 0 ? "received" : "R=",
724 		received,
725 		(status & (RNW | END_TRANS)) ? "sent" : "S=",
726 		to_send,
727 		state,
728 		status & END_TRANS ? " END_TRANS" : "",
729 		status & RCVD ? " RCVD" : "",
730 		status & RNW ? " RNW" : "");
731 
732 	return IRQ_HANDLED;
733 }
734 
tegra_init_i2c_slave(struct nvec_chip * nvec)735 static void tegra_init_i2c_slave(struct nvec_chip *nvec)
736 {
737 	u32 val;
738 
739 	clk_prepare_enable(nvec->i2c_clk);
740 
741 	reset_control_assert(nvec->rst);
742 	udelay(2);
743 	reset_control_deassert(nvec->rst);
744 
745 	val = I2C_CNFG_NEW_MASTER_SFM | I2C_CNFG_PACKET_MODE_EN |
746 	    (0x2 << I2C_CNFG_DEBOUNCE_CNT_SHIFT);
747 	tegra_i2c_writel(val, nvec->base + I2C_CNFG);
748 
749 	clk_set_rate(nvec->i2c_clk, 8 * 80000);
750 
751 	tegra_i2c_writel(I2C_SL_NEWSL, nvec->base + I2C_SL_CNFG);
752 	tegra_i2c_writel(0x1E, nvec->base + I2C_SL_DELAY_COUNT);
753 
754 	tegra_i2c_writel(nvec->i2c_addr >> 1, nvec->base + I2C_SL_ADDR1);
755 	tegra_i2c_writel(0, nvec->base + I2C_SL_ADDR2);
756 
757 	enable_irq(nvec->irq);
758 }
759 
760 #ifdef CONFIG_PM_SLEEP
nvec_disable_i2c_slave(struct nvec_chip * nvec)761 static void nvec_disable_i2c_slave(struct nvec_chip *nvec)
762 {
763 	disable_irq(nvec->irq);
764 	tegra_i2c_writel(I2C_SL_NEWSL | I2C_SL_NACK, nvec->base + I2C_SL_CNFG);
765 	clk_disable_unprepare(nvec->i2c_clk);
766 }
767 #endif
768 
nvec_power_off(void)769 static void nvec_power_off(void)
770 {
771 	char ap_pwr_down[] = { NVEC_SLEEP, AP_PWR_DOWN };
772 
773 	nvec_toggle_global_events(nvec_power_handle, false);
774 	nvec_write_async(nvec_power_handle, ap_pwr_down, 2);
775 }
776 
tegra_nvec_probe(struct platform_device * pdev)777 static int tegra_nvec_probe(struct platform_device *pdev)
778 {
779 	int err, ret;
780 	struct clk *i2c_clk;
781 	struct device *dev = &pdev->dev;
782 	struct nvec_chip *nvec;
783 	struct nvec_msg *msg;
784 	void __iomem *base;
785 	char	get_firmware_version[] = { NVEC_CNTL, GET_FIRMWARE_VERSION },
786 		unmute_speakers[] = { NVEC_OEM0, 0x10, 0x59, 0x95 },
787 		enable_event[7] = { NVEC_SYS, CNF_EVENT_REPORTING, true };
788 
789 	if (!dev->of_node) {
790 		dev_err(dev, "must be instantiated using device tree\n");
791 		return -ENODEV;
792 	}
793 
794 	nvec = devm_kzalloc(dev, sizeof(struct nvec_chip), GFP_KERNEL);
795 	if (!nvec)
796 		return -ENOMEM;
797 
798 	platform_set_drvdata(pdev, nvec);
799 	nvec->dev = dev;
800 
801 	if (of_property_read_u32(dev->of_node, "slave-addr", &nvec->i2c_addr)) {
802 		dev_err(dev, "no i2c address specified");
803 		return -ENODEV;
804 	}
805 
806 	base = devm_platform_ioremap_resource(pdev, 0);
807 	if (IS_ERR(base))
808 		return PTR_ERR(base);
809 
810 	nvec->irq = platform_get_irq(pdev, 0);
811 	if (nvec->irq < 0)
812 		return -ENODEV;
813 
814 	i2c_clk = devm_clk_get(dev, "div-clk");
815 	if (IS_ERR(i2c_clk)) {
816 		dev_err(dev, "failed to get controller clock\n");
817 		return -ENODEV;
818 	}
819 
820 	nvec->rst = devm_reset_control_get_exclusive(dev, "i2c");
821 	if (IS_ERR(nvec->rst)) {
822 		dev_err(dev, "failed to get controller reset\n");
823 		return PTR_ERR(nvec->rst);
824 	}
825 
826 	nvec->base = base;
827 	nvec->i2c_clk = i2c_clk;
828 	nvec->rx = &nvec->msg_pool[0];
829 
830 	ATOMIC_INIT_NOTIFIER_HEAD(&nvec->notifier_list);
831 
832 	init_completion(&nvec->sync_write);
833 	init_completion(&nvec->ec_transfer);
834 	mutex_init(&nvec->sync_write_mutex);
835 	spin_lock_init(&nvec->tx_lock);
836 	spin_lock_init(&nvec->rx_lock);
837 	INIT_LIST_HEAD(&nvec->rx_data);
838 	INIT_LIST_HEAD(&nvec->tx_data);
839 	INIT_WORK(&nvec->rx_work, nvec_dispatch);
840 	INIT_WORK(&nvec->tx_work, nvec_request_master);
841 
842 	nvec->gpiod = devm_gpiod_get(dev, "request", GPIOD_OUT_HIGH);
843 	if (IS_ERR(nvec->gpiod)) {
844 		dev_err(dev, "couldn't request gpio\n");
845 		return PTR_ERR(nvec->gpiod);
846 	}
847 
848 	err = devm_request_irq(dev, nvec->irq, nvec_interrupt, IRQF_NO_AUTOEN,
849 			       "nvec", nvec);
850 	if (err) {
851 		dev_err(dev, "couldn't request irq\n");
852 		return -ENODEV;
853 	}
854 
855 	tegra_init_i2c_slave(nvec);
856 
857 	/* enable event reporting */
858 	nvec_toggle_global_events(nvec, true);
859 
860 	nvec->nvec_status_notifier.notifier_call = nvec_status_notifier;
861 	nvec_register_notifier(nvec, &nvec->nvec_status_notifier, 0);
862 
863 	nvec_power_handle = nvec;
864 	pm_power_off = nvec_power_off;
865 
866 	/* Get Firmware Version */
867 	err = nvec_write_sync(nvec, get_firmware_version, 2, &msg);
868 
869 	if (!err) {
870 		dev_warn(dev,
871 			 "ec firmware version %02x.%02x.%02x / %02x\n",
872 			 msg->data[4], msg->data[5],
873 			 msg->data[6], msg->data[7]);
874 
875 		nvec_msg_free(nvec, msg);
876 	}
877 
878 	ret = mfd_add_devices(dev, 0, nvec_devices,
879 			      ARRAY_SIZE(nvec_devices), NULL, 0, NULL);
880 	if (ret)
881 		dev_err(dev, "error adding subdevices\n");
882 
883 	/* unmute speakers? */
884 	nvec_write_async(nvec, unmute_speakers, 4);
885 
886 	/* enable lid switch event */
887 	nvec_event_mask(enable_event, LID_SWITCH);
888 	nvec_write_async(nvec, enable_event, 7);
889 
890 	/* enable power button event */
891 	nvec_event_mask(enable_event, PWR_BUTTON);
892 	nvec_write_async(nvec, enable_event, 7);
893 
894 	return 0;
895 }
896 
tegra_nvec_remove(struct platform_device * pdev)897 static void tegra_nvec_remove(struct platform_device *pdev)
898 {
899 	struct nvec_chip *nvec = platform_get_drvdata(pdev);
900 
901 	nvec_toggle_global_events(nvec, false);
902 	mfd_remove_devices(nvec->dev);
903 	nvec_unregister_notifier(nvec, &nvec->nvec_status_notifier);
904 	cancel_work_sync(&nvec->rx_work);
905 	cancel_work_sync(&nvec->tx_work);
906 	/* FIXME: needs check whether nvec is responsible for power off */
907 	pm_power_off = NULL;
908 }
909 
910 #ifdef CONFIG_PM_SLEEP
nvec_suspend(struct device * dev)911 static int nvec_suspend(struct device *dev)
912 {
913 	int err;
914 	struct nvec_chip *nvec = dev_get_drvdata(dev);
915 	struct nvec_msg *msg;
916 	char ap_suspend[] = { NVEC_SLEEP, AP_SUSPEND };
917 
918 	dev_dbg(nvec->dev, "suspending\n");
919 
920 	/* keep these sync or you'll break suspend */
921 	nvec_toggle_global_events(nvec, false);
922 
923 	err = nvec_write_sync(nvec, ap_suspend, sizeof(ap_suspend), &msg);
924 	if (!err)
925 		nvec_msg_free(nvec, msg);
926 
927 	nvec_disable_i2c_slave(nvec);
928 
929 	return 0;
930 }
931 
nvec_resume(struct device * dev)932 static int nvec_resume(struct device *dev)
933 {
934 	struct nvec_chip *nvec = dev_get_drvdata(dev);
935 
936 	dev_dbg(nvec->dev, "resuming\n");
937 	tegra_init_i2c_slave(nvec);
938 	nvec_toggle_global_events(nvec, true);
939 
940 	return 0;
941 }
942 #endif
943 
944 static SIMPLE_DEV_PM_OPS(nvec_pm_ops, nvec_suspend, nvec_resume);
945 
946 /* Match table for of_platform binding */
947 static const struct of_device_id nvidia_nvec_of_match[] = {
948 	{ .compatible = "nvidia,nvec", },
949 	{},
950 };
951 MODULE_DEVICE_TABLE(of, nvidia_nvec_of_match);
952 
953 static struct platform_driver nvec_device_driver = {
954 	.probe   = tegra_nvec_probe,
955 	.remove_new = tegra_nvec_remove,
956 	.driver  = {
957 		.name = "nvec",
958 		.pm = &nvec_pm_ops,
959 		.of_match_table = nvidia_nvec_of_match,
960 	}
961 };
962 
963 module_platform_driver(nvec_device_driver);
964 
965 MODULE_ALIAS("platform:nvec");
966 MODULE_DESCRIPTION("NVIDIA compliant embedded controller interface");
967 MODULE_AUTHOR("Marc Dietrich <marvin24@gmx.de>");
968 MODULE_LICENSE("GPL");
969