1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright 2017 - Free Electrons 4 * 5 * Authors: 6 * Boris Brezillon <boris.brezillon@free-electrons.com> 7 * Peter Pan <peterpandong@micron.com> 8 */ 9 10 #ifndef __LINUX_MTD_NAND_H 11 #define __LINUX_MTD_NAND_H 12 13 #include <linux/mtd/mtd.h> 14 15 struct nand_device; 16 17 /** 18 * struct nand_memory_organization - Memory organization structure 19 * @bits_per_cell: number of bits per NAND cell 20 * @pagesize: page size 21 * @oobsize: OOB area size 22 * @pages_per_eraseblock: number of pages per eraseblock 23 * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number) 24 * @max_bad_eraseblocks_per_lun: maximum number of eraseblocks per LUN 25 * @planes_per_lun: number of planes per LUN 26 * @luns_per_target: number of LUN per target (target is a synonym for die) 27 * @ntargets: total number of targets exposed by the NAND device 28 */ 29 struct nand_memory_organization { 30 unsigned int bits_per_cell; 31 unsigned int pagesize; 32 unsigned int oobsize; 33 unsigned int pages_per_eraseblock; 34 unsigned int eraseblocks_per_lun; 35 unsigned int max_bad_eraseblocks_per_lun; 36 unsigned int planes_per_lun; 37 unsigned int luns_per_target; 38 unsigned int ntargets; 39 }; 40 41 #define NAND_MEMORG(bpc, ps, os, ppe, epl, mbb, ppl, lpt, nt) \ 42 { \ 43 .bits_per_cell = (bpc), \ 44 .pagesize = (ps), \ 45 .oobsize = (os), \ 46 .pages_per_eraseblock = (ppe), \ 47 .eraseblocks_per_lun = (epl), \ 48 .max_bad_eraseblocks_per_lun = (mbb), \ 49 .planes_per_lun = (ppl), \ 50 .luns_per_target = (lpt), \ 51 .ntargets = (nt), \ 52 } 53 54 /** 55 * struct nand_row_converter - Information needed to convert an absolute offset 56 * into a row address 57 * @lun_addr_shift: position of the LUN identifier in the row address 58 * @eraseblock_addr_shift: position of the eraseblock identifier in the row 59 * address 60 */ 61 struct nand_row_converter { 62 unsigned int lun_addr_shift; 63 unsigned int eraseblock_addr_shift; 64 }; 65 66 /** 67 * struct nand_pos - NAND position object 68 * @target: the NAND target/die 69 * @lun: the LUN identifier 70 * @plane: the plane within the LUN 71 * @eraseblock: the eraseblock within the LUN 72 * @page: the page within the LUN 73 * 74 * These information are usually used by specific sub-layers to select the 75 * appropriate target/die and generate a row address to pass to the device. 76 */ 77 struct nand_pos { 78 unsigned int target; 79 unsigned int lun; 80 unsigned int plane; 81 unsigned int eraseblock; 82 unsigned int page; 83 }; 84 85 /** 86 * enum nand_page_io_req_type - Direction of an I/O request 87 * @NAND_PAGE_READ: from the chip, to the controller 88 * @NAND_PAGE_WRITE: from the controller, to the chip 89 */ 90 enum nand_page_io_req_type { 91 NAND_PAGE_READ = 0, 92 NAND_PAGE_WRITE, 93 }; 94 95 /** 96 * struct nand_page_io_req - NAND I/O request object 97 * @type: the type of page I/O: read or write 98 * @pos: the position this I/O request is targeting 99 * @dataoffs: the offset within the page 100 * @datalen: number of data bytes to read from/write to this page 101 * @databuf: buffer to store data in or get data from 102 * @ooboffs: the OOB offset within the page 103 * @ooblen: the number of OOB bytes to read from/write to this page 104 * @oobbuf: buffer to store OOB data in or get OOB data from 105 * @mode: one of the %MTD_OPS_XXX mode 106 * @continuous: no need to start over the operation at the end of each page, the 107 * NAND device will automatically prepare the next one 108 * 109 * This object is used to pass per-page I/O requests to NAND sub-layers. This 110 * way all useful information are already formatted in a useful way and 111 * specific NAND layers can focus on translating these information into 112 * specific commands/operations. 113 */ 114 struct nand_page_io_req { 115 enum nand_page_io_req_type type; 116 struct nand_pos pos; 117 unsigned int dataoffs; 118 unsigned int datalen; 119 union { 120 const void *out; 121 void *in; 122 } databuf; 123 unsigned int ooboffs; 124 unsigned int ooblen; 125 union { 126 const void *out; 127 void *in; 128 } oobbuf; 129 int mode; 130 bool continuous; 131 }; 132 133 const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void); 134 const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void); 135 const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void); 136 137 /** 138 * enum nand_ecc_engine_type - NAND ECC engine type 139 * @NAND_ECC_ENGINE_TYPE_INVALID: Invalid value 140 * @NAND_ECC_ENGINE_TYPE_NONE: No ECC correction 141 * @NAND_ECC_ENGINE_TYPE_SOFT: Software ECC correction 142 * @NAND_ECC_ENGINE_TYPE_ON_HOST: On host hardware ECC correction 143 * @NAND_ECC_ENGINE_TYPE_ON_DIE: On chip hardware ECC correction 144 */ 145 enum nand_ecc_engine_type { 146 NAND_ECC_ENGINE_TYPE_INVALID, 147 NAND_ECC_ENGINE_TYPE_NONE, 148 NAND_ECC_ENGINE_TYPE_SOFT, 149 NAND_ECC_ENGINE_TYPE_ON_HOST, 150 NAND_ECC_ENGINE_TYPE_ON_DIE, 151 }; 152 153 /** 154 * enum nand_ecc_placement - NAND ECC bytes placement 155 * @NAND_ECC_PLACEMENT_UNKNOWN: The actual position of the ECC bytes is unknown 156 * @NAND_ECC_PLACEMENT_OOB: The ECC bytes are located in the OOB area 157 * @NAND_ECC_PLACEMENT_INTERLEAVED: Syndrome layout, there are ECC bytes 158 * interleaved with regular data in the main 159 * area 160 */ 161 enum nand_ecc_placement { 162 NAND_ECC_PLACEMENT_UNKNOWN, 163 NAND_ECC_PLACEMENT_OOB, 164 NAND_ECC_PLACEMENT_INTERLEAVED, 165 }; 166 167 /** 168 * enum nand_ecc_algo - NAND ECC algorithm 169 * @NAND_ECC_ALGO_UNKNOWN: Unknown algorithm 170 * @NAND_ECC_ALGO_HAMMING: Hamming algorithm 171 * @NAND_ECC_ALGO_BCH: Bose-Chaudhuri-Hocquenghem algorithm 172 * @NAND_ECC_ALGO_RS: Reed-Solomon algorithm 173 */ 174 enum nand_ecc_algo { 175 NAND_ECC_ALGO_UNKNOWN, 176 NAND_ECC_ALGO_HAMMING, 177 NAND_ECC_ALGO_BCH, 178 NAND_ECC_ALGO_RS, 179 }; 180 181 /** 182 * struct nand_ecc_props - NAND ECC properties 183 * @engine_type: ECC engine type 184 * @placement: OOB placement (if relevant) 185 * @algo: ECC algorithm (if relevant) 186 * @strength: ECC strength 187 * @step_size: Number of bytes per step 188 * @flags: Misc properties 189 */ 190 struct nand_ecc_props { 191 enum nand_ecc_engine_type engine_type; 192 enum nand_ecc_placement placement; 193 enum nand_ecc_algo algo; 194 unsigned int strength; 195 unsigned int step_size; 196 unsigned int flags; 197 }; 198 199 #define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) } 200 201 /* NAND ECC misc flags */ 202 #define NAND_ECC_MAXIMIZE_STRENGTH BIT(0) 203 204 /** 205 * struct nand_bbt - bad block table object 206 * @cache: in memory BBT cache 207 */ 208 struct nand_bbt { 209 unsigned long *cache; 210 }; 211 212 /** 213 * struct nand_ops - NAND operations 214 * @erase: erase a specific block. No need to check if the block is bad before 215 * erasing, this has been taken care of by the generic NAND layer 216 * @markbad: mark a specific block bad. No need to check if the block is 217 * already marked bad, this has been taken care of by the generic 218 * NAND layer. This method should just write the BBM (Bad Block 219 * Marker) so that future call to struct_nand_ops->isbad() return 220 * true 221 * @isbad: check whether a block is bad or not. This method should just read 222 * the BBM and return whether the block is bad or not based on what it 223 * reads 224 * 225 * These are all low level operations that should be implemented by specialized 226 * NAND layers (SPI NAND, raw NAND, ...). 227 */ 228 struct nand_ops { 229 int (*erase)(struct nand_device *nand, const struct nand_pos *pos); 230 int (*markbad)(struct nand_device *nand, const struct nand_pos *pos); 231 bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos); 232 }; 233 234 /** 235 * struct nand_ecc_context - Context for the ECC engine 236 * @conf: basic ECC engine parameters 237 * @nsteps: number of ECC steps 238 * @total: total number of bytes used for storing ECC codes, this is used by 239 * generic OOB layouts 240 * @priv: ECC engine driver private data 241 */ 242 struct nand_ecc_context { 243 struct nand_ecc_props conf; 244 unsigned int nsteps; 245 unsigned int total; 246 void *priv; 247 }; 248 249 /** 250 * struct nand_ecc_engine_ops - ECC engine operations 251 * @init_ctx: given a desired user configuration for the pointed NAND device, 252 * requests the ECC engine driver to setup a configuration with 253 * values it supports. 254 * @cleanup_ctx: clean the context initialized by @init_ctx. 255 * @prepare_io_req: is called before reading/writing a page to prepare the I/O 256 * request to be performed with ECC correction. 257 * @finish_io_req: is called after reading/writing a page to terminate the I/O 258 * request and ensure proper ECC correction. 259 */ 260 struct nand_ecc_engine_ops { 261 int (*init_ctx)(struct nand_device *nand); 262 void (*cleanup_ctx)(struct nand_device *nand); 263 int (*prepare_io_req)(struct nand_device *nand, 264 struct nand_page_io_req *req); 265 int (*finish_io_req)(struct nand_device *nand, 266 struct nand_page_io_req *req); 267 }; 268 269 /** 270 * enum nand_ecc_engine_integration - How the NAND ECC engine is integrated 271 * @NAND_ECC_ENGINE_INTEGRATION_INVALID: Invalid value 272 * @NAND_ECC_ENGINE_INTEGRATION_PIPELINED: Pipelined engine, performs on-the-fly 273 * correction, does not need to copy 274 * data around 275 * @NAND_ECC_ENGINE_INTEGRATION_EXTERNAL: External engine, needs to bring the 276 * data into its own area before use 277 */ 278 enum nand_ecc_engine_integration { 279 NAND_ECC_ENGINE_INTEGRATION_INVALID, 280 NAND_ECC_ENGINE_INTEGRATION_PIPELINED, 281 NAND_ECC_ENGINE_INTEGRATION_EXTERNAL, 282 }; 283 284 /** 285 * struct nand_ecc_engine - ECC engine abstraction for NAND devices 286 * @dev: Host device 287 * @node: Private field for registration time 288 * @ops: ECC engine operations 289 * @integration: How the engine is integrated with the host 290 * (only relevant on %NAND_ECC_ENGINE_TYPE_ON_HOST engines) 291 * @priv: Private data 292 */ 293 struct nand_ecc_engine { 294 struct device *dev; 295 struct list_head node; 296 struct nand_ecc_engine_ops *ops; 297 enum nand_ecc_engine_integration integration; 298 void *priv; 299 }; 300 301 void of_get_nand_ecc_user_config(struct nand_device *nand); 302 int nand_ecc_init_ctx(struct nand_device *nand); 303 void nand_ecc_cleanup_ctx(struct nand_device *nand); 304 int nand_ecc_prepare_io_req(struct nand_device *nand, 305 struct nand_page_io_req *req); 306 int nand_ecc_finish_io_req(struct nand_device *nand, 307 struct nand_page_io_req *req); 308 bool nand_ecc_is_strong_enough(struct nand_device *nand); 309 310 #if IS_REACHABLE(CONFIG_MTD_NAND_CORE) 311 int nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine); 312 int nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine); 313 #else 314 static inline int nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine * engine)315 nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine) 316 { 317 return -ENOTSUPP; 318 } 319 static inline int nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine * engine)320 nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine) 321 { 322 return -ENOTSUPP; 323 } 324 #endif 325 326 struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand); 327 struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand); 328 struct nand_ecc_engine *nand_ecc_get_on_host_hw_engine(struct nand_device *nand); 329 void nand_ecc_put_on_host_hw_engine(struct nand_device *nand); 330 struct device *nand_ecc_get_engine_dev(struct device *host); 331 332 #if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING) 333 struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void); 334 #else nand_ecc_sw_hamming_get_engine(void)335 static inline struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void) 336 { 337 return NULL; 338 } 339 #endif /* CONFIG_MTD_NAND_ECC_SW_HAMMING */ 340 341 #if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH) 342 struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void); 343 #else nand_ecc_sw_bch_get_engine(void)344 static inline struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void) 345 { 346 return NULL; 347 } 348 #endif /* CONFIG_MTD_NAND_ECC_SW_BCH */ 349 350 /** 351 * struct nand_ecc_req_tweak_ctx - Help for automatically tweaking requests 352 * @orig_req: Pointer to the original IO request 353 * @nand: Related NAND device, to have access to its memory organization 354 * @page_buffer_size: Real size of the page buffer to use (can be set by the 355 * user before the tweaking mechanism initialization) 356 * @oob_buffer_size: Real size of the OOB buffer to use (can be set by the 357 * user before the tweaking mechanism initialization) 358 * @spare_databuf: Data bounce buffer 359 * @spare_oobbuf: OOB bounce buffer 360 * @bounce_data: Flag indicating a data bounce buffer is used 361 * @bounce_oob: Flag indicating an OOB bounce buffer is used 362 */ 363 struct nand_ecc_req_tweak_ctx { 364 struct nand_page_io_req orig_req; 365 struct nand_device *nand; 366 unsigned int page_buffer_size; 367 unsigned int oob_buffer_size; 368 void *spare_databuf; 369 void *spare_oobbuf; 370 bool bounce_data; 371 bool bounce_oob; 372 }; 373 374 int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx, 375 struct nand_device *nand); 376 void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx); 377 void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx, 378 struct nand_page_io_req *req); 379 void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx, 380 struct nand_page_io_req *req); 381 382 /** 383 * struct nand_ecc - Information relative to the ECC 384 * @defaults: Default values, depend on the underlying subsystem 385 * @requirements: ECC requirements from the NAND chip perspective 386 * @user_conf: User desires in terms of ECC parameters 387 * @ctx: ECC context for the ECC engine, derived from the device @requirements 388 * the @user_conf and the @defaults 389 * @ondie_engine: On-die ECC engine reference, if any 390 * @engine: ECC engine actually bound 391 */ 392 struct nand_ecc { 393 struct nand_ecc_props defaults; 394 struct nand_ecc_props requirements; 395 struct nand_ecc_props user_conf; 396 struct nand_ecc_context ctx; 397 struct nand_ecc_engine *ondie_engine; 398 struct nand_ecc_engine *engine; 399 }; 400 401 /** 402 * struct nand_device - NAND device 403 * @mtd: MTD instance attached to the NAND device 404 * @memorg: memory layout 405 * @ecc: NAND ECC object attached to the NAND device 406 * @rowconv: position to row address converter 407 * @bbt: bad block table info 408 * @ops: NAND operations attached to the NAND device 409 * 410 * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND) 411 * should declare their own NAND object embedding a nand_device struct (that's 412 * how inheritance is done). 413 * struct_nand_device->memorg and struct_nand_device->ecc.requirements should 414 * be filled at device detection time to reflect the NAND device 415 * capabilities/requirements. Once this is done nanddev_init() can be called. 416 * It will take care of converting NAND information into MTD ones, which means 417 * the specialized NAND layers should never manually tweak 418 * struct_nand_device->mtd except for the ->_read/write() hooks. 419 */ 420 struct nand_device { 421 struct mtd_info mtd; 422 struct nand_memory_organization memorg; 423 struct nand_ecc ecc; 424 struct nand_row_converter rowconv; 425 struct nand_bbt bbt; 426 const struct nand_ops *ops; 427 }; 428 429 /** 430 * struct nand_io_iter - NAND I/O iterator 431 * @req: current I/O request 432 * @oobbytes_per_page: maximum number of OOB bytes per page 433 * @dataleft: remaining number of data bytes to read/write 434 * @oobleft: remaining number of OOB bytes to read/write 435 * 436 * Can be used by specialized NAND layers to iterate over all pages covered 437 * by an MTD I/O request, which should greatly simplifies the boiler-plate 438 * code needed to read/write data from/to a NAND device. 439 */ 440 struct nand_io_iter { 441 struct nand_page_io_req req; 442 unsigned int oobbytes_per_page; 443 unsigned int dataleft; 444 unsigned int oobleft; 445 }; 446 447 /** 448 * mtd_to_nanddev() - Get the NAND device attached to the MTD instance 449 * @mtd: MTD instance 450 * 451 * Return: the NAND device embedding @mtd. 452 */ mtd_to_nanddev(struct mtd_info * mtd)453 static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd) 454 { 455 return container_of(mtd, struct nand_device, mtd); 456 } 457 458 /** 459 * nanddev_to_mtd() - Get the MTD device attached to a NAND device 460 * @nand: NAND device 461 * 462 * Return: the MTD device embedded in @nand. 463 */ nanddev_to_mtd(struct nand_device * nand)464 static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand) 465 { 466 return &nand->mtd; 467 } 468 469 /* 470 * nanddev_bits_per_cell() - Get the number of bits per cell 471 * @nand: NAND device 472 * 473 * Return: the number of bits per cell. 474 */ nanddev_bits_per_cell(const struct nand_device * nand)475 static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand) 476 { 477 return nand->memorg.bits_per_cell; 478 } 479 480 /** 481 * nanddev_page_size() - Get NAND page size 482 * @nand: NAND device 483 * 484 * Return: the page size. 485 */ nanddev_page_size(const struct nand_device * nand)486 static inline size_t nanddev_page_size(const struct nand_device *nand) 487 { 488 return nand->memorg.pagesize; 489 } 490 491 /** 492 * nanddev_per_page_oobsize() - Get NAND OOB size 493 * @nand: NAND device 494 * 495 * Return: the OOB size. 496 */ 497 static inline unsigned int nanddev_per_page_oobsize(const struct nand_device * nand)498 nanddev_per_page_oobsize(const struct nand_device *nand) 499 { 500 return nand->memorg.oobsize; 501 } 502 503 /** 504 * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock 505 * @nand: NAND device 506 * 507 * Return: the number of pages per eraseblock. 508 */ 509 static inline unsigned int nanddev_pages_per_eraseblock(const struct nand_device * nand)510 nanddev_pages_per_eraseblock(const struct nand_device *nand) 511 { 512 return nand->memorg.pages_per_eraseblock; 513 } 514 515 /** 516 * nanddev_pages_per_target() - Get the number of pages per target 517 * @nand: NAND device 518 * 519 * Return: the number of pages per target. 520 */ 521 static inline unsigned int nanddev_pages_per_target(const struct nand_device * nand)522 nanddev_pages_per_target(const struct nand_device *nand) 523 { 524 return nand->memorg.pages_per_eraseblock * 525 nand->memorg.eraseblocks_per_lun * 526 nand->memorg.luns_per_target; 527 } 528 529 /** 530 * nanddev_per_page_oobsize() - Get NAND erase block size 531 * @nand: NAND device 532 * 533 * Return: the eraseblock size. 534 */ nanddev_eraseblock_size(const struct nand_device * nand)535 static inline size_t nanddev_eraseblock_size(const struct nand_device *nand) 536 { 537 return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock; 538 } 539 540 /** 541 * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN 542 * @nand: NAND device 543 * 544 * Return: the number of eraseblocks per LUN. 545 */ 546 static inline unsigned int nanddev_eraseblocks_per_lun(const struct nand_device * nand)547 nanddev_eraseblocks_per_lun(const struct nand_device *nand) 548 { 549 return nand->memorg.eraseblocks_per_lun; 550 } 551 552 /** 553 * nanddev_eraseblocks_per_target() - Get the number of eraseblocks per target 554 * @nand: NAND device 555 * 556 * Return: the number of eraseblocks per target. 557 */ 558 static inline unsigned int nanddev_eraseblocks_per_target(const struct nand_device * nand)559 nanddev_eraseblocks_per_target(const struct nand_device *nand) 560 { 561 return nand->memorg.eraseblocks_per_lun * nand->memorg.luns_per_target; 562 } 563 564 /** 565 * nanddev_target_size() - Get the total size provided by a single target/die 566 * @nand: NAND device 567 * 568 * Return: the total size exposed by a single target/die in bytes. 569 */ nanddev_target_size(const struct nand_device * nand)570 static inline u64 nanddev_target_size(const struct nand_device *nand) 571 { 572 return (u64)nand->memorg.luns_per_target * 573 nand->memorg.eraseblocks_per_lun * 574 nand->memorg.pages_per_eraseblock * 575 nand->memorg.pagesize; 576 } 577 578 /** 579 * nanddev_ntarget() - Get the total of targets 580 * @nand: NAND device 581 * 582 * Return: the number of targets/dies exposed by @nand. 583 */ nanddev_ntargets(const struct nand_device * nand)584 static inline unsigned int nanddev_ntargets(const struct nand_device *nand) 585 { 586 return nand->memorg.ntargets; 587 } 588 589 /** 590 * nanddev_neraseblocks() - Get the total number of eraseblocks 591 * @nand: NAND device 592 * 593 * Return: the total number of eraseblocks exposed by @nand. 594 */ nanddev_neraseblocks(const struct nand_device * nand)595 static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand) 596 { 597 return nand->memorg.ntargets * nand->memorg.luns_per_target * 598 nand->memorg.eraseblocks_per_lun; 599 } 600 601 /** 602 * nanddev_size() - Get NAND size 603 * @nand: NAND device 604 * 605 * Return: the total size (in bytes) exposed by @nand. 606 */ nanddev_size(const struct nand_device * nand)607 static inline u64 nanddev_size(const struct nand_device *nand) 608 { 609 return nanddev_target_size(nand) * nanddev_ntargets(nand); 610 } 611 612 /** 613 * nanddev_get_memorg() - Extract memory organization info from a NAND device 614 * @nand: NAND device 615 * 616 * This can be used by the upper layer to fill the memorg info before calling 617 * nanddev_init(). 618 * 619 * Return: the memorg object embedded in the NAND device. 620 */ 621 static inline struct nand_memory_organization * nanddev_get_memorg(struct nand_device * nand)622 nanddev_get_memorg(struct nand_device *nand) 623 { 624 return &nand->memorg; 625 } 626 627 /** 628 * nanddev_get_ecc_conf() - Extract the ECC configuration from a NAND device 629 * @nand: NAND device 630 */ 631 static inline const struct nand_ecc_props * nanddev_get_ecc_conf(struct nand_device * nand)632 nanddev_get_ecc_conf(struct nand_device *nand) 633 { 634 return &nand->ecc.ctx.conf; 635 } 636 637 /** 638 * nanddev_get_ecc_nsteps() - Extract the number of ECC steps 639 * @nand: NAND device 640 */ 641 static inline unsigned int nanddev_get_ecc_nsteps(struct nand_device * nand)642 nanddev_get_ecc_nsteps(struct nand_device *nand) 643 { 644 return nand->ecc.ctx.nsteps; 645 } 646 647 /** 648 * nanddev_get_ecc_bytes_per_step() - Extract the number of ECC bytes per step 649 * @nand: NAND device 650 */ 651 static inline unsigned int nanddev_get_ecc_bytes_per_step(struct nand_device * nand)652 nanddev_get_ecc_bytes_per_step(struct nand_device *nand) 653 { 654 return nand->ecc.ctx.total / nand->ecc.ctx.nsteps; 655 } 656 657 /** 658 * nanddev_get_ecc_requirements() - Extract the ECC requirements from a NAND 659 * device 660 * @nand: NAND device 661 */ 662 static inline const struct nand_ecc_props * nanddev_get_ecc_requirements(struct nand_device * nand)663 nanddev_get_ecc_requirements(struct nand_device *nand) 664 { 665 return &nand->ecc.requirements; 666 } 667 668 /** 669 * nanddev_set_ecc_requirements() - Assign the ECC requirements of a NAND 670 * device 671 * @nand: NAND device 672 * @reqs: Requirements 673 */ 674 static inline void nanddev_set_ecc_requirements(struct nand_device * nand,const struct nand_ecc_props * reqs)675 nanddev_set_ecc_requirements(struct nand_device *nand, 676 const struct nand_ecc_props *reqs) 677 { 678 nand->ecc.requirements = *reqs; 679 } 680 681 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops, 682 struct module *owner); 683 void nanddev_cleanup(struct nand_device *nand); 684 685 /** 686 * nanddev_register() - Register a NAND device 687 * @nand: NAND device 688 * 689 * Register a NAND device. 690 * This function is just a wrapper around mtd_device_register() 691 * registering the MTD device embedded in @nand. 692 * 693 * Return: 0 in case of success, a negative error code otherwise. 694 */ nanddev_register(struct nand_device * nand)695 static inline int nanddev_register(struct nand_device *nand) 696 { 697 return mtd_device_register(&nand->mtd, NULL, 0); 698 } 699 700 /** 701 * nanddev_unregister() - Unregister a NAND device 702 * @nand: NAND device 703 * 704 * Unregister a NAND device. 705 * This function is just a wrapper around mtd_device_unregister() 706 * unregistering the MTD device embedded in @nand. 707 * 708 * Return: 0 in case of success, a negative error code otherwise. 709 */ nanddev_unregister(struct nand_device * nand)710 static inline int nanddev_unregister(struct nand_device *nand) 711 { 712 return mtd_device_unregister(&nand->mtd); 713 } 714 715 /** 716 * nanddev_set_of_node() - Attach a DT node to a NAND device 717 * @nand: NAND device 718 * @np: DT node 719 * 720 * Attach a DT node to a NAND device. 721 */ nanddev_set_of_node(struct nand_device * nand,struct device_node * np)722 static inline void nanddev_set_of_node(struct nand_device *nand, 723 struct device_node *np) 724 { 725 mtd_set_of_node(&nand->mtd, np); 726 } 727 728 /** 729 * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device 730 * @nand: NAND device 731 * 732 * Return: the DT node attached to @nand. 733 */ nanddev_get_of_node(struct nand_device * nand)734 static inline struct device_node *nanddev_get_of_node(struct nand_device *nand) 735 { 736 return mtd_get_of_node(&nand->mtd); 737 } 738 739 /** 740 * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position 741 * @nand: NAND device 742 * @offs: absolute NAND offset (usually passed by the MTD layer) 743 * @pos: a NAND position object to fill in 744 * 745 * Converts @offs into a nand_pos representation. 746 * 747 * Return: the offset within the NAND page pointed by @pos. 748 */ nanddev_offs_to_pos(struct nand_device * nand,loff_t offs,struct nand_pos * pos)749 static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand, 750 loff_t offs, 751 struct nand_pos *pos) 752 { 753 unsigned int pageoffs; 754 u64 tmp = offs; 755 756 pageoffs = do_div(tmp, nand->memorg.pagesize); 757 pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock); 758 pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun); 759 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun; 760 pos->lun = do_div(tmp, nand->memorg.luns_per_target); 761 pos->target = tmp; 762 763 return pageoffs; 764 } 765 766 /** 767 * nanddev_pos_cmp() - Compare two NAND positions 768 * @a: First NAND position 769 * @b: Second NAND position 770 * 771 * Compares two NAND positions. 772 * 773 * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b. 774 */ nanddev_pos_cmp(const struct nand_pos * a,const struct nand_pos * b)775 static inline int nanddev_pos_cmp(const struct nand_pos *a, 776 const struct nand_pos *b) 777 { 778 if (a->target != b->target) 779 return a->target < b->target ? -1 : 1; 780 781 if (a->lun != b->lun) 782 return a->lun < b->lun ? -1 : 1; 783 784 if (a->eraseblock != b->eraseblock) 785 return a->eraseblock < b->eraseblock ? -1 : 1; 786 787 if (a->page != b->page) 788 return a->page < b->page ? -1 : 1; 789 790 return 0; 791 } 792 793 /** 794 * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset 795 * @nand: NAND device 796 * @pos: the NAND position to convert 797 * 798 * Converts @pos NAND position into an absolute offset. 799 * 800 * Return: the absolute offset. Note that @pos points to the beginning of a 801 * page, if one wants to point to a specific offset within this page 802 * the returned offset has to be adjusted manually. 803 */ nanddev_pos_to_offs(struct nand_device * nand,const struct nand_pos * pos)804 static inline loff_t nanddev_pos_to_offs(struct nand_device *nand, 805 const struct nand_pos *pos) 806 { 807 unsigned int npages; 808 809 npages = pos->page + 810 ((pos->eraseblock + 811 (pos->lun + 812 (pos->target * nand->memorg.luns_per_target)) * 813 nand->memorg.eraseblocks_per_lun) * 814 nand->memorg.pages_per_eraseblock); 815 816 return (loff_t)npages * nand->memorg.pagesize; 817 } 818 819 /** 820 * nanddev_pos_to_row() - Extract a row address from a NAND position 821 * @nand: NAND device 822 * @pos: the position to convert 823 * 824 * Converts a NAND position into a row address that can then be passed to the 825 * device. 826 * 827 * Return: the row address extracted from @pos. 828 */ nanddev_pos_to_row(struct nand_device * nand,const struct nand_pos * pos)829 static inline unsigned int nanddev_pos_to_row(struct nand_device *nand, 830 const struct nand_pos *pos) 831 { 832 return (pos->lun << nand->rowconv.lun_addr_shift) | 833 (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) | 834 pos->page; 835 } 836 837 /** 838 * nanddev_pos_next_target() - Move a position to the next target/die 839 * @nand: NAND device 840 * @pos: the position to update 841 * 842 * Updates @pos to point to the start of the next target/die. Useful when you 843 * want to iterate over all targets/dies of a NAND device. 844 */ nanddev_pos_next_target(struct nand_device * nand,struct nand_pos * pos)845 static inline void nanddev_pos_next_target(struct nand_device *nand, 846 struct nand_pos *pos) 847 { 848 pos->page = 0; 849 pos->plane = 0; 850 pos->eraseblock = 0; 851 pos->lun = 0; 852 pos->target++; 853 } 854 855 /** 856 * nanddev_pos_next_lun() - Move a position to the next LUN 857 * @nand: NAND device 858 * @pos: the position to update 859 * 860 * Updates @pos to point to the start of the next LUN. Useful when you want to 861 * iterate over all LUNs of a NAND device. 862 */ nanddev_pos_next_lun(struct nand_device * nand,struct nand_pos * pos)863 static inline void nanddev_pos_next_lun(struct nand_device *nand, 864 struct nand_pos *pos) 865 { 866 if (pos->lun >= nand->memorg.luns_per_target - 1) 867 return nanddev_pos_next_target(nand, pos); 868 869 pos->lun++; 870 pos->page = 0; 871 pos->plane = 0; 872 pos->eraseblock = 0; 873 } 874 875 /** 876 * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock 877 * @nand: NAND device 878 * @pos: the position to update 879 * 880 * Updates @pos to point to the start of the next eraseblock. Useful when you 881 * want to iterate over all eraseblocks of a NAND device. 882 */ nanddev_pos_next_eraseblock(struct nand_device * nand,struct nand_pos * pos)883 static inline void nanddev_pos_next_eraseblock(struct nand_device *nand, 884 struct nand_pos *pos) 885 { 886 if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1) 887 return nanddev_pos_next_lun(nand, pos); 888 889 pos->eraseblock++; 890 pos->page = 0; 891 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun; 892 } 893 894 /** 895 * nanddev_pos_next_page() - Move a position to the next page 896 * @nand: NAND device 897 * @pos: the position to update 898 * 899 * Updates @pos to point to the start of the next page. Useful when you want to 900 * iterate over all pages of a NAND device. 901 */ nanddev_pos_next_page(struct nand_device * nand,struct nand_pos * pos)902 static inline void nanddev_pos_next_page(struct nand_device *nand, 903 struct nand_pos *pos) 904 { 905 if (pos->page >= nand->memorg.pages_per_eraseblock - 1) 906 return nanddev_pos_next_eraseblock(nand, pos); 907 908 pos->page++; 909 } 910 911 /** 912 * nand_io_page_iter_init - Initialize a NAND I/O iterator 913 * @nand: NAND device 914 * @offs: absolute offset 915 * @req: MTD request 916 * @iter: NAND I/O iterator 917 * 918 * Initializes a NAND iterator based on the information passed by the MTD 919 * layer for page jumps. 920 */ nanddev_io_page_iter_init(struct nand_device * nand,enum nand_page_io_req_type reqtype,loff_t offs,struct mtd_oob_ops * req,struct nand_io_iter * iter)921 static inline void nanddev_io_page_iter_init(struct nand_device *nand, 922 enum nand_page_io_req_type reqtype, 923 loff_t offs, struct mtd_oob_ops *req, 924 struct nand_io_iter *iter) 925 { 926 struct mtd_info *mtd = nanddev_to_mtd(nand); 927 928 iter->req.type = reqtype; 929 iter->req.mode = req->mode; 930 iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos); 931 iter->req.ooboffs = req->ooboffs; 932 iter->oobbytes_per_page = mtd_oobavail(mtd, req); 933 iter->dataleft = req->len; 934 iter->oobleft = req->ooblen; 935 iter->req.databuf.in = req->datbuf; 936 iter->req.datalen = min_t(unsigned int, 937 nand->memorg.pagesize - iter->req.dataoffs, 938 iter->dataleft); 939 iter->req.oobbuf.in = req->oobbuf; 940 iter->req.ooblen = min_t(unsigned int, 941 iter->oobbytes_per_page - iter->req.ooboffs, 942 iter->oobleft); 943 iter->req.continuous = false; 944 } 945 946 /** 947 * nand_io_block_iter_init - Initialize a NAND I/O iterator 948 * @nand: NAND device 949 * @offs: absolute offset 950 * @req: MTD request 951 * @iter: NAND I/O iterator 952 * 953 * Initializes a NAND iterator based on the information passed by the MTD 954 * layer for block jumps (no OOB) 955 * 956 * In practice only reads may leverage this iterator. 957 */ nanddev_io_block_iter_init(struct nand_device * nand,enum nand_page_io_req_type reqtype,loff_t offs,struct mtd_oob_ops * req,struct nand_io_iter * iter)958 static inline void nanddev_io_block_iter_init(struct nand_device *nand, 959 enum nand_page_io_req_type reqtype, 960 loff_t offs, struct mtd_oob_ops *req, 961 struct nand_io_iter *iter) 962 { 963 unsigned int offs_in_eb; 964 965 iter->req.type = reqtype; 966 iter->req.mode = req->mode; 967 iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos); 968 iter->req.ooboffs = 0; 969 iter->oobbytes_per_page = 0; 970 iter->dataleft = req->len; 971 iter->oobleft = 0; 972 iter->req.databuf.in = req->datbuf; 973 offs_in_eb = (nand->memorg.pagesize * iter->req.pos.page) + iter->req.dataoffs; 974 iter->req.datalen = min_t(unsigned int, 975 nanddev_eraseblock_size(nand) - offs_in_eb, 976 iter->dataleft); 977 iter->req.oobbuf.in = NULL; 978 iter->req.ooblen = 0; 979 iter->req.continuous = true; 980 } 981 982 /** 983 * nand_io_iter_next_page - Move to the next page 984 * @nand: NAND device 985 * @iter: NAND I/O iterator 986 * 987 * Updates the @iter to point to the next page. 988 */ nanddev_io_iter_next_page(struct nand_device * nand,struct nand_io_iter * iter)989 static inline void nanddev_io_iter_next_page(struct nand_device *nand, 990 struct nand_io_iter *iter) 991 { 992 nanddev_pos_next_page(nand, &iter->req.pos); 993 iter->dataleft -= iter->req.datalen; 994 iter->req.databuf.in += iter->req.datalen; 995 iter->oobleft -= iter->req.ooblen; 996 iter->req.oobbuf.in += iter->req.ooblen; 997 iter->req.dataoffs = 0; 998 iter->req.ooboffs = 0; 999 iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize, 1000 iter->dataleft); 1001 iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page, 1002 iter->oobleft); 1003 } 1004 1005 /** 1006 * nand_io_iter_next_block - Move to the next block 1007 * @nand: NAND device 1008 * @iter: NAND I/O iterator 1009 * 1010 * Updates the @iter to point to the next block. 1011 * No OOB handling available. 1012 */ nanddev_io_iter_next_block(struct nand_device * nand,struct nand_io_iter * iter)1013 static inline void nanddev_io_iter_next_block(struct nand_device *nand, 1014 struct nand_io_iter *iter) 1015 { 1016 nanddev_pos_next_eraseblock(nand, &iter->req.pos); 1017 iter->dataleft -= iter->req.datalen; 1018 iter->req.databuf.in += iter->req.datalen; 1019 iter->req.dataoffs = 0; 1020 iter->req.datalen = min_t(unsigned int, nanddev_eraseblock_size(nand), 1021 iter->dataleft); 1022 } 1023 1024 /** 1025 * nand_io_iter_end - Should end iteration or not 1026 * @nand: NAND device 1027 * @iter: NAND I/O iterator 1028 * 1029 * Check whether @iter has reached the end of the NAND portion it was asked to 1030 * iterate on or not. 1031 * 1032 * Return: true if @iter has reached the end of the iteration request, false 1033 * otherwise. 1034 */ nanddev_io_iter_end(struct nand_device * nand,const struct nand_io_iter * iter)1035 static inline bool nanddev_io_iter_end(struct nand_device *nand, 1036 const struct nand_io_iter *iter) 1037 { 1038 if (iter->dataleft || iter->oobleft) 1039 return false; 1040 1041 return true; 1042 } 1043 1044 /** 1045 * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O 1046 * request 1047 * @nand: NAND device 1048 * @start: start address to read/write from 1049 * @req: MTD I/O request 1050 * @iter: NAND I/O iterator 1051 * 1052 * Should be used for iterating over pages that are contained in an MTD request. 1053 */ 1054 #define nanddev_io_for_each_page(nand, type, start, req, iter) \ 1055 for (nanddev_io_page_iter_init(nand, type, start, req, iter); \ 1056 !nanddev_io_iter_end(nand, iter); \ 1057 nanddev_io_iter_next_page(nand, iter)) 1058 1059 /** 1060 * nand_io_for_each_block - Iterate over all NAND pages contained in an MTD I/O 1061 * request, one block at a time 1062 * @nand: NAND device 1063 * @start: start address to read/write from 1064 * @req: MTD I/O request 1065 * @iter: NAND I/O iterator 1066 * 1067 * Should be used for iterating over blocks that are contained in an MTD request. 1068 */ 1069 #define nanddev_io_for_each_block(nand, type, start, req, iter) \ 1070 for (nanddev_io_block_iter_init(nand, type, start, req, iter); \ 1071 !nanddev_io_iter_end(nand, iter); \ 1072 nanddev_io_iter_next_block(nand, iter)) 1073 1074 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos); 1075 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos); 1076 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos); 1077 1078 /* ECC related functions */ 1079 int nanddev_ecc_engine_init(struct nand_device *nand); 1080 void nanddev_ecc_engine_cleanup(struct nand_device *nand); 1081 nand_to_ecc_ctx(struct nand_device * nand)1082 static inline void *nand_to_ecc_ctx(struct nand_device *nand) 1083 { 1084 return nand->ecc.ctx.priv; 1085 } 1086 1087 /* BBT related functions */ 1088 enum nand_bbt_block_status { 1089 NAND_BBT_BLOCK_STATUS_UNKNOWN, 1090 NAND_BBT_BLOCK_GOOD, 1091 NAND_BBT_BLOCK_WORN, 1092 NAND_BBT_BLOCK_RESERVED, 1093 NAND_BBT_BLOCK_FACTORY_BAD, 1094 NAND_BBT_BLOCK_NUM_STATUS, 1095 }; 1096 1097 int nanddev_bbt_init(struct nand_device *nand); 1098 void nanddev_bbt_cleanup(struct nand_device *nand); 1099 int nanddev_bbt_update(struct nand_device *nand); 1100 int nanddev_bbt_get_block_status(const struct nand_device *nand, 1101 unsigned int entry); 1102 int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry, 1103 enum nand_bbt_block_status status); 1104 int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block); 1105 1106 /** 1107 * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry 1108 * @nand: NAND device 1109 * @pos: the NAND position we want to get BBT entry for 1110 * 1111 * Return the BBT entry used to store information about the eraseblock pointed 1112 * by @pos. 1113 * 1114 * Return: the BBT entry storing information about eraseblock pointed by @pos. 1115 */ nanddev_bbt_pos_to_entry(struct nand_device * nand,const struct nand_pos * pos)1116 static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand, 1117 const struct nand_pos *pos) 1118 { 1119 return pos->eraseblock + 1120 ((pos->lun + (pos->target * nand->memorg.luns_per_target)) * 1121 nand->memorg.eraseblocks_per_lun); 1122 } 1123 1124 /** 1125 * nanddev_bbt_is_initialized() - Check if the BBT has been initialized 1126 * @nand: NAND device 1127 * 1128 * Return: true if the BBT has been initialized, false otherwise. 1129 */ nanddev_bbt_is_initialized(struct nand_device * nand)1130 static inline bool nanddev_bbt_is_initialized(struct nand_device *nand) 1131 { 1132 return !!nand->bbt.cache; 1133 } 1134 1135 /* MTD -> NAND helper functions. */ 1136 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo); 1137 int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len); 1138 1139 #endif /* __LINUX_MTD_NAND_H */ 1140