1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  * Copyright (C) 2017 SiFive
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/cpumask.h>
10 #include <linux/mm.h>
11 #include <linux/percpu.h>
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/static_key.h>
15 #include <asm/tlbflush.h>
16 #include <asm/cacheflush.h>
17 #include <asm/mmu_context.h>
18 #include <asm/switch_to.h>
19 
20 #ifdef CONFIG_MMU
21 
22 DEFINE_STATIC_KEY_FALSE(use_asid_allocator);
23 
24 static unsigned long num_asids;
25 
26 static atomic_long_t current_version;
27 
28 static DEFINE_RAW_SPINLOCK(context_lock);
29 static cpumask_t context_tlb_flush_pending;
30 static unsigned long *context_asid_map;
31 
32 static DEFINE_PER_CPU(atomic_long_t, active_context);
33 static DEFINE_PER_CPU(unsigned long, reserved_context);
34 
check_update_reserved_context(unsigned long cntx,unsigned long newcntx)35 static bool check_update_reserved_context(unsigned long cntx,
36 					  unsigned long newcntx)
37 {
38 	int cpu;
39 	bool hit = false;
40 
41 	/*
42 	 * Iterate over the set of reserved CONTEXT looking for a match.
43 	 * If we find one, then we can update our mm to use new CONTEXT
44 	 * (i.e. the same CONTEXT in the current_version) but we can't
45 	 * exit the loop early, since we need to ensure that all copies
46 	 * of the old CONTEXT are updated to reflect the mm. Failure to do
47 	 * so could result in us missing the reserved CONTEXT in a future
48 	 * version.
49 	 */
50 	for_each_possible_cpu(cpu) {
51 		if (per_cpu(reserved_context, cpu) == cntx) {
52 			hit = true;
53 			per_cpu(reserved_context, cpu) = newcntx;
54 		}
55 	}
56 
57 	return hit;
58 }
59 
__flush_context(void)60 static void __flush_context(void)
61 {
62 	int i;
63 	unsigned long cntx;
64 
65 	/* Must be called with context_lock held */
66 	lockdep_assert_held(&context_lock);
67 
68 	/* Update the list of reserved ASIDs and the ASID bitmap. */
69 	bitmap_zero(context_asid_map, num_asids);
70 
71 	/* Mark already active ASIDs as used */
72 	for_each_possible_cpu(i) {
73 		cntx = atomic_long_xchg_relaxed(&per_cpu(active_context, i), 0);
74 		/*
75 		 * If this CPU has already been through a rollover, but
76 		 * hasn't run another task in the meantime, we must preserve
77 		 * its reserved CONTEXT, as this is the only trace we have of
78 		 * the process it is still running.
79 		 */
80 		if (cntx == 0)
81 			cntx = per_cpu(reserved_context, i);
82 
83 		__set_bit(cntx2asid(cntx), context_asid_map);
84 		per_cpu(reserved_context, i) = cntx;
85 	}
86 
87 	/* Mark ASID #0 as used because it is used at boot-time */
88 	__set_bit(0, context_asid_map);
89 
90 	/* Queue a TLB invalidation for each CPU on next context-switch */
91 	cpumask_setall(&context_tlb_flush_pending);
92 }
93 
__new_context(struct mm_struct * mm)94 static unsigned long __new_context(struct mm_struct *mm)
95 {
96 	static u32 cur_idx = 1;
97 	unsigned long cntx = atomic_long_read(&mm->context.id);
98 	unsigned long asid, ver = atomic_long_read(&current_version);
99 
100 	/* Must be called with context_lock held */
101 	lockdep_assert_held(&context_lock);
102 
103 	if (cntx != 0) {
104 		unsigned long newcntx = ver | cntx2asid(cntx);
105 
106 		/*
107 		 * If our current CONTEXT was active during a rollover, we
108 		 * can continue to use it and this was just a false alarm.
109 		 */
110 		if (check_update_reserved_context(cntx, newcntx))
111 			return newcntx;
112 
113 		/*
114 		 * We had a valid CONTEXT in a previous life, so try to
115 		 * re-use it if possible.
116 		 */
117 		if (!__test_and_set_bit(cntx2asid(cntx), context_asid_map))
118 			return newcntx;
119 	}
120 
121 	/*
122 	 * Allocate a free ASID. If we can't find one then increment
123 	 * current_version and flush all ASIDs.
124 	 */
125 	asid = find_next_zero_bit(context_asid_map, num_asids, cur_idx);
126 	if (asid != num_asids)
127 		goto set_asid;
128 
129 	/* We're out of ASIDs, so increment current_version */
130 	ver = atomic_long_add_return_relaxed(BIT(SATP_ASID_BITS), &current_version);
131 
132 	/* Flush everything  */
133 	__flush_context();
134 
135 	/* We have more ASIDs than CPUs, so this will always succeed */
136 	asid = find_next_zero_bit(context_asid_map, num_asids, 1);
137 
138 set_asid:
139 	__set_bit(asid, context_asid_map);
140 	cur_idx = asid;
141 	return asid | ver;
142 }
143 
set_mm_asid(struct mm_struct * mm,unsigned int cpu)144 static void set_mm_asid(struct mm_struct *mm, unsigned int cpu)
145 {
146 	unsigned long flags;
147 	bool need_flush_tlb = false;
148 	unsigned long cntx, old_active_cntx;
149 
150 	cntx = atomic_long_read(&mm->context.id);
151 
152 	/*
153 	 * If our active_context is non-zero and the context matches the
154 	 * current_version, then we update the active_context entry with a
155 	 * relaxed cmpxchg.
156 	 *
157 	 * Following is how we handle racing with a concurrent rollover:
158 	 *
159 	 * - We get a zero back from the cmpxchg and end up waiting on the
160 	 *   lock. Taking the lock synchronises with the rollover and so
161 	 *   we are forced to see the updated verion.
162 	 *
163 	 * - We get a valid context back from the cmpxchg then we continue
164 	 *   using old ASID because __flush_context() would have marked ASID
165 	 *   of active_context as used and next context switch we will
166 	 *   allocate new context.
167 	 */
168 	old_active_cntx = atomic_long_read(&per_cpu(active_context, cpu));
169 	if (old_active_cntx &&
170 	    (cntx2version(cntx) == atomic_long_read(&current_version)) &&
171 	    atomic_long_cmpxchg_relaxed(&per_cpu(active_context, cpu),
172 					old_active_cntx, cntx))
173 		goto switch_mm_fast;
174 
175 	raw_spin_lock_irqsave(&context_lock, flags);
176 
177 	/* Check that our ASID belongs to the current_version. */
178 	cntx = atomic_long_read(&mm->context.id);
179 	if (cntx2version(cntx) != atomic_long_read(&current_version)) {
180 		cntx = __new_context(mm);
181 		atomic_long_set(&mm->context.id, cntx);
182 	}
183 
184 	if (cpumask_test_and_clear_cpu(cpu, &context_tlb_flush_pending))
185 		need_flush_tlb = true;
186 
187 	atomic_long_set(&per_cpu(active_context, cpu), cntx);
188 
189 	raw_spin_unlock_irqrestore(&context_lock, flags);
190 
191 switch_mm_fast:
192 	csr_write(CSR_SATP, virt_to_pfn(mm->pgd) |
193 		  (cntx2asid(cntx) << SATP_ASID_SHIFT) |
194 		  satp_mode);
195 
196 	if (need_flush_tlb)
197 		local_flush_tlb_all();
198 }
199 
set_mm_noasid(struct mm_struct * mm)200 static void set_mm_noasid(struct mm_struct *mm)
201 {
202 	/* Switch the page table and blindly nuke entire local TLB */
203 	csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | satp_mode);
204 	local_flush_tlb_all_asid(0);
205 }
206 
set_mm(struct mm_struct * prev,struct mm_struct * next,unsigned int cpu)207 static inline void set_mm(struct mm_struct *prev,
208 			  struct mm_struct *next, unsigned int cpu)
209 {
210 	/*
211 	 * The mm_cpumask indicates which harts' TLBs contain the virtual
212 	 * address mapping of the mm. Compared to noasid, using asid
213 	 * can't guarantee that stale TLB entries are invalidated because
214 	 * the asid mechanism wouldn't flush TLB for every switch_mm for
215 	 * performance. So when using asid, keep all CPUs footmarks in
216 	 * cpumask() until mm reset.
217 	 */
218 	cpumask_set_cpu(cpu, mm_cpumask(next));
219 	if (static_branch_unlikely(&use_asid_allocator)) {
220 		set_mm_asid(next, cpu);
221 	} else {
222 		cpumask_clear_cpu(cpu, mm_cpumask(prev));
223 		set_mm_noasid(next);
224 	}
225 }
226 
asids_init(void)227 static int __init asids_init(void)
228 {
229 	unsigned long asid_bits, old;
230 
231 	/* Figure-out number of ASID bits in HW */
232 	old = csr_read(CSR_SATP);
233 	asid_bits = old | (SATP_ASID_MASK << SATP_ASID_SHIFT);
234 	csr_write(CSR_SATP, asid_bits);
235 	asid_bits = (csr_read(CSR_SATP) >> SATP_ASID_SHIFT)  & SATP_ASID_MASK;
236 	asid_bits = fls_long(asid_bits);
237 	csr_write(CSR_SATP, old);
238 
239 	/*
240 	 * In the process of determining number of ASID bits (above)
241 	 * we polluted the TLB of current HART so let's do TLB flushed
242 	 * to remove unwanted TLB enteries.
243 	 */
244 	local_flush_tlb_all();
245 
246 	/* Pre-compute ASID details */
247 	if (asid_bits) {
248 		num_asids = 1 << asid_bits;
249 	}
250 
251 	/*
252 	 * Use ASID allocator only if number of HW ASIDs are
253 	 * at-least twice more than CPUs
254 	 */
255 	if (num_asids > (2 * num_possible_cpus())) {
256 		atomic_long_set(&current_version, BIT(SATP_ASID_BITS));
257 
258 		context_asid_map = bitmap_zalloc(num_asids, GFP_KERNEL);
259 		if (!context_asid_map)
260 			panic("Failed to allocate bitmap for %lu ASIDs\n",
261 			      num_asids);
262 
263 		__set_bit(0, context_asid_map);
264 
265 		static_branch_enable(&use_asid_allocator);
266 
267 		pr_info("ASID allocator using %lu bits (%lu entries)\n",
268 			asid_bits, num_asids);
269 	} else {
270 		pr_info("ASID allocator disabled (%lu bits)\n", asid_bits);
271 	}
272 
273 	return 0;
274 }
275 early_initcall(asids_init);
276 #else
set_mm(struct mm_struct * prev,struct mm_struct * next,unsigned int cpu)277 static inline void set_mm(struct mm_struct *prev,
278 			  struct mm_struct *next, unsigned int cpu)
279 {
280 	/* Nothing to do here when there is no MMU */
281 }
282 #endif
283 
284 /*
285  * When necessary, performs a deferred icache flush for the given MM context,
286  * on the local CPU.  RISC-V has no direct mechanism for instruction cache
287  * shoot downs, so instead we send an IPI that informs the remote harts they
288  * need to flush their local instruction caches.  To avoid pathologically slow
289  * behavior in a common case (a bunch of single-hart processes on a many-hart
290  * machine, ie 'make -j') we avoid the IPIs for harts that are not currently
291  * executing a MM context and instead schedule a deferred local instruction
292  * cache flush to be performed before execution resumes on each hart.  This
293  * actually performs that local instruction cache flush, which implicitly only
294  * refers to the current hart.
295  *
296  * The "cpu" argument must be the current local CPU number.
297  */
flush_icache_deferred(struct mm_struct * mm,unsigned int cpu,struct task_struct * task)298 static inline void flush_icache_deferred(struct mm_struct *mm, unsigned int cpu,
299 					 struct task_struct *task)
300 {
301 #ifdef CONFIG_SMP
302 	if (cpumask_test_and_clear_cpu(cpu, &mm->context.icache_stale_mask)) {
303 		/*
304 		 * Ensure the remote hart's writes are visible to this hart.
305 		 * This pairs with a barrier in flush_icache_mm.
306 		 */
307 		smp_mb();
308 
309 		/*
310 		 * If cache will be flushed in switch_to, no need to flush here.
311 		 */
312 		if (!(task && switch_to_should_flush_icache(task)))
313 			local_flush_icache_all();
314 	}
315 #endif
316 }
317 
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * task)318 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
319 	struct task_struct *task)
320 {
321 	unsigned int cpu;
322 
323 	if (unlikely(prev == next))
324 		return;
325 
326 	membarrier_arch_switch_mm(prev, next, task);
327 
328 	/*
329 	 * Mark the current MM context as inactive, and the next as
330 	 * active.  This is at least used by the icache flushing
331 	 * routines in order to determine who should be flushed.
332 	 */
333 	cpu = smp_processor_id();
334 
335 	set_mm(prev, next, cpu);
336 
337 	flush_icache_deferred(next, cpu, task);
338 }
339