1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/x86_64/vmx.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8 #include <asm/msr-index.h>
9
10 #include "test_util.h"
11 #include "kvm_util.h"
12 #include "processor.h"
13 #include "vmx.h"
14
15 #define PAGE_SHIFT_4K 12
16
17 #define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000
18
19 bool enable_evmcs;
20
21 struct hv_enlightened_vmcs *current_evmcs;
22 struct hv_vp_assist_page *current_vp_assist;
23
24 struct eptPageTableEntry {
25 uint64_t readable:1;
26 uint64_t writable:1;
27 uint64_t executable:1;
28 uint64_t memory_type:3;
29 uint64_t ignore_pat:1;
30 uint64_t page_size:1;
31 uint64_t accessed:1;
32 uint64_t dirty:1;
33 uint64_t ignored_11_10:2;
34 uint64_t address:40;
35 uint64_t ignored_62_52:11;
36 uint64_t suppress_ve:1;
37 };
38
39 struct eptPageTablePointer {
40 uint64_t memory_type:3;
41 uint64_t page_walk_length:3;
42 uint64_t ad_enabled:1;
43 uint64_t reserved_11_07:5;
44 uint64_t address:40;
45 uint64_t reserved_63_52:12;
46 };
vcpu_enable_evmcs(struct kvm_vcpu * vcpu)47 int vcpu_enable_evmcs(struct kvm_vcpu *vcpu)
48 {
49 uint16_t evmcs_ver;
50
51 vcpu_enable_cap(vcpu, KVM_CAP_HYPERV_ENLIGHTENED_VMCS,
52 (unsigned long)&evmcs_ver);
53
54 /* KVM should return supported EVMCS version range */
55 TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) &&
56 (evmcs_ver & 0xff) > 0,
57 "Incorrect EVMCS version range: %x:%x",
58 evmcs_ver & 0xff, evmcs_ver >> 8);
59
60 return evmcs_ver;
61 }
62
63 /* Allocate memory regions for nested VMX tests.
64 *
65 * Input Args:
66 * vm - The VM to allocate guest-virtual addresses in.
67 *
68 * Output Args:
69 * p_vmx_gva - The guest virtual address for the struct vmx_pages.
70 *
71 * Return:
72 * Pointer to structure with the addresses of the VMX areas.
73 */
74 struct vmx_pages *
vcpu_alloc_vmx(struct kvm_vm * vm,vm_vaddr_t * p_vmx_gva)75 vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
76 {
77 vm_vaddr_t vmx_gva = vm_vaddr_alloc_page(vm);
78 struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
79
80 /* Setup of a region of guest memory for the vmxon region. */
81 vmx->vmxon = (void *)vm_vaddr_alloc_page(vm);
82 vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
83 vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
84
85 /* Setup of a region of guest memory for a vmcs. */
86 vmx->vmcs = (void *)vm_vaddr_alloc_page(vm);
87 vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
88 vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
89
90 /* Setup of a region of guest memory for the MSR bitmap. */
91 vmx->msr = (void *)vm_vaddr_alloc_page(vm);
92 vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
93 vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
94 memset(vmx->msr_hva, 0, getpagesize());
95
96 /* Setup of a region of guest memory for the shadow VMCS. */
97 vmx->shadow_vmcs = (void *)vm_vaddr_alloc_page(vm);
98 vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
99 vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
100
101 /* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
102 vmx->vmread = (void *)vm_vaddr_alloc_page(vm);
103 vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
104 vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
105 memset(vmx->vmread_hva, 0, getpagesize());
106
107 vmx->vmwrite = (void *)vm_vaddr_alloc_page(vm);
108 vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
109 vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
110 memset(vmx->vmwrite_hva, 0, getpagesize());
111
112 *p_vmx_gva = vmx_gva;
113 return vmx;
114 }
115
prepare_for_vmx_operation(struct vmx_pages * vmx)116 bool prepare_for_vmx_operation(struct vmx_pages *vmx)
117 {
118 uint64_t feature_control;
119 uint64_t required;
120 unsigned long cr0;
121 unsigned long cr4;
122
123 /*
124 * Ensure bits in CR0 and CR4 are valid in VMX operation:
125 * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
126 * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
127 */
128 __asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
129 cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
130 cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
131 __asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
132
133 __asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
134 cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
135 cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
136 /* Enable VMX operation */
137 cr4 |= X86_CR4_VMXE;
138 __asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
139
140 /*
141 * Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
142 * Bit 0: Lock bit. If clear, VMXON causes a #GP.
143 * Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
144 * outside of SMX causes a #GP.
145 */
146 required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
147 required |= FEAT_CTL_LOCKED;
148 feature_control = rdmsr(MSR_IA32_FEAT_CTL);
149 if ((feature_control & required) != required)
150 wrmsr(MSR_IA32_FEAT_CTL, feature_control | required);
151
152 /* Enter VMX root operation. */
153 *(uint32_t *)(vmx->vmxon) = vmcs_revision();
154 if (vmxon(vmx->vmxon_gpa))
155 return false;
156
157 return true;
158 }
159
load_vmcs(struct vmx_pages * vmx)160 bool load_vmcs(struct vmx_pages *vmx)
161 {
162 /* Load a VMCS. */
163 *(uint32_t *)(vmx->vmcs) = vmcs_revision();
164 if (vmclear(vmx->vmcs_gpa))
165 return false;
166
167 if (vmptrld(vmx->vmcs_gpa))
168 return false;
169
170 /* Setup shadow VMCS, do not load it yet. */
171 *(uint32_t *)(vmx->shadow_vmcs) = vmcs_revision() | 0x80000000ul;
172 if (vmclear(vmx->shadow_vmcs_gpa))
173 return false;
174
175 return true;
176 }
177
ept_vpid_cap_supported(uint64_t mask)178 static bool ept_vpid_cap_supported(uint64_t mask)
179 {
180 return rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & mask;
181 }
182
ept_1g_pages_supported(void)183 bool ept_1g_pages_supported(void)
184 {
185 return ept_vpid_cap_supported(VMX_EPT_VPID_CAP_1G_PAGES);
186 }
187
188 /*
189 * Initialize the control fields to the most basic settings possible.
190 */
init_vmcs_control_fields(struct vmx_pages * vmx)191 static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
192 {
193 uint32_t sec_exec_ctl = 0;
194
195 vmwrite(VIRTUAL_PROCESSOR_ID, 0);
196 vmwrite(POSTED_INTR_NV, 0);
197
198 vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
199
200 if (vmx->eptp_gpa) {
201 uint64_t ept_paddr;
202 struct eptPageTablePointer eptp = {
203 .memory_type = X86_MEMTYPE_WB,
204 .page_walk_length = 3, /* + 1 */
205 .ad_enabled = ept_vpid_cap_supported(VMX_EPT_VPID_CAP_AD_BITS),
206 .address = vmx->eptp_gpa >> PAGE_SHIFT_4K,
207 };
208
209 memcpy(&ept_paddr, &eptp, sizeof(ept_paddr));
210 vmwrite(EPT_POINTER, ept_paddr);
211 sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT;
212 }
213
214 if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl))
215 vmwrite(CPU_BASED_VM_EXEC_CONTROL,
216 rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
217 else {
218 vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
219 GUEST_ASSERT(!sec_exec_ctl);
220 }
221
222 vmwrite(EXCEPTION_BITMAP, 0);
223 vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
224 vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
225 vmwrite(CR3_TARGET_COUNT, 0);
226 vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
227 VM_EXIT_HOST_ADDR_SPACE_SIZE); /* 64-bit host */
228 vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
229 vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
230 vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
231 VM_ENTRY_IA32E_MODE); /* 64-bit guest */
232 vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
233 vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
234 vmwrite(TPR_THRESHOLD, 0);
235
236 vmwrite(CR0_GUEST_HOST_MASK, 0);
237 vmwrite(CR4_GUEST_HOST_MASK, 0);
238 vmwrite(CR0_READ_SHADOW, get_cr0());
239 vmwrite(CR4_READ_SHADOW, get_cr4());
240
241 vmwrite(MSR_BITMAP, vmx->msr_gpa);
242 vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
243 vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
244 }
245
246 /*
247 * Initialize the host state fields based on the current host state, with
248 * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
249 * or vmresume.
250 */
init_vmcs_host_state(void)251 static inline void init_vmcs_host_state(void)
252 {
253 uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
254
255 vmwrite(HOST_ES_SELECTOR, get_es());
256 vmwrite(HOST_CS_SELECTOR, get_cs());
257 vmwrite(HOST_SS_SELECTOR, get_ss());
258 vmwrite(HOST_DS_SELECTOR, get_ds());
259 vmwrite(HOST_FS_SELECTOR, get_fs());
260 vmwrite(HOST_GS_SELECTOR, get_gs());
261 vmwrite(HOST_TR_SELECTOR, get_tr());
262
263 if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
264 vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
265 if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
266 vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
267 if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
268 vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
269 rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
270
271 vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
272
273 vmwrite(HOST_CR0, get_cr0());
274 vmwrite(HOST_CR3, get_cr3());
275 vmwrite(HOST_CR4, get_cr4());
276 vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
277 vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
278 vmwrite(HOST_TR_BASE,
279 get_desc64_base((struct desc64 *)(get_gdt().address + get_tr())));
280 vmwrite(HOST_GDTR_BASE, get_gdt().address);
281 vmwrite(HOST_IDTR_BASE, get_idt().address);
282 vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
283 vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
284 }
285
286 /*
287 * Initialize the guest state fields essentially as a clone of
288 * the host state fields. Some host state fields have fixed
289 * values, and we set the corresponding guest state fields accordingly.
290 */
init_vmcs_guest_state(void * rip,void * rsp)291 static inline void init_vmcs_guest_state(void *rip, void *rsp)
292 {
293 vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
294 vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
295 vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
296 vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
297 vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
298 vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
299 vmwrite(GUEST_LDTR_SELECTOR, 0);
300 vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
301 vmwrite(GUEST_INTR_STATUS, 0);
302 vmwrite(GUEST_PML_INDEX, 0);
303
304 vmwrite(VMCS_LINK_POINTER, -1ll);
305 vmwrite(GUEST_IA32_DEBUGCTL, 0);
306 vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
307 vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
308 vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
309 vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
310
311 vmwrite(GUEST_ES_LIMIT, -1);
312 vmwrite(GUEST_CS_LIMIT, -1);
313 vmwrite(GUEST_SS_LIMIT, -1);
314 vmwrite(GUEST_DS_LIMIT, -1);
315 vmwrite(GUEST_FS_LIMIT, -1);
316 vmwrite(GUEST_GS_LIMIT, -1);
317 vmwrite(GUEST_LDTR_LIMIT, -1);
318 vmwrite(GUEST_TR_LIMIT, 0x67);
319 vmwrite(GUEST_GDTR_LIMIT, 0xffff);
320 vmwrite(GUEST_IDTR_LIMIT, 0xffff);
321 vmwrite(GUEST_ES_AR_BYTES,
322 vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
323 vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
324 vmwrite(GUEST_SS_AR_BYTES, 0xc093);
325 vmwrite(GUEST_DS_AR_BYTES,
326 vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
327 vmwrite(GUEST_FS_AR_BYTES,
328 vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
329 vmwrite(GUEST_GS_AR_BYTES,
330 vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
331 vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
332 vmwrite(GUEST_TR_AR_BYTES, 0x8b);
333 vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
334 vmwrite(GUEST_ACTIVITY_STATE, 0);
335 vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
336 vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
337
338 vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
339 vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
340 vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
341 vmwrite(GUEST_ES_BASE, 0);
342 vmwrite(GUEST_CS_BASE, 0);
343 vmwrite(GUEST_SS_BASE, 0);
344 vmwrite(GUEST_DS_BASE, 0);
345 vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
346 vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
347 vmwrite(GUEST_LDTR_BASE, 0);
348 vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
349 vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
350 vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
351 vmwrite(GUEST_DR7, 0x400);
352 vmwrite(GUEST_RSP, (uint64_t)rsp);
353 vmwrite(GUEST_RIP, (uint64_t)rip);
354 vmwrite(GUEST_RFLAGS, 2);
355 vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
356 vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
357 vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
358 }
359
prepare_vmcs(struct vmx_pages * vmx,void * guest_rip,void * guest_rsp)360 void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
361 {
362 init_vmcs_control_fields(vmx);
363 init_vmcs_host_state();
364 init_vmcs_guest_state(guest_rip, guest_rsp);
365 }
366
nested_create_pte(struct kvm_vm * vm,struct eptPageTableEntry * pte,uint64_t nested_paddr,uint64_t paddr,int current_level,int target_level)367 static void nested_create_pte(struct kvm_vm *vm,
368 struct eptPageTableEntry *pte,
369 uint64_t nested_paddr,
370 uint64_t paddr,
371 int current_level,
372 int target_level)
373 {
374 if (!pte->readable) {
375 pte->writable = true;
376 pte->readable = true;
377 pte->executable = true;
378 pte->page_size = (current_level == target_level);
379 if (pte->page_size)
380 pte->address = paddr >> vm->page_shift;
381 else
382 pte->address = vm_alloc_page_table(vm) >> vm->page_shift;
383 } else {
384 /*
385 * Entry already present. Assert that the caller doesn't want
386 * a hugepage at this level, and that there isn't a hugepage at
387 * this level.
388 */
389 TEST_ASSERT(current_level != target_level,
390 "Cannot create hugepage at level: %u, nested_paddr: 0x%lx",
391 current_level, nested_paddr);
392 TEST_ASSERT(!pte->page_size,
393 "Cannot create page table at level: %u, nested_paddr: 0x%lx",
394 current_level, nested_paddr);
395 }
396 }
397
398
__nested_pg_map(struct vmx_pages * vmx,struct kvm_vm * vm,uint64_t nested_paddr,uint64_t paddr,int target_level)399 void __nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
400 uint64_t nested_paddr, uint64_t paddr, int target_level)
401 {
402 const uint64_t page_size = PG_LEVEL_SIZE(target_level);
403 struct eptPageTableEntry *pt = vmx->eptp_hva, *pte;
404 uint16_t index;
405
406 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
407 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
408
409 TEST_ASSERT((nested_paddr >> 48) == 0,
410 "Nested physical address 0x%lx requires 5-level paging",
411 nested_paddr);
412 TEST_ASSERT((nested_paddr % page_size) == 0,
413 "Nested physical address not on page boundary,\n"
414 " nested_paddr: 0x%lx page_size: 0x%lx",
415 nested_paddr, page_size);
416 TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn,
417 "Physical address beyond beyond maximum supported,\n"
418 " nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
419 paddr, vm->max_gfn, vm->page_size);
420 TEST_ASSERT((paddr % page_size) == 0,
421 "Physical address not on page boundary,\n"
422 " paddr: 0x%lx page_size: 0x%lx",
423 paddr, page_size);
424 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
425 "Physical address beyond beyond maximum supported,\n"
426 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
427 paddr, vm->max_gfn, vm->page_size);
428
429 for (int level = PG_LEVEL_512G; level >= PG_LEVEL_4K; level--) {
430 index = (nested_paddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
431 pte = &pt[index];
432
433 nested_create_pte(vm, pte, nested_paddr, paddr, level, target_level);
434
435 if (pte->page_size)
436 break;
437
438 pt = addr_gpa2hva(vm, pte->address * vm->page_size);
439 }
440
441 /*
442 * For now mark these as accessed and dirty because the only
443 * testcase we have needs that. Can be reconsidered later.
444 */
445 pte->accessed = true;
446 pte->dirty = true;
447
448 }
449
nested_pg_map(struct vmx_pages * vmx,struct kvm_vm * vm,uint64_t nested_paddr,uint64_t paddr)450 void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
451 uint64_t nested_paddr, uint64_t paddr)
452 {
453 __nested_pg_map(vmx, vm, nested_paddr, paddr, PG_LEVEL_4K);
454 }
455
456 /*
457 * Map a range of EPT guest physical addresses to the VM's physical address
458 *
459 * Input Args:
460 * vm - Virtual Machine
461 * nested_paddr - Nested guest physical address to map
462 * paddr - VM Physical Address
463 * size - The size of the range to map
464 * level - The level at which to map the range
465 *
466 * Output Args: None
467 *
468 * Return: None
469 *
470 * Within the VM given by vm, creates a nested guest translation for the
471 * page range starting at nested_paddr to the page range starting at paddr.
472 */
__nested_map(struct vmx_pages * vmx,struct kvm_vm * vm,uint64_t nested_paddr,uint64_t paddr,uint64_t size,int level)473 void __nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
474 uint64_t nested_paddr, uint64_t paddr, uint64_t size,
475 int level)
476 {
477 size_t page_size = PG_LEVEL_SIZE(level);
478 size_t npages = size / page_size;
479
480 TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
481 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
482
483 while (npages--) {
484 __nested_pg_map(vmx, vm, nested_paddr, paddr, level);
485 nested_paddr += page_size;
486 paddr += page_size;
487 }
488 }
489
nested_map(struct vmx_pages * vmx,struct kvm_vm * vm,uint64_t nested_paddr,uint64_t paddr,uint64_t size)490 void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
491 uint64_t nested_paddr, uint64_t paddr, uint64_t size)
492 {
493 __nested_map(vmx, vm, nested_paddr, paddr, size, PG_LEVEL_4K);
494 }
495
496 /* Prepare an identity extended page table that maps all the
497 * physical pages in VM.
498 */
nested_map_memslot(struct vmx_pages * vmx,struct kvm_vm * vm,uint32_t memslot)499 void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm,
500 uint32_t memslot)
501 {
502 sparsebit_idx_t i, last;
503 struct userspace_mem_region *region =
504 memslot2region(vm, memslot);
505
506 i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
507 last = i + (region->region.memory_size >> vm->page_shift);
508 for (;;) {
509 i = sparsebit_next_clear(region->unused_phy_pages, i);
510 if (i > last)
511 break;
512
513 nested_map(vmx, vm,
514 (uint64_t)i << vm->page_shift,
515 (uint64_t)i << vm->page_shift,
516 1 << vm->page_shift);
517 }
518 }
519
520 /* Identity map a region with 1GiB Pages. */
nested_identity_map_1g(struct vmx_pages * vmx,struct kvm_vm * vm,uint64_t addr,uint64_t size)521 void nested_identity_map_1g(struct vmx_pages *vmx, struct kvm_vm *vm,
522 uint64_t addr, uint64_t size)
523 {
524 __nested_map(vmx, vm, addr, addr, size, PG_LEVEL_1G);
525 }
526
kvm_cpu_has_ept(void)527 bool kvm_cpu_has_ept(void)
528 {
529 uint64_t ctrl;
530
531 ctrl = kvm_get_feature_msr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) >> 32;
532 if (!(ctrl & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
533 return false;
534
535 ctrl = kvm_get_feature_msr(MSR_IA32_VMX_PROCBASED_CTLS2) >> 32;
536 return ctrl & SECONDARY_EXEC_ENABLE_EPT;
537 }
538
prepare_eptp(struct vmx_pages * vmx,struct kvm_vm * vm,uint32_t eptp_memslot)539 void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm,
540 uint32_t eptp_memslot)
541 {
542 TEST_ASSERT(kvm_cpu_has_ept(), "KVM doesn't support nested EPT");
543
544 vmx->eptp = (void *)vm_vaddr_alloc_page(vm);
545 vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp);
546 vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp);
547 }
548
prepare_virtualize_apic_accesses(struct vmx_pages * vmx,struct kvm_vm * vm)549 void prepare_virtualize_apic_accesses(struct vmx_pages *vmx, struct kvm_vm *vm)
550 {
551 vmx->apic_access = (void *)vm_vaddr_alloc_page(vm);
552 vmx->apic_access_hva = addr_gva2hva(vm, (uintptr_t)vmx->apic_access);
553 vmx->apic_access_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->apic_access);
554 }
555