1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/drivers/mmc/core/core.c
4   *
5   *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6   *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7   *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8   *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9   */
10  #include <linux/module.h>
11  #include <linux/init.h>
12  #include <linux/interrupt.h>
13  #include <linux/completion.h>
14  #include <linux/device.h>
15  #include <linux/delay.h>
16  #include <linux/pagemap.h>
17  #include <linux/err.h>
18  #include <linux/leds.h>
19  #include <linux/scatterlist.h>
20  #include <linux/log2.h>
21  #include <linux/pm_runtime.h>
22  #include <linux/pm_wakeup.h>
23  #include <linux/suspend.h>
24  #include <linux/fault-inject.h>
25  #include <linux/random.h>
26  #include <linux/slab.h>
27  #include <linux/of.h>
28  
29  #include <linux/mmc/card.h>
30  #include <linux/mmc/host.h>
31  #include <linux/mmc/mmc.h>
32  #include <linux/mmc/sd.h>
33  #include <linux/mmc/slot-gpio.h>
34  
35  #define CREATE_TRACE_POINTS
36  #include <trace/events/mmc.h>
37  
38  #include "core.h"
39  #include "card.h"
40  #include "crypto.h"
41  #include "bus.h"
42  #include "host.h"
43  #include "sdio_bus.h"
44  #include "pwrseq.h"
45  
46  #include "mmc_ops.h"
47  #include "sd_ops.h"
48  #include "sdio_ops.h"
49  
50  /* The max erase timeout, used when host->max_busy_timeout isn't specified */
51  #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
52  #define SD_DISCARD_TIMEOUT_MS	(250)
53  
54  static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55  
56  /*
57   * Enabling software CRCs on the data blocks can be a significant (30%)
58   * performance cost, and for other reasons may not always be desired.
59   * So we allow it to be disabled.
60   */
61  bool use_spi_crc = 1;
62  module_param(use_spi_crc, bool, 0);
63  
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)64  static int mmc_schedule_delayed_work(struct delayed_work *work,
65  				     unsigned long delay)
66  {
67  	/*
68  	 * We use the system_freezable_wq, because of two reasons.
69  	 * First, it allows several works (not the same work item) to be
70  	 * executed simultaneously. Second, the queue becomes frozen when
71  	 * userspace becomes frozen during system PM.
72  	 */
73  	return queue_delayed_work(system_freezable_wq, work, delay);
74  }
75  
76  #ifdef CONFIG_FAIL_MMC_REQUEST
77  
78  /*
79   * Internal function. Inject random data errors.
80   * If mmc_data is NULL no errors are injected.
81   */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)82  static void mmc_should_fail_request(struct mmc_host *host,
83  				    struct mmc_request *mrq)
84  {
85  	struct mmc_command *cmd = mrq->cmd;
86  	struct mmc_data *data = mrq->data;
87  	static const int data_errors[] = {
88  		-ETIMEDOUT,
89  		-EILSEQ,
90  		-EIO,
91  	};
92  
93  	if (!data)
94  		return;
95  
96  	if ((cmd && cmd->error) || data->error ||
97  	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98  		return;
99  
100  	data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
101  	data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
102  }
103  
104  #else /* CONFIG_FAIL_MMC_REQUEST */
105  
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)106  static inline void mmc_should_fail_request(struct mmc_host *host,
107  					   struct mmc_request *mrq)
108  {
109  }
110  
111  #endif /* CONFIG_FAIL_MMC_REQUEST */
112  
mmc_complete_cmd(struct mmc_request * mrq)113  static inline void mmc_complete_cmd(struct mmc_request *mrq)
114  {
115  	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116  		complete_all(&mrq->cmd_completion);
117  }
118  
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)119  void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120  {
121  	if (!mrq->cap_cmd_during_tfr)
122  		return;
123  
124  	mmc_complete_cmd(mrq);
125  
126  	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127  		 mmc_hostname(host), mrq->cmd->opcode);
128  }
129  EXPORT_SYMBOL(mmc_command_done);
130  
131  /**
132   *	mmc_request_done - finish processing an MMC request
133   *	@host: MMC host which completed request
134   *	@mrq: MMC request which request
135   *
136   *	MMC drivers should call this function when they have completed
137   *	their processing of a request.
138   */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)139  void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140  {
141  	struct mmc_command *cmd = mrq->cmd;
142  	int err = cmd->error;
143  
144  	/* Flag re-tuning needed on CRC errors */
145  	if (!mmc_op_tuning(cmd->opcode) &&
146  	    !host->retune_crc_disable &&
147  	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148  	    (mrq->data && mrq->data->error == -EILSEQ) ||
149  	    (mrq->stop && mrq->stop->error == -EILSEQ)))
150  		mmc_retune_needed(host);
151  
152  	if (err && cmd->retries && mmc_host_is_spi(host)) {
153  		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154  			cmd->retries = 0;
155  	}
156  
157  	if (host->ongoing_mrq == mrq)
158  		host->ongoing_mrq = NULL;
159  
160  	mmc_complete_cmd(mrq);
161  
162  	trace_mmc_request_done(host, mrq);
163  
164  	/*
165  	 * We list various conditions for the command to be considered
166  	 * properly done:
167  	 *
168  	 * - There was no error, OK fine then
169  	 * - We are not doing some kind of retry
170  	 * - The card was removed (...so just complete everything no matter
171  	 *   if there are errors or retries)
172  	 */
173  	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174  		mmc_should_fail_request(host, mrq);
175  
176  		if (!host->ongoing_mrq)
177  			led_trigger_event(host->led, LED_OFF);
178  
179  		if (mrq->sbc) {
180  			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181  				mmc_hostname(host), mrq->sbc->opcode,
182  				mrq->sbc->error,
183  				mrq->sbc->resp[0], mrq->sbc->resp[1],
184  				mrq->sbc->resp[2], mrq->sbc->resp[3]);
185  		}
186  
187  		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188  			mmc_hostname(host), cmd->opcode, err,
189  			cmd->resp[0], cmd->resp[1],
190  			cmd->resp[2], cmd->resp[3]);
191  
192  		if (mrq->data) {
193  			pr_debug("%s:     %d bytes transferred: %d\n",
194  				mmc_hostname(host),
195  				mrq->data->bytes_xfered, mrq->data->error);
196  		}
197  
198  		if (mrq->stop) {
199  			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
200  				mmc_hostname(host), mrq->stop->opcode,
201  				mrq->stop->error,
202  				mrq->stop->resp[0], mrq->stop->resp[1],
203  				mrq->stop->resp[2], mrq->stop->resp[3]);
204  		}
205  	}
206  	/*
207  	 * Request starter must handle retries - see
208  	 * mmc_wait_for_req_done().
209  	 */
210  	if (mrq->done)
211  		mrq->done(mrq);
212  }
213  
214  EXPORT_SYMBOL(mmc_request_done);
215  
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)216  static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217  {
218  	int err;
219  
220  	/* Assumes host controller has been runtime resumed by mmc_claim_host */
221  	err = mmc_retune(host);
222  	if (err) {
223  		mrq->cmd->error = err;
224  		mmc_request_done(host, mrq);
225  		return;
226  	}
227  
228  	/*
229  	 * For sdio rw commands we must wait for card busy otherwise some
230  	 * sdio devices won't work properly.
231  	 * And bypass I/O abort, reset and bus suspend operations.
232  	 */
233  	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234  	    host->ops->card_busy) {
235  		int tries = 500; /* Wait aprox 500ms at maximum */
236  
237  		while (host->ops->card_busy(host) && --tries)
238  			mmc_delay(1);
239  
240  		if (tries == 0) {
241  			mrq->cmd->error = -EBUSY;
242  			mmc_request_done(host, mrq);
243  			return;
244  		}
245  	}
246  
247  	if (mrq->cap_cmd_during_tfr) {
248  		host->ongoing_mrq = mrq;
249  		/*
250  		 * Retry path could come through here without having waiting on
251  		 * cmd_completion, so ensure it is reinitialised.
252  		 */
253  		reinit_completion(&mrq->cmd_completion);
254  	}
255  
256  	trace_mmc_request_start(host, mrq);
257  
258  	if (host->cqe_on)
259  		host->cqe_ops->cqe_off(host);
260  
261  	host->ops->request(host, mrq);
262  }
263  
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)264  static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265  			     bool cqe)
266  {
267  	if (mrq->sbc) {
268  		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269  			 mmc_hostname(host), mrq->sbc->opcode,
270  			 mrq->sbc->arg, mrq->sbc->flags);
271  	}
272  
273  	if (mrq->cmd) {
274  		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275  			 mmc_hostname(host), cqe ? "CQE direct " : "",
276  			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277  	} else if (cqe) {
278  		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279  			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280  	}
281  
282  	if (mrq->data) {
283  		pr_debug("%s:     blksz %d blocks %d flags %08x "
284  			"tsac %d ms nsac %d\n",
285  			mmc_hostname(host), mrq->data->blksz,
286  			mrq->data->blocks, mrq->data->flags,
287  			mrq->data->timeout_ns / 1000000,
288  			mrq->data->timeout_clks);
289  	}
290  
291  	if (mrq->stop) {
292  		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
293  			 mmc_hostname(host), mrq->stop->opcode,
294  			 mrq->stop->arg, mrq->stop->flags);
295  	}
296  }
297  
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)298  static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299  {
300  	unsigned int i, sz = 0;
301  	struct scatterlist *sg;
302  
303  	if (mrq->cmd) {
304  		mrq->cmd->error = 0;
305  		mrq->cmd->mrq = mrq;
306  		mrq->cmd->data = mrq->data;
307  	}
308  	if (mrq->sbc) {
309  		mrq->sbc->error = 0;
310  		mrq->sbc->mrq = mrq;
311  	}
312  	if (mrq->data) {
313  		if (mrq->data->blksz > host->max_blk_size ||
314  		    mrq->data->blocks > host->max_blk_count ||
315  		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316  			return -EINVAL;
317  
318  		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319  			sz += sg->length;
320  		if (sz != mrq->data->blocks * mrq->data->blksz)
321  			return -EINVAL;
322  
323  		mrq->data->error = 0;
324  		mrq->data->mrq = mrq;
325  		if (mrq->stop) {
326  			mrq->data->stop = mrq->stop;
327  			mrq->stop->error = 0;
328  			mrq->stop->mrq = mrq;
329  		}
330  	}
331  
332  	return 0;
333  }
334  
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)335  int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336  {
337  	int err;
338  
339  	init_completion(&mrq->cmd_completion);
340  
341  	mmc_retune_hold(host);
342  
343  	if (mmc_card_removed(host->card))
344  		return -ENOMEDIUM;
345  
346  	mmc_mrq_pr_debug(host, mrq, false);
347  
348  	WARN_ON(!host->claimed);
349  
350  	err = mmc_mrq_prep(host, mrq);
351  	if (err)
352  		return err;
353  
354  	led_trigger_event(host->led, LED_FULL);
355  	__mmc_start_request(host, mrq);
356  
357  	return 0;
358  }
359  EXPORT_SYMBOL(mmc_start_request);
360  
mmc_wait_done(struct mmc_request * mrq)361  static void mmc_wait_done(struct mmc_request *mrq)
362  {
363  	complete(&mrq->completion);
364  }
365  
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)366  static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
367  {
368  	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
369  
370  	/*
371  	 * If there is an ongoing transfer, wait for the command line to become
372  	 * available.
373  	 */
374  	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
375  		wait_for_completion(&ongoing_mrq->cmd_completion);
376  }
377  
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)378  static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
379  {
380  	int err;
381  
382  	mmc_wait_ongoing_tfr_cmd(host);
383  
384  	init_completion(&mrq->completion);
385  	mrq->done = mmc_wait_done;
386  
387  	err = mmc_start_request(host, mrq);
388  	if (err) {
389  		mrq->cmd->error = err;
390  		mmc_complete_cmd(mrq);
391  		complete(&mrq->completion);
392  	}
393  
394  	return err;
395  }
396  
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)397  void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
398  {
399  	struct mmc_command *cmd;
400  
401  	while (1) {
402  		wait_for_completion(&mrq->completion);
403  
404  		cmd = mrq->cmd;
405  
406  		if (!cmd->error || !cmd->retries ||
407  		    mmc_card_removed(host->card))
408  			break;
409  
410  		mmc_retune_recheck(host);
411  
412  		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
413  			 mmc_hostname(host), cmd->opcode, cmd->error);
414  		cmd->retries--;
415  		cmd->error = 0;
416  		__mmc_start_request(host, mrq);
417  	}
418  
419  	mmc_retune_release(host);
420  }
421  EXPORT_SYMBOL(mmc_wait_for_req_done);
422  
423  /*
424   * mmc_cqe_start_req - Start a CQE request.
425   * @host: MMC host to start the request
426   * @mrq: request to start
427   *
428   * Start the request, re-tuning if needed and it is possible. Returns an error
429   * code if the request fails to start or -EBUSY if CQE is busy.
430   */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)431  int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
432  {
433  	int err;
434  
435  	/*
436  	 * CQE cannot process re-tuning commands. Caller must hold retuning
437  	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
438  	 * active requests i.e. this is the first.  Note, re-tuning will call
439  	 * ->cqe_off().
440  	 */
441  	err = mmc_retune(host);
442  	if (err)
443  		goto out_err;
444  
445  	mrq->host = host;
446  
447  	mmc_mrq_pr_debug(host, mrq, true);
448  
449  	err = mmc_mrq_prep(host, mrq);
450  	if (err)
451  		goto out_err;
452  
453  	err = host->cqe_ops->cqe_request(host, mrq);
454  	if (err)
455  		goto out_err;
456  
457  	trace_mmc_request_start(host, mrq);
458  
459  	return 0;
460  
461  out_err:
462  	if (mrq->cmd) {
463  		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
464  			 mmc_hostname(host), mrq->cmd->opcode, err);
465  	} else {
466  		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
467  			 mmc_hostname(host), mrq->tag, err);
468  	}
469  	return err;
470  }
471  EXPORT_SYMBOL(mmc_cqe_start_req);
472  
473  /**
474   *	mmc_cqe_request_done - CQE has finished processing an MMC request
475   *	@host: MMC host which completed request
476   *	@mrq: MMC request which completed
477   *
478   *	CQE drivers should call this function when they have completed
479   *	their processing of a request.
480   */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)481  void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
482  {
483  	mmc_should_fail_request(host, mrq);
484  
485  	/* Flag re-tuning needed on CRC errors */
486  	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
487  	    (mrq->data && mrq->data->error == -EILSEQ))
488  		mmc_retune_needed(host);
489  
490  	trace_mmc_request_done(host, mrq);
491  
492  	if (mrq->cmd) {
493  		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
494  			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
495  	} else {
496  		pr_debug("%s: CQE transfer done tag %d\n",
497  			 mmc_hostname(host), mrq->tag);
498  	}
499  
500  	if (mrq->data) {
501  		pr_debug("%s:     %d bytes transferred: %d\n",
502  			 mmc_hostname(host),
503  			 mrq->data->bytes_xfered, mrq->data->error);
504  	}
505  
506  	mrq->done(mrq);
507  }
508  EXPORT_SYMBOL(mmc_cqe_request_done);
509  
510  /**
511   *	mmc_cqe_post_req - CQE post process of a completed MMC request
512   *	@host: MMC host
513   *	@mrq: MMC request to be processed
514   */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)515  void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
516  {
517  	if (host->cqe_ops->cqe_post_req)
518  		host->cqe_ops->cqe_post_req(host, mrq);
519  }
520  EXPORT_SYMBOL(mmc_cqe_post_req);
521  
522  /* Arbitrary 1 second timeout */
523  #define MMC_CQE_RECOVERY_TIMEOUT	1000
524  
525  /*
526   * mmc_cqe_recovery - Recover from CQE errors.
527   * @host: MMC host to recover
528   *
529   * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
530   * in eMMC, and discarding the queue in CQE. CQE must call
531   * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
532   * fails to discard its queue.
533   */
mmc_cqe_recovery(struct mmc_host * host)534  int mmc_cqe_recovery(struct mmc_host *host)
535  {
536  	struct mmc_command cmd;
537  	int err;
538  
539  	mmc_retune_hold_now(host);
540  
541  	/*
542  	 * Recovery is expected seldom, if at all, but it reduces performance,
543  	 * so make sure it is not completely silent.
544  	 */
545  	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
546  
547  	host->cqe_ops->cqe_recovery_start(host);
548  
549  	memset(&cmd, 0, sizeof(cmd));
550  	cmd.opcode       = MMC_STOP_TRANSMISSION;
551  	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
552  	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
553  	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
554  	mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
555  
556  	mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
557  
558  	memset(&cmd, 0, sizeof(cmd));
559  	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
560  	cmd.arg          = 1; /* Discard entire queue */
561  	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
562  	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
563  	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
564  	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
565  
566  	host->cqe_ops->cqe_recovery_finish(host);
567  
568  	if (err)
569  		err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
570  
571  	mmc_retune_release(host);
572  
573  	return err;
574  }
575  EXPORT_SYMBOL(mmc_cqe_recovery);
576  
577  /**
578   *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
579   *	@host: MMC host
580   *	@mrq: MMC request
581   *
582   *	mmc_is_req_done() is used with requests that have
583   *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
584   *	starting a request and before waiting for it to complete. That is,
585   *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
586   *	and before mmc_wait_for_req_done(). If it is called at other times the
587   *	result is not meaningful.
588   */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)589  bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
590  {
591  	return completion_done(&mrq->completion);
592  }
593  EXPORT_SYMBOL(mmc_is_req_done);
594  
595  /**
596   *	mmc_wait_for_req - start a request and wait for completion
597   *	@host: MMC host to start command
598   *	@mrq: MMC request to start
599   *
600   *	Start a new MMC custom command request for a host, and wait
601   *	for the command to complete. In the case of 'cap_cmd_during_tfr'
602   *	requests, the transfer is ongoing and the caller can issue further
603   *	commands that do not use the data lines, and then wait by calling
604   *	mmc_wait_for_req_done().
605   *	Does not attempt to parse the response.
606   */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)607  void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
608  {
609  	__mmc_start_req(host, mrq);
610  
611  	if (!mrq->cap_cmd_during_tfr)
612  		mmc_wait_for_req_done(host, mrq);
613  }
614  EXPORT_SYMBOL(mmc_wait_for_req);
615  
616  /**
617   *	mmc_wait_for_cmd - start a command and wait for completion
618   *	@host: MMC host to start command
619   *	@cmd: MMC command to start
620   *	@retries: maximum number of retries
621   *
622   *	Start a new MMC command for a host, and wait for the command
623   *	to complete.  Return any error that occurred while the command
624   *	was executing.  Do not attempt to parse the response.
625   */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)626  int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
627  {
628  	struct mmc_request mrq = {};
629  
630  	WARN_ON(!host->claimed);
631  
632  	memset(cmd->resp, 0, sizeof(cmd->resp));
633  	cmd->retries = retries;
634  
635  	mrq.cmd = cmd;
636  	cmd->data = NULL;
637  
638  	mmc_wait_for_req(host, &mrq);
639  
640  	return cmd->error;
641  }
642  
643  EXPORT_SYMBOL(mmc_wait_for_cmd);
644  
645  /**
646   *	mmc_set_data_timeout - set the timeout for a data command
647   *	@data: data phase for command
648   *	@card: the MMC card associated with the data transfer
649   *
650   *	Computes the data timeout parameters according to the
651   *	correct algorithm given the card type.
652   */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)653  void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
654  {
655  	unsigned int mult;
656  
657  	/*
658  	 * SDIO cards only define an upper 1 s limit on access.
659  	 */
660  	if (mmc_card_sdio(card)) {
661  		data->timeout_ns = 1000000000;
662  		data->timeout_clks = 0;
663  		return;
664  	}
665  
666  	/*
667  	 * SD cards use a 100 multiplier rather than 10
668  	 */
669  	mult = mmc_card_sd(card) ? 100 : 10;
670  
671  	/*
672  	 * Scale up the multiplier (and therefore the timeout) by
673  	 * the r2w factor for writes.
674  	 */
675  	if (data->flags & MMC_DATA_WRITE)
676  		mult <<= card->csd.r2w_factor;
677  
678  	data->timeout_ns = card->csd.taac_ns * mult;
679  	data->timeout_clks = card->csd.taac_clks * mult;
680  
681  	/*
682  	 * SD cards also have an upper limit on the timeout.
683  	 */
684  	if (mmc_card_sd(card)) {
685  		unsigned int timeout_us, limit_us;
686  
687  		timeout_us = data->timeout_ns / 1000;
688  		if (card->host->ios.clock)
689  			timeout_us += data->timeout_clks * 1000 /
690  				(card->host->ios.clock / 1000);
691  
692  		if (data->flags & MMC_DATA_WRITE)
693  			/*
694  			 * The MMC spec "It is strongly recommended
695  			 * for hosts to implement more than 500ms
696  			 * timeout value even if the card indicates
697  			 * the 250ms maximum busy length."  Even the
698  			 * previous value of 300ms is known to be
699  			 * insufficient for some cards.
700  			 */
701  			limit_us = 3000000;
702  		else
703  			limit_us = 100000;
704  
705  		/*
706  		 * SDHC cards always use these fixed values.
707  		 */
708  		if (timeout_us > limit_us) {
709  			data->timeout_ns = limit_us * 1000;
710  			data->timeout_clks = 0;
711  		}
712  
713  		/* assign limit value if invalid */
714  		if (timeout_us == 0)
715  			data->timeout_ns = limit_us * 1000;
716  	}
717  
718  	/*
719  	 * Some cards require longer data read timeout than indicated in CSD.
720  	 * Address this by setting the read timeout to a "reasonably high"
721  	 * value. For the cards tested, 600ms has proven enough. If necessary,
722  	 * this value can be increased if other problematic cards require this.
723  	 */
724  	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
725  		data->timeout_ns = 600000000;
726  		data->timeout_clks = 0;
727  	}
728  
729  	/*
730  	 * Some cards need very high timeouts if driven in SPI mode.
731  	 * The worst observed timeout was 900ms after writing a
732  	 * continuous stream of data until the internal logic
733  	 * overflowed.
734  	 */
735  	if (mmc_host_is_spi(card->host)) {
736  		if (data->flags & MMC_DATA_WRITE) {
737  			if (data->timeout_ns < 1000000000)
738  				data->timeout_ns = 1000000000;	/* 1s */
739  		} else {
740  			if (data->timeout_ns < 100000000)
741  				data->timeout_ns =  100000000;	/* 100ms */
742  		}
743  	}
744  }
745  EXPORT_SYMBOL(mmc_set_data_timeout);
746  
747  /*
748   * Allow claiming an already claimed host if the context is the same or there is
749   * no context but the task is the same.
750   */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)751  static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
752  				   struct task_struct *task)
753  {
754  	return host->claimer == ctx ||
755  	       (!ctx && task && host->claimer->task == task);
756  }
757  
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)758  static inline void mmc_ctx_set_claimer(struct mmc_host *host,
759  				       struct mmc_ctx *ctx,
760  				       struct task_struct *task)
761  {
762  	if (!host->claimer) {
763  		if (ctx)
764  			host->claimer = ctx;
765  		else
766  			host->claimer = &host->default_ctx;
767  	}
768  	if (task)
769  		host->claimer->task = task;
770  }
771  
772  /**
773   *	__mmc_claim_host - exclusively claim a host
774   *	@host: mmc host to claim
775   *	@ctx: context that claims the host or NULL in which case the default
776   *	context will be used
777   *	@abort: whether or not the operation should be aborted
778   *
779   *	Claim a host for a set of operations.  If @abort is non null and
780   *	dereference a non-zero value then this will return prematurely with
781   *	that non-zero value without acquiring the lock.  Returns zero
782   *	with the lock held otherwise.
783   */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)784  int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
785  		     atomic_t *abort)
786  {
787  	struct task_struct *task = ctx ? NULL : current;
788  	DECLARE_WAITQUEUE(wait, current);
789  	unsigned long flags;
790  	int stop;
791  	bool pm = false;
792  
793  	might_sleep();
794  
795  	add_wait_queue(&host->wq, &wait);
796  	spin_lock_irqsave(&host->lock, flags);
797  	while (1) {
798  		set_current_state(TASK_UNINTERRUPTIBLE);
799  		stop = abort ? atomic_read(abort) : 0;
800  		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
801  			break;
802  		spin_unlock_irqrestore(&host->lock, flags);
803  		schedule();
804  		spin_lock_irqsave(&host->lock, flags);
805  	}
806  	set_current_state(TASK_RUNNING);
807  	if (!stop) {
808  		host->claimed = 1;
809  		mmc_ctx_set_claimer(host, ctx, task);
810  		host->claim_cnt += 1;
811  		if (host->claim_cnt == 1)
812  			pm = true;
813  	} else
814  		wake_up(&host->wq);
815  	spin_unlock_irqrestore(&host->lock, flags);
816  	remove_wait_queue(&host->wq, &wait);
817  
818  	if (pm)
819  		pm_runtime_get_sync(mmc_dev(host));
820  
821  	return stop;
822  }
823  EXPORT_SYMBOL(__mmc_claim_host);
824  
825  /**
826   *	mmc_release_host - release a host
827   *	@host: mmc host to release
828   *
829   *	Release a MMC host, allowing others to claim the host
830   *	for their operations.
831   */
mmc_release_host(struct mmc_host * host)832  void mmc_release_host(struct mmc_host *host)
833  {
834  	unsigned long flags;
835  
836  	WARN_ON(!host->claimed);
837  
838  	spin_lock_irqsave(&host->lock, flags);
839  	if (--host->claim_cnt) {
840  		/* Release for nested claim */
841  		spin_unlock_irqrestore(&host->lock, flags);
842  	} else {
843  		host->claimed = 0;
844  		host->claimer->task = NULL;
845  		host->claimer = NULL;
846  		spin_unlock_irqrestore(&host->lock, flags);
847  		wake_up(&host->wq);
848  		pm_runtime_mark_last_busy(mmc_dev(host));
849  		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
850  			pm_runtime_put_sync_suspend(mmc_dev(host));
851  		else
852  			pm_runtime_put_autosuspend(mmc_dev(host));
853  	}
854  }
855  EXPORT_SYMBOL(mmc_release_host);
856  
857  /*
858   * This is a helper function, which fetches a runtime pm reference for the
859   * card device and also claims the host.
860   */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)861  void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
862  {
863  	pm_runtime_get_sync(&card->dev);
864  	__mmc_claim_host(card->host, ctx, NULL);
865  }
866  EXPORT_SYMBOL(mmc_get_card);
867  
868  /*
869   * This is a helper function, which releases the host and drops the runtime
870   * pm reference for the card device.
871   */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)872  void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
873  {
874  	struct mmc_host *host = card->host;
875  
876  	WARN_ON(ctx && host->claimer != ctx);
877  
878  	mmc_release_host(host);
879  	pm_runtime_mark_last_busy(&card->dev);
880  	pm_runtime_put_autosuspend(&card->dev);
881  }
882  EXPORT_SYMBOL(mmc_put_card);
883  
884  /*
885   * Internal function that does the actual ios call to the host driver,
886   * optionally printing some debug output.
887   */
mmc_set_ios(struct mmc_host * host)888  static inline void mmc_set_ios(struct mmc_host *host)
889  {
890  	struct mmc_ios *ios = &host->ios;
891  
892  	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
893  		"width %u timing %u\n",
894  		 mmc_hostname(host), ios->clock, ios->bus_mode,
895  		 ios->power_mode, ios->chip_select, ios->vdd,
896  		 1 << ios->bus_width, ios->timing);
897  
898  	host->ops->set_ios(host, ios);
899  }
900  
901  /*
902   * Control chip select pin on a host.
903   */
mmc_set_chip_select(struct mmc_host * host,int mode)904  void mmc_set_chip_select(struct mmc_host *host, int mode)
905  {
906  	host->ios.chip_select = mode;
907  	mmc_set_ios(host);
908  }
909  
910  /*
911   * Sets the host clock to the highest possible frequency that
912   * is below "hz".
913   */
mmc_set_clock(struct mmc_host * host,unsigned int hz)914  void mmc_set_clock(struct mmc_host *host, unsigned int hz)
915  {
916  	WARN_ON(hz && hz < host->f_min);
917  
918  	if (hz > host->f_max)
919  		hz = host->f_max;
920  
921  	host->ios.clock = hz;
922  	mmc_set_ios(host);
923  }
924  
mmc_execute_tuning(struct mmc_card * card)925  int mmc_execute_tuning(struct mmc_card *card)
926  {
927  	struct mmc_host *host = card->host;
928  	u32 opcode;
929  	int err;
930  
931  	if (!host->ops->execute_tuning)
932  		return 0;
933  
934  	if (host->cqe_on)
935  		host->cqe_ops->cqe_off(host);
936  
937  	if (mmc_card_mmc(card))
938  		opcode = MMC_SEND_TUNING_BLOCK_HS200;
939  	else
940  		opcode = MMC_SEND_TUNING_BLOCK;
941  
942  	err = host->ops->execute_tuning(host, opcode);
943  	if (!err) {
944  		mmc_retune_clear(host);
945  		mmc_retune_enable(host);
946  		return 0;
947  	}
948  
949  	/* Only print error when we don't check for card removal */
950  	if (!host->detect_change) {
951  		pr_err("%s: tuning execution failed: %d\n",
952  			mmc_hostname(host), err);
953  		mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
954  	}
955  
956  	return err;
957  }
958  
959  /*
960   * Change the bus mode (open drain/push-pull) of a host.
961   */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)962  void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
963  {
964  	host->ios.bus_mode = mode;
965  	mmc_set_ios(host);
966  }
967  
968  /*
969   * Change data bus width of a host.
970   */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)971  void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
972  {
973  	host->ios.bus_width = width;
974  	mmc_set_ios(host);
975  }
976  
977  /*
978   * Set initial state after a power cycle or a hw_reset.
979   */
mmc_set_initial_state(struct mmc_host * host)980  void mmc_set_initial_state(struct mmc_host *host)
981  {
982  	if (host->cqe_on)
983  		host->cqe_ops->cqe_off(host);
984  
985  	mmc_retune_disable(host);
986  
987  	if (mmc_host_is_spi(host))
988  		host->ios.chip_select = MMC_CS_HIGH;
989  	else
990  		host->ios.chip_select = MMC_CS_DONTCARE;
991  	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
992  	host->ios.bus_width = MMC_BUS_WIDTH_1;
993  	host->ios.timing = MMC_TIMING_LEGACY;
994  	host->ios.drv_type = 0;
995  	host->ios.enhanced_strobe = false;
996  
997  	/*
998  	 * Make sure we are in non-enhanced strobe mode before we
999  	 * actually enable it in ext_csd.
1000  	 */
1001  	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1002  	     host->ops->hs400_enhanced_strobe)
1003  		host->ops->hs400_enhanced_strobe(host, &host->ios);
1004  
1005  	mmc_set_ios(host);
1006  
1007  	mmc_crypto_set_initial_state(host);
1008  }
1009  
1010  /**
1011   * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1012   * @vdd:	voltage (mV)
1013   * @low_bits:	prefer low bits in boundary cases
1014   *
1015   * This function returns the OCR bit number according to the provided @vdd
1016   * value. If conversion is not possible a negative errno value returned.
1017   *
1018   * Depending on the @low_bits flag the function prefers low or high OCR bits
1019   * on boundary voltages. For example,
1020   * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1021   * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1022   *
1023   * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1024   */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1025  static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1026  {
1027  	const int max_bit = ilog2(MMC_VDD_35_36);
1028  	int bit;
1029  
1030  	if (vdd < 1650 || vdd > 3600)
1031  		return -EINVAL;
1032  
1033  	if (vdd >= 1650 && vdd <= 1950)
1034  		return ilog2(MMC_VDD_165_195);
1035  
1036  	if (low_bits)
1037  		vdd -= 1;
1038  
1039  	/* Base 2000 mV, step 100 mV, bit's base 8. */
1040  	bit = (vdd - 2000) / 100 + 8;
1041  	if (bit > max_bit)
1042  		return max_bit;
1043  	return bit;
1044  }
1045  
1046  /**
1047   * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1048   * @vdd_min:	minimum voltage value (mV)
1049   * @vdd_max:	maximum voltage value (mV)
1050   *
1051   * This function returns the OCR mask bits according to the provided @vdd_min
1052   * and @vdd_max values. If conversion is not possible the function returns 0.
1053   *
1054   * Notes wrt boundary cases:
1055   * This function sets the OCR bits for all boundary voltages, for example
1056   * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1057   * MMC_VDD_34_35 mask.
1058   */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1059  u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1060  {
1061  	u32 mask = 0;
1062  
1063  	if (vdd_max < vdd_min)
1064  		return 0;
1065  
1066  	/* Prefer high bits for the boundary vdd_max values. */
1067  	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1068  	if (vdd_max < 0)
1069  		return 0;
1070  
1071  	/* Prefer low bits for the boundary vdd_min values. */
1072  	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1073  	if (vdd_min < 0)
1074  		return 0;
1075  
1076  	/* Fill the mask, from max bit to min bit. */
1077  	while (vdd_max >= vdd_min)
1078  		mask |= 1 << vdd_max--;
1079  
1080  	return mask;
1081  }
1082  
mmc_of_get_func_num(struct device_node * node)1083  static int mmc_of_get_func_num(struct device_node *node)
1084  {
1085  	u32 reg;
1086  	int ret;
1087  
1088  	ret = of_property_read_u32(node, "reg", &reg);
1089  	if (ret < 0)
1090  		return ret;
1091  
1092  	return reg;
1093  }
1094  
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1095  struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1096  		unsigned func_num)
1097  {
1098  	struct device_node *node;
1099  
1100  	if (!host->parent || !host->parent->of_node)
1101  		return NULL;
1102  
1103  	for_each_child_of_node(host->parent->of_node, node) {
1104  		if (mmc_of_get_func_num(node) == func_num)
1105  			return node;
1106  	}
1107  
1108  	return NULL;
1109  }
1110  
1111  /*
1112   * Mask off any voltages we don't support and select
1113   * the lowest voltage
1114   */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1115  u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1116  {
1117  	int bit;
1118  
1119  	/*
1120  	 * Sanity check the voltages that the card claims to
1121  	 * support.
1122  	 */
1123  	if (ocr & 0x7F) {
1124  		dev_warn(mmc_dev(host),
1125  		"card claims to support voltages below defined range\n");
1126  		ocr &= ~0x7F;
1127  	}
1128  
1129  	ocr &= host->ocr_avail;
1130  	if (!ocr) {
1131  		dev_warn(mmc_dev(host), "no support for card's volts\n");
1132  		return 0;
1133  	}
1134  
1135  	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1136  		bit = ffs(ocr) - 1;
1137  		ocr &= 3 << bit;
1138  		mmc_power_cycle(host, ocr);
1139  	} else {
1140  		bit = fls(ocr) - 1;
1141  		/*
1142  		 * The bit variable represents the highest voltage bit set in
1143  		 * the OCR register.
1144  		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1145  		 * we must shift the mask '3' with (bit - 1).
1146  		 */
1147  		ocr &= 3 << (bit - 1);
1148  		if (bit != host->ios.vdd)
1149  			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1150  	}
1151  
1152  	return ocr;
1153  }
1154  
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1155  int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1156  {
1157  	int err = 0;
1158  	int old_signal_voltage = host->ios.signal_voltage;
1159  
1160  	host->ios.signal_voltage = signal_voltage;
1161  	if (host->ops->start_signal_voltage_switch)
1162  		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1163  
1164  	if (err)
1165  		host->ios.signal_voltage = old_signal_voltage;
1166  
1167  	return err;
1168  
1169  }
1170  
mmc_set_initial_signal_voltage(struct mmc_host * host)1171  void mmc_set_initial_signal_voltage(struct mmc_host *host)
1172  {
1173  	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1174  	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1175  		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1176  	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1177  		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1178  	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1179  		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1180  }
1181  
mmc_host_set_uhs_voltage(struct mmc_host * host)1182  int mmc_host_set_uhs_voltage(struct mmc_host *host)
1183  {
1184  	u32 clock;
1185  
1186  	/*
1187  	 * During a signal voltage level switch, the clock must be gated
1188  	 * for 5 ms according to the SD spec
1189  	 */
1190  	clock = host->ios.clock;
1191  	host->ios.clock = 0;
1192  	mmc_set_ios(host);
1193  
1194  	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1195  		return -EAGAIN;
1196  
1197  	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1198  	mmc_delay(10);
1199  	host->ios.clock = clock;
1200  	mmc_set_ios(host);
1201  
1202  	return 0;
1203  }
1204  
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1205  int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1206  {
1207  	struct mmc_command cmd = {};
1208  	int err = 0;
1209  
1210  	/*
1211  	 * If we cannot switch voltages, return failure so the caller
1212  	 * can continue without UHS mode
1213  	 */
1214  	if (!host->ops->start_signal_voltage_switch)
1215  		return -EPERM;
1216  	if (!host->ops->card_busy)
1217  		pr_warn("%s: cannot verify signal voltage switch\n",
1218  			mmc_hostname(host));
1219  
1220  	cmd.opcode = SD_SWITCH_VOLTAGE;
1221  	cmd.arg = 0;
1222  	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1223  
1224  	err = mmc_wait_for_cmd(host, &cmd, 0);
1225  	if (err)
1226  		goto power_cycle;
1227  
1228  	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1229  		return -EIO;
1230  
1231  	/*
1232  	 * The card should drive cmd and dat[0:3] low immediately
1233  	 * after the response of cmd11, but wait 1 ms to be sure
1234  	 */
1235  	mmc_delay(1);
1236  	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1237  		err = -EAGAIN;
1238  		goto power_cycle;
1239  	}
1240  
1241  	if (mmc_host_set_uhs_voltage(host)) {
1242  		/*
1243  		 * Voltages may not have been switched, but we've already
1244  		 * sent CMD11, so a power cycle is required anyway
1245  		 */
1246  		err = -EAGAIN;
1247  		goto power_cycle;
1248  	}
1249  
1250  	/* Wait for at least 1 ms according to spec */
1251  	mmc_delay(1);
1252  
1253  	/*
1254  	 * Failure to switch is indicated by the card holding
1255  	 * dat[0:3] low
1256  	 */
1257  	if (host->ops->card_busy && host->ops->card_busy(host))
1258  		err = -EAGAIN;
1259  
1260  power_cycle:
1261  	if (err) {
1262  		pr_debug("%s: Signal voltage switch failed, "
1263  			"power cycling card\n", mmc_hostname(host));
1264  		mmc_power_cycle(host, ocr);
1265  	}
1266  
1267  	return err;
1268  }
1269  
1270  /*
1271   * Select timing parameters for host.
1272   */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1273  void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1274  {
1275  	host->ios.timing = timing;
1276  	mmc_set_ios(host);
1277  }
1278  
1279  /*
1280   * Select appropriate driver type for host.
1281   */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1282  void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1283  {
1284  	host->ios.drv_type = drv_type;
1285  	mmc_set_ios(host);
1286  }
1287  
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1288  int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1289  			      int card_drv_type, int *drv_type)
1290  {
1291  	struct mmc_host *host = card->host;
1292  	int host_drv_type = SD_DRIVER_TYPE_B;
1293  
1294  	*drv_type = 0;
1295  
1296  	if (!host->ops->select_drive_strength)
1297  		return 0;
1298  
1299  	/* Use SD definition of driver strength for hosts */
1300  	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1301  		host_drv_type |= SD_DRIVER_TYPE_A;
1302  
1303  	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1304  		host_drv_type |= SD_DRIVER_TYPE_C;
1305  
1306  	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1307  		host_drv_type |= SD_DRIVER_TYPE_D;
1308  
1309  	/*
1310  	 * The drive strength that the hardware can support
1311  	 * depends on the board design.  Pass the appropriate
1312  	 * information and let the hardware specific code
1313  	 * return what is possible given the options
1314  	 */
1315  	return host->ops->select_drive_strength(card, max_dtr,
1316  						host_drv_type,
1317  						card_drv_type,
1318  						drv_type);
1319  }
1320  
1321  /*
1322   * Apply power to the MMC stack.  This is a two-stage process.
1323   * First, we enable power to the card without the clock running.
1324   * We then wait a bit for the power to stabilise.  Finally,
1325   * enable the bus drivers and clock to the card.
1326   *
1327   * We must _NOT_ enable the clock prior to power stablising.
1328   *
1329   * If a host does all the power sequencing itself, ignore the
1330   * initial MMC_POWER_UP stage.
1331   */
mmc_power_up(struct mmc_host * host,u32 ocr)1332  void mmc_power_up(struct mmc_host *host, u32 ocr)
1333  {
1334  	if (host->ios.power_mode == MMC_POWER_ON)
1335  		return;
1336  
1337  	mmc_pwrseq_pre_power_on(host);
1338  
1339  	host->ios.vdd = fls(ocr) - 1;
1340  	host->ios.power_mode = MMC_POWER_UP;
1341  	/* Set initial state and call mmc_set_ios */
1342  	mmc_set_initial_state(host);
1343  
1344  	mmc_set_initial_signal_voltage(host);
1345  
1346  	/*
1347  	 * This delay should be sufficient to allow the power supply
1348  	 * to reach the minimum voltage.
1349  	 */
1350  	mmc_delay(host->ios.power_delay_ms);
1351  
1352  	mmc_pwrseq_post_power_on(host);
1353  
1354  	host->ios.clock = host->f_init;
1355  
1356  	host->ios.power_mode = MMC_POWER_ON;
1357  	mmc_set_ios(host);
1358  
1359  	/*
1360  	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1361  	 * time required to reach a stable voltage.
1362  	 */
1363  	mmc_delay(host->ios.power_delay_ms);
1364  }
1365  
mmc_power_off(struct mmc_host * host)1366  void mmc_power_off(struct mmc_host *host)
1367  {
1368  	if (host->ios.power_mode == MMC_POWER_OFF)
1369  		return;
1370  
1371  	mmc_pwrseq_power_off(host);
1372  
1373  	host->ios.clock = 0;
1374  	host->ios.vdd = 0;
1375  
1376  	host->ios.power_mode = MMC_POWER_OFF;
1377  	/* Set initial state and call mmc_set_ios */
1378  	mmc_set_initial_state(host);
1379  
1380  	/*
1381  	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1382  	 * XO-1.5, require a short delay after poweroff before the card
1383  	 * can be successfully turned on again.
1384  	 */
1385  	mmc_delay(1);
1386  }
1387  
mmc_power_cycle(struct mmc_host * host,u32 ocr)1388  void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1389  {
1390  	mmc_power_off(host);
1391  	/* Wait at least 1 ms according to SD spec */
1392  	mmc_delay(1);
1393  	mmc_power_up(host, ocr);
1394  }
1395  
1396  /*
1397   * Assign a mmc bus handler to a host. Only one bus handler may control a
1398   * host at any given time.
1399   */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1400  void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1401  {
1402  	host->bus_ops = ops;
1403  }
1404  
1405  /*
1406   * Remove the current bus handler from a host.
1407   */
mmc_detach_bus(struct mmc_host * host)1408  void mmc_detach_bus(struct mmc_host *host)
1409  {
1410  	host->bus_ops = NULL;
1411  }
1412  
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1413  void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1414  {
1415  	/*
1416  	 * Prevent system sleep for 5s to allow user space to consume the
1417  	 * corresponding uevent. This is especially useful, when CD irq is used
1418  	 * as a system wakeup, but doesn't hurt in other cases.
1419  	 */
1420  	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1421  		__pm_wakeup_event(host->ws, 5000);
1422  
1423  	host->detect_change = 1;
1424  	mmc_schedule_delayed_work(&host->detect, delay);
1425  }
1426  
1427  /**
1428   *	mmc_detect_change - process change of state on a MMC socket
1429   *	@host: host which changed state.
1430   *	@delay: optional delay to wait before detection (jiffies)
1431   *
1432   *	MMC drivers should call this when they detect a card has been
1433   *	inserted or removed. The MMC layer will confirm that any
1434   *	present card is still functional, and initialize any newly
1435   *	inserted.
1436   */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1437  void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1438  {
1439  	_mmc_detect_change(host, delay, true);
1440  }
1441  EXPORT_SYMBOL(mmc_detect_change);
1442  
mmc_init_erase(struct mmc_card * card)1443  void mmc_init_erase(struct mmc_card *card)
1444  {
1445  	unsigned int sz;
1446  
1447  	if (is_power_of_2(card->erase_size))
1448  		card->erase_shift = ffs(card->erase_size) - 1;
1449  	else
1450  		card->erase_shift = 0;
1451  
1452  	/*
1453  	 * It is possible to erase an arbitrarily large area of an SD or MMC
1454  	 * card.  That is not desirable because it can take a long time
1455  	 * (minutes) potentially delaying more important I/O, and also the
1456  	 * timeout calculations become increasingly hugely over-estimated.
1457  	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1458  	 * to that size and alignment.
1459  	 *
1460  	 * For SD cards that define Allocation Unit size, limit erases to one
1461  	 * Allocation Unit at a time.
1462  	 * For MMC, have a stab at ai good value and for modern cards it will
1463  	 * end up being 4MiB. Note that if the value is too small, it can end
1464  	 * up taking longer to erase. Also note, erase_size is already set to
1465  	 * High Capacity Erase Size if available when this function is called.
1466  	 */
1467  	if (mmc_card_sd(card) && card->ssr.au) {
1468  		card->pref_erase = card->ssr.au;
1469  		card->erase_shift = ffs(card->ssr.au) - 1;
1470  	} else if (card->erase_size) {
1471  		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1472  		if (sz < 128)
1473  			card->pref_erase = 512 * 1024 / 512;
1474  		else if (sz < 512)
1475  			card->pref_erase = 1024 * 1024 / 512;
1476  		else if (sz < 1024)
1477  			card->pref_erase = 2 * 1024 * 1024 / 512;
1478  		else
1479  			card->pref_erase = 4 * 1024 * 1024 / 512;
1480  		if (card->pref_erase < card->erase_size)
1481  			card->pref_erase = card->erase_size;
1482  		else {
1483  			sz = card->pref_erase % card->erase_size;
1484  			if (sz)
1485  				card->pref_erase += card->erase_size - sz;
1486  		}
1487  	} else
1488  		card->pref_erase = 0;
1489  }
1490  
is_trim_arg(unsigned int arg)1491  static bool is_trim_arg(unsigned int arg)
1492  {
1493  	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1494  }
1495  
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1496  static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1497  				          unsigned int arg, unsigned int qty)
1498  {
1499  	unsigned int erase_timeout;
1500  
1501  	if (arg == MMC_DISCARD_ARG ||
1502  	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1503  		erase_timeout = card->ext_csd.trim_timeout;
1504  	} else if (card->ext_csd.erase_group_def & 1) {
1505  		/* High Capacity Erase Group Size uses HC timeouts */
1506  		if (arg == MMC_TRIM_ARG)
1507  			erase_timeout = card->ext_csd.trim_timeout;
1508  		else
1509  			erase_timeout = card->ext_csd.hc_erase_timeout;
1510  	} else {
1511  		/* CSD Erase Group Size uses write timeout */
1512  		unsigned int mult = (10 << card->csd.r2w_factor);
1513  		unsigned int timeout_clks = card->csd.taac_clks * mult;
1514  		unsigned int timeout_us;
1515  
1516  		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1517  		if (card->csd.taac_ns < 1000000)
1518  			timeout_us = (card->csd.taac_ns * mult) / 1000;
1519  		else
1520  			timeout_us = (card->csd.taac_ns / 1000) * mult;
1521  
1522  		/*
1523  		 * ios.clock is only a target.  The real clock rate might be
1524  		 * less but not that much less, so fudge it by multiplying by 2.
1525  		 */
1526  		timeout_clks <<= 1;
1527  		timeout_us += (timeout_clks * 1000) /
1528  			      (card->host->ios.clock / 1000);
1529  
1530  		erase_timeout = timeout_us / 1000;
1531  
1532  		/*
1533  		 * Theoretically, the calculation could underflow so round up
1534  		 * to 1ms in that case.
1535  		 */
1536  		if (!erase_timeout)
1537  			erase_timeout = 1;
1538  	}
1539  
1540  	/* Multiplier for secure operations */
1541  	if (arg & MMC_SECURE_ARGS) {
1542  		if (arg == MMC_SECURE_ERASE_ARG)
1543  			erase_timeout *= card->ext_csd.sec_erase_mult;
1544  		else
1545  			erase_timeout *= card->ext_csd.sec_trim_mult;
1546  	}
1547  
1548  	erase_timeout *= qty;
1549  
1550  	/*
1551  	 * Ensure at least a 1 second timeout for SPI as per
1552  	 * 'mmc_set_data_timeout()'
1553  	 */
1554  	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1555  		erase_timeout = 1000;
1556  
1557  	return erase_timeout;
1558  }
1559  
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1560  static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1561  					 unsigned int arg,
1562  					 unsigned int qty)
1563  {
1564  	unsigned int erase_timeout;
1565  
1566  	/* for DISCARD none of the below calculation applies.
1567  	 * the busy timeout is 250msec per discard command.
1568  	 */
1569  	if (arg == SD_DISCARD_ARG)
1570  		return SD_DISCARD_TIMEOUT_MS;
1571  
1572  	if (card->ssr.erase_timeout) {
1573  		/* Erase timeout specified in SD Status Register (SSR) */
1574  		erase_timeout = card->ssr.erase_timeout * qty +
1575  				card->ssr.erase_offset;
1576  	} else {
1577  		/*
1578  		 * Erase timeout not specified in SD Status Register (SSR) so
1579  		 * use 250ms per write block.
1580  		 */
1581  		erase_timeout = 250 * qty;
1582  	}
1583  
1584  	/* Must not be less than 1 second */
1585  	if (erase_timeout < 1000)
1586  		erase_timeout = 1000;
1587  
1588  	return erase_timeout;
1589  }
1590  
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1591  static unsigned int mmc_erase_timeout(struct mmc_card *card,
1592  				      unsigned int arg,
1593  				      unsigned int qty)
1594  {
1595  	if (mmc_card_sd(card))
1596  		return mmc_sd_erase_timeout(card, arg, qty);
1597  	else
1598  		return mmc_mmc_erase_timeout(card, arg, qty);
1599  }
1600  
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1601  static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1602  			unsigned int to, unsigned int arg)
1603  {
1604  	struct mmc_command cmd = {};
1605  	unsigned int qty = 0, busy_timeout = 0;
1606  	bool use_r1b_resp;
1607  	int err;
1608  
1609  	mmc_retune_hold(card->host);
1610  
1611  	/*
1612  	 * qty is used to calculate the erase timeout which depends on how many
1613  	 * erase groups (or allocation units in SD terminology) are affected.
1614  	 * We count erasing part of an erase group as one erase group.
1615  	 * For SD, the allocation units are always a power of 2.  For MMC, the
1616  	 * erase group size is almost certainly also power of 2, but it does not
1617  	 * seem to insist on that in the JEDEC standard, so we fall back to
1618  	 * division in that case.  SD may not specify an allocation unit size,
1619  	 * in which case the timeout is based on the number of write blocks.
1620  	 *
1621  	 * Note that the timeout for secure trim 2 will only be correct if the
1622  	 * number of erase groups specified is the same as the total of all
1623  	 * preceding secure trim 1 commands.  Since the power may have been
1624  	 * lost since the secure trim 1 commands occurred, it is generally
1625  	 * impossible to calculate the secure trim 2 timeout correctly.
1626  	 */
1627  	if (card->erase_shift)
1628  		qty += ((to >> card->erase_shift) -
1629  			(from >> card->erase_shift)) + 1;
1630  	else if (mmc_card_sd(card))
1631  		qty += to - from + 1;
1632  	else
1633  		qty += ((to / card->erase_size) -
1634  			(from / card->erase_size)) + 1;
1635  
1636  	if (!mmc_card_blockaddr(card)) {
1637  		from <<= 9;
1638  		to <<= 9;
1639  	}
1640  
1641  	if (mmc_card_sd(card))
1642  		cmd.opcode = SD_ERASE_WR_BLK_START;
1643  	else
1644  		cmd.opcode = MMC_ERASE_GROUP_START;
1645  	cmd.arg = from;
1646  	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1647  	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1648  	if (err) {
1649  		pr_err("mmc_erase: group start error %d, "
1650  		       "status %#x\n", err, cmd.resp[0]);
1651  		err = -EIO;
1652  		goto out;
1653  	}
1654  
1655  	memset(&cmd, 0, sizeof(struct mmc_command));
1656  	if (mmc_card_sd(card))
1657  		cmd.opcode = SD_ERASE_WR_BLK_END;
1658  	else
1659  		cmd.opcode = MMC_ERASE_GROUP_END;
1660  	cmd.arg = to;
1661  	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1662  	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1663  	if (err) {
1664  		pr_err("mmc_erase: group end error %d, status %#x\n",
1665  		       err, cmd.resp[0]);
1666  		err = -EIO;
1667  		goto out;
1668  	}
1669  
1670  	memset(&cmd, 0, sizeof(struct mmc_command));
1671  	cmd.opcode = MMC_ERASE;
1672  	cmd.arg = arg;
1673  	busy_timeout = mmc_erase_timeout(card, arg, qty);
1674  	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1675  
1676  	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1677  	if (err) {
1678  		pr_err("mmc_erase: erase error %d, status %#x\n",
1679  		       err, cmd.resp[0]);
1680  		err = -EIO;
1681  		goto out;
1682  	}
1683  
1684  	if (mmc_host_is_spi(card->host))
1685  		goto out;
1686  
1687  	/*
1688  	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1689  	 * shall be avoided.
1690  	 */
1691  	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1692  		goto out;
1693  
1694  	/* Let's poll to find out when the erase operation completes. */
1695  	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1696  
1697  out:
1698  	mmc_retune_release(card->host);
1699  	return err;
1700  }
1701  
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)1702  static unsigned int mmc_align_erase_size(struct mmc_card *card,
1703  					 unsigned int *from,
1704  					 unsigned int *to,
1705  					 unsigned int nr)
1706  {
1707  	unsigned int from_new = *from, nr_new = nr, rem;
1708  
1709  	/*
1710  	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1711  	 * to align the erase size efficiently.
1712  	 */
1713  	if (is_power_of_2(card->erase_size)) {
1714  		unsigned int temp = from_new;
1715  
1716  		from_new = round_up(temp, card->erase_size);
1717  		rem = from_new - temp;
1718  
1719  		if (nr_new > rem)
1720  			nr_new -= rem;
1721  		else
1722  			return 0;
1723  
1724  		nr_new = round_down(nr_new, card->erase_size);
1725  	} else {
1726  		rem = from_new % card->erase_size;
1727  		if (rem) {
1728  			rem = card->erase_size - rem;
1729  			from_new += rem;
1730  			if (nr_new > rem)
1731  				nr_new -= rem;
1732  			else
1733  				return 0;
1734  		}
1735  
1736  		rem = nr_new % card->erase_size;
1737  		if (rem)
1738  			nr_new -= rem;
1739  	}
1740  
1741  	if (nr_new == 0)
1742  		return 0;
1743  
1744  	*to = from_new + nr_new;
1745  	*from = from_new;
1746  
1747  	return nr_new;
1748  }
1749  
1750  /**
1751   * mmc_erase - erase sectors.
1752   * @card: card to erase
1753   * @from: first sector to erase
1754   * @nr: number of sectors to erase
1755   * @arg: erase command argument
1756   *
1757   * Caller must claim host before calling this function.
1758   */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1759  int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1760  	      unsigned int arg)
1761  {
1762  	unsigned int rem, to = from + nr;
1763  	int err;
1764  
1765  	if (!(card->csd.cmdclass & CCC_ERASE))
1766  		return -EOPNOTSUPP;
1767  
1768  	if (!card->erase_size)
1769  		return -EOPNOTSUPP;
1770  
1771  	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1772  		return -EOPNOTSUPP;
1773  
1774  	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1775  	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1776  		return -EOPNOTSUPP;
1777  
1778  	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1779  	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1780  		return -EOPNOTSUPP;
1781  
1782  	if (arg == MMC_SECURE_ERASE_ARG) {
1783  		if (from % card->erase_size || nr % card->erase_size)
1784  			return -EINVAL;
1785  	}
1786  
1787  	if (arg == MMC_ERASE_ARG)
1788  		nr = mmc_align_erase_size(card, &from, &to, nr);
1789  
1790  	if (nr == 0)
1791  		return 0;
1792  
1793  	if (to <= from)
1794  		return -EINVAL;
1795  
1796  	/* 'from' and 'to' are inclusive */
1797  	to -= 1;
1798  
1799  	/*
1800  	 * Special case where only one erase-group fits in the timeout budget:
1801  	 * If the region crosses an erase-group boundary on this particular
1802  	 * case, we will be trimming more than one erase-group which, does not
1803  	 * fit in the timeout budget of the controller, so we need to split it
1804  	 * and call mmc_do_erase() twice if necessary. This special case is
1805  	 * identified by the card->eg_boundary flag.
1806  	 */
1807  	rem = card->erase_size - (from % card->erase_size);
1808  	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1809  		err = mmc_do_erase(card, from, from + rem - 1, arg);
1810  		from += rem;
1811  		if ((err) || (to <= from))
1812  			return err;
1813  	}
1814  
1815  	return mmc_do_erase(card, from, to, arg);
1816  }
1817  EXPORT_SYMBOL(mmc_erase);
1818  
mmc_can_erase(struct mmc_card * card)1819  int mmc_can_erase(struct mmc_card *card)
1820  {
1821  	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1822  		return 1;
1823  	return 0;
1824  }
1825  EXPORT_SYMBOL(mmc_can_erase);
1826  
mmc_can_trim(struct mmc_card * card)1827  int mmc_can_trim(struct mmc_card *card)
1828  {
1829  	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1830  	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1831  		return 1;
1832  	return 0;
1833  }
1834  EXPORT_SYMBOL(mmc_can_trim);
1835  
mmc_can_discard(struct mmc_card * card)1836  int mmc_can_discard(struct mmc_card *card)
1837  {
1838  	/*
1839  	 * As there's no way to detect the discard support bit at v4.5
1840  	 * use the s/w feature support filed.
1841  	 */
1842  	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1843  		return 1;
1844  	return 0;
1845  }
1846  EXPORT_SYMBOL(mmc_can_discard);
1847  
mmc_can_sanitize(struct mmc_card * card)1848  int mmc_can_sanitize(struct mmc_card *card)
1849  {
1850  	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1851  		return 0;
1852  	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1853  		return 1;
1854  	return 0;
1855  }
1856  
mmc_can_secure_erase_trim(struct mmc_card * card)1857  int mmc_can_secure_erase_trim(struct mmc_card *card)
1858  {
1859  	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1860  	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1861  		return 1;
1862  	return 0;
1863  }
1864  EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1865  
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1866  int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1867  			    unsigned int nr)
1868  {
1869  	if (!card->erase_size)
1870  		return 0;
1871  	if (from % card->erase_size || nr % card->erase_size)
1872  		return 0;
1873  	return 1;
1874  }
1875  EXPORT_SYMBOL(mmc_erase_group_aligned);
1876  
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1877  static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1878  					    unsigned int arg)
1879  {
1880  	struct mmc_host *host = card->host;
1881  	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1882  	unsigned int last_timeout = 0;
1883  	unsigned int max_busy_timeout = host->max_busy_timeout ?
1884  			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1885  
1886  	if (card->erase_shift) {
1887  		max_qty = UINT_MAX >> card->erase_shift;
1888  		min_qty = card->pref_erase >> card->erase_shift;
1889  	} else if (mmc_card_sd(card)) {
1890  		max_qty = UINT_MAX;
1891  		min_qty = card->pref_erase;
1892  	} else {
1893  		max_qty = UINT_MAX / card->erase_size;
1894  		min_qty = card->pref_erase / card->erase_size;
1895  	}
1896  
1897  	/*
1898  	 * We should not only use 'host->max_busy_timeout' as the limitation
1899  	 * when deciding the max discard sectors. We should set a balance value
1900  	 * to improve the erase speed, and it can not get too long timeout at
1901  	 * the same time.
1902  	 *
1903  	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1904  	 * matter what size of 'host->max_busy_timeout', but if the
1905  	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1906  	 * then we can continue to increase the max discard sectors until we
1907  	 * get a balance value. In cases when the 'host->max_busy_timeout'
1908  	 * isn't specified, use the default max erase timeout.
1909  	 */
1910  	do {
1911  		y = 0;
1912  		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1913  			timeout = mmc_erase_timeout(card, arg, qty + x);
1914  
1915  			if (qty + x > min_qty && timeout > max_busy_timeout)
1916  				break;
1917  
1918  			if (timeout < last_timeout)
1919  				break;
1920  			last_timeout = timeout;
1921  			y = x;
1922  		}
1923  		qty += y;
1924  	} while (y);
1925  
1926  	if (!qty)
1927  		return 0;
1928  
1929  	/*
1930  	 * When specifying a sector range to trim, chances are we might cross
1931  	 * an erase-group boundary even if the amount of sectors is less than
1932  	 * one erase-group.
1933  	 * If we can only fit one erase-group in the controller timeout budget,
1934  	 * we have to care that erase-group boundaries are not crossed by a
1935  	 * single trim operation. We flag that special case with "eg_boundary".
1936  	 * In all other cases we can just decrement qty and pretend that we
1937  	 * always touch (qty + 1) erase-groups as a simple optimization.
1938  	 */
1939  	if (qty == 1)
1940  		card->eg_boundary = 1;
1941  	else
1942  		qty--;
1943  
1944  	/* Convert qty to sectors */
1945  	if (card->erase_shift)
1946  		max_discard = qty << card->erase_shift;
1947  	else if (mmc_card_sd(card))
1948  		max_discard = qty + 1;
1949  	else
1950  		max_discard = qty * card->erase_size;
1951  
1952  	return max_discard;
1953  }
1954  
mmc_calc_max_discard(struct mmc_card * card)1955  unsigned int mmc_calc_max_discard(struct mmc_card *card)
1956  {
1957  	struct mmc_host *host = card->host;
1958  	unsigned int max_discard, max_trim;
1959  
1960  	/*
1961  	 * Without erase_group_def set, MMC erase timeout depends on clock
1962  	 * frequence which can change.  In that case, the best choice is
1963  	 * just the preferred erase size.
1964  	 */
1965  	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1966  		return card->pref_erase;
1967  
1968  	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1969  	if (mmc_can_trim(card)) {
1970  		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1971  		if (max_trim < max_discard || max_discard == 0)
1972  			max_discard = max_trim;
1973  	} else if (max_discard < card->erase_size) {
1974  		max_discard = 0;
1975  	}
1976  	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1977  		mmc_hostname(host), max_discard, host->max_busy_timeout ?
1978  		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1979  	return max_discard;
1980  }
1981  EXPORT_SYMBOL(mmc_calc_max_discard);
1982  
mmc_card_is_blockaddr(struct mmc_card * card)1983  bool mmc_card_is_blockaddr(struct mmc_card *card)
1984  {
1985  	return card ? mmc_card_blockaddr(card) : false;
1986  }
1987  EXPORT_SYMBOL(mmc_card_is_blockaddr);
1988  
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)1989  int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1990  {
1991  	struct mmc_command cmd = {};
1992  
1993  	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1994  	    mmc_card_hs400(card) || mmc_card_hs400es(card))
1995  		return 0;
1996  
1997  	cmd.opcode = MMC_SET_BLOCKLEN;
1998  	cmd.arg = blocklen;
1999  	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2000  	return mmc_wait_for_cmd(card->host, &cmd, 5);
2001  }
2002  EXPORT_SYMBOL(mmc_set_blocklen);
2003  
mmc_hw_reset_for_init(struct mmc_host * host)2004  static void mmc_hw_reset_for_init(struct mmc_host *host)
2005  {
2006  	mmc_pwrseq_reset(host);
2007  
2008  	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2009  		return;
2010  	host->ops->card_hw_reset(host);
2011  }
2012  
2013  /**
2014   * mmc_hw_reset - reset the card in hardware
2015   * @card: card to be reset
2016   *
2017   * Hard reset the card. This function is only for upper layers, like the
2018   * block layer or card drivers. You cannot use it in host drivers (struct
2019   * mmc_card might be gone then).
2020   *
2021   * Return: 0 on success, -errno on failure
2022   */
mmc_hw_reset(struct mmc_card * card)2023  int mmc_hw_reset(struct mmc_card *card)
2024  {
2025  	struct mmc_host *host = card->host;
2026  	int ret;
2027  
2028  	ret = host->bus_ops->hw_reset(host);
2029  	if (ret < 0)
2030  		pr_warn("%s: tried to HW reset card, got error %d\n",
2031  			mmc_hostname(host), ret);
2032  
2033  	return ret;
2034  }
2035  EXPORT_SYMBOL(mmc_hw_reset);
2036  
mmc_sw_reset(struct mmc_card * card)2037  int mmc_sw_reset(struct mmc_card *card)
2038  {
2039  	struct mmc_host *host = card->host;
2040  	int ret;
2041  
2042  	if (!host->bus_ops->sw_reset)
2043  		return -EOPNOTSUPP;
2044  
2045  	ret = host->bus_ops->sw_reset(host);
2046  	if (ret)
2047  		pr_warn("%s: tried to SW reset card, got error %d\n",
2048  			mmc_hostname(host), ret);
2049  
2050  	return ret;
2051  }
2052  EXPORT_SYMBOL(mmc_sw_reset);
2053  
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2054  static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2055  {
2056  	host->f_init = freq;
2057  
2058  	pr_debug("%s: %s: trying to init card at %u Hz\n",
2059  		mmc_hostname(host), __func__, host->f_init);
2060  
2061  	mmc_power_up(host, host->ocr_avail);
2062  
2063  	/*
2064  	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2065  	 * do a hardware reset if possible.
2066  	 */
2067  	mmc_hw_reset_for_init(host);
2068  
2069  	/*
2070  	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2071  	 * if the card is being re-initialized, just send it.  CMD52
2072  	 * should be ignored by SD/eMMC cards.
2073  	 * Skip it if we already know that we do not support SDIO commands
2074  	 */
2075  	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2076  		sdio_reset(host);
2077  
2078  	mmc_go_idle(host);
2079  
2080  	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2081  		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2082  			goto out;
2083  		if (mmc_card_sd_express(host))
2084  			return 0;
2085  	}
2086  
2087  	/* Order's important: probe SDIO, then SD, then MMC */
2088  	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2089  		if (!mmc_attach_sdio(host))
2090  			return 0;
2091  
2092  	if (!(host->caps2 & MMC_CAP2_NO_SD))
2093  		if (!mmc_attach_sd(host))
2094  			return 0;
2095  
2096  	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2097  		if (!mmc_attach_mmc(host))
2098  			return 0;
2099  
2100  out:
2101  	mmc_power_off(host);
2102  	return -EIO;
2103  }
2104  
_mmc_detect_card_removed(struct mmc_host * host)2105  int _mmc_detect_card_removed(struct mmc_host *host)
2106  {
2107  	int ret;
2108  
2109  	if (!host->card || mmc_card_removed(host->card))
2110  		return 1;
2111  
2112  	ret = host->bus_ops->alive(host);
2113  
2114  	/*
2115  	 * Card detect status and alive check may be out of sync if card is
2116  	 * removed slowly, when card detect switch changes while card/slot
2117  	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2118  	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2119  	 * detect work 200ms later for this case.
2120  	 */
2121  	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2122  		mmc_detect_change(host, msecs_to_jiffies(200));
2123  		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2124  	}
2125  
2126  	if (ret) {
2127  		mmc_card_set_removed(host->card);
2128  		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2129  	}
2130  
2131  	return ret;
2132  }
2133  
mmc_detect_card_removed(struct mmc_host * host)2134  int mmc_detect_card_removed(struct mmc_host *host)
2135  {
2136  	struct mmc_card *card = host->card;
2137  	int ret;
2138  
2139  	WARN_ON(!host->claimed);
2140  
2141  	if (!card)
2142  		return 1;
2143  
2144  	if (!mmc_card_is_removable(host))
2145  		return 0;
2146  
2147  	ret = mmc_card_removed(card);
2148  	/*
2149  	 * The card will be considered unchanged unless we have been asked to
2150  	 * detect a change or host requires polling to provide card detection.
2151  	 */
2152  	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2153  		return ret;
2154  
2155  	host->detect_change = 0;
2156  	if (!ret) {
2157  		ret = _mmc_detect_card_removed(host);
2158  		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2159  			/*
2160  			 * Schedule a detect work as soon as possible to let a
2161  			 * rescan handle the card removal.
2162  			 */
2163  			cancel_delayed_work(&host->detect);
2164  			_mmc_detect_change(host, 0, false);
2165  		}
2166  	}
2167  
2168  	return ret;
2169  }
2170  EXPORT_SYMBOL(mmc_detect_card_removed);
2171  
mmc_card_alternative_gpt_sector(struct mmc_card * card,sector_t * gpt_sector)2172  int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2173  {
2174  	unsigned int boot_sectors_num;
2175  
2176  	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2177  		return -EOPNOTSUPP;
2178  
2179  	/* filter out unrelated cards */
2180  	if (card->ext_csd.rev < 3 ||
2181  	    !mmc_card_mmc(card) ||
2182  	    !mmc_card_is_blockaddr(card) ||
2183  	     mmc_card_is_removable(card->host))
2184  		return -ENOENT;
2185  
2186  	/*
2187  	 * eMMC storage has two special boot partitions in addition to the
2188  	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2189  	 * accesses, this means that the partition table addresses are shifted
2190  	 * by the size of boot partitions.  In accordance with the eMMC
2191  	 * specification, the boot partition size is calculated as follows:
2192  	 *
2193  	 *	boot partition size = 128K byte x BOOT_SIZE_MULT
2194  	 *
2195  	 * Calculate number of sectors occupied by the both boot partitions.
2196  	 */
2197  	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2198  			   SZ_512 * MMC_NUM_BOOT_PARTITION;
2199  
2200  	/* Defined by NVIDIA and used by Android devices. */
2201  	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2202  
2203  	return 0;
2204  }
2205  EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2206  
mmc_rescan(struct work_struct * work)2207  void mmc_rescan(struct work_struct *work)
2208  {
2209  	struct mmc_host *host =
2210  		container_of(work, struct mmc_host, detect.work);
2211  	int i;
2212  
2213  	if (host->rescan_disable)
2214  		return;
2215  
2216  	/* If there is a non-removable card registered, only scan once */
2217  	if (!mmc_card_is_removable(host) && host->rescan_entered)
2218  		return;
2219  	host->rescan_entered = 1;
2220  
2221  	if (host->trigger_card_event && host->ops->card_event) {
2222  		mmc_claim_host(host);
2223  		host->ops->card_event(host);
2224  		mmc_release_host(host);
2225  		host->trigger_card_event = false;
2226  	}
2227  
2228  	/* Verify a registered card to be functional, else remove it. */
2229  	if (host->bus_ops)
2230  		host->bus_ops->detect(host);
2231  
2232  	host->detect_change = 0;
2233  
2234  	/* if there still is a card present, stop here */
2235  	if (host->bus_ops != NULL)
2236  		goto out;
2237  
2238  	mmc_claim_host(host);
2239  	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2240  			host->ops->get_cd(host) == 0) {
2241  		mmc_power_off(host);
2242  		mmc_release_host(host);
2243  		goto out;
2244  	}
2245  
2246  	/* If an SD express card is present, then leave it as is. */
2247  	if (mmc_card_sd_express(host)) {
2248  		mmc_release_host(host);
2249  		goto out;
2250  	}
2251  
2252  	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2253  		unsigned int freq = freqs[i];
2254  		if (freq > host->f_max) {
2255  			if (i + 1 < ARRAY_SIZE(freqs))
2256  				continue;
2257  			freq = host->f_max;
2258  		}
2259  		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2260  			break;
2261  		if (freqs[i] <= host->f_min)
2262  			break;
2263  	}
2264  
2265  	/* A non-removable card should have been detected by now. */
2266  	if (!mmc_card_is_removable(host) && !host->bus_ops)
2267  		pr_info("%s: Failed to initialize a non-removable card",
2268  			mmc_hostname(host));
2269  
2270  	/*
2271  	 * Ignore the command timeout errors observed during
2272  	 * the card init as those are excepted.
2273  	 */
2274  	host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2275  	mmc_release_host(host);
2276  
2277   out:
2278  	if (host->caps & MMC_CAP_NEEDS_POLL)
2279  		mmc_schedule_delayed_work(&host->detect, HZ);
2280  }
2281  
mmc_start_host(struct mmc_host * host)2282  void mmc_start_host(struct mmc_host *host)
2283  {
2284  	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2285  	host->rescan_disable = 0;
2286  
2287  	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2288  		mmc_claim_host(host);
2289  		mmc_power_up(host, host->ocr_avail);
2290  		mmc_release_host(host);
2291  	}
2292  
2293  	mmc_gpiod_request_cd_irq(host);
2294  	_mmc_detect_change(host, 0, false);
2295  }
2296  
__mmc_stop_host(struct mmc_host * host)2297  void __mmc_stop_host(struct mmc_host *host)
2298  {
2299  	if (host->slot.cd_irq >= 0) {
2300  		mmc_gpio_set_cd_wake(host, false);
2301  		disable_irq(host->slot.cd_irq);
2302  	}
2303  
2304  	host->rescan_disable = 1;
2305  	cancel_delayed_work_sync(&host->detect);
2306  }
2307  
mmc_stop_host(struct mmc_host * host)2308  void mmc_stop_host(struct mmc_host *host)
2309  {
2310  	__mmc_stop_host(host);
2311  
2312  	/* clear pm flags now and let card drivers set them as needed */
2313  	host->pm_flags = 0;
2314  
2315  	if (host->bus_ops) {
2316  		/* Calling bus_ops->remove() with a claimed host can deadlock */
2317  		host->bus_ops->remove(host);
2318  		mmc_claim_host(host);
2319  		mmc_detach_bus(host);
2320  		mmc_power_off(host);
2321  		mmc_release_host(host);
2322  		return;
2323  	}
2324  
2325  	mmc_claim_host(host);
2326  	mmc_power_off(host);
2327  	mmc_release_host(host);
2328  }
2329  
mmc_init(void)2330  static int __init mmc_init(void)
2331  {
2332  	int ret;
2333  
2334  	ret = mmc_register_bus();
2335  	if (ret)
2336  		return ret;
2337  
2338  	ret = mmc_register_host_class();
2339  	if (ret)
2340  		goto unregister_bus;
2341  
2342  	ret = sdio_register_bus();
2343  	if (ret)
2344  		goto unregister_host_class;
2345  
2346  	return 0;
2347  
2348  unregister_host_class:
2349  	mmc_unregister_host_class();
2350  unregister_bus:
2351  	mmc_unregister_bus();
2352  	return ret;
2353  }
2354  
mmc_exit(void)2355  static void __exit mmc_exit(void)
2356  {
2357  	sdio_unregister_bus();
2358  	mmc_unregister_host_class();
2359  	mmc_unregister_bus();
2360  }
2361  
2362  subsys_initcall(mmc_init);
2363  module_exit(mmc_exit);
2364  
2365  MODULE_DESCRIPTION("MMC core driver");
2366  MODULE_LICENSE("GPL");
2367