1  // SPDX-License-Identifier: GPL-2.0
2  #include <dirent.h>
3  #include <errno.h>
4  #include <inttypes.h>
5  #include <regex.h>
6  #include <stdlib.h>
7  #include "callchain.h"
8  #include "debug.h"
9  #include "dso.h"
10  #include "env.h"
11  #include "event.h"
12  #include "evsel.h"
13  #include "hist.h"
14  #include "machine.h"
15  #include "map.h"
16  #include "map_symbol.h"
17  #include "branch.h"
18  #include "mem-events.h"
19  #include "mem-info.h"
20  #include "path.h"
21  #include "srcline.h"
22  #include "symbol.h"
23  #include "sort.h"
24  #include "strlist.h"
25  #include "target.h"
26  #include "thread.h"
27  #include "util.h"
28  #include "vdso.h"
29  #include <stdbool.h>
30  #include <sys/types.h>
31  #include <sys/stat.h>
32  #include <unistd.h>
33  #include "unwind.h"
34  #include "linux/hash.h"
35  #include "asm/bug.h"
36  #include "bpf-event.h"
37  #include <internal/lib.h> // page_size
38  #include "cgroup.h"
39  #include "arm64-frame-pointer-unwind-support.h"
40  
41  #include <linux/ctype.h>
42  #include <symbol/kallsyms.h>
43  #include <linux/mman.h>
44  #include <linux/string.h>
45  #include <linux/zalloc.h>
46  
machine__kernel_dso(struct machine * machine)47  static struct dso *machine__kernel_dso(struct machine *machine)
48  {
49  	return map__dso(machine->vmlinux_map);
50  }
51  
machine__set_mmap_name(struct machine * machine)52  static int machine__set_mmap_name(struct machine *machine)
53  {
54  	if (machine__is_host(machine))
55  		machine->mmap_name = strdup("[kernel.kallsyms]");
56  	else if (machine__is_default_guest(machine))
57  		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
58  	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
59  			  machine->pid) < 0)
60  		machine->mmap_name = NULL;
61  
62  	return machine->mmap_name ? 0 : -ENOMEM;
63  }
64  
thread__set_guest_comm(struct thread * thread,pid_t pid)65  static void thread__set_guest_comm(struct thread *thread, pid_t pid)
66  {
67  	char comm[64];
68  
69  	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
70  	thread__set_comm(thread, comm, 0);
71  }
72  
machine__init(struct machine * machine,const char * root_dir,pid_t pid)73  int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
74  {
75  	int err = -ENOMEM;
76  
77  	memset(machine, 0, sizeof(*machine));
78  	machine->kmaps = maps__new(machine);
79  	if (machine->kmaps == NULL)
80  		return -ENOMEM;
81  
82  	RB_CLEAR_NODE(&machine->rb_node);
83  	dsos__init(&machine->dsos);
84  
85  	threads__init(&machine->threads);
86  
87  	machine->vdso_info = NULL;
88  	machine->env = NULL;
89  
90  	machine->pid = pid;
91  
92  	machine->id_hdr_size = 0;
93  	machine->kptr_restrict_warned = false;
94  	machine->comm_exec = false;
95  	machine->kernel_start = 0;
96  	machine->vmlinux_map = NULL;
97  
98  	machine->root_dir = strdup(root_dir);
99  	if (machine->root_dir == NULL)
100  		goto out;
101  
102  	if (machine__set_mmap_name(machine))
103  		goto out;
104  
105  	if (pid != HOST_KERNEL_ID) {
106  		struct thread *thread = machine__findnew_thread(machine, -1,
107  								pid);
108  
109  		if (thread == NULL)
110  			goto out;
111  
112  		thread__set_guest_comm(thread, pid);
113  		thread__put(thread);
114  	}
115  
116  	machine->current_tid = NULL;
117  	err = 0;
118  
119  out:
120  	if (err) {
121  		zfree(&machine->kmaps);
122  		zfree(&machine->root_dir);
123  		zfree(&machine->mmap_name);
124  	}
125  	return 0;
126  }
127  
machine__new_host(void)128  struct machine *machine__new_host(void)
129  {
130  	struct machine *machine = malloc(sizeof(*machine));
131  
132  	if (machine != NULL) {
133  		machine__init(machine, "", HOST_KERNEL_ID);
134  
135  		if (machine__create_kernel_maps(machine) < 0)
136  			goto out_delete;
137  	}
138  
139  	return machine;
140  out_delete:
141  	free(machine);
142  	return NULL;
143  }
144  
machine__new_kallsyms(void)145  struct machine *machine__new_kallsyms(void)
146  {
147  	struct machine *machine = machine__new_host();
148  	/*
149  	 * FIXME:
150  	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
151  	 *    ask for not using the kcore parsing code, once this one is fixed
152  	 *    to create a map per module.
153  	 */
154  	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
155  		machine__delete(machine);
156  		machine = NULL;
157  	}
158  
159  	return machine;
160  }
161  
machine__delete_threads(struct machine * machine)162  void machine__delete_threads(struct machine *machine)
163  {
164  	threads__remove_all_threads(&machine->threads);
165  }
166  
machine__exit(struct machine * machine)167  void machine__exit(struct machine *machine)
168  {
169  	if (machine == NULL)
170  		return;
171  
172  	machine__destroy_kernel_maps(machine);
173  	maps__zput(machine->kmaps);
174  	dsos__exit(&machine->dsos);
175  	machine__exit_vdso(machine);
176  	zfree(&machine->root_dir);
177  	zfree(&machine->mmap_name);
178  	zfree(&machine->current_tid);
179  	zfree(&machine->kallsyms_filename);
180  
181  	threads__exit(&machine->threads);
182  }
183  
machine__delete(struct machine * machine)184  void machine__delete(struct machine *machine)
185  {
186  	if (machine) {
187  		machine__exit(machine);
188  		free(machine);
189  	}
190  }
191  
machines__init(struct machines * machines)192  void machines__init(struct machines *machines)
193  {
194  	machine__init(&machines->host, "", HOST_KERNEL_ID);
195  	machines->guests = RB_ROOT_CACHED;
196  }
197  
machines__exit(struct machines * machines)198  void machines__exit(struct machines *machines)
199  {
200  	machine__exit(&machines->host);
201  	/* XXX exit guest */
202  }
203  
machines__add(struct machines * machines,pid_t pid,const char * root_dir)204  struct machine *machines__add(struct machines *machines, pid_t pid,
205  			      const char *root_dir)
206  {
207  	struct rb_node **p = &machines->guests.rb_root.rb_node;
208  	struct rb_node *parent = NULL;
209  	struct machine *pos, *machine = malloc(sizeof(*machine));
210  	bool leftmost = true;
211  
212  	if (machine == NULL)
213  		return NULL;
214  
215  	if (machine__init(machine, root_dir, pid) != 0) {
216  		free(machine);
217  		return NULL;
218  	}
219  
220  	while (*p != NULL) {
221  		parent = *p;
222  		pos = rb_entry(parent, struct machine, rb_node);
223  		if (pid < pos->pid)
224  			p = &(*p)->rb_left;
225  		else {
226  			p = &(*p)->rb_right;
227  			leftmost = false;
228  		}
229  	}
230  
231  	rb_link_node(&machine->rb_node, parent, p);
232  	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
233  
234  	machine->machines = machines;
235  
236  	return machine;
237  }
238  
machines__set_comm_exec(struct machines * machines,bool comm_exec)239  void machines__set_comm_exec(struct machines *machines, bool comm_exec)
240  {
241  	struct rb_node *nd;
242  
243  	machines->host.comm_exec = comm_exec;
244  
245  	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
246  		struct machine *machine = rb_entry(nd, struct machine, rb_node);
247  
248  		machine->comm_exec = comm_exec;
249  	}
250  }
251  
machines__find(struct machines * machines,pid_t pid)252  struct machine *machines__find(struct machines *machines, pid_t pid)
253  {
254  	struct rb_node **p = &machines->guests.rb_root.rb_node;
255  	struct rb_node *parent = NULL;
256  	struct machine *machine;
257  	struct machine *default_machine = NULL;
258  
259  	if (pid == HOST_KERNEL_ID)
260  		return &machines->host;
261  
262  	while (*p != NULL) {
263  		parent = *p;
264  		machine = rb_entry(parent, struct machine, rb_node);
265  		if (pid < machine->pid)
266  			p = &(*p)->rb_left;
267  		else if (pid > machine->pid)
268  			p = &(*p)->rb_right;
269  		else
270  			return machine;
271  		if (!machine->pid)
272  			default_machine = machine;
273  	}
274  
275  	return default_machine;
276  }
277  
machines__findnew(struct machines * machines,pid_t pid)278  struct machine *machines__findnew(struct machines *machines, pid_t pid)
279  {
280  	char path[PATH_MAX];
281  	const char *root_dir = "";
282  	struct machine *machine = machines__find(machines, pid);
283  
284  	if (machine && (machine->pid == pid))
285  		goto out;
286  
287  	if ((pid != HOST_KERNEL_ID) &&
288  	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
289  	    (symbol_conf.guestmount)) {
290  		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
291  		if (access(path, R_OK)) {
292  			static struct strlist *seen;
293  
294  			if (!seen)
295  				seen = strlist__new(NULL, NULL);
296  
297  			if (!strlist__has_entry(seen, path)) {
298  				pr_err("Can't access file %s\n", path);
299  				strlist__add(seen, path);
300  			}
301  			machine = NULL;
302  			goto out;
303  		}
304  		root_dir = path;
305  	}
306  
307  	machine = machines__add(machines, pid, root_dir);
308  out:
309  	return machine;
310  }
311  
machines__find_guest(struct machines * machines,pid_t pid)312  struct machine *machines__find_guest(struct machines *machines, pid_t pid)
313  {
314  	struct machine *machine = machines__find(machines, pid);
315  
316  	if (!machine)
317  		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
318  	return machine;
319  }
320  
321  /*
322   * A common case for KVM test programs is that the test program acts as the
323   * hypervisor, creating, running and destroying the virtual machine, and
324   * providing the guest object code from its own object code. In this case,
325   * the VM is not running an OS, but only the functions loaded into it by the
326   * hypervisor test program, and conveniently, loaded at the same virtual
327   * addresses.
328   *
329   * Normally to resolve addresses, MMAP events are needed to map addresses
330   * back to the object code and debug symbols for that object code.
331   *
332   * Currently, there is no way to get such mapping information from guests
333   * but, in the scenario described above, the guest has the same mappings
334   * as the hypervisor, so support for that scenario can be achieved.
335   *
336   * To support that, copy the host thread's maps to the guest thread's maps.
337   * Note, we do not discover the guest until we encounter a guest event,
338   * which works well because it is not until then that we know that the host
339   * thread's maps have been set up.
340   *
341   * This function returns the guest thread. Apart from keeping the data
342   * structures sane, using a thread belonging to the guest machine, instead
343   * of the host thread, allows it to have its own comm (refer
344   * thread__set_guest_comm()).
345   */
findnew_guest_code(struct machine * machine,struct machine * host_machine,pid_t pid)346  static struct thread *findnew_guest_code(struct machine *machine,
347  					 struct machine *host_machine,
348  					 pid_t pid)
349  {
350  	struct thread *host_thread;
351  	struct thread *thread;
352  	int err;
353  
354  	if (!machine)
355  		return NULL;
356  
357  	thread = machine__findnew_thread(machine, -1, pid);
358  	if (!thread)
359  		return NULL;
360  
361  	/* Assume maps are set up if there are any */
362  	if (!maps__empty(thread__maps(thread)))
363  		return thread;
364  
365  	host_thread = machine__find_thread(host_machine, -1, pid);
366  	if (!host_thread)
367  		goto out_err;
368  
369  	thread__set_guest_comm(thread, pid);
370  
371  	/*
372  	 * Guest code can be found in hypervisor process at the same address
373  	 * so copy host maps.
374  	 */
375  	err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
376  	thread__put(host_thread);
377  	if (err)
378  		goto out_err;
379  
380  	return thread;
381  
382  out_err:
383  	thread__zput(thread);
384  	return NULL;
385  }
386  
machines__findnew_guest_code(struct machines * machines,pid_t pid)387  struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
388  {
389  	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
390  	struct machine *machine = machines__findnew(machines, pid);
391  
392  	return findnew_guest_code(machine, host_machine, pid);
393  }
394  
machine__findnew_guest_code(struct machine * machine,pid_t pid)395  struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
396  {
397  	struct machines *machines = machine->machines;
398  	struct machine *host_machine;
399  
400  	if (!machines)
401  		return NULL;
402  
403  	host_machine = machines__find(machines, HOST_KERNEL_ID);
404  
405  	return findnew_guest_code(machine, host_machine, pid);
406  }
407  
machines__process_guests(struct machines * machines,machine__process_t process,void * data)408  void machines__process_guests(struct machines *machines,
409  			      machine__process_t process, void *data)
410  {
411  	struct rb_node *nd;
412  
413  	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
414  		struct machine *pos = rb_entry(nd, struct machine, rb_node);
415  		process(pos, data);
416  	}
417  }
418  
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)419  void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
420  {
421  	struct rb_node *node;
422  	struct machine *machine;
423  
424  	machines->host.id_hdr_size = id_hdr_size;
425  
426  	for (node = rb_first_cached(&machines->guests); node;
427  	     node = rb_next(node)) {
428  		machine = rb_entry(node, struct machine, rb_node);
429  		machine->id_hdr_size = id_hdr_size;
430  	}
431  
432  	return;
433  }
434  
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)435  static void machine__update_thread_pid(struct machine *machine,
436  				       struct thread *th, pid_t pid)
437  {
438  	struct thread *leader;
439  
440  	if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
441  		return;
442  
443  	thread__set_pid(th, pid);
444  
445  	if (thread__pid(th) == thread__tid(th))
446  		return;
447  
448  	leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
449  	if (!leader)
450  		goto out_err;
451  
452  	if (!thread__maps(leader))
453  		thread__set_maps(leader, maps__new(machine));
454  
455  	if (!thread__maps(leader))
456  		goto out_err;
457  
458  	if (thread__maps(th) == thread__maps(leader))
459  		goto out_put;
460  
461  	if (thread__maps(th)) {
462  		/*
463  		 * Maps are created from MMAP events which provide the pid and
464  		 * tid.  Consequently there never should be any maps on a thread
465  		 * with an unknown pid.  Just print an error if there are.
466  		 */
467  		if (!maps__empty(thread__maps(th)))
468  			pr_err("Discarding thread maps for %d:%d\n",
469  				thread__pid(th), thread__tid(th));
470  		maps__put(thread__maps(th));
471  	}
472  
473  	thread__set_maps(th, maps__get(thread__maps(leader)));
474  out_put:
475  	thread__put(leader);
476  	return;
477  out_err:
478  	pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
479  	goto out_put;
480  }
481  
482  /*
483   * Caller must eventually drop thread->refcnt returned with a successful
484   * lookup/new thread inserted.
485   */
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid,bool create)486  static struct thread *__machine__findnew_thread(struct machine *machine,
487  						pid_t pid,
488  						pid_t tid,
489  						bool create)
490  {
491  	struct thread *th = threads__find(&machine->threads, tid);
492  	bool created;
493  
494  	if (th) {
495  		machine__update_thread_pid(machine, th, pid);
496  		return th;
497  	}
498  	if (!create)
499  		return NULL;
500  
501  	th = threads__findnew(&machine->threads, pid, tid, &created);
502  	if (created) {
503  		/*
504  		 * We have to initialize maps separately after rb tree is
505  		 * updated.
506  		 *
507  		 * The reason is that we call machine__findnew_thread within
508  		 * thread__init_maps to find the thread leader and that would
509  		 * screwed the rb tree.
510  		 */
511  		if (thread__init_maps(th, machine)) {
512  			pr_err("Thread init failed thread %d\n", pid);
513  			threads__remove(&machine->threads, th);
514  			thread__put(th);
515  			return NULL;
516  		}
517  	} else
518  		machine__update_thread_pid(machine, th, pid);
519  
520  	return th;
521  }
522  
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)523  struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
524  {
525  	return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
526  }
527  
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)528  struct thread *machine__find_thread(struct machine *machine, pid_t pid,
529  				    pid_t tid)
530  {
531  	return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
532  }
533  
534  /*
535   * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
536   * So here a single thread is created for that, but actually there is a separate
537   * idle task per cpu, so there should be one 'struct thread' per cpu, but there
538   * is only 1. That causes problems for some tools, requiring workarounds. For
539   * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
540   */
machine__idle_thread(struct machine * machine)541  struct thread *machine__idle_thread(struct machine *machine)
542  {
543  	struct thread *thread = machine__findnew_thread(machine, 0, 0);
544  
545  	if (!thread || thread__set_comm(thread, "swapper", 0) ||
546  	    thread__set_namespaces(thread, 0, NULL))
547  		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
548  
549  	return thread;
550  }
551  
machine__thread_exec_comm(struct machine * machine,struct thread * thread)552  struct comm *machine__thread_exec_comm(struct machine *machine,
553  				       struct thread *thread)
554  {
555  	if (machine->comm_exec)
556  		return thread__exec_comm(thread);
557  	else
558  		return thread__comm(thread);
559  }
560  
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)561  int machine__process_comm_event(struct machine *machine, union perf_event *event,
562  				struct perf_sample *sample)
563  {
564  	struct thread *thread = machine__findnew_thread(machine,
565  							event->comm.pid,
566  							event->comm.tid);
567  	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
568  	int err = 0;
569  
570  	if (exec)
571  		machine->comm_exec = true;
572  
573  	if (dump_trace)
574  		perf_event__fprintf_comm(event, stdout);
575  
576  	if (thread == NULL ||
577  	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
578  		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
579  		err = -1;
580  	}
581  
582  	thread__put(thread);
583  
584  	return err;
585  }
586  
machine__process_namespaces_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)587  int machine__process_namespaces_event(struct machine *machine __maybe_unused,
588  				      union perf_event *event,
589  				      struct perf_sample *sample __maybe_unused)
590  {
591  	struct thread *thread = machine__findnew_thread(machine,
592  							event->namespaces.pid,
593  							event->namespaces.tid);
594  	int err = 0;
595  
596  	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
597  		  "\nWARNING: kernel seems to support more namespaces than perf"
598  		  " tool.\nTry updating the perf tool..\n\n");
599  
600  	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
601  		  "\nWARNING: perf tool seems to support more namespaces than"
602  		  " the kernel.\nTry updating the kernel..\n\n");
603  
604  	if (dump_trace)
605  		perf_event__fprintf_namespaces(event, stdout);
606  
607  	if (thread == NULL ||
608  	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
609  		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
610  		err = -1;
611  	}
612  
613  	thread__put(thread);
614  
615  	return err;
616  }
617  
machine__process_cgroup_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)618  int machine__process_cgroup_event(struct machine *machine,
619  				  union perf_event *event,
620  				  struct perf_sample *sample __maybe_unused)
621  {
622  	struct cgroup *cgrp;
623  
624  	if (dump_trace)
625  		perf_event__fprintf_cgroup(event, stdout);
626  
627  	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
628  	if (cgrp == NULL)
629  		return -ENOMEM;
630  
631  	return 0;
632  }
633  
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)634  int machine__process_lost_event(struct machine *machine __maybe_unused,
635  				union perf_event *event, struct perf_sample *sample __maybe_unused)
636  {
637  	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
638  		    event->lost.id, event->lost.lost);
639  	return 0;
640  }
641  
machine__process_lost_samples_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)642  int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
643  					union perf_event *event, struct perf_sample *sample)
644  {
645  	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "%s\n",
646  		    sample->id, event->lost_samples.lost,
647  		    event->header.misc & PERF_RECORD_MISC_LOST_SAMPLES_BPF ? " (BPF)" : "");
648  	return 0;
649  }
650  
machine__process_aux_event(struct machine * machine __maybe_unused,union perf_event * event)651  int machine__process_aux_event(struct machine *machine __maybe_unused,
652  			       union perf_event *event)
653  {
654  	if (dump_trace)
655  		perf_event__fprintf_aux(event, stdout);
656  	return 0;
657  }
658  
machine__process_itrace_start_event(struct machine * machine __maybe_unused,union perf_event * event)659  int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
660  					union perf_event *event)
661  {
662  	if (dump_trace)
663  		perf_event__fprintf_itrace_start(event, stdout);
664  	return 0;
665  }
666  
machine__process_aux_output_hw_id_event(struct machine * machine __maybe_unused,union perf_event * event)667  int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
668  					    union perf_event *event)
669  {
670  	if (dump_trace)
671  		perf_event__fprintf_aux_output_hw_id(event, stdout);
672  	return 0;
673  }
674  
machine__process_switch_event(struct machine * machine __maybe_unused,union perf_event * event)675  int machine__process_switch_event(struct machine *machine __maybe_unused,
676  				  union perf_event *event)
677  {
678  	if (dump_trace)
679  		perf_event__fprintf_switch(event, stdout);
680  	return 0;
681  }
682  
machine__process_ksymbol_register(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)683  static int machine__process_ksymbol_register(struct machine *machine,
684  					     union perf_event *event,
685  					     struct perf_sample *sample __maybe_unused)
686  {
687  	struct symbol *sym;
688  	struct dso *dso = NULL;
689  	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
690  	int err = 0;
691  
692  	if (!map) {
693  		dso = dso__new(event->ksymbol.name);
694  
695  		if (!dso) {
696  			err = -ENOMEM;
697  			goto out;
698  		}
699  		dso__set_kernel(dso, DSO_SPACE__KERNEL);
700  		map = map__new2(0, dso);
701  		if (!map) {
702  			err = -ENOMEM;
703  			goto out;
704  		}
705  		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
706  			dso__set_binary_type(dso, DSO_BINARY_TYPE__OOL);
707  			dso__data(dso)->file_size = event->ksymbol.len;
708  			dso__set_loaded(dso);
709  		}
710  
711  		map__set_start(map, event->ksymbol.addr);
712  		map__set_end(map, map__start(map) + event->ksymbol.len);
713  		err = maps__insert(machine__kernel_maps(machine), map);
714  		if (err) {
715  			err = -ENOMEM;
716  			goto out;
717  		}
718  
719  		dso__set_loaded(dso);
720  
721  		if (is_bpf_image(event->ksymbol.name)) {
722  			dso__set_binary_type(dso, DSO_BINARY_TYPE__BPF_IMAGE);
723  			dso__set_long_name(dso, "", false);
724  		}
725  	} else {
726  		dso = dso__get(map__dso(map));
727  	}
728  
729  	sym = symbol__new(map__map_ip(map, map__start(map)),
730  			  event->ksymbol.len,
731  			  0, 0, event->ksymbol.name);
732  	if (!sym) {
733  		err = -ENOMEM;
734  		goto out;
735  	}
736  	dso__insert_symbol(dso, sym);
737  out:
738  	map__put(map);
739  	dso__put(dso);
740  	return err;
741  }
742  
machine__process_ksymbol_unregister(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)743  static int machine__process_ksymbol_unregister(struct machine *machine,
744  					       union perf_event *event,
745  					       struct perf_sample *sample __maybe_unused)
746  {
747  	struct symbol *sym;
748  	struct map *map;
749  
750  	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
751  	if (!map)
752  		return 0;
753  
754  	if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
755  		maps__remove(machine__kernel_maps(machine), map);
756  	else {
757  		struct dso *dso = map__dso(map);
758  
759  		sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
760  		if (sym)
761  			dso__delete_symbol(dso, sym);
762  	}
763  	map__put(map);
764  	return 0;
765  }
766  
machine__process_ksymbol(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)767  int machine__process_ksymbol(struct machine *machine __maybe_unused,
768  			     union perf_event *event,
769  			     struct perf_sample *sample)
770  {
771  	if (dump_trace)
772  		perf_event__fprintf_ksymbol(event, stdout);
773  
774  	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
775  		return machine__process_ksymbol_unregister(machine, event,
776  							   sample);
777  	return machine__process_ksymbol_register(machine, event, sample);
778  }
779  
machine__process_text_poke(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)780  int machine__process_text_poke(struct machine *machine, union perf_event *event,
781  			       struct perf_sample *sample __maybe_unused)
782  {
783  	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
784  	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
785  	struct dso *dso = map ? map__dso(map) : NULL;
786  
787  	if (dump_trace)
788  		perf_event__fprintf_text_poke(event, machine, stdout);
789  
790  	if (!event->text_poke.new_len)
791  		goto out;
792  
793  	if (cpumode != PERF_RECORD_MISC_KERNEL) {
794  		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
795  		goto out;
796  	}
797  
798  	if (dso) {
799  		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
800  		int ret;
801  
802  		/*
803  		 * Kernel maps might be changed when loading symbols so loading
804  		 * must be done prior to using kernel maps.
805  		 */
806  		map__load(map);
807  		ret = dso__data_write_cache_addr(dso, map, machine,
808  						 event->text_poke.addr,
809  						 new_bytes,
810  						 event->text_poke.new_len);
811  		if (ret != event->text_poke.new_len)
812  			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
813  				 event->text_poke.addr);
814  	} else {
815  		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
816  			 event->text_poke.addr);
817  	}
818  out:
819  	map__put(map);
820  	return 0;
821  }
822  
machine__addnew_module_map(struct machine * machine,u64 start,const char * filename)823  static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
824  					      const char *filename)
825  {
826  	struct map *map = NULL;
827  	struct kmod_path m;
828  	struct dso *dso;
829  	int err;
830  
831  	if (kmod_path__parse_name(&m, filename))
832  		return NULL;
833  
834  	dso = dsos__findnew_module_dso(&machine->dsos, machine, &m, filename);
835  	if (dso == NULL)
836  		goto out;
837  
838  	map = map__new2(start, dso);
839  	if (map == NULL)
840  		goto out;
841  
842  	err = maps__insert(machine__kernel_maps(machine), map);
843  	/* If maps__insert failed, return NULL. */
844  	if (err) {
845  		map__put(map);
846  		map = NULL;
847  	}
848  out:
849  	/* put the dso here, corresponding to  machine__findnew_module_dso */
850  	dso__put(dso);
851  	zfree(&m.name);
852  	return map;
853  }
854  
machines__fprintf_dsos(struct machines * machines,FILE * fp)855  size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
856  {
857  	struct rb_node *nd;
858  	size_t ret = dsos__fprintf(&machines->host.dsos, fp);
859  
860  	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
861  		struct machine *pos = rb_entry(nd, struct machine, rb_node);
862  		ret += dsos__fprintf(&pos->dsos, fp);
863  	}
864  
865  	return ret;
866  }
867  
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)868  size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
869  				     bool (skip)(struct dso *dso, int parm), int parm)
870  {
871  	return dsos__fprintf_buildid(&m->dsos, fp, skip, parm);
872  }
873  
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)874  size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
875  				     bool (skip)(struct dso *dso, int parm), int parm)
876  {
877  	struct rb_node *nd;
878  	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
879  
880  	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
881  		struct machine *pos = rb_entry(nd, struct machine, rb_node);
882  		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
883  	}
884  	return ret;
885  }
886  
machine__fprintf_vmlinux_path(struct machine * machine,FILE * fp)887  size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
888  {
889  	int i;
890  	size_t printed = 0;
891  	struct dso *kdso = machine__kernel_dso(machine);
892  
893  	if (dso__has_build_id(kdso)) {
894  		char filename[PATH_MAX];
895  
896  		if (dso__build_id_filename(kdso, filename, sizeof(filename), false))
897  			printed += fprintf(fp, "[0] %s\n", filename);
898  	}
899  
900  	for (i = 0; i < vmlinux_path__nr_entries; ++i) {
901  		printed += fprintf(fp, "[%d] %s\n", i + dso__has_build_id(kdso),
902  				   vmlinux_path[i]);
903  	}
904  	return printed;
905  }
906  
907  struct machine_fprintf_cb_args {
908  	FILE *fp;
909  	size_t printed;
910  };
911  
machine_fprintf_cb(struct thread * thread,void * data)912  static int machine_fprintf_cb(struct thread *thread, void *data)
913  {
914  	struct machine_fprintf_cb_args *args = data;
915  
916  	/* TODO: handle fprintf errors. */
917  	args->printed += thread__fprintf(thread, args->fp);
918  	return 0;
919  }
920  
machine__fprintf(struct machine * machine,FILE * fp)921  size_t machine__fprintf(struct machine *machine, FILE *fp)
922  {
923  	struct machine_fprintf_cb_args args = {
924  		.fp = fp,
925  		.printed = 0,
926  	};
927  	size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
928  
929  	machine__for_each_thread(machine, machine_fprintf_cb, &args);
930  	return ret + args.printed;
931  }
932  
machine__get_kernel(struct machine * machine)933  static struct dso *machine__get_kernel(struct machine *machine)
934  {
935  	const char *vmlinux_name = machine->mmap_name;
936  	struct dso *kernel;
937  
938  	if (machine__is_host(machine)) {
939  		if (symbol_conf.vmlinux_name)
940  			vmlinux_name = symbol_conf.vmlinux_name;
941  
942  		kernel = machine__findnew_kernel(machine, vmlinux_name,
943  						 "[kernel]", DSO_SPACE__KERNEL);
944  	} else {
945  		if (symbol_conf.default_guest_vmlinux_name)
946  			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
947  
948  		kernel = machine__findnew_kernel(machine, vmlinux_name,
949  						 "[guest.kernel]",
950  						 DSO_SPACE__KERNEL_GUEST);
951  	}
952  
953  	if (kernel != NULL && (!dso__has_build_id(kernel)))
954  		dso__read_running_kernel_build_id(kernel, machine);
955  
956  	return kernel;
957  }
958  
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)959  void machine__get_kallsyms_filename(struct machine *machine, char *buf,
960  				    size_t bufsz)
961  {
962  	if (machine__is_default_guest(machine))
963  		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
964  	else
965  		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
966  }
967  
968  const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
969  
970  /* Figure out the start address of kernel map from /proc/kallsyms.
971   * Returns the name of the start symbol in *symbol_name. Pass in NULL as
972   * symbol_name if it's not that important.
973   */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name,u64 * start,u64 * end)974  static int machine__get_running_kernel_start(struct machine *machine,
975  					     const char **symbol_name,
976  					     u64 *start, u64 *end)
977  {
978  	char filename[PATH_MAX];
979  	int i, err = -1;
980  	const char *name;
981  	u64 addr = 0;
982  
983  	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
984  
985  	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
986  		return 0;
987  
988  	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
989  		err = kallsyms__get_function_start(filename, name, &addr);
990  		if (!err)
991  			break;
992  	}
993  
994  	if (err)
995  		return -1;
996  
997  	if (symbol_name)
998  		*symbol_name = name;
999  
1000  	*start = addr;
1001  
1002  	err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1003  	if (err)
1004  		err = kallsyms__get_function_start(filename, "_etext", &addr);
1005  	if (!err)
1006  		*end = addr;
1007  
1008  	return 0;
1009  }
1010  
machine__create_extra_kernel_map(struct machine * machine,struct dso * kernel,struct extra_kernel_map * xm)1011  int machine__create_extra_kernel_map(struct machine *machine,
1012  				     struct dso *kernel,
1013  				     struct extra_kernel_map *xm)
1014  {
1015  	struct kmap *kmap;
1016  	struct map *map;
1017  	int err;
1018  
1019  	map = map__new2(xm->start, kernel);
1020  	if (!map)
1021  		return -ENOMEM;
1022  
1023  	map__set_end(map, xm->end);
1024  	map__set_pgoff(map, xm->pgoff);
1025  
1026  	kmap = map__kmap(map);
1027  
1028  	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1029  
1030  	err = maps__insert(machine__kernel_maps(machine), map);
1031  
1032  	if (!err) {
1033  		pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1034  			kmap->name, map__start(map), map__end(map));
1035  	}
1036  
1037  	map__put(map);
1038  
1039  	return err;
1040  }
1041  
find_entry_trampoline(struct dso * dso)1042  static u64 find_entry_trampoline(struct dso *dso)
1043  {
1044  	/* Duplicates are removed so lookup all aliases */
1045  	const char *syms[] = {
1046  		"_entry_trampoline",
1047  		"__entry_trampoline_start",
1048  		"entry_SYSCALL_64_trampoline",
1049  	};
1050  	struct symbol *sym = dso__first_symbol(dso);
1051  	unsigned int i;
1052  
1053  	for (; sym; sym = dso__next_symbol(sym)) {
1054  		if (sym->binding != STB_GLOBAL)
1055  			continue;
1056  		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1057  			if (!strcmp(sym->name, syms[i]))
1058  				return sym->start;
1059  		}
1060  	}
1061  
1062  	return 0;
1063  }
1064  
1065  /*
1066   * These values can be used for kernels that do not have symbols for the entry
1067   * trampolines in kallsyms.
1068   */
1069  #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1070  #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1071  #define X86_64_ENTRY_TRAMPOLINE		0x6000
1072  
1073  struct machine__map_x86_64_entry_trampolines_args {
1074  	struct maps *kmaps;
1075  	bool found;
1076  };
1077  
machine__map_x86_64_entry_trampolines_cb(struct map * map,void * data)1078  static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1079  {
1080  	struct machine__map_x86_64_entry_trampolines_args *args = data;
1081  	struct map *dest_map;
1082  	struct kmap *kmap = __map__kmap(map);
1083  
1084  	if (!kmap || !is_entry_trampoline(kmap->name))
1085  		return 0;
1086  
1087  	dest_map = maps__find(args->kmaps, map__pgoff(map));
1088  	if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1089  		map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1090  
1091  	map__put(dest_map);
1092  	args->found = true;
1093  	return 0;
1094  }
1095  
1096  /* Map x86_64 PTI entry trampolines */
machine__map_x86_64_entry_trampolines(struct machine * machine,struct dso * kernel)1097  int machine__map_x86_64_entry_trampolines(struct machine *machine,
1098  					  struct dso *kernel)
1099  {
1100  	struct machine__map_x86_64_entry_trampolines_args args = {
1101  		.kmaps = machine__kernel_maps(machine),
1102  		.found = false,
1103  	};
1104  	int nr_cpus_avail, cpu;
1105  	u64 pgoff;
1106  
1107  	/*
1108  	 * In the vmlinux case, pgoff is a virtual address which must now be
1109  	 * mapped to a vmlinux offset.
1110  	 */
1111  	maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1112  
1113  	if (args.found || machine->trampolines_mapped)
1114  		return 0;
1115  
1116  	pgoff = find_entry_trampoline(kernel);
1117  	if (!pgoff)
1118  		return 0;
1119  
1120  	nr_cpus_avail = machine__nr_cpus_avail(machine);
1121  
1122  	/* Add a 1 page map for each CPU's entry trampoline */
1123  	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1124  		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1125  			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1126  			 X86_64_ENTRY_TRAMPOLINE;
1127  		struct extra_kernel_map xm = {
1128  			.start = va,
1129  			.end   = va + page_size,
1130  			.pgoff = pgoff,
1131  		};
1132  
1133  		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1134  
1135  		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1136  			return -1;
1137  	}
1138  
1139  	machine->trampolines_mapped = nr_cpus_avail;
1140  
1141  	return 0;
1142  }
1143  
machine__create_extra_kernel_maps(struct machine * machine __maybe_unused,struct dso * kernel __maybe_unused)1144  int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1145  					     struct dso *kernel __maybe_unused)
1146  {
1147  	return 0;
1148  }
1149  
1150  static int
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)1151  __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1152  {
1153  	/* In case of renewal the kernel map, destroy previous one */
1154  	machine__destroy_kernel_maps(machine);
1155  
1156  	map__put(machine->vmlinux_map);
1157  	machine->vmlinux_map = map__new2(0, kernel);
1158  	if (machine->vmlinux_map == NULL)
1159  		return -ENOMEM;
1160  
1161  	map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1162  	return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1163  }
1164  
machine__destroy_kernel_maps(struct machine * machine)1165  void machine__destroy_kernel_maps(struct machine *machine)
1166  {
1167  	struct kmap *kmap;
1168  	struct map *map = machine__kernel_map(machine);
1169  
1170  	if (map == NULL)
1171  		return;
1172  
1173  	kmap = map__kmap(map);
1174  	maps__remove(machine__kernel_maps(machine), map);
1175  	if (kmap && kmap->ref_reloc_sym) {
1176  		zfree((char **)&kmap->ref_reloc_sym->name);
1177  		zfree(&kmap->ref_reloc_sym);
1178  	}
1179  
1180  	map__zput(machine->vmlinux_map);
1181  }
1182  
machines__create_guest_kernel_maps(struct machines * machines)1183  int machines__create_guest_kernel_maps(struct machines *machines)
1184  {
1185  	int ret = 0;
1186  	struct dirent **namelist = NULL;
1187  	int i, items = 0;
1188  	char path[PATH_MAX];
1189  	pid_t pid;
1190  	char *endp;
1191  
1192  	if (symbol_conf.default_guest_vmlinux_name ||
1193  	    symbol_conf.default_guest_modules ||
1194  	    symbol_conf.default_guest_kallsyms) {
1195  		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1196  	}
1197  
1198  	if (symbol_conf.guestmount) {
1199  		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1200  		if (items <= 0)
1201  			return -ENOENT;
1202  		for (i = 0; i < items; i++) {
1203  			if (!isdigit(namelist[i]->d_name[0])) {
1204  				/* Filter out . and .. */
1205  				continue;
1206  			}
1207  			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1208  			if ((*endp != '\0') ||
1209  			    (endp == namelist[i]->d_name) ||
1210  			    (errno == ERANGE)) {
1211  				pr_debug("invalid directory (%s). Skipping.\n",
1212  					 namelist[i]->d_name);
1213  				continue;
1214  			}
1215  			sprintf(path, "%s/%s/proc/kallsyms",
1216  				symbol_conf.guestmount,
1217  				namelist[i]->d_name);
1218  			ret = access(path, R_OK);
1219  			if (ret) {
1220  				pr_debug("Can't access file %s\n", path);
1221  				goto failure;
1222  			}
1223  			machines__create_kernel_maps(machines, pid);
1224  		}
1225  failure:
1226  		free(namelist);
1227  	}
1228  
1229  	return ret;
1230  }
1231  
machines__destroy_kernel_maps(struct machines * machines)1232  void machines__destroy_kernel_maps(struct machines *machines)
1233  {
1234  	struct rb_node *next = rb_first_cached(&machines->guests);
1235  
1236  	machine__destroy_kernel_maps(&machines->host);
1237  
1238  	while (next) {
1239  		struct machine *pos = rb_entry(next, struct machine, rb_node);
1240  
1241  		next = rb_next(&pos->rb_node);
1242  		rb_erase_cached(&pos->rb_node, &machines->guests);
1243  		machine__delete(pos);
1244  	}
1245  }
1246  
machines__create_kernel_maps(struct machines * machines,pid_t pid)1247  int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1248  {
1249  	struct machine *machine = machines__findnew(machines, pid);
1250  
1251  	if (machine == NULL)
1252  		return -1;
1253  
1254  	return machine__create_kernel_maps(machine);
1255  }
1256  
machine__load_kallsyms(struct machine * machine,const char * filename)1257  int machine__load_kallsyms(struct machine *machine, const char *filename)
1258  {
1259  	struct map *map = machine__kernel_map(machine);
1260  	struct dso *dso = map__dso(map);
1261  	int ret = __dso__load_kallsyms(dso, filename, map, true);
1262  
1263  	if (ret > 0) {
1264  		dso__set_loaded(dso);
1265  		/*
1266  		 * Since /proc/kallsyms will have multiple sessions for the
1267  		 * kernel, with modules between them, fixup the end of all
1268  		 * sections.
1269  		 */
1270  		maps__fixup_end(machine__kernel_maps(machine));
1271  	}
1272  
1273  	return ret;
1274  }
1275  
machine__load_vmlinux_path(struct machine * machine)1276  int machine__load_vmlinux_path(struct machine *machine)
1277  {
1278  	struct map *map = machine__kernel_map(machine);
1279  	struct dso *dso = map__dso(map);
1280  	int ret = dso__load_vmlinux_path(dso, map);
1281  
1282  	if (ret > 0)
1283  		dso__set_loaded(dso);
1284  
1285  	return ret;
1286  }
1287  
get_kernel_version(const char * root_dir)1288  static char *get_kernel_version(const char *root_dir)
1289  {
1290  	char version[PATH_MAX];
1291  	FILE *file;
1292  	char *name, *tmp;
1293  	const char *prefix = "Linux version ";
1294  
1295  	sprintf(version, "%s/proc/version", root_dir);
1296  	file = fopen(version, "r");
1297  	if (!file)
1298  		return NULL;
1299  
1300  	tmp = fgets(version, sizeof(version), file);
1301  	fclose(file);
1302  	if (!tmp)
1303  		return NULL;
1304  
1305  	name = strstr(version, prefix);
1306  	if (!name)
1307  		return NULL;
1308  	name += strlen(prefix);
1309  	tmp = strchr(name, ' ');
1310  	if (tmp)
1311  		*tmp = '\0';
1312  
1313  	return strdup(name);
1314  }
1315  
is_kmod_dso(struct dso * dso)1316  static bool is_kmod_dso(struct dso *dso)
1317  {
1318  	return dso__symtab_type(dso) == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1319  	       dso__symtab_type(dso) == DSO_BINARY_TYPE__GUEST_KMODULE;
1320  }
1321  
maps__set_module_path(struct maps * maps,const char * path,struct kmod_path * m)1322  static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1323  {
1324  	char *long_name;
1325  	struct dso *dso;
1326  	struct map *map = maps__find_by_name(maps, m->name);
1327  
1328  	if (map == NULL)
1329  		return 0;
1330  
1331  	long_name = strdup(path);
1332  	if (long_name == NULL) {
1333  		map__put(map);
1334  		return -ENOMEM;
1335  	}
1336  
1337  	dso = map__dso(map);
1338  	dso__set_long_name(dso, long_name, true);
1339  	dso__kernel_module_get_build_id(dso, "");
1340  
1341  	/*
1342  	 * Full name could reveal us kmod compression, so
1343  	 * we need to update the symtab_type if needed.
1344  	 */
1345  	if (m->comp && is_kmod_dso(dso)) {
1346  		dso__set_symtab_type(dso, dso__symtab_type(dso));
1347  		dso__set_comp(dso, m->comp);
1348  	}
1349  	map__put(map);
1350  	return 0;
1351  }
1352  
maps__set_modules_path_dir(struct maps * maps,const char * dir_name,int depth)1353  static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1354  {
1355  	struct dirent *dent;
1356  	DIR *dir = opendir(dir_name);
1357  	int ret = 0;
1358  
1359  	if (!dir) {
1360  		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1361  		return -1;
1362  	}
1363  
1364  	while ((dent = readdir(dir)) != NULL) {
1365  		char path[PATH_MAX];
1366  		struct stat st;
1367  
1368  		/*sshfs might return bad dent->d_type, so we have to stat*/
1369  		path__join(path, sizeof(path), dir_name, dent->d_name);
1370  		if (stat(path, &st))
1371  			continue;
1372  
1373  		if (S_ISDIR(st.st_mode)) {
1374  			if (!strcmp(dent->d_name, ".") ||
1375  			    !strcmp(dent->d_name, ".."))
1376  				continue;
1377  
1378  			/* Do not follow top-level source and build symlinks */
1379  			if (depth == 0) {
1380  				if (!strcmp(dent->d_name, "source") ||
1381  				    !strcmp(dent->d_name, "build"))
1382  					continue;
1383  			}
1384  
1385  			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1386  			if (ret < 0)
1387  				goto out;
1388  		} else {
1389  			struct kmod_path m;
1390  
1391  			ret = kmod_path__parse_name(&m, dent->d_name);
1392  			if (ret)
1393  				goto out;
1394  
1395  			if (m.kmod)
1396  				ret = maps__set_module_path(maps, path, &m);
1397  
1398  			zfree(&m.name);
1399  
1400  			if (ret)
1401  				goto out;
1402  		}
1403  	}
1404  
1405  out:
1406  	closedir(dir);
1407  	return ret;
1408  }
1409  
machine__set_modules_path(struct machine * machine)1410  static int machine__set_modules_path(struct machine *machine)
1411  {
1412  	char *version;
1413  	char modules_path[PATH_MAX];
1414  
1415  	version = get_kernel_version(machine->root_dir);
1416  	if (!version)
1417  		return -1;
1418  
1419  	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1420  		 machine->root_dir, version);
1421  	free(version);
1422  
1423  	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1424  }
arch__fix_module_text_start(u64 * start __maybe_unused,u64 * size __maybe_unused,const char * name __maybe_unused)1425  int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1426  				u64 *size __maybe_unused,
1427  				const char *name __maybe_unused)
1428  {
1429  	return 0;
1430  }
1431  
machine__create_module(void * arg,const char * name,u64 start,u64 size)1432  static int machine__create_module(void *arg, const char *name, u64 start,
1433  				  u64 size)
1434  {
1435  	struct machine *machine = arg;
1436  	struct map *map;
1437  
1438  	if (arch__fix_module_text_start(&start, &size, name) < 0)
1439  		return -1;
1440  
1441  	map = machine__addnew_module_map(machine, start, name);
1442  	if (map == NULL)
1443  		return -1;
1444  	map__set_end(map, start + size);
1445  
1446  	dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1447  	map__put(map);
1448  	return 0;
1449  }
1450  
machine__create_modules(struct machine * machine)1451  static int machine__create_modules(struct machine *machine)
1452  {
1453  	const char *modules;
1454  	char path[PATH_MAX];
1455  
1456  	if (machine__is_default_guest(machine)) {
1457  		modules = symbol_conf.default_guest_modules;
1458  	} else {
1459  		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1460  		modules = path;
1461  	}
1462  
1463  	if (symbol__restricted_filename(modules, "/proc/modules"))
1464  		return -1;
1465  
1466  	if (modules__parse(modules, machine, machine__create_module))
1467  		return -1;
1468  
1469  	if (!machine__set_modules_path(machine))
1470  		return 0;
1471  
1472  	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1473  
1474  	return 0;
1475  }
1476  
machine__set_kernel_mmap(struct machine * machine,u64 start,u64 end)1477  static void machine__set_kernel_mmap(struct machine *machine,
1478  				     u64 start, u64 end)
1479  {
1480  	map__set_start(machine->vmlinux_map, start);
1481  	map__set_end(machine->vmlinux_map, end);
1482  	/*
1483  	 * Be a bit paranoid here, some perf.data file came with
1484  	 * a zero sized synthesized MMAP event for the kernel.
1485  	 */
1486  	if (start == 0 && end == 0)
1487  		map__set_end(machine->vmlinux_map, ~0ULL);
1488  }
1489  
machine__update_kernel_mmap(struct machine * machine,u64 start,u64 end)1490  static int machine__update_kernel_mmap(struct machine *machine,
1491  				     u64 start, u64 end)
1492  {
1493  	struct map *orig, *updated;
1494  	int err;
1495  
1496  	orig = machine->vmlinux_map;
1497  	updated = map__get(orig);
1498  
1499  	machine->vmlinux_map = updated;
1500  	maps__remove(machine__kernel_maps(machine), orig);
1501  	machine__set_kernel_mmap(machine, start, end);
1502  	err = maps__insert(machine__kernel_maps(machine), updated);
1503  	map__put(orig);
1504  
1505  	return err;
1506  }
1507  
machine__create_kernel_maps(struct machine * machine)1508  int machine__create_kernel_maps(struct machine *machine)
1509  {
1510  	struct dso *kernel = machine__get_kernel(machine);
1511  	const char *name = NULL;
1512  	u64 start = 0, end = ~0ULL;
1513  	int ret;
1514  
1515  	if (kernel == NULL)
1516  		return -1;
1517  
1518  	ret = __machine__create_kernel_maps(machine, kernel);
1519  	if (ret < 0)
1520  		goto out_put;
1521  
1522  	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1523  		if (machine__is_host(machine))
1524  			pr_debug("Problems creating module maps, "
1525  				 "continuing anyway...\n");
1526  		else
1527  			pr_debug("Problems creating module maps for guest %d, "
1528  				 "continuing anyway...\n", machine->pid);
1529  	}
1530  
1531  	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1532  		if (name &&
1533  		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1534  			machine__destroy_kernel_maps(machine);
1535  			ret = -1;
1536  			goto out_put;
1537  		}
1538  
1539  		/*
1540  		 * we have a real start address now, so re-order the kmaps
1541  		 * assume it's the last in the kmaps
1542  		 */
1543  		ret = machine__update_kernel_mmap(machine, start, end);
1544  		if (ret < 0)
1545  			goto out_put;
1546  	}
1547  
1548  	if (machine__create_extra_kernel_maps(machine, kernel))
1549  		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1550  
1551  	if (end == ~0ULL) {
1552  		/* update end address of the kernel map using adjacent module address */
1553  		struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1554  							 machine__kernel_map(machine));
1555  
1556  		if (next) {
1557  			machine__set_kernel_mmap(machine, start, map__start(next));
1558  			map__put(next);
1559  		}
1560  	}
1561  
1562  out_put:
1563  	dso__put(kernel);
1564  	return ret;
1565  }
1566  
machine__uses_kcore_cb(struct dso * dso,void * data __maybe_unused)1567  static int machine__uses_kcore_cb(struct dso *dso, void *data __maybe_unused)
1568  {
1569  	return dso__is_kcore(dso) ? 1 : 0;
1570  }
1571  
machine__uses_kcore(struct machine * machine)1572  static bool machine__uses_kcore(struct machine *machine)
1573  {
1574  	return dsos__for_each_dso(&machine->dsos, machine__uses_kcore_cb, NULL) != 0 ? true : false;
1575  }
1576  
perf_event__is_extra_kernel_mmap(struct machine * machine,struct extra_kernel_map * xm)1577  static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1578  					     struct extra_kernel_map *xm)
1579  {
1580  	return machine__is(machine, "x86_64") &&
1581  	       is_entry_trampoline(xm->name);
1582  }
1583  
machine__process_extra_kernel_map(struct machine * machine,struct extra_kernel_map * xm)1584  static int machine__process_extra_kernel_map(struct machine *machine,
1585  					     struct extra_kernel_map *xm)
1586  {
1587  	struct dso *kernel = machine__kernel_dso(machine);
1588  
1589  	if (kernel == NULL)
1590  		return -1;
1591  
1592  	return machine__create_extra_kernel_map(machine, kernel, xm);
1593  }
1594  
machine__process_kernel_mmap_event(struct machine * machine,struct extra_kernel_map * xm,struct build_id * bid)1595  static int machine__process_kernel_mmap_event(struct machine *machine,
1596  					      struct extra_kernel_map *xm,
1597  					      struct build_id *bid)
1598  {
1599  	enum dso_space_type dso_space;
1600  	bool is_kernel_mmap;
1601  	const char *mmap_name = machine->mmap_name;
1602  
1603  	/* If we have maps from kcore then we do not need or want any others */
1604  	if (machine__uses_kcore(machine))
1605  		return 0;
1606  
1607  	if (machine__is_host(machine))
1608  		dso_space = DSO_SPACE__KERNEL;
1609  	else
1610  		dso_space = DSO_SPACE__KERNEL_GUEST;
1611  
1612  	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1613  	if (!is_kernel_mmap && !machine__is_host(machine)) {
1614  		/*
1615  		 * If the event was recorded inside the guest and injected into
1616  		 * the host perf.data file, then it will match a host mmap_name,
1617  		 * so try that - see machine__set_mmap_name().
1618  		 */
1619  		mmap_name = "[kernel.kallsyms]";
1620  		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1621  	}
1622  	if (xm->name[0] == '/' ||
1623  	    (!is_kernel_mmap && xm->name[0] == '[')) {
1624  		struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1625  
1626  		if (map == NULL)
1627  			goto out_problem;
1628  
1629  		map__set_end(map, map__start(map) + xm->end - xm->start);
1630  
1631  		if (build_id__is_defined(bid))
1632  			dso__set_build_id(map__dso(map), bid);
1633  
1634  		map__put(map);
1635  	} else if (is_kernel_mmap) {
1636  		const char *symbol_name = xm->name + strlen(mmap_name);
1637  		/*
1638  		 * Should be there already, from the build-id table in
1639  		 * the header.
1640  		 */
1641  		struct dso *kernel = dsos__find_kernel_dso(&machine->dsos);
1642  
1643  		if (kernel == NULL)
1644  			kernel = machine__findnew_dso(machine, machine->mmap_name);
1645  		if (kernel == NULL)
1646  			goto out_problem;
1647  
1648  		dso__set_kernel(kernel, dso_space);
1649  		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1650  			dso__put(kernel);
1651  			goto out_problem;
1652  		}
1653  
1654  		if (strstr(dso__long_name(kernel), "vmlinux"))
1655  			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1656  
1657  		if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1658  			dso__put(kernel);
1659  			goto out_problem;
1660  		}
1661  
1662  		if (build_id__is_defined(bid))
1663  			dso__set_build_id(kernel, bid);
1664  
1665  		/*
1666  		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1667  		 * symbol. Effectively having zero here means that at record
1668  		 * time /proc/sys/kernel/kptr_restrict was non zero.
1669  		 */
1670  		if (xm->pgoff != 0) {
1671  			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1672  							symbol_name,
1673  							xm->pgoff);
1674  		}
1675  
1676  		if (machine__is_default_guest(machine)) {
1677  			/*
1678  			 * preload dso of guest kernel and modules
1679  			 */
1680  			dso__load(kernel, machine__kernel_map(machine));
1681  		}
1682  		dso__put(kernel);
1683  	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1684  		return machine__process_extra_kernel_map(machine, xm);
1685  	}
1686  	return 0;
1687  out_problem:
1688  	return -1;
1689  }
1690  
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1691  int machine__process_mmap2_event(struct machine *machine,
1692  				 union perf_event *event,
1693  				 struct perf_sample *sample)
1694  {
1695  	struct thread *thread;
1696  	struct map *map;
1697  	struct dso_id dso_id = {
1698  		.maj = event->mmap2.maj,
1699  		.min = event->mmap2.min,
1700  		.ino = event->mmap2.ino,
1701  		.ino_generation = event->mmap2.ino_generation,
1702  	};
1703  	struct build_id __bid, *bid = NULL;
1704  	int ret = 0;
1705  
1706  	if (dump_trace)
1707  		perf_event__fprintf_mmap2(event, stdout);
1708  
1709  	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1710  		bid = &__bid;
1711  		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1712  	}
1713  
1714  	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1715  	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1716  		struct extra_kernel_map xm = {
1717  			.start = event->mmap2.start,
1718  			.end   = event->mmap2.start + event->mmap2.len,
1719  			.pgoff = event->mmap2.pgoff,
1720  		};
1721  
1722  		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1723  		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1724  		if (ret < 0)
1725  			goto out_problem;
1726  		return 0;
1727  	}
1728  
1729  	thread = machine__findnew_thread(machine, event->mmap2.pid,
1730  					event->mmap2.tid);
1731  	if (thread == NULL)
1732  		goto out_problem;
1733  
1734  	map = map__new(machine, event->mmap2.start,
1735  			event->mmap2.len, event->mmap2.pgoff,
1736  			&dso_id, event->mmap2.prot,
1737  			event->mmap2.flags, bid,
1738  			event->mmap2.filename, thread);
1739  
1740  	if (map == NULL)
1741  		goto out_problem_map;
1742  
1743  	ret = thread__insert_map(thread, map);
1744  	if (ret)
1745  		goto out_problem_insert;
1746  
1747  	thread__put(thread);
1748  	map__put(map);
1749  	return 0;
1750  
1751  out_problem_insert:
1752  	map__put(map);
1753  out_problem_map:
1754  	thread__put(thread);
1755  out_problem:
1756  	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1757  	return 0;
1758  }
1759  
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1760  int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1761  				struct perf_sample *sample)
1762  {
1763  	struct thread *thread;
1764  	struct map *map;
1765  	u32 prot = 0;
1766  	int ret = 0;
1767  
1768  	if (dump_trace)
1769  		perf_event__fprintf_mmap(event, stdout);
1770  
1771  	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1772  	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1773  		struct extra_kernel_map xm = {
1774  			.start = event->mmap.start,
1775  			.end   = event->mmap.start + event->mmap.len,
1776  			.pgoff = event->mmap.pgoff,
1777  		};
1778  
1779  		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1780  		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1781  		if (ret < 0)
1782  			goto out_problem;
1783  		return 0;
1784  	}
1785  
1786  	thread = machine__findnew_thread(machine, event->mmap.pid,
1787  					 event->mmap.tid);
1788  	if (thread == NULL)
1789  		goto out_problem;
1790  
1791  	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1792  		prot = PROT_EXEC;
1793  
1794  	map = map__new(machine, event->mmap.start,
1795  			event->mmap.len, event->mmap.pgoff,
1796  			NULL, prot, 0, NULL, event->mmap.filename, thread);
1797  
1798  	if (map == NULL)
1799  		goto out_problem_map;
1800  
1801  	ret = thread__insert_map(thread, map);
1802  	if (ret)
1803  		goto out_problem_insert;
1804  
1805  	thread__put(thread);
1806  	map__put(map);
1807  	return 0;
1808  
1809  out_problem_insert:
1810  	map__put(map);
1811  out_problem_map:
1812  	thread__put(thread);
1813  out_problem:
1814  	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1815  	return 0;
1816  }
1817  
machine__remove_thread(struct machine * machine,struct thread * th)1818  void machine__remove_thread(struct machine *machine, struct thread *th)
1819  {
1820  	return threads__remove(&machine->threads, th);
1821  }
1822  
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1823  int machine__process_fork_event(struct machine *machine, union perf_event *event,
1824  				struct perf_sample *sample)
1825  {
1826  	struct thread *thread = machine__find_thread(machine,
1827  						     event->fork.pid,
1828  						     event->fork.tid);
1829  	struct thread *parent = machine__findnew_thread(machine,
1830  							event->fork.ppid,
1831  							event->fork.ptid);
1832  	bool do_maps_clone = true;
1833  	int err = 0;
1834  
1835  	if (dump_trace)
1836  		perf_event__fprintf_task(event, stdout);
1837  
1838  	/*
1839  	 * There may be an existing thread that is not actually the parent,
1840  	 * either because we are processing events out of order, or because the
1841  	 * (fork) event that would have removed the thread was lost. Assume the
1842  	 * latter case and continue on as best we can.
1843  	 */
1844  	if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1845  		dump_printf("removing erroneous parent thread %d/%d\n",
1846  			    thread__pid(parent), thread__tid(parent));
1847  		machine__remove_thread(machine, parent);
1848  		thread__put(parent);
1849  		parent = machine__findnew_thread(machine, event->fork.ppid,
1850  						 event->fork.ptid);
1851  	}
1852  
1853  	/* if a thread currently exists for the thread id remove it */
1854  	if (thread != NULL) {
1855  		machine__remove_thread(machine, thread);
1856  		thread__put(thread);
1857  	}
1858  
1859  	thread = machine__findnew_thread(machine, event->fork.pid,
1860  					 event->fork.tid);
1861  	/*
1862  	 * When synthesizing FORK events, we are trying to create thread
1863  	 * objects for the already running tasks on the machine.
1864  	 *
1865  	 * Normally, for a kernel FORK event, we want to clone the parent's
1866  	 * maps because that is what the kernel just did.
1867  	 *
1868  	 * But when synthesizing, this should not be done.  If we do, we end up
1869  	 * with overlapping maps as we process the synthesized MMAP2 events that
1870  	 * get delivered shortly thereafter.
1871  	 *
1872  	 * Use the FORK event misc flags in an internal way to signal this
1873  	 * situation, so we can elide the map clone when appropriate.
1874  	 */
1875  	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1876  		do_maps_clone = false;
1877  
1878  	if (thread == NULL || parent == NULL ||
1879  	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1880  		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1881  		err = -1;
1882  	}
1883  	thread__put(thread);
1884  	thread__put(parent);
1885  
1886  	return err;
1887  }
1888  
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1889  int machine__process_exit_event(struct machine *machine, union perf_event *event,
1890  				struct perf_sample *sample __maybe_unused)
1891  {
1892  	struct thread *thread = machine__find_thread(machine,
1893  						     event->fork.pid,
1894  						     event->fork.tid);
1895  
1896  	if (dump_trace)
1897  		perf_event__fprintf_task(event, stdout);
1898  
1899  	if (thread != NULL) {
1900  		if (symbol_conf.keep_exited_threads)
1901  			thread__set_exited(thread, /*exited=*/true);
1902  		else
1903  			machine__remove_thread(machine, thread);
1904  	}
1905  	thread__put(thread);
1906  	return 0;
1907  }
1908  
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1909  int machine__process_event(struct machine *machine, union perf_event *event,
1910  			   struct perf_sample *sample)
1911  {
1912  	int ret;
1913  
1914  	switch (event->header.type) {
1915  	case PERF_RECORD_COMM:
1916  		ret = machine__process_comm_event(machine, event, sample); break;
1917  	case PERF_RECORD_MMAP:
1918  		ret = machine__process_mmap_event(machine, event, sample); break;
1919  	case PERF_RECORD_NAMESPACES:
1920  		ret = machine__process_namespaces_event(machine, event, sample); break;
1921  	case PERF_RECORD_CGROUP:
1922  		ret = machine__process_cgroup_event(machine, event, sample); break;
1923  	case PERF_RECORD_MMAP2:
1924  		ret = machine__process_mmap2_event(machine, event, sample); break;
1925  	case PERF_RECORD_FORK:
1926  		ret = machine__process_fork_event(machine, event, sample); break;
1927  	case PERF_RECORD_EXIT:
1928  		ret = machine__process_exit_event(machine, event, sample); break;
1929  	case PERF_RECORD_LOST:
1930  		ret = machine__process_lost_event(machine, event, sample); break;
1931  	case PERF_RECORD_AUX:
1932  		ret = machine__process_aux_event(machine, event); break;
1933  	case PERF_RECORD_ITRACE_START:
1934  		ret = machine__process_itrace_start_event(machine, event); break;
1935  	case PERF_RECORD_LOST_SAMPLES:
1936  		ret = machine__process_lost_samples_event(machine, event, sample); break;
1937  	case PERF_RECORD_SWITCH:
1938  	case PERF_RECORD_SWITCH_CPU_WIDE:
1939  		ret = machine__process_switch_event(machine, event); break;
1940  	case PERF_RECORD_KSYMBOL:
1941  		ret = machine__process_ksymbol(machine, event, sample); break;
1942  	case PERF_RECORD_BPF_EVENT:
1943  		ret = machine__process_bpf(machine, event, sample); break;
1944  	case PERF_RECORD_TEXT_POKE:
1945  		ret = machine__process_text_poke(machine, event, sample); break;
1946  	case PERF_RECORD_AUX_OUTPUT_HW_ID:
1947  		ret = machine__process_aux_output_hw_id_event(machine, event); break;
1948  	default:
1949  		ret = -1;
1950  		break;
1951  	}
1952  
1953  	return ret;
1954  }
1955  
symbol__match_regex(struct symbol * sym,regex_t * regex)1956  static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1957  {
1958  	return regexec(regex, sym->name, 0, NULL, 0) == 0;
1959  }
1960  
ip__resolve_ams(struct thread * thread,struct addr_map_symbol * ams,u64 ip)1961  static void ip__resolve_ams(struct thread *thread,
1962  			    struct addr_map_symbol *ams,
1963  			    u64 ip)
1964  {
1965  	struct addr_location al;
1966  
1967  	addr_location__init(&al);
1968  	/*
1969  	 * We cannot use the header.misc hint to determine whether a
1970  	 * branch stack address is user, kernel, guest, hypervisor.
1971  	 * Branches may straddle the kernel/user/hypervisor boundaries.
1972  	 * Thus, we have to try consecutively until we find a match
1973  	 * or else, the symbol is unknown
1974  	 */
1975  	thread__find_cpumode_addr_location(thread, ip, &al);
1976  
1977  	ams->addr = ip;
1978  	ams->al_addr = al.addr;
1979  	ams->al_level = al.level;
1980  	ams->ms.maps = maps__get(al.maps);
1981  	ams->ms.sym = al.sym;
1982  	ams->ms.map = map__get(al.map);
1983  	ams->phys_addr = 0;
1984  	ams->data_page_size = 0;
1985  	addr_location__exit(&al);
1986  }
1987  
ip__resolve_data(struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr,u64 phys_addr,u64 daddr_page_size)1988  static void ip__resolve_data(struct thread *thread,
1989  			     u8 m, struct addr_map_symbol *ams,
1990  			     u64 addr, u64 phys_addr, u64 daddr_page_size)
1991  {
1992  	struct addr_location al;
1993  
1994  	addr_location__init(&al);
1995  
1996  	thread__find_symbol(thread, m, addr, &al);
1997  
1998  	ams->addr = addr;
1999  	ams->al_addr = al.addr;
2000  	ams->al_level = al.level;
2001  	ams->ms.maps = maps__get(al.maps);
2002  	ams->ms.sym = al.sym;
2003  	ams->ms.map = map__get(al.map);
2004  	ams->phys_addr = phys_addr;
2005  	ams->data_page_size = daddr_page_size;
2006  	addr_location__exit(&al);
2007  }
2008  
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)2009  struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2010  				     struct addr_location *al)
2011  {
2012  	struct mem_info *mi = mem_info__new();
2013  
2014  	if (!mi)
2015  		return NULL;
2016  
2017  	ip__resolve_ams(al->thread, mem_info__iaddr(mi), sample->ip);
2018  	ip__resolve_data(al->thread, al->cpumode, mem_info__daddr(mi),
2019  			 sample->addr, sample->phys_addr,
2020  			 sample->data_page_size);
2021  	mem_info__data_src(mi)->val = sample->data_src;
2022  
2023  	return mi;
2024  }
2025  
callchain_srcline(struct map_symbol * ms,u64 ip)2026  static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2027  {
2028  	struct map *map = ms->map;
2029  	char *srcline = NULL;
2030  	struct dso *dso;
2031  
2032  	if (!map || callchain_param.key == CCKEY_FUNCTION)
2033  		return srcline;
2034  
2035  	dso = map__dso(map);
2036  	srcline = srcline__tree_find(dso__srclines(dso), ip);
2037  	if (!srcline) {
2038  		bool show_sym = false;
2039  		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2040  
2041  		srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2042  				      ms->sym, show_sym, show_addr, ip);
2043  		srcline__tree_insert(dso__srclines(dso), ip, srcline);
2044  	}
2045  
2046  	return srcline;
2047  }
2048  
2049  struct iterations {
2050  	int nr_loop_iter;
2051  	u64 cycles;
2052  };
2053  
add_callchain_ip(struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,u64 ip,bool branch,struct branch_flags * flags,struct iterations * iter,u64 branch_from,bool symbols)2054  static int add_callchain_ip(struct thread *thread,
2055  			    struct callchain_cursor *cursor,
2056  			    struct symbol **parent,
2057  			    struct addr_location *root_al,
2058  			    u8 *cpumode,
2059  			    u64 ip,
2060  			    bool branch,
2061  			    struct branch_flags *flags,
2062  			    struct iterations *iter,
2063  			    u64 branch_from,
2064  			    bool symbols)
2065  {
2066  	struct map_symbol ms = {};
2067  	struct addr_location al;
2068  	int nr_loop_iter = 0, err = 0;
2069  	u64 iter_cycles = 0;
2070  	const char *srcline = NULL;
2071  
2072  	addr_location__init(&al);
2073  	al.filtered = 0;
2074  	al.sym = NULL;
2075  	al.srcline = NULL;
2076  	if (!cpumode) {
2077  		thread__find_cpumode_addr_location(thread, ip, &al);
2078  	} else {
2079  		if (ip >= PERF_CONTEXT_MAX) {
2080  			switch (ip) {
2081  			case PERF_CONTEXT_HV:
2082  				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2083  				break;
2084  			case PERF_CONTEXT_KERNEL:
2085  				*cpumode = PERF_RECORD_MISC_KERNEL;
2086  				break;
2087  			case PERF_CONTEXT_USER:
2088  				*cpumode = PERF_RECORD_MISC_USER;
2089  				break;
2090  			default:
2091  				pr_debug("invalid callchain context: "
2092  					 "%"PRId64"\n", (s64) ip);
2093  				/*
2094  				 * It seems the callchain is corrupted.
2095  				 * Discard all.
2096  				 */
2097  				callchain_cursor_reset(cursor);
2098  				err = 1;
2099  				goto out;
2100  			}
2101  			goto out;
2102  		}
2103  		if (symbols)
2104  			thread__find_symbol(thread, *cpumode, ip, &al);
2105  	}
2106  
2107  	if (al.sym != NULL) {
2108  		if (perf_hpp_list.parent && !*parent &&
2109  		    symbol__match_regex(al.sym, &parent_regex))
2110  			*parent = al.sym;
2111  		else if (have_ignore_callees && root_al &&
2112  		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2113  			/* Treat this symbol as the root,
2114  			   forgetting its callees. */
2115  			addr_location__copy(root_al, &al);
2116  			callchain_cursor_reset(cursor);
2117  		}
2118  	}
2119  
2120  	if (symbol_conf.hide_unresolved && al.sym == NULL)
2121  		goto out;
2122  
2123  	if (iter) {
2124  		nr_loop_iter = iter->nr_loop_iter;
2125  		iter_cycles = iter->cycles;
2126  	}
2127  
2128  	ms.maps = maps__get(al.maps);
2129  	ms.map = map__get(al.map);
2130  	ms.sym = al.sym;
2131  	srcline = callchain_srcline(&ms, al.addr);
2132  	err = callchain_cursor_append(cursor, ip, &ms,
2133  				      branch, flags, nr_loop_iter,
2134  				      iter_cycles, branch_from, srcline);
2135  out:
2136  	addr_location__exit(&al);
2137  	map_symbol__exit(&ms);
2138  	return err;
2139  }
2140  
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)2141  struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2142  					   struct addr_location *al)
2143  {
2144  	unsigned int i;
2145  	const struct branch_stack *bs = sample->branch_stack;
2146  	struct branch_entry *entries = perf_sample__branch_entries(sample);
2147  	u64 *branch_stack_cntr = sample->branch_stack_cntr;
2148  	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2149  
2150  	if (!bi)
2151  		return NULL;
2152  
2153  	for (i = 0; i < bs->nr; i++) {
2154  		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2155  		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2156  		bi[i].flags = entries[i].flags;
2157  		if (branch_stack_cntr)
2158  			bi[i].branch_stack_cntr  = branch_stack_cntr[i];
2159  	}
2160  	return bi;
2161  }
2162  
save_iterations(struct iterations * iter,struct branch_entry * be,int nr)2163  static void save_iterations(struct iterations *iter,
2164  			    struct branch_entry *be, int nr)
2165  {
2166  	int i;
2167  
2168  	iter->nr_loop_iter++;
2169  	iter->cycles = 0;
2170  
2171  	for (i = 0; i < nr; i++)
2172  		iter->cycles += be[i].flags.cycles;
2173  }
2174  
2175  #define CHASHSZ 127
2176  #define CHASHBITS 7
2177  #define NO_ENTRY 0xff
2178  
2179  #define PERF_MAX_BRANCH_DEPTH 127
2180  
2181  /* Remove loops. */
remove_loops(struct branch_entry * l,int nr,struct iterations * iter)2182  static int remove_loops(struct branch_entry *l, int nr,
2183  			struct iterations *iter)
2184  {
2185  	int i, j, off;
2186  	unsigned char chash[CHASHSZ];
2187  
2188  	memset(chash, NO_ENTRY, sizeof(chash));
2189  
2190  	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2191  
2192  	for (i = 0; i < nr; i++) {
2193  		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2194  
2195  		/* no collision handling for now */
2196  		if (chash[h] == NO_ENTRY) {
2197  			chash[h] = i;
2198  		} else if (l[chash[h]].from == l[i].from) {
2199  			bool is_loop = true;
2200  			/* check if it is a real loop */
2201  			off = 0;
2202  			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2203  				if (l[j].from != l[i + off].from) {
2204  					is_loop = false;
2205  					break;
2206  				}
2207  			if (is_loop) {
2208  				j = nr - (i + off);
2209  				if (j > 0) {
2210  					save_iterations(iter + i + off,
2211  						l + i, off);
2212  
2213  					memmove(iter + i, iter + i + off,
2214  						j * sizeof(*iter));
2215  
2216  					memmove(l + i, l + i + off,
2217  						j * sizeof(*l));
2218  				}
2219  
2220  				nr -= off;
2221  			}
2222  		}
2223  	}
2224  	return nr;
2225  }
2226  
lbr_callchain_add_kernel_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 branch_from,bool callee,int end,bool symbols)2227  static int lbr_callchain_add_kernel_ip(struct thread *thread,
2228  				       struct callchain_cursor *cursor,
2229  				       struct perf_sample *sample,
2230  				       struct symbol **parent,
2231  				       struct addr_location *root_al,
2232  				       u64 branch_from,
2233  				       bool callee, int end,
2234  				       bool symbols)
2235  {
2236  	struct ip_callchain *chain = sample->callchain;
2237  	u8 cpumode = PERF_RECORD_MISC_USER;
2238  	int err, i;
2239  
2240  	if (callee) {
2241  		for (i = 0; i < end + 1; i++) {
2242  			err = add_callchain_ip(thread, cursor, parent,
2243  					       root_al, &cpumode, chain->ips[i],
2244  					       false, NULL, NULL, branch_from,
2245  					       symbols);
2246  			if (err)
2247  				return err;
2248  		}
2249  		return 0;
2250  	}
2251  
2252  	for (i = end; i >= 0; i--) {
2253  		err = add_callchain_ip(thread, cursor, parent,
2254  				       root_al, &cpumode, chain->ips[i],
2255  				       false, NULL, NULL, branch_from,
2256  				       symbols);
2257  		if (err)
2258  			return err;
2259  	}
2260  
2261  	return 0;
2262  }
2263  
save_lbr_cursor_node(struct thread * thread,struct callchain_cursor * cursor,int idx)2264  static void save_lbr_cursor_node(struct thread *thread,
2265  				 struct callchain_cursor *cursor,
2266  				 int idx)
2267  {
2268  	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2269  
2270  	if (!lbr_stitch)
2271  		return;
2272  
2273  	if (cursor->pos == cursor->nr) {
2274  		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2275  		return;
2276  	}
2277  
2278  	if (!cursor->curr)
2279  		cursor->curr = cursor->first;
2280  	else
2281  		cursor->curr = cursor->curr->next;
2282  
2283  	map_symbol__exit(&lbr_stitch->prev_lbr_cursor[idx].ms);
2284  	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2285  	       sizeof(struct callchain_cursor_node));
2286  	lbr_stitch->prev_lbr_cursor[idx].ms.maps = maps__get(cursor->curr->ms.maps);
2287  	lbr_stitch->prev_lbr_cursor[idx].ms.map = map__get(cursor->curr->ms.map);
2288  
2289  	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2290  	cursor->pos++;
2291  }
2292  
lbr_callchain_add_lbr_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 * branch_from,bool callee,bool symbols)2293  static int lbr_callchain_add_lbr_ip(struct thread *thread,
2294  				    struct callchain_cursor *cursor,
2295  				    struct perf_sample *sample,
2296  				    struct symbol **parent,
2297  				    struct addr_location *root_al,
2298  				    u64 *branch_from,
2299  				    bool callee,
2300  				    bool symbols)
2301  {
2302  	struct branch_stack *lbr_stack = sample->branch_stack;
2303  	struct branch_entry *entries = perf_sample__branch_entries(sample);
2304  	u8 cpumode = PERF_RECORD_MISC_USER;
2305  	int lbr_nr = lbr_stack->nr;
2306  	struct branch_flags *flags;
2307  	int err, i;
2308  	u64 ip;
2309  
2310  	/*
2311  	 * The curr and pos are not used in writing session. They are cleared
2312  	 * in callchain_cursor_commit() when the writing session is closed.
2313  	 * Using curr and pos to track the current cursor node.
2314  	 */
2315  	if (thread__lbr_stitch(thread)) {
2316  		cursor->curr = NULL;
2317  		cursor->pos = cursor->nr;
2318  		if (cursor->nr) {
2319  			cursor->curr = cursor->first;
2320  			for (i = 0; i < (int)(cursor->nr - 1); i++)
2321  				cursor->curr = cursor->curr->next;
2322  		}
2323  	}
2324  
2325  	if (callee) {
2326  		/* Add LBR ip from first entries.to */
2327  		ip = entries[0].to;
2328  		flags = &entries[0].flags;
2329  		*branch_from = entries[0].from;
2330  		err = add_callchain_ip(thread, cursor, parent,
2331  				       root_al, &cpumode, ip,
2332  				       true, flags, NULL,
2333  				       *branch_from, symbols);
2334  		if (err)
2335  			return err;
2336  
2337  		/*
2338  		 * The number of cursor node increases.
2339  		 * Move the current cursor node.
2340  		 * But does not need to save current cursor node for entry 0.
2341  		 * It's impossible to stitch the whole LBRs of previous sample.
2342  		 */
2343  		if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2344  			if (!cursor->curr)
2345  				cursor->curr = cursor->first;
2346  			else
2347  				cursor->curr = cursor->curr->next;
2348  			cursor->pos++;
2349  		}
2350  
2351  		/* Add LBR ip from entries.from one by one. */
2352  		for (i = 0; i < lbr_nr; i++) {
2353  			ip = entries[i].from;
2354  			flags = &entries[i].flags;
2355  			err = add_callchain_ip(thread, cursor, parent,
2356  					       root_al, &cpumode, ip,
2357  					       true, flags, NULL,
2358  					       *branch_from, symbols);
2359  			if (err)
2360  				return err;
2361  			save_lbr_cursor_node(thread, cursor, i);
2362  		}
2363  		return 0;
2364  	}
2365  
2366  	/* Add LBR ip from entries.from one by one. */
2367  	for (i = lbr_nr - 1; i >= 0; i--) {
2368  		ip = entries[i].from;
2369  		flags = &entries[i].flags;
2370  		err = add_callchain_ip(thread, cursor, parent,
2371  				       root_al, &cpumode, ip,
2372  				       true, flags, NULL,
2373  				       *branch_from, symbols);
2374  		if (err)
2375  			return err;
2376  		save_lbr_cursor_node(thread, cursor, i);
2377  	}
2378  
2379  	if (lbr_nr > 0) {
2380  		/* Add LBR ip from first entries.to */
2381  		ip = entries[0].to;
2382  		flags = &entries[0].flags;
2383  		*branch_from = entries[0].from;
2384  		err = add_callchain_ip(thread, cursor, parent,
2385  				root_al, &cpumode, ip,
2386  				true, flags, NULL,
2387  				*branch_from, symbols);
2388  		if (err)
2389  			return err;
2390  	}
2391  
2392  	return 0;
2393  }
2394  
lbr_callchain_add_stitched_lbr_ip(struct thread * thread,struct callchain_cursor * cursor)2395  static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2396  					     struct callchain_cursor *cursor)
2397  {
2398  	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2399  	struct callchain_cursor_node *cnode;
2400  	struct stitch_list *stitch_node;
2401  	int err;
2402  
2403  	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2404  		cnode = &stitch_node->cursor;
2405  
2406  		err = callchain_cursor_append(cursor, cnode->ip,
2407  					      &cnode->ms,
2408  					      cnode->branch,
2409  					      &cnode->branch_flags,
2410  					      cnode->nr_loop_iter,
2411  					      cnode->iter_cycles,
2412  					      cnode->branch_from,
2413  					      cnode->srcline);
2414  		if (err)
2415  			return err;
2416  	}
2417  	return 0;
2418  }
2419  
get_stitch_node(struct thread * thread)2420  static struct stitch_list *get_stitch_node(struct thread *thread)
2421  {
2422  	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2423  	struct stitch_list *stitch_node;
2424  
2425  	if (!list_empty(&lbr_stitch->free_lists)) {
2426  		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2427  					       struct stitch_list, node);
2428  		list_del(&stitch_node->node);
2429  
2430  		return stitch_node;
2431  	}
2432  
2433  	return malloc(sizeof(struct stitch_list));
2434  }
2435  
has_stitched_lbr(struct thread * thread,struct perf_sample * cur,struct perf_sample * prev,unsigned int max_lbr,bool callee)2436  static bool has_stitched_lbr(struct thread *thread,
2437  			     struct perf_sample *cur,
2438  			     struct perf_sample *prev,
2439  			     unsigned int max_lbr,
2440  			     bool callee)
2441  {
2442  	struct branch_stack *cur_stack = cur->branch_stack;
2443  	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2444  	struct branch_stack *prev_stack = prev->branch_stack;
2445  	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2446  	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2447  	int i, j, nr_identical_branches = 0;
2448  	struct stitch_list *stitch_node;
2449  	u64 cur_base, distance;
2450  
2451  	if (!cur_stack || !prev_stack)
2452  		return false;
2453  
2454  	/* Find the physical index of the base-of-stack for current sample. */
2455  	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2456  
2457  	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2458  						     (max_lbr + prev_stack->hw_idx - cur_base);
2459  	/* Previous sample has shorter stack. Nothing can be stitched. */
2460  	if (distance + 1 > prev_stack->nr)
2461  		return false;
2462  
2463  	/*
2464  	 * Check if there are identical LBRs between two samples.
2465  	 * Identical LBRs must have same from, to and flags values. Also,
2466  	 * they have to be saved in the same LBR registers (same physical
2467  	 * index).
2468  	 *
2469  	 * Starts from the base-of-stack of current sample.
2470  	 */
2471  	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2472  		if ((prev_entries[i].from != cur_entries[j].from) ||
2473  		    (prev_entries[i].to != cur_entries[j].to) ||
2474  		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2475  			break;
2476  		nr_identical_branches++;
2477  	}
2478  
2479  	if (!nr_identical_branches)
2480  		return false;
2481  
2482  	/*
2483  	 * Save the LBRs between the base-of-stack of previous sample
2484  	 * and the base-of-stack of current sample into lbr_stitch->lists.
2485  	 * These LBRs will be stitched later.
2486  	 */
2487  	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2488  
2489  		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2490  			continue;
2491  
2492  		stitch_node = get_stitch_node(thread);
2493  		if (!stitch_node)
2494  			return false;
2495  
2496  		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2497  		       sizeof(struct callchain_cursor_node));
2498  
2499  		stitch_node->cursor.ms.maps = maps__get(lbr_stitch->prev_lbr_cursor[i].ms.maps);
2500  		stitch_node->cursor.ms.map = map__get(lbr_stitch->prev_lbr_cursor[i].ms.map);
2501  
2502  		if (callee)
2503  			list_add(&stitch_node->node, &lbr_stitch->lists);
2504  		else
2505  			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2506  	}
2507  
2508  	return true;
2509  }
2510  
alloc_lbr_stitch(struct thread * thread,unsigned int max_lbr)2511  static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2512  {
2513  	if (thread__lbr_stitch(thread))
2514  		return true;
2515  
2516  	thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2517  	if (!thread__lbr_stitch(thread))
2518  		goto err;
2519  
2520  	thread__lbr_stitch(thread)->prev_lbr_cursor =
2521  		calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2522  	if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2523  		goto free_lbr_stitch;
2524  
2525  	thread__lbr_stitch(thread)->prev_lbr_cursor_size = max_lbr + 1;
2526  
2527  	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2528  	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2529  
2530  	return true;
2531  
2532  free_lbr_stitch:
2533  	free(thread__lbr_stitch(thread));
2534  	thread__set_lbr_stitch(thread, NULL);
2535  err:
2536  	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2537  	thread__set_lbr_stitch_enable(thread, false);
2538  	return false;
2539  }
2540  
2541  /*
2542   * Resolve LBR callstack chain sample
2543   * Return:
2544   * 1 on success get LBR callchain information
2545   * 0 no available LBR callchain information, should try fp
2546   * negative error code on other errors.
2547   */
resolve_lbr_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,unsigned int max_lbr,bool symbols)2548  static int resolve_lbr_callchain_sample(struct thread *thread,
2549  					struct callchain_cursor *cursor,
2550  					struct perf_sample *sample,
2551  					struct symbol **parent,
2552  					struct addr_location *root_al,
2553  					int max_stack,
2554  					unsigned int max_lbr,
2555  					bool symbols)
2556  {
2557  	bool callee = (callchain_param.order == ORDER_CALLEE);
2558  	struct ip_callchain *chain = sample->callchain;
2559  	int chain_nr = min(max_stack, (int)chain->nr), i;
2560  	struct lbr_stitch *lbr_stitch;
2561  	bool stitched_lbr = false;
2562  	u64 branch_from = 0;
2563  	int err;
2564  
2565  	for (i = 0; i < chain_nr; i++) {
2566  		if (chain->ips[i] == PERF_CONTEXT_USER)
2567  			break;
2568  	}
2569  
2570  	/* LBR only affects the user callchain */
2571  	if (i == chain_nr)
2572  		return 0;
2573  
2574  	if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2575  	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2576  		lbr_stitch = thread__lbr_stitch(thread);
2577  
2578  		stitched_lbr = has_stitched_lbr(thread, sample,
2579  						&lbr_stitch->prev_sample,
2580  						max_lbr, callee);
2581  
2582  		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2583  			struct stitch_list *stitch_node;
2584  
2585  			list_for_each_entry(stitch_node, &lbr_stitch->lists, node)
2586  				map_symbol__exit(&stitch_node->cursor.ms);
2587  
2588  			list_splice_init(&lbr_stitch->lists, &lbr_stitch->free_lists);
2589  		}
2590  		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2591  	}
2592  
2593  	if (callee) {
2594  		/* Add kernel ip */
2595  		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2596  						  parent, root_al, branch_from,
2597  						  true, i, symbols);
2598  		if (err)
2599  			goto error;
2600  
2601  		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2602  					       root_al, &branch_from, true, symbols);
2603  		if (err)
2604  			goto error;
2605  
2606  		if (stitched_lbr) {
2607  			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2608  			if (err)
2609  				goto error;
2610  		}
2611  
2612  	} else {
2613  		if (stitched_lbr) {
2614  			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2615  			if (err)
2616  				goto error;
2617  		}
2618  		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2619  					       root_al, &branch_from, false, symbols);
2620  		if (err)
2621  			goto error;
2622  
2623  		/* Add kernel ip */
2624  		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2625  						  parent, root_al, branch_from,
2626  						  false, i, symbols);
2627  		if (err)
2628  			goto error;
2629  	}
2630  	return 1;
2631  
2632  error:
2633  	return (err < 0) ? err : 0;
2634  }
2635  
find_prev_cpumode(struct ip_callchain * chain,struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,int ent,bool symbols)2636  static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2637  			     struct callchain_cursor *cursor,
2638  			     struct symbol **parent,
2639  			     struct addr_location *root_al,
2640  			     u8 *cpumode, int ent, bool symbols)
2641  {
2642  	int err = 0;
2643  
2644  	while (--ent >= 0) {
2645  		u64 ip = chain->ips[ent];
2646  
2647  		if (ip >= PERF_CONTEXT_MAX) {
2648  			err = add_callchain_ip(thread, cursor, parent,
2649  					       root_al, cpumode, ip,
2650  					       false, NULL, NULL, 0, symbols);
2651  			break;
2652  		}
2653  	}
2654  	return err;
2655  }
2656  
get_leaf_frame_caller(struct perf_sample * sample,struct thread * thread,int usr_idx)2657  static u64 get_leaf_frame_caller(struct perf_sample *sample,
2658  		struct thread *thread, int usr_idx)
2659  {
2660  	if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2661  		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2662  	else
2663  		return 0;
2664  }
2665  
thread__resolve_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,bool symbols)2666  static int thread__resolve_callchain_sample(struct thread *thread,
2667  					    struct callchain_cursor *cursor,
2668  					    struct evsel *evsel,
2669  					    struct perf_sample *sample,
2670  					    struct symbol **parent,
2671  					    struct addr_location *root_al,
2672  					    int max_stack,
2673  					    bool symbols)
2674  {
2675  	struct branch_stack *branch = sample->branch_stack;
2676  	struct branch_entry *entries = perf_sample__branch_entries(sample);
2677  	struct ip_callchain *chain = sample->callchain;
2678  	int chain_nr = 0;
2679  	u8 cpumode = PERF_RECORD_MISC_USER;
2680  	int i, j, err, nr_entries, usr_idx;
2681  	int skip_idx = -1;
2682  	int first_call = 0;
2683  	u64 leaf_frame_caller;
2684  
2685  	if (chain)
2686  		chain_nr = chain->nr;
2687  
2688  	if (evsel__has_branch_callstack(evsel)) {
2689  		struct perf_env *env = evsel__env(evsel);
2690  
2691  		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2692  						   root_al, max_stack,
2693  						   !env ? 0 : env->max_branches,
2694  						   symbols);
2695  		if (err)
2696  			return (err < 0) ? err : 0;
2697  	}
2698  
2699  	/*
2700  	 * Based on DWARF debug information, some architectures skip
2701  	 * a callchain entry saved by the kernel.
2702  	 */
2703  	skip_idx = arch_skip_callchain_idx(thread, chain);
2704  
2705  	/*
2706  	 * Add branches to call stack for easier browsing. This gives
2707  	 * more context for a sample than just the callers.
2708  	 *
2709  	 * This uses individual histograms of paths compared to the
2710  	 * aggregated histograms the normal LBR mode uses.
2711  	 *
2712  	 * Limitations for now:
2713  	 * - No extra filters
2714  	 * - No annotations (should annotate somehow)
2715  	 */
2716  
2717  	if (branch && callchain_param.branch_callstack) {
2718  		int nr = min(max_stack, (int)branch->nr);
2719  		struct branch_entry be[nr];
2720  		struct iterations iter[nr];
2721  
2722  		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2723  			pr_warning("corrupted branch chain. skipping...\n");
2724  			goto check_calls;
2725  		}
2726  
2727  		for (i = 0; i < nr; i++) {
2728  			if (callchain_param.order == ORDER_CALLEE) {
2729  				be[i] = entries[i];
2730  
2731  				if (chain == NULL)
2732  					continue;
2733  
2734  				/*
2735  				 * Check for overlap into the callchain.
2736  				 * The return address is one off compared to
2737  				 * the branch entry. To adjust for this
2738  				 * assume the calling instruction is not longer
2739  				 * than 8 bytes.
2740  				 */
2741  				if (i == skip_idx ||
2742  				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2743  					first_call++;
2744  				else if (be[i].from < chain->ips[first_call] &&
2745  				    be[i].from >= chain->ips[first_call] - 8)
2746  					first_call++;
2747  			} else
2748  				be[i] = entries[branch->nr - i - 1];
2749  		}
2750  
2751  		memset(iter, 0, sizeof(struct iterations) * nr);
2752  		nr = remove_loops(be, nr, iter);
2753  
2754  		for (i = 0; i < nr; i++) {
2755  			err = add_callchain_ip(thread, cursor, parent,
2756  					       root_al,
2757  					       NULL, be[i].to,
2758  					       true, &be[i].flags,
2759  					       NULL, be[i].from, symbols);
2760  
2761  			if (!err) {
2762  				err = add_callchain_ip(thread, cursor, parent, root_al,
2763  						       NULL, be[i].from,
2764  						       true, &be[i].flags,
2765  						       &iter[i], 0, symbols);
2766  			}
2767  			if (err == -EINVAL)
2768  				break;
2769  			if (err)
2770  				return err;
2771  		}
2772  
2773  		if (chain_nr == 0)
2774  			return 0;
2775  
2776  		chain_nr -= nr;
2777  	}
2778  
2779  check_calls:
2780  	if (chain && callchain_param.order != ORDER_CALLEE) {
2781  		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2782  					&cpumode, chain->nr - first_call, symbols);
2783  		if (err)
2784  			return (err < 0) ? err : 0;
2785  	}
2786  	for (i = first_call, nr_entries = 0;
2787  	     i < chain_nr && nr_entries < max_stack; i++) {
2788  		u64 ip;
2789  
2790  		if (callchain_param.order == ORDER_CALLEE)
2791  			j = i;
2792  		else
2793  			j = chain->nr - i - 1;
2794  
2795  #ifdef HAVE_SKIP_CALLCHAIN_IDX
2796  		if (j == skip_idx)
2797  			continue;
2798  #endif
2799  		ip = chain->ips[j];
2800  		if (ip < PERF_CONTEXT_MAX)
2801                         ++nr_entries;
2802  		else if (callchain_param.order != ORDER_CALLEE) {
2803  			err = find_prev_cpumode(chain, thread, cursor, parent,
2804  						root_al, &cpumode, j, symbols);
2805  			if (err)
2806  				return (err < 0) ? err : 0;
2807  			continue;
2808  		}
2809  
2810  		/*
2811  		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2812  		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2813  		 * the index will be different in order to add the missing frame
2814  		 * at the right place.
2815  		 */
2816  
2817  		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2818  
2819  		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2820  
2821  			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2822  
2823  			/*
2824  			 * check if leaf_frame_Caller != ip to not add the same
2825  			 * value twice.
2826  			 */
2827  
2828  			if (leaf_frame_caller && leaf_frame_caller != ip) {
2829  
2830  				err = add_callchain_ip(thread, cursor, parent,
2831  						root_al, &cpumode, leaf_frame_caller,
2832  						false, NULL, NULL, 0, symbols);
2833  				if (err)
2834  					return (err < 0) ? err : 0;
2835  			}
2836  		}
2837  
2838  		err = add_callchain_ip(thread, cursor, parent,
2839  				       root_al, &cpumode, ip,
2840  				       false, NULL, NULL, 0, symbols);
2841  
2842  		if (err)
2843  			return (err < 0) ? err : 0;
2844  	}
2845  
2846  	return 0;
2847  }
2848  
append_inlines(struct callchain_cursor * cursor,struct map_symbol * ms,u64 ip)2849  static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2850  {
2851  	struct symbol *sym = ms->sym;
2852  	struct map *map = ms->map;
2853  	struct inline_node *inline_node;
2854  	struct inline_list *ilist;
2855  	struct dso *dso;
2856  	u64 addr;
2857  	int ret = 1;
2858  	struct map_symbol ilist_ms;
2859  
2860  	if (!symbol_conf.inline_name || !map || !sym)
2861  		return ret;
2862  
2863  	addr = map__dso_map_ip(map, ip);
2864  	addr = map__rip_2objdump(map, addr);
2865  	dso = map__dso(map);
2866  
2867  	inline_node = inlines__tree_find(dso__inlined_nodes(dso), addr);
2868  	if (!inline_node) {
2869  		inline_node = dso__parse_addr_inlines(dso, addr, sym);
2870  		if (!inline_node)
2871  			return ret;
2872  		inlines__tree_insert(dso__inlined_nodes(dso), inline_node);
2873  	}
2874  
2875  	ilist_ms = (struct map_symbol) {
2876  		.maps = maps__get(ms->maps),
2877  		.map = map__get(map),
2878  	};
2879  	list_for_each_entry(ilist, &inline_node->val, list) {
2880  		ilist_ms.sym = ilist->symbol;
2881  		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2882  					      NULL, 0, 0, 0, ilist->srcline);
2883  
2884  		if (ret != 0)
2885  			return ret;
2886  	}
2887  	map_symbol__exit(&ilist_ms);
2888  
2889  	return ret;
2890  }
2891  
unwind_entry(struct unwind_entry * entry,void * arg)2892  static int unwind_entry(struct unwind_entry *entry, void *arg)
2893  {
2894  	struct callchain_cursor *cursor = arg;
2895  	const char *srcline = NULL;
2896  	u64 addr = entry->ip;
2897  
2898  	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2899  		return 0;
2900  
2901  	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2902  		return 0;
2903  
2904  	/*
2905  	 * Convert entry->ip from a virtual address to an offset in
2906  	 * its corresponding binary.
2907  	 */
2908  	if (entry->ms.map)
2909  		addr = map__dso_map_ip(entry->ms.map, entry->ip);
2910  
2911  	srcline = callchain_srcline(&entry->ms, addr);
2912  	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2913  				       false, NULL, 0, 0, 0, srcline);
2914  }
2915  
thread__resolve_callchain_unwind(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,int max_stack,bool symbols)2916  static int thread__resolve_callchain_unwind(struct thread *thread,
2917  					    struct callchain_cursor *cursor,
2918  					    struct evsel *evsel,
2919  					    struct perf_sample *sample,
2920  					    int max_stack, bool symbols)
2921  {
2922  	/* Can we do dwarf post unwind? */
2923  	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2924  	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2925  		return 0;
2926  
2927  	/* Bail out if nothing was captured. */
2928  	if ((!sample->user_regs.regs) ||
2929  	    (!sample->user_stack.size))
2930  		return 0;
2931  
2932  	if (!symbols)
2933  		pr_debug("Not resolving symbols with an unwinder isn't currently supported\n");
2934  
2935  	return unwind__get_entries(unwind_entry, cursor,
2936  				   thread, sample, max_stack, false);
2937  }
2938  
__thread__resolve_callchain(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,bool symbols)2939  int __thread__resolve_callchain(struct thread *thread,
2940  				struct callchain_cursor *cursor,
2941  				struct evsel *evsel,
2942  				struct perf_sample *sample,
2943  				struct symbol **parent,
2944  				struct addr_location *root_al,
2945  				int max_stack,
2946  				bool symbols)
2947  {
2948  	int ret = 0;
2949  
2950  	if (cursor == NULL)
2951  		return -ENOMEM;
2952  
2953  	callchain_cursor_reset(cursor);
2954  
2955  	if (callchain_param.order == ORDER_CALLEE) {
2956  		ret = thread__resolve_callchain_sample(thread, cursor,
2957  						       evsel, sample,
2958  						       parent, root_al,
2959  						       max_stack, symbols);
2960  		if (ret)
2961  			return ret;
2962  		ret = thread__resolve_callchain_unwind(thread, cursor,
2963  						       evsel, sample,
2964  						       max_stack, symbols);
2965  	} else {
2966  		ret = thread__resolve_callchain_unwind(thread, cursor,
2967  						       evsel, sample,
2968  						       max_stack, symbols);
2969  		if (ret)
2970  			return ret;
2971  		ret = thread__resolve_callchain_sample(thread, cursor,
2972  						       evsel, sample,
2973  						       parent, root_al,
2974  						       max_stack, symbols);
2975  	}
2976  
2977  	return ret;
2978  }
2979  
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)2980  int machine__for_each_thread(struct machine *machine,
2981  			     int (*fn)(struct thread *thread, void *p),
2982  			     void *priv)
2983  {
2984  	return threads__for_each_thread(&machine->threads, fn, priv);
2985  }
2986  
machines__for_each_thread(struct machines * machines,int (* fn)(struct thread * thread,void * p),void * priv)2987  int machines__for_each_thread(struct machines *machines,
2988  			      int (*fn)(struct thread *thread, void *p),
2989  			      void *priv)
2990  {
2991  	struct rb_node *nd;
2992  	int rc = 0;
2993  
2994  	rc = machine__for_each_thread(&machines->host, fn, priv);
2995  	if (rc != 0)
2996  		return rc;
2997  
2998  	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2999  		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3000  
3001  		rc = machine__for_each_thread(machine, fn, priv);
3002  		if (rc != 0)
3003  			return rc;
3004  	}
3005  	return rc;
3006  }
3007  
3008  
thread_list_cb(struct thread * thread,void * data)3009  static int thread_list_cb(struct thread *thread, void *data)
3010  {
3011  	struct list_head *list = data;
3012  	struct thread_list *entry = malloc(sizeof(*entry));
3013  
3014  	if (!entry)
3015  		return -ENOMEM;
3016  
3017  	entry->thread = thread__get(thread);
3018  	list_add_tail(&entry->list, list);
3019  	return 0;
3020  }
3021  
machine__thread_list(struct machine * machine,struct list_head * list)3022  int machine__thread_list(struct machine *machine, struct list_head *list)
3023  {
3024  	return machine__for_each_thread(machine, thread_list_cb, list);
3025  }
3026  
thread_list__delete(struct list_head * list)3027  void thread_list__delete(struct list_head *list)
3028  {
3029  	struct thread_list *pos, *next;
3030  
3031  	list_for_each_entry_safe(pos, next, list, list) {
3032  		thread__zput(pos->thread);
3033  		list_del(&pos->list);
3034  		free(pos);
3035  	}
3036  }
3037  
machine__get_current_tid(struct machine * machine,int cpu)3038  pid_t machine__get_current_tid(struct machine *machine, int cpu)
3039  {
3040  	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3041  		return -1;
3042  
3043  	return machine->current_tid[cpu];
3044  }
3045  
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)3046  int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3047  			     pid_t tid)
3048  {
3049  	struct thread *thread;
3050  	const pid_t init_val = -1;
3051  
3052  	if (cpu < 0)
3053  		return -EINVAL;
3054  
3055  	if (realloc_array_as_needed(machine->current_tid,
3056  				    machine->current_tid_sz,
3057  				    (unsigned int)cpu,
3058  				    &init_val))
3059  		return -ENOMEM;
3060  
3061  	machine->current_tid[cpu] = tid;
3062  
3063  	thread = machine__findnew_thread(machine, pid, tid);
3064  	if (!thread)
3065  		return -ENOMEM;
3066  
3067  	thread__set_cpu(thread, cpu);
3068  	thread__put(thread);
3069  
3070  	return 0;
3071  }
3072  
3073  /*
3074   * Compares the raw arch string. N.B. see instead perf_env__arch() or
3075   * machine__normalized_is() if a normalized arch is needed.
3076   */
machine__is(struct machine * machine,const char * arch)3077  bool machine__is(struct machine *machine, const char *arch)
3078  {
3079  	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3080  }
3081  
machine__normalized_is(struct machine * machine,const char * arch)3082  bool machine__normalized_is(struct machine *machine, const char *arch)
3083  {
3084  	return machine && !strcmp(perf_env__arch(machine->env), arch);
3085  }
3086  
machine__nr_cpus_avail(struct machine * machine)3087  int machine__nr_cpus_avail(struct machine *machine)
3088  {
3089  	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3090  }
3091  
machine__get_kernel_start(struct machine * machine)3092  int machine__get_kernel_start(struct machine *machine)
3093  {
3094  	struct map *map = machine__kernel_map(machine);
3095  	int err = 0;
3096  
3097  	/*
3098  	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3099  	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3100  	 * all addresses including kernel addresses are less than 2^32.  In
3101  	 * that case (32-bit system), if the kernel mapping is unknown, all
3102  	 * addresses will be assumed to be in user space - see
3103  	 * machine__kernel_ip().
3104  	 */
3105  	machine->kernel_start = 1ULL << 63;
3106  	if (map) {
3107  		err = map__load(map);
3108  		/*
3109  		 * On x86_64, PTI entry trampolines are less than the
3110  		 * start of kernel text, but still above 2^63. So leave
3111  		 * kernel_start = 1ULL << 63 for x86_64.
3112  		 */
3113  		if (!err && !machine__is(machine, "x86_64"))
3114  			machine->kernel_start = map__start(map);
3115  	}
3116  	return err;
3117  }
3118  
machine__addr_cpumode(struct machine * machine,u8 cpumode,u64 addr)3119  u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3120  {
3121  	u8 addr_cpumode = cpumode;
3122  	bool kernel_ip;
3123  
3124  	if (!machine->single_address_space)
3125  		goto out;
3126  
3127  	kernel_ip = machine__kernel_ip(machine, addr);
3128  	switch (cpumode) {
3129  	case PERF_RECORD_MISC_KERNEL:
3130  	case PERF_RECORD_MISC_USER:
3131  		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3132  					   PERF_RECORD_MISC_USER;
3133  		break;
3134  	case PERF_RECORD_MISC_GUEST_KERNEL:
3135  	case PERF_RECORD_MISC_GUEST_USER:
3136  		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3137  					   PERF_RECORD_MISC_GUEST_USER;
3138  		break;
3139  	default:
3140  		break;
3141  	}
3142  out:
3143  	return addr_cpumode;
3144  }
3145  
machine__findnew_dso_id(struct machine * machine,const char * filename,const struct dso_id * id)3146  struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename,
3147  				    const struct dso_id *id)
3148  {
3149  	return dsos__findnew_id(&machine->dsos, filename, id);
3150  }
3151  
machine__findnew_dso(struct machine * machine,const char * filename)3152  struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3153  {
3154  	return machine__findnew_dso_id(machine, filename, NULL);
3155  }
3156  
machine__resolve_kernel_addr(void * vmachine,unsigned long long * addrp,char ** modp)3157  char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3158  {
3159  	struct machine *machine = vmachine;
3160  	struct map *map;
3161  	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3162  
3163  	if (sym == NULL)
3164  		return NULL;
3165  
3166  	*modp = __map__is_kmodule(map) ? (char *)dso__short_name(map__dso(map)) : NULL;
3167  	*addrp = map__unmap_ip(map, sym->start);
3168  	return sym->name;
3169  }
3170  
3171  struct machine__for_each_dso_cb_args {
3172  	struct machine *machine;
3173  	machine__dso_t fn;
3174  	void *priv;
3175  };
3176  
machine__for_each_dso_cb(struct dso * dso,void * data)3177  static int machine__for_each_dso_cb(struct dso *dso, void *data)
3178  {
3179  	struct machine__for_each_dso_cb_args *args = data;
3180  
3181  	return args->fn(dso, args->machine, args->priv);
3182  }
3183  
machine__for_each_dso(struct machine * machine,machine__dso_t fn,void * priv)3184  int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3185  {
3186  	struct machine__for_each_dso_cb_args args = {
3187  		.machine = machine,
3188  		.fn = fn,
3189  		.priv = priv,
3190  	};
3191  
3192  	return dsos__for_each_dso(&machine->dsos, machine__for_each_dso_cb, &args);
3193  }
3194  
machine__for_each_kernel_map(struct machine * machine,machine__map_t fn,void * priv)3195  int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3196  {
3197  	struct maps *maps = machine__kernel_maps(machine);
3198  
3199  	return maps__for_each_map(maps, fn, priv);
3200  }
3201  
machine__is_lock_function(struct machine * machine,u64 addr)3202  bool machine__is_lock_function(struct machine *machine, u64 addr)
3203  {
3204  	if (!machine->sched.text_start) {
3205  		struct map *kmap;
3206  		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3207  
3208  		if (!sym) {
3209  			/* to avoid retry */
3210  			machine->sched.text_start = 1;
3211  			return false;
3212  		}
3213  
3214  		machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3215  
3216  		/* should not fail from here */
3217  		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3218  		machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3219  
3220  		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3221  		machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3222  
3223  		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3224  		machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3225  
3226  		sym = machine__find_kernel_symbol_by_name(machine, "__traceiter_contention_begin", &kmap);
3227  		if (sym) {
3228  			machine->traceiter.text_start = map__unmap_ip(kmap, sym->start);
3229  			machine->traceiter.text_end = map__unmap_ip(kmap, sym->end);
3230  		}
3231  		sym = machine__find_kernel_symbol_by_name(machine, "trace_contention_begin", &kmap);
3232  		if (sym) {
3233  			machine->trace.text_start = map__unmap_ip(kmap, sym->start);
3234  			machine->trace.text_end = map__unmap_ip(kmap, sym->end);
3235  		}
3236  	}
3237  
3238  	/* failed to get kernel symbols */
3239  	if (machine->sched.text_start == 1)
3240  		return false;
3241  
3242  	/* mutex and rwsem functions are in sched text section */
3243  	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3244  		return true;
3245  
3246  	/* spinlock functions are in lock text section */
3247  	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3248  		return true;
3249  
3250  	/* traceiter functions currently don't have their own section
3251  	 * but we consider them lock functions
3252  	 */
3253  	if (machine->traceiter.text_start != 0) {
3254  		if (machine->traceiter.text_start <= addr && addr < machine->traceiter.text_end)
3255  			return true;
3256  	}
3257  
3258  	if (machine->trace.text_start != 0) {
3259  		if (machine->trace.text_start <= addr && addr < machine->trace.text_end)
3260  			return true;
3261  	}
3262  
3263  	return false;
3264  }
3265  
machine__hit_all_dsos(struct machine * machine)3266  int machine__hit_all_dsos(struct machine *machine)
3267  {
3268  	return dsos__hit_all(&machine->dsos);
3269  }
3270