1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <linux/memremap.h>
10 #include <linux/pkeys.h>
11 #include <linux/debugfs.h>
12 #include <linux/proc_fs.h>
13 #include <misc/cxl-base.h>
14
15 #include <asm/pgalloc.h>
16 #include <asm/tlb.h>
17 #include <asm/trace.h>
18 #include <asm/powernv.h>
19 #include <asm/firmware.h>
20 #include <asm/ultravisor.h>
21 #include <asm/kexec.h>
22
23 #include <mm/mmu_decl.h>
24 #include <trace/events/thp.h>
25
26 #include "internal.h"
27
28 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
29 EXPORT_SYMBOL_GPL(mmu_psize_defs);
30
31 #ifdef CONFIG_SPARSEMEM_VMEMMAP
32 int mmu_vmemmap_psize = MMU_PAGE_4K;
33 #endif
34
35 unsigned long __pmd_frag_nr;
36 EXPORT_SYMBOL(__pmd_frag_nr);
37 unsigned long __pmd_frag_size_shift;
38 EXPORT_SYMBOL(__pmd_frag_size_shift);
39
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
41 /*
42 * This is called when relaxing access to a hugepage. It's also called in the page
43 * fault path when we don't hit any of the major fault cases, ie, a minor
44 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
45 * handled those two for us, we additionally deal with missing execute
46 * permission here on some processors
47 */
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)48 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
49 pmd_t *pmdp, pmd_t entry, int dirty)
50 {
51 int changed;
52 #ifdef CONFIG_DEBUG_VM
53 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
54 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
55 #endif
56 changed = !pmd_same(*(pmdp), entry);
57 if (changed) {
58 /*
59 * We can use MMU_PAGE_2M here, because only radix
60 * path look at the psize.
61 */
62 __ptep_set_access_flags(vma, pmdp_ptep(pmdp),
63 pmd_pte(entry), address, MMU_PAGE_2M);
64 }
65 return changed;
66 }
67
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)68 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
69 pud_t *pudp, pud_t entry, int dirty)
70 {
71 int changed;
72 #ifdef CONFIG_DEBUG_VM
73 WARN_ON(!pud_devmap(*pudp));
74 assert_spin_locked(pud_lockptr(vma->vm_mm, pudp));
75 #endif
76 changed = !pud_same(*(pudp), entry);
77 if (changed) {
78 /*
79 * We can use MMU_PAGE_1G here, because only radix
80 * path look at the psize.
81 */
82 __ptep_set_access_flags(vma, pudp_ptep(pudp),
83 pud_pte(entry), address, MMU_PAGE_1G);
84 }
85 return changed;
86 }
87
88
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)89 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
90 unsigned long address, pmd_t *pmdp)
91 {
92 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
93 }
94
pudp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pud_t * pudp)95 int pudp_test_and_clear_young(struct vm_area_struct *vma,
96 unsigned long address, pud_t *pudp)
97 {
98 return __pudp_test_and_clear_young(vma->vm_mm, address, pudp);
99 }
100
101 /*
102 * set a new huge pmd. We should not be called for updating
103 * an existing pmd entry. That should go via pmd_hugepage_update.
104 */
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)105 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
106 pmd_t *pmdp, pmd_t pmd)
107 {
108 #ifdef CONFIG_DEBUG_VM
109 /*
110 * Make sure hardware valid bit is not set. We don't do
111 * tlb flush for this update.
112 */
113
114 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
115 assert_spin_locked(pmd_lockptr(mm, pmdp));
116 WARN_ON(!(pmd_leaf(pmd)));
117 #endif
118 trace_hugepage_set_pmd(addr, pmd_val(pmd));
119 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
120 }
121
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)122 void set_pud_at(struct mm_struct *mm, unsigned long addr,
123 pud_t *pudp, pud_t pud)
124 {
125 #ifdef CONFIG_DEBUG_VM
126 /*
127 * Make sure hardware valid bit is not set. We don't do
128 * tlb flush for this update.
129 */
130
131 WARN_ON(pte_hw_valid(pud_pte(*pudp)));
132 assert_spin_locked(pud_lockptr(mm, pudp));
133 WARN_ON(!(pud_leaf(pud)));
134 #endif
135 trace_hugepage_set_pud(addr, pud_val(pud));
136 return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud));
137 }
138
do_serialize(void * arg)139 static void do_serialize(void *arg)
140 {
141 /* We've taken the IPI, so try to trim the mask while here */
142 if (radix_enabled()) {
143 struct mm_struct *mm = arg;
144 exit_lazy_flush_tlb(mm, false);
145 }
146 }
147
148 /*
149 * Serialize against __find_linux_pte() which does lock-less
150 * lookup in page tables with local interrupts disabled. For huge pages
151 * it casts pmd_t to pte_t. Since format of pte_t is different from
152 * pmd_t we want to prevent transit from pmd pointing to page table
153 * to pmd pointing to huge page (and back) while interrupts are disabled.
154 * We clear pmd to possibly replace it with page table pointer in
155 * different code paths. So make sure we wait for the parallel
156 * __find_linux_pte() to finish.
157 */
serialize_against_pte_lookup(struct mm_struct * mm)158 void serialize_against_pte_lookup(struct mm_struct *mm)
159 {
160 smp_mb();
161 smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
162 }
163
164 /*
165 * We use this to invalidate a pmdp entry before switching from a
166 * hugepte to regular pmd entry.
167 */
pmdp_invalidate(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)168 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
169 pmd_t *pmdp)
170 {
171 unsigned long old_pmd;
172
173 VM_WARN_ON_ONCE(!pmd_present(*pmdp));
174 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
175 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
176 return __pmd(old_pmd);
177 }
178
pudp_invalidate(struct vm_area_struct * vma,unsigned long address,pud_t * pudp)179 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
180 pud_t *pudp)
181 {
182 unsigned long old_pud;
183
184 VM_WARN_ON_ONCE(!pud_present(*pudp));
185 old_pud = pud_hugepage_update(vma->vm_mm, address, pudp, _PAGE_PRESENT, _PAGE_INVALID);
186 flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE);
187 return __pud(old_pud);
188 }
189
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,int full)190 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
191 unsigned long addr, pmd_t *pmdp, int full)
192 {
193 pmd_t pmd;
194 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
195 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
196 !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
197 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
198 /*
199 * if it not a fullmm flush, then we can possibly end up converting
200 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
201 * Make sure we flush the tlb in this case.
202 */
203 if (!full)
204 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
205 return pmd;
206 }
207
pudp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp,int full)208 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
209 unsigned long addr, pud_t *pudp, int full)
210 {
211 pud_t pud;
212
213 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
214 VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) ||
215 !pud_present(*pudp));
216 pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp);
217 /*
218 * if it not a fullmm flush, then we can possibly end up converting
219 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
220 * Make sure we flush the tlb in this case.
221 */
222 if (!full)
223 flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE);
224 return pud;
225 }
226
pmd_set_protbits(pmd_t pmd,pgprot_t pgprot)227 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
228 {
229 return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
230 }
231
pud_set_protbits(pud_t pud,pgprot_t pgprot)232 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot)
233 {
234 return __pud(pud_val(pud) | pgprot_val(pgprot));
235 }
236
237 /*
238 * At some point we should be able to get rid of
239 * pmd_mkhuge() and mk_huge_pmd() when we update all the
240 * other archs to mark the pmd huge in pfn_pmd()
241 */
pfn_pmd(unsigned long pfn,pgprot_t pgprot)242 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
243 {
244 unsigned long pmdv;
245
246 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
247
248 return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
249 }
250
pfn_pud(unsigned long pfn,pgprot_t pgprot)251 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot)
252 {
253 unsigned long pudv;
254
255 pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
256
257 return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot));
258 }
259
mk_pmd(struct page * page,pgprot_t pgprot)260 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
261 {
262 return pfn_pmd(page_to_pfn(page), pgprot);
263 }
264
pmd_modify(pmd_t pmd,pgprot_t newprot)265 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
266 {
267 unsigned long pmdv;
268
269 pmdv = pmd_val(pmd);
270 pmdv &= _HPAGE_CHG_MASK;
271 return pmd_set_protbits(__pmd(pmdv), newprot);
272 }
273
pud_modify(pud_t pud,pgprot_t newprot)274 pud_t pud_modify(pud_t pud, pgprot_t newprot)
275 {
276 unsigned long pudv;
277
278 pudv = pud_val(pud);
279 pudv &= _HPAGE_CHG_MASK;
280 return pud_set_protbits(__pud(pudv), newprot);
281 }
282 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
283
284 /* For use by kexec, called with MMU off */
mmu_cleanup_all(void)285 notrace void mmu_cleanup_all(void)
286 {
287 if (radix_enabled())
288 radix__mmu_cleanup_all();
289 else if (mmu_hash_ops.hpte_clear_all)
290 mmu_hash_ops.hpte_clear_all();
291
292 reset_sprs();
293 }
294
295 #ifdef CONFIG_MEMORY_HOTPLUG
create_section_mapping(unsigned long start,unsigned long end,int nid,pgprot_t prot)296 int __meminit create_section_mapping(unsigned long start, unsigned long end,
297 int nid, pgprot_t prot)
298 {
299 if (radix_enabled())
300 return radix__create_section_mapping(start, end, nid, prot);
301
302 return hash__create_section_mapping(start, end, nid, prot);
303 }
304
remove_section_mapping(unsigned long start,unsigned long end)305 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
306 {
307 if (radix_enabled())
308 return radix__remove_section_mapping(start, end);
309
310 return hash__remove_section_mapping(start, end);
311 }
312 #endif /* CONFIG_MEMORY_HOTPLUG */
313
mmu_partition_table_init(void)314 void __init mmu_partition_table_init(void)
315 {
316 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
317 unsigned long ptcr;
318
319 /* Initialize the Partition Table with no entries */
320 partition_tb = memblock_alloc(patb_size, patb_size);
321 if (!partition_tb)
322 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
323 __func__, patb_size, patb_size);
324
325 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
326 set_ptcr_when_no_uv(ptcr);
327 powernv_set_nmmu_ptcr(ptcr);
328 }
329
flush_partition(unsigned int lpid,bool radix)330 static void flush_partition(unsigned int lpid, bool radix)
331 {
332 if (radix) {
333 radix__flush_all_lpid(lpid);
334 radix__flush_all_lpid_guest(lpid);
335 } else {
336 asm volatile("ptesync" : : : "memory");
337 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
338 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
339 /* do we need fixup here ?*/
340 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
341 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
342 }
343 }
344
mmu_partition_table_set_entry(unsigned int lpid,unsigned long dw0,unsigned long dw1,bool flush)345 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
346 unsigned long dw1, bool flush)
347 {
348 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
349
350 /*
351 * When ultravisor is enabled, the partition table is stored in secure
352 * memory and can only be accessed doing an ultravisor call. However, we
353 * maintain a copy of the partition table in normal memory to allow Nest
354 * MMU translations to occur (for normal VMs).
355 *
356 * Therefore, here we always update partition_tb, regardless of whether
357 * we are running under an ultravisor or not.
358 */
359 partition_tb[lpid].patb0 = cpu_to_be64(dw0);
360 partition_tb[lpid].patb1 = cpu_to_be64(dw1);
361
362 /*
363 * If ultravisor is enabled, we do an ultravisor call to register the
364 * partition table entry (PATE), which also do a global flush of TLBs
365 * and partition table caches for the lpid. Otherwise, just do the
366 * flush. The type of flush (hash or radix) depends on what the previous
367 * use of the partition ID was, not the new use.
368 */
369 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
370 uv_register_pate(lpid, dw0, dw1);
371 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
372 dw0, dw1);
373 } else if (flush) {
374 /*
375 * Boot does not need to flush, because MMU is off and each
376 * CPU does a tlbiel_all() before switching them on, which
377 * flushes everything.
378 */
379 flush_partition(lpid, (old & PATB_HR));
380 }
381 }
382 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
383
get_pmd_from_cache(struct mm_struct * mm)384 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
385 {
386 void *pmd_frag, *ret;
387
388 if (PMD_FRAG_NR == 1)
389 return NULL;
390
391 spin_lock(&mm->page_table_lock);
392 ret = mm->context.pmd_frag;
393 if (ret) {
394 pmd_frag = ret + PMD_FRAG_SIZE;
395 /*
396 * If we have taken up all the fragments mark PTE page NULL
397 */
398 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
399 pmd_frag = NULL;
400 mm->context.pmd_frag = pmd_frag;
401 }
402 spin_unlock(&mm->page_table_lock);
403 return (pmd_t *)ret;
404 }
405
__alloc_for_pmdcache(struct mm_struct * mm)406 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
407 {
408 void *ret = NULL;
409 struct ptdesc *ptdesc;
410 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
411
412 if (mm == &init_mm)
413 gfp &= ~__GFP_ACCOUNT;
414 ptdesc = pagetable_alloc(gfp, 0);
415 if (!ptdesc)
416 return NULL;
417 if (!pagetable_pmd_ctor(ptdesc)) {
418 pagetable_free(ptdesc);
419 return NULL;
420 }
421
422 atomic_set(&ptdesc->pt_frag_refcount, 1);
423
424 ret = ptdesc_address(ptdesc);
425 /*
426 * if we support only one fragment just return the
427 * allocated page.
428 */
429 if (PMD_FRAG_NR == 1)
430 return ret;
431
432 spin_lock(&mm->page_table_lock);
433 /*
434 * If we find ptdesc_page set, we return
435 * the allocated page with single fragment
436 * count.
437 */
438 if (likely(!mm->context.pmd_frag)) {
439 atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR);
440 mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
441 }
442 spin_unlock(&mm->page_table_lock);
443
444 return (pmd_t *)ret;
445 }
446
pmd_fragment_alloc(struct mm_struct * mm,unsigned long vmaddr)447 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
448 {
449 pmd_t *pmd;
450
451 pmd = get_pmd_from_cache(mm);
452 if (pmd)
453 return pmd;
454
455 return __alloc_for_pmdcache(mm);
456 }
457
pmd_fragment_free(unsigned long * pmd)458 void pmd_fragment_free(unsigned long *pmd)
459 {
460 struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
461
462 if (pagetable_is_reserved(ptdesc))
463 return free_reserved_ptdesc(ptdesc);
464
465 BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0);
466 if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) {
467 pagetable_pmd_dtor(ptdesc);
468 pagetable_free(ptdesc);
469 }
470 }
471
pgtable_free(void * table,int index)472 static inline void pgtable_free(void *table, int index)
473 {
474 switch (index) {
475 case PTE_INDEX:
476 pte_fragment_free(table, 0);
477 break;
478 case PMD_INDEX:
479 pmd_fragment_free(table);
480 break;
481 case PUD_INDEX:
482 __pud_free(table);
483 break;
484 /* We don't free pgd table via RCU callback */
485 default:
486 BUG();
487 }
488 }
489
pgtable_free_tlb(struct mmu_gather * tlb,void * table,int index)490 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
491 {
492 unsigned long pgf = (unsigned long)table;
493
494 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
495 pgf |= index;
496 tlb_remove_table(tlb, (void *)pgf);
497 }
498
__tlb_remove_table(void * _table)499 void __tlb_remove_table(void *_table)
500 {
501 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
502 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
503
504 return pgtable_free(table, index);
505 }
506
507 #ifdef CONFIG_PROC_FS
508 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
509
arch_report_meminfo(struct seq_file * m)510 void arch_report_meminfo(struct seq_file *m)
511 {
512 /*
513 * Hash maps the memory with one size mmu_linear_psize.
514 * So don't bother to print these on hash
515 */
516 if (!radix_enabled())
517 return;
518 seq_printf(m, "DirectMap4k: %8lu kB\n",
519 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
520 seq_printf(m, "DirectMap64k: %8lu kB\n",
521 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
522 seq_printf(m, "DirectMap2M: %8lu kB\n",
523 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
524 seq_printf(m, "DirectMap1G: %8lu kB\n",
525 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
526 }
527 #endif /* CONFIG_PROC_FS */
528
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)529 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
530 pte_t *ptep)
531 {
532 unsigned long pte_val;
533
534 /*
535 * Clear the _PAGE_PRESENT so that no hardware parallel update is
536 * possible. Also keep the pte_present true so that we don't take
537 * wrong fault.
538 */
539 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
540
541 return __pte(pte_val);
542
543 }
544
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)545 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
546 pte_t *ptep, pte_t old_pte, pte_t pte)
547 {
548 if (radix_enabled())
549 return radix__ptep_modify_prot_commit(vma, addr,
550 ptep, old_pte, pte);
551 set_pte_at(vma->vm_mm, addr, ptep, pte);
552 }
553
554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
555 /*
556 * For hash translation mode, we use the deposited table to store hash slot
557 * information and they are stored at PTRS_PER_PMD offset from related pmd
558 * location. Hence a pmd move requires deposit and withdraw.
559 *
560 * For radix translation with split pmd ptl, we store the deposited table in the
561 * pmd page. Hence if we have different pmd page we need to withdraw during pmd
562 * move.
563 *
564 * With hash we use deposited table always irrespective of anon or not.
565 * With radix we use deposited table only for anonymous mapping.
566 */
pmd_move_must_withdraw(struct spinlock * new_pmd_ptl,struct spinlock * old_pmd_ptl,struct vm_area_struct * vma)567 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
568 struct spinlock *old_pmd_ptl,
569 struct vm_area_struct *vma)
570 {
571 if (radix_enabled())
572 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
573
574 return true;
575 }
576 #endif
577
578 /*
579 * Does the CPU support tlbie?
580 */
581 bool tlbie_capable __read_mostly = true;
582 EXPORT_SYMBOL(tlbie_capable);
583
584 /*
585 * Should tlbie be used for management of CPU TLBs, for kernel and process
586 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
587 * guest address spaces.
588 */
589 bool tlbie_enabled __read_mostly = true;
590
setup_disable_tlbie(char * str)591 static int __init setup_disable_tlbie(char *str)
592 {
593 if (!radix_enabled()) {
594 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
595 return 1;
596 }
597
598 tlbie_capable = false;
599 tlbie_enabled = false;
600
601 return 1;
602 }
603 __setup("disable_tlbie", setup_disable_tlbie);
604
pgtable_debugfs_setup(void)605 static int __init pgtable_debugfs_setup(void)
606 {
607 if (!tlbie_capable)
608 return 0;
609
610 /*
611 * There is no locking vs tlb flushing when changing this value.
612 * The tlb flushers will see one value or another, and use either
613 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
614 * invalidated as expected.
615 */
616 debugfs_create_bool("tlbie_enabled", 0600,
617 arch_debugfs_dir,
618 &tlbie_enabled);
619
620 return 0;
621 }
622 arch_initcall(pgtable_debugfs_setup);
623
624 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN)
625 /*
626 * Override the generic version in mm/memremap.c.
627 *
628 * With hash translation, the direct-map range is mapped with just one
629 * page size selected by htab_init_page_sizes(). Consult
630 * mmu_psize_defs[] to determine the minimum page size alignment.
631 */
memremap_compat_align(void)632 unsigned long memremap_compat_align(void)
633 {
634 if (!radix_enabled()) {
635 unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift;
636 return max(SUBSECTION_SIZE, 1UL << shift);
637 }
638
639 return SUBSECTION_SIZE;
640 }
641 EXPORT_SYMBOL_GPL(memremap_compat_align);
642 #endif
643
vm_get_page_prot(unsigned long vm_flags)644 pgprot_t vm_get_page_prot(unsigned long vm_flags)
645 {
646 unsigned long prot;
647
648 /* Radix supports execute-only, but protection_map maps X -> RX */
649 if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC))
650 vm_flags |= VM_READ;
651
652 prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]);
653
654 if (vm_flags & VM_SAO)
655 prot |= _PAGE_SAO;
656
657 #ifdef CONFIG_PPC_MEM_KEYS
658 prot |= vmflag_to_pte_pkey_bits(vm_flags);
659 #endif
660
661 return __pgprot(prot);
662 }
663 EXPORT_SYMBOL(vm_get_page_prot);
664