1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Machine check handler.
4   *
5   * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6   * Rest from unknown author(s).
7   * 2004 Andi Kleen. Rewrote most of it.
8   * Copyright 2008 Intel Corporation
9   * Author: Andi Kleen
10   */
11  
12  #include <linux/thread_info.h>
13  #include <linux/capability.h>
14  #include <linux/miscdevice.h>
15  #include <linux/ratelimit.h>
16  #include <linux/rcupdate.h>
17  #include <linux/kobject.h>
18  #include <linux/uaccess.h>
19  #include <linux/kdebug.h>
20  #include <linux/kernel.h>
21  #include <linux/percpu.h>
22  #include <linux/string.h>
23  #include <linux/device.h>
24  #include <linux/syscore_ops.h>
25  #include <linux/delay.h>
26  #include <linux/ctype.h>
27  #include <linux/sched.h>
28  #include <linux/sysfs.h>
29  #include <linux/types.h>
30  #include <linux/slab.h>
31  #include <linux/init.h>
32  #include <linux/kmod.h>
33  #include <linux/poll.h>
34  #include <linux/nmi.h>
35  #include <linux/cpu.h>
36  #include <linux/ras.h>
37  #include <linux/smp.h>
38  #include <linux/fs.h>
39  #include <linux/mm.h>
40  #include <linux/debugfs.h>
41  #include <linux/irq_work.h>
42  #include <linux/export.h>
43  #include <linux/set_memory.h>
44  #include <linux/sync_core.h>
45  #include <linux/task_work.h>
46  #include <linux/hardirq.h>
47  #include <linux/kexec.h>
48  
49  #include <asm/fred.h>
50  #include <asm/cpu_device_id.h>
51  #include <asm/processor.h>
52  #include <asm/traps.h>
53  #include <asm/tlbflush.h>
54  #include <asm/mce.h>
55  #include <asm/msr.h>
56  #include <asm/reboot.h>
57  #include <asm/tdx.h>
58  
59  #include "internal.h"
60  
61  /* sysfs synchronization */
62  static DEFINE_MUTEX(mce_sysfs_mutex);
63  
64  #define CREATE_TRACE_POINTS
65  #include <trace/events/mce.h>
66  
67  #define SPINUNIT		100	/* 100ns */
68  
69  DEFINE_PER_CPU(unsigned, mce_exception_count);
70  
71  DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
72  
73  DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
74  
75  #define ATTR_LEN               16
76  /* One object for each MCE bank, shared by all CPUs */
77  struct mce_bank_dev {
78  	struct device_attribute	attr;			/* device attribute */
79  	char			attrname[ATTR_LEN];	/* attribute name */
80  	u8			bank;			/* bank number */
81  };
82  static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
83  
84  struct mce_vendor_flags mce_flags __read_mostly;
85  
86  struct mca_config mca_cfg __read_mostly = {
87  	.bootlog  = -1,
88  	.monarch_timeout = -1
89  };
90  
91  static DEFINE_PER_CPU(struct mce, mces_seen);
92  static unsigned long mce_need_notify;
93  
94  /*
95   * MCA banks polled by the period polling timer for corrected events.
96   * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
97   */
98  DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
99  	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
100  };
101  
102  /*
103   * MCA banks controlled through firmware first for corrected errors.
104   * This is a global list of banks for which we won't enable CMCI and we
105   * won't poll. Firmware controls these banks and is responsible for
106   * reporting corrected errors through GHES. Uncorrected/recoverable
107   * errors are still notified through a machine check.
108   */
109  mce_banks_t mce_banks_ce_disabled;
110  
111  static struct work_struct mce_work;
112  static struct irq_work mce_irq_work;
113  
114  /*
115   * CPU/chipset specific EDAC code can register a notifier call here to print
116   * MCE errors in a human-readable form.
117   */
118  BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
119  
mce_prep_record_common(struct mce * m)120  void mce_prep_record_common(struct mce *m)
121  {
122  	memset(m, 0, sizeof(struct mce));
123  
124  	m->cpuid	= cpuid_eax(1);
125  	m->cpuvendor	= boot_cpu_data.x86_vendor;
126  	m->mcgcap	= __rdmsr(MSR_IA32_MCG_CAP);
127  	/* need the internal __ version to avoid deadlocks */
128  	m->time		= __ktime_get_real_seconds();
129  }
130  
mce_prep_record_per_cpu(unsigned int cpu,struct mce * m)131  void mce_prep_record_per_cpu(unsigned int cpu, struct mce *m)
132  {
133  	m->cpu		= cpu;
134  	m->extcpu	= cpu;
135  	m->apicid	= cpu_data(cpu).topo.initial_apicid;
136  	m->microcode	= cpu_data(cpu).microcode;
137  	m->ppin		= topology_ppin(cpu);
138  	m->socketid	= topology_physical_package_id(cpu);
139  }
140  
141  /* Do initial initialization of a struct mce */
mce_prep_record(struct mce * m)142  void mce_prep_record(struct mce *m)
143  {
144  	mce_prep_record_common(m);
145  	mce_prep_record_per_cpu(smp_processor_id(), m);
146  }
147  
148  DEFINE_PER_CPU(struct mce, injectm);
149  EXPORT_PER_CPU_SYMBOL_GPL(injectm);
150  
mce_log(struct mce * m)151  void mce_log(struct mce *m)
152  {
153  	if (!mce_gen_pool_add(m))
154  		irq_work_queue(&mce_irq_work);
155  }
156  EXPORT_SYMBOL_GPL(mce_log);
157  
mce_register_decode_chain(struct notifier_block * nb)158  void mce_register_decode_chain(struct notifier_block *nb)
159  {
160  	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
161  		    nb->priority > MCE_PRIO_HIGHEST))
162  		return;
163  
164  	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
165  }
166  EXPORT_SYMBOL_GPL(mce_register_decode_chain);
167  
mce_unregister_decode_chain(struct notifier_block * nb)168  void mce_unregister_decode_chain(struct notifier_block *nb)
169  {
170  	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
171  }
172  EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
173  
__print_mce(struct mce * m)174  static void __print_mce(struct mce *m)
175  {
176  	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
177  		 m->extcpu,
178  		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
179  		 m->mcgstatus, m->bank, m->status);
180  
181  	if (m->ip) {
182  		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
183  			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
184  			m->cs, m->ip);
185  
186  		if (m->cs == __KERNEL_CS)
187  			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
188  		pr_cont("\n");
189  	}
190  
191  	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
192  	if (m->addr)
193  		pr_cont("ADDR %llx ", m->addr);
194  	if (m->misc)
195  		pr_cont("MISC %llx ", m->misc);
196  	if (m->ppin)
197  		pr_cont("PPIN %llx ", m->ppin);
198  
199  	if (mce_flags.smca) {
200  		if (m->synd)
201  			pr_cont("SYND %llx ", m->synd);
202  		if (m->ipid)
203  			pr_cont("IPID %llx ", m->ipid);
204  	}
205  
206  	pr_cont("\n");
207  
208  	/*
209  	 * Note this output is parsed by external tools and old fields
210  	 * should not be changed.
211  	 */
212  	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
213  		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
214  		m->microcode);
215  }
216  
print_mce(struct mce * m)217  static void print_mce(struct mce *m)
218  {
219  	__print_mce(m);
220  
221  	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
222  		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
223  }
224  
225  #define PANIC_TIMEOUT 5 /* 5 seconds */
226  
227  static atomic_t mce_panicked;
228  
229  static int fake_panic;
230  static atomic_t mce_fake_panicked;
231  
232  /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)233  static void wait_for_panic(void)
234  {
235  	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
236  
237  	preempt_disable();
238  	local_irq_enable();
239  	while (timeout-- > 0)
240  		udelay(1);
241  	if (panic_timeout == 0)
242  		panic_timeout = mca_cfg.panic_timeout;
243  	panic("Panicing machine check CPU died");
244  }
245  
mce_dump_aux_info(struct mce * m)246  static const char *mce_dump_aux_info(struct mce *m)
247  {
248  	if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE))
249  		return tdx_dump_mce_info(m);
250  
251  	return NULL;
252  }
253  
mce_panic(const char * msg,struct mce * final,char * exp)254  static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
255  {
256  	struct llist_node *pending;
257  	struct mce_evt_llist *l;
258  	int apei_err = 0;
259  	const char *memmsg;
260  
261  	/*
262  	 * Allow instrumentation around external facilities usage. Not that it
263  	 * matters a whole lot since the machine is going to panic anyway.
264  	 */
265  	instrumentation_begin();
266  
267  	if (!fake_panic) {
268  		/*
269  		 * Make sure only one CPU runs in machine check panic
270  		 */
271  		if (atomic_inc_return(&mce_panicked) > 1)
272  			wait_for_panic();
273  		barrier();
274  
275  		bust_spinlocks(1);
276  		console_verbose();
277  	} else {
278  		/* Don't log too much for fake panic */
279  		if (atomic_inc_return(&mce_fake_panicked) > 1)
280  			goto out;
281  	}
282  	pending = mce_gen_pool_prepare_records();
283  	/* First print corrected ones that are still unlogged */
284  	llist_for_each_entry(l, pending, llnode) {
285  		struct mce *m = &l->mce;
286  		if (!(m->status & MCI_STATUS_UC)) {
287  			print_mce(m);
288  			if (!apei_err)
289  				apei_err = apei_write_mce(m);
290  		}
291  	}
292  	/* Now print uncorrected but with the final one last */
293  	llist_for_each_entry(l, pending, llnode) {
294  		struct mce *m = &l->mce;
295  		if (!(m->status & MCI_STATUS_UC))
296  			continue;
297  		if (!final || mce_cmp(m, final)) {
298  			print_mce(m);
299  			if (!apei_err)
300  				apei_err = apei_write_mce(m);
301  		}
302  	}
303  	if (final) {
304  		print_mce(final);
305  		if (!apei_err)
306  			apei_err = apei_write_mce(final);
307  	}
308  	if (exp)
309  		pr_emerg(HW_ERR "Machine check: %s\n", exp);
310  
311  	memmsg = mce_dump_aux_info(final);
312  	if (memmsg)
313  		pr_emerg(HW_ERR "Machine check: %s\n", memmsg);
314  
315  	if (!fake_panic) {
316  		if (panic_timeout == 0)
317  			panic_timeout = mca_cfg.panic_timeout;
318  
319  		/*
320  		 * Kdump skips the poisoned page in order to avoid
321  		 * touching the error bits again. Poison the page even
322  		 * if the error is fatal and the machine is about to
323  		 * panic.
324  		 */
325  		if (kexec_crash_loaded()) {
326  			if (final && (final->status & MCI_STATUS_ADDRV)) {
327  				struct page *p;
328  				p = pfn_to_online_page(final->addr >> PAGE_SHIFT);
329  				if (p)
330  					SetPageHWPoison(p);
331  			}
332  		}
333  		panic(msg);
334  	} else
335  		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
336  
337  out:
338  	instrumentation_end();
339  }
340  
341  /* Support code for software error injection */
342  
msr_to_offset(u32 msr)343  static int msr_to_offset(u32 msr)
344  {
345  	unsigned bank = __this_cpu_read(injectm.bank);
346  
347  	if (msr == mca_cfg.rip_msr)
348  		return offsetof(struct mce, ip);
349  	if (msr == mca_msr_reg(bank, MCA_STATUS))
350  		return offsetof(struct mce, status);
351  	if (msr == mca_msr_reg(bank, MCA_ADDR))
352  		return offsetof(struct mce, addr);
353  	if (msr == mca_msr_reg(bank, MCA_MISC))
354  		return offsetof(struct mce, misc);
355  	if (msr == MSR_IA32_MCG_STATUS)
356  		return offsetof(struct mce, mcgstatus);
357  	return -1;
358  }
359  
ex_handler_msr_mce(struct pt_regs * regs,bool wrmsr)360  void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
361  {
362  	if (wrmsr) {
363  		pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
364  			 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
365  			 regs->ip, (void *)regs->ip);
366  	} else {
367  		pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
368  			 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
369  	}
370  
371  	show_stack_regs(regs);
372  
373  	panic("MCA architectural violation!\n");
374  
375  	while (true)
376  		cpu_relax();
377  }
378  
379  /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)380  noinstr u64 mce_rdmsrl(u32 msr)
381  {
382  	DECLARE_ARGS(val, low, high);
383  
384  	if (__this_cpu_read(injectm.finished)) {
385  		int offset;
386  		u64 ret;
387  
388  		instrumentation_begin();
389  
390  		offset = msr_to_offset(msr);
391  		if (offset < 0)
392  			ret = 0;
393  		else
394  			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
395  
396  		instrumentation_end();
397  
398  		return ret;
399  	}
400  
401  	/*
402  	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
403  	 * architectural violation and needs to be reported to hw vendor. Panic
404  	 * the box to not allow any further progress.
405  	 */
406  	asm volatile("1: rdmsr\n"
407  		     "2:\n"
408  		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
409  		     : EAX_EDX_RET(val, low, high) : "c" (msr));
410  
411  
412  	return EAX_EDX_VAL(val, low, high);
413  }
414  
mce_wrmsrl(u32 msr,u64 v)415  static noinstr void mce_wrmsrl(u32 msr, u64 v)
416  {
417  	u32 low, high;
418  
419  	if (__this_cpu_read(injectm.finished)) {
420  		int offset;
421  
422  		instrumentation_begin();
423  
424  		offset = msr_to_offset(msr);
425  		if (offset >= 0)
426  			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
427  
428  		instrumentation_end();
429  
430  		return;
431  	}
432  
433  	low  = (u32)v;
434  	high = (u32)(v >> 32);
435  
436  	/* See comment in mce_rdmsrl() */
437  	asm volatile("1: wrmsr\n"
438  		     "2:\n"
439  		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
440  		     : : "c" (msr), "a"(low), "d" (high) : "memory");
441  }
442  
443  /*
444   * Collect all global (w.r.t. this processor) status about this machine
445   * check into our "mce" struct so that we can use it later to assess
446   * the severity of the problem as we read per-bank specific details.
447   */
mce_gather_info(struct mce * m,struct pt_regs * regs)448  static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs)
449  {
450  	/*
451  	 * Enable instrumentation around mce_prep_record() which calls external
452  	 * facilities.
453  	 */
454  	instrumentation_begin();
455  	mce_prep_record(m);
456  	instrumentation_end();
457  
458  	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
459  	if (regs) {
460  		/*
461  		 * Get the address of the instruction at the time of
462  		 * the machine check error.
463  		 */
464  		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
465  			m->ip = regs->ip;
466  			m->cs = regs->cs;
467  
468  			/*
469  			 * When in VM86 mode make the cs look like ring 3
470  			 * always. This is a lie, but it's better than passing
471  			 * the additional vm86 bit around everywhere.
472  			 */
473  			if (v8086_mode(regs))
474  				m->cs |= 3;
475  		}
476  		/* Use accurate RIP reporting if available. */
477  		if (mca_cfg.rip_msr)
478  			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
479  	}
480  }
481  
mce_available(struct cpuinfo_x86 * c)482  int mce_available(struct cpuinfo_x86 *c)
483  {
484  	if (mca_cfg.disabled)
485  		return 0;
486  	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
487  }
488  
mce_schedule_work(void)489  static void mce_schedule_work(void)
490  {
491  	if (!mce_gen_pool_empty())
492  		schedule_work(&mce_work);
493  }
494  
mce_irq_work_cb(struct irq_work * entry)495  static void mce_irq_work_cb(struct irq_work *entry)
496  {
497  	mce_schedule_work();
498  }
499  
mce_usable_address(struct mce * m)500  bool mce_usable_address(struct mce *m)
501  {
502  	if (!(m->status & MCI_STATUS_ADDRV))
503  		return false;
504  
505  	switch (m->cpuvendor) {
506  	case X86_VENDOR_AMD:
507  		return amd_mce_usable_address(m);
508  
509  	case X86_VENDOR_INTEL:
510  	case X86_VENDOR_ZHAOXIN:
511  		return intel_mce_usable_address(m);
512  
513  	default:
514  		return true;
515  	}
516  }
517  EXPORT_SYMBOL_GPL(mce_usable_address);
518  
mce_is_memory_error(struct mce * m)519  bool mce_is_memory_error(struct mce *m)
520  {
521  	switch (m->cpuvendor) {
522  	case X86_VENDOR_AMD:
523  	case X86_VENDOR_HYGON:
524  		return amd_mce_is_memory_error(m);
525  
526  	case X86_VENDOR_INTEL:
527  	case X86_VENDOR_ZHAOXIN:
528  		/*
529  		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
530  		 *
531  		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
532  		 * indicating a memory error. Bit 8 is used for indicating a
533  		 * cache hierarchy error. The combination of bit 2 and bit 3
534  		 * is used for indicating a `generic' cache hierarchy error
535  		 * But we can't just blindly check the above bits, because if
536  		 * bit 11 is set, then it is a bus/interconnect error - and
537  		 * either way the above bits just gives more detail on what
538  		 * bus/interconnect error happened. Note that bit 12 can be
539  		 * ignored, as it's the "filter" bit.
540  		 */
541  		return (m->status & 0xef80) == BIT(7) ||
542  		       (m->status & 0xef00) == BIT(8) ||
543  		       (m->status & 0xeffc) == 0xc;
544  
545  	default:
546  		return false;
547  	}
548  }
549  EXPORT_SYMBOL_GPL(mce_is_memory_error);
550  
whole_page(struct mce * m)551  static bool whole_page(struct mce *m)
552  {
553  	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
554  		return true;
555  
556  	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
557  }
558  
mce_is_correctable(struct mce * m)559  bool mce_is_correctable(struct mce *m)
560  {
561  	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
562  		return false;
563  
564  	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
565  		return false;
566  
567  	if (m->status & MCI_STATUS_UC)
568  		return false;
569  
570  	return true;
571  }
572  EXPORT_SYMBOL_GPL(mce_is_correctable);
573  
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)574  static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
575  			      void *data)
576  {
577  	struct mce *m = (struct mce *)data;
578  
579  	if (!m)
580  		return NOTIFY_DONE;
581  
582  	/* Emit the trace record: */
583  	trace_mce_record(m);
584  
585  	set_bit(0, &mce_need_notify);
586  
587  	mce_notify_irq();
588  
589  	return NOTIFY_DONE;
590  }
591  
592  static struct notifier_block early_nb = {
593  	.notifier_call	= mce_early_notifier,
594  	.priority	= MCE_PRIO_EARLY,
595  };
596  
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)597  static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
598  			      void *data)
599  {
600  	struct mce *mce = (struct mce *)data;
601  	unsigned long pfn;
602  
603  	if (!mce || !mce_usable_address(mce))
604  		return NOTIFY_DONE;
605  
606  	if (mce->severity != MCE_AO_SEVERITY &&
607  	    mce->severity != MCE_DEFERRED_SEVERITY)
608  		return NOTIFY_DONE;
609  
610  	pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
611  	if (!memory_failure(pfn, 0)) {
612  		set_mce_nospec(pfn);
613  		mce->kflags |= MCE_HANDLED_UC;
614  	}
615  
616  	return NOTIFY_OK;
617  }
618  
619  static struct notifier_block mce_uc_nb = {
620  	.notifier_call	= uc_decode_notifier,
621  	.priority	= MCE_PRIO_UC,
622  };
623  
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)624  static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
625  				void *data)
626  {
627  	struct mce *m = (struct mce *)data;
628  
629  	if (!m)
630  		return NOTIFY_DONE;
631  
632  	if (mca_cfg.print_all || !m->kflags)
633  		__print_mce(m);
634  
635  	return NOTIFY_DONE;
636  }
637  
638  static struct notifier_block mce_default_nb = {
639  	.notifier_call	= mce_default_notifier,
640  	/* lowest prio, we want it to run last. */
641  	.priority	= MCE_PRIO_LOWEST,
642  };
643  
644  /*
645   * Read ADDR and MISC registers.
646   */
mce_read_aux(struct mce * m,int i)647  static noinstr void mce_read_aux(struct mce *m, int i)
648  {
649  	if (m->status & MCI_STATUS_MISCV)
650  		m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
651  
652  	if (m->status & MCI_STATUS_ADDRV) {
653  		m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
654  
655  		/*
656  		 * Mask the reported address by the reported granularity.
657  		 */
658  		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
659  			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
660  			m->addr >>= shift;
661  			m->addr <<= shift;
662  		}
663  
664  		smca_extract_err_addr(m);
665  	}
666  
667  	if (mce_flags.smca) {
668  		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
669  
670  		if (m->status & MCI_STATUS_SYNDV)
671  			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
672  	}
673  }
674  
675  DEFINE_PER_CPU(unsigned, mce_poll_count);
676  
677  /*
678   * Poll for corrected events or events that happened before reset.
679   * Those are just logged through /dev/mcelog.
680   *
681   * This is executed in standard interrupt context.
682   *
683   * Note: spec recommends to panic for fatal unsignalled
684   * errors here. However this would be quite problematic --
685   * we would need to reimplement the Monarch handling and
686   * it would mess up the exclusion between exception handler
687   * and poll handler -- * so we skip this for now.
688   * These cases should not happen anyways, or only when the CPU
689   * is already totally * confused. In this case it's likely it will
690   * not fully execute the machine check handler either.
691   */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)692  void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
693  {
694  	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
695  	struct mce m;
696  	int i;
697  
698  	this_cpu_inc(mce_poll_count);
699  
700  	mce_gather_info(&m, NULL);
701  
702  	if (flags & MCP_TIMESTAMP)
703  		m.tsc = rdtsc();
704  
705  	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
706  		if (!mce_banks[i].ctl || !test_bit(i, *b))
707  			continue;
708  
709  		m.misc = 0;
710  		m.addr = 0;
711  		m.bank = i;
712  
713  		barrier();
714  		m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
715  
716  		/*
717  		 * Update storm tracking here, before checking for the
718  		 * MCI_STATUS_VAL bit. Valid corrected errors count
719  		 * towards declaring, or maintaining, storm status. No
720  		 * error in a bank counts towards avoiding, or ending,
721  		 * storm status.
722  		 */
723  		if (!mca_cfg.cmci_disabled)
724  			mce_track_storm(&m);
725  
726  		/* If this entry is not valid, ignore it */
727  		if (!(m.status & MCI_STATUS_VAL))
728  			continue;
729  
730  		/*
731  		 * If we are logging everything (at CPU online) or this
732  		 * is a corrected error, then we must log it.
733  		 */
734  		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
735  			goto log_it;
736  
737  		/*
738  		 * Newer Intel systems that support software error
739  		 * recovery need to make additional checks. Other
740  		 * CPUs should skip over uncorrected errors, but log
741  		 * everything else.
742  		 */
743  		if (!mca_cfg.ser) {
744  			if (m.status & MCI_STATUS_UC)
745  				continue;
746  			goto log_it;
747  		}
748  
749  		/* Log "not enabled" (speculative) errors */
750  		if (!(m.status & MCI_STATUS_EN))
751  			goto log_it;
752  
753  		/*
754  		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
755  		 * UC == 1 && PCC == 0 && S == 0
756  		 */
757  		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
758  			goto log_it;
759  
760  		/*
761  		 * Skip anything else. Presumption is that our read of this
762  		 * bank is racing with a machine check. Leave the log alone
763  		 * for do_machine_check() to deal with it.
764  		 */
765  		continue;
766  
767  log_it:
768  		if (flags & MCP_DONTLOG)
769  			goto clear_it;
770  
771  		mce_read_aux(&m, i);
772  		m.severity = mce_severity(&m, NULL, NULL, false);
773  		/*
774  		 * Don't get the IP here because it's unlikely to
775  		 * have anything to do with the actual error location.
776  		 */
777  
778  		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
779  			goto clear_it;
780  
781  		if (flags & MCP_QUEUE_LOG)
782  			mce_gen_pool_add(&m);
783  		else
784  			mce_log(&m);
785  
786  clear_it:
787  		/*
788  		 * Clear state for this bank.
789  		 */
790  		mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
791  	}
792  
793  	/*
794  	 * Don't clear MCG_STATUS here because it's only defined for
795  	 * exceptions.
796  	 */
797  
798  	sync_core();
799  }
800  EXPORT_SYMBOL_GPL(machine_check_poll);
801  
802  /*
803   * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
804   * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
805   * Vol 3B Table 15-20). But this confuses both the code that determines
806   * whether the machine check occurred in kernel or user mode, and also
807   * the severity assessment code. Pretend that EIPV was set, and take the
808   * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
809   */
810  static __always_inline void
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)811  quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
812  {
813  	if (bank != 0)
814  		return;
815  	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
816  		return;
817  	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
818  		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
819  			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
820  			  MCACOD)) !=
821  			 (MCI_STATUS_UC|MCI_STATUS_EN|
822  			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
823  			  MCI_STATUS_AR|MCACOD_INSTR))
824  		return;
825  
826  	m->mcgstatus |= MCG_STATUS_EIPV;
827  	m->ip = regs->ip;
828  	m->cs = regs->cs;
829  }
830  
831  /*
832   * Disable fast string copy and return from the MCE handler upon the first SRAR
833   * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
834   * CPUs.
835   * The fast string copy instructions ("REP; MOVS*") could consume an
836   * uncorrectable memory error in the cache line _right after_ the desired region
837   * to copy and raise an MCE with RIP pointing to the instruction _after_ the
838   * "REP; MOVS*".
839   * This mitigation addresses the issue completely with the caveat of performance
840   * degradation on the CPU affected. This is still better than the OS crashing on
841   * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
842   * kernel context (e.g., copy_page).
843   *
844   * Returns true when fast string copy on CPU has been disabled.
845   */
quirk_skylake_repmov(void)846  static noinstr bool quirk_skylake_repmov(void)
847  {
848  	u64 mcgstatus   = mce_rdmsrl(MSR_IA32_MCG_STATUS);
849  	u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE);
850  	u64 mc1_status;
851  
852  	/*
853  	 * Apply the quirk only to local machine checks, i.e., no broadcast
854  	 * sync is needed.
855  	 */
856  	if (!(mcgstatus & MCG_STATUS_LMCES) ||
857  	    !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
858  		return false;
859  
860  	mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1));
861  
862  	/* Check for a software-recoverable data fetch error. */
863  	if ((mc1_status &
864  	     (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
865  	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
866  	      MCI_STATUS_AR | MCI_STATUS_S)) ==
867  	     (MCI_STATUS_VAL |                   MCI_STATUS_UC | MCI_STATUS_EN |
868  	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
869  	      MCI_STATUS_AR | MCI_STATUS_S)) {
870  		misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
871  		mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
872  		mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0);
873  
874  		instrumentation_begin();
875  		pr_err_once("Erratum detected, disable fast string copy instructions.\n");
876  		instrumentation_end();
877  
878  		return true;
879  	}
880  
881  	return false;
882  }
883  
884  /*
885   * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption
886   * errors. This means mce_gather_info() will not save the "ip" and "cs" registers.
887   *
888   * However, the context is still valid, so save the "cs" register for later use.
889   *
890   * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV.
891   *
892   * The Instruction Fetch Unit is at MCA bank 1 for all affected systems.
893   */
quirk_zen_ifu(int bank,struct mce * m,struct pt_regs * regs)894  static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs)
895  {
896  	if (bank != 1)
897  		return;
898  	if (!(m->status & MCI_STATUS_POISON))
899  		return;
900  
901  	m->cs = regs->cs;
902  }
903  
904  /*
905   * Do a quick check if any of the events requires a panic.
906   * This decides if we keep the events around or clear them.
907   */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)908  static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
909  					  struct pt_regs *regs)
910  {
911  	char *tmp = *msg;
912  	int i;
913  
914  	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
915  		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
916  		if (!(m->status & MCI_STATUS_VAL))
917  			continue;
918  
919  		arch___set_bit(i, validp);
920  		if (mce_flags.snb_ifu_quirk)
921  			quirk_sandybridge_ifu(i, m, regs);
922  
923  		if (mce_flags.zen_ifu_quirk)
924  			quirk_zen_ifu(i, m, regs);
925  
926  		m->bank = i;
927  		if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
928  			mce_read_aux(m, i);
929  			*msg = tmp;
930  			return 1;
931  		}
932  	}
933  	return 0;
934  }
935  
936  /*
937   * Variable to establish order between CPUs while scanning.
938   * Each CPU spins initially until executing is equal its number.
939   */
940  static atomic_t mce_executing;
941  
942  /*
943   * Defines order of CPUs on entry. First CPU becomes Monarch.
944   */
945  static atomic_t mce_callin;
946  
947  /*
948   * Track which CPUs entered the MCA broadcast synchronization and which not in
949   * order to print holdouts.
950   */
951  static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
952  
953  /*
954   * Check if a timeout waiting for other CPUs happened.
955   */
mce_timed_out(u64 * t,const char * msg)956  static noinstr int mce_timed_out(u64 *t, const char *msg)
957  {
958  	int ret = 0;
959  
960  	/* Enable instrumentation around calls to external facilities */
961  	instrumentation_begin();
962  
963  	/*
964  	 * The others already did panic for some reason.
965  	 * Bail out like in a timeout.
966  	 * rmb() to tell the compiler that system_state
967  	 * might have been modified by someone else.
968  	 */
969  	rmb();
970  	if (atomic_read(&mce_panicked))
971  		wait_for_panic();
972  	if (!mca_cfg.monarch_timeout)
973  		goto out;
974  	if ((s64)*t < SPINUNIT) {
975  		if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
976  			pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
977  				 cpumask_pr_args(&mce_missing_cpus));
978  		mce_panic(msg, NULL, NULL);
979  
980  		ret = 1;
981  		goto out;
982  	}
983  	*t -= SPINUNIT;
984  
985  out:
986  	touch_nmi_watchdog();
987  
988  	instrumentation_end();
989  
990  	return ret;
991  }
992  
993  /*
994   * The Monarch's reign.  The Monarch is the CPU who entered
995   * the machine check handler first. It waits for the others to
996   * raise the exception too and then grades them. When any
997   * error is fatal panic. Only then let the others continue.
998   *
999   * The other CPUs entering the MCE handler will be controlled by the
1000   * Monarch. They are called Subjects.
1001   *
1002   * This way we prevent any potential data corruption in a unrecoverable case
1003   * and also makes sure always all CPU's errors are examined.
1004   *
1005   * Also this detects the case of a machine check event coming from outer
1006   * space (not detected by any CPUs) In this case some external agent wants
1007   * us to shut down, so panic too.
1008   *
1009   * The other CPUs might still decide to panic if the handler happens
1010   * in a unrecoverable place, but in this case the system is in a semi-stable
1011   * state and won't corrupt anything by itself. It's ok to let the others
1012   * continue for a bit first.
1013   *
1014   * All the spin loops have timeouts; when a timeout happens a CPU
1015   * typically elects itself to be Monarch.
1016   */
mce_reign(void)1017  static void mce_reign(void)
1018  {
1019  	int cpu;
1020  	struct mce *m = NULL;
1021  	int global_worst = 0;
1022  	char *msg = NULL;
1023  
1024  	/*
1025  	 * This CPU is the Monarch and the other CPUs have run
1026  	 * through their handlers.
1027  	 * Grade the severity of the errors of all the CPUs.
1028  	 */
1029  	for_each_possible_cpu(cpu) {
1030  		struct mce *mtmp = &per_cpu(mces_seen, cpu);
1031  
1032  		if (mtmp->severity > global_worst) {
1033  			global_worst = mtmp->severity;
1034  			m = &per_cpu(mces_seen, cpu);
1035  		}
1036  	}
1037  
1038  	/*
1039  	 * Cannot recover? Panic here then.
1040  	 * This dumps all the mces in the log buffer and stops the
1041  	 * other CPUs.
1042  	 */
1043  	if (m && global_worst >= MCE_PANIC_SEVERITY) {
1044  		/* call mce_severity() to get "msg" for panic */
1045  		mce_severity(m, NULL, &msg, true);
1046  		mce_panic("Fatal machine check", m, msg);
1047  	}
1048  
1049  	/*
1050  	 * For UC somewhere we let the CPU who detects it handle it.
1051  	 * Also must let continue the others, otherwise the handling
1052  	 * CPU could deadlock on a lock.
1053  	 */
1054  
1055  	/*
1056  	 * No machine check event found. Must be some external
1057  	 * source or one CPU is hung. Panic.
1058  	 */
1059  	if (global_worst <= MCE_KEEP_SEVERITY)
1060  		mce_panic("Fatal machine check from unknown source", NULL, NULL);
1061  
1062  	/*
1063  	 * Now clear all the mces_seen so that they don't reappear on
1064  	 * the next mce.
1065  	 */
1066  	for_each_possible_cpu(cpu)
1067  		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
1068  }
1069  
1070  static atomic_t global_nwo;
1071  
1072  /*
1073   * Start of Monarch synchronization. This waits until all CPUs have
1074   * entered the exception handler and then determines if any of them
1075   * saw a fatal event that requires panic. Then it executes them
1076   * in the entry order.
1077   * TBD double check parallel CPU hotunplug
1078   */
mce_start(int * no_way_out)1079  static noinstr int mce_start(int *no_way_out)
1080  {
1081  	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1082  	int order, ret = -1;
1083  
1084  	if (!timeout)
1085  		return ret;
1086  
1087  	raw_atomic_add(*no_way_out, &global_nwo);
1088  	/*
1089  	 * Rely on the implied barrier below, such that global_nwo
1090  	 * is updated before mce_callin.
1091  	 */
1092  	order = raw_atomic_inc_return(&mce_callin);
1093  	arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1094  
1095  	/* Enable instrumentation around calls to external facilities */
1096  	instrumentation_begin();
1097  
1098  	/*
1099  	 * Wait for everyone.
1100  	 */
1101  	while (raw_atomic_read(&mce_callin) != num_online_cpus()) {
1102  		if (mce_timed_out(&timeout,
1103  				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1104  			raw_atomic_set(&global_nwo, 0);
1105  			goto out;
1106  		}
1107  		ndelay(SPINUNIT);
1108  	}
1109  
1110  	/*
1111  	 * mce_callin should be read before global_nwo
1112  	 */
1113  	smp_rmb();
1114  
1115  	if (order == 1) {
1116  		/*
1117  		 * Monarch: Starts executing now, the others wait.
1118  		 */
1119  		raw_atomic_set(&mce_executing, 1);
1120  	} else {
1121  		/*
1122  		 * Subject: Now start the scanning loop one by one in
1123  		 * the original callin order.
1124  		 * This way when there are any shared banks it will be
1125  		 * only seen by one CPU before cleared, avoiding duplicates.
1126  		 */
1127  		while (raw_atomic_read(&mce_executing) < order) {
1128  			if (mce_timed_out(&timeout,
1129  					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1130  				raw_atomic_set(&global_nwo, 0);
1131  				goto out;
1132  			}
1133  			ndelay(SPINUNIT);
1134  		}
1135  	}
1136  
1137  	/*
1138  	 * Cache the global no_way_out state.
1139  	 */
1140  	*no_way_out = raw_atomic_read(&global_nwo);
1141  
1142  	ret = order;
1143  
1144  out:
1145  	instrumentation_end();
1146  
1147  	return ret;
1148  }
1149  
1150  /*
1151   * Synchronize between CPUs after main scanning loop.
1152   * This invokes the bulk of the Monarch processing.
1153   */
mce_end(int order)1154  static noinstr int mce_end(int order)
1155  {
1156  	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1157  	int ret = -1;
1158  
1159  	/* Allow instrumentation around external facilities. */
1160  	instrumentation_begin();
1161  
1162  	if (!timeout)
1163  		goto reset;
1164  	if (order < 0)
1165  		goto reset;
1166  
1167  	/*
1168  	 * Allow others to run.
1169  	 */
1170  	atomic_inc(&mce_executing);
1171  
1172  	if (order == 1) {
1173  		/*
1174  		 * Monarch: Wait for everyone to go through their scanning
1175  		 * loops.
1176  		 */
1177  		while (atomic_read(&mce_executing) <= num_online_cpus()) {
1178  			if (mce_timed_out(&timeout,
1179  					  "Timeout: Monarch CPU unable to finish machine check processing"))
1180  				goto reset;
1181  			ndelay(SPINUNIT);
1182  		}
1183  
1184  		mce_reign();
1185  		barrier();
1186  		ret = 0;
1187  	} else {
1188  		/*
1189  		 * Subject: Wait for Monarch to finish.
1190  		 */
1191  		while (atomic_read(&mce_executing) != 0) {
1192  			if (mce_timed_out(&timeout,
1193  					  "Timeout: Monarch CPU did not finish machine check processing"))
1194  				goto reset;
1195  			ndelay(SPINUNIT);
1196  		}
1197  
1198  		/*
1199  		 * Don't reset anything. That's done by the Monarch.
1200  		 */
1201  		ret = 0;
1202  		goto out;
1203  	}
1204  
1205  	/*
1206  	 * Reset all global state.
1207  	 */
1208  reset:
1209  	atomic_set(&global_nwo, 0);
1210  	atomic_set(&mce_callin, 0);
1211  	cpumask_setall(&mce_missing_cpus);
1212  	barrier();
1213  
1214  	/*
1215  	 * Let others run again.
1216  	 */
1217  	atomic_set(&mce_executing, 0);
1218  
1219  out:
1220  	instrumentation_end();
1221  
1222  	return ret;
1223  }
1224  
mce_clear_state(unsigned long * toclear)1225  static __always_inline void mce_clear_state(unsigned long *toclear)
1226  {
1227  	int i;
1228  
1229  	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1230  		if (arch_test_bit(i, toclear))
1231  			mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1232  	}
1233  }
1234  
1235  /*
1236   * Cases where we avoid rendezvous handler timeout:
1237   * 1) If this CPU is offline.
1238   *
1239   * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1240   *  skip those CPUs which remain looping in the 1st kernel - see
1241   *  crash_nmi_callback().
1242   *
1243   * Note: there still is a small window between kexec-ing and the new,
1244   * kdump kernel establishing a new #MC handler where a broadcasted MCE
1245   * might not get handled properly.
1246   */
mce_check_crashing_cpu(void)1247  static noinstr bool mce_check_crashing_cpu(void)
1248  {
1249  	unsigned int cpu = smp_processor_id();
1250  
1251  	if (arch_cpu_is_offline(cpu) ||
1252  	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1253  		u64 mcgstatus;
1254  
1255  		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1256  
1257  		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1258  			if (mcgstatus & MCG_STATUS_LMCES)
1259  				return false;
1260  		}
1261  
1262  		if (mcgstatus & MCG_STATUS_RIPV) {
1263  			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1264  			return true;
1265  		}
1266  	}
1267  	return false;
1268  }
1269  
1270  static __always_inline int
__mc_scan_banks(struct mce * m,struct pt_regs * regs,struct mce * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1271  __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1272  		unsigned long *toclear, unsigned long *valid_banks, int no_way_out,
1273  		int *worst)
1274  {
1275  	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1276  	struct mca_config *cfg = &mca_cfg;
1277  	int severity, i, taint = 0;
1278  
1279  	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1280  		arch___clear_bit(i, toclear);
1281  		if (!arch_test_bit(i, valid_banks))
1282  			continue;
1283  
1284  		if (!mce_banks[i].ctl)
1285  			continue;
1286  
1287  		m->misc = 0;
1288  		m->addr = 0;
1289  		m->bank = i;
1290  
1291  		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1292  		if (!(m->status & MCI_STATUS_VAL))
1293  			continue;
1294  
1295  		/*
1296  		 * Corrected or non-signaled errors are handled by
1297  		 * machine_check_poll(). Leave them alone, unless this panics.
1298  		 */
1299  		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1300  			!no_way_out)
1301  			continue;
1302  
1303  		/* Set taint even when machine check was not enabled. */
1304  		taint++;
1305  
1306  		severity = mce_severity(m, regs, NULL, true);
1307  
1308  		/*
1309  		 * When machine check was for corrected/deferred handler don't
1310  		 * touch, unless we're panicking.
1311  		 */
1312  		if ((severity == MCE_KEEP_SEVERITY ||
1313  		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1314  			continue;
1315  
1316  		arch___set_bit(i, toclear);
1317  
1318  		/* Machine check event was not enabled. Clear, but ignore. */
1319  		if (severity == MCE_NO_SEVERITY)
1320  			continue;
1321  
1322  		mce_read_aux(m, i);
1323  
1324  		/* assuming valid severity level != 0 */
1325  		m->severity = severity;
1326  
1327  		/*
1328  		 * Enable instrumentation around the mce_log() call which is
1329  		 * done in #MC context, where instrumentation is disabled.
1330  		 */
1331  		instrumentation_begin();
1332  		mce_log(m);
1333  		instrumentation_end();
1334  
1335  		if (severity > *worst) {
1336  			*final = *m;
1337  			*worst = severity;
1338  		}
1339  	}
1340  
1341  	/* mce_clear_state will clear *final, save locally for use later */
1342  	*m = *final;
1343  
1344  	return taint;
1345  }
1346  
kill_me_now(struct callback_head * ch)1347  static void kill_me_now(struct callback_head *ch)
1348  {
1349  	struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1350  
1351  	p->mce_count = 0;
1352  	force_sig(SIGBUS);
1353  }
1354  
kill_me_maybe(struct callback_head * cb)1355  static void kill_me_maybe(struct callback_head *cb)
1356  {
1357  	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1358  	int flags = MF_ACTION_REQUIRED;
1359  	unsigned long pfn;
1360  	int ret;
1361  
1362  	p->mce_count = 0;
1363  	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1364  
1365  	if (!p->mce_ripv)
1366  		flags |= MF_MUST_KILL;
1367  
1368  	pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1369  	ret = memory_failure(pfn, flags);
1370  	if (!ret) {
1371  		set_mce_nospec(pfn);
1372  		sync_core();
1373  		return;
1374  	}
1375  
1376  	/*
1377  	 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1378  	 * to the current process with the proper error info,
1379  	 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1380  	 *
1381  	 * In both cases, no further processing is required.
1382  	 */
1383  	if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1384  		return;
1385  
1386  	pr_err("Memory error not recovered");
1387  	kill_me_now(cb);
1388  }
1389  
kill_me_never(struct callback_head * cb)1390  static void kill_me_never(struct callback_head *cb)
1391  {
1392  	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1393  	unsigned long pfn;
1394  
1395  	p->mce_count = 0;
1396  	pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1397  	pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1398  	if (!memory_failure(pfn, 0))
1399  		set_mce_nospec(pfn);
1400  }
1401  
queue_task_work(struct mce * m,char * msg,void (* func)(struct callback_head *))1402  static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
1403  {
1404  	int count = ++current->mce_count;
1405  
1406  	/* First call, save all the details */
1407  	if (count == 1) {
1408  		current->mce_addr = m->addr;
1409  		current->mce_kflags = m->kflags;
1410  		current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1411  		current->mce_whole_page = whole_page(m);
1412  		current->mce_kill_me.func = func;
1413  	}
1414  
1415  	/* Ten is likely overkill. Don't expect more than two faults before task_work() */
1416  	if (count > 10)
1417  		mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1418  
1419  	/* Second or later call, make sure page address matches the one from first call */
1420  	if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1421  		mce_panic("Consecutive machine checks to different user pages", m, msg);
1422  
1423  	/* Do not call task_work_add() more than once */
1424  	if (count > 1)
1425  		return;
1426  
1427  	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1428  }
1429  
1430  /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)1431  static noinstr void unexpected_machine_check(struct pt_regs *regs)
1432  {
1433  	instrumentation_begin();
1434  	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1435  	       smp_processor_id());
1436  	instrumentation_end();
1437  }
1438  
1439  /*
1440   * The actual machine check handler. This only handles real exceptions when
1441   * something got corrupted coming in through int 18.
1442   *
1443   * This is executed in #MC context not subject to normal locking rules.
1444   * This implies that most kernel services cannot be safely used. Don't even
1445   * think about putting a printk in there!
1446   *
1447   * On Intel systems this is entered on all CPUs in parallel through
1448   * MCE broadcast. However some CPUs might be broken beyond repair,
1449   * so be always careful when synchronizing with others.
1450   *
1451   * Tracing and kprobes are disabled: if we interrupted a kernel context
1452   * with IF=1, we need to minimize stack usage.  There are also recursion
1453   * issues: if the machine check was due to a failure of the memory
1454   * backing the user stack, tracing that reads the user stack will cause
1455   * potentially infinite recursion.
1456   *
1457   * Currently, the #MC handler calls out to a number of external facilities
1458   * and, therefore, allows instrumentation around them. The optimal thing to
1459   * have would be to do the absolutely minimal work required in #MC context
1460   * and have instrumentation disabled only around that. Further processing can
1461   * then happen in process context where instrumentation is allowed. Achieving
1462   * that requires careful auditing and modifications. Until then, the code
1463   * allows instrumentation temporarily, where required. *
1464   */
do_machine_check(struct pt_regs * regs)1465  noinstr void do_machine_check(struct pt_regs *regs)
1466  {
1467  	int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1468  	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1469  	DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1470  	struct mce m, *final;
1471  	char *msg = NULL;
1472  
1473  	if (unlikely(mce_flags.p5))
1474  		return pentium_machine_check(regs);
1475  	else if (unlikely(mce_flags.winchip))
1476  		return winchip_machine_check(regs);
1477  	else if (unlikely(!mca_cfg.initialized))
1478  		return unexpected_machine_check(regs);
1479  
1480  	if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1481  		goto clear;
1482  
1483  	/*
1484  	 * Establish sequential order between the CPUs entering the machine
1485  	 * check handler.
1486  	 */
1487  	order = -1;
1488  
1489  	/*
1490  	 * If no_way_out gets set, there is no safe way to recover from this
1491  	 * MCE.
1492  	 */
1493  	no_way_out = 0;
1494  
1495  	/*
1496  	 * If kill_current_task is not set, there might be a way to recover from this
1497  	 * error.
1498  	 */
1499  	kill_current_task = 0;
1500  
1501  	/*
1502  	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1503  	 * on Intel.
1504  	 */
1505  	lmce = 1;
1506  
1507  	this_cpu_inc(mce_exception_count);
1508  
1509  	mce_gather_info(&m, regs);
1510  	m.tsc = rdtsc();
1511  
1512  	final = this_cpu_ptr(&mces_seen);
1513  	*final = m;
1514  
1515  	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1516  
1517  	barrier();
1518  
1519  	/*
1520  	 * When no restart IP might need to kill or panic.
1521  	 * Assume the worst for now, but if we find the
1522  	 * severity is MCE_AR_SEVERITY we have other options.
1523  	 */
1524  	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1525  		kill_current_task = 1;
1526  	/*
1527  	 * Check if this MCE is signaled to only this logical processor,
1528  	 * on Intel, Zhaoxin only.
1529  	 */
1530  	if (m.cpuvendor == X86_VENDOR_INTEL ||
1531  	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1532  		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1533  
1534  	/*
1535  	 * Local machine check may already know that we have to panic.
1536  	 * Broadcast machine check begins rendezvous in mce_start()
1537  	 * Go through all banks in exclusion of the other CPUs. This way we
1538  	 * don't report duplicated events on shared banks because the first one
1539  	 * to see it will clear it.
1540  	 */
1541  	if (lmce) {
1542  		if (no_way_out)
1543  			mce_panic("Fatal local machine check", &m, msg);
1544  	} else {
1545  		order = mce_start(&no_way_out);
1546  	}
1547  
1548  	taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1549  
1550  	if (!no_way_out)
1551  		mce_clear_state(toclear);
1552  
1553  	/*
1554  	 * Do most of the synchronization with other CPUs.
1555  	 * When there's any problem use only local no_way_out state.
1556  	 */
1557  	if (!lmce) {
1558  		if (mce_end(order) < 0) {
1559  			if (!no_way_out)
1560  				no_way_out = worst >= MCE_PANIC_SEVERITY;
1561  
1562  			if (no_way_out)
1563  				mce_panic("Fatal machine check on current CPU", &m, msg);
1564  		}
1565  	} else {
1566  		/*
1567  		 * If there was a fatal machine check we should have
1568  		 * already called mce_panic earlier in this function.
1569  		 * Since we re-read the banks, we might have found
1570  		 * something new. Check again to see if we found a
1571  		 * fatal error. We call "mce_severity()" again to
1572  		 * make sure we have the right "msg".
1573  		 */
1574  		if (worst >= MCE_PANIC_SEVERITY) {
1575  			mce_severity(&m, regs, &msg, true);
1576  			mce_panic("Local fatal machine check!", &m, msg);
1577  		}
1578  	}
1579  
1580  	/*
1581  	 * Enable instrumentation around the external facilities like task_work_add()
1582  	 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1583  	 * properly would need a lot more involved reorganization.
1584  	 */
1585  	instrumentation_begin();
1586  
1587  	if (taint)
1588  		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1589  
1590  	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1591  		goto out;
1592  
1593  	/* Fault was in user mode and we need to take some action */
1594  	if ((m.cs & 3) == 3) {
1595  		/* If this triggers there is no way to recover. Die hard. */
1596  		BUG_ON(!on_thread_stack() || !user_mode(regs));
1597  
1598  		if (!mce_usable_address(&m))
1599  			queue_task_work(&m, msg, kill_me_now);
1600  		else
1601  			queue_task_work(&m, msg, kill_me_maybe);
1602  
1603  	} else if (m.mcgstatus & MCG_STATUS_SEAM_NR) {
1604  		/*
1605  		 * Saved RIP on stack makes it look like the machine check
1606  		 * was taken in the kernel on the instruction following
1607  		 * the entry to SEAM mode. But MCG_STATUS_SEAM_NR indicates
1608  		 * that the machine check was taken inside SEAM non-root
1609  		 * mode.  CPU core has already marked that guest as dead.
1610  		 * It is OK for the kernel to resume execution at the
1611  		 * apparent point of the machine check as the fault did
1612  		 * not occur there. Mark the page as poisoned so it won't
1613  		 * be added to free list when the guest is terminated.
1614  		 */
1615  		if (mce_usable_address(&m)) {
1616  			struct page *p = pfn_to_online_page(m.addr >> PAGE_SHIFT);
1617  
1618  			if (p)
1619  				SetPageHWPoison(p);
1620  		}
1621  	} else {
1622  		/*
1623  		 * Handle an MCE which has happened in kernel space but from
1624  		 * which the kernel can recover: ex_has_fault_handler() has
1625  		 * already verified that the rIP at which the error happened is
1626  		 * a rIP from which the kernel can recover (by jumping to
1627  		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1628  		 * corresponding exception handler which would do that is the
1629  		 * proper one.
1630  		 */
1631  		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1632  			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1633  				mce_panic("Failed kernel mode recovery", &m, msg);
1634  		}
1635  
1636  		if (m.kflags & MCE_IN_KERNEL_COPYIN)
1637  			queue_task_work(&m, msg, kill_me_never);
1638  	}
1639  
1640  out:
1641  	instrumentation_end();
1642  
1643  clear:
1644  	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1645  }
1646  EXPORT_SYMBOL_GPL(do_machine_check);
1647  
1648  #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1649  int memory_failure(unsigned long pfn, int flags)
1650  {
1651  	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1652  	BUG_ON(flags & MF_ACTION_REQUIRED);
1653  	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1654  	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1655  	       pfn);
1656  
1657  	return 0;
1658  }
1659  #endif
1660  
1661  /*
1662   * Periodic polling timer for "silent" machine check errors.  If the
1663   * poller finds an MCE, poll 2x faster.  When the poller finds no more
1664   * errors, poll 2x slower (up to check_interval seconds).
1665   */
1666  static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1667  
1668  static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1669  static DEFINE_PER_CPU(struct timer_list, mce_timer);
1670  
__start_timer(struct timer_list * t,unsigned long interval)1671  static void __start_timer(struct timer_list *t, unsigned long interval)
1672  {
1673  	unsigned long when = jiffies + interval;
1674  	unsigned long flags;
1675  
1676  	local_irq_save(flags);
1677  
1678  	if (!timer_pending(t) || time_before(when, t->expires))
1679  		mod_timer(t, round_jiffies(when));
1680  
1681  	local_irq_restore(flags);
1682  }
1683  
mc_poll_banks_default(void)1684  static void mc_poll_banks_default(void)
1685  {
1686  	machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1687  }
1688  
1689  void (*mc_poll_banks)(void) = mc_poll_banks_default;
1690  
mce_timer_fn(struct timer_list * t)1691  static void mce_timer_fn(struct timer_list *t)
1692  {
1693  	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1694  	unsigned long iv;
1695  
1696  	WARN_ON(cpu_t != t);
1697  
1698  	iv = __this_cpu_read(mce_next_interval);
1699  
1700  	if (mce_available(this_cpu_ptr(&cpu_info)))
1701  		mc_poll_banks();
1702  
1703  	/*
1704  	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1705  	 * interval, otherwise increase the polling interval.
1706  	 */
1707  	if (mce_notify_irq())
1708  		iv = max(iv / 2, (unsigned long) HZ/100);
1709  	else
1710  		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1711  
1712  	if (mce_get_storm_mode()) {
1713  		__start_timer(t, HZ);
1714  	} else {
1715  		__this_cpu_write(mce_next_interval, iv);
1716  		__start_timer(t, iv);
1717  	}
1718  }
1719  
1720  /*
1721   * When a storm starts on any bank on this CPU, switch to polling
1722   * once per second. When the storm ends, revert to the default
1723   * polling interval.
1724   */
mce_timer_kick(bool storm)1725  void mce_timer_kick(bool storm)
1726  {
1727  	struct timer_list *t = this_cpu_ptr(&mce_timer);
1728  
1729  	mce_set_storm_mode(storm);
1730  
1731  	if (storm)
1732  		__start_timer(t, HZ);
1733  	else
1734  		__this_cpu_write(mce_next_interval, check_interval * HZ);
1735  }
1736  
1737  /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1738  static void mce_timer_delete_all(void)
1739  {
1740  	int cpu;
1741  
1742  	for_each_online_cpu(cpu)
1743  		del_timer_sync(&per_cpu(mce_timer, cpu));
1744  }
1745  
1746  /*
1747   * Notify the user(s) about new machine check events.
1748   * Can be called from interrupt context, but not from machine check/NMI
1749   * context.
1750   */
mce_notify_irq(void)1751  int mce_notify_irq(void)
1752  {
1753  	/* Not more than two messages every minute */
1754  	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1755  
1756  	if (test_and_clear_bit(0, &mce_need_notify)) {
1757  		mce_work_trigger();
1758  
1759  		if (__ratelimit(&ratelimit))
1760  			pr_info(HW_ERR "Machine check events logged\n");
1761  
1762  		return 1;
1763  	}
1764  	return 0;
1765  }
1766  EXPORT_SYMBOL_GPL(mce_notify_irq);
1767  
__mcheck_cpu_mce_banks_init(void)1768  static void __mcheck_cpu_mce_banks_init(void)
1769  {
1770  	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1771  	u8 n_banks = this_cpu_read(mce_num_banks);
1772  	int i;
1773  
1774  	for (i = 0; i < n_banks; i++) {
1775  		struct mce_bank *b = &mce_banks[i];
1776  
1777  		/*
1778  		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1779  		 * the required vendor quirks before
1780  		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1781  		 */
1782  		b->ctl = -1ULL;
1783  		b->init = true;
1784  	}
1785  }
1786  
1787  /*
1788   * Initialize Machine Checks for a CPU.
1789   */
__mcheck_cpu_cap_init(void)1790  static void __mcheck_cpu_cap_init(void)
1791  {
1792  	u64 cap;
1793  	u8 b;
1794  
1795  	rdmsrl(MSR_IA32_MCG_CAP, cap);
1796  
1797  	b = cap & MCG_BANKCNT_MASK;
1798  
1799  	if (b > MAX_NR_BANKS) {
1800  		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1801  			smp_processor_id(), MAX_NR_BANKS, b);
1802  		b = MAX_NR_BANKS;
1803  	}
1804  
1805  	this_cpu_write(mce_num_banks, b);
1806  
1807  	__mcheck_cpu_mce_banks_init();
1808  
1809  	/* Use accurate RIP reporting if available. */
1810  	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1811  		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1812  
1813  	if (cap & MCG_SER_P)
1814  		mca_cfg.ser = 1;
1815  }
1816  
__mcheck_cpu_init_generic(void)1817  static void __mcheck_cpu_init_generic(void)
1818  {
1819  	enum mcp_flags m_fl = 0;
1820  	mce_banks_t all_banks;
1821  	u64 cap;
1822  
1823  	if (!mca_cfg.bootlog)
1824  		m_fl = MCP_DONTLOG;
1825  
1826  	/*
1827  	 * Log the machine checks left over from the previous reset. Log them
1828  	 * only, do not start processing them. That will happen in mcheck_late_init()
1829  	 * when all consumers have been registered on the notifier chain.
1830  	 */
1831  	bitmap_fill(all_banks, MAX_NR_BANKS);
1832  	machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1833  
1834  	cr4_set_bits(X86_CR4_MCE);
1835  
1836  	rdmsrl(MSR_IA32_MCG_CAP, cap);
1837  	if (cap & MCG_CTL_P)
1838  		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1839  }
1840  
__mcheck_cpu_init_clear_banks(void)1841  static void __mcheck_cpu_init_clear_banks(void)
1842  {
1843  	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1844  	int i;
1845  
1846  	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1847  		struct mce_bank *b = &mce_banks[i];
1848  
1849  		if (!b->init)
1850  			continue;
1851  		wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1852  		wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1853  	}
1854  }
1855  
1856  /*
1857   * Do a final check to see if there are any unused/RAZ banks.
1858   *
1859   * This must be done after the banks have been initialized and any quirks have
1860   * been applied.
1861   *
1862   * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1863   * Otherwise, a user who disables a bank will not be able to re-enable it
1864   * without a system reboot.
1865   */
__mcheck_cpu_check_banks(void)1866  static void __mcheck_cpu_check_banks(void)
1867  {
1868  	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1869  	u64 msrval;
1870  	int i;
1871  
1872  	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1873  		struct mce_bank *b = &mce_banks[i];
1874  
1875  		if (!b->init)
1876  			continue;
1877  
1878  		rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1879  		b->init = !!msrval;
1880  	}
1881  }
1882  
1883  /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1884  static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1885  {
1886  	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1887  	struct mca_config *cfg = &mca_cfg;
1888  
1889  	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1890  		pr_info("unknown CPU type - not enabling MCE support\n");
1891  		return -EOPNOTSUPP;
1892  	}
1893  
1894  	/* This should be disabled by the BIOS, but isn't always */
1895  	if (c->x86_vendor == X86_VENDOR_AMD) {
1896  		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1897  			/*
1898  			 * disable GART TBL walk error reporting, which
1899  			 * trips off incorrectly with the IOMMU & 3ware
1900  			 * & Cerberus:
1901  			 */
1902  			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1903  		}
1904  		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1905  			/*
1906  			 * Lots of broken BIOS around that don't clear them
1907  			 * by default and leave crap in there. Don't log:
1908  			 */
1909  			cfg->bootlog = 0;
1910  		}
1911  		/*
1912  		 * Various K7s with broken bank 0 around. Always disable
1913  		 * by default.
1914  		 */
1915  		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1916  			mce_banks[0].ctl = 0;
1917  
1918  		/*
1919  		 * overflow_recov is supported for F15h Models 00h-0fh
1920  		 * even though we don't have a CPUID bit for it.
1921  		 */
1922  		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1923  			mce_flags.overflow_recov = 1;
1924  
1925  		if (c->x86 >= 0x17 && c->x86 <= 0x1A)
1926  			mce_flags.zen_ifu_quirk = 1;
1927  
1928  	}
1929  
1930  	if (c->x86_vendor == X86_VENDOR_INTEL) {
1931  		/*
1932  		 * SDM documents that on family 6 bank 0 should not be written
1933  		 * because it aliases to another special BIOS controlled
1934  		 * register.
1935  		 * But it's not aliased anymore on model 0x1a+
1936  		 * Don't ignore bank 0 completely because there could be a
1937  		 * valid event later, merely don't write CTL0.
1938  		 */
1939  
1940  		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1941  			mce_banks[0].init = false;
1942  
1943  		/*
1944  		 * All newer Intel systems support MCE broadcasting. Enable
1945  		 * synchronization with a one second timeout.
1946  		 */
1947  		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1948  			cfg->monarch_timeout < 0)
1949  			cfg->monarch_timeout = USEC_PER_SEC;
1950  
1951  		/*
1952  		 * There are also broken BIOSes on some Pentium M and
1953  		 * earlier systems:
1954  		 */
1955  		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1956  			cfg->bootlog = 0;
1957  
1958  		if (c->x86_vfm == INTEL_SANDYBRIDGE_X)
1959  			mce_flags.snb_ifu_quirk = 1;
1960  
1961  		/*
1962  		 * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1963  		 * rep movs.
1964  		 */
1965  		if (c->x86_vfm == INTEL_SKYLAKE_X)
1966  			mce_flags.skx_repmov_quirk = 1;
1967  	}
1968  
1969  	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1970  		/*
1971  		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1972  		 * synchronization with a one second timeout.
1973  		 */
1974  		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1975  			if (cfg->monarch_timeout < 0)
1976  				cfg->monarch_timeout = USEC_PER_SEC;
1977  		}
1978  	}
1979  
1980  	if (cfg->monarch_timeout < 0)
1981  		cfg->monarch_timeout = 0;
1982  	if (cfg->bootlog != 0)
1983  		cfg->panic_timeout = 30;
1984  
1985  	return 0;
1986  }
1987  
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1988  static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1989  {
1990  	if (c->x86 != 5)
1991  		return 0;
1992  
1993  	switch (c->x86_vendor) {
1994  	case X86_VENDOR_INTEL:
1995  		intel_p5_mcheck_init(c);
1996  		mce_flags.p5 = 1;
1997  		return 1;
1998  	case X86_VENDOR_CENTAUR:
1999  		winchip_mcheck_init(c);
2000  		mce_flags.winchip = 1;
2001  		return 1;
2002  	default:
2003  		return 0;
2004  	}
2005  
2006  	return 0;
2007  }
2008  
2009  /*
2010   * Init basic CPU features needed for early decoding of MCEs.
2011   */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)2012  static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
2013  {
2014  	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
2015  		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
2016  		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
2017  		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
2018  		mce_flags.amd_threshold	 = 1;
2019  	}
2020  }
2021  
mce_centaur_feature_init(struct cpuinfo_x86 * c)2022  static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
2023  {
2024  	struct mca_config *cfg = &mca_cfg;
2025  
2026  	 /*
2027  	  * All newer Centaur CPUs support MCE broadcasting. Enable
2028  	  * synchronization with a one second timeout.
2029  	  */
2030  	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
2031  	     c->x86 > 6) {
2032  		if (cfg->monarch_timeout < 0)
2033  			cfg->monarch_timeout = USEC_PER_SEC;
2034  	}
2035  }
2036  
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)2037  static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
2038  {
2039  	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2040  
2041  	/*
2042  	 * These CPUs have MCA bank 8 which reports only one error type called
2043  	 * SVAD (System View Address Decoder). The reporting of that error is
2044  	 * controlled by IA32_MC8.CTL.0.
2045  	 *
2046  	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
2047  	 * virtual machines start and result in a system  panic. Always disable
2048  	 * bank 8 SVAD error by default.
2049  	 */
2050  	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
2051  	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
2052  		if (this_cpu_read(mce_num_banks) > 8)
2053  			mce_banks[8].ctl = 0;
2054  	}
2055  
2056  	intel_init_cmci();
2057  	intel_init_lmce();
2058  }
2059  
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)2060  static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
2061  {
2062  	intel_clear_lmce();
2063  }
2064  
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)2065  static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
2066  {
2067  	switch (c->x86_vendor) {
2068  	case X86_VENDOR_INTEL:
2069  		mce_intel_feature_init(c);
2070  		break;
2071  
2072  	case X86_VENDOR_AMD: {
2073  		mce_amd_feature_init(c);
2074  		break;
2075  		}
2076  
2077  	case X86_VENDOR_HYGON:
2078  		mce_hygon_feature_init(c);
2079  		break;
2080  
2081  	case X86_VENDOR_CENTAUR:
2082  		mce_centaur_feature_init(c);
2083  		break;
2084  
2085  	case X86_VENDOR_ZHAOXIN:
2086  		mce_zhaoxin_feature_init(c);
2087  		break;
2088  
2089  	default:
2090  		break;
2091  	}
2092  }
2093  
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)2094  static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2095  {
2096  	switch (c->x86_vendor) {
2097  	case X86_VENDOR_INTEL:
2098  		mce_intel_feature_clear(c);
2099  		break;
2100  
2101  	case X86_VENDOR_ZHAOXIN:
2102  		mce_zhaoxin_feature_clear(c);
2103  		break;
2104  
2105  	default:
2106  		break;
2107  	}
2108  }
2109  
mce_start_timer(struct timer_list * t)2110  static void mce_start_timer(struct timer_list *t)
2111  {
2112  	unsigned long iv = check_interval * HZ;
2113  
2114  	if (mca_cfg.ignore_ce || !iv)
2115  		return;
2116  
2117  	this_cpu_write(mce_next_interval, iv);
2118  	__start_timer(t, iv);
2119  }
2120  
__mcheck_cpu_setup_timer(void)2121  static void __mcheck_cpu_setup_timer(void)
2122  {
2123  	struct timer_list *t = this_cpu_ptr(&mce_timer);
2124  
2125  	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2126  }
2127  
__mcheck_cpu_init_timer(void)2128  static void __mcheck_cpu_init_timer(void)
2129  {
2130  	struct timer_list *t = this_cpu_ptr(&mce_timer);
2131  
2132  	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2133  	mce_start_timer(t);
2134  }
2135  
filter_mce(struct mce * m)2136  bool filter_mce(struct mce *m)
2137  {
2138  	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2139  		return amd_filter_mce(m);
2140  	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2141  		return intel_filter_mce(m);
2142  
2143  	return false;
2144  }
2145  
exc_machine_check_kernel(struct pt_regs * regs)2146  static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2147  {
2148  	irqentry_state_t irq_state;
2149  
2150  	WARN_ON_ONCE(user_mode(regs));
2151  
2152  	/*
2153  	 * Only required when from kernel mode. See
2154  	 * mce_check_crashing_cpu() for details.
2155  	 */
2156  	if (mca_cfg.initialized && mce_check_crashing_cpu())
2157  		return;
2158  
2159  	irq_state = irqentry_nmi_enter(regs);
2160  
2161  	do_machine_check(regs);
2162  
2163  	irqentry_nmi_exit(regs, irq_state);
2164  }
2165  
exc_machine_check_user(struct pt_regs * regs)2166  static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2167  {
2168  	irqentry_enter_from_user_mode(regs);
2169  
2170  	do_machine_check(regs);
2171  
2172  	irqentry_exit_to_user_mode(regs);
2173  }
2174  
2175  #ifdef CONFIG_X86_64
2176  /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2177  DEFINE_IDTENTRY_MCE(exc_machine_check)
2178  {
2179  	unsigned long dr7;
2180  
2181  	dr7 = local_db_save();
2182  	exc_machine_check_kernel(regs);
2183  	local_db_restore(dr7);
2184  }
2185  
2186  /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2187  DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2188  {
2189  	unsigned long dr7;
2190  
2191  	dr7 = local_db_save();
2192  	exc_machine_check_user(regs);
2193  	local_db_restore(dr7);
2194  }
2195  
2196  #ifdef CONFIG_X86_FRED
2197  /*
2198   * When occurred on different ring level, i.e., from user or kernel
2199   * context, #MCE needs to be handled on different stack: User #MCE
2200   * on current task stack, while kernel #MCE on a dedicated stack.
2201   *
2202   * This is exactly how FRED event delivery invokes an exception
2203   * handler: ring 3 event on level 0 stack, i.e., current task stack;
2204   * ring 0 event on the #MCE dedicated stack specified in the
2205   * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED machine check entry
2206   * stub doesn't do stack switch.
2207   */
DEFINE_FREDENTRY_MCE(exc_machine_check)2208  DEFINE_FREDENTRY_MCE(exc_machine_check)
2209  {
2210  	unsigned long dr7;
2211  
2212  	dr7 = local_db_save();
2213  	if (user_mode(regs))
2214  		exc_machine_check_user(regs);
2215  	else
2216  		exc_machine_check_kernel(regs);
2217  	local_db_restore(dr7);
2218  }
2219  #endif
2220  #else
2221  /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2222  DEFINE_IDTENTRY_RAW(exc_machine_check)
2223  {
2224  	unsigned long dr7;
2225  
2226  	dr7 = local_db_save();
2227  	if (user_mode(regs))
2228  		exc_machine_check_user(regs);
2229  	else
2230  		exc_machine_check_kernel(regs);
2231  	local_db_restore(dr7);
2232  }
2233  #endif
2234  
2235  /*
2236   * Called for each booted CPU to set up machine checks.
2237   * Must be called with preempt off:
2238   */
mcheck_cpu_init(struct cpuinfo_x86 * c)2239  void mcheck_cpu_init(struct cpuinfo_x86 *c)
2240  {
2241  	if (mca_cfg.disabled)
2242  		return;
2243  
2244  	if (__mcheck_cpu_ancient_init(c))
2245  		return;
2246  
2247  	if (!mce_available(c))
2248  		return;
2249  
2250  	__mcheck_cpu_cap_init();
2251  
2252  	if (__mcheck_cpu_apply_quirks(c) < 0) {
2253  		mca_cfg.disabled = 1;
2254  		return;
2255  	}
2256  
2257  	if (mce_gen_pool_init()) {
2258  		mca_cfg.disabled = 1;
2259  		pr_emerg("Couldn't allocate MCE records pool!\n");
2260  		return;
2261  	}
2262  
2263  	mca_cfg.initialized = 1;
2264  
2265  	__mcheck_cpu_init_early(c);
2266  	__mcheck_cpu_init_generic();
2267  	__mcheck_cpu_init_vendor(c);
2268  	__mcheck_cpu_init_clear_banks();
2269  	__mcheck_cpu_check_banks();
2270  	__mcheck_cpu_setup_timer();
2271  }
2272  
2273  /*
2274   * Called for each booted CPU to clear some machine checks opt-ins
2275   */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2276  void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2277  {
2278  	if (mca_cfg.disabled)
2279  		return;
2280  
2281  	if (!mce_available(c))
2282  		return;
2283  
2284  	/*
2285  	 * Possibly to clear general settings generic to x86
2286  	 * __mcheck_cpu_clear_generic(c);
2287  	 */
2288  	__mcheck_cpu_clear_vendor(c);
2289  
2290  }
2291  
__mce_disable_bank(void * arg)2292  static void __mce_disable_bank(void *arg)
2293  {
2294  	int bank = *((int *)arg);
2295  	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2296  	cmci_disable_bank(bank);
2297  }
2298  
mce_disable_bank(int bank)2299  void mce_disable_bank(int bank)
2300  {
2301  	if (bank >= this_cpu_read(mce_num_banks)) {
2302  		pr_warn(FW_BUG
2303  			"Ignoring request to disable invalid MCA bank %d.\n",
2304  			bank);
2305  		return;
2306  	}
2307  	set_bit(bank, mce_banks_ce_disabled);
2308  	on_each_cpu(__mce_disable_bank, &bank, 1);
2309  }
2310  
2311  /*
2312   * mce=off Disables machine check
2313   * mce=no_cmci Disables CMCI
2314   * mce=no_lmce Disables LMCE
2315   * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2316   * mce=print_all Print all machine check logs to console
2317   * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2318   * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2319   *	monarchtimeout is how long to wait for other CPUs on machine
2320   *	check, or 0 to not wait
2321   * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2322  	and older.
2323   * mce=nobootlog Don't log MCEs from before booting.
2324   * mce=bios_cmci_threshold Don't program the CMCI threshold
2325   * mce=recovery force enable copy_mc_fragile()
2326   */
mcheck_enable(char * str)2327  static int __init mcheck_enable(char *str)
2328  {
2329  	struct mca_config *cfg = &mca_cfg;
2330  
2331  	if (*str == 0) {
2332  		enable_p5_mce();
2333  		return 1;
2334  	}
2335  	if (*str == '=')
2336  		str++;
2337  	if (!strcmp(str, "off"))
2338  		cfg->disabled = 1;
2339  	else if (!strcmp(str, "no_cmci"))
2340  		cfg->cmci_disabled = true;
2341  	else if (!strcmp(str, "no_lmce"))
2342  		cfg->lmce_disabled = 1;
2343  	else if (!strcmp(str, "dont_log_ce"))
2344  		cfg->dont_log_ce = true;
2345  	else if (!strcmp(str, "print_all"))
2346  		cfg->print_all = true;
2347  	else if (!strcmp(str, "ignore_ce"))
2348  		cfg->ignore_ce = true;
2349  	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2350  		cfg->bootlog = (str[0] == 'b');
2351  	else if (!strcmp(str, "bios_cmci_threshold"))
2352  		cfg->bios_cmci_threshold = 1;
2353  	else if (!strcmp(str, "recovery"))
2354  		cfg->recovery = 1;
2355  	else if (isdigit(str[0]))
2356  		get_option(&str, &(cfg->monarch_timeout));
2357  	else {
2358  		pr_info("mce argument %s ignored. Please use /sys\n", str);
2359  		return 0;
2360  	}
2361  	return 1;
2362  }
2363  __setup("mce", mcheck_enable);
2364  
mcheck_init(void)2365  int __init mcheck_init(void)
2366  {
2367  	mce_register_decode_chain(&early_nb);
2368  	mce_register_decode_chain(&mce_uc_nb);
2369  	mce_register_decode_chain(&mce_default_nb);
2370  
2371  	INIT_WORK(&mce_work, mce_gen_pool_process);
2372  	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2373  
2374  	return 0;
2375  }
2376  
2377  /*
2378   * mce_syscore: PM support
2379   */
2380  
2381  /*
2382   * Disable machine checks on suspend and shutdown. We can't really handle
2383   * them later.
2384   */
mce_disable_error_reporting(void)2385  static void mce_disable_error_reporting(void)
2386  {
2387  	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2388  	int i;
2389  
2390  	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2391  		struct mce_bank *b = &mce_banks[i];
2392  
2393  		if (b->init)
2394  			wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2395  	}
2396  	return;
2397  }
2398  
vendor_disable_error_reporting(void)2399  static void vendor_disable_error_reporting(void)
2400  {
2401  	/*
2402  	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2403  	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2404  	 * is bad, since it will inhibit reporting for all shared resources on
2405  	 * the socket like the last level cache (LLC), the integrated memory
2406  	 * controller (iMC), etc.
2407  	 */
2408  	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2409  	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2410  	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2411  	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2412  		return;
2413  
2414  	mce_disable_error_reporting();
2415  }
2416  
mce_syscore_suspend(void)2417  static int mce_syscore_suspend(void)
2418  {
2419  	vendor_disable_error_reporting();
2420  	return 0;
2421  }
2422  
mce_syscore_shutdown(void)2423  static void mce_syscore_shutdown(void)
2424  {
2425  	vendor_disable_error_reporting();
2426  }
2427  
2428  /*
2429   * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2430   * Only one CPU is active at this time, the others get re-added later using
2431   * CPU hotplug:
2432   */
mce_syscore_resume(void)2433  static void mce_syscore_resume(void)
2434  {
2435  	__mcheck_cpu_init_generic();
2436  	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2437  	__mcheck_cpu_init_clear_banks();
2438  }
2439  
2440  static struct syscore_ops mce_syscore_ops = {
2441  	.suspend	= mce_syscore_suspend,
2442  	.shutdown	= mce_syscore_shutdown,
2443  	.resume		= mce_syscore_resume,
2444  };
2445  
2446  /*
2447   * mce_device: Sysfs support
2448   */
2449  
mce_cpu_restart(void * data)2450  static void mce_cpu_restart(void *data)
2451  {
2452  	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2453  		return;
2454  	__mcheck_cpu_init_generic();
2455  	__mcheck_cpu_init_clear_banks();
2456  	__mcheck_cpu_init_timer();
2457  }
2458  
2459  /* Reinit MCEs after user configuration changes */
mce_restart(void)2460  static void mce_restart(void)
2461  {
2462  	mce_timer_delete_all();
2463  	on_each_cpu(mce_cpu_restart, NULL, 1);
2464  	mce_schedule_work();
2465  }
2466  
2467  /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2468  static void mce_disable_cmci(void *data)
2469  {
2470  	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2471  		return;
2472  	cmci_clear();
2473  }
2474  
mce_enable_ce(void * all)2475  static void mce_enable_ce(void *all)
2476  {
2477  	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2478  		return;
2479  	cmci_reenable();
2480  	cmci_recheck();
2481  	if (all)
2482  		__mcheck_cpu_init_timer();
2483  }
2484  
2485  static const struct bus_type mce_subsys = {
2486  	.name		= "machinecheck",
2487  	.dev_name	= "machinecheck",
2488  };
2489  
2490  DEFINE_PER_CPU(struct device *, mce_device);
2491  
attr_to_bank(struct device_attribute * attr)2492  static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2493  {
2494  	return container_of(attr, struct mce_bank_dev, attr);
2495  }
2496  
show_bank(struct device * s,struct device_attribute * attr,char * buf)2497  static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2498  			 char *buf)
2499  {
2500  	u8 bank = attr_to_bank(attr)->bank;
2501  	struct mce_bank *b;
2502  
2503  	if (bank >= per_cpu(mce_num_banks, s->id))
2504  		return -EINVAL;
2505  
2506  	b = &per_cpu(mce_banks_array, s->id)[bank];
2507  
2508  	if (!b->init)
2509  		return -ENODEV;
2510  
2511  	return sprintf(buf, "%llx\n", b->ctl);
2512  }
2513  
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2514  static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2515  			const char *buf, size_t size)
2516  {
2517  	u8 bank = attr_to_bank(attr)->bank;
2518  	struct mce_bank *b;
2519  	u64 new;
2520  
2521  	if (kstrtou64(buf, 0, &new) < 0)
2522  		return -EINVAL;
2523  
2524  	if (bank >= per_cpu(mce_num_banks, s->id))
2525  		return -EINVAL;
2526  
2527  	b = &per_cpu(mce_banks_array, s->id)[bank];
2528  	if (!b->init)
2529  		return -ENODEV;
2530  
2531  	b->ctl = new;
2532  
2533  	mutex_lock(&mce_sysfs_mutex);
2534  	mce_restart();
2535  	mutex_unlock(&mce_sysfs_mutex);
2536  
2537  	return size;
2538  }
2539  
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2540  static ssize_t set_ignore_ce(struct device *s,
2541  			     struct device_attribute *attr,
2542  			     const char *buf, size_t size)
2543  {
2544  	u64 new;
2545  
2546  	if (kstrtou64(buf, 0, &new) < 0)
2547  		return -EINVAL;
2548  
2549  	mutex_lock(&mce_sysfs_mutex);
2550  	if (mca_cfg.ignore_ce ^ !!new) {
2551  		if (new) {
2552  			/* disable ce features */
2553  			mce_timer_delete_all();
2554  			on_each_cpu(mce_disable_cmci, NULL, 1);
2555  			mca_cfg.ignore_ce = true;
2556  		} else {
2557  			/* enable ce features */
2558  			mca_cfg.ignore_ce = false;
2559  			on_each_cpu(mce_enable_ce, (void *)1, 1);
2560  		}
2561  	}
2562  	mutex_unlock(&mce_sysfs_mutex);
2563  
2564  	return size;
2565  }
2566  
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2567  static ssize_t set_cmci_disabled(struct device *s,
2568  				 struct device_attribute *attr,
2569  				 const char *buf, size_t size)
2570  {
2571  	u64 new;
2572  
2573  	if (kstrtou64(buf, 0, &new) < 0)
2574  		return -EINVAL;
2575  
2576  	mutex_lock(&mce_sysfs_mutex);
2577  	if (mca_cfg.cmci_disabled ^ !!new) {
2578  		if (new) {
2579  			/* disable cmci */
2580  			on_each_cpu(mce_disable_cmci, NULL, 1);
2581  			mca_cfg.cmci_disabled = true;
2582  		} else {
2583  			/* enable cmci */
2584  			mca_cfg.cmci_disabled = false;
2585  			on_each_cpu(mce_enable_ce, NULL, 1);
2586  		}
2587  	}
2588  	mutex_unlock(&mce_sysfs_mutex);
2589  
2590  	return size;
2591  }
2592  
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2593  static ssize_t store_int_with_restart(struct device *s,
2594  				      struct device_attribute *attr,
2595  				      const char *buf, size_t size)
2596  {
2597  	unsigned long old_check_interval = check_interval;
2598  	ssize_t ret = device_store_ulong(s, attr, buf, size);
2599  
2600  	if (check_interval == old_check_interval)
2601  		return ret;
2602  
2603  	mutex_lock(&mce_sysfs_mutex);
2604  	mce_restart();
2605  	mutex_unlock(&mce_sysfs_mutex);
2606  
2607  	return ret;
2608  }
2609  
2610  static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2611  static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2612  static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2613  
2614  static struct dev_ext_attribute dev_attr_check_interval = {
2615  	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2616  	&check_interval
2617  };
2618  
2619  static struct dev_ext_attribute dev_attr_ignore_ce = {
2620  	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2621  	&mca_cfg.ignore_ce
2622  };
2623  
2624  static struct dev_ext_attribute dev_attr_cmci_disabled = {
2625  	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2626  	&mca_cfg.cmci_disabled
2627  };
2628  
2629  static struct device_attribute *mce_device_attrs[] = {
2630  	&dev_attr_check_interval.attr,
2631  #ifdef CONFIG_X86_MCELOG_LEGACY
2632  	&dev_attr_trigger,
2633  #endif
2634  	&dev_attr_monarch_timeout.attr,
2635  	&dev_attr_dont_log_ce.attr,
2636  	&dev_attr_print_all.attr,
2637  	&dev_attr_ignore_ce.attr,
2638  	&dev_attr_cmci_disabled.attr,
2639  	NULL
2640  };
2641  
2642  static cpumask_var_t mce_device_initialized;
2643  
mce_device_release(struct device * dev)2644  static void mce_device_release(struct device *dev)
2645  {
2646  	kfree(dev);
2647  }
2648  
2649  /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2650  static int mce_device_create(unsigned int cpu)
2651  {
2652  	struct device *dev;
2653  	int err;
2654  	int i, j;
2655  
2656  	dev = per_cpu(mce_device, cpu);
2657  	if (dev)
2658  		return 0;
2659  
2660  	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2661  	if (!dev)
2662  		return -ENOMEM;
2663  	dev->id  = cpu;
2664  	dev->bus = &mce_subsys;
2665  	dev->release = &mce_device_release;
2666  
2667  	err = device_register(dev);
2668  	if (err) {
2669  		put_device(dev);
2670  		return err;
2671  	}
2672  
2673  	for (i = 0; mce_device_attrs[i]; i++) {
2674  		err = device_create_file(dev, mce_device_attrs[i]);
2675  		if (err)
2676  			goto error;
2677  	}
2678  	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2679  		err = device_create_file(dev, &mce_bank_devs[j].attr);
2680  		if (err)
2681  			goto error2;
2682  	}
2683  	cpumask_set_cpu(cpu, mce_device_initialized);
2684  	per_cpu(mce_device, cpu) = dev;
2685  
2686  	return 0;
2687  error2:
2688  	while (--j >= 0)
2689  		device_remove_file(dev, &mce_bank_devs[j].attr);
2690  error:
2691  	while (--i >= 0)
2692  		device_remove_file(dev, mce_device_attrs[i]);
2693  
2694  	device_unregister(dev);
2695  
2696  	return err;
2697  }
2698  
mce_device_remove(unsigned int cpu)2699  static void mce_device_remove(unsigned int cpu)
2700  {
2701  	struct device *dev = per_cpu(mce_device, cpu);
2702  	int i;
2703  
2704  	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2705  		return;
2706  
2707  	for (i = 0; mce_device_attrs[i]; i++)
2708  		device_remove_file(dev, mce_device_attrs[i]);
2709  
2710  	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2711  		device_remove_file(dev, &mce_bank_devs[i].attr);
2712  
2713  	device_unregister(dev);
2714  	cpumask_clear_cpu(cpu, mce_device_initialized);
2715  	per_cpu(mce_device, cpu) = NULL;
2716  }
2717  
2718  /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2719  static void mce_disable_cpu(void)
2720  {
2721  	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2722  		return;
2723  
2724  	if (!cpuhp_tasks_frozen)
2725  		cmci_clear();
2726  
2727  	vendor_disable_error_reporting();
2728  }
2729  
mce_reenable_cpu(void)2730  static void mce_reenable_cpu(void)
2731  {
2732  	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2733  	int i;
2734  
2735  	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2736  		return;
2737  
2738  	if (!cpuhp_tasks_frozen)
2739  		cmci_reenable();
2740  	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2741  		struct mce_bank *b = &mce_banks[i];
2742  
2743  		if (b->init)
2744  			wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2745  	}
2746  }
2747  
mce_cpu_dead(unsigned int cpu)2748  static int mce_cpu_dead(unsigned int cpu)
2749  {
2750  	/* intentionally ignoring frozen here */
2751  	if (!cpuhp_tasks_frozen)
2752  		cmci_rediscover();
2753  	return 0;
2754  }
2755  
mce_cpu_online(unsigned int cpu)2756  static int mce_cpu_online(unsigned int cpu)
2757  {
2758  	struct timer_list *t = this_cpu_ptr(&mce_timer);
2759  	int ret;
2760  
2761  	mce_device_create(cpu);
2762  
2763  	ret = mce_threshold_create_device(cpu);
2764  	if (ret) {
2765  		mce_device_remove(cpu);
2766  		return ret;
2767  	}
2768  	mce_reenable_cpu();
2769  	mce_start_timer(t);
2770  	return 0;
2771  }
2772  
mce_cpu_pre_down(unsigned int cpu)2773  static int mce_cpu_pre_down(unsigned int cpu)
2774  {
2775  	struct timer_list *t = this_cpu_ptr(&mce_timer);
2776  
2777  	mce_disable_cpu();
2778  	del_timer_sync(t);
2779  	mce_threshold_remove_device(cpu);
2780  	mce_device_remove(cpu);
2781  	return 0;
2782  }
2783  
mce_init_banks(void)2784  static __init void mce_init_banks(void)
2785  {
2786  	int i;
2787  
2788  	for (i = 0; i < MAX_NR_BANKS; i++) {
2789  		struct mce_bank_dev *b = &mce_bank_devs[i];
2790  		struct device_attribute *a = &b->attr;
2791  
2792  		b->bank = i;
2793  
2794  		sysfs_attr_init(&a->attr);
2795  		a->attr.name	= b->attrname;
2796  		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2797  
2798  		a->attr.mode	= 0644;
2799  		a->show		= show_bank;
2800  		a->store	= set_bank;
2801  	}
2802  }
2803  
2804  /*
2805   * When running on XEN, this initcall is ordered against the XEN mcelog
2806   * initcall:
2807   *
2808   *   device_initcall(xen_late_init_mcelog);
2809   *   device_initcall_sync(mcheck_init_device);
2810   */
mcheck_init_device(void)2811  static __init int mcheck_init_device(void)
2812  {
2813  	int err;
2814  
2815  	/*
2816  	 * Check if we have a spare virtual bit. This will only become
2817  	 * a problem if/when we move beyond 5-level page tables.
2818  	 */
2819  	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2820  
2821  	if (!mce_available(&boot_cpu_data)) {
2822  		err = -EIO;
2823  		goto err_out;
2824  	}
2825  
2826  	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2827  		err = -ENOMEM;
2828  		goto err_out;
2829  	}
2830  
2831  	mce_init_banks();
2832  
2833  	err = subsys_system_register(&mce_subsys, NULL);
2834  	if (err)
2835  		goto err_out_mem;
2836  
2837  	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2838  				mce_cpu_dead);
2839  	if (err)
2840  		goto err_out_mem;
2841  
2842  	/*
2843  	 * Invokes mce_cpu_online() on all CPUs which are online when
2844  	 * the state is installed.
2845  	 */
2846  	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2847  				mce_cpu_online, mce_cpu_pre_down);
2848  	if (err < 0)
2849  		goto err_out_online;
2850  
2851  	register_syscore_ops(&mce_syscore_ops);
2852  
2853  	return 0;
2854  
2855  err_out_online:
2856  	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2857  
2858  err_out_mem:
2859  	free_cpumask_var(mce_device_initialized);
2860  
2861  err_out:
2862  	pr_err("Unable to init MCE device (rc: %d)\n", err);
2863  
2864  	return err;
2865  }
2866  device_initcall_sync(mcheck_init_device);
2867  
2868  /*
2869   * Old style boot options parsing. Only for compatibility.
2870   */
mcheck_disable(char * str)2871  static int __init mcheck_disable(char *str)
2872  {
2873  	mca_cfg.disabled = 1;
2874  	return 1;
2875  }
2876  __setup("nomce", mcheck_disable);
2877  
2878  #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2879  struct dentry *mce_get_debugfs_dir(void)
2880  {
2881  	static struct dentry *dmce;
2882  
2883  	if (!dmce)
2884  		dmce = debugfs_create_dir("mce", NULL);
2885  
2886  	return dmce;
2887  }
2888  
mce_reset(void)2889  static void mce_reset(void)
2890  {
2891  	atomic_set(&mce_fake_panicked, 0);
2892  	atomic_set(&mce_executing, 0);
2893  	atomic_set(&mce_callin, 0);
2894  	atomic_set(&global_nwo, 0);
2895  	cpumask_setall(&mce_missing_cpus);
2896  }
2897  
fake_panic_get(void * data,u64 * val)2898  static int fake_panic_get(void *data, u64 *val)
2899  {
2900  	*val = fake_panic;
2901  	return 0;
2902  }
2903  
fake_panic_set(void * data,u64 val)2904  static int fake_panic_set(void *data, u64 val)
2905  {
2906  	mce_reset();
2907  	fake_panic = val;
2908  	return 0;
2909  }
2910  
2911  DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2912  			 "%llu\n");
2913  
mcheck_debugfs_init(void)2914  static void __init mcheck_debugfs_init(void)
2915  {
2916  	struct dentry *dmce;
2917  
2918  	dmce = mce_get_debugfs_dir();
2919  	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2920  				   &fake_panic_fops);
2921  }
2922  #else
mcheck_debugfs_init(void)2923  static void __init mcheck_debugfs_init(void) { }
2924  #endif
2925  
mcheck_late_init(void)2926  static int __init mcheck_late_init(void)
2927  {
2928  	if (mca_cfg.recovery)
2929  		enable_copy_mc_fragile();
2930  
2931  	mcheck_debugfs_init();
2932  
2933  	/*
2934  	 * Flush out everything that has been logged during early boot, now that
2935  	 * everything has been initialized (workqueues, decoders, ...).
2936  	 */
2937  	mce_schedule_work();
2938  
2939  	return 0;
2940  }
2941  late_initcall(mcheck_late_init);
2942