1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef _LINUX_MINMAX_H
3  #define _LINUX_MINMAX_H
4  
5  #include <linux/build_bug.h>
6  #include <linux/compiler.h>
7  #include <linux/const.h>
8  #include <linux/types.h>
9  
10  /*
11   * min()/max()/clamp() macros must accomplish three things:
12   *
13   * - Avoid multiple evaluations of the arguments (so side-effects like
14   *   "x++" happen only once) when non-constant.
15   * - Retain result as a constant expressions when called with only
16   *   constant expressions (to avoid tripping VLA warnings in stack
17   *   allocation usage).
18   * - Perform signed v unsigned type-checking (to generate compile
19   *   errors instead of nasty runtime surprises).
20   * - Unsigned char/short are always promoted to signed int and can be
21   *   compared against signed or unsigned arguments.
22   * - Unsigned arguments can be compared against non-negative signed constants.
23   * - Comparison of a signed argument against an unsigned constant fails
24   *   even if the constant is below __INT_MAX__ and could be cast to int.
25   */
26  #define __typecheck(x, y) \
27  	(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
28  
29  /*
30   * __sign_use for integer expressions:
31   *   bit #0 set if ok for unsigned comparisons
32   *   bit #1 set if ok for signed comparisons
33   *
34   * In particular, statically non-negative signed integer
35   * expressions are ok for both.
36   *
37   * NOTE! Unsigned types smaller than 'int' are implicitly
38   * converted to 'int' in expressions, and are accepted for
39   * signed conversions for now. This is debatable.
40   *
41   * Note that 'x' is the original expression, and 'ux' is
42   * the unique variable that contains the value.
43   *
44   * We use 'ux' for pure type checking, and 'x' for when
45   * we need to look at the value (but without evaluating
46   * it for side effects! Careful to only ever evaluate it
47   * with sizeof() or __builtin_constant_p() etc).
48   *
49   * Pointers end up being checked by the normal C type
50   * rules at the actual comparison, and these expressions
51   * only need to be careful to not cause warnings for
52   * pointer use.
53   */
54  #define __signed_type_use(x,ux) (2+__is_nonneg(x,ux))
55  #define __unsigned_type_use(x,ux) (1+2*(sizeof(ux)<4))
56  #define __sign_use(x,ux) (is_signed_type(typeof(ux))? \
57  	__signed_type_use(x,ux):__unsigned_type_use(x,ux))
58  
59  /*
60   * To avoid warnings about casting pointers to integers
61   * of different sizes, we need that special sign type.
62   *
63   * On 64-bit we can just always use 'long', since any
64   * integer or pointer type can just be cast to that.
65   *
66   * This does not work for 128-bit signed integers since
67   * the cast would truncate them, but we do not use s128
68   * types in the kernel (we do use 'u128', but they will
69   * be handled by the !is_signed_type() case).
70   *
71   * NOTE! The cast is there only to avoid any warnings
72   * from when values that aren't signed integer types.
73   */
74  #ifdef CONFIG_64BIT
75    #define __signed_type(ux) long
76  #else
77    #define __signed_type(ux) typeof(__builtin_choose_expr(sizeof(ux)>4,1LL,1L))
78  #endif
79  #define __is_nonneg(x,ux) statically_true((__signed_type(ux))(x)>=0)
80  
81  #define __types_ok(x,y,ux,uy) \
82  	(__sign_use(x,ux) & __sign_use(y,uy))
83  
84  #define __types_ok3(x,y,z,ux,uy,uz) \
85  	(__sign_use(x,ux) & __sign_use(y,uy) & __sign_use(z,uz))
86  
87  #define __cmp_op_min <
88  #define __cmp_op_max >
89  
90  #define __cmp(op, x, y)	((x) __cmp_op_##op (y) ? (x) : (y))
91  
92  #define __cmp_once_unique(op, type, x, y, ux, uy) \
93  	({ type ux = (x); type uy = (y); __cmp(op, ux, uy); })
94  
95  #define __cmp_once(op, type, x, y) \
96  	__cmp_once_unique(op, type, x, y, __UNIQUE_ID(x_), __UNIQUE_ID(y_))
97  
98  #define __careful_cmp_once(op, x, y, ux, uy) ({		\
99  	__auto_type ux = (x); __auto_type uy = (y);	\
100  	BUILD_BUG_ON_MSG(!__types_ok(x,y,ux,uy),	\
101  		#op"("#x", "#y") signedness error");	\
102  	__cmp(op, ux, uy); })
103  
104  #define __careful_cmp(op, x, y) \
105  	__careful_cmp_once(op, x, y, __UNIQUE_ID(x_), __UNIQUE_ID(y_))
106  
107  #define __clamp(val, lo, hi)	\
108  	((val) >= (hi) ? (hi) : ((val) <= (lo) ? (lo) : (val)))
109  
110  #define __clamp_once(val, lo, hi, uval, ulo, uhi) ({				\
111  	__auto_type uval = (val);						\
112  	__auto_type ulo = (lo);							\
113  	__auto_type uhi = (hi);							\
114  	static_assert(__builtin_choose_expr(__is_constexpr((lo) > (hi)), 	\
115  			(lo) <= (hi), true),					\
116  		"clamp() low limit " #lo " greater than high limit " #hi);	\
117  	BUILD_BUG_ON_MSG(!__types_ok3(val,lo,hi,uval,ulo,uhi),			\
118  		"clamp("#val", "#lo", "#hi") signedness error");		\
119  	__clamp(uval, ulo, uhi); })
120  
121  #define __careful_clamp(val, lo, hi) \
122  	__clamp_once(val, lo, hi, __UNIQUE_ID(v_), __UNIQUE_ID(l_), __UNIQUE_ID(h_))
123  
124  /**
125   * min - return minimum of two values of the same or compatible types
126   * @x: first value
127   * @y: second value
128   */
129  #define min(x, y)	__careful_cmp(min, x, y)
130  
131  /**
132   * max - return maximum of two values of the same or compatible types
133   * @x: first value
134   * @y: second value
135   */
136  #define max(x, y)	__careful_cmp(max, x, y)
137  
138  /**
139   * umin - return minimum of two non-negative values
140   *   Signed types are zero extended to match a larger unsigned type.
141   * @x: first value
142   * @y: second value
143   */
144  #define umin(x, y)	\
145  	__careful_cmp(min, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull)
146  
147  /**
148   * umax - return maximum of two non-negative values
149   * @x: first value
150   * @y: second value
151   */
152  #define umax(x, y)	\
153  	__careful_cmp(max, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull)
154  
155  #define __careful_op3(op, x, y, z, ux, uy, uz) ({			\
156  	__auto_type ux = (x); __auto_type uy = (y);__auto_type uz = (z);\
157  	BUILD_BUG_ON_MSG(!__types_ok3(x,y,z,ux,uy,uz),			\
158  		#op"3("#x", "#y", "#z") signedness error");		\
159  	__cmp(op, ux, __cmp(op, uy, uz)); })
160  
161  /**
162   * min3 - return minimum of three values
163   * @x: first value
164   * @y: second value
165   * @z: third value
166   */
167  #define min3(x, y, z) \
168  	__careful_op3(min, x, y, z, __UNIQUE_ID(x_), __UNIQUE_ID(y_), __UNIQUE_ID(z_))
169  
170  /**
171   * max3 - return maximum of three values
172   * @x: first value
173   * @y: second value
174   * @z: third value
175   */
176  #define max3(x, y, z) \
177  	__careful_op3(max, x, y, z, __UNIQUE_ID(x_), __UNIQUE_ID(y_), __UNIQUE_ID(z_))
178  
179  /**
180   * min_not_zero - return the minimum that is _not_ zero, unless both are zero
181   * @x: value1
182   * @y: value2
183   */
184  #define min_not_zero(x, y) ({			\
185  	typeof(x) __x = (x);			\
186  	typeof(y) __y = (y);			\
187  	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
188  
189  /**
190   * clamp - return a value clamped to a given range with strict typechecking
191   * @val: current value
192   * @lo: lowest allowable value
193   * @hi: highest allowable value
194   *
195   * This macro does strict typechecking of @lo/@hi to make sure they are of the
196   * same type as @val.  See the unnecessary pointer comparisons.
197   */
198  #define clamp(val, lo, hi) __careful_clamp(val, lo, hi)
199  
200  /*
201   * ..and if you can't take the strict
202   * types, you can specify one yourself.
203   *
204   * Or not use min/max/clamp at all, of course.
205   */
206  
207  /**
208   * min_t - return minimum of two values, using the specified type
209   * @type: data type to use
210   * @x: first value
211   * @y: second value
212   */
213  #define min_t(type, x, y) __cmp_once(min, type, x, y)
214  
215  /**
216   * max_t - return maximum of two values, using the specified type
217   * @type: data type to use
218   * @x: first value
219   * @y: second value
220   */
221  #define max_t(type, x, y) __cmp_once(max, type, x, y)
222  
223  /*
224   * Do not check the array parameter using __must_be_array().
225   * In the following legit use-case where the "array" passed is a simple pointer,
226   * __must_be_array() will return a failure.
227   * --- 8< ---
228   * int *buff
229   * ...
230   * min = min_array(buff, nb_items);
231   * --- 8< ---
232   *
233   * The first typeof(&(array)[0]) is needed in order to support arrays of both
234   * 'int *buff' and 'int buff[N]' types.
235   *
236   * The array can be an array of const items.
237   * typeof() keeps the const qualifier. Use __unqual_scalar_typeof() in order
238   * to discard the const qualifier for the __element variable.
239   */
240  #define __minmax_array(op, array, len) ({				\
241  	typeof(&(array)[0]) __array = (array);				\
242  	typeof(len) __len = (len);					\
243  	__unqual_scalar_typeof(__array[0]) __element = __array[--__len];\
244  	while (__len--)							\
245  		__element = op(__element, __array[__len]);		\
246  	__element; })
247  
248  /**
249   * min_array - return minimum of values present in an array
250   * @array: array
251   * @len: array length
252   *
253   * Note that @len must not be zero (empty array).
254   */
255  #define min_array(array, len) __minmax_array(min, array, len)
256  
257  /**
258   * max_array - return maximum of values present in an array
259   * @array: array
260   * @len: array length
261   *
262   * Note that @len must not be zero (empty array).
263   */
264  #define max_array(array, len) __minmax_array(max, array, len)
265  
266  /**
267   * clamp_t - return a value clamped to a given range using a given type
268   * @type: the type of variable to use
269   * @val: current value
270   * @lo: minimum allowable value
271   * @hi: maximum allowable value
272   *
273   * This macro does no typechecking and uses temporary variables of type
274   * @type to make all the comparisons.
275   */
276  #define clamp_t(type, val, lo, hi) __careful_clamp((type)(val), (type)(lo), (type)(hi))
277  
278  /**
279   * clamp_val - return a value clamped to a given range using val's type
280   * @val: current value
281   * @lo: minimum allowable value
282   * @hi: maximum allowable value
283   *
284   * This macro does no typechecking and uses temporary variables of whatever
285   * type the input argument @val is.  This is useful when @val is an unsigned
286   * type and @lo and @hi are literals that will otherwise be assigned a signed
287   * integer type.
288   */
289  #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
290  
in_range64(u64 val,u64 start,u64 len)291  static inline bool in_range64(u64 val, u64 start, u64 len)
292  {
293  	return (val - start) < len;
294  }
295  
in_range32(u32 val,u32 start,u32 len)296  static inline bool in_range32(u32 val, u32 start, u32 len)
297  {
298  	return (val - start) < len;
299  }
300  
301  /**
302   * in_range - Determine if a value lies within a range.
303   * @val: Value to test.
304   * @start: First value in range.
305   * @len: Number of values in range.
306   *
307   * This is more efficient than "if (start <= val && val < (start + len))".
308   * It also gives a different answer if @start + @len overflows the size of
309   * the type by a sufficient amount to encompass @val.  Decide for yourself
310   * which behaviour you want, or prove that start + len never overflow.
311   * Do not blindly replace one form with the other.
312   */
313  #define in_range(val, start, len)					\
314  	((sizeof(start) | sizeof(len) | sizeof(val)) <= sizeof(u32) ?	\
315  		in_range32(val, start, len) : in_range64(val, start, len))
316  
317  /**
318   * swap - swap values of @a and @b
319   * @a: first value
320   * @b: second value
321   */
322  #define swap(a, b) \
323  	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
324  
325  /*
326   * Use these carefully: no type checking, and uses the arguments
327   * multiple times. Use for obvious constants only.
328   */
329  #define MIN(a,b) __cmp(min,a,b)
330  #define MAX(a,b) __cmp(max,a,b)
331  #define MIN_T(type,a,b) __cmp(min,(type)(a),(type)(b))
332  #define MAX_T(type,a,b) __cmp(max,(type)(a),(type)(b))
333  
334  #endif	/* _LINUX_MINMAX_H */
335