1  // SPDX-License-Identifier: GPL-2.0+
2  /*
3   * NILFS module and super block management.
4   *
5   * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6   *
7   * Written by Ryusuke Konishi.
8   */
9  /*
10   *  linux/fs/ext2/super.c
11   *
12   * Copyright (C) 1992, 1993, 1994, 1995
13   * Remy Card (card@masi.ibp.fr)
14   * Laboratoire MASI - Institut Blaise Pascal
15   * Universite Pierre et Marie Curie (Paris VI)
16   *
17   *  from
18   *
19   *  linux/fs/minix/inode.c
20   *
21   *  Copyright (C) 1991, 1992  Linus Torvalds
22   *
23   *  Big-endian to little-endian byte-swapping/bitmaps by
24   *        David S. Miller (davem@caip.rutgers.edu), 1995
25   */
26  
27  #include <linux/module.h>
28  #include <linux/string.h>
29  #include <linux/slab.h>
30  #include <linux/init.h>
31  #include <linux/blkdev.h>
32  #include <linux/crc32.h>
33  #include <linux/vfs.h>
34  #include <linux/writeback.h>
35  #include <linux/seq_file.h>
36  #include <linux/mount.h>
37  #include <linux/fs_context.h>
38  #include <linux/fs_parser.h>
39  #include "nilfs.h"
40  #include "export.h"
41  #include "mdt.h"
42  #include "alloc.h"
43  #include "btree.h"
44  #include "btnode.h"
45  #include "page.h"
46  #include "cpfile.h"
47  #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
48  #include "ifile.h"
49  #include "dat.h"
50  #include "segment.h"
51  #include "segbuf.h"
52  
53  MODULE_AUTHOR("NTT Corp.");
54  MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
55  		   "(NILFS)");
56  MODULE_LICENSE("GPL");
57  
58  static struct kmem_cache *nilfs_inode_cachep;
59  struct kmem_cache *nilfs_transaction_cachep;
60  struct kmem_cache *nilfs_segbuf_cachep;
61  struct kmem_cache *nilfs_btree_path_cache;
62  
63  static int nilfs_setup_super(struct super_block *sb, int is_mount);
64  
__nilfs_msg(struct super_block * sb,const char * fmt,...)65  void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
66  {
67  	struct va_format vaf;
68  	va_list args;
69  	int level;
70  
71  	va_start(args, fmt);
72  
73  	level = printk_get_level(fmt);
74  	vaf.fmt = printk_skip_level(fmt);
75  	vaf.va = &args;
76  
77  	if (sb)
78  		printk("%c%cNILFS (%s): %pV\n",
79  		       KERN_SOH_ASCII, level, sb->s_id, &vaf);
80  	else
81  		printk("%c%cNILFS: %pV\n",
82  		       KERN_SOH_ASCII, level, &vaf);
83  
84  	va_end(args);
85  }
86  
nilfs_set_error(struct super_block * sb)87  static void nilfs_set_error(struct super_block *sb)
88  {
89  	struct the_nilfs *nilfs = sb->s_fs_info;
90  	struct nilfs_super_block **sbp;
91  
92  	down_write(&nilfs->ns_sem);
93  	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
94  		nilfs->ns_mount_state |= NILFS_ERROR_FS;
95  		sbp = nilfs_prepare_super(sb, 0);
96  		if (likely(sbp)) {
97  			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
98  			if (sbp[1])
99  				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
100  			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
101  		}
102  	}
103  	up_write(&nilfs->ns_sem);
104  }
105  
106  /**
107   * __nilfs_error() - report failure condition on a filesystem
108   * @sb:       super block instance
109   * @function: name of calling function
110   * @fmt:      format string for message to be output
111   * @...:      optional arguments to @fmt
112   *
113   * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
114   * reporting an error message.  This function should be called when
115   * NILFS detects incoherences or defects of meta data on disk.
116   *
117   * This implements the body of nilfs_error() macro.  Normally,
118   * nilfs_error() should be used.  As for sustainable errors such as a
119   * single-shot I/O error, nilfs_err() should be used instead.
120   *
121   * Callers should not add a trailing newline since this will do it.
122   */
__nilfs_error(struct super_block * sb,const char * function,const char * fmt,...)123  void __nilfs_error(struct super_block *sb, const char *function,
124  		   const char *fmt, ...)
125  {
126  	struct the_nilfs *nilfs = sb->s_fs_info;
127  	struct va_format vaf;
128  	va_list args;
129  
130  	va_start(args, fmt);
131  
132  	vaf.fmt = fmt;
133  	vaf.va = &args;
134  
135  	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
136  	       sb->s_id, function, &vaf);
137  
138  	va_end(args);
139  
140  	if (!sb_rdonly(sb)) {
141  		nilfs_set_error(sb);
142  
143  		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
144  			printk(KERN_CRIT "Remounting filesystem read-only\n");
145  			sb->s_flags |= SB_RDONLY;
146  		}
147  	}
148  
149  	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
150  		panic("NILFS (device %s): panic forced after error\n",
151  		      sb->s_id);
152  }
153  
nilfs_alloc_inode(struct super_block * sb)154  struct inode *nilfs_alloc_inode(struct super_block *sb)
155  {
156  	struct nilfs_inode_info *ii;
157  
158  	ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS);
159  	if (!ii)
160  		return NULL;
161  	ii->i_bh = NULL;
162  	ii->i_state = 0;
163  	ii->i_type = 0;
164  	ii->i_cno = 0;
165  	ii->i_assoc_inode = NULL;
166  	ii->i_bmap = &ii->i_bmap_data;
167  	return &ii->vfs_inode;
168  }
169  
nilfs_free_inode(struct inode * inode)170  static void nilfs_free_inode(struct inode *inode)
171  {
172  	if (nilfs_is_metadata_file_inode(inode))
173  		nilfs_mdt_destroy(inode);
174  
175  	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
176  }
177  
nilfs_sync_super(struct super_block * sb,int flag)178  static int nilfs_sync_super(struct super_block *sb, int flag)
179  {
180  	struct the_nilfs *nilfs = sb->s_fs_info;
181  	int err;
182  
183   retry:
184  	set_buffer_dirty(nilfs->ns_sbh[0]);
185  	if (nilfs_test_opt(nilfs, BARRIER)) {
186  		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
187  					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
188  	} else {
189  		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
190  	}
191  
192  	if (unlikely(err)) {
193  		nilfs_err(sb, "unable to write superblock: err=%d", err);
194  		if (err == -EIO && nilfs->ns_sbh[1]) {
195  			/*
196  			 * sbp[0] points to newer log than sbp[1],
197  			 * so copy sbp[0] to sbp[1] to take over sbp[0].
198  			 */
199  			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
200  			       nilfs->ns_sbsize);
201  			nilfs_fall_back_super_block(nilfs);
202  			goto retry;
203  		}
204  	} else {
205  		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
206  
207  		nilfs->ns_sbwcount++;
208  
209  		/*
210  		 * The latest segment becomes trailable from the position
211  		 * written in superblock.
212  		 */
213  		clear_nilfs_discontinued(nilfs);
214  
215  		/* update GC protection for recent segments */
216  		if (nilfs->ns_sbh[1]) {
217  			if (flag == NILFS_SB_COMMIT_ALL) {
218  				set_buffer_dirty(nilfs->ns_sbh[1]);
219  				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
220  					goto out;
221  			}
222  			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
223  			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
224  				sbp = nilfs->ns_sbp[1];
225  		}
226  
227  		spin_lock(&nilfs->ns_last_segment_lock);
228  		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
229  		spin_unlock(&nilfs->ns_last_segment_lock);
230  	}
231   out:
232  	return err;
233  }
234  
nilfs_set_log_cursor(struct nilfs_super_block * sbp,struct the_nilfs * nilfs)235  void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
236  			  struct the_nilfs *nilfs)
237  {
238  	sector_t nfreeblocks;
239  
240  	/* nilfs->ns_sem must be locked by the caller. */
241  	nilfs_count_free_blocks(nilfs, &nfreeblocks);
242  	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
243  
244  	spin_lock(&nilfs->ns_last_segment_lock);
245  	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
246  	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
247  	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
248  	spin_unlock(&nilfs->ns_last_segment_lock);
249  }
250  
nilfs_prepare_super(struct super_block * sb,int flip)251  struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
252  					       int flip)
253  {
254  	struct the_nilfs *nilfs = sb->s_fs_info;
255  	struct nilfs_super_block **sbp = nilfs->ns_sbp;
256  
257  	/* nilfs->ns_sem must be locked by the caller. */
258  	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
259  		if (sbp[1] &&
260  		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
261  			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
262  		} else {
263  			nilfs_crit(sb, "superblock broke");
264  			return NULL;
265  		}
266  	} else if (sbp[1] &&
267  		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
268  		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
269  	}
270  
271  	if (flip && sbp[1])
272  		nilfs_swap_super_block(nilfs);
273  
274  	return sbp;
275  }
276  
nilfs_commit_super(struct super_block * sb,int flag)277  int nilfs_commit_super(struct super_block *sb, int flag)
278  {
279  	struct the_nilfs *nilfs = sb->s_fs_info;
280  	struct nilfs_super_block **sbp = nilfs->ns_sbp;
281  	time64_t t;
282  
283  	/* nilfs->ns_sem must be locked by the caller. */
284  	t = ktime_get_real_seconds();
285  	nilfs->ns_sbwtime = t;
286  	sbp[0]->s_wtime = cpu_to_le64(t);
287  	sbp[0]->s_sum = 0;
288  	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
289  					     (unsigned char *)sbp[0],
290  					     nilfs->ns_sbsize));
291  	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
292  		sbp[1]->s_wtime = sbp[0]->s_wtime;
293  		sbp[1]->s_sum = 0;
294  		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
295  					    (unsigned char *)sbp[1],
296  					    nilfs->ns_sbsize));
297  	}
298  	clear_nilfs_sb_dirty(nilfs);
299  	nilfs->ns_flushed_device = 1;
300  	/* make sure store to ns_flushed_device cannot be reordered */
301  	smp_wmb();
302  	return nilfs_sync_super(sb, flag);
303  }
304  
305  /**
306   * nilfs_cleanup_super() - write filesystem state for cleanup
307   * @sb: super block instance to be unmounted or degraded to read-only
308   *
309   * This function restores state flags in the on-disk super block.
310   * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
311   * filesystem was not clean previously.
312   */
nilfs_cleanup_super(struct super_block * sb)313  int nilfs_cleanup_super(struct super_block *sb)
314  {
315  	struct the_nilfs *nilfs = sb->s_fs_info;
316  	struct nilfs_super_block **sbp;
317  	int flag = NILFS_SB_COMMIT;
318  	int ret = -EIO;
319  
320  	sbp = nilfs_prepare_super(sb, 0);
321  	if (sbp) {
322  		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
323  		nilfs_set_log_cursor(sbp[0], nilfs);
324  		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
325  			/*
326  			 * make the "clean" flag also to the opposite
327  			 * super block if both super blocks point to
328  			 * the same checkpoint.
329  			 */
330  			sbp[1]->s_state = sbp[0]->s_state;
331  			flag = NILFS_SB_COMMIT_ALL;
332  		}
333  		ret = nilfs_commit_super(sb, flag);
334  	}
335  	return ret;
336  }
337  
338  /**
339   * nilfs_move_2nd_super - relocate secondary super block
340   * @sb: super block instance
341   * @sb2off: new offset of the secondary super block (in bytes)
342   */
nilfs_move_2nd_super(struct super_block * sb,loff_t sb2off)343  static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
344  {
345  	struct the_nilfs *nilfs = sb->s_fs_info;
346  	struct buffer_head *nsbh;
347  	struct nilfs_super_block *nsbp;
348  	sector_t blocknr, newblocknr;
349  	unsigned long offset;
350  	int sb2i;  /* array index of the secondary superblock */
351  	int ret = 0;
352  
353  	/* nilfs->ns_sem must be locked by the caller. */
354  	if (nilfs->ns_sbh[1] &&
355  	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
356  		sb2i = 1;
357  		blocknr = nilfs->ns_sbh[1]->b_blocknr;
358  	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
359  		sb2i = 0;
360  		blocknr = nilfs->ns_sbh[0]->b_blocknr;
361  	} else {
362  		sb2i = -1;
363  		blocknr = 0;
364  	}
365  	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
366  		goto out;  /* super block location is unchanged */
367  
368  	/* Get new super block buffer */
369  	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
370  	offset = sb2off & (nilfs->ns_blocksize - 1);
371  	nsbh = sb_getblk(sb, newblocknr);
372  	if (!nsbh) {
373  		nilfs_warn(sb,
374  			   "unable to move secondary superblock to block %llu",
375  			   (unsigned long long)newblocknr);
376  		ret = -EIO;
377  		goto out;
378  	}
379  	nsbp = (void *)nsbh->b_data + offset;
380  
381  	lock_buffer(nsbh);
382  	if (sb2i >= 0) {
383  		/*
384  		 * The position of the second superblock only changes by 4KiB,
385  		 * which is larger than the maximum superblock data size
386  		 * (= 1KiB), so there is no need to use memmove() to allow
387  		 * overlap between source and destination.
388  		 */
389  		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
390  
391  		/*
392  		 * Zero fill after copy to avoid overwriting in case of move
393  		 * within the same block.
394  		 */
395  		memset(nsbh->b_data, 0, offset);
396  		memset((void *)nsbp + nilfs->ns_sbsize, 0,
397  		       nsbh->b_size - offset - nilfs->ns_sbsize);
398  	} else {
399  		memset(nsbh->b_data, 0, nsbh->b_size);
400  	}
401  	set_buffer_uptodate(nsbh);
402  	unlock_buffer(nsbh);
403  
404  	if (sb2i >= 0) {
405  		brelse(nilfs->ns_sbh[sb2i]);
406  		nilfs->ns_sbh[sb2i] = nsbh;
407  		nilfs->ns_sbp[sb2i] = nsbp;
408  	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
409  		/* secondary super block will be restored to index 1 */
410  		nilfs->ns_sbh[1] = nsbh;
411  		nilfs->ns_sbp[1] = nsbp;
412  	} else {
413  		brelse(nsbh);
414  	}
415  out:
416  	return ret;
417  }
418  
419  /**
420   * nilfs_resize_fs - resize the filesystem
421   * @sb: super block instance
422   * @newsize: new size of the filesystem (in bytes)
423   */
nilfs_resize_fs(struct super_block * sb,__u64 newsize)424  int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
425  {
426  	struct the_nilfs *nilfs = sb->s_fs_info;
427  	struct nilfs_super_block **sbp;
428  	__u64 devsize, newnsegs;
429  	loff_t sb2off;
430  	int ret;
431  
432  	ret = -ERANGE;
433  	devsize = bdev_nr_bytes(sb->s_bdev);
434  	if (newsize > devsize)
435  		goto out;
436  
437  	/*
438  	 * Prevent underflow in second superblock position calculation.
439  	 * The exact minimum size check is done in nilfs_sufile_resize().
440  	 */
441  	if (newsize < 4096) {
442  		ret = -ENOSPC;
443  		goto out;
444  	}
445  
446  	/*
447  	 * Write lock is required to protect some functions depending
448  	 * on the number of segments, the number of reserved segments,
449  	 * and so forth.
450  	 */
451  	down_write(&nilfs->ns_segctor_sem);
452  
453  	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
454  	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
455  	newnsegs = div64_ul(newnsegs, nilfs->ns_blocks_per_segment);
456  
457  	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
458  	up_write(&nilfs->ns_segctor_sem);
459  	if (ret < 0)
460  		goto out;
461  
462  	ret = nilfs_construct_segment(sb);
463  	if (ret < 0)
464  		goto out;
465  
466  	down_write(&nilfs->ns_sem);
467  	nilfs_move_2nd_super(sb, sb2off);
468  	ret = -EIO;
469  	sbp = nilfs_prepare_super(sb, 0);
470  	if (likely(sbp)) {
471  		nilfs_set_log_cursor(sbp[0], nilfs);
472  		/*
473  		 * Drop NILFS_RESIZE_FS flag for compatibility with
474  		 * mount-time resize which may be implemented in a
475  		 * future release.
476  		 */
477  		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
478  					      ~NILFS_RESIZE_FS);
479  		sbp[0]->s_dev_size = cpu_to_le64(newsize);
480  		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
481  		if (sbp[1])
482  			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
483  		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
484  	}
485  	up_write(&nilfs->ns_sem);
486  
487  	/*
488  	 * Reset the range of allocatable segments last.  This order
489  	 * is important in the case of expansion because the secondary
490  	 * superblock must be protected from log write until migration
491  	 * completes.
492  	 */
493  	if (!ret)
494  		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
495  out:
496  	return ret;
497  }
498  
nilfs_put_super(struct super_block * sb)499  static void nilfs_put_super(struct super_block *sb)
500  {
501  	struct the_nilfs *nilfs = sb->s_fs_info;
502  
503  	nilfs_detach_log_writer(sb);
504  
505  	if (!sb_rdonly(sb)) {
506  		down_write(&nilfs->ns_sem);
507  		nilfs_cleanup_super(sb);
508  		up_write(&nilfs->ns_sem);
509  	}
510  
511  	nilfs_sysfs_delete_device_group(nilfs);
512  	iput(nilfs->ns_sufile);
513  	iput(nilfs->ns_cpfile);
514  	iput(nilfs->ns_dat);
515  
516  	destroy_nilfs(nilfs);
517  	sb->s_fs_info = NULL;
518  }
519  
nilfs_sync_fs(struct super_block * sb,int wait)520  static int nilfs_sync_fs(struct super_block *sb, int wait)
521  {
522  	struct the_nilfs *nilfs = sb->s_fs_info;
523  	struct nilfs_super_block **sbp;
524  	int err = 0;
525  
526  	/* This function is called when super block should be written back */
527  	if (wait)
528  		err = nilfs_construct_segment(sb);
529  
530  	down_write(&nilfs->ns_sem);
531  	if (nilfs_sb_dirty(nilfs)) {
532  		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
533  		if (likely(sbp)) {
534  			nilfs_set_log_cursor(sbp[0], nilfs);
535  			nilfs_commit_super(sb, NILFS_SB_COMMIT);
536  		}
537  	}
538  	up_write(&nilfs->ns_sem);
539  
540  	if (!err)
541  		err = nilfs_flush_device(nilfs);
542  
543  	return err;
544  }
545  
nilfs_attach_checkpoint(struct super_block * sb,__u64 cno,int curr_mnt,struct nilfs_root ** rootp)546  int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
547  			    struct nilfs_root **rootp)
548  {
549  	struct the_nilfs *nilfs = sb->s_fs_info;
550  	struct nilfs_root *root;
551  	int err = -ENOMEM;
552  
553  	root = nilfs_find_or_create_root(
554  		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
555  	if (!root)
556  		return err;
557  
558  	if (root->ifile)
559  		goto reuse; /* already attached checkpoint */
560  
561  	down_read(&nilfs->ns_segctor_sem);
562  	err = nilfs_ifile_read(sb, root, cno, nilfs->ns_inode_size);
563  	up_read(&nilfs->ns_segctor_sem);
564  	if (unlikely(err))
565  		goto failed;
566  
567   reuse:
568  	*rootp = root;
569  	return 0;
570  
571   failed:
572  	if (err == -EINVAL)
573  		nilfs_err(sb, "Invalid checkpoint (checkpoint number=%llu)",
574  			  (unsigned long long)cno);
575  	nilfs_put_root(root);
576  
577  	return err;
578  }
579  
nilfs_freeze(struct super_block * sb)580  static int nilfs_freeze(struct super_block *sb)
581  {
582  	struct the_nilfs *nilfs = sb->s_fs_info;
583  	int err;
584  
585  	if (sb_rdonly(sb))
586  		return 0;
587  
588  	/* Mark super block clean */
589  	down_write(&nilfs->ns_sem);
590  	err = nilfs_cleanup_super(sb);
591  	up_write(&nilfs->ns_sem);
592  	return err;
593  }
594  
nilfs_unfreeze(struct super_block * sb)595  static int nilfs_unfreeze(struct super_block *sb)
596  {
597  	struct the_nilfs *nilfs = sb->s_fs_info;
598  
599  	if (sb_rdonly(sb))
600  		return 0;
601  
602  	down_write(&nilfs->ns_sem);
603  	nilfs_setup_super(sb, false);
604  	up_write(&nilfs->ns_sem);
605  	return 0;
606  }
607  
nilfs_statfs(struct dentry * dentry,struct kstatfs * buf)608  static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
609  {
610  	struct super_block *sb = dentry->d_sb;
611  	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
612  	struct the_nilfs *nilfs = root->nilfs;
613  	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
614  	unsigned long long blocks;
615  	unsigned long overhead;
616  	unsigned long nrsvblocks;
617  	sector_t nfreeblocks;
618  	u64 nmaxinodes, nfreeinodes;
619  	int err;
620  
621  	/*
622  	 * Compute all of the segment blocks
623  	 *
624  	 * The blocks before first segment and after last segment
625  	 * are excluded.
626  	 */
627  	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
628  		- nilfs->ns_first_data_block;
629  	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
630  
631  	/*
632  	 * Compute the overhead
633  	 *
634  	 * When distributing meta data blocks outside segment structure,
635  	 * We must count them as the overhead.
636  	 */
637  	overhead = 0;
638  
639  	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
640  	if (unlikely(err))
641  		return err;
642  
643  	err = nilfs_ifile_count_free_inodes(root->ifile,
644  					    &nmaxinodes, &nfreeinodes);
645  	if (unlikely(err)) {
646  		nilfs_warn(sb, "failed to count free inodes: err=%d", err);
647  		if (err == -ERANGE) {
648  			/*
649  			 * If nilfs_palloc_count_max_entries() returns
650  			 * -ERANGE error code then we simply treat
651  			 * curent inodes count as maximum possible and
652  			 * zero as free inodes value.
653  			 */
654  			nmaxinodes = atomic64_read(&root->inodes_count);
655  			nfreeinodes = 0;
656  			err = 0;
657  		} else
658  			return err;
659  	}
660  
661  	buf->f_type = NILFS_SUPER_MAGIC;
662  	buf->f_bsize = sb->s_blocksize;
663  	buf->f_blocks = blocks - overhead;
664  	buf->f_bfree = nfreeblocks;
665  	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
666  		(buf->f_bfree - nrsvblocks) : 0;
667  	buf->f_files = nmaxinodes;
668  	buf->f_ffree = nfreeinodes;
669  	buf->f_namelen = NILFS_NAME_LEN;
670  	buf->f_fsid = u64_to_fsid(id);
671  
672  	return 0;
673  }
674  
nilfs_show_options(struct seq_file * seq,struct dentry * dentry)675  static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
676  {
677  	struct super_block *sb = dentry->d_sb;
678  	struct the_nilfs *nilfs = sb->s_fs_info;
679  	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
680  
681  	if (!nilfs_test_opt(nilfs, BARRIER))
682  		seq_puts(seq, ",nobarrier");
683  	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
684  		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
685  	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
686  		seq_puts(seq, ",errors=panic");
687  	if (nilfs_test_opt(nilfs, ERRORS_CONT))
688  		seq_puts(seq, ",errors=continue");
689  	if (nilfs_test_opt(nilfs, STRICT_ORDER))
690  		seq_puts(seq, ",order=strict");
691  	if (nilfs_test_opt(nilfs, NORECOVERY))
692  		seq_puts(seq, ",norecovery");
693  	if (nilfs_test_opt(nilfs, DISCARD))
694  		seq_puts(seq, ",discard");
695  
696  	return 0;
697  }
698  
699  static const struct super_operations nilfs_sops = {
700  	.alloc_inode    = nilfs_alloc_inode,
701  	.free_inode     = nilfs_free_inode,
702  	.dirty_inode    = nilfs_dirty_inode,
703  	.evict_inode    = nilfs_evict_inode,
704  	.put_super      = nilfs_put_super,
705  	.sync_fs        = nilfs_sync_fs,
706  	.freeze_fs	= nilfs_freeze,
707  	.unfreeze_fs	= nilfs_unfreeze,
708  	.statfs         = nilfs_statfs,
709  	.show_options = nilfs_show_options
710  };
711  
712  enum {
713  	Opt_err, Opt_barrier, Opt_snapshot, Opt_order, Opt_norecovery,
714  	Opt_discard,
715  };
716  
717  static const struct constant_table nilfs_param_err[] = {
718  	{"continue",	NILFS_MOUNT_ERRORS_CONT},
719  	{"panic",	NILFS_MOUNT_ERRORS_PANIC},
720  	{"remount-ro",	NILFS_MOUNT_ERRORS_RO},
721  	{}
722  };
723  
724  static const struct fs_parameter_spec nilfs_param_spec[] = {
725  	fsparam_enum	("errors", Opt_err, nilfs_param_err),
726  	fsparam_flag_no	("barrier", Opt_barrier),
727  	fsparam_u64	("cp", Opt_snapshot),
728  	fsparam_string	("order", Opt_order),
729  	fsparam_flag	("norecovery", Opt_norecovery),
730  	fsparam_flag_no	("discard", Opt_discard),
731  	{}
732  };
733  
734  struct nilfs_fs_context {
735  	unsigned long ns_mount_opt;
736  	__u64 cno;
737  };
738  
nilfs_parse_param(struct fs_context * fc,struct fs_parameter * param)739  static int nilfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
740  {
741  	struct nilfs_fs_context *nilfs = fc->fs_private;
742  	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
743  	struct fs_parse_result result;
744  	int opt;
745  
746  	opt = fs_parse(fc, nilfs_param_spec, param, &result);
747  	if (opt < 0)
748  		return opt;
749  
750  	switch (opt) {
751  	case Opt_barrier:
752  		if (result.negated)
753  			nilfs_clear_opt(nilfs, BARRIER);
754  		else
755  			nilfs_set_opt(nilfs, BARRIER);
756  		break;
757  	case Opt_order:
758  		if (strcmp(param->string, "relaxed") == 0)
759  			/* Ordered data semantics */
760  			nilfs_clear_opt(nilfs, STRICT_ORDER);
761  		else if (strcmp(param->string, "strict") == 0)
762  			/* Strict in-order semantics */
763  			nilfs_set_opt(nilfs, STRICT_ORDER);
764  		else
765  			return -EINVAL;
766  		break;
767  	case Opt_err:
768  		nilfs->ns_mount_opt &= ~NILFS_MOUNT_ERROR_MODE;
769  		nilfs->ns_mount_opt |= result.uint_32;
770  		break;
771  	case Opt_snapshot:
772  		if (is_remount) {
773  			struct super_block *sb = fc->root->d_sb;
774  
775  			nilfs_err(sb,
776  				  "\"%s\" option is invalid for remount",
777  				  param->key);
778  			return -EINVAL;
779  		}
780  		if (result.uint_64 == 0) {
781  			nilfs_err(NULL,
782  				  "invalid option \"cp=0\": invalid checkpoint number 0");
783  			return -EINVAL;
784  		}
785  		nilfs->cno = result.uint_64;
786  		break;
787  	case Opt_norecovery:
788  		nilfs_set_opt(nilfs, NORECOVERY);
789  		break;
790  	case Opt_discard:
791  		if (result.negated)
792  			nilfs_clear_opt(nilfs, DISCARD);
793  		else
794  			nilfs_set_opt(nilfs, DISCARD);
795  		break;
796  	default:
797  		return -EINVAL;
798  	}
799  
800  	return 0;
801  }
802  
nilfs_setup_super(struct super_block * sb,int is_mount)803  static int nilfs_setup_super(struct super_block *sb, int is_mount)
804  {
805  	struct the_nilfs *nilfs = sb->s_fs_info;
806  	struct nilfs_super_block **sbp;
807  	int max_mnt_count;
808  	int mnt_count;
809  
810  	/* nilfs->ns_sem must be locked by the caller. */
811  	sbp = nilfs_prepare_super(sb, 0);
812  	if (!sbp)
813  		return -EIO;
814  
815  	if (!is_mount)
816  		goto skip_mount_setup;
817  
818  	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
819  	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
820  
821  	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
822  		nilfs_warn(sb, "mounting fs with errors");
823  #if 0
824  	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
825  		nilfs_warn(sb, "maximal mount count reached");
826  #endif
827  	}
828  	if (!max_mnt_count)
829  		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
830  
831  	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
832  	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
833  
834  skip_mount_setup:
835  	sbp[0]->s_state =
836  		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
837  	/* synchronize sbp[1] with sbp[0] */
838  	if (sbp[1])
839  		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
840  	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
841  }
842  
nilfs_read_super_block(struct super_block * sb,u64 pos,int blocksize,struct buffer_head ** pbh)843  struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
844  						 u64 pos, int blocksize,
845  						 struct buffer_head **pbh)
846  {
847  	unsigned long long sb_index = pos;
848  	unsigned long offset;
849  
850  	offset = do_div(sb_index, blocksize);
851  	*pbh = sb_bread(sb, sb_index);
852  	if (!*pbh)
853  		return NULL;
854  	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
855  }
856  
nilfs_store_magic(struct super_block * sb,struct nilfs_super_block * sbp)857  int nilfs_store_magic(struct super_block *sb,
858  		      struct nilfs_super_block *sbp)
859  {
860  	struct the_nilfs *nilfs = sb->s_fs_info;
861  
862  	sb->s_magic = le16_to_cpu(sbp->s_magic);
863  
864  	/* FS independent flags */
865  #ifdef NILFS_ATIME_DISABLE
866  	sb->s_flags |= SB_NOATIME;
867  #endif
868  
869  	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
870  	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
871  	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
872  	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
873  
874  	return 0;
875  }
876  
nilfs_check_feature_compatibility(struct super_block * sb,struct nilfs_super_block * sbp)877  int nilfs_check_feature_compatibility(struct super_block *sb,
878  				      struct nilfs_super_block *sbp)
879  {
880  	__u64 features;
881  
882  	features = le64_to_cpu(sbp->s_feature_incompat) &
883  		~NILFS_FEATURE_INCOMPAT_SUPP;
884  	if (features) {
885  		nilfs_err(sb,
886  			  "couldn't mount because of unsupported optional features (%llx)",
887  			  (unsigned long long)features);
888  		return -EINVAL;
889  	}
890  	features = le64_to_cpu(sbp->s_feature_compat_ro) &
891  		~NILFS_FEATURE_COMPAT_RO_SUPP;
892  	if (!sb_rdonly(sb) && features) {
893  		nilfs_err(sb,
894  			  "couldn't mount RDWR because of unsupported optional features (%llx)",
895  			  (unsigned long long)features);
896  		return -EINVAL;
897  	}
898  	return 0;
899  }
900  
nilfs_get_root_dentry(struct super_block * sb,struct nilfs_root * root,struct dentry ** root_dentry)901  static int nilfs_get_root_dentry(struct super_block *sb,
902  				 struct nilfs_root *root,
903  				 struct dentry **root_dentry)
904  {
905  	struct inode *inode;
906  	struct dentry *dentry;
907  	int ret = 0;
908  
909  	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
910  	if (IS_ERR(inode)) {
911  		ret = PTR_ERR(inode);
912  		nilfs_err(sb, "error %d getting root inode", ret);
913  		goto out;
914  	}
915  	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
916  		iput(inode);
917  		nilfs_err(sb, "corrupt root inode");
918  		ret = -EINVAL;
919  		goto out;
920  	}
921  
922  	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
923  		dentry = d_find_alias(inode);
924  		if (!dentry) {
925  			dentry = d_make_root(inode);
926  			if (!dentry) {
927  				ret = -ENOMEM;
928  				goto failed_dentry;
929  			}
930  		} else {
931  			iput(inode);
932  		}
933  	} else {
934  		dentry = d_obtain_root(inode);
935  		if (IS_ERR(dentry)) {
936  			ret = PTR_ERR(dentry);
937  			goto failed_dentry;
938  		}
939  	}
940  	*root_dentry = dentry;
941   out:
942  	return ret;
943  
944   failed_dentry:
945  	nilfs_err(sb, "error %d getting root dentry", ret);
946  	goto out;
947  }
948  
nilfs_attach_snapshot(struct super_block * s,__u64 cno,struct dentry ** root_dentry)949  static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
950  				 struct dentry **root_dentry)
951  {
952  	struct the_nilfs *nilfs = s->s_fs_info;
953  	struct nilfs_root *root;
954  	int ret;
955  
956  	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
957  
958  	down_read(&nilfs->ns_segctor_sem);
959  	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
960  	up_read(&nilfs->ns_segctor_sem);
961  	if (ret < 0) {
962  		ret = (ret == -ENOENT) ? -EINVAL : ret;
963  		goto out;
964  	} else if (!ret) {
965  		nilfs_err(s,
966  			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
967  			  (unsigned long long)cno);
968  		ret = -EINVAL;
969  		goto out;
970  	}
971  
972  	ret = nilfs_attach_checkpoint(s, cno, false, &root);
973  	if (ret) {
974  		nilfs_err(s,
975  			  "error %d while loading snapshot (checkpoint number=%llu)",
976  			  ret, (unsigned long long)cno);
977  		goto out;
978  	}
979  	ret = nilfs_get_root_dentry(s, root, root_dentry);
980  	nilfs_put_root(root);
981   out:
982  	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
983  	return ret;
984  }
985  
986  /**
987   * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
988   * @root_dentry: root dentry of the tree to be shrunk
989   *
990   * This function returns true if the tree was in-use.
991   */
nilfs_tree_is_busy(struct dentry * root_dentry)992  static bool nilfs_tree_is_busy(struct dentry *root_dentry)
993  {
994  	shrink_dcache_parent(root_dentry);
995  	return d_count(root_dentry) > 1;
996  }
997  
nilfs_checkpoint_is_mounted(struct super_block * sb,__u64 cno)998  int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
999  {
1000  	struct the_nilfs *nilfs = sb->s_fs_info;
1001  	struct nilfs_root *root;
1002  	struct inode *inode;
1003  	struct dentry *dentry;
1004  	int ret;
1005  
1006  	if (cno > nilfs->ns_cno)
1007  		return false;
1008  
1009  	if (cno >= nilfs_last_cno(nilfs))
1010  		return true;	/* protect recent checkpoints */
1011  
1012  	ret = false;
1013  	root = nilfs_lookup_root(nilfs, cno);
1014  	if (root) {
1015  		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1016  		if (inode) {
1017  			dentry = d_find_alias(inode);
1018  			if (dentry) {
1019  				ret = nilfs_tree_is_busy(dentry);
1020  				dput(dentry);
1021  			}
1022  			iput(inode);
1023  		}
1024  		nilfs_put_root(root);
1025  	}
1026  	return ret;
1027  }
1028  
1029  /**
1030   * nilfs_fill_super() - initialize a super block instance
1031   * @sb: super_block
1032   * @fc: filesystem context
1033   *
1034   * This function is called exclusively by nilfs->ns_mount_mutex.
1035   * So, the recovery process is protected from other simultaneous mounts.
1036   */
1037  static int
nilfs_fill_super(struct super_block * sb,struct fs_context * fc)1038  nilfs_fill_super(struct super_block *sb, struct fs_context *fc)
1039  {
1040  	struct the_nilfs *nilfs;
1041  	struct nilfs_root *fsroot;
1042  	struct nilfs_fs_context *ctx = fc->fs_private;
1043  	__u64 cno;
1044  	int err;
1045  
1046  	nilfs = alloc_nilfs(sb);
1047  	if (!nilfs)
1048  		return -ENOMEM;
1049  
1050  	sb->s_fs_info = nilfs;
1051  
1052  	err = init_nilfs(nilfs, sb);
1053  	if (err)
1054  		goto failed_nilfs;
1055  
1056  	/* Copy in parsed mount options */
1057  	nilfs->ns_mount_opt = ctx->ns_mount_opt;
1058  
1059  	sb->s_op = &nilfs_sops;
1060  	sb->s_export_op = &nilfs_export_ops;
1061  	sb->s_root = NULL;
1062  	sb->s_time_gran = 1;
1063  	sb->s_max_links = NILFS_LINK_MAX;
1064  
1065  	sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1066  
1067  	err = load_nilfs(nilfs, sb);
1068  	if (err)
1069  		goto failed_nilfs;
1070  
1071  	super_set_uuid(sb, nilfs->ns_sbp[0]->s_uuid,
1072  		       sizeof(nilfs->ns_sbp[0]->s_uuid));
1073  	super_set_sysfs_name_bdev(sb);
1074  
1075  	cno = nilfs_last_cno(nilfs);
1076  	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1077  	if (err) {
1078  		nilfs_err(sb,
1079  			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1080  			  err, (unsigned long long)cno);
1081  		goto failed_unload;
1082  	}
1083  
1084  	if (!sb_rdonly(sb)) {
1085  		err = nilfs_attach_log_writer(sb, fsroot);
1086  		if (err)
1087  			goto failed_checkpoint;
1088  	}
1089  
1090  	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1091  	if (err)
1092  		goto failed_segctor;
1093  
1094  	nilfs_put_root(fsroot);
1095  
1096  	if (!sb_rdonly(sb)) {
1097  		down_write(&nilfs->ns_sem);
1098  		nilfs_setup_super(sb, true);
1099  		up_write(&nilfs->ns_sem);
1100  	}
1101  
1102  	return 0;
1103  
1104   failed_segctor:
1105  	nilfs_detach_log_writer(sb);
1106  
1107   failed_checkpoint:
1108  	nilfs_put_root(fsroot);
1109  
1110   failed_unload:
1111  	nilfs_sysfs_delete_device_group(nilfs);
1112  	iput(nilfs->ns_sufile);
1113  	iput(nilfs->ns_cpfile);
1114  	iput(nilfs->ns_dat);
1115  
1116   failed_nilfs:
1117  	destroy_nilfs(nilfs);
1118  	return err;
1119  }
1120  
nilfs_reconfigure(struct fs_context * fc)1121  static int nilfs_reconfigure(struct fs_context *fc)
1122  {
1123  	struct nilfs_fs_context *ctx = fc->fs_private;
1124  	struct super_block *sb = fc->root->d_sb;
1125  	struct the_nilfs *nilfs = sb->s_fs_info;
1126  	int err;
1127  
1128  	sync_filesystem(sb);
1129  
1130  	err = -EINVAL;
1131  
1132  	if (!nilfs_valid_fs(nilfs)) {
1133  		nilfs_warn(sb,
1134  			   "couldn't remount because the filesystem is in an incomplete recovery state");
1135  		goto ignore_opts;
1136  	}
1137  	if ((bool)(fc->sb_flags & SB_RDONLY) == sb_rdonly(sb))
1138  		goto out;
1139  	if (fc->sb_flags & SB_RDONLY) {
1140  		sb->s_flags |= SB_RDONLY;
1141  
1142  		/*
1143  		 * Remounting a valid RW partition RDONLY, so set
1144  		 * the RDONLY flag and then mark the partition as valid again.
1145  		 */
1146  		down_write(&nilfs->ns_sem);
1147  		nilfs_cleanup_super(sb);
1148  		up_write(&nilfs->ns_sem);
1149  	} else {
1150  		__u64 features;
1151  		struct nilfs_root *root;
1152  
1153  		/*
1154  		 * Mounting a RDONLY partition read-write, so reread and
1155  		 * store the current valid flag.  (It may have been changed
1156  		 * by fsck since we originally mounted the partition.)
1157  		 */
1158  		down_read(&nilfs->ns_sem);
1159  		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1160  			~NILFS_FEATURE_COMPAT_RO_SUPP;
1161  		up_read(&nilfs->ns_sem);
1162  		if (features) {
1163  			nilfs_warn(sb,
1164  				   "couldn't remount RDWR because of unsupported optional features (%llx)",
1165  				   (unsigned long long)features);
1166  			err = -EROFS;
1167  			goto ignore_opts;
1168  		}
1169  
1170  		sb->s_flags &= ~SB_RDONLY;
1171  
1172  		root = NILFS_I(d_inode(sb->s_root))->i_root;
1173  		err = nilfs_attach_log_writer(sb, root);
1174  		if (err) {
1175  			sb->s_flags |= SB_RDONLY;
1176  			goto ignore_opts;
1177  		}
1178  
1179  		down_write(&nilfs->ns_sem);
1180  		nilfs_setup_super(sb, true);
1181  		up_write(&nilfs->ns_sem);
1182  	}
1183   out:
1184  	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1185  	/* Copy over parsed remount options */
1186  	nilfs->ns_mount_opt = ctx->ns_mount_opt;
1187  
1188  	return 0;
1189  
1190   ignore_opts:
1191  	return err;
1192  }
1193  
1194  static int
nilfs_get_tree(struct fs_context * fc)1195  nilfs_get_tree(struct fs_context *fc)
1196  {
1197  	struct nilfs_fs_context *ctx = fc->fs_private;
1198  	struct super_block *s;
1199  	dev_t dev;
1200  	int err;
1201  
1202  	if (ctx->cno && !(fc->sb_flags & SB_RDONLY)) {
1203  		nilfs_err(NULL,
1204  			  "invalid option \"cp=%llu\": read-only option is not specified",
1205  			  ctx->cno);
1206  		return -EINVAL;
1207  	}
1208  
1209  	err = lookup_bdev(fc->source, &dev);
1210  	if (err)
1211  		return err;
1212  
1213  	s = sget_dev(fc, dev);
1214  	if (IS_ERR(s))
1215  		return PTR_ERR(s);
1216  
1217  	if (!s->s_root) {
1218  		err = setup_bdev_super(s, fc->sb_flags, fc);
1219  		if (!err)
1220  			err = nilfs_fill_super(s, fc);
1221  		if (err)
1222  			goto failed_super;
1223  
1224  		s->s_flags |= SB_ACTIVE;
1225  	} else if (!ctx->cno) {
1226  		if (nilfs_tree_is_busy(s->s_root)) {
1227  			if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1228  				nilfs_err(s,
1229  					  "the device already has a %s mount.",
1230  					  sb_rdonly(s) ? "read-only" : "read/write");
1231  				err = -EBUSY;
1232  				goto failed_super;
1233  			}
1234  		} else {
1235  			/*
1236  			 * Try reconfigure to setup mount states if the current
1237  			 * tree is not mounted and only snapshots use this sb.
1238  			 *
1239  			 * Since nilfs_reconfigure() requires fc->root to be
1240  			 * set, set it first and release it on failure.
1241  			 */
1242  			fc->root = dget(s->s_root);
1243  			err = nilfs_reconfigure(fc);
1244  			if (err) {
1245  				dput(fc->root);
1246  				fc->root = NULL;  /* prevent double release */
1247  				goto failed_super;
1248  			}
1249  			return 0;
1250  		}
1251  	}
1252  
1253  	if (ctx->cno) {
1254  		struct dentry *root_dentry;
1255  
1256  		err = nilfs_attach_snapshot(s, ctx->cno, &root_dentry);
1257  		if (err)
1258  			goto failed_super;
1259  		fc->root = root_dentry;
1260  		return 0;
1261  	}
1262  
1263  	fc->root = dget(s->s_root);
1264  	return 0;
1265  
1266   failed_super:
1267  	deactivate_locked_super(s);
1268  	return err;
1269  }
1270  
nilfs_free_fc(struct fs_context * fc)1271  static void nilfs_free_fc(struct fs_context *fc)
1272  {
1273  	kfree(fc->fs_private);
1274  }
1275  
1276  static const struct fs_context_operations nilfs_context_ops = {
1277  	.parse_param	= nilfs_parse_param,
1278  	.get_tree	= nilfs_get_tree,
1279  	.reconfigure	= nilfs_reconfigure,
1280  	.free		= nilfs_free_fc,
1281  };
1282  
nilfs_init_fs_context(struct fs_context * fc)1283  static int nilfs_init_fs_context(struct fs_context *fc)
1284  {
1285  	struct nilfs_fs_context *ctx;
1286  
1287  	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1288  	if (!ctx)
1289  		return -ENOMEM;
1290  
1291  	ctx->ns_mount_opt = NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
1292  	fc->fs_private = ctx;
1293  	fc->ops = &nilfs_context_ops;
1294  
1295  	return 0;
1296  }
1297  
1298  struct file_system_type nilfs_fs_type = {
1299  	.owner    = THIS_MODULE,
1300  	.name     = "nilfs2",
1301  	.kill_sb  = kill_block_super,
1302  	.fs_flags = FS_REQUIRES_DEV,
1303  	.init_fs_context = nilfs_init_fs_context,
1304  	.parameters = nilfs_param_spec,
1305  };
1306  MODULE_ALIAS_FS("nilfs2");
1307  
nilfs_inode_init_once(void * obj)1308  static void nilfs_inode_init_once(void *obj)
1309  {
1310  	struct nilfs_inode_info *ii = obj;
1311  
1312  	INIT_LIST_HEAD(&ii->i_dirty);
1313  #ifdef CONFIG_NILFS_XATTR
1314  	init_rwsem(&ii->xattr_sem);
1315  #endif
1316  	inode_init_once(&ii->vfs_inode);
1317  }
1318  
nilfs_segbuf_init_once(void * obj)1319  static void nilfs_segbuf_init_once(void *obj)
1320  {
1321  	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1322  }
1323  
nilfs_destroy_cachep(void)1324  static void nilfs_destroy_cachep(void)
1325  {
1326  	/*
1327  	 * Make sure all delayed rcu free inodes are flushed before we
1328  	 * destroy cache.
1329  	 */
1330  	rcu_barrier();
1331  
1332  	kmem_cache_destroy(nilfs_inode_cachep);
1333  	kmem_cache_destroy(nilfs_transaction_cachep);
1334  	kmem_cache_destroy(nilfs_segbuf_cachep);
1335  	kmem_cache_destroy(nilfs_btree_path_cache);
1336  }
1337  
nilfs_init_cachep(void)1338  static int __init nilfs_init_cachep(void)
1339  {
1340  	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1341  			sizeof(struct nilfs_inode_info), 0,
1342  			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1343  			nilfs_inode_init_once);
1344  	if (!nilfs_inode_cachep)
1345  		goto fail;
1346  
1347  	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1348  			sizeof(struct nilfs_transaction_info), 0,
1349  			SLAB_RECLAIM_ACCOUNT, NULL);
1350  	if (!nilfs_transaction_cachep)
1351  		goto fail;
1352  
1353  	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1354  			sizeof(struct nilfs_segment_buffer), 0,
1355  			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1356  	if (!nilfs_segbuf_cachep)
1357  		goto fail;
1358  
1359  	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1360  			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1361  			0, 0, NULL);
1362  	if (!nilfs_btree_path_cache)
1363  		goto fail;
1364  
1365  	return 0;
1366  
1367  fail:
1368  	nilfs_destroy_cachep();
1369  	return -ENOMEM;
1370  }
1371  
init_nilfs_fs(void)1372  static int __init init_nilfs_fs(void)
1373  {
1374  	int err;
1375  
1376  	err = nilfs_init_cachep();
1377  	if (err)
1378  		goto fail;
1379  
1380  	err = nilfs_sysfs_init();
1381  	if (err)
1382  		goto free_cachep;
1383  
1384  	err = register_filesystem(&nilfs_fs_type);
1385  	if (err)
1386  		goto deinit_sysfs_entry;
1387  
1388  	printk(KERN_INFO "NILFS version 2 loaded\n");
1389  	return 0;
1390  
1391  deinit_sysfs_entry:
1392  	nilfs_sysfs_exit();
1393  free_cachep:
1394  	nilfs_destroy_cachep();
1395  fail:
1396  	return err;
1397  }
1398  
exit_nilfs_fs(void)1399  static void __exit exit_nilfs_fs(void)
1400  {
1401  	nilfs_destroy_cachep();
1402  	nilfs_sysfs_exit();
1403  	unregister_filesystem(&nilfs_fs_type);
1404  }
1405  
1406  module_init(init_nilfs_fs)
1407  module_exit(exit_nilfs_fs)
1408