1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (C) 2008, 2009 Intel Corporation
4   * Authors: Andi Kleen, Fengguang Wu
5   *
6   * High level machine check handler. Handles pages reported by the
7   * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8   * failure.
9   *
10   * In addition there is a "soft offline" entry point that allows stop using
11   * not-yet-corrupted-by-suspicious pages without killing anything.
12   *
13   * Handles page cache pages in various states.	The tricky part
14   * here is that we can access any page asynchronously in respect to
15   * other VM users, because memory failures could happen anytime and
16   * anywhere. This could violate some of their assumptions. This is why
17   * this code has to be extremely careful. Generally it tries to use
18   * normal locking rules, as in get the standard locks, even if that means
19   * the error handling takes potentially a long time.
20   *
21   * It can be very tempting to add handling for obscure cases here.
22   * In general any code for handling new cases should only be added iff:
23   * - You know how to test it.
24   * - You have a test that can be added to mce-test
25   *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26   * - The case actually shows up as a frequent (top 10) page state in
27   *   tools/mm/page-types when running a real workload.
28   *
29   * There are several operations here with exponential complexity because
30   * of unsuitable VM data structures. For example the operation to map back
31   * from RMAP chains to processes has to walk the complete process list and
32   * has non linear complexity with the number. But since memory corruptions
33   * are rare we hope to get away with this. This avoids impacting the core
34   * VM.
35   */
36  
37  #define pr_fmt(fmt) "Memory failure: " fmt
38  
39  #include <linux/kernel.h>
40  #include <linux/mm.h>
41  #include <linux/page-flags.h>
42  #include <linux/sched/signal.h>
43  #include <linux/sched/task.h>
44  #include <linux/dax.h>
45  #include <linux/ksm.h>
46  #include <linux/rmap.h>
47  #include <linux/export.h>
48  #include <linux/pagemap.h>
49  #include <linux/swap.h>
50  #include <linux/backing-dev.h>
51  #include <linux/migrate.h>
52  #include <linux/slab.h>
53  #include <linux/swapops.h>
54  #include <linux/hugetlb.h>
55  #include <linux/memory_hotplug.h>
56  #include <linux/mm_inline.h>
57  #include <linux/memremap.h>
58  #include <linux/kfifo.h>
59  #include <linux/ratelimit.h>
60  #include <linux/pagewalk.h>
61  #include <linux/shmem_fs.h>
62  #include <linux/sysctl.h>
63  #include "swap.h"
64  #include "internal.h"
65  #include "ras/ras_event.h"
66  
67  static int sysctl_memory_failure_early_kill __read_mostly;
68  
69  static int sysctl_memory_failure_recovery __read_mostly = 1;
70  
71  static int sysctl_enable_soft_offline __read_mostly = 1;
72  
73  atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74  
75  static bool hw_memory_failure __read_mostly = false;
76  
77  static DEFINE_MUTEX(mf_mutex);
78  
num_poisoned_pages_inc(unsigned long pfn)79  void num_poisoned_pages_inc(unsigned long pfn)
80  {
81  	atomic_long_inc(&num_poisoned_pages);
82  	memblk_nr_poison_inc(pfn);
83  }
84  
num_poisoned_pages_sub(unsigned long pfn,long i)85  void num_poisoned_pages_sub(unsigned long pfn, long i)
86  {
87  	atomic_long_sub(i, &num_poisoned_pages);
88  	if (pfn != -1UL)
89  		memblk_nr_poison_sub(pfn, i);
90  }
91  
92  /**
93   * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94   * @_name: name of the file in the per NUMA sysfs directory.
95   */
96  #define MF_ATTR_RO(_name)					\
97  static ssize_t _name##_show(struct device *dev,			\
98  			    struct device_attribute *attr,	\
99  			    char *buf)				\
100  {								\
101  	struct memory_failure_stats *mf_stats =			\
102  		&NODE_DATA(dev->id)->mf_stats;			\
103  	return sprintf(buf, "%lu\n", mf_stats->_name);		\
104  }								\
105  static DEVICE_ATTR_RO(_name)
106  
107  MF_ATTR_RO(total);
108  MF_ATTR_RO(ignored);
109  MF_ATTR_RO(failed);
110  MF_ATTR_RO(delayed);
111  MF_ATTR_RO(recovered);
112  
113  static struct attribute *memory_failure_attr[] = {
114  	&dev_attr_total.attr,
115  	&dev_attr_ignored.attr,
116  	&dev_attr_failed.attr,
117  	&dev_attr_delayed.attr,
118  	&dev_attr_recovered.attr,
119  	NULL,
120  };
121  
122  const struct attribute_group memory_failure_attr_group = {
123  	.name = "memory_failure",
124  	.attrs = memory_failure_attr,
125  };
126  
127  static struct ctl_table memory_failure_table[] = {
128  	{
129  		.procname	= "memory_failure_early_kill",
130  		.data		= &sysctl_memory_failure_early_kill,
131  		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
132  		.mode		= 0644,
133  		.proc_handler	= proc_dointvec_minmax,
134  		.extra1		= SYSCTL_ZERO,
135  		.extra2		= SYSCTL_ONE,
136  	},
137  	{
138  		.procname	= "memory_failure_recovery",
139  		.data		= &sysctl_memory_failure_recovery,
140  		.maxlen		= sizeof(sysctl_memory_failure_recovery),
141  		.mode		= 0644,
142  		.proc_handler	= proc_dointvec_minmax,
143  		.extra1		= SYSCTL_ZERO,
144  		.extra2		= SYSCTL_ONE,
145  	},
146  	{
147  		.procname	= "enable_soft_offline",
148  		.data		= &sysctl_enable_soft_offline,
149  		.maxlen		= sizeof(sysctl_enable_soft_offline),
150  		.mode		= 0644,
151  		.proc_handler	= proc_dointvec_minmax,
152  		.extra1		= SYSCTL_ZERO,
153  		.extra2		= SYSCTL_ONE,
154  	}
155  };
156  
157  /*
158   * Return values:
159   *   1:   the page is dissolved (if needed) and taken off from buddy,
160   *   0:   the page is dissolved (if needed) and not taken off from buddy,
161   *   < 0: failed to dissolve.
162   */
__page_handle_poison(struct page * page)163  static int __page_handle_poison(struct page *page)
164  {
165  	int ret;
166  
167  	/*
168  	 * zone_pcp_disable() can't be used here. It will
169  	 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170  	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171  	 * optimization is enabled. This will break current lock dependency
172  	 * chain and leads to deadlock.
173  	 * Disabling pcp before dissolving the page was a deterministic
174  	 * approach because we made sure that those pages cannot end up in any
175  	 * PCP list. Draining PCP lists expels those pages to the buddy system,
176  	 * but nothing guarantees that those pages do not get back to a PCP
177  	 * queue if we need to refill those.
178  	 */
179  	ret = dissolve_free_hugetlb_folio(page_folio(page));
180  	if (!ret) {
181  		drain_all_pages(page_zone(page));
182  		ret = take_page_off_buddy(page);
183  	}
184  
185  	return ret;
186  }
187  
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)188  static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
189  {
190  	if (hugepage_or_freepage) {
191  		/*
192  		 * Doing this check for free pages is also fine since
193  		 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
194  		 */
195  		if (__page_handle_poison(page) <= 0)
196  			/*
197  			 * We could fail to take off the target page from buddy
198  			 * for example due to racy page allocation, but that's
199  			 * acceptable because soft-offlined page is not broken
200  			 * and if someone really want to use it, they should
201  			 * take it.
202  			 */
203  			return false;
204  	}
205  
206  	SetPageHWPoison(page);
207  	if (release)
208  		put_page(page);
209  	page_ref_inc(page);
210  	num_poisoned_pages_inc(page_to_pfn(page));
211  
212  	return true;
213  }
214  
215  #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
216  
217  u32 hwpoison_filter_enable = 0;
218  u32 hwpoison_filter_dev_major = ~0U;
219  u32 hwpoison_filter_dev_minor = ~0U;
220  u64 hwpoison_filter_flags_mask;
221  u64 hwpoison_filter_flags_value;
222  EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
223  EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224  EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
225  EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226  EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
227  
hwpoison_filter_dev(struct page * p)228  static int hwpoison_filter_dev(struct page *p)
229  {
230  	struct folio *folio = page_folio(p);
231  	struct address_space *mapping;
232  	dev_t dev;
233  
234  	if (hwpoison_filter_dev_major == ~0U &&
235  	    hwpoison_filter_dev_minor == ~0U)
236  		return 0;
237  
238  	mapping = folio_mapping(folio);
239  	if (mapping == NULL || mapping->host == NULL)
240  		return -EINVAL;
241  
242  	dev = mapping->host->i_sb->s_dev;
243  	if (hwpoison_filter_dev_major != ~0U &&
244  	    hwpoison_filter_dev_major != MAJOR(dev))
245  		return -EINVAL;
246  	if (hwpoison_filter_dev_minor != ~0U &&
247  	    hwpoison_filter_dev_minor != MINOR(dev))
248  		return -EINVAL;
249  
250  	return 0;
251  }
252  
hwpoison_filter_flags(struct page * p)253  static int hwpoison_filter_flags(struct page *p)
254  {
255  	if (!hwpoison_filter_flags_mask)
256  		return 0;
257  
258  	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259  				    hwpoison_filter_flags_value)
260  		return 0;
261  	else
262  		return -EINVAL;
263  }
264  
265  /*
266   * This allows stress tests to limit test scope to a collection of tasks
267   * by putting them under some memcg. This prevents killing unrelated/important
268   * processes such as /sbin/init. Note that the target task may share clean
269   * pages with init (eg. libc text), which is harmless. If the target task
270   * share _dirty_ pages with another task B, the test scheme must make sure B
271   * is also included in the memcg. At last, due to race conditions this filter
272   * can only guarantee that the page either belongs to the memcg tasks, or is
273   * a freed page.
274   */
275  #ifdef CONFIG_MEMCG
276  u64 hwpoison_filter_memcg;
277  EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)278  static int hwpoison_filter_task(struct page *p)
279  {
280  	if (!hwpoison_filter_memcg)
281  		return 0;
282  
283  	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
284  		return -EINVAL;
285  
286  	return 0;
287  }
288  #else
hwpoison_filter_task(struct page * p)289  static int hwpoison_filter_task(struct page *p) { return 0; }
290  #endif
291  
hwpoison_filter(struct page * p)292  int hwpoison_filter(struct page *p)
293  {
294  	if (!hwpoison_filter_enable)
295  		return 0;
296  
297  	if (hwpoison_filter_dev(p))
298  		return -EINVAL;
299  
300  	if (hwpoison_filter_flags(p))
301  		return -EINVAL;
302  
303  	if (hwpoison_filter_task(p))
304  		return -EINVAL;
305  
306  	return 0;
307  }
308  EXPORT_SYMBOL_GPL(hwpoison_filter);
309  #else
hwpoison_filter(struct page * p)310  int hwpoison_filter(struct page *p)
311  {
312  	return 0;
313  }
314  #endif
315  
316  /*
317   * Kill all processes that have a poisoned page mapped and then isolate
318   * the page.
319   *
320   * General strategy:
321   * Find all processes having the page mapped and kill them.
322   * But we keep a page reference around so that the page is not
323   * actually freed yet.
324   * Then stash the page away
325   *
326   * There's no convenient way to get back to mapped processes
327   * from the VMAs. So do a brute-force search over all
328   * running processes.
329   *
330   * Remember that machine checks are not common (or rather
331   * if they are common you have other problems), so this shouldn't
332   * be a performance issue.
333   *
334   * Also there are some races possible while we get from the
335   * error detection to actually handle it.
336   */
337  
338  struct to_kill {
339  	struct list_head nd;
340  	struct task_struct *tsk;
341  	unsigned long addr;
342  	short size_shift;
343  };
344  
345  /*
346   * Send all the processes who have the page mapped a signal.
347   * ``action optional'' if they are not immediately affected by the error
348   * ``action required'' if error happened in current execution context
349   */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)350  static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
351  {
352  	struct task_struct *t = tk->tsk;
353  	short addr_lsb = tk->size_shift;
354  	int ret = 0;
355  
356  	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357  			pfn, t->comm, task_pid_nr(t));
358  
359  	if ((flags & MF_ACTION_REQUIRED) && (t == current))
360  		ret = force_sig_mceerr(BUS_MCEERR_AR,
361  				 (void __user *)tk->addr, addr_lsb);
362  	else
363  		/*
364  		 * Signal other processes sharing the page if they have
365  		 * PF_MCE_EARLY set.
366  		 * Don't use force here, it's convenient if the signal
367  		 * can be temporarily blocked.
368  		 */
369  		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
370  				      addr_lsb, t);
371  	if (ret < 0)
372  		pr_info("Error sending signal to %s:%d: %d\n",
373  			t->comm, task_pid_nr(t), ret);
374  	return ret;
375  }
376  
377  /*
378   * Unknown page type encountered. Try to check whether it can turn PageLRU by
379   * lru_add_drain_all.
380   */
shake_folio(struct folio * folio)381  void shake_folio(struct folio *folio)
382  {
383  	if (folio_test_hugetlb(folio))
384  		return;
385  	/*
386  	 * TODO: Could shrink slab caches here if a lightweight range-based
387  	 * shrinker will be available.
388  	 */
389  	if (folio_test_slab(folio))
390  		return;
391  
392  	lru_add_drain_all();
393  }
394  EXPORT_SYMBOL_GPL(shake_folio);
395  
shake_page(struct page * page)396  static void shake_page(struct page *page)
397  {
398  	shake_folio(page_folio(page));
399  }
400  
dev_pagemap_mapping_shift(struct vm_area_struct * vma,unsigned long address)401  static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402  		unsigned long address)
403  {
404  	unsigned long ret = 0;
405  	pgd_t *pgd;
406  	p4d_t *p4d;
407  	pud_t *pud;
408  	pmd_t *pmd;
409  	pte_t *pte;
410  	pte_t ptent;
411  
412  	VM_BUG_ON_VMA(address == -EFAULT, vma);
413  	pgd = pgd_offset(vma->vm_mm, address);
414  	if (!pgd_present(*pgd))
415  		return 0;
416  	p4d = p4d_offset(pgd, address);
417  	if (!p4d_present(*p4d))
418  		return 0;
419  	pud = pud_offset(p4d, address);
420  	if (!pud_present(*pud))
421  		return 0;
422  	if (pud_devmap(*pud))
423  		return PUD_SHIFT;
424  	pmd = pmd_offset(pud, address);
425  	if (!pmd_present(*pmd))
426  		return 0;
427  	if (pmd_devmap(*pmd))
428  		return PMD_SHIFT;
429  	pte = pte_offset_map(pmd, address);
430  	if (!pte)
431  		return 0;
432  	ptent = ptep_get(pte);
433  	if (pte_present(ptent) && pte_devmap(ptent))
434  		ret = PAGE_SHIFT;
435  	pte_unmap(pte);
436  	return ret;
437  }
438  
439  /*
440   * Failure handling: if we can't find or can't kill a process there's
441   * not much we can do.	We just print a message and ignore otherwise.
442   */
443  
444  /*
445   * Schedule a process for later kill.
446   * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
447   */
__add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)448  static void __add_to_kill(struct task_struct *tsk, struct page *p,
449  			  struct vm_area_struct *vma, struct list_head *to_kill,
450  			  unsigned long addr)
451  {
452  	struct to_kill *tk;
453  
454  	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455  	if (!tk) {
456  		pr_err("Out of memory while machine check handling\n");
457  		return;
458  	}
459  
460  	tk->addr = addr;
461  	if (is_zone_device_page(p))
462  		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
463  	else
464  		tk->size_shift = page_shift(compound_head(p));
465  
466  	/*
467  	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468  	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469  	 * so "tk->size_shift == 0" effectively checks no mapping on
470  	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471  	 * to a process' address space, it's possible not all N VMAs
472  	 * contain mappings for the page, but at least one VMA does.
473  	 * Only deliver SIGBUS with payload derived from the VMA that
474  	 * has a mapping for the page.
475  	 */
476  	if (tk->addr == -EFAULT) {
477  		pr_info("Unable to find user space address %lx in %s\n",
478  			page_to_pfn(p), tsk->comm);
479  	} else if (tk->size_shift == 0) {
480  		kfree(tk);
481  		return;
482  	}
483  
484  	get_task_struct(tsk);
485  	tk->tsk = tsk;
486  	list_add_tail(&tk->nd, to_kill);
487  }
488  
add_to_kill_anon_file(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)489  static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
490  		struct vm_area_struct *vma, struct list_head *to_kill,
491  		unsigned long addr)
492  {
493  	if (addr == -EFAULT)
494  		return;
495  	__add_to_kill(tsk, p, vma, to_kill, addr);
496  }
497  
498  #ifdef CONFIG_KSM
task_in_to_kill_list(struct list_head * to_kill,struct task_struct * tsk)499  static bool task_in_to_kill_list(struct list_head *to_kill,
500  				 struct task_struct *tsk)
501  {
502  	struct to_kill *tk, *next;
503  
504  	list_for_each_entry_safe(tk, next, to_kill, nd) {
505  		if (tk->tsk == tsk)
506  			return true;
507  	}
508  
509  	return false;
510  }
511  
add_to_kill_ksm(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)512  void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
513  		     struct vm_area_struct *vma, struct list_head *to_kill,
514  		     unsigned long addr)
515  {
516  	if (!task_in_to_kill_list(to_kill, tsk))
517  		__add_to_kill(tsk, p, vma, to_kill, addr);
518  }
519  #endif
520  /*
521   * Kill the processes that have been collected earlier.
522   *
523   * Only do anything when FORCEKILL is set, otherwise just free the
524   * list (this is used for clean pages which do not need killing)
525   */
kill_procs(struct list_head * to_kill,int forcekill,unsigned long pfn,int flags)526  static void kill_procs(struct list_head *to_kill, int forcekill,
527  		unsigned long pfn, int flags)
528  {
529  	struct to_kill *tk, *next;
530  
531  	list_for_each_entry_safe(tk, next, to_kill, nd) {
532  		if (forcekill) {
533  			if (tk->addr == -EFAULT) {
534  				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535  				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
536  				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537  						 tk->tsk, PIDTYPE_PID);
538  			}
539  
540  			/*
541  			 * In theory the process could have mapped
542  			 * something else on the address in-between. We could
543  			 * check for that, but we need to tell the
544  			 * process anyways.
545  			 */
546  			else if (kill_proc(tk, pfn, flags) < 0)
547  				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548  				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
549  		}
550  		list_del(&tk->nd);
551  		put_task_struct(tk->tsk);
552  		kfree(tk);
553  	}
554  }
555  
556  /*
557   * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558   * on behalf of the thread group. Return task_struct of the (first found)
559   * dedicated thread if found, and return NULL otherwise.
560   *
561   * We already hold rcu lock in the caller, so we don't have to call
562   * rcu_read_lock/unlock() in this function.
563   */
find_early_kill_thread(struct task_struct * tsk)564  static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
565  {
566  	struct task_struct *t;
567  
568  	for_each_thread(tsk, t) {
569  		if (t->flags & PF_MCE_PROCESS) {
570  			if (t->flags & PF_MCE_EARLY)
571  				return t;
572  		} else {
573  			if (sysctl_memory_failure_early_kill)
574  				return t;
575  		}
576  	}
577  	return NULL;
578  }
579  
580  /*
581   * Determine whether a given process is "early kill" process which expects
582   * to be signaled when some page under the process is hwpoisoned.
583   * Return task_struct of the dedicated thread (main thread unless explicitly
584   * specified) if the process is "early kill" and otherwise returns NULL.
585   *
586   * Note that the above is true for Action Optional case. For Action Required
587   * case, it's only meaningful to the current thread which need to be signaled
588   * with SIGBUS, this error is Action Optional for other non current
589   * processes sharing the same error page,if the process is "early kill", the
590   * task_struct of the dedicated thread will also be returned.
591   */
task_early_kill(struct task_struct * tsk,int force_early)592  struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
593  {
594  	if (!tsk->mm)
595  		return NULL;
596  	/*
597  	 * Comparing ->mm here because current task might represent
598  	 * a subthread, while tsk always points to the main thread.
599  	 */
600  	if (force_early && tsk->mm == current->mm)
601  		return current;
602  
603  	return find_early_kill_thread(tsk);
604  }
605  
606  /*
607   * Collect processes when the error hit an anonymous page.
608   */
collect_procs_anon(struct folio * folio,struct page * page,struct list_head * to_kill,int force_early)609  static void collect_procs_anon(struct folio *folio, struct page *page,
610  		struct list_head *to_kill, int force_early)
611  {
612  	struct task_struct *tsk;
613  	struct anon_vma *av;
614  	pgoff_t pgoff;
615  
616  	av = folio_lock_anon_vma_read(folio, NULL);
617  	if (av == NULL)	/* Not actually mapped anymore */
618  		return;
619  
620  	pgoff = page_to_pgoff(page);
621  	rcu_read_lock();
622  	for_each_process(tsk) {
623  		struct vm_area_struct *vma;
624  		struct anon_vma_chain *vmac;
625  		struct task_struct *t = task_early_kill(tsk, force_early);
626  		unsigned long addr;
627  
628  		if (!t)
629  			continue;
630  		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
631  					       pgoff, pgoff) {
632  			vma = vmac->vma;
633  			if (vma->vm_mm != t->mm)
634  				continue;
635  			addr = page_mapped_in_vma(page, vma);
636  			add_to_kill_anon_file(t, page, vma, to_kill, addr);
637  		}
638  	}
639  	rcu_read_unlock();
640  	anon_vma_unlock_read(av);
641  }
642  
643  /*
644   * Collect processes when the error hit a file mapped page.
645   */
collect_procs_file(struct folio * folio,struct page * page,struct list_head * to_kill,int force_early)646  static void collect_procs_file(struct folio *folio, struct page *page,
647  		struct list_head *to_kill, int force_early)
648  {
649  	struct vm_area_struct *vma;
650  	struct task_struct *tsk;
651  	struct address_space *mapping = folio->mapping;
652  	pgoff_t pgoff;
653  
654  	i_mmap_lock_read(mapping);
655  	rcu_read_lock();
656  	pgoff = page_to_pgoff(page);
657  	for_each_process(tsk) {
658  		struct task_struct *t = task_early_kill(tsk, force_early);
659  		unsigned long addr;
660  
661  		if (!t)
662  			continue;
663  		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
664  				      pgoff) {
665  			/*
666  			 * Send early kill signal to tasks where a vma covers
667  			 * the page but the corrupted page is not necessarily
668  			 * mapped in its pte.
669  			 * Assume applications who requested early kill want
670  			 * to be informed of all such data corruptions.
671  			 */
672  			if (vma->vm_mm != t->mm)
673  				continue;
674  			addr = page_address_in_vma(page, vma);
675  			add_to_kill_anon_file(t, page, vma, to_kill, addr);
676  		}
677  	}
678  	rcu_read_unlock();
679  	i_mmap_unlock_read(mapping);
680  }
681  
682  #ifdef CONFIG_FS_DAX
add_to_kill_fsdax(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,pgoff_t pgoff)683  static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
684  			      struct vm_area_struct *vma,
685  			      struct list_head *to_kill, pgoff_t pgoff)
686  {
687  	unsigned long addr = vma_address(vma, pgoff, 1);
688  	__add_to_kill(tsk, p, vma, to_kill, addr);
689  }
690  
691  /*
692   * Collect processes when the error hit a fsdax page.
693   */
collect_procs_fsdax(struct page * page,struct address_space * mapping,pgoff_t pgoff,struct list_head * to_kill,bool pre_remove)694  static void collect_procs_fsdax(struct page *page,
695  		struct address_space *mapping, pgoff_t pgoff,
696  		struct list_head *to_kill, bool pre_remove)
697  {
698  	struct vm_area_struct *vma;
699  	struct task_struct *tsk;
700  
701  	i_mmap_lock_read(mapping);
702  	rcu_read_lock();
703  	for_each_process(tsk) {
704  		struct task_struct *t = tsk;
705  
706  		/*
707  		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
708  		 * the current may not be the one accessing the fsdax page.
709  		 * Otherwise, search for the current task.
710  		 */
711  		if (!pre_remove)
712  			t = task_early_kill(tsk, true);
713  		if (!t)
714  			continue;
715  		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
716  			if (vma->vm_mm == t->mm)
717  				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
718  		}
719  	}
720  	rcu_read_unlock();
721  	i_mmap_unlock_read(mapping);
722  }
723  #endif /* CONFIG_FS_DAX */
724  
725  /*
726   * Collect the processes who have the corrupted page mapped to kill.
727   */
collect_procs(struct folio * folio,struct page * page,struct list_head * tokill,int force_early)728  static void collect_procs(struct folio *folio, struct page *page,
729  		struct list_head *tokill, int force_early)
730  {
731  	if (!folio->mapping)
732  		return;
733  	if (unlikely(folio_test_ksm(folio)))
734  		collect_procs_ksm(folio, page, tokill, force_early);
735  	else if (folio_test_anon(folio))
736  		collect_procs_anon(folio, page, tokill, force_early);
737  	else
738  		collect_procs_file(folio, page, tokill, force_early);
739  }
740  
741  struct hwpoison_walk {
742  	struct to_kill tk;
743  	unsigned long pfn;
744  	int flags;
745  };
746  
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)747  static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
748  {
749  	tk->addr = addr;
750  	tk->size_shift = shift;
751  }
752  
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)753  static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
754  				unsigned long poisoned_pfn, struct to_kill *tk)
755  {
756  	unsigned long pfn = 0;
757  
758  	if (pte_present(pte)) {
759  		pfn = pte_pfn(pte);
760  	} else {
761  		swp_entry_t swp = pte_to_swp_entry(pte);
762  
763  		if (is_hwpoison_entry(swp))
764  			pfn = swp_offset_pfn(swp);
765  	}
766  
767  	if (!pfn || pfn != poisoned_pfn)
768  		return 0;
769  
770  	set_to_kill(tk, addr, shift);
771  	return 1;
772  }
773  
774  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)775  static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
776  				      struct hwpoison_walk *hwp)
777  {
778  	pmd_t pmd = *pmdp;
779  	unsigned long pfn;
780  	unsigned long hwpoison_vaddr;
781  
782  	if (!pmd_present(pmd))
783  		return 0;
784  	pfn = pmd_pfn(pmd);
785  	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
786  		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
787  		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
788  		return 1;
789  	}
790  	return 0;
791  }
792  #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)793  static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
794  				      struct hwpoison_walk *hwp)
795  {
796  	return 0;
797  }
798  #endif
799  
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)800  static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
801  			      unsigned long end, struct mm_walk *walk)
802  {
803  	struct hwpoison_walk *hwp = walk->private;
804  	int ret = 0;
805  	pte_t *ptep, *mapped_pte;
806  	spinlock_t *ptl;
807  
808  	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
809  	if (ptl) {
810  		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
811  		spin_unlock(ptl);
812  		goto out;
813  	}
814  
815  	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
816  						addr, &ptl);
817  	if (!ptep)
818  		goto out;
819  
820  	for (; addr != end; ptep++, addr += PAGE_SIZE) {
821  		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
822  					     hwp->pfn, &hwp->tk);
823  		if (ret == 1)
824  			break;
825  	}
826  	pte_unmap_unlock(mapped_pte, ptl);
827  out:
828  	cond_resched();
829  	return ret;
830  }
831  
832  #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)833  static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
834  			    unsigned long addr, unsigned long end,
835  			    struct mm_walk *walk)
836  {
837  	struct hwpoison_walk *hwp = walk->private;
838  	pte_t pte = huge_ptep_get(walk->mm, addr, ptep);
839  	struct hstate *h = hstate_vma(walk->vma);
840  
841  	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
842  				      hwp->pfn, &hwp->tk);
843  }
844  #else
845  #define hwpoison_hugetlb_range	NULL
846  #endif
847  
848  static const struct mm_walk_ops hwpoison_walk_ops = {
849  	.pmd_entry = hwpoison_pte_range,
850  	.hugetlb_entry = hwpoison_hugetlb_range,
851  	.walk_lock = PGWALK_RDLOCK,
852  };
853  
854  /*
855   * Sends SIGBUS to the current process with error info.
856   *
857   * This function is intended to handle "Action Required" MCEs on already
858   * hardware poisoned pages. They could happen, for example, when
859   * memory_failure() failed to unmap the error page at the first call, or
860   * when multiple local machine checks happened on different CPUs.
861   *
862   * MCE handler currently has no easy access to the error virtual address,
863   * so this function walks page table to find it. The returned virtual address
864   * is proper in most cases, but it could be wrong when the application
865   * process has multiple entries mapping the error page.
866   */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)867  static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
868  				  int flags)
869  {
870  	int ret;
871  	struct hwpoison_walk priv = {
872  		.pfn = pfn,
873  	};
874  	priv.tk.tsk = p;
875  
876  	if (!p->mm)
877  		return -EFAULT;
878  
879  	mmap_read_lock(p->mm);
880  	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
881  			      (void *)&priv);
882  	if (ret == 1 && priv.tk.addr)
883  		kill_proc(&priv.tk, pfn, flags);
884  	else
885  		ret = 0;
886  	mmap_read_unlock(p->mm);
887  	return ret > 0 ? -EHWPOISON : -EFAULT;
888  }
889  
890  /*
891   * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
892   * But it could not do more to isolate the page from being accessed again,
893   * nor does it kill the process. This is extremely rare and one of the
894   * potential causes is that the page state has been changed due to
895   * underlying race condition. This is the most severe outcomes.
896   *
897   * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
898   * It should have killed the process, but it can't isolate the page,
899   * due to conditions such as extra pin, unmap failure, etc. Accessing
900   * the page again may trigger another MCE and the process will be killed
901   * by the m-f() handler immediately.
902   *
903   * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
904   * The page is unmapped, and is removed from the LRU or file mapping.
905   * An attempt to access the page again will trigger page fault and the
906   * PF handler will kill the process.
907   *
908   * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
909   * The page has been completely isolated, that is, unmapped, taken out of
910   * the buddy system, or hole-punnched out of the file mapping.
911   */
912  static const char *action_name[] = {
913  	[MF_IGNORED] = "Ignored",
914  	[MF_FAILED] = "Failed",
915  	[MF_DELAYED] = "Delayed",
916  	[MF_RECOVERED] = "Recovered",
917  };
918  
919  static const char * const action_page_types[] = {
920  	[MF_MSG_KERNEL]			= "reserved kernel page",
921  	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
922  	[MF_MSG_HUGE]			= "huge page",
923  	[MF_MSG_FREE_HUGE]		= "free huge page",
924  	[MF_MSG_GET_HWPOISON]		= "get hwpoison page",
925  	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
926  	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
927  	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
928  	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
929  	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
930  	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
931  	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
932  	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
933  	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
934  	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
935  	[MF_MSG_BUDDY]			= "free buddy page",
936  	[MF_MSG_DAX]			= "dax page",
937  	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
938  	[MF_MSG_ALREADY_POISONED]	= "already poisoned",
939  	[MF_MSG_UNKNOWN]		= "unknown page",
940  };
941  
942  /*
943   * XXX: It is possible that a page is isolated from LRU cache,
944   * and then kept in swap cache or failed to remove from page cache.
945   * The page count will stop it from being freed by unpoison.
946   * Stress tests should be aware of this memory leak problem.
947   */
delete_from_lru_cache(struct folio * folio)948  static int delete_from_lru_cache(struct folio *folio)
949  {
950  	if (folio_isolate_lru(folio)) {
951  		/*
952  		 * Clear sensible page flags, so that the buddy system won't
953  		 * complain when the folio is unpoison-and-freed.
954  		 */
955  		folio_clear_active(folio);
956  		folio_clear_unevictable(folio);
957  
958  		/*
959  		 * Poisoned page might never drop its ref count to 0 so we have
960  		 * to uncharge it manually from its memcg.
961  		 */
962  		mem_cgroup_uncharge(folio);
963  
964  		/*
965  		 * drop the refcount elevated by folio_isolate_lru()
966  		 */
967  		folio_put(folio);
968  		return 0;
969  	}
970  	return -EIO;
971  }
972  
truncate_error_folio(struct folio * folio,unsigned long pfn,struct address_space * mapping)973  static int truncate_error_folio(struct folio *folio, unsigned long pfn,
974  				struct address_space *mapping)
975  {
976  	int ret = MF_FAILED;
977  
978  	if (mapping->a_ops->error_remove_folio) {
979  		int err = mapping->a_ops->error_remove_folio(mapping, folio);
980  
981  		if (err != 0)
982  			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
983  		else if (!filemap_release_folio(folio, GFP_NOIO))
984  			pr_info("%#lx: failed to release buffers\n", pfn);
985  		else
986  			ret = MF_RECOVERED;
987  	} else {
988  		/*
989  		 * If the file system doesn't support it just invalidate
990  		 * This fails on dirty or anything with private pages
991  		 */
992  		if (mapping_evict_folio(mapping, folio))
993  			ret = MF_RECOVERED;
994  		else
995  			pr_info("%#lx: Failed to invalidate\n",	pfn);
996  	}
997  
998  	return ret;
999  }
1000  
1001  struct page_state {
1002  	unsigned long mask;
1003  	unsigned long res;
1004  	enum mf_action_page_type type;
1005  
1006  	/* Callback ->action() has to unlock the relevant page inside it. */
1007  	int (*action)(struct page_state *ps, struct page *p);
1008  };
1009  
1010  /*
1011   * Return true if page is still referenced by others, otherwise return
1012   * false.
1013   *
1014   * The extra_pins is true when one extra refcount is expected.
1015   */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)1016  static bool has_extra_refcount(struct page_state *ps, struct page *p,
1017  			       bool extra_pins)
1018  {
1019  	int count = page_count(p) - 1;
1020  
1021  	if (extra_pins)
1022  		count -= folio_nr_pages(page_folio(p));
1023  
1024  	if (count > 0) {
1025  		pr_err("%#lx: %s still referenced by %d users\n",
1026  		       page_to_pfn(p), action_page_types[ps->type], count);
1027  		return true;
1028  	}
1029  
1030  	return false;
1031  }
1032  
1033  /*
1034   * Error hit kernel page.
1035   * Do nothing, try to be lucky and not touch this instead. For a few cases we
1036   * could be more sophisticated.
1037   */
me_kernel(struct page_state * ps,struct page * p)1038  static int me_kernel(struct page_state *ps, struct page *p)
1039  {
1040  	unlock_page(p);
1041  	return MF_IGNORED;
1042  }
1043  
1044  /*
1045   * Page in unknown state. Do nothing.
1046   * This is a catch-all in case we fail to make sense of the page state.
1047   */
me_unknown(struct page_state * ps,struct page * p)1048  static int me_unknown(struct page_state *ps, struct page *p)
1049  {
1050  	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1051  	unlock_page(p);
1052  	return MF_IGNORED;
1053  }
1054  
1055  /*
1056   * Clean (or cleaned) page cache page.
1057   */
me_pagecache_clean(struct page_state * ps,struct page * p)1058  static int me_pagecache_clean(struct page_state *ps, struct page *p)
1059  {
1060  	struct folio *folio = page_folio(p);
1061  	int ret;
1062  	struct address_space *mapping;
1063  	bool extra_pins;
1064  
1065  	delete_from_lru_cache(folio);
1066  
1067  	/*
1068  	 * For anonymous folios the only reference left
1069  	 * should be the one m_f() holds.
1070  	 */
1071  	if (folio_test_anon(folio)) {
1072  		ret = MF_RECOVERED;
1073  		goto out;
1074  	}
1075  
1076  	/*
1077  	 * Now truncate the page in the page cache. This is really
1078  	 * more like a "temporary hole punch"
1079  	 * Don't do this for block devices when someone else
1080  	 * has a reference, because it could be file system metadata
1081  	 * and that's not safe to truncate.
1082  	 */
1083  	mapping = folio_mapping(folio);
1084  	if (!mapping) {
1085  		/* Folio has been torn down in the meantime */
1086  		ret = MF_FAILED;
1087  		goto out;
1088  	}
1089  
1090  	/*
1091  	 * The shmem page is kept in page cache instead of truncating
1092  	 * so is expected to have an extra refcount after error-handling.
1093  	 */
1094  	extra_pins = shmem_mapping(mapping);
1095  
1096  	/*
1097  	 * Truncation is a bit tricky. Enable it per file system for now.
1098  	 *
1099  	 * Open: to take i_rwsem or not for this? Right now we don't.
1100  	 */
1101  	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1102  	if (has_extra_refcount(ps, p, extra_pins))
1103  		ret = MF_FAILED;
1104  
1105  out:
1106  	folio_unlock(folio);
1107  
1108  	return ret;
1109  }
1110  
1111  /*
1112   * Dirty pagecache page
1113   * Issues: when the error hit a hole page the error is not properly
1114   * propagated.
1115   */
me_pagecache_dirty(struct page_state * ps,struct page * p)1116  static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1117  {
1118  	struct folio *folio = page_folio(p);
1119  	struct address_space *mapping = folio_mapping(folio);
1120  
1121  	/* TBD: print more information about the file. */
1122  	if (mapping) {
1123  		/*
1124  		 * IO error will be reported by write(), fsync(), etc.
1125  		 * who check the mapping.
1126  		 * This way the application knows that something went
1127  		 * wrong with its dirty file data.
1128  		 */
1129  		mapping_set_error(mapping, -EIO);
1130  	}
1131  
1132  	return me_pagecache_clean(ps, p);
1133  }
1134  
1135  /*
1136   * Clean and dirty swap cache.
1137   *
1138   * Dirty swap cache page is tricky to handle. The page could live both in page
1139   * table and swap cache(ie. page is freshly swapped in). So it could be
1140   * referenced concurrently by 2 types of PTEs:
1141   * normal PTEs and swap PTEs. We try to handle them consistently by calling
1142   * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1143   * and then
1144   *      - clear dirty bit to prevent IO
1145   *      - remove from LRU
1146   *      - but keep in the swap cache, so that when we return to it on
1147   *        a later page fault, we know the application is accessing
1148   *        corrupted data and shall be killed (we installed simple
1149   *        interception code in do_swap_page to catch it).
1150   *
1151   * Clean swap cache pages can be directly isolated. A later page fault will
1152   * bring in the known good data from disk.
1153   */
me_swapcache_dirty(struct page_state * ps,struct page * p)1154  static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1155  {
1156  	struct folio *folio = page_folio(p);
1157  	int ret;
1158  	bool extra_pins = false;
1159  
1160  	folio_clear_dirty(folio);
1161  	/* Trigger EIO in shmem: */
1162  	folio_clear_uptodate(folio);
1163  
1164  	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1165  	folio_unlock(folio);
1166  
1167  	if (ret == MF_DELAYED)
1168  		extra_pins = true;
1169  
1170  	if (has_extra_refcount(ps, p, extra_pins))
1171  		ret = MF_FAILED;
1172  
1173  	return ret;
1174  }
1175  
me_swapcache_clean(struct page_state * ps,struct page * p)1176  static int me_swapcache_clean(struct page_state *ps, struct page *p)
1177  {
1178  	struct folio *folio = page_folio(p);
1179  	int ret;
1180  
1181  	delete_from_swap_cache(folio);
1182  
1183  	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1184  	folio_unlock(folio);
1185  
1186  	if (has_extra_refcount(ps, p, false))
1187  		ret = MF_FAILED;
1188  
1189  	return ret;
1190  }
1191  
1192  /*
1193   * Huge pages. Needs work.
1194   * Issues:
1195   * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1196   *   To narrow down kill region to one page, we need to break up pmd.
1197   */
me_huge_page(struct page_state * ps,struct page * p)1198  static int me_huge_page(struct page_state *ps, struct page *p)
1199  {
1200  	struct folio *folio = page_folio(p);
1201  	int res;
1202  	struct address_space *mapping;
1203  	bool extra_pins = false;
1204  
1205  	mapping = folio_mapping(folio);
1206  	if (mapping) {
1207  		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1208  		/* The page is kept in page cache. */
1209  		extra_pins = true;
1210  		folio_unlock(folio);
1211  	} else {
1212  		folio_unlock(folio);
1213  		/*
1214  		 * migration entry prevents later access on error hugepage,
1215  		 * so we can free and dissolve it into buddy to save healthy
1216  		 * subpages.
1217  		 */
1218  		folio_put(folio);
1219  		if (__page_handle_poison(p) > 0) {
1220  			page_ref_inc(p);
1221  			res = MF_RECOVERED;
1222  		} else {
1223  			res = MF_FAILED;
1224  		}
1225  	}
1226  
1227  	if (has_extra_refcount(ps, p, extra_pins))
1228  		res = MF_FAILED;
1229  
1230  	return res;
1231  }
1232  
1233  /*
1234   * Various page states we can handle.
1235   *
1236   * A page state is defined by its current page->flags bits.
1237   * The table matches them in order and calls the right handler.
1238   *
1239   * This is quite tricky because we can access page at any time
1240   * in its live cycle, so all accesses have to be extremely careful.
1241   *
1242   * This is not complete. More states could be added.
1243   * For any missing state don't attempt recovery.
1244   */
1245  
1246  #define dirty		(1UL << PG_dirty)
1247  #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1248  #define unevict		(1UL << PG_unevictable)
1249  #define mlock		(1UL << PG_mlocked)
1250  #define lru		(1UL << PG_lru)
1251  #define head		(1UL << PG_head)
1252  #define reserved	(1UL << PG_reserved)
1253  
1254  static struct page_state error_states[] = {
1255  	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1256  	/*
1257  	 * free pages are specially detected outside this table:
1258  	 * PG_buddy pages only make a small fraction of all free pages.
1259  	 */
1260  
1261  	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1262  
1263  	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1264  	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1265  
1266  	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1267  	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1268  
1269  	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1270  	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1271  
1272  	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1273  	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1274  
1275  	/*
1276  	 * Catchall entry: must be at end.
1277  	 */
1278  	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1279  };
1280  
1281  #undef dirty
1282  #undef sc
1283  #undef unevict
1284  #undef mlock
1285  #undef lru
1286  #undef head
1287  #undef reserved
1288  
update_per_node_mf_stats(unsigned long pfn,enum mf_result result)1289  static void update_per_node_mf_stats(unsigned long pfn,
1290  				     enum mf_result result)
1291  {
1292  	int nid = MAX_NUMNODES;
1293  	struct memory_failure_stats *mf_stats = NULL;
1294  
1295  	nid = pfn_to_nid(pfn);
1296  	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1297  		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1298  		return;
1299  	}
1300  
1301  	mf_stats = &NODE_DATA(nid)->mf_stats;
1302  	switch (result) {
1303  	case MF_IGNORED:
1304  		++mf_stats->ignored;
1305  		break;
1306  	case MF_FAILED:
1307  		++mf_stats->failed;
1308  		break;
1309  	case MF_DELAYED:
1310  		++mf_stats->delayed;
1311  		break;
1312  	case MF_RECOVERED:
1313  		++mf_stats->recovered;
1314  		break;
1315  	default:
1316  		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1317  		break;
1318  	}
1319  	++mf_stats->total;
1320  }
1321  
1322  /*
1323   * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1324   * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1325   */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1326  static int action_result(unsigned long pfn, enum mf_action_page_type type,
1327  			 enum mf_result result)
1328  {
1329  	trace_memory_failure_event(pfn, type, result);
1330  
1331  	num_poisoned_pages_inc(pfn);
1332  
1333  	update_per_node_mf_stats(pfn, result);
1334  
1335  	pr_err("%#lx: recovery action for %s: %s\n",
1336  		pfn, action_page_types[type], action_name[result]);
1337  
1338  	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1339  }
1340  
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1341  static int page_action(struct page_state *ps, struct page *p,
1342  			unsigned long pfn)
1343  {
1344  	int result;
1345  
1346  	/* page p should be unlocked after returning from ps->action().  */
1347  	result = ps->action(ps, p);
1348  
1349  	/* Could do more checks here if page looks ok */
1350  	/*
1351  	 * Could adjust zone counters here to correct for the missing page.
1352  	 */
1353  
1354  	return action_result(pfn, ps->type, result);
1355  }
1356  
PageHWPoisonTakenOff(struct page * page)1357  static inline bool PageHWPoisonTakenOff(struct page *page)
1358  {
1359  	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1360  }
1361  
SetPageHWPoisonTakenOff(struct page * page)1362  void SetPageHWPoisonTakenOff(struct page *page)
1363  {
1364  	set_page_private(page, MAGIC_HWPOISON);
1365  }
1366  
ClearPageHWPoisonTakenOff(struct page * page)1367  void ClearPageHWPoisonTakenOff(struct page *page)
1368  {
1369  	if (PageHWPoison(page))
1370  		set_page_private(page, 0);
1371  }
1372  
1373  /*
1374   * Return true if a page type of a given page is supported by hwpoison
1375   * mechanism (while handling could fail), otherwise false.  This function
1376   * does not return true for hugetlb or device memory pages, so it's assumed
1377   * to be called only in the context where we never have such pages.
1378   */
HWPoisonHandlable(struct page * page,unsigned long flags)1379  static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1380  {
1381  	if (PageSlab(page))
1382  		return false;
1383  
1384  	/* Soft offline could migrate non-LRU movable pages */
1385  	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1386  		return true;
1387  
1388  	return PageLRU(page) || is_free_buddy_page(page);
1389  }
1390  
__get_hwpoison_page(struct page * page,unsigned long flags)1391  static int __get_hwpoison_page(struct page *page, unsigned long flags)
1392  {
1393  	struct folio *folio = page_folio(page);
1394  	int ret = 0;
1395  	bool hugetlb = false;
1396  
1397  	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1398  	if (hugetlb) {
1399  		/* Make sure hugetlb demotion did not happen from under us. */
1400  		if (folio == page_folio(page))
1401  			return ret;
1402  		if (ret > 0) {
1403  			folio_put(folio);
1404  			folio = page_folio(page);
1405  		}
1406  	}
1407  
1408  	/*
1409  	 * This check prevents from calling folio_try_get() for any
1410  	 * unsupported type of folio in order to reduce the risk of unexpected
1411  	 * races caused by taking a folio refcount.
1412  	 */
1413  	if (!HWPoisonHandlable(&folio->page, flags))
1414  		return -EBUSY;
1415  
1416  	if (folio_try_get(folio)) {
1417  		if (folio == page_folio(page))
1418  			return 1;
1419  
1420  		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1421  		folio_put(folio);
1422  	}
1423  
1424  	return 0;
1425  }
1426  
1427  #define GET_PAGE_MAX_RETRY_NUM 3
1428  
get_any_page(struct page * p,unsigned long flags)1429  static int get_any_page(struct page *p, unsigned long flags)
1430  {
1431  	int ret = 0, pass = 0;
1432  	bool count_increased = false;
1433  
1434  	if (flags & MF_COUNT_INCREASED)
1435  		count_increased = true;
1436  
1437  try_again:
1438  	if (!count_increased) {
1439  		ret = __get_hwpoison_page(p, flags);
1440  		if (!ret) {
1441  			if (page_count(p)) {
1442  				/* We raced with an allocation, retry. */
1443  				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1444  					goto try_again;
1445  				ret = -EBUSY;
1446  			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1447  				/* We raced with put_page, retry. */
1448  				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1449  					goto try_again;
1450  				ret = -EIO;
1451  			}
1452  			goto out;
1453  		} else if (ret == -EBUSY) {
1454  			/*
1455  			 * We raced with (possibly temporary) unhandlable
1456  			 * page, retry.
1457  			 */
1458  			if (pass++ < 3) {
1459  				shake_page(p);
1460  				goto try_again;
1461  			}
1462  			ret = -EIO;
1463  			goto out;
1464  		}
1465  	}
1466  
1467  	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1468  		ret = 1;
1469  	} else {
1470  		/*
1471  		 * A page we cannot handle. Check whether we can turn
1472  		 * it into something we can handle.
1473  		 */
1474  		if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1475  			put_page(p);
1476  			shake_page(p);
1477  			count_increased = false;
1478  			goto try_again;
1479  		}
1480  		put_page(p);
1481  		ret = -EIO;
1482  	}
1483  out:
1484  	if (ret == -EIO)
1485  		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1486  
1487  	return ret;
1488  }
1489  
__get_unpoison_page(struct page * page)1490  static int __get_unpoison_page(struct page *page)
1491  {
1492  	struct folio *folio = page_folio(page);
1493  	int ret = 0;
1494  	bool hugetlb = false;
1495  
1496  	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1497  	if (hugetlb) {
1498  		/* Make sure hugetlb demotion did not happen from under us. */
1499  		if (folio == page_folio(page))
1500  			return ret;
1501  		if (ret > 0)
1502  			folio_put(folio);
1503  	}
1504  
1505  	/*
1506  	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1507  	 * but also isolated from buddy freelist, so need to identify the
1508  	 * state and have to cancel both operations to unpoison.
1509  	 */
1510  	if (PageHWPoisonTakenOff(page))
1511  		return -EHWPOISON;
1512  
1513  	return get_page_unless_zero(page) ? 1 : 0;
1514  }
1515  
1516  /**
1517   * get_hwpoison_page() - Get refcount for memory error handling
1518   * @p:		Raw error page (hit by memory error)
1519   * @flags:	Flags controlling behavior of error handling
1520   *
1521   * get_hwpoison_page() takes a page refcount of an error page to handle memory
1522   * error on it, after checking that the error page is in a well-defined state
1523   * (defined as a page-type we can successfully handle the memory error on it,
1524   * such as LRU page and hugetlb page).
1525   *
1526   * Memory error handling could be triggered at any time on any type of page,
1527   * so it's prone to race with typical memory management lifecycle (like
1528   * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1529   * extra care for the error page's state (as done in __get_hwpoison_page()),
1530   * and has some retry logic in get_any_page().
1531   *
1532   * When called from unpoison_memory(), the caller should already ensure that
1533   * the given page has PG_hwpoison. So it's never reused for other page
1534   * allocations, and __get_unpoison_page() never races with them.
1535   *
1536   * Return: 0 on failure or free buddy (hugetlb) page,
1537   *         1 on success for in-use pages in a well-defined state,
1538   *         -EIO for pages on which we can not handle memory errors,
1539   *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1540   *         operations like allocation and free,
1541   *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1542   */
get_hwpoison_page(struct page * p,unsigned long flags)1543  static int get_hwpoison_page(struct page *p, unsigned long flags)
1544  {
1545  	int ret;
1546  
1547  	zone_pcp_disable(page_zone(p));
1548  	if (flags & MF_UNPOISON)
1549  		ret = __get_unpoison_page(p);
1550  	else
1551  		ret = get_any_page(p, flags);
1552  	zone_pcp_enable(page_zone(p));
1553  
1554  	return ret;
1555  }
1556  
unmap_poisoned_folio(struct folio * folio,enum ttu_flags ttu)1557  void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu)
1558  {
1559  	if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1560  		struct address_space *mapping;
1561  
1562  		/*
1563  		 * For hugetlb folios in shared mappings, try_to_unmap
1564  		 * could potentially call huge_pmd_unshare.  Because of
1565  		 * this, take semaphore in write mode here and set
1566  		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1567  		 * at this higher level.
1568  		 */
1569  		mapping = hugetlb_folio_mapping_lock_write(folio);
1570  		if (!mapping) {
1571  			pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1572  				folio_pfn(folio));
1573  			return;
1574  		}
1575  
1576  		try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1577  		i_mmap_unlock_write(mapping);
1578  	} else {
1579  		try_to_unmap(folio, ttu);
1580  	}
1581  }
1582  
1583  /*
1584   * Do all that is necessary to remove user space mappings. Unmap
1585   * the pages and send SIGBUS to the processes if the data was dirty.
1586   */
hwpoison_user_mappings(struct folio * folio,struct page * p,unsigned long pfn,int flags)1587  static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1588  		unsigned long pfn, int flags)
1589  {
1590  	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1591  	struct address_space *mapping;
1592  	LIST_HEAD(tokill);
1593  	bool unmap_success;
1594  	int forcekill;
1595  	bool mlocked = folio_test_mlocked(folio);
1596  
1597  	/*
1598  	 * Here we are interested only in user-mapped pages, so skip any
1599  	 * other types of pages.
1600  	 */
1601  	if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1602  	    folio_test_pgtable(folio) || folio_test_offline(folio))
1603  		return true;
1604  	if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1605  		return true;
1606  
1607  	/*
1608  	 * This check implies we don't kill processes if their pages
1609  	 * are in the swap cache early. Those are always late kills.
1610  	 */
1611  	if (!folio_mapped(folio))
1612  		return true;
1613  
1614  	if (folio_test_swapcache(folio)) {
1615  		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1616  		ttu &= ~TTU_HWPOISON;
1617  	}
1618  
1619  	/*
1620  	 * Propagate the dirty bit from PTEs to struct page first, because we
1621  	 * need this to decide if we should kill or just drop the page.
1622  	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1623  	 * be called inside page lock (it's recommended but not enforced).
1624  	 */
1625  	mapping = folio_mapping(folio);
1626  	if (!(flags & MF_MUST_KILL) && !folio_test_dirty(folio) && mapping &&
1627  	    mapping_can_writeback(mapping)) {
1628  		if (folio_mkclean(folio)) {
1629  			folio_set_dirty(folio);
1630  		} else {
1631  			ttu &= ~TTU_HWPOISON;
1632  			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1633  				pfn);
1634  		}
1635  	}
1636  
1637  	/*
1638  	 * First collect all the processes that have the page
1639  	 * mapped in dirty form.  This has to be done before try_to_unmap,
1640  	 * because ttu takes the rmap data structures down.
1641  	 */
1642  	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1643  
1644  	unmap_poisoned_folio(folio, ttu);
1645  
1646  	unmap_success = !folio_mapped(folio);
1647  	if (!unmap_success)
1648  		pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1649  		       pfn, folio_mapcount(folio));
1650  
1651  	/*
1652  	 * try_to_unmap() might put mlocked page in lru cache, so call
1653  	 * shake_page() again to ensure that it's flushed.
1654  	 */
1655  	if (mlocked)
1656  		shake_folio(folio);
1657  
1658  	/*
1659  	 * Now that the dirty bit has been propagated to the
1660  	 * struct page and all unmaps done we can decide if
1661  	 * killing is needed or not.  Only kill when the page
1662  	 * was dirty or the process is not restartable,
1663  	 * otherwise the tokill list is merely
1664  	 * freed.  When there was a problem unmapping earlier
1665  	 * use a more force-full uncatchable kill to prevent
1666  	 * any accesses to the poisoned memory.
1667  	 */
1668  	forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1669  		    !unmap_success;
1670  	kill_procs(&tokill, forcekill, pfn, flags);
1671  
1672  	return unmap_success;
1673  }
1674  
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1675  static int identify_page_state(unsigned long pfn, struct page *p,
1676  				unsigned long page_flags)
1677  {
1678  	struct page_state *ps;
1679  
1680  	/*
1681  	 * The first check uses the current page flags which may not have any
1682  	 * relevant information. The second check with the saved page flags is
1683  	 * carried out only if the first check can't determine the page status.
1684  	 */
1685  	for (ps = error_states;; ps++)
1686  		if ((p->flags & ps->mask) == ps->res)
1687  			break;
1688  
1689  	page_flags |= (p->flags & (1UL << PG_dirty));
1690  
1691  	if (!ps->mask)
1692  		for (ps = error_states;; ps++)
1693  			if ((page_flags & ps->mask) == ps->res)
1694  				break;
1695  	return page_action(ps, p, pfn);
1696  }
1697  
1698  /*
1699   * When 'release' is 'false', it means that if thp split has failed,
1700   * there is still more to do, hence the page refcount we took earlier
1701   * is still needed.
1702   */
try_to_split_thp_page(struct page * page,bool release)1703  static int try_to_split_thp_page(struct page *page, bool release)
1704  {
1705  	int ret;
1706  
1707  	lock_page(page);
1708  	ret = split_huge_page(page);
1709  	unlock_page(page);
1710  
1711  	if (ret && release)
1712  		put_page(page);
1713  
1714  	return ret;
1715  }
1716  
unmap_and_kill(struct list_head * to_kill,unsigned long pfn,struct address_space * mapping,pgoff_t index,int flags)1717  static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1718  		struct address_space *mapping, pgoff_t index, int flags)
1719  {
1720  	struct to_kill *tk;
1721  	unsigned long size = 0;
1722  
1723  	list_for_each_entry(tk, to_kill, nd)
1724  		if (tk->size_shift)
1725  			size = max(size, 1UL << tk->size_shift);
1726  
1727  	if (size) {
1728  		/*
1729  		 * Unmap the largest mapping to avoid breaking up device-dax
1730  		 * mappings which are constant size. The actual size of the
1731  		 * mapping being torn down is communicated in siginfo, see
1732  		 * kill_proc()
1733  		 */
1734  		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1735  
1736  		unmap_mapping_range(mapping, start, size, 0);
1737  	}
1738  
1739  	kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1740  }
1741  
1742  /*
1743   * Only dev_pagemap pages get here, such as fsdax when the filesystem
1744   * either do not claim or fails to claim a hwpoison event, or devdax.
1745   * The fsdax pages are initialized per base page, and the devdax pages
1746   * could be initialized either as base pages, or as compound pages with
1747   * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1748   * hwpoison, such that, if a subpage of a compound page is poisoned,
1749   * simply mark the compound head page is by far sufficient.
1750   */
mf_generic_kill_procs(unsigned long long pfn,int flags,struct dev_pagemap * pgmap)1751  static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1752  		struct dev_pagemap *pgmap)
1753  {
1754  	struct folio *folio = pfn_folio(pfn);
1755  	LIST_HEAD(to_kill);
1756  	dax_entry_t cookie;
1757  	int rc = 0;
1758  
1759  	/*
1760  	 * Prevent the inode from being freed while we are interrogating
1761  	 * the address_space, typically this would be handled by
1762  	 * lock_page(), but dax pages do not use the page lock. This
1763  	 * also prevents changes to the mapping of this pfn until
1764  	 * poison signaling is complete.
1765  	 */
1766  	cookie = dax_lock_folio(folio);
1767  	if (!cookie)
1768  		return -EBUSY;
1769  
1770  	if (hwpoison_filter(&folio->page)) {
1771  		rc = -EOPNOTSUPP;
1772  		goto unlock;
1773  	}
1774  
1775  	switch (pgmap->type) {
1776  	case MEMORY_DEVICE_PRIVATE:
1777  	case MEMORY_DEVICE_COHERENT:
1778  		/*
1779  		 * TODO: Handle device pages which may need coordination
1780  		 * with device-side memory.
1781  		 */
1782  		rc = -ENXIO;
1783  		goto unlock;
1784  	default:
1785  		break;
1786  	}
1787  
1788  	/*
1789  	 * Use this flag as an indication that the dax page has been
1790  	 * remapped UC to prevent speculative consumption of poison.
1791  	 */
1792  	SetPageHWPoison(&folio->page);
1793  
1794  	/*
1795  	 * Unlike System-RAM there is no possibility to swap in a
1796  	 * different physical page at a given virtual address, so all
1797  	 * userspace consumption of ZONE_DEVICE memory necessitates
1798  	 * SIGBUS (i.e. MF_MUST_KILL)
1799  	 */
1800  	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1801  	collect_procs(folio, &folio->page, &to_kill, true);
1802  
1803  	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1804  unlock:
1805  	dax_unlock_folio(folio, cookie);
1806  	return rc;
1807  }
1808  
1809  #ifdef CONFIG_FS_DAX
1810  /**
1811   * mf_dax_kill_procs - Collect and kill processes who are using this file range
1812   * @mapping:	address_space of the file in use
1813   * @index:	start pgoff of the range within the file
1814   * @count:	length of the range, in unit of PAGE_SIZE
1815   * @mf_flags:	memory failure flags
1816   */
mf_dax_kill_procs(struct address_space * mapping,pgoff_t index,unsigned long count,int mf_flags)1817  int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1818  		unsigned long count, int mf_flags)
1819  {
1820  	LIST_HEAD(to_kill);
1821  	dax_entry_t cookie;
1822  	struct page *page;
1823  	size_t end = index + count;
1824  	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1825  
1826  	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1827  
1828  	for (; index < end; index++) {
1829  		page = NULL;
1830  		cookie = dax_lock_mapping_entry(mapping, index, &page);
1831  		if (!cookie)
1832  			return -EBUSY;
1833  		if (!page)
1834  			goto unlock;
1835  
1836  		if (!pre_remove)
1837  			SetPageHWPoison(page);
1838  
1839  		/*
1840  		 * The pre_remove case is revoking access, the memory is still
1841  		 * good and could theoretically be put back into service.
1842  		 */
1843  		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1844  		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1845  				index, mf_flags);
1846  unlock:
1847  		dax_unlock_mapping_entry(mapping, index, cookie);
1848  	}
1849  	return 0;
1850  }
1851  EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1852  #endif /* CONFIG_FS_DAX */
1853  
1854  #ifdef CONFIG_HUGETLB_PAGE
1855  
1856  /*
1857   * Struct raw_hwp_page represents information about "raw error page",
1858   * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1859   */
1860  struct raw_hwp_page {
1861  	struct llist_node node;
1862  	struct page *page;
1863  };
1864  
raw_hwp_list_head(struct folio * folio)1865  static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1866  {
1867  	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1868  }
1869  
is_raw_hwpoison_page_in_hugepage(struct page * page)1870  bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1871  {
1872  	struct llist_head *raw_hwp_head;
1873  	struct raw_hwp_page *p;
1874  	struct folio *folio = page_folio(page);
1875  	bool ret = false;
1876  
1877  	if (!folio_test_hwpoison(folio))
1878  		return false;
1879  
1880  	if (!folio_test_hugetlb(folio))
1881  		return PageHWPoison(page);
1882  
1883  	/*
1884  	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1885  	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1886  	 */
1887  	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1888  		return true;
1889  
1890  	mutex_lock(&mf_mutex);
1891  
1892  	raw_hwp_head = raw_hwp_list_head(folio);
1893  	llist_for_each_entry(p, raw_hwp_head->first, node) {
1894  		if (page == p->page) {
1895  			ret = true;
1896  			break;
1897  		}
1898  	}
1899  
1900  	mutex_unlock(&mf_mutex);
1901  
1902  	return ret;
1903  }
1904  
__folio_free_raw_hwp(struct folio * folio,bool move_flag)1905  static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1906  {
1907  	struct llist_node *head;
1908  	struct raw_hwp_page *p, *next;
1909  	unsigned long count = 0;
1910  
1911  	head = llist_del_all(raw_hwp_list_head(folio));
1912  	llist_for_each_entry_safe(p, next, head, node) {
1913  		if (move_flag)
1914  			SetPageHWPoison(p->page);
1915  		else
1916  			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1917  		kfree(p);
1918  		count++;
1919  	}
1920  	return count;
1921  }
1922  
folio_set_hugetlb_hwpoison(struct folio * folio,struct page * page)1923  static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1924  {
1925  	struct llist_head *head;
1926  	struct raw_hwp_page *raw_hwp;
1927  	struct raw_hwp_page *p;
1928  	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1929  
1930  	/*
1931  	 * Once the hwpoison hugepage has lost reliable raw error info,
1932  	 * there is little meaning to keep additional error info precisely,
1933  	 * so skip to add additional raw error info.
1934  	 */
1935  	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1936  		return -EHWPOISON;
1937  	head = raw_hwp_list_head(folio);
1938  	llist_for_each_entry(p, head->first, node) {
1939  		if (p->page == page)
1940  			return -EHWPOISON;
1941  	}
1942  
1943  	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1944  	if (raw_hwp) {
1945  		raw_hwp->page = page;
1946  		llist_add(&raw_hwp->node, head);
1947  		/* the first error event will be counted in action_result(). */
1948  		if (ret)
1949  			num_poisoned_pages_inc(page_to_pfn(page));
1950  	} else {
1951  		/*
1952  		 * Failed to save raw error info.  We no longer trace all
1953  		 * hwpoisoned subpages, and we need refuse to free/dissolve
1954  		 * this hwpoisoned hugepage.
1955  		 */
1956  		folio_set_hugetlb_raw_hwp_unreliable(folio);
1957  		/*
1958  		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1959  		 * used any more, so free it.
1960  		 */
1961  		__folio_free_raw_hwp(folio, false);
1962  	}
1963  	return ret;
1964  }
1965  
folio_free_raw_hwp(struct folio * folio,bool move_flag)1966  static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1967  {
1968  	/*
1969  	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1970  	 * pages for tail pages are required but they don't exist.
1971  	 */
1972  	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1973  		return 0;
1974  
1975  	/*
1976  	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1977  	 * definition.
1978  	 */
1979  	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1980  		return 0;
1981  
1982  	return __folio_free_raw_hwp(folio, move_flag);
1983  }
1984  
folio_clear_hugetlb_hwpoison(struct folio * folio)1985  void folio_clear_hugetlb_hwpoison(struct folio *folio)
1986  {
1987  	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1988  		return;
1989  	if (folio_test_hugetlb_vmemmap_optimized(folio))
1990  		return;
1991  	folio_clear_hwpoison(folio);
1992  	folio_free_raw_hwp(folio, true);
1993  }
1994  
1995  /*
1996   * Called from hugetlb code with hugetlb_lock held.
1997   *
1998   * Return values:
1999   *   0             - free hugepage
2000   *   1             - in-use hugepage
2001   *   2             - not a hugepage
2002   *   -EBUSY        - the hugepage is busy (try to retry)
2003   *   -EHWPOISON    - the hugepage is already hwpoisoned
2004   */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)2005  int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2006  				 bool *migratable_cleared)
2007  {
2008  	struct page *page = pfn_to_page(pfn);
2009  	struct folio *folio = page_folio(page);
2010  	int ret = 2;	/* fallback to normal page handling */
2011  	bool count_increased = false;
2012  
2013  	if (!folio_test_hugetlb(folio))
2014  		goto out;
2015  
2016  	if (flags & MF_COUNT_INCREASED) {
2017  		ret = 1;
2018  		count_increased = true;
2019  	} else if (folio_test_hugetlb_freed(folio)) {
2020  		ret = 0;
2021  	} else if (folio_test_hugetlb_migratable(folio)) {
2022  		ret = folio_try_get(folio);
2023  		if (ret)
2024  			count_increased = true;
2025  	} else {
2026  		ret = -EBUSY;
2027  		if (!(flags & MF_NO_RETRY))
2028  			goto out;
2029  	}
2030  
2031  	if (folio_set_hugetlb_hwpoison(folio, page)) {
2032  		ret = -EHWPOISON;
2033  		goto out;
2034  	}
2035  
2036  	/*
2037  	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2038  	 * from being migrated by memory hotremove.
2039  	 */
2040  	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2041  		folio_clear_hugetlb_migratable(folio);
2042  		*migratable_cleared = true;
2043  	}
2044  
2045  	return ret;
2046  out:
2047  	if (count_increased)
2048  		folio_put(folio);
2049  	return ret;
2050  }
2051  
2052  /*
2053   * Taking refcount of hugetlb pages needs extra care about race conditions
2054   * with basic operations like hugepage allocation/free/demotion.
2055   * So some of prechecks for hwpoison (pinning, and testing/setting
2056   * PageHWPoison) should be done in single hugetlb_lock range.
2057   */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2058  static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2059  {
2060  	int res;
2061  	struct page *p = pfn_to_page(pfn);
2062  	struct folio *folio;
2063  	unsigned long page_flags;
2064  	bool migratable_cleared = false;
2065  
2066  	*hugetlb = 1;
2067  retry:
2068  	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2069  	if (res == 2) { /* fallback to normal page handling */
2070  		*hugetlb = 0;
2071  		return 0;
2072  	} else if (res == -EHWPOISON) {
2073  		pr_err("%#lx: already hardware poisoned\n", pfn);
2074  		if (flags & MF_ACTION_REQUIRED) {
2075  			folio = page_folio(p);
2076  			res = kill_accessing_process(current, folio_pfn(folio), flags);
2077  			action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2078  		}
2079  		return res;
2080  	} else if (res == -EBUSY) {
2081  		if (!(flags & MF_NO_RETRY)) {
2082  			flags |= MF_NO_RETRY;
2083  			goto retry;
2084  		}
2085  		return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2086  	}
2087  
2088  	folio = page_folio(p);
2089  	folio_lock(folio);
2090  
2091  	if (hwpoison_filter(p)) {
2092  		folio_clear_hugetlb_hwpoison(folio);
2093  		if (migratable_cleared)
2094  			folio_set_hugetlb_migratable(folio);
2095  		folio_unlock(folio);
2096  		if (res == 1)
2097  			folio_put(folio);
2098  		return -EOPNOTSUPP;
2099  	}
2100  
2101  	/*
2102  	 * Handling free hugepage.  The possible race with hugepage allocation
2103  	 * or demotion can be prevented by PageHWPoison flag.
2104  	 */
2105  	if (res == 0) {
2106  		folio_unlock(folio);
2107  		if (__page_handle_poison(p) > 0) {
2108  			page_ref_inc(p);
2109  			res = MF_RECOVERED;
2110  		} else {
2111  			res = MF_FAILED;
2112  		}
2113  		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2114  	}
2115  
2116  	page_flags = folio->flags;
2117  
2118  	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2119  		folio_unlock(folio);
2120  		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2121  	}
2122  
2123  	return identify_page_state(pfn, p, page_flags);
2124  }
2125  
2126  #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2127  static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2128  {
2129  	return 0;
2130  }
2131  
folio_free_raw_hwp(struct folio * folio,bool flag)2132  static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2133  {
2134  	return 0;
2135  }
2136  #endif	/* CONFIG_HUGETLB_PAGE */
2137  
2138  /* Drop the extra refcount in case we come from madvise() */
put_ref_page(unsigned long pfn,int flags)2139  static void put_ref_page(unsigned long pfn, int flags)
2140  {
2141  	if (!(flags & MF_COUNT_INCREASED))
2142  		return;
2143  
2144  	put_page(pfn_to_page(pfn));
2145  }
2146  
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)2147  static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2148  		struct dev_pagemap *pgmap)
2149  {
2150  	int rc = -ENXIO;
2151  
2152  	/* device metadata space is not recoverable */
2153  	if (!pgmap_pfn_valid(pgmap, pfn))
2154  		goto out;
2155  
2156  	/*
2157  	 * Call driver's implementation to handle the memory failure, otherwise
2158  	 * fall back to generic handler.
2159  	 */
2160  	if (pgmap_has_memory_failure(pgmap)) {
2161  		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2162  		/*
2163  		 * Fall back to generic handler too if operation is not
2164  		 * supported inside the driver/device/filesystem.
2165  		 */
2166  		if (rc != -EOPNOTSUPP)
2167  			goto out;
2168  	}
2169  
2170  	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2171  out:
2172  	/* drop pgmap ref acquired in caller */
2173  	put_dev_pagemap(pgmap);
2174  	if (rc != -EOPNOTSUPP)
2175  		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2176  	return rc;
2177  }
2178  
2179  /*
2180   * The calling condition is as such: thp split failed, page might have
2181   * been RDMA pinned, not much can be done for recovery.
2182   * But a SIGBUS should be delivered with vaddr provided so that the user
2183   * application has a chance to recover. Also, application processes'
2184   * election for MCE early killed will be honored.
2185   */
kill_procs_now(struct page * p,unsigned long pfn,int flags,struct folio * folio)2186  static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2187  				struct folio *folio)
2188  {
2189  	LIST_HEAD(tokill);
2190  
2191  	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2192  	kill_procs(&tokill, true, pfn, flags);
2193  }
2194  
2195  /**
2196   * memory_failure - Handle memory failure of a page.
2197   * @pfn: Page Number of the corrupted page
2198   * @flags: fine tune action taken
2199   *
2200   * This function is called by the low level machine check code
2201   * of an architecture when it detects hardware memory corruption
2202   * of a page. It tries its best to recover, which includes
2203   * dropping pages, killing processes etc.
2204   *
2205   * The function is primarily of use for corruptions that
2206   * happen outside the current execution context (e.g. when
2207   * detected by a background scrubber)
2208   *
2209   * Must run in process context (e.g. a work queue) with interrupts
2210   * enabled and no spinlocks held.
2211   *
2212   * Return: 0 for successfully handled the memory error,
2213   *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2214   *         < 0(except -EOPNOTSUPP) on failure.
2215   */
memory_failure(unsigned long pfn,int flags)2216  int memory_failure(unsigned long pfn, int flags)
2217  {
2218  	struct page *p;
2219  	struct folio *folio;
2220  	struct dev_pagemap *pgmap;
2221  	int res = 0;
2222  	unsigned long page_flags;
2223  	bool retry = true;
2224  	int hugetlb = 0;
2225  
2226  	if (!sysctl_memory_failure_recovery)
2227  		panic("Memory failure on page %lx", pfn);
2228  
2229  	mutex_lock(&mf_mutex);
2230  
2231  	if (!(flags & MF_SW_SIMULATED))
2232  		hw_memory_failure = true;
2233  
2234  	p = pfn_to_online_page(pfn);
2235  	if (!p) {
2236  		res = arch_memory_failure(pfn, flags);
2237  		if (res == 0)
2238  			goto unlock_mutex;
2239  
2240  		if (pfn_valid(pfn)) {
2241  			pgmap = get_dev_pagemap(pfn, NULL);
2242  			put_ref_page(pfn, flags);
2243  			if (pgmap) {
2244  				res = memory_failure_dev_pagemap(pfn, flags,
2245  								 pgmap);
2246  				goto unlock_mutex;
2247  			}
2248  		}
2249  		pr_err("%#lx: memory outside kernel control\n", pfn);
2250  		res = -ENXIO;
2251  		goto unlock_mutex;
2252  	}
2253  
2254  try_again:
2255  	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2256  	if (hugetlb)
2257  		goto unlock_mutex;
2258  
2259  	if (TestSetPageHWPoison(p)) {
2260  		pr_err("%#lx: already hardware poisoned\n", pfn);
2261  		res = -EHWPOISON;
2262  		if (flags & MF_ACTION_REQUIRED)
2263  			res = kill_accessing_process(current, pfn, flags);
2264  		if (flags & MF_COUNT_INCREASED)
2265  			put_page(p);
2266  		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2267  		goto unlock_mutex;
2268  	}
2269  
2270  	/*
2271  	 * We need/can do nothing about count=0 pages.
2272  	 * 1) it's a free page, and therefore in safe hand:
2273  	 *    check_new_page() will be the gate keeper.
2274  	 * 2) it's part of a non-compound high order page.
2275  	 *    Implies some kernel user: cannot stop them from
2276  	 *    R/W the page; let's pray that the page has been
2277  	 *    used and will be freed some time later.
2278  	 * In fact it's dangerous to directly bump up page count from 0,
2279  	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2280  	 */
2281  	if (!(flags & MF_COUNT_INCREASED)) {
2282  		res = get_hwpoison_page(p, flags);
2283  		if (!res) {
2284  			if (is_free_buddy_page(p)) {
2285  				if (take_page_off_buddy(p)) {
2286  					page_ref_inc(p);
2287  					res = MF_RECOVERED;
2288  				} else {
2289  					/* We lost the race, try again */
2290  					if (retry) {
2291  						ClearPageHWPoison(p);
2292  						retry = false;
2293  						goto try_again;
2294  					}
2295  					res = MF_FAILED;
2296  				}
2297  				res = action_result(pfn, MF_MSG_BUDDY, res);
2298  			} else {
2299  				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2300  			}
2301  			goto unlock_mutex;
2302  		} else if (res < 0) {
2303  			res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2304  			goto unlock_mutex;
2305  		}
2306  	}
2307  
2308  	folio = page_folio(p);
2309  
2310  	/* filter pages that are protected from hwpoison test by users */
2311  	folio_lock(folio);
2312  	if (hwpoison_filter(p)) {
2313  		ClearPageHWPoison(p);
2314  		folio_unlock(folio);
2315  		folio_put(folio);
2316  		res = -EOPNOTSUPP;
2317  		goto unlock_mutex;
2318  	}
2319  	folio_unlock(folio);
2320  
2321  	if (folio_test_large(folio)) {
2322  		/*
2323  		 * The flag must be set after the refcount is bumped
2324  		 * otherwise it may race with THP split.
2325  		 * And the flag can't be set in get_hwpoison_page() since
2326  		 * it is called by soft offline too and it is just called
2327  		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2328  		 * place.
2329  		 *
2330  		 * Don't need care about the above error handling paths for
2331  		 * get_hwpoison_page() since they handle either free page
2332  		 * or unhandlable page.  The refcount is bumped iff the
2333  		 * page is a valid handlable page.
2334  		 */
2335  		folio_set_has_hwpoisoned(folio);
2336  		if (try_to_split_thp_page(p, false) < 0) {
2337  			res = -EHWPOISON;
2338  			kill_procs_now(p, pfn, flags, folio);
2339  			put_page(p);
2340  			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2341  			goto unlock_mutex;
2342  		}
2343  		VM_BUG_ON_PAGE(!page_count(p), p);
2344  		folio = page_folio(p);
2345  	}
2346  
2347  	/*
2348  	 * We ignore non-LRU pages for good reasons.
2349  	 * - PG_locked is only well defined for LRU pages and a few others
2350  	 * - to avoid races with __SetPageLocked()
2351  	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2352  	 * The check (unnecessarily) ignores LRU pages being isolated and
2353  	 * walked by the page reclaim code, however that's not a big loss.
2354  	 */
2355  	shake_folio(folio);
2356  
2357  	folio_lock(folio);
2358  
2359  	/*
2360  	 * We're only intended to deal with the non-Compound page here.
2361  	 * The page cannot become compound pages again as folio has been
2362  	 * splited and extra refcnt is held.
2363  	 */
2364  	WARN_ON(folio_test_large(folio));
2365  
2366  	/*
2367  	 * We use page flags to determine what action should be taken, but
2368  	 * the flags can be modified by the error containment action.  One
2369  	 * example is an mlocked page, where PG_mlocked is cleared by
2370  	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2371  	 * status correctly, we save a copy of the page flags at this time.
2372  	 */
2373  	page_flags = folio->flags;
2374  
2375  	/*
2376  	 * __munlock_folio() may clear a writeback folio's LRU flag without
2377  	 * the folio lock. We need to wait for writeback completion for this
2378  	 * folio or it may trigger a vfs BUG while evicting inode.
2379  	 */
2380  	if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2381  		goto identify_page_state;
2382  
2383  	/*
2384  	 * It's very difficult to mess with pages currently under IO
2385  	 * and in many cases impossible, so we just avoid it here.
2386  	 */
2387  	folio_wait_writeback(folio);
2388  
2389  	/*
2390  	 * Now take care of user space mappings.
2391  	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2392  	 */
2393  	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2394  		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2395  		goto unlock_page;
2396  	}
2397  
2398  	/*
2399  	 * Torn down by someone else?
2400  	 */
2401  	if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2402  	    folio->mapping == NULL) {
2403  		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2404  		goto unlock_page;
2405  	}
2406  
2407  identify_page_state:
2408  	res = identify_page_state(pfn, p, page_flags);
2409  	mutex_unlock(&mf_mutex);
2410  	return res;
2411  unlock_page:
2412  	folio_unlock(folio);
2413  unlock_mutex:
2414  	mutex_unlock(&mf_mutex);
2415  	return res;
2416  }
2417  EXPORT_SYMBOL_GPL(memory_failure);
2418  
2419  #define MEMORY_FAILURE_FIFO_ORDER	4
2420  #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2421  
2422  struct memory_failure_entry {
2423  	unsigned long pfn;
2424  	int flags;
2425  };
2426  
2427  struct memory_failure_cpu {
2428  	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2429  		      MEMORY_FAILURE_FIFO_SIZE);
2430  	raw_spinlock_t lock;
2431  	struct work_struct work;
2432  };
2433  
2434  static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2435  
2436  /**
2437   * memory_failure_queue - Schedule handling memory failure of a page.
2438   * @pfn: Page Number of the corrupted page
2439   * @flags: Flags for memory failure handling
2440   *
2441   * This function is called by the low level hardware error handler
2442   * when it detects hardware memory corruption of a page. It schedules
2443   * the recovering of error page, including dropping pages, killing
2444   * processes etc.
2445   *
2446   * The function is primarily of use for corruptions that
2447   * happen outside the current execution context (e.g. when
2448   * detected by a background scrubber)
2449   *
2450   * Can run in IRQ context.
2451   */
memory_failure_queue(unsigned long pfn,int flags)2452  void memory_failure_queue(unsigned long pfn, int flags)
2453  {
2454  	struct memory_failure_cpu *mf_cpu;
2455  	unsigned long proc_flags;
2456  	bool buffer_overflow;
2457  	struct memory_failure_entry entry = {
2458  		.pfn =		pfn,
2459  		.flags =	flags,
2460  	};
2461  
2462  	mf_cpu = &get_cpu_var(memory_failure_cpu);
2463  	raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2464  	buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2465  	if (!buffer_overflow)
2466  		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2467  	raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2468  	put_cpu_var(memory_failure_cpu);
2469  	if (buffer_overflow)
2470  		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2471  		       pfn);
2472  }
2473  EXPORT_SYMBOL_GPL(memory_failure_queue);
2474  
memory_failure_work_func(struct work_struct * work)2475  static void memory_failure_work_func(struct work_struct *work)
2476  {
2477  	struct memory_failure_cpu *mf_cpu;
2478  	struct memory_failure_entry entry = { 0, };
2479  	unsigned long proc_flags;
2480  	int gotten;
2481  
2482  	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2483  	for (;;) {
2484  		raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2485  		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2486  		raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2487  		if (!gotten)
2488  			break;
2489  		if (entry.flags & MF_SOFT_OFFLINE)
2490  			soft_offline_page(entry.pfn, entry.flags);
2491  		else
2492  			memory_failure(entry.pfn, entry.flags);
2493  	}
2494  }
2495  
2496  /*
2497   * Process memory_failure work queued on the specified CPU.
2498   * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2499   */
memory_failure_queue_kick(int cpu)2500  void memory_failure_queue_kick(int cpu)
2501  {
2502  	struct memory_failure_cpu *mf_cpu;
2503  
2504  	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2505  	cancel_work_sync(&mf_cpu->work);
2506  	memory_failure_work_func(&mf_cpu->work);
2507  }
2508  
memory_failure_init(void)2509  static int __init memory_failure_init(void)
2510  {
2511  	struct memory_failure_cpu *mf_cpu;
2512  	int cpu;
2513  
2514  	for_each_possible_cpu(cpu) {
2515  		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2516  		raw_spin_lock_init(&mf_cpu->lock);
2517  		INIT_KFIFO(mf_cpu->fifo);
2518  		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2519  	}
2520  
2521  	register_sysctl_init("vm", memory_failure_table);
2522  
2523  	return 0;
2524  }
2525  core_initcall(memory_failure_init);
2526  
2527  #undef pr_fmt
2528  #define pr_fmt(fmt)	"Unpoison: " fmt
2529  #define unpoison_pr_info(fmt, pfn, rs)			\
2530  ({							\
2531  	if (__ratelimit(rs))				\
2532  		pr_info(fmt, pfn);			\
2533  })
2534  
2535  /**
2536   * unpoison_memory - Unpoison a previously poisoned page
2537   * @pfn: Page number of the to be unpoisoned page
2538   *
2539   * Software-unpoison a page that has been poisoned by
2540   * memory_failure() earlier.
2541   *
2542   * This is only done on the software-level, so it only works
2543   * for linux injected failures, not real hardware failures
2544   *
2545   * Returns 0 for success, otherwise -errno.
2546   */
unpoison_memory(unsigned long pfn)2547  int unpoison_memory(unsigned long pfn)
2548  {
2549  	struct folio *folio;
2550  	struct page *p;
2551  	int ret = -EBUSY, ghp;
2552  	unsigned long count;
2553  	bool huge = false;
2554  	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2555  					DEFAULT_RATELIMIT_BURST);
2556  
2557  	if (!pfn_valid(pfn))
2558  		return -ENXIO;
2559  
2560  	p = pfn_to_page(pfn);
2561  	folio = page_folio(p);
2562  
2563  	mutex_lock(&mf_mutex);
2564  
2565  	if (hw_memory_failure) {
2566  		unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2567  				 pfn, &unpoison_rs);
2568  		ret = -EOPNOTSUPP;
2569  		goto unlock_mutex;
2570  	}
2571  
2572  	if (is_huge_zero_folio(folio)) {
2573  		unpoison_pr_info("%#lx: huge zero page is not supported\n",
2574  				 pfn, &unpoison_rs);
2575  		ret = -EOPNOTSUPP;
2576  		goto unlock_mutex;
2577  	}
2578  
2579  	if (!PageHWPoison(p)) {
2580  		unpoison_pr_info("%#lx: page was already unpoisoned\n",
2581  				 pfn, &unpoison_rs);
2582  		goto unlock_mutex;
2583  	}
2584  
2585  	if (folio_ref_count(folio) > 1) {
2586  		unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2587  				 pfn, &unpoison_rs);
2588  		goto unlock_mutex;
2589  	}
2590  
2591  	if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2592  	    folio_test_reserved(folio) || folio_test_offline(folio))
2593  		goto unlock_mutex;
2594  
2595  	if (folio_mapped(folio)) {
2596  		unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2597  				 pfn, &unpoison_rs);
2598  		goto unlock_mutex;
2599  	}
2600  
2601  	if (folio_mapping(folio)) {
2602  		unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2603  				 pfn, &unpoison_rs);
2604  		goto unlock_mutex;
2605  	}
2606  
2607  	ghp = get_hwpoison_page(p, MF_UNPOISON);
2608  	if (!ghp) {
2609  		if (folio_test_hugetlb(folio)) {
2610  			huge = true;
2611  			count = folio_free_raw_hwp(folio, false);
2612  			if (count == 0)
2613  				goto unlock_mutex;
2614  		}
2615  		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2616  	} else if (ghp < 0) {
2617  		if (ghp == -EHWPOISON) {
2618  			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2619  		} else {
2620  			ret = ghp;
2621  			unpoison_pr_info("%#lx: failed to grab page\n",
2622  					 pfn, &unpoison_rs);
2623  		}
2624  	} else {
2625  		if (folio_test_hugetlb(folio)) {
2626  			huge = true;
2627  			count = folio_free_raw_hwp(folio, false);
2628  			if (count == 0) {
2629  				folio_put(folio);
2630  				goto unlock_mutex;
2631  			}
2632  		}
2633  
2634  		folio_put(folio);
2635  		if (TestClearPageHWPoison(p)) {
2636  			folio_put(folio);
2637  			ret = 0;
2638  		}
2639  	}
2640  
2641  unlock_mutex:
2642  	mutex_unlock(&mf_mutex);
2643  	if (!ret) {
2644  		if (!huge)
2645  			num_poisoned_pages_sub(pfn, 1);
2646  		unpoison_pr_info("%#lx: software-unpoisoned page\n",
2647  				 page_to_pfn(p), &unpoison_rs);
2648  	}
2649  	return ret;
2650  }
2651  EXPORT_SYMBOL(unpoison_memory);
2652  
2653  #undef pr_fmt
2654  #define pr_fmt(fmt) "Soft offline: " fmt
2655  
2656  /*
2657   * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2658   * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2659   * If the page is mapped, it migrates the contents over.
2660   */
soft_offline_in_use_page(struct page * page)2661  static int soft_offline_in_use_page(struct page *page)
2662  {
2663  	long ret = 0;
2664  	unsigned long pfn = page_to_pfn(page);
2665  	struct folio *folio = page_folio(page);
2666  	char const *msg_page[] = {"page", "hugepage"};
2667  	bool huge = folio_test_hugetlb(folio);
2668  	bool isolated;
2669  	LIST_HEAD(pagelist);
2670  	struct migration_target_control mtc = {
2671  		.nid = NUMA_NO_NODE,
2672  		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2673  		.reason = MR_MEMORY_FAILURE,
2674  	};
2675  
2676  	if (!huge && folio_test_large(folio)) {
2677  		if (try_to_split_thp_page(page, true)) {
2678  			pr_info("%#lx: thp split failed\n", pfn);
2679  			return -EBUSY;
2680  		}
2681  		folio = page_folio(page);
2682  	}
2683  
2684  	folio_lock(folio);
2685  	if (!huge)
2686  		folio_wait_writeback(folio);
2687  	if (PageHWPoison(page)) {
2688  		folio_unlock(folio);
2689  		folio_put(folio);
2690  		pr_info("%#lx: page already poisoned\n", pfn);
2691  		return 0;
2692  	}
2693  
2694  	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2695  		/*
2696  		 * Try to invalidate first. This should work for
2697  		 * non dirty unmapped page cache pages.
2698  		 */
2699  		ret = mapping_evict_folio(folio_mapping(folio), folio);
2700  	folio_unlock(folio);
2701  
2702  	if (ret) {
2703  		pr_info("%#lx: invalidated\n", pfn);
2704  		page_handle_poison(page, false, true);
2705  		return 0;
2706  	}
2707  
2708  	isolated = isolate_folio_to_list(folio, &pagelist);
2709  
2710  	/*
2711  	 * If we succeed to isolate the folio, we grabbed another refcount on
2712  	 * the folio, so we can safely drop the one we got from get_any_page().
2713  	 * If we failed to isolate the folio, it means that we cannot go further
2714  	 * and we will return an error, so drop the reference we got from
2715  	 * get_any_page() as well.
2716  	 */
2717  	folio_put(folio);
2718  
2719  	if (isolated) {
2720  		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2721  			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2722  		if (!ret) {
2723  			bool release = !huge;
2724  
2725  			if (!page_handle_poison(page, huge, release))
2726  				ret = -EBUSY;
2727  		} else {
2728  			if (!list_empty(&pagelist))
2729  				putback_movable_pages(&pagelist);
2730  
2731  			pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2732  				pfn, msg_page[huge], ret, &page->flags);
2733  			if (ret > 0)
2734  				ret = -EBUSY;
2735  		}
2736  	} else {
2737  		pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2738  			pfn, msg_page[huge], page_count(page), &page->flags);
2739  		ret = -EBUSY;
2740  	}
2741  	return ret;
2742  }
2743  
2744  /**
2745   * soft_offline_page - Soft offline a page.
2746   * @pfn: pfn to soft-offline
2747   * @flags: flags. Same as memory_failure().
2748   *
2749   * Returns 0 on success,
2750   *         -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2751   *         disabled by /proc/sys/vm/enable_soft_offline,
2752   *         < 0 otherwise negated errno.
2753   *
2754   * Soft offline a page, by migration or invalidation,
2755   * without killing anything. This is for the case when
2756   * a page is not corrupted yet (so it's still valid to access),
2757   * but has had a number of corrected errors and is better taken
2758   * out.
2759   *
2760   * The actual policy on when to do that is maintained by
2761   * user space.
2762   *
2763   * This should never impact any application or cause data loss,
2764   * however it might take some time.
2765   *
2766   * This is not a 100% solution for all memory, but tries to be
2767   * ``good enough'' for the majority of memory.
2768   */
soft_offline_page(unsigned long pfn,int flags)2769  int soft_offline_page(unsigned long pfn, int flags)
2770  {
2771  	int ret;
2772  	bool try_again = true;
2773  	struct page *page;
2774  
2775  	if (!pfn_valid(pfn)) {
2776  		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2777  		return -ENXIO;
2778  	}
2779  
2780  	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2781  	page = pfn_to_online_page(pfn);
2782  	if (!page) {
2783  		put_ref_page(pfn, flags);
2784  		return -EIO;
2785  	}
2786  
2787  	if (!sysctl_enable_soft_offline) {
2788  		pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2789  		put_ref_page(pfn, flags);
2790  		return -EOPNOTSUPP;
2791  	}
2792  
2793  	mutex_lock(&mf_mutex);
2794  
2795  	if (PageHWPoison(page)) {
2796  		pr_info("%#lx: page already poisoned\n", pfn);
2797  		put_ref_page(pfn, flags);
2798  		mutex_unlock(&mf_mutex);
2799  		return 0;
2800  	}
2801  
2802  retry:
2803  	get_online_mems();
2804  	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2805  	put_online_mems();
2806  
2807  	if (hwpoison_filter(page)) {
2808  		if (ret > 0)
2809  			put_page(page);
2810  
2811  		mutex_unlock(&mf_mutex);
2812  		return -EOPNOTSUPP;
2813  	}
2814  
2815  	if (ret > 0) {
2816  		ret = soft_offline_in_use_page(page);
2817  	} else if (ret == 0) {
2818  		if (!page_handle_poison(page, true, false)) {
2819  			if (try_again) {
2820  				try_again = false;
2821  				flags &= ~MF_COUNT_INCREASED;
2822  				goto retry;
2823  			}
2824  			ret = -EBUSY;
2825  		}
2826  	}
2827  
2828  	mutex_unlock(&mf_mutex);
2829  
2830  	return ret;
2831  }
2832