1  /* SPDX-License-Identifier: GPL-2.0-or-later */
2  /*
3   * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
4   */
5  
6  #ifndef __MTD_MTD_H__
7  #define __MTD_MTD_H__
8  
9  #include <linux/types.h>
10  #include <linux/uio.h>
11  #include <linux/list.h>
12  #include <linux/notifier.h>
13  #include <linux/device.h>
14  #include <linux/of.h>
15  #include <linux/nvmem-provider.h>
16  
17  #include <mtd/mtd-abi.h>
18  
19  #include <asm/div64.h>
20  
21  #define MTD_FAIL_ADDR_UNKNOWN -1LL
22  
23  struct mtd_info;
24  
25  /*
26   * If the erase fails, fail_addr might indicate exactly which block failed. If
27   * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
28   * or was not specific to any particular block.
29   */
30  struct erase_info {
31  	uint64_t addr;
32  	uint64_t len;
33  	uint64_t fail_addr;
34  };
35  
36  struct mtd_erase_region_info {
37  	uint64_t offset;		/* At which this region starts, from the beginning of the MTD */
38  	uint32_t erasesize;		/* For this region */
39  	uint32_t numblocks;		/* Number of blocks of erasesize in this region */
40  	unsigned long *lockmap;		/* If keeping bitmap of locks */
41  };
42  
43  struct mtd_req_stats {
44  	unsigned int uncorrectable_errors;
45  	unsigned int corrected_bitflips;
46  	unsigned int max_bitflips;
47  };
48  
49  /**
50   * struct mtd_oob_ops - oob operation operands
51   * @mode:	operation mode
52   *
53   * @len:	number of data bytes to write/read
54   *
55   * @retlen:	number of data bytes written/read
56   *
57   * @ooblen:	number of oob bytes to write/read
58   * @oobretlen:	number of oob bytes written/read
59   * @ooboffs:	offset of oob data in the oob area (only relevant when
60   *		mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
61   * @datbuf:	data buffer - if NULL only oob data are read/written
62   * @oobbuf:	oob data buffer
63   *
64   * Note, some MTD drivers do not allow you to write more than one OOB area at
65   * one go. If you try to do that on such an MTD device, -EINVAL will be
66   * returned. If you want to make your implementation portable on all kind of MTD
67   * devices you should split the write request into several sub-requests when the
68   * request crosses a page boundary.
69   */
70  struct mtd_oob_ops {
71  	unsigned int	mode;
72  	size_t		len;
73  	size_t		retlen;
74  	size_t		ooblen;
75  	size_t		oobretlen;
76  	uint32_t	ooboffs;
77  	uint8_t		*datbuf;
78  	uint8_t		*oobbuf;
79  	struct mtd_req_stats *stats;
80  };
81  
82  /**
83   * struct mtd_oob_region - oob region definition
84   * @offset: region offset
85   * @length: region length
86   *
87   * This structure describes a region of the OOB area, and is used
88   * to retrieve ECC or free bytes sections.
89   * Each section is defined by an offset within the OOB area and a
90   * length.
91   */
92  struct mtd_oob_region {
93  	u32 offset;
94  	u32 length;
95  };
96  
97  /*
98   * struct mtd_ooblayout_ops - NAND OOB layout operations
99   * @ecc: function returning an ECC region in the OOB area.
100   *	 Should return -ERANGE if %section exceeds the total number of
101   *	 ECC sections.
102   * @free: function returning a free region in the OOB area.
103   *	  Should return -ERANGE if %section exceeds the total number of
104   *	  free sections.
105   */
106  struct mtd_ooblayout_ops {
107  	int (*ecc)(struct mtd_info *mtd, int section,
108  		   struct mtd_oob_region *oobecc);
109  	int (*free)(struct mtd_info *mtd, int section,
110  		    struct mtd_oob_region *oobfree);
111  };
112  
113  /**
114   * struct mtd_pairing_info - page pairing information
115   *
116   * @pair: pair id
117   * @group: group id
118   *
119   * The term "pair" is used here, even though TLC NANDs might group pages by 3
120   * (3 bits in a single cell). A pair should regroup all pages that are sharing
121   * the same cell. Pairs are then indexed in ascending order.
122   *
123   * @group is defining the position of a page in a given pair. It can also be
124   * seen as the bit position in the cell: page attached to bit 0 belongs to
125   * group 0, page attached to bit 1 belongs to group 1, etc.
126   *
127   * Example:
128   * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme:
129   *
130   *		group-0		group-1
131   *
132   *  pair-0	page-0		page-4
133   *  pair-1	page-1		page-5
134   *  pair-2	page-2		page-8
135   *  ...
136   *  pair-127	page-251	page-255
137   *
138   *
139   * Note that the "group" and "pair" terms were extracted from Samsung and
140   * Hynix datasheets, and might be referenced under other names in other
141   * datasheets (Micron is describing this concept as "shared pages").
142   */
143  struct mtd_pairing_info {
144  	int pair;
145  	int group;
146  };
147  
148  /**
149   * struct mtd_pairing_scheme - page pairing scheme description
150   *
151   * @ngroups: number of groups. Should be related to the number of bits
152   *	     per cell.
153   * @get_info: converts a write-unit (page number within an erase block) into
154   *	      mtd_pairing information (pair + group). This function should
155   *	      fill the info parameter based on the wunit index or return
156   *	      -EINVAL if the wunit parameter is invalid.
157   * @get_wunit: converts pairing information into a write-unit (page) number.
158   *	       This function should return the wunit index pointed by the
159   *	       pairing information described in the info argument. It should
160   *	       return -EINVAL, if there's no wunit corresponding to the
161   *	       passed pairing information.
162   *
163   * See mtd_pairing_info documentation for a detailed explanation of the
164   * pair and group concepts.
165   *
166   * The mtd_pairing_scheme structure provides a generic solution to represent
167   * NAND page pairing scheme. Instead of exposing two big tables to do the
168   * write-unit <-> (pair + group) conversions, we ask the MTD drivers to
169   * implement the ->get_info() and ->get_wunit() functions.
170   *
171   * MTD users will then be able to query these information by using the
172   * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers.
173   *
174   * @ngroups is here to help MTD users iterating over all the pages in a
175   * given pair. This value can be retrieved by MTD users using the
176   * mtd_pairing_groups() helper.
177   *
178   * Examples are given in the mtd_pairing_info_to_wunit() and
179   * mtd_wunit_to_pairing_info() documentation.
180   */
181  struct mtd_pairing_scheme {
182  	int ngroups;
183  	int (*get_info)(struct mtd_info *mtd, int wunit,
184  			struct mtd_pairing_info *info);
185  	int (*get_wunit)(struct mtd_info *mtd,
186  			 const struct mtd_pairing_info *info);
187  };
188  
189  struct module;	/* only needed for owner field in mtd_info */
190  
191  /**
192   * struct mtd_debug_info - debugging information for an MTD device.
193   *
194   * @dfs_dir: direntry object of the MTD device debugfs directory
195   */
196  struct mtd_debug_info {
197  	struct dentry *dfs_dir;
198  };
199  
200  /**
201   * struct mtd_part - MTD partition specific fields
202   *
203   * @node: list node used to add an MTD partition to the parent partition list
204   * @offset: offset of the partition relatively to the parent offset
205   * @size: partition size. Should be equal to mtd->size unless
206   *	  MTD_SLC_ON_MLC_EMULATION is set
207   * @flags: original flags (before the mtdpart logic decided to tweak them based
208   *	   on flash constraints, like eraseblock/pagesize alignment)
209   *
210   * This struct is embedded in mtd_info and contains partition-specific
211   * properties/fields.
212   */
213  struct mtd_part {
214  	struct list_head node;
215  	u64 offset;
216  	u64 size;
217  	u32 flags;
218  };
219  
220  /**
221   * struct mtd_master - MTD master specific fields
222   *
223   * @partitions_lock: lock protecting accesses to the partition list. Protects
224   *		     not only the master partition list, but also all
225   *		     sub-partitions.
226   * @suspended: set to 1 when the device is suspended, 0 otherwise
227   *
228   * This struct is embedded in mtd_info and contains master-specific
229   * properties/fields. The master is the root MTD device from the MTD partition
230   * point of view.
231   */
232  struct mtd_master {
233  	struct mutex partitions_lock;
234  	struct mutex chrdev_lock;
235  	unsigned int suspended : 1;
236  };
237  
238  struct mtd_info {
239  	u_char type;
240  	uint32_t flags;
241  	uint64_t size;	 // Total size of the MTD
242  
243  	/* "Major" erase size for the device. Naïve users may take this
244  	 * to be the only erase size available, or may use the more detailed
245  	 * information below if they desire
246  	 */
247  	uint32_t erasesize;
248  	/* Minimal writable flash unit size. In case of NOR flash it is 1 (even
249  	 * though individual bits can be cleared), in case of NAND flash it is
250  	 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
251  	 * it is of ECC block size, etc. It is illegal to have writesize = 0.
252  	 * Any driver registering a struct mtd_info must ensure a writesize of
253  	 * 1 or larger.
254  	 */
255  	uint32_t writesize;
256  
257  	/*
258  	 * Size of the write buffer used by the MTD. MTD devices having a write
259  	 * buffer can write multiple writesize chunks at a time. E.g. while
260  	 * writing 4 * writesize bytes to a device with 2 * writesize bytes
261  	 * buffer the MTD driver can (but doesn't have to) do 2 writesize
262  	 * operations, but not 4. Currently, all NANDs have writebufsize
263  	 * equivalent to writesize (NAND page size). Some NOR flashes do have
264  	 * writebufsize greater than writesize.
265  	 */
266  	uint32_t writebufsize;
267  
268  	uint32_t oobsize;   // Amount of OOB data per block (e.g. 16)
269  	uint32_t oobavail;  // Available OOB bytes per block
270  
271  	/*
272  	 * If erasesize is a power of 2 then the shift is stored in
273  	 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
274  	 */
275  	unsigned int erasesize_shift;
276  	unsigned int writesize_shift;
277  	/* Masks based on erasesize_shift and writesize_shift */
278  	unsigned int erasesize_mask;
279  	unsigned int writesize_mask;
280  
281  	/*
282  	 * read ops return -EUCLEAN if max number of bitflips corrected on any
283  	 * one region comprising an ecc step equals or exceeds this value.
284  	 * Settable by driver, else defaults to ecc_strength.  User can override
285  	 * in sysfs.  N.B. The meaning of the -EUCLEAN return code has changed;
286  	 * see Documentation/ABI/testing/sysfs-class-mtd for more detail.
287  	 */
288  	unsigned int bitflip_threshold;
289  
290  	/* Kernel-only stuff starts here. */
291  	const char *name;
292  	int index;
293  
294  	/* OOB layout description */
295  	const struct mtd_ooblayout_ops *ooblayout;
296  
297  	/* NAND pairing scheme, only provided for MLC/TLC NANDs */
298  	const struct mtd_pairing_scheme *pairing;
299  
300  	/* the ecc step size. */
301  	unsigned int ecc_step_size;
302  
303  	/* max number of correctible bit errors per ecc step */
304  	unsigned int ecc_strength;
305  
306  	/* Data for variable erase regions. If numeraseregions is zero,
307  	 * it means that the whole device has erasesize as given above.
308  	 */
309  	int numeraseregions;
310  	struct mtd_erase_region_info *eraseregions;
311  
312  	/*
313  	 * Do not call via these pointers, use corresponding mtd_*()
314  	 * wrappers instead.
315  	 */
316  	int (*_erase) (struct mtd_info *mtd, struct erase_info *instr);
317  	int (*_point) (struct mtd_info *mtd, loff_t from, size_t len,
318  		       size_t *retlen, void **virt, resource_size_t *phys);
319  	int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
320  	int (*_read) (struct mtd_info *mtd, loff_t from, size_t len,
321  		      size_t *retlen, u_char *buf);
322  	int (*_write) (struct mtd_info *mtd, loff_t to, size_t len,
323  		       size_t *retlen, const u_char *buf);
324  	int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
325  			     size_t *retlen, const u_char *buf);
326  	int (*_read_oob) (struct mtd_info *mtd, loff_t from,
327  			  struct mtd_oob_ops *ops);
328  	int (*_write_oob) (struct mtd_info *mtd, loff_t to,
329  			   struct mtd_oob_ops *ops);
330  	int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len,
331  				    size_t *retlen, struct otp_info *buf);
332  	int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
333  				    size_t len, size_t *retlen, u_char *buf);
334  	int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len,
335  				    size_t *retlen, struct otp_info *buf);
336  	int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
337  				    size_t len, size_t *retlen, u_char *buf);
338  	int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to,
339  				     size_t len, size_t *retlen,
340  				     const u_char *buf);
341  	int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
342  				    size_t len);
343  	int (*_erase_user_prot_reg) (struct mtd_info *mtd, loff_t from,
344  				     size_t len);
345  	int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs,
346  			unsigned long count, loff_t to, size_t *retlen);
347  	void (*_sync) (struct mtd_info *mtd);
348  	int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
349  	int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
350  	int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
351  	int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs);
352  	int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs);
353  	int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs);
354  	int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len);
355  	int (*_suspend) (struct mtd_info *mtd);
356  	void (*_resume) (struct mtd_info *mtd);
357  	void (*_reboot) (struct mtd_info *mtd);
358  	/*
359  	 * If the driver is something smart, like UBI, it may need to maintain
360  	 * its own reference counting. The below functions are only for driver.
361  	 */
362  	int (*_get_device) (struct mtd_info *mtd);
363  	void (*_put_device) (struct mtd_info *mtd);
364  
365  	/*
366  	 * flag indicates a panic write, low level drivers can take appropriate
367  	 * action if required to ensure writes go through
368  	 */
369  	bool oops_panic_write;
370  
371  	struct notifier_block reboot_notifier;  /* default mode before reboot */
372  
373  	/* ECC status information */
374  	struct mtd_ecc_stats ecc_stats;
375  	/* Subpage shift (NAND) */
376  	int subpage_sft;
377  
378  	void *priv;
379  
380  	struct module *owner;
381  	struct device dev;
382  	struct kref refcnt;
383  	struct mtd_debug_info dbg;
384  	struct nvmem_device *nvmem;
385  	struct nvmem_device *otp_user_nvmem;
386  	struct nvmem_device *otp_factory_nvmem;
387  
388  	/*
389  	 * Parent device from the MTD partition point of view.
390  	 *
391  	 * MTD masters do not have any parent, MTD partitions do. The parent
392  	 * MTD device can itself be a partition.
393  	 */
394  	struct mtd_info *parent;
395  
396  	/* List of partitions attached to this MTD device */
397  	struct list_head partitions;
398  
399  	struct mtd_part part;
400  	struct mtd_master master;
401  };
402  
mtd_get_master(struct mtd_info * mtd)403  static inline struct mtd_info *mtd_get_master(struct mtd_info *mtd)
404  {
405  	while (mtd->parent)
406  		mtd = mtd->parent;
407  
408  	return mtd;
409  }
410  
mtd_get_master_ofs(struct mtd_info * mtd,u64 ofs)411  static inline u64 mtd_get_master_ofs(struct mtd_info *mtd, u64 ofs)
412  {
413  	while (mtd->parent) {
414  		ofs += mtd->part.offset;
415  		mtd = mtd->parent;
416  	}
417  
418  	return ofs;
419  }
420  
mtd_is_partition(const struct mtd_info * mtd)421  static inline bool mtd_is_partition(const struct mtd_info *mtd)
422  {
423  	return mtd->parent;
424  }
425  
mtd_has_partitions(const struct mtd_info * mtd)426  static inline bool mtd_has_partitions(const struct mtd_info *mtd)
427  {
428  	return !list_empty(&mtd->partitions);
429  }
430  
431  int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
432  		      struct mtd_oob_region *oobecc);
433  int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
434  				 int *section,
435  				 struct mtd_oob_region *oobregion);
436  int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
437  			       const u8 *oobbuf, int start, int nbytes);
438  int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
439  			       u8 *oobbuf, int start, int nbytes);
440  int mtd_ooblayout_free(struct mtd_info *mtd, int section,
441  		       struct mtd_oob_region *oobfree);
442  int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
443  				const u8 *oobbuf, int start, int nbytes);
444  int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
445  				u8 *oobbuf, int start, int nbytes);
446  int mtd_ooblayout_count_freebytes(struct mtd_info *mtd);
447  int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd);
448  
mtd_set_ooblayout(struct mtd_info * mtd,const struct mtd_ooblayout_ops * ooblayout)449  static inline void mtd_set_ooblayout(struct mtd_info *mtd,
450  				     const struct mtd_ooblayout_ops *ooblayout)
451  {
452  	mtd->ooblayout = ooblayout;
453  }
454  
mtd_set_pairing_scheme(struct mtd_info * mtd,const struct mtd_pairing_scheme * pairing)455  static inline void mtd_set_pairing_scheme(struct mtd_info *mtd,
456  				const struct mtd_pairing_scheme *pairing)
457  {
458  	mtd->pairing = pairing;
459  }
460  
mtd_set_of_node(struct mtd_info * mtd,struct device_node * np)461  static inline void mtd_set_of_node(struct mtd_info *mtd,
462  				   struct device_node *np)
463  {
464  	mtd->dev.of_node = np;
465  	if (!mtd->name)
466  		of_property_read_string(np, "label", &mtd->name);
467  }
468  
mtd_get_of_node(struct mtd_info * mtd)469  static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd)
470  {
471  	return dev_of_node(&mtd->dev);
472  }
473  
mtd_oobavail(struct mtd_info * mtd,struct mtd_oob_ops * ops)474  static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
475  {
476  	return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize;
477  }
478  
mtd_max_bad_blocks(struct mtd_info * mtd,loff_t ofs,size_t len)479  static inline int mtd_max_bad_blocks(struct mtd_info *mtd,
480  				     loff_t ofs, size_t len)
481  {
482  	struct mtd_info *master = mtd_get_master(mtd);
483  
484  	if (!master->_max_bad_blocks)
485  		return -ENOTSUPP;
486  
487  	if (mtd->size < (len + ofs) || ofs < 0)
488  		return -EINVAL;
489  
490  	return master->_max_bad_blocks(master, mtd_get_master_ofs(mtd, ofs),
491  				       len);
492  }
493  
494  int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
495  			      struct mtd_pairing_info *info);
496  int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
497  			      const struct mtd_pairing_info *info);
498  int mtd_pairing_groups(struct mtd_info *mtd);
499  int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);
500  int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
501  	      void **virt, resource_size_t *phys);
502  int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
503  unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
504  				    unsigned long offset, unsigned long flags);
505  int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
506  	     u_char *buf);
507  int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
508  	      const u_char *buf);
509  int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
510  		    const u_char *buf);
511  
512  int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops);
513  int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops);
514  
515  int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
516  			   struct otp_info *buf);
517  int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
518  			   size_t *retlen, u_char *buf);
519  int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
520  			   struct otp_info *buf);
521  int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
522  			   size_t *retlen, u_char *buf);
523  int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
524  			    size_t *retlen, const u_char *buf);
525  int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
526  int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
527  
528  int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
529  	       unsigned long count, loff_t to, size_t *retlen);
530  
mtd_sync(struct mtd_info * mtd)531  static inline void mtd_sync(struct mtd_info *mtd)
532  {
533  	struct mtd_info *master = mtd_get_master(mtd);
534  
535  	if (master->_sync)
536  		master->_sync(master);
537  }
538  
539  int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
540  int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
541  int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
542  int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs);
543  int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);
544  int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
545  
mtd_suspend(struct mtd_info * mtd)546  static inline int mtd_suspend(struct mtd_info *mtd)
547  {
548  	struct mtd_info *master = mtd_get_master(mtd);
549  	int ret;
550  
551  	if (master->master.suspended)
552  		return 0;
553  
554  	ret = master->_suspend ? master->_suspend(master) : 0;
555  	if (ret)
556  		return ret;
557  
558  	master->master.suspended = 1;
559  	return 0;
560  }
561  
mtd_resume(struct mtd_info * mtd)562  static inline void mtd_resume(struct mtd_info *mtd)
563  {
564  	struct mtd_info *master = mtd_get_master(mtd);
565  
566  	if (!master->master.suspended)
567  		return;
568  
569  	if (master->_resume)
570  		master->_resume(master);
571  
572  	master->master.suspended = 0;
573  }
574  
mtd_div_by_eb(uint64_t sz,struct mtd_info * mtd)575  static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
576  {
577  	if (mtd->erasesize_shift)
578  		return sz >> mtd->erasesize_shift;
579  	do_div(sz, mtd->erasesize);
580  	return sz;
581  }
582  
mtd_mod_by_eb(uint64_t sz,struct mtd_info * mtd)583  static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
584  {
585  	if (mtd->erasesize_shift)
586  		return sz & mtd->erasesize_mask;
587  	return do_div(sz, mtd->erasesize);
588  }
589  
590  /**
591   * mtd_align_erase_req - Adjust an erase request to align things on eraseblock
592   *			 boundaries.
593   * @mtd: the MTD device this erase request applies on
594   * @req: the erase request to adjust
595   *
596   * This function will adjust @req->addr and @req->len to align them on
597   * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0.
598   */
mtd_align_erase_req(struct mtd_info * mtd,struct erase_info * req)599  static inline void mtd_align_erase_req(struct mtd_info *mtd,
600  				       struct erase_info *req)
601  {
602  	u32 mod;
603  
604  	if (WARN_ON(!mtd->erasesize))
605  		return;
606  
607  	mod = mtd_mod_by_eb(req->addr, mtd);
608  	if (mod) {
609  		req->addr -= mod;
610  		req->len += mod;
611  	}
612  
613  	mod = mtd_mod_by_eb(req->addr + req->len, mtd);
614  	if (mod)
615  		req->len += mtd->erasesize - mod;
616  }
617  
mtd_div_by_ws(uint64_t sz,struct mtd_info * mtd)618  static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
619  {
620  	if (mtd->writesize_shift)
621  		return sz >> mtd->writesize_shift;
622  	do_div(sz, mtd->writesize);
623  	return sz;
624  }
625  
mtd_mod_by_ws(uint64_t sz,struct mtd_info * mtd)626  static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
627  {
628  	if (mtd->writesize_shift)
629  		return sz & mtd->writesize_mask;
630  	return do_div(sz, mtd->writesize);
631  }
632  
mtd_wunit_per_eb(struct mtd_info * mtd)633  static inline int mtd_wunit_per_eb(struct mtd_info *mtd)
634  {
635  	struct mtd_info *master = mtd_get_master(mtd);
636  
637  	return master->erasesize / mtd->writesize;
638  }
639  
mtd_offset_to_wunit(struct mtd_info * mtd,loff_t offs)640  static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs)
641  {
642  	return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd);
643  }
644  
mtd_wunit_to_offset(struct mtd_info * mtd,loff_t base,int wunit)645  static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base,
646  					 int wunit)
647  {
648  	return base + (wunit * mtd->writesize);
649  }
650  
651  
mtd_has_oob(const struct mtd_info * mtd)652  static inline int mtd_has_oob(const struct mtd_info *mtd)
653  {
654  	struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
655  
656  	return master->_read_oob && master->_write_oob;
657  }
658  
mtd_type_is_nand(const struct mtd_info * mtd)659  static inline int mtd_type_is_nand(const struct mtd_info *mtd)
660  {
661  	return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH;
662  }
663  
mtd_can_have_bb(const struct mtd_info * mtd)664  static inline int mtd_can_have_bb(const struct mtd_info *mtd)
665  {
666  	struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
667  
668  	return !!master->_block_isbad;
669  }
670  
671  	/* Kernel-side ioctl definitions */
672  
673  struct mtd_partition;
674  struct mtd_part_parser_data;
675  
676  extern int mtd_device_parse_register(struct mtd_info *mtd,
677  				     const char * const *part_probe_types,
678  				     struct mtd_part_parser_data *parser_data,
679  				     const struct mtd_partition *defparts,
680  				     int defnr_parts);
681  #define mtd_device_register(master, parts, nr_parts)	\
682  	mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
683  extern int mtd_device_unregister(struct mtd_info *master);
684  extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
685  extern int __get_mtd_device(struct mtd_info *mtd);
686  extern void __put_mtd_device(struct mtd_info *mtd);
687  extern struct mtd_info *of_get_mtd_device_by_node(struct device_node *np);
688  extern struct mtd_info *get_mtd_device_nm(const char *name);
689  extern void put_mtd_device(struct mtd_info *mtd);
690  
691  
692  struct mtd_notifier {
693  	void (*add)(struct mtd_info *mtd);
694  	void (*remove)(struct mtd_info *mtd);
695  	struct list_head list;
696  };
697  
698  
699  extern void register_mtd_user (struct mtd_notifier *new);
700  extern int unregister_mtd_user (struct mtd_notifier *old);
701  void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
702  
mtd_is_bitflip(int err)703  static inline int mtd_is_bitflip(int err) {
704  	return err == -EUCLEAN;
705  }
706  
mtd_is_eccerr(int err)707  static inline int mtd_is_eccerr(int err) {
708  	return err == -EBADMSG;
709  }
710  
mtd_is_bitflip_or_eccerr(int err)711  static inline int mtd_is_bitflip_or_eccerr(int err) {
712  	return mtd_is_bitflip(err) || mtd_is_eccerr(err);
713  }
714  
715  unsigned mtd_mmap_capabilities(struct mtd_info *mtd);
716  
717  #ifdef CONFIG_DEBUG_FS
718  bool mtd_check_expert_analysis_mode(void);
719  #else
mtd_check_expert_analysis_mode(void)720  static inline bool mtd_check_expert_analysis_mode(void) { return false; }
721  #endif
722  
723  
724  #endif /* __MTD_MTD_H__ */
725