1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_MAPLE_TREE_H
3 #define _LINUX_MAPLE_TREE_H
4 /*
5 * Maple Tree - An RCU-safe adaptive tree for storing ranges
6 * Copyright (c) 2018-2022 Oracle
7 * Authors: Liam R. Howlett <Liam.Howlett@Oracle.com>
8 * Matthew Wilcox <willy@infradead.org>
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/rcupdate.h>
13 #include <linux/spinlock.h>
14 /* #define CONFIG_MAPLE_RCU_DISABLED */
15
16 /*
17 * Allocated nodes are mutable until they have been inserted into the tree,
18 * at which time they cannot change their type until they have been removed
19 * from the tree and an RCU grace period has passed.
20 *
21 * Removed nodes have their ->parent set to point to themselves. RCU readers
22 * check ->parent before relying on the value that they loaded from the
23 * slots array. This lets us reuse the slots array for the RCU head.
24 *
25 * Nodes in the tree point to their parent unless bit 0 is set.
26 */
27 #if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64)
28 /* 64bit sizes */
29 #define MAPLE_NODE_SLOTS 31 /* 256 bytes including ->parent */
30 #define MAPLE_RANGE64_SLOTS 16 /* 256 bytes */
31 #define MAPLE_ARANGE64_SLOTS 10 /* 240 bytes */
32 #define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 1)
33 #else
34 /* 32bit sizes */
35 #define MAPLE_NODE_SLOTS 63 /* 256 bytes including ->parent */
36 #define MAPLE_RANGE64_SLOTS 32 /* 256 bytes */
37 #define MAPLE_ARANGE64_SLOTS 21 /* 240 bytes */
38 #define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 2)
39 #endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */
40
41 #define MAPLE_NODE_MASK 255UL
42
43 /*
44 * The node->parent of the root node has bit 0 set and the rest of the pointer
45 * is a pointer to the tree itself. No more bits are available in this pointer
46 * (on m68k, the data structure may only be 2-byte aligned).
47 *
48 * Internal non-root nodes can only have maple_range_* nodes as parents. The
49 * parent pointer is 256B aligned like all other tree nodes. When storing a 32
50 * or 64 bit values, the offset can fit into 4 bits. The 16 bit values need an
51 * extra bit to store the offset. This extra bit comes from a reuse of the last
52 * bit in the node type. This is possible by using bit 1 to indicate if bit 2
53 * is part of the type or the slot.
54 *
55 * Once the type is decided, the decision of an allocation range type or a
56 * range type is done by examining the immutable tree flag for the
57 * MT_FLAGS_ALLOC_RANGE flag.
58 *
59 * Node types:
60 * 0x??1 = Root
61 * 0x?00 = 16 bit nodes
62 * 0x010 = 32 bit nodes
63 * 0x110 = 64 bit nodes
64 *
65 * Slot size and location in the parent pointer:
66 * type : slot location
67 * 0x??1 : Root
68 * 0x?00 : 16 bit values, type in 0-1, slot in 2-6
69 * 0x010 : 32 bit values, type in 0-2, slot in 3-6
70 * 0x110 : 64 bit values, type in 0-2, slot in 3-6
71 */
72
73 /*
74 * This metadata is used to optimize the gap updating code and in reverse
75 * searching for gaps or any other code that needs to find the end of the data.
76 */
77 struct maple_metadata {
78 unsigned char end;
79 unsigned char gap;
80 };
81
82 /*
83 * Leaf nodes do not store pointers to nodes, they store user data. Users may
84 * store almost any bit pattern. As noted above, the optimisation of storing an
85 * entry at 0 in the root pointer cannot be done for data which have the bottom
86 * two bits set to '10'. We also reserve values with the bottom two bits set to
87 * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use. Some APIs
88 * return errnos as a negative errno shifted right by two bits and the bottom
89 * two bits set to '10', and while choosing to store these values in the array
90 * is not an error, it may lead to confusion if you're testing for an error with
91 * mas_is_err().
92 *
93 * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits
94 * 3-6), bit 2 is reserved. That leaves bits 0-1 unused for now.
95 *
96 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
97 * indicate that the tree is specifying ranges, Pivots may appear in the
98 * subtree with an entry attached to the value whereas keys are unique to a
99 * specific position of a B-tree. Pivot values are inclusive of the slot with
100 * the same index.
101 */
102
103 struct maple_range_64 {
104 struct maple_pnode *parent;
105 unsigned long pivot[MAPLE_RANGE64_SLOTS - 1];
106 union {
107 void __rcu *slot[MAPLE_RANGE64_SLOTS];
108 struct {
109 void __rcu *pad[MAPLE_RANGE64_SLOTS - 1];
110 struct maple_metadata meta;
111 };
112 };
113 };
114
115 /*
116 * At tree creation time, the user can specify that they're willing to trade off
117 * storing fewer entries in a tree in return for storing more information in
118 * each node.
119 *
120 * The maple tree supports recording the largest range of NULL entries available
121 * in this node, also called gaps. This optimises the tree for allocating a
122 * range.
123 */
124 struct maple_arange_64 {
125 struct maple_pnode *parent;
126 unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1];
127 void __rcu *slot[MAPLE_ARANGE64_SLOTS];
128 unsigned long gap[MAPLE_ARANGE64_SLOTS];
129 struct maple_metadata meta;
130 };
131
132 struct maple_alloc {
133 unsigned long total;
134 unsigned char node_count;
135 unsigned int request_count;
136 struct maple_alloc *slot[MAPLE_ALLOC_SLOTS];
137 };
138
139 struct maple_topiary {
140 struct maple_pnode *parent;
141 struct maple_enode *next; /* Overlaps the pivot */
142 };
143
144 enum maple_type {
145 maple_dense,
146 maple_leaf_64,
147 maple_range_64,
148 maple_arange_64,
149 };
150
151 enum store_type {
152 wr_invalid,
153 wr_new_root,
154 wr_store_root,
155 wr_exact_fit,
156 wr_spanning_store,
157 wr_split_store,
158 wr_rebalance,
159 wr_append,
160 wr_node_store,
161 wr_slot_store,
162 };
163
164 /**
165 * DOC: Maple tree flags
166 *
167 * * MT_FLAGS_ALLOC_RANGE - Track gaps in this tree
168 * * MT_FLAGS_USE_RCU - Operate in RCU mode
169 * * MT_FLAGS_HEIGHT_OFFSET - The position of the tree height in the flags
170 * * MT_FLAGS_HEIGHT_MASK - The mask for the maple tree height value
171 * * MT_FLAGS_LOCK_MASK - How the mt_lock is used
172 * * MT_FLAGS_LOCK_IRQ - Acquired irq-safe
173 * * MT_FLAGS_LOCK_BH - Acquired bh-safe
174 * * MT_FLAGS_LOCK_EXTERN - mt_lock is not used
175 *
176 * MAPLE_HEIGHT_MAX The largest height that can be stored
177 */
178 #define MT_FLAGS_ALLOC_RANGE 0x01
179 #define MT_FLAGS_USE_RCU 0x02
180 #define MT_FLAGS_HEIGHT_OFFSET 0x02
181 #define MT_FLAGS_HEIGHT_MASK 0x7C
182 #define MT_FLAGS_LOCK_MASK 0x300
183 #define MT_FLAGS_LOCK_IRQ 0x100
184 #define MT_FLAGS_LOCK_BH 0x200
185 #define MT_FLAGS_LOCK_EXTERN 0x300
186 #define MT_FLAGS_ALLOC_WRAPPED 0x0800
187
188 #define MAPLE_HEIGHT_MAX 31
189
190
191 #define MAPLE_NODE_TYPE_MASK 0x0F
192 #define MAPLE_NODE_TYPE_SHIFT 0x03
193
194 #define MAPLE_RESERVED_RANGE 4096
195
196 #ifdef CONFIG_LOCKDEP
197 typedef struct lockdep_map *lockdep_map_p;
198 #define mt_lock_is_held(mt) \
199 (!(mt)->ma_external_lock || lock_is_held((mt)->ma_external_lock))
200
201 #define mt_write_lock_is_held(mt) \
202 (!(mt)->ma_external_lock || \
203 lock_is_held_type((mt)->ma_external_lock, 0))
204
205 #define mt_set_external_lock(mt, lock) \
206 (mt)->ma_external_lock = &(lock)->dep_map
207
208 #define mt_on_stack(mt) (mt).ma_external_lock = NULL
209 #else
210 typedef struct { /* nothing */ } lockdep_map_p;
211 #define mt_lock_is_held(mt) 1
212 #define mt_write_lock_is_held(mt) 1
213 #define mt_set_external_lock(mt, lock) do { } while (0)
214 #define mt_on_stack(mt) do { } while (0)
215 #endif
216
217 /*
218 * If the tree contains a single entry at index 0, it is usually stored in
219 * tree->ma_root. To optimise for the page cache, an entry which ends in '00',
220 * '01' or '11' is stored in the root, but an entry which ends in '10' will be
221 * stored in a node. Bits 3-6 are used to store enum maple_type.
222 *
223 * The flags are used both to store some immutable information about this tree
224 * (set at tree creation time) and dynamic information set under the spinlock.
225 *
226 * Another use of flags are to indicate global states of the tree. This is the
227 * case with the MAPLE_USE_RCU flag, which indicates the tree is currently in
228 * RCU mode. This mode was added to allow the tree to reuse nodes instead of
229 * re-allocating and RCU freeing nodes when there is a single user.
230 */
231 struct maple_tree {
232 union {
233 spinlock_t ma_lock;
234 lockdep_map_p ma_external_lock;
235 };
236 unsigned int ma_flags;
237 void __rcu *ma_root;
238 };
239
240 /**
241 * MTREE_INIT() - Initialize a maple tree
242 * @name: The maple tree name
243 * @__flags: The maple tree flags
244 *
245 */
246 #define MTREE_INIT(name, __flags) { \
247 .ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock), \
248 .ma_flags = __flags, \
249 .ma_root = NULL, \
250 }
251
252 /**
253 * MTREE_INIT_EXT() - Initialize a maple tree with an external lock.
254 * @name: The tree name
255 * @__flags: The maple tree flags
256 * @__lock: The external lock
257 */
258 #ifdef CONFIG_LOCKDEP
259 #define MTREE_INIT_EXT(name, __flags, __lock) { \
260 .ma_external_lock = &(__lock).dep_map, \
261 .ma_flags = (__flags), \
262 .ma_root = NULL, \
263 }
264 #else
265 #define MTREE_INIT_EXT(name, __flags, __lock) MTREE_INIT(name, __flags)
266 #endif
267
268 #define DEFINE_MTREE(name) \
269 struct maple_tree name = MTREE_INIT(name, 0)
270
271 #define mtree_lock(mt) spin_lock((&(mt)->ma_lock))
272 #define mtree_lock_nested(mas, subclass) \
273 spin_lock_nested((&(mt)->ma_lock), subclass)
274 #define mtree_unlock(mt) spin_unlock((&(mt)->ma_lock))
275
276 /*
277 * The Maple Tree squeezes various bits in at various points which aren't
278 * necessarily obvious. Usually, this is done by observing that pointers are
279 * N-byte aligned and thus the bottom log_2(N) bits are available for use. We
280 * don't use the high bits of pointers to store additional information because
281 * we don't know what bits are unused on any given architecture.
282 *
283 * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8
284 * low bits for our own purposes. Nodes are currently of 4 types:
285 * 1. Single pointer (Range is 0-0)
286 * 2. Non-leaf Allocation Range nodes
287 * 3. Non-leaf Range nodes
288 * 4. Leaf Range nodes All nodes consist of a number of node slots,
289 * pivots, and a parent pointer.
290 */
291
292 struct maple_node {
293 union {
294 struct {
295 struct maple_pnode *parent;
296 void __rcu *slot[MAPLE_NODE_SLOTS];
297 };
298 struct {
299 void *pad;
300 struct rcu_head rcu;
301 struct maple_enode *piv_parent;
302 unsigned char parent_slot;
303 enum maple_type type;
304 unsigned char slot_len;
305 unsigned int ma_flags;
306 };
307 struct maple_range_64 mr64;
308 struct maple_arange_64 ma64;
309 struct maple_alloc alloc;
310 };
311 };
312
313 /*
314 * More complicated stores can cause two nodes to become one or three and
315 * potentially alter the height of the tree. Either half of the tree may need
316 * to be rebalanced against the other. The ma_topiary struct is used to track
317 * which nodes have been 'cut' from the tree so that the change can be done
318 * safely at a later date. This is done to support RCU.
319 */
320 struct ma_topiary {
321 struct maple_enode *head;
322 struct maple_enode *tail;
323 struct maple_tree *mtree;
324 };
325
326 void *mtree_load(struct maple_tree *mt, unsigned long index);
327
328 int mtree_insert(struct maple_tree *mt, unsigned long index,
329 void *entry, gfp_t gfp);
330 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
331 unsigned long last, void *entry, gfp_t gfp);
332 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
333 void *entry, unsigned long size, unsigned long min,
334 unsigned long max, gfp_t gfp);
335 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
336 void *entry, unsigned long range_lo, unsigned long range_hi,
337 unsigned long *next, gfp_t gfp);
338 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
339 void *entry, unsigned long size, unsigned long min,
340 unsigned long max, gfp_t gfp);
341
342 int mtree_store_range(struct maple_tree *mt, unsigned long first,
343 unsigned long last, void *entry, gfp_t gfp);
344 int mtree_store(struct maple_tree *mt, unsigned long index,
345 void *entry, gfp_t gfp);
346 void *mtree_erase(struct maple_tree *mt, unsigned long index);
347
348 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp);
349 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp);
350
351 void mtree_destroy(struct maple_tree *mt);
352 void __mt_destroy(struct maple_tree *mt);
353
354 /**
355 * mtree_empty() - Determine if a tree has any present entries.
356 * @mt: Maple Tree.
357 *
358 * Context: Any context.
359 * Return: %true if the tree contains only NULL pointers.
360 */
mtree_empty(const struct maple_tree * mt)361 static inline bool mtree_empty(const struct maple_tree *mt)
362 {
363 return mt->ma_root == NULL;
364 }
365
366 /* Advanced API */
367
368 /*
369 * Maple State Status
370 * ma_active means the maple state is pointing to a node and offset and can
371 * continue operating on the tree.
372 * ma_start means we have not searched the tree.
373 * ma_root means we have searched the tree and the entry we found lives in
374 * the root of the tree (ie it has index 0, length 1 and is the only entry in
375 * the tree).
376 * ma_none means we have searched the tree and there is no node in the
377 * tree for this entry. For example, we searched for index 1 in an empty
378 * tree. Or we have a tree which points to a full leaf node and we
379 * searched for an entry which is larger than can be contained in that
380 * leaf node.
381 * ma_pause means the data within the maple state may be stale, restart the
382 * operation
383 * ma_overflow means the search has reached the upper limit of the search
384 * ma_underflow means the search has reached the lower limit of the search
385 * ma_error means there was an error, check the node for the error number.
386 */
387 enum maple_status {
388 ma_active,
389 ma_start,
390 ma_root,
391 ma_none,
392 ma_pause,
393 ma_overflow,
394 ma_underflow,
395 ma_error,
396 };
397
398 /*
399 * The maple state is defined in the struct ma_state and is used to keep track
400 * of information during operations, and even between operations when using the
401 * advanced API.
402 *
403 * If state->node has bit 0 set then it references a tree location which is not
404 * a node (eg the root). If bit 1 is set, the rest of the bits are a negative
405 * errno. Bit 2 (the 'unallocated slots' bit) is clear. Bits 3-6 indicate the
406 * node type.
407 *
408 * state->alloc either has a request number of nodes or an allocated node. If
409 * stat->alloc has a requested number of nodes, the first bit will be set (0x1)
410 * and the remaining bits are the value. If state->alloc is a node, then the
411 * node will be of type maple_alloc. maple_alloc has MAPLE_NODE_SLOTS - 1 for
412 * storing more allocated nodes, a total number of nodes allocated, and the
413 * node_count in this node. node_count is the number of allocated nodes in this
414 * node. The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further
415 * nodes into state->alloc->slot[0]'s node. Nodes are taken from state->alloc
416 * by removing a node from the state->alloc node until state->alloc->node_count
417 * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted
418 * to state->alloc. Nodes are pushed onto state->alloc by putting the current
419 * state->alloc into the pushed node's slot[0].
420 *
421 * The state also contains the implied min/max of the state->node, the depth of
422 * this search, and the offset. The implied min/max are either from the parent
423 * node or are 0-oo for the root node. The depth is incremented or decremented
424 * every time a node is walked down or up. The offset is the slot/pivot of
425 * interest in the node - either for reading or writing.
426 *
427 * When returning a value the maple state index and last respectively contain
428 * the start and end of the range for the entry. Ranges are inclusive in the
429 * Maple Tree.
430 *
431 * The status of the state is used to determine how the next action should treat
432 * the state. For instance, if the status is ma_start then the next action
433 * should start at the root of the tree and walk down. If the status is
434 * ma_pause then the node may be stale data and should be discarded. If the
435 * status is ma_overflow, then the last action hit the upper limit.
436 *
437 */
438 struct ma_state {
439 struct maple_tree *tree; /* The tree we're operating in */
440 unsigned long index; /* The index we're operating on - range start */
441 unsigned long last; /* The last index we're operating on - range end */
442 struct maple_enode *node; /* The node containing this entry */
443 unsigned long min; /* The minimum index of this node - implied pivot min */
444 unsigned long max; /* The maximum index of this node - implied pivot max */
445 struct maple_alloc *alloc; /* Allocated nodes for this operation */
446 enum maple_status status; /* The status of the state (active, start, none, etc) */
447 unsigned char depth; /* depth of tree descent during write */
448 unsigned char offset;
449 unsigned char mas_flags;
450 unsigned char end; /* The end of the node */
451 enum store_type store_type; /* The type of store needed for this operation */
452 };
453
454 struct ma_wr_state {
455 struct ma_state *mas;
456 struct maple_node *node; /* Decoded mas->node */
457 unsigned long r_min; /* range min */
458 unsigned long r_max; /* range max */
459 enum maple_type type; /* mas->node type */
460 unsigned char offset_end; /* The offset where the write ends */
461 unsigned long *pivots; /* mas->node->pivots pointer */
462 unsigned long end_piv; /* The pivot at the offset end */
463 void __rcu **slots; /* mas->node->slots pointer */
464 void *entry; /* The entry to write */
465 void *content; /* The existing entry that is being overwritten */
466 };
467
468 #define mas_lock(mas) spin_lock(&((mas)->tree->ma_lock))
469 #define mas_lock_nested(mas, subclass) \
470 spin_lock_nested(&((mas)->tree->ma_lock), subclass)
471 #define mas_unlock(mas) spin_unlock(&((mas)->tree->ma_lock))
472
473 /*
474 * Special values for ma_state.node.
475 * MA_ERROR represents an errno. After dropping the lock and attempting
476 * to resolve the error, the walk would have to be restarted from the
477 * top of the tree as the tree may have been modified.
478 */
479 #define MA_ERROR(err) \
480 ((struct maple_enode *)(((unsigned long)err << 2) | 2UL))
481
482 #define MA_STATE(name, mt, first, end) \
483 struct ma_state name = { \
484 .tree = mt, \
485 .index = first, \
486 .last = end, \
487 .node = NULL, \
488 .status = ma_start, \
489 .min = 0, \
490 .max = ULONG_MAX, \
491 .alloc = NULL, \
492 .mas_flags = 0, \
493 .store_type = wr_invalid, \
494 }
495
496 #define MA_WR_STATE(name, ma_state, wr_entry) \
497 struct ma_wr_state name = { \
498 .mas = ma_state, \
499 .content = NULL, \
500 .entry = wr_entry, \
501 }
502
503 #define MA_TOPIARY(name, tree) \
504 struct ma_topiary name = { \
505 .head = NULL, \
506 .tail = NULL, \
507 .mtree = tree, \
508 }
509
510 void *mas_walk(struct ma_state *mas);
511 void *mas_store(struct ma_state *mas, void *entry);
512 void *mas_erase(struct ma_state *mas);
513 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp);
514 void mas_store_prealloc(struct ma_state *mas, void *entry);
515 void *mas_find(struct ma_state *mas, unsigned long max);
516 void *mas_find_range(struct ma_state *mas, unsigned long max);
517 void *mas_find_rev(struct ma_state *mas, unsigned long min);
518 void *mas_find_range_rev(struct ma_state *mas, unsigned long max);
519 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp);
520 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
521 void *entry, unsigned long range_lo, unsigned long range_hi,
522 unsigned long *next, gfp_t gfp);
523
524 bool mas_nomem(struct ma_state *mas, gfp_t gfp);
525 void mas_pause(struct ma_state *mas);
526 void maple_tree_init(void);
527 void mas_destroy(struct ma_state *mas);
528 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries);
529
530 void *mas_prev(struct ma_state *mas, unsigned long min);
531 void *mas_prev_range(struct ma_state *mas, unsigned long max);
532 void *mas_next(struct ma_state *mas, unsigned long max);
533 void *mas_next_range(struct ma_state *mas, unsigned long max);
534
535 int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max,
536 unsigned long size);
537 /*
538 * This finds an empty area from the highest address to the lowest.
539 * AKA "Topdown" version,
540 */
541 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
542 unsigned long max, unsigned long size);
543
mas_init(struct ma_state * mas,struct maple_tree * tree,unsigned long addr)544 static inline void mas_init(struct ma_state *mas, struct maple_tree *tree,
545 unsigned long addr)
546 {
547 memset(mas, 0, sizeof(struct ma_state));
548 mas->tree = tree;
549 mas->index = mas->last = addr;
550 mas->max = ULONG_MAX;
551 mas->status = ma_start;
552 mas->node = NULL;
553 }
554
mas_is_active(struct ma_state * mas)555 static inline bool mas_is_active(struct ma_state *mas)
556 {
557 return mas->status == ma_active;
558 }
559
mas_is_err(struct ma_state * mas)560 static inline bool mas_is_err(struct ma_state *mas)
561 {
562 return mas->status == ma_error;
563 }
564
565 /**
566 * mas_reset() - Reset a Maple Tree operation state.
567 * @mas: Maple Tree operation state.
568 *
569 * Resets the error or walk state of the @mas so future walks of the
570 * array will start from the root. Use this if you have dropped the
571 * lock and want to reuse the ma_state.
572 *
573 * Context: Any context.
574 */
mas_reset(struct ma_state * mas)575 static __always_inline void mas_reset(struct ma_state *mas)
576 {
577 mas->status = ma_start;
578 mas->node = NULL;
579 }
580
581 /**
582 * mas_for_each() - Iterate over a range of the maple tree.
583 * @__mas: Maple Tree operation state (maple_state)
584 * @__entry: Entry retrieved from the tree
585 * @__max: maximum index to retrieve from the tree
586 *
587 * When returned, mas->index and mas->last will hold the entire range for the
588 * entry.
589 *
590 * Note: may return the zero entry.
591 */
592 #define mas_for_each(__mas, __entry, __max) \
593 while (((__entry) = mas_find((__mas), (__max))) != NULL)
594
595 #ifdef CONFIG_DEBUG_MAPLE_TREE
596 enum mt_dump_format {
597 mt_dump_dec,
598 mt_dump_hex,
599 };
600
601 extern atomic_t maple_tree_tests_run;
602 extern atomic_t maple_tree_tests_passed;
603
604 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format);
605 void mas_dump(const struct ma_state *mas);
606 void mas_wr_dump(const struct ma_wr_state *wr_mas);
607 void mt_validate(struct maple_tree *mt);
608 void mt_cache_shrink(void);
609 #define MT_BUG_ON(__tree, __x) do { \
610 atomic_inc(&maple_tree_tests_run); \
611 if (__x) { \
612 pr_info("BUG at %s:%d (%u)\n", \
613 __func__, __LINE__, __x); \
614 mt_dump(__tree, mt_dump_hex); \
615 pr_info("Pass: %u Run:%u\n", \
616 atomic_read(&maple_tree_tests_passed), \
617 atomic_read(&maple_tree_tests_run)); \
618 dump_stack(); \
619 } else { \
620 atomic_inc(&maple_tree_tests_passed); \
621 } \
622 } while (0)
623
624 #define MAS_BUG_ON(__mas, __x) do { \
625 atomic_inc(&maple_tree_tests_run); \
626 if (__x) { \
627 pr_info("BUG at %s:%d (%u)\n", \
628 __func__, __LINE__, __x); \
629 mas_dump(__mas); \
630 mt_dump((__mas)->tree, mt_dump_hex); \
631 pr_info("Pass: %u Run:%u\n", \
632 atomic_read(&maple_tree_tests_passed), \
633 atomic_read(&maple_tree_tests_run)); \
634 dump_stack(); \
635 } else { \
636 atomic_inc(&maple_tree_tests_passed); \
637 } \
638 } while (0)
639
640 #define MAS_WR_BUG_ON(__wrmas, __x) do { \
641 atomic_inc(&maple_tree_tests_run); \
642 if (__x) { \
643 pr_info("BUG at %s:%d (%u)\n", \
644 __func__, __LINE__, __x); \
645 mas_wr_dump(__wrmas); \
646 mas_dump((__wrmas)->mas); \
647 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \
648 pr_info("Pass: %u Run:%u\n", \
649 atomic_read(&maple_tree_tests_passed), \
650 atomic_read(&maple_tree_tests_run)); \
651 dump_stack(); \
652 } else { \
653 atomic_inc(&maple_tree_tests_passed); \
654 } \
655 } while (0)
656
657 #define MT_WARN_ON(__tree, __x) ({ \
658 int ret = !!(__x); \
659 atomic_inc(&maple_tree_tests_run); \
660 if (ret) { \
661 pr_info("WARN at %s:%d (%u)\n", \
662 __func__, __LINE__, __x); \
663 mt_dump(__tree, mt_dump_hex); \
664 pr_info("Pass: %u Run:%u\n", \
665 atomic_read(&maple_tree_tests_passed), \
666 atomic_read(&maple_tree_tests_run)); \
667 dump_stack(); \
668 } else { \
669 atomic_inc(&maple_tree_tests_passed); \
670 } \
671 unlikely(ret); \
672 })
673
674 #define MAS_WARN_ON(__mas, __x) ({ \
675 int ret = !!(__x); \
676 atomic_inc(&maple_tree_tests_run); \
677 if (ret) { \
678 pr_info("WARN at %s:%d (%u)\n", \
679 __func__, __LINE__, __x); \
680 mas_dump(__mas); \
681 mt_dump((__mas)->tree, mt_dump_hex); \
682 pr_info("Pass: %u Run:%u\n", \
683 atomic_read(&maple_tree_tests_passed), \
684 atomic_read(&maple_tree_tests_run)); \
685 dump_stack(); \
686 } else { \
687 atomic_inc(&maple_tree_tests_passed); \
688 } \
689 unlikely(ret); \
690 })
691
692 #define MAS_WR_WARN_ON(__wrmas, __x) ({ \
693 int ret = !!(__x); \
694 atomic_inc(&maple_tree_tests_run); \
695 if (ret) { \
696 pr_info("WARN at %s:%d (%u)\n", \
697 __func__, __LINE__, __x); \
698 mas_wr_dump(__wrmas); \
699 mas_dump((__wrmas)->mas); \
700 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \
701 pr_info("Pass: %u Run:%u\n", \
702 atomic_read(&maple_tree_tests_passed), \
703 atomic_read(&maple_tree_tests_run)); \
704 dump_stack(); \
705 } else { \
706 atomic_inc(&maple_tree_tests_passed); \
707 } \
708 unlikely(ret); \
709 })
710 #else
711 #define MT_BUG_ON(__tree, __x) BUG_ON(__x)
712 #define MAS_BUG_ON(__mas, __x) BUG_ON(__x)
713 #define MAS_WR_BUG_ON(__mas, __x) BUG_ON(__x)
714 #define MT_WARN_ON(__tree, __x) WARN_ON(__x)
715 #define MAS_WARN_ON(__mas, __x) WARN_ON(__x)
716 #define MAS_WR_WARN_ON(__mas, __x) WARN_ON(__x)
717 #endif /* CONFIG_DEBUG_MAPLE_TREE */
718
719 /**
720 * __mas_set_range() - Set up Maple Tree operation state to a sub-range of the
721 * current location.
722 * @mas: Maple Tree operation state.
723 * @start: New start of range in the Maple Tree.
724 * @last: New end of range in the Maple Tree.
725 *
726 * set the internal maple state values to a sub-range.
727 * Please use mas_set_range() if you do not know where you are in the tree.
728 */
__mas_set_range(struct ma_state * mas,unsigned long start,unsigned long last)729 static inline void __mas_set_range(struct ma_state *mas, unsigned long start,
730 unsigned long last)
731 {
732 /* Ensure the range starts within the current slot */
733 MAS_WARN_ON(mas, mas_is_active(mas) &&
734 (mas->index > start || mas->last < start));
735 mas->index = start;
736 mas->last = last;
737 }
738
739 /**
740 * mas_set_range() - Set up Maple Tree operation state for a different index.
741 * @mas: Maple Tree operation state.
742 * @start: New start of range in the Maple Tree.
743 * @last: New end of range in the Maple Tree.
744 *
745 * Move the operation state to refer to a different range. This will
746 * have the effect of starting a walk from the top; see mas_next()
747 * to move to an adjacent index.
748 */
749 static inline
mas_set_range(struct ma_state * mas,unsigned long start,unsigned long last)750 void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last)
751 {
752 mas_reset(mas);
753 __mas_set_range(mas, start, last);
754 }
755
756 /**
757 * mas_set() - Set up Maple Tree operation state for a different index.
758 * @mas: Maple Tree operation state.
759 * @index: New index into the Maple Tree.
760 *
761 * Move the operation state to refer to a different index. This will
762 * have the effect of starting a walk from the top; see mas_next()
763 * to move to an adjacent index.
764 */
mas_set(struct ma_state * mas,unsigned long index)765 static inline void mas_set(struct ma_state *mas, unsigned long index)
766 {
767
768 mas_set_range(mas, index, index);
769 }
770
mt_external_lock(const struct maple_tree * mt)771 static inline bool mt_external_lock(const struct maple_tree *mt)
772 {
773 return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN;
774 }
775
776 /**
777 * mt_init_flags() - Initialise an empty maple tree with flags.
778 * @mt: Maple Tree
779 * @flags: maple tree flags.
780 *
781 * If you need to initialise a Maple Tree with special flags (eg, an
782 * allocation tree), use this function.
783 *
784 * Context: Any context.
785 */
mt_init_flags(struct maple_tree * mt,unsigned int flags)786 static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags)
787 {
788 mt->ma_flags = flags;
789 if (!mt_external_lock(mt))
790 spin_lock_init(&mt->ma_lock);
791 rcu_assign_pointer(mt->ma_root, NULL);
792 }
793
794 /**
795 * mt_init() - Initialise an empty maple tree.
796 * @mt: Maple Tree
797 *
798 * An empty Maple Tree.
799 *
800 * Context: Any context.
801 */
mt_init(struct maple_tree * mt)802 static inline void mt_init(struct maple_tree *mt)
803 {
804 mt_init_flags(mt, 0);
805 }
806
mt_in_rcu(struct maple_tree * mt)807 static inline bool mt_in_rcu(struct maple_tree *mt)
808 {
809 #ifdef CONFIG_MAPLE_RCU_DISABLED
810 return false;
811 #endif
812 return mt->ma_flags & MT_FLAGS_USE_RCU;
813 }
814
815 /**
816 * mt_clear_in_rcu() - Switch the tree to non-RCU mode.
817 * @mt: The Maple Tree
818 */
mt_clear_in_rcu(struct maple_tree * mt)819 static inline void mt_clear_in_rcu(struct maple_tree *mt)
820 {
821 if (!mt_in_rcu(mt))
822 return;
823
824 if (mt_external_lock(mt)) {
825 WARN_ON(!mt_lock_is_held(mt));
826 mt->ma_flags &= ~MT_FLAGS_USE_RCU;
827 } else {
828 mtree_lock(mt);
829 mt->ma_flags &= ~MT_FLAGS_USE_RCU;
830 mtree_unlock(mt);
831 }
832 }
833
834 /**
835 * mt_set_in_rcu() - Switch the tree to RCU safe mode.
836 * @mt: The Maple Tree
837 */
mt_set_in_rcu(struct maple_tree * mt)838 static inline void mt_set_in_rcu(struct maple_tree *mt)
839 {
840 if (mt_in_rcu(mt))
841 return;
842
843 if (mt_external_lock(mt)) {
844 WARN_ON(!mt_lock_is_held(mt));
845 mt->ma_flags |= MT_FLAGS_USE_RCU;
846 } else {
847 mtree_lock(mt);
848 mt->ma_flags |= MT_FLAGS_USE_RCU;
849 mtree_unlock(mt);
850 }
851 }
852
mt_height(const struct maple_tree * mt)853 static inline unsigned int mt_height(const struct maple_tree *mt)
854 {
855 return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET;
856 }
857
858 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max);
859 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
860 unsigned long max);
861 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min);
862 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max);
863
864 /**
865 * mt_for_each - Iterate over each entry starting at index until max.
866 * @__tree: The Maple Tree
867 * @__entry: The current entry
868 * @__index: The index to start the search from. Subsequently used as iterator.
869 * @__max: The maximum limit for @index
870 *
871 * This iterator skips all entries, which resolve to a NULL pointer,
872 * e.g. entries which has been reserved with XA_ZERO_ENTRY.
873 */
874 #define mt_for_each(__tree, __entry, __index, __max) \
875 for (__entry = mt_find(__tree, &(__index), __max); \
876 __entry; __entry = mt_find_after(__tree, &(__index), __max))
877
878 #endif /*_LINUX_MAPLE_TREE_H */
879