1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  Copyright (C) 1991, 1992  Linus Torvalds
4   *
5   *  This file contains the interface functions for the various time related
6   *  system calls: time, stime, gettimeofday, settimeofday, adjtime
7   *
8   * Modification history:
9   *
10   * 1993-09-02    Philip Gladstone
11   *      Created file with time related functions from sched/core.c and adjtimex()
12   * 1993-10-08    Torsten Duwe
13   *      adjtime interface update and CMOS clock write code
14   * 1995-08-13    Torsten Duwe
15   *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
16   * 1999-01-16    Ulrich Windl
17   *	Introduced error checking for many cases in adjtimex().
18   *	Updated NTP code according to technical memorandum Jan '96
19   *	"A Kernel Model for Precision Timekeeping" by Dave Mills
20   *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
21   *	(Even though the technical memorandum forbids it)
22   * 2004-07-14	 Christoph Lameter
23   *	Added getnstimeofday to allow the posix timer functions to return
24   *	with nanosecond accuracy
25   */
26  
27  #include <linux/export.h>
28  #include <linux/kernel.h>
29  #include <linux/timex.h>
30  #include <linux/capability.h>
31  #include <linux/timekeeper_internal.h>
32  #include <linux/errno.h>
33  #include <linux/syscalls.h>
34  #include <linux/security.h>
35  #include <linux/fs.h>
36  #include <linux/math64.h>
37  #include <linux/ptrace.h>
38  
39  #include <linux/uaccess.h>
40  #include <linux/compat.h>
41  #include <asm/unistd.h>
42  
43  #include <generated/timeconst.h>
44  #include "timekeeping.h"
45  
46  /*
47   * The timezone where the local system is located.  Used as a default by some
48   * programs who obtain this value by using gettimeofday.
49   */
50  struct timezone sys_tz;
51  
52  EXPORT_SYMBOL(sys_tz);
53  
54  #ifdef __ARCH_WANT_SYS_TIME
55  
56  /*
57   * sys_time() can be implemented in user-level using
58   * sys_gettimeofday().  Is this for backwards compatibility?  If so,
59   * why not move it into the appropriate arch directory (for those
60   * architectures that need it).
61   */
SYSCALL_DEFINE1(time,__kernel_old_time_t __user *,tloc)62  SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc)
63  {
64  	__kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds();
65  
66  	if (tloc) {
67  		if (put_user(i,tloc))
68  			return -EFAULT;
69  	}
70  	force_successful_syscall_return();
71  	return i;
72  }
73  
74  /*
75   * sys_stime() can be implemented in user-level using
76   * sys_settimeofday().  Is this for backwards compatibility?  If so,
77   * why not move it into the appropriate arch directory (for those
78   * architectures that need it).
79   */
80  
SYSCALL_DEFINE1(stime,__kernel_old_time_t __user *,tptr)81  SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr)
82  {
83  	struct timespec64 tv;
84  	int err;
85  
86  	if (get_user(tv.tv_sec, tptr))
87  		return -EFAULT;
88  
89  	tv.tv_nsec = 0;
90  
91  	err = security_settime64(&tv, NULL);
92  	if (err)
93  		return err;
94  
95  	do_settimeofday64(&tv);
96  	return 0;
97  }
98  
99  #endif /* __ARCH_WANT_SYS_TIME */
100  
101  #ifdef CONFIG_COMPAT_32BIT_TIME
102  #ifdef __ARCH_WANT_SYS_TIME32
103  
104  /* old_time32_t is a 32 bit "long" and needs to get converted. */
SYSCALL_DEFINE1(time32,old_time32_t __user *,tloc)105  SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
106  {
107  	old_time32_t i;
108  
109  	i = (old_time32_t)ktime_get_real_seconds();
110  
111  	if (tloc) {
112  		if (put_user(i,tloc))
113  			return -EFAULT;
114  	}
115  	force_successful_syscall_return();
116  	return i;
117  }
118  
SYSCALL_DEFINE1(stime32,old_time32_t __user *,tptr)119  SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
120  {
121  	struct timespec64 tv;
122  	int err;
123  
124  	if (get_user(tv.tv_sec, tptr))
125  		return -EFAULT;
126  
127  	tv.tv_nsec = 0;
128  
129  	err = security_settime64(&tv, NULL);
130  	if (err)
131  		return err;
132  
133  	do_settimeofday64(&tv);
134  	return 0;
135  }
136  
137  #endif /* __ARCH_WANT_SYS_TIME32 */
138  #endif
139  
SYSCALL_DEFINE2(gettimeofday,struct __kernel_old_timeval __user *,tv,struct timezone __user *,tz)140  SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
141  		struct timezone __user *, tz)
142  {
143  	if (likely(tv != NULL)) {
144  		struct timespec64 ts;
145  
146  		ktime_get_real_ts64(&ts);
147  		if (put_user(ts.tv_sec, &tv->tv_sec) ||
148  		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
149  			return -EFAULT;
150  	}
151  	if (unlikely(tz != NULL)) {
152  		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153  			return -EFAULT;
154  	}
155  	return 0;
156  }
157  
158  /*
159   * In case for some reason the CMOS clock has not already been running
160   * in UTC, but in some local time: The first time we set the timezone,
161   * we will warp the clock so that it is ticking UTC time instead of
162   * local time. Presumably, if someone is setting the timezone then we
163   * are running in an environment where the programs understand about
164   * timezones. This should be done at boot time in the /etc/rc script,
165   * as soon as possible, so that the clock can be set right. Otherwise,
166   * various programs will get confused when the clock gets warped.
167   */
168  
do_sys_settimeofday64(const struct timespec64 * tv,const struct timezone * tz)169  int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
170  {
171  	static int firsttime = 1;
172  	int error = 0;
173  
174  	if (tv && !timespec64_valid_settod(tv))
175  		return -EINVAL;
176  
177  	error = security_settime64(tv, tz);
178  	if (error)
179  		return error;
180  
181  	if (tz) {
182  		/* Verify we're within the +-15 hrs range */
183  		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184  			return -EINVAL;
185  
186  		sys_tz = *tz;
187  		update_vsyscall_tz();
188  		if (firsttime) {
189  			firsttime = 0;
190  			if (!tv)
191  				timekeeping_warp_clock();
192  		}
193  	}
194  	if (tv)
195  		return do_settimeofday64(tv);
196  	return 0;
197  }
198  
SYSCALL_DEFINE2(settimeofday,struct __kernel_old_timeval __user *,tv,struct timezone __user *,tz)199  SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv,
200  		struct timezone __user *, tz)
201  {
202  	struct timespec64 new_ts;
203  	struct timezone new_tz;
204  
205  	if (tv) {
206  		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
207  		    get_user(new_ts.tv_nsec, &tv->tv_usec))
208  			return -EFAULT;
209  
210  		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
211  			return -EINVAL;
212  
213  		new_ts.tv_nsec *= NSEC_PER_USEC;
214  	}
215  	if (tz) {
216  		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
217  			return -EFAULT;
218  	}
219  
220  	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
221  }
222  
223  #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(gettimeofday,struct old_timeval32 __user *,tv,struct timezone __user *,tz)224  COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
225  		       struct timezone __user *, tz)
226  {
227  	if (tv) {
228  		struct timespec64 ts;
229  
230  		ktime_get_real_ts64(&ts);
231  		if (put_user(ts.tv_sec, &tv->tv_sec) ||
232  		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
233  			return -EFAULT;
234  	}
235  	if (tz) {
236  		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
237  			return -EFAULT;
238  	}
239  
240  	return 0;
241  }
242  
COMPAT_SYSCALL_DEFINE2(settimeofday,struct old_timeval32 __user *,tv,struct timezone __user *,tz)243  COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
244  		       struct timezone __user *, tz)
245  {
246  	struct timespec64 new_ts;
247  	struct timezone new_tz;
248  
249  	if (tv) {
250  		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
251  		    get_user(new_ts.tv_nsec, &tv->tv_usec))
252  			return -EFAULT;
253  
254  		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
255  			return -EINVAL;
256  
257  		new_ts.tv_nsec *= NSEC_PER_USEC;
258  	}
259  	if (tz) {
260  		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
261  			return -EFAULT;
262  	}
263  
264  	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
265  }
266  #endif
267  
268  #ifdef CONFIG_64BIT
SYSCALL_DEFINE1(adjtimex,struct __kernel_timex __user *,txc_p)269  SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
270  {
271  	struct __kernel_timex txc;		/* Local copy of parameter */
272  	int ret;
273  
274  	/* Copy the user data space into the kernel copy
275  	 * structure. But bear in mind that the structures
276  	 * may change
277  	 */
278  	if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
279  		return -EFAULT;
280  	ret = do_adjtimex(&txc);
281  	return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
282  }
283  #endif
284  
285  #ifdef CONFIG_COMPAT_32BIT_TIME
get_old_timex32(struct __kernel_timex * txc,const struct old_timex32 __user * utp)286  int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
287  {
288  	struct old_timex32 tx32;
289  
290  	memset(txc, 0, sizeof(struct __kernel_timex));
291  	if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
292  		return -EFAULT;
293  
294  	txc->modes = tx32.modes;
295  	txc->offset = tx32.offset;
296  	txc->freq = tx32.freq;
297  	txc->maxerror = tx32.maxerror;
298  	txc->esterror = tx32.esterror;
299  	txc->status = tx32.status;
300  	txc->constant = tx32.constant;
301  	txc->precision = tx32.precision;
302  	txc->tolerance = tx32.tolerance;
303  	txc->time.tv_sec = tx32.time.tv_sec;
304  	txc->time.tv_usec = tx32.time.tv_usec;
305  	txc->tick = tx32.tick;
306  	txc->ppsfreq = tx32.ppsfreq;
307  	txc->jitter = tx32.jitter;
308  	txc->shift = tx32.shift;
309  	txc->stabil = tx32.stabil;
310  	txc->jitcnt = tx32.jitcnt;
311  	txc->calcnt = tx32.calcnt;
312  	txc->errcnt = tx32.errcnt;
313  	txc->stbcnt = tx32.stbcnt;
314  
315  	return 0;
316  }
317  
put_old_timex32(struct old_timex32 __user * utp,const struct __kernel_timex * txc)318  int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
319  {
320  	struct old_timex32 tx32;
321  
322  	memset(&tx32, 0, sizeof(struct old_timex32));
323  	tx32.modes = txc->modes;
324  	tx32.offset = txc->offset;
325  	tx32.freq = txc->freq;
326  	tx32.maxerror = txc->maxerror;
327  	tx32.esterror = txc->esterror;
328  	tx32.status = txc->status;
329  	tx32.constant = txc->constant;
330  	tx32.precision = txc->precision;
331  	tx32.tolerance = txc->tolerance;
332  	tx32.time.tv_sec = txc->time.tv_sec;
333  	tx32.time.tv_usec = txc->time.tv_usec;
334  	tx32.tick = txc->tick;
335  	tx32.ppsfreq = txc->ppsfreq;
336  	tx32.jitter = txc->jitter;
337  	tx32.shift = txc->shift;
338  	tx32.stabil = txc->stabil;
339  	tx32.jitcnt = txc->jitcnt;
340  	tx32.calcnt = txc->calcnt;
341  	tx32.errcnt = txc->errcnt;
342  	tx32.stbcnt = txc->stbcnt;
343  	tx32.tai = txc->tai;
344  	if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
345  		return -EFAULT;
346  	return 0;
347  }
348  
SYSCALL_DEFINE1(adjtimex_time32,struct old_timex32 __user *,utp)349  SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
350  {
351  	struct __kernel_timex txc;
352  	int err, ret;
353  
354  	err = get_old_timex32(&txc, utp);
355  	if (err)
356  		return err;
357  
358  	ret = do_adjtimex(&txc);
359  
360  	err = put_old_timex32(utp, &txc);
361  	if (err)
362  		return err;
363  
364  	return ret;
365  }
366  #endif
367  
368  /**
369   * jiffies_to_msecs - Convert jiffies to milliseconds
370   * @j: jiffies value
371   *
372   * Avoid unnecessary multiplications/divisions in the
373   * two most common HZ cases.
374   *
375   * Return: milliseconds value
376   */
jiffies_to_msecs(const unsigned long j)377  unsigned int jiffies_to_msecs(const unsigned long j)
378  {
379  #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
380  	return (MSEC_PER_SEC / HZ) * j;
381  #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
382  	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
383  #else
384  # if BITS_PER_LONG == 32
385  	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
386  	       HZ_TO_MSEC_SHR32;
387  # else
388  	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
389  # endif
390  #endif
391  }
392  EXPORT_SYMBOL(jiffies_to_msecs);
393  
394  /**
395   * jiffies_to_usecs - Convert jiffies to microseconds
396   * @j: jiffies value
397   *
398   * Return: microseconds value
399   */
jiffies_to_usecs(const unsigned long j)400  unsigned int jiffies_to_usecs(const unsigned long j)
401  {
402  	/*
403  	 * Hz usually doesn't go much further MSEC_PER_SEC.
404  	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
405  	 */
406  	BUILD_BUG_ON(HZ > USEC_PER_SEC);
407  
408  #if !(USEC_PER_SEC % HZ)
409  	return (USEC_PER_SEC / HZ) * j;
410  #else
411  # if BITS_PER_LONG == 32
412  	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
413  # else
414  	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
415  # endif
416  #endif
417  }
418  EXPORT_SYMBOL(jiffies_to_usecs);
419  
420  /**
421   * mktime64 - Converts date to seconds.
422   * @year0: year to convert
423   * @mon0: month to convert
424   * @day: day to convert
425   * @hour: hour to convert
426   * @min: minute to convert
427   * @sec: second to convert
428   *
429   * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
430   * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
431   * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
432   *
433   * [For the Julian calendar (which was used in Russia before 1917,
434   * Britain & colonies before 1752, anywhere else before 1582,
435   * and is still in use by some communities) leave out the
436   * -year/100+year/400 terms, and add 10.]
437   *
438   * This algorithm was first published by Gauss (I think).
439   *
440   * A leap second can be indicated by calling this function with sec as
441   * 60 (allowable under ISO 8601).  The leap second is treated the same
442   * as the following second since they don't exist in UNIX time.
443   *
444   * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
445   * tomorrow - (allowable under ISO 8601) is supported.
446   *
447   * Return: seconds since the epoch time for the given input date
448   */
mktime64(const unsigned int year0,const unsigned int mon0,const unsigned int day,const unsigned int hour,const unsigned int min,const unsigned int sec)449  time64_t mktime64(const unsigned int year0, const unsigned int mon0,
450  		const unsigned int day, const unsigned int hour,
451  		const unsigned int min, const unsigned int sec)
452  {
453  	unsigned int mon = mon0, year = year0;
454  
455  	/* 1..12 -> 11,12,1..10 */
456  	if (0 >= (int) (mon -= 2)) {
457  		mon += 12;	/* Puts Feb last since it has leap day */
458  		year -= 1;
459  	}
460  
461  	return ((((time64_t)
462  		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
463  		  year*365 - 719499
464  	    )*24 + hour /* now have hours - midnight tomorrow handled here */
465  	  )*60 + min /* now have minutes */
466  	)*60 + sec; /* finally seconds */
467  }
468  EXPORT_SYMBOL(mktime64);
469  
ns_to_kernel_old_timeval(s64 nsec)470  struct __kernel_old_timeval ns_to_kernel_old_timeval(s64 nsec)
471  {
472  	struct timespec64 ts = ns_to_timespec64(nsec);
473  	struct __kernel_old_timeval tv;
474  
475  	tv.tv_sec = ts.tv_sec;
476  	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
477  
478  	return tv;
479  }
480  EXPORT_SYMBOL(ns_to_kernel_old_timeval);
481  
482  /**
483   * set_normalized_timespec64 - set timespec sec and nsec parts and normalize
484   *
485   * @ts:		pointer to timespec variable to be set
486   * @sec:	seconds to set
487   * @nsec:	nanoseconds to set
488   *
489   * Set seconds and nanoseconds field of a timespec variable and
490   * normalize to the timespec storage format
491   *
492   * Note: The tv_nsec part is always in the range of 0 <= tv_nsec < NSEC_PER_SEC.
493   * For negative values only the tv_sec field is negative !
494   */
set_normalized_timespec64(struct timespec64 * ts,time64_t sec,s64 nsec)495  void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
496  {
497  	while (nsec >= NSEC_PER_SEC) {
498  		/*
499  		 * The following asm() prevents the compiler from
500  		 * optimising this loop into a modulo operation. See
501  		 * also __iter_div_u64_rem() in include/linux/time.h
502  		 */
503  		asm("" : "+rm"(nsec));
504  		nsec -= NSEC_PER_SEC;
505  		++sec;
506  	}
507  	while (nsec < 0) {
508  		asm("" : "+rm"(nsec));
509  		nsec += NSEC_PER_SEC;
510  		--sec;
511  	}
512  	ts->tv_sec = sec;
513  	ts->tv_nsec = nsec;
514  }
515  EXPORT_SYMBOL(set_normalized_timespec64);
516  
517  /**
518   * ns_to_timespec64 - Convert nanoseconds to timespec64
519   * @nsec:       the nanoseconds value to be converted
520   *
521   * Return: the timespec64 representation of the nsec parameter.
522   */
ns_to_timespec64(s64 nsec)523  struct timespec64 ns_to_timespec64(s64 nsec)
524  {
525  	struct timespec64 ts = { 0, 0 };
526  	s32 rem;
527  
528  	if (likely(nsec > 0)) {
529  		ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
530  		ts.tv_nsec = rem;
531  	} else if (nsec < 0) {
532  		/*
533  		 * With negative times, tv_sec points to the earlier
534  		 * second, and tv_nsec counts the nanoseconds since
535  		 * then, so tv_nsec is always a positive number.
536  		 */
537  		ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1;
538  		ts.tv_nsec = NSEC_PER_SEC - rem - 1;
539  	}
540  
541  	return ts;
542  }
543  EXPORT_SYMBOL(ns_to_timespec64);
544  
545  /**
546   * __msecs_to_jiffies: - convert milliseconds to jiffies
547   * @m:	time in milliseconds
548   *
549   * conversion is done as follows:
550   *
551   * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
552   *
553   * - 'too large' values [that would result in larger than
554   *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
555   *
556   * - all other values are converted to jiffies by either multiplying
557   *   the input value by a factor or dividing it with a factor and
558   *   handling any 32-bit overflows.
559   *   for the details see __msecs_to_jiffies()
560   *
561   * __msecs_to_jiffies() checks for the passed in value being a constant
562   * via __builtin_constant_p() allowing gcc to eliminate most of the
563   * code, __msecs_to_jiffies() is called if the value passed does not
564   * allow constant folding and the actual conversion must be done at
565   * runtime.
566   * The _msecs_to_jiffies helpers are the HZ dependent conversion
567   * routines found in include/linux/jiffies.h
568   *
569   * Return: jiffies value
570   */
__msecs_to_jiffies(const unsigned int m)571  unsigned long __msecs_to_jiffies(const unsigned int m)
572  {
573  	/*
574  	 * Negative value, means infinite timeout:
575  	 */
576  	if ((int)m < 0)
577  		return MAX_JIFFY_OFFSET;
578  	return _msecs_to_jiffies(m);
579  }
580  EXPORT_SYMBOL(__msecs_to_jiffies);
581  
582  /**
583   * __usecs_to_jiffies: - convert microseconds to jiffies
584   * @u:	time in milliseconds
585   *
586   * Return: jiffies value
587   */
__usecs_to_jiffies(const unsigned int u)588  unsigned long __usecs_to_jiffies(const unsigned int u)
589  {
590  	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
591  		return MAX_JIFFY_OFFSET;
592  	return _usecs_to_jiffies(u);
593  }
594  EXPORT_SYMBOL(__usecs_to_jiffies);
595  
596  /**
597   * timespec64_to_jiffies - convert a timespec64 value to jiffies
598   * @value: pointer to &struct timespec64
599   *
600   * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
601   * that a remainder subtract here would not do the right thing as the
602   * resolution values don't fall on second boundaries.  I.e. the line:
603   * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
604   * Note that due to the small error in the multiplier here, this
605   * rounding is incorrect for sufficiently large values of tv_nsec, but
606   * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
607   * OK.
608   *
609   * Rather, we just shift the bits off the right.
610   *
611   * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
612   * value to a scaled second value.
613   *
614   * Return: jiffies value
615   */
616  unsigned long
timespec64_to_jiffies(const struct timespec64 * value)617  timespec64_to_jiffies(const struct timespec64 *value)
618  {
619  	u64 sec = value->tv_sec;
620  	long nsec = value->tv_nsec + TICK_NSEC - 1;
621  
622  	if (sec >= MAX_SEC_IN_JIFFIES){
623  		sec = MAX_SEC_IN_JIFFIES;
624  		nsec = 0;
625  	}
626  	return ((sec * SEC_CONVERSION) +
627  		(((u64)nsec * NSEC_CONVERSION) >>
628  		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
629  
630  }
631  EXPORT_SYMBOL(timespec64_to_jiffies);
632  
633  /**
634   * jiffies_to_timespec64 - convert jiffies value to &struct timespec64
635   * @jiffies: jiffies value
636   * @value: pointer to &struct timespec64
637   */
638  void
jiffies_to_timespec64(const unsigned long jiffies,struct timespec64 * value)639  jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
640  {
641  	/*
642  	 * Convert jiffies to nanoseconds and separate with
643  	 * one divide.
644  	 */
645  	u32 rem;
646  	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
647  				    NSEC_PER_SEC, &rem);
648  	value->tv_nsec = rem;
649  }
650  EXPORT_SYMBOL(jiffies_to_timespec64);
651  
652  /*
653   * Convert jiffies/jiffies_64 to clock_t and back.
654   */
655  
656  /**
657   * jiffies_to_clock_t - Convert jiffies to clock_t
658   * @x: jiffies value
659   *
660   * Return: jiffies converted to clock_t (CLOCKS_PER_SEC)
661   */
jiffies_to_clock_t(unsigned long x)662  clock_t jiffies_to_clock_t(unsigned long x)
663  {
664  #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
665  # if HZ < USER_HZ
666  	return x * (USER_HZ / HZ);
667  # else
668  	return x / (HZ / USER_HZ);
669  # endif
670  #else
671  	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
672  #endif
673  }
674  EXPORT_SYMBOL(jiffies_to_clock_t);
675  
676  /**
677   * clock_t_to_jiffies - Convert clock_t to jiffies
678   * @x: clock_t value
679   *
680   * Return: clock_t value converted to jiffies
681   */
clock_t_to_jiffies(unsigned long x)682  unsigned long clock_t_to_jiffies(unsigned long x)
683  {
684  #if (HZ % USER_HZ)==0
685  	if (x >= ~0UL / (HZ / USER_HZ))
686  		return ~0UL;
687  	return x * (HZ / USER_HZ);
688  #else
689  	/* Don't worry about loss of precision here .. */
690  	if (x >= ~0UL / HZ * USER_HZ)
691  		return ~0UL;
692  
693  	/* .. but do try to contain it here */
694  	return div_u64((u64)x * HZ, USER_HZ);
695  #endif
696  }
697  EXPORT_SYMBOL(clock_t_to_jiffies);
698  
699  /**
700   * jiffies_64_to_clock_t - Convert jiffies_64 to clock_t
701   * @x: jiffies_64 value
702   *
703   * Return: jiffies_64 value converted to 64-bit "clock_t" (CLOCKS_PER_SEC)
704   */
jiffies_64_to_clock_t(u64 x)705  u64 jiffies_64_to_clock_t(u64 x)
706  {
707  #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
708  # if HZ < USER_HZ
709  	x = div_u64(x * USER_HZ, HZ);
710  # elif HZ > USER_HZ
711  	x = div_u64(x, HZ / USER_HZ);
712  # else
713  	/* Nothing to do */
714  # endif
715  #else
716  	/*
717  	 * There are better ways that don't overflow early,
718  	 * but even this doesn't overflow in hundreds of years
719  	 * in 64 bits, so..
720  	 */
721  	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
722  #endif
723  	return x;
724  }
725  EXPORT_SYMBOL(jiffies_64_to_clock_t);
726  
727  /**
728   * nsec_to_clock_t - Convert nsec value to clock_t
729   * @x: nsec value
730   *
731   * Return: nsec value converted to 64-bit "clock_t" (CLOCKS_PER_SEC)
732   */
nsec_to_clock_t(u64 x)733  u64 nsec_to_clock_t(u64 x)
734  {
735  #if (NSEC_PER_SEC % USER_HZ) == 0
736  	return div_u64(x, NSEC_PER_SEC / USER_HZ);
737  #elif (USER_HZ % 512) == 0
738  	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
739  #else
740  	/*
741           * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
742           * overflow after 64.99 years.
743           * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
744           */
745  	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
746  #endif
747  }
748  
749  /**
750   * jiffies64_to_nsecs - Convert jiffies64 to nanoseconds
751   * @j: jiffies64 value
752   *
753   * Return: nanoseconds value
754   */
jiffies64_to_nsecs(u64 j)755  u64 jiffies64_to_nsecs(u64 j)
756  {
757  #if !(NSEC_PER_SEC % HZ)
758  	return (NSEC_PER_SEC / HZ) * j;
759  # else
760  	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
761  #endif
762  }
763  EXPORT_SYMBOL(jiffies64_to_nsecs);
764  
765  /**
766   * jiffies64_to_msecs - Convert jiffies64 to milliseconds
767   * @j: jiffies64 value
768   *
769   * Return: milliseconds value
770   */
jiffies64_to_msecs(const u64 j)771  u64 jiffies64_to_msecs(const u64 j)
772  {
773  #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
774  	return (MSEC_PER_SEC / HZ) * j;
775  #else
776  	return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
777  #endif
778  }
779  EXPORT_SYMBOL(jiffies64_to_msecs);
780  
781  /**
782   * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
783   *
784   * @n:	nsecs in u64
785   *
786   * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
787   * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
788   * for scheduler, not for use in device drivers to calculate timeout value.
789   *
790   * note:
791   *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
792   *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
793   *
794   * Return: nsecs converted to jiffies64 value
795   */
nsecs_to_jiffies64(u64 n)796  u64 nsecs_to_jiffies64(u64 n)
797  {
798  #if (NSEC_PER_SEC % HZ) == 0
799  	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
800  	return div_u64(n, NSEC_PER_SEC / HZ);
801  #elif (HZ % 512) == 0
802  	/* overflow after 292 years if HZ = 1024 */
803  	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
804  #else
805  	/*
806  	 * Generic case - optimized for cases where HZ is a multiple of 3.
807  	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
808  	 */
809  	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
810  #endif
811  }
812  EXPORT_SYMBOL(nsecs_to_jiffies64);
813  
814  /**
815   * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
816   *
817   * @n:	nsecs in u64
818   *
819   * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
820   * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
821   * for scheduler, not for use in device drivers to calculate timeout value.
822   *
823   * note:
824   *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
825   *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
826   *
827   * Return: nsecs converted to jiffies value
828   */
nsecs_to_jiffies(u64 n)829  unsigned long nsecs_to_jiffies(u64 n)
830  {
831  	return (unsigned long)nsecs_to_jiffies64(n);
832  }
833  EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
834  
835  /**
836   * timespec64_add_safe - Add two timespec64 values and do a safety check
837   * for overflow.
838   * @lhs: first (left) timespec64 to add
839   * @rhs: second (right) timespec64 to add
840   *
841   * It's assumed that both values are valid (>= 0).
842   * And, each timespec64 is in normalized form.
843   *
844   * Return: sum of @lhs + @rhs
845   */
timespec64_add_safe(const struct timespec64 lhs,const struct timespec64 rhs)846  struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
847  				const struct timespec64 rhs)
848  {
849  	struct timespec64 res;
850  
851  	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
852  			lhs.tv_nsec + rhs.tv_nsec);
853  
854  	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
855  		res.tv_sec = TIME64_MAX;
856  		res.tv_nsec = 0;
857  	}
858  
859  	return res;
860  }
861  
862  /**
863   * get_timespec64 - get user's time value into kernel space
864   * @ts: destination &struct timespec64
865   * @uts: user's time value as &struct __kernel_timespec
866   *
867   * Handles compat or 32-bit modes.
868   *
869   * Return: %0 on success or negative errno on error
870   */
get_timespec64(struct timespec64 * ts,const struct __kernel_timespec __user * uts)871  int get_timespec64(struct timespec64 *ts,
872  		   const struct __kernel_timespec __user *uts)
873  {
874  	struct __kernel_timespec kts;
875  	int ret;
876  
877  	ret = copy_from_user(&kts, uts, sizeof(kts));
878  	if (ret)
879  		return -EFAULT;
880  
881  	ts->tv_sec = kts.tv_sec;
882  
883  	/* Zero out the padding in compat mode */
884  	if (in_compat_syscall())
885  		kts.tv_nsec &= 0xFFFFFFFFUL;
886  
887  	/* In 32-bit mode, this drops the padding */
888  	ts->tv_nsec = kts.tv_nsec;
889  
890  	return 0;
891  }
892  EXPORT_SYMBOL_GPL(get_timespec64);
893  
894  /**
895   * put_timespec64 - convert timespec64 value to __kernel_timespec format and
896   * 		    copy the latter to userspace
897   * @ts: input &struct timespec64
898   * @uts: user's &struct __kernel_timespec
899   *
900   * Return: %0 on success or negative errno on error
901   */
put_timespec64(const struct timespec64 * ts,struct __kernel_timespec __user * uts)902  int put_timespec64(const struct timespec64 *ts,
903  		   struct __kernel_timespec __user *uts)
904  {
905  	struct __kernel_timespec kts = {
906  		.tv_sec = ts->tv_sec,
907  		.tv_nsec = ts->tv_nsec
908  	};
909  
910  	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
911  }
912  EXPORT_SYMBOL_GPL(put_timespec64);
913  
__get_old_timespec32(struct timespec64 * ts64,const struct old_timespec32 __user * cts)914  static int __get_old_timespec32(struct timespec64 *ts64,
915  				   const struct old_timespec32 __user *cts)
916  {
917  	struct old_timespec32 ts;
918  	int ret;
919  
920  	ret = copy_from_user(&ts, cts, sizeof(ts));
921  	if (ret)
922  		return -EFAULT;
923  
924  	ts64->tv_sec = ts.tv_sec;
925  	ts64->tv_nsec = ts.tv_nsec;
926  
927  	return 0;
928  }
929  
__put_old_timespec32(const struct timespec64 * ts64,struct old_timespec32 __user * cts)930  static int __put_old_timespec32(const struct timespec64 *ts64,
931  				   struct old_timespec32 __user *cts)
932  {
933  	struct old_timespec32 ts = {
934  		.tv_sec = ts64->tv_sec,
935  		.tv_nsec = ts64->tv_nsec
936  	};
937  	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
938  }
939  
940  /**
941   * get_old_timespec32 - get user's old-format time value into kernel space
942   * @ts: destination &struct timespec64
943   * @uts: user's old-format time value (&struct old_timespec32)
944   *
945   * Handles X86_X32_ABI compatibility conversion.
946   *
947   * Return: %0 on success or negative errno on error
948   */
get_old_timespec32(struct timespec64 * ts,const void __user * uts)949  int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
950  {
951  	if (COMPAT_USE_64BIT_TIME)
952  		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
953  	else
954  		return __get_old_timespec32(ts, uts);
955  }
956  EXPORT_SYMBOL_GPL(get_old_timespec32);
957  
958  /**
959   * put_old_timespec32 - convert timespec64 value to &struct old_timespec32 and
960   * 			copy the latter to userspace
961   * @ts: input &struct timespec64
962   * @uts: user's &struct old_timespec32
963   *
964   * Handles X86_X32_ABI compatibility conversion.
965   *
966   * Return: %0 on success or negative errno on error
967   */
put_old_timespec32(const struct timespec64 * ts,void __user * uts)968  int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
969  {
970  	if (COMPAT_USE_64BIT_TIME)
971  		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
972  	else
973  		return __put_old_timespec32(ts, uts);
974  }
975  EXPORT_SYMBOL_GPL(put_old_timespec32);
976  
977  /**
978   * get_itimerspec64 - get user's &struct __kernel_itimerspec into kernel space
979   * @it: destination &struct itimerspec64
980   * @uit: user's &struct __kernel_itimerspec
981   *
982   * Return: %0 on success or negative errno on error
983   */
get_itimerspec64(struct itimerspec64 * it,const struct __kernel_itimerspec __user * uit)984  int get_itimerspec64(struct itimerspec64 *it,
985  			const struct __kernel_itimerspec __user *uit)
986  {
987  	int ret;
988  
989  	ret = get_timespec64(&it->it_interval, &uit->it_interval);
990  	if (ret)
991  		return ret;
992  
993  	ret = get_timespec64(&it->it_value, &uit->it_value);
994  
995  	return ret;
996  }
997  EXPORT_SYMBOL_GPL(get_itimerspec64);
998  
999  /**
1000   * put_itimerspec64 - convert &struct itimerspec64 to __kernel_itimerspec format
1001   * 		      and copy the latter to userspace
1002   * @it: input &struct itimerspec64
1003   * @uit: user's &struct __kernel_itimerspec
1004   *
1005   * Return: %0 on success or negative errno on error
1006   */
put_itimerspec64(const struct itimerspec64 * it,struct __kernel_itimerspec __user * uit)1007  int put_itimerspec64(const struct itimerspec64 *it,
1008  			struct __kernel_itimerspec __user *uit)
1009  {
1010  	int ret;
1011  
1012  	ret = put_timespec64(&it->it_interval, &uit->it_interval);
1013  	if (ret)
1014  		return ret;
1015  
1016  	ret = put_timespec64(&it->it_value, &uit->it_value);
1017  
1018  	return ret;
1019  }
1020  EXPORT_SYMBOL_GPL(put_itimerspec64);
1021  
1022  /**
1023   * get_old_itimerspec32 - get user's &struct old_itimerspec32 into kernel space
1024   * @its: destination &struct itimerspec64
1025   * @uits: user's &struct old_itimerspec32
1026   *
1027   * Return: %0 on success or negative errno on error
1028   */
get_old_itimerspec32(struct itimerspec64 * its,const struct old_itimerspec32 __user * uits)1029  int get_old_itimerspec32(struct itimerspec64 *its,
1030  			const struct old_itimerspec32 __user *uits)
1031  {
1032  
1033  	if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
1034  	    __get_old_timespec32(&its->it_value, &uits->it_value))
1035  		return -EFAULT;
1036  	return 0;
1037  }
1038  EXPORT_SYMBOL_GPL(get_old_itimerspec32);
1039  
1040  /**
1041   * put_old_itimerspec32 - convert &struct itimerspec64 to &struct
1042   *			  old_itimerspec32 and copy the latter to userspace
1043   * @its: input &struct itimerspec64
1044   * @uits: user's &struct old_itimerspec32
1045   *
1046   * Return: %0 on success or negative errno on error
1047   */
put_old_itimerspec32(const struct itimerspec64 * its,struct old_itimerspec32 __user * uits)1048  int put_old_itimerspec32(const struct itimerspec64 *its,
1049  			struct old_itimerspec32 __user *uits)
1050  {
1051  	if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
1052  	    __put_old_timespec32(&its->it_value, &uits->it_value))
1053  		return -EFAULT;
1054  	return 0;
1055  }
1056  EXPORT_SYMBOL_GPL(put_old_itimerspec32);
1057