1  /*******************************************************************
2   * This file is part of the Emulex Linux Device Driver for         *
3   * Fibre Channel Host Bus Adapters.                                *
4   * Copyright (C) 2017-2024 Broadcom. All Rights Reserved. The term *
5   * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6   * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7   * EMULEX and SLI are trademarks of Emulex.                        *
8   * www.broadcom.com                                                *
9   * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10   *                                                                 *
11   * This program is free software; you can redistribute it and/or   *
12   * modify it under the terms of version 2 of the GNU General       *
13   * Public License as published by the Free Software Foundation.    *
14   * This program is distributed in the hope that it will be useful. *
15   * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16   * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17   * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18   * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19   * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20   * more details, a copy of which can be found in the file COPYING  *
21   * included with this package.                                     *
22   *******************************************************************/
23  
24  #include <linux/blkdev.h>
25  #include <linux/delay.h>
26  #include <linux/dma-mapping.h>
27  #include <linux/idr.h>
28  #include <linux/interrupt.h>
29  #include <linux/module.h>
30  #include <linux/kthread.h>
31  #include <linux/pci.h>
32  #include <linux/spinlock.h>
33  #include <linux/sched/clock.h>
34  #include <linux/ctype.h>
35  #include <linux/slab.h>
36  #include <linux/firmware.h>
37  #include <linux/miscdevice.h>
38  #include <linux/percpu.h>
39  #include <linux/irq.h>
40  #include <linux/bitops.h>
41  #include <linux/crash_dump.h>
42  #include <linux/cpu.h>
43  #include <linux/cpuhotplug.h>
44  
45  #include <scsi/scsi.h>
46  #include <scsi/scsi_device.h>
47  #include <scsi/scsi_host.h>
48  #include <scsi/scsi_transport_fc.h>
49  #include <scsi/scsi_tcq.h>
50  #include <scsi/fc/fc_fs.h>
51  
52  #include "lpfc_hw4.h"
53  #include "lpfc_hw.h"
54  #include "lpfc_sli.h"
55  #include "lpfc_sli4.h"
56  #include "lpfc_nl.h"
57  #include "lpfc_disc.h"
58  #include "lpfc.h"
59  #include "lpfc_scsi.h"
60  #include "lpfc_nvme.h"
61  #include "lpfc_logmsg.h"
62  #include "lpfc_crtn.h"
63  #include "lpfc_vport.h"
64  #include "lpfc_version.h"
65  #include "lpfc_ids.h"
66  
67  static enum cpuhp_state lpfc_cpuhp_state;
68  /* Used when mapping IRQ vectors in a driver centric manner */
69  static uint32_t lpfc_present_cpu;
70  static bool lpfc_pldv_detect;
71  
72  static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
73  static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
74  static void lpfc_cpuhp_add(struct lpfc_hba *phba);
75  static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
76  static int lpfc_post_rcv_buf(struct lpfc_hba *);
77  static int lpfc_sli4_queue_verify(struct lpfc_hba *);
78  static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
79  static int lpfc_setup_endian_order(struct lpfc_hba *);
80  static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
81  static void lpfc_free_els_sgl_list(struct lpfc_hba *);
82  static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
83  static void lpfc_init_sgl_list(struct lpfc_hba *);
84  static int lpfc_init_active_sgl_array(struct lpfc_hba *);
85  static void lpfc_free_active_sgl(struct lpfc_hba *);
86  static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
87  static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
88  static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
89  static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
90  static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
91  static void lpfc_sli4_disable_intr(struct lpfc_hba *);
92  static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
93  static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
94  static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
95  static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
96  static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
97  static void lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba);
98  static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba);
99  
100  static struct scsi_transport_template *lpfc_transport_template = NULL;
101  static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
102  static DEFINE_IDR(lpfc_hba_index);
103  #define LPFC_NVMET_BUF_POST 254
104  static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
105  static void lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts);
106  
107  /**
108   * lpfc_config_port_prep - Perform lpfc initialization prior to config port
109   * @phba: pointer to lpfc hba data structure.
110   *
111   * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
112   * mailbox command. It retrieves the revision information from the HBA and
113   * collects the Vital Product Data (VPD) about the HBA for preparing the
114   * configuration of the HBA.
115   *
116   * Return codes:
117   *   0 - success.
118   *   -ERESTART - requests the SLI layer to reset the HBA and try again.
119   *   Any other value - indicates an error.
120   **/
121  int
lpfc_config_port_prep(struct lpfc_hba * phba)122  lpfc_config_port_prep(struct lpfc_hba *phba)
123  {
124  	lpfc_vpd_t *vp = &phba->vpd;
125  	int i = 0, rc;
126  	LPFC_MBOXQ_t *pmb;
127  	MAILBOX_t *mb;
128  	char *lpfc_vpd_data = NULL;
129  	uint16_t offset = 0;
130  	static char licensed[56] =
131  		    "key unlock for use with gnu public licensed code only\0";
132  	static int init_key = 1;
133  
134  	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
135  	if (!pmb) {
136  		phba->link_state = LPFC_HBA_ERROR;
137  		return -ENOMEM;
138  	}
139  
140  	mb = &pmb->u.mb;
141  	phba->link_state = LPFC_INIT_MBX_CMDS;
142  
143  	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
144  		if (init_key) {
145  			uint32_t *ptext = (uint32_t *) licensed;
146  
147  			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
148  				*ptext = cpu_to_be32(*ptext);
149  			init_key = 0;
150  		}
151  
152  		lpfc_read_nv(phba, pmb);
153  		memset((char*)mb->un.varRDnvp.rsvd3, 0,
154  			sizeof (mb->un.varRDnvp.rsvd3));
155  		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
156  			 sizeof (licensed));
157  
158  		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
159  
160  		if (rc != MBX_SUCCESS) {
161  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
162  					"0324 Config Port initialization "
163  					"error, mbxCmd x%x READ_NVPARM, "
164  					"mbxStatus x%x\n",
165  					mb->mbxCommand, mb->mbxStatus);
166  			mempool_free(pmb, phba->mbox_mem_pool);
167  			return -ERESTART;
168  		}
169  		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
170  		       sizeof(phba->wwnn));
171  		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
172  		       sizeof(phba->wwpn));
173  	}
174  
175  	/*
176  	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
177  	 * which was already set in lpfc_get_cfgparam()
178  	 */
179  	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
180  
181  	/* Setup and issue mailbox READ REV command */
182  	lpfc_read_rev(phba, pmb);
183  	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
184  	if (rc != MBX_SUCCESS) {
185  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
186  				"0439 Adapter failed to init, mbxCmd x%x "
187  				"READ_REV, mbxStatus x%x\n",
188  				mb->mbxCommand, mb->mbxStatus);
189  		mempool_free( pmb, phba->mbox_mem_pool);
190  		return -ERESTART;
191  	}
192  
193  
194  	/*
195  	 * The value of rr must be 1 since the driver set the cv field to 1.
196  	 * This setting requires the FW to set all revision fields.
197  	 */
198  	if (mb->un.varRdRev.rr == 0) {
199  		vp->rev.rBit = 0;
200  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
201  				"0440 Adapter failed to init, READ_REV has "
202  				"missing revision information.\n");
203  		mempool_free(pmb, phba->mbox_mem_pool);
204  		return -ERESTART;
205  	}
206  
207  	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
208  		mempool_free(pmb, phba->mbox_mem_pool);
209  		return -EINVAL;
210  	}
211  
212  	/* Save information as VPD data */
213  	vp->rev.rBit = 1;
214  	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
215  	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
216  	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
217  	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
218  	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
219  	vp->rev.biuRev = mb->un.varRdRev.biuRev;
220  	vp->rev.smRev = mb->un.varRdRev.smRev;
221  	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
222  	vp->rev.endecRev = mb->un.varRdRev.endecRev;
223  	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
224  	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
225  	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
226  	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
227  	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
228  	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
229  
230  	/* If the sli feature level is less then 9, we must
231  	 * tear down all RPIs and VPIs on link down if NPIV
232  	 * is enabled.
233  	 */
234  	if (vp->rev.feaLevelHigh < 9)
235  		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
236  
237  	if (lpfc_is_LC_HBA(phba->pcidev->device))
238  		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
239  						sizeof (phba->RandomData));
240  
241  	/* Get adapter VPD information */
242  	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
243  	if (!lpfc_vpd_data)
244  		goto out_free_mbox;
245  	do {
246  		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
247  		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
248  
249  		if (rc != MBX_SUCCESS) {
250  			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
251  					"0441 VPD not present on adapter, "
252  					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
253  					mb->mbxCommand, mb->mbxStatus);
254  			mb->un.varDmp.word_cnt = 0;
255  		}
256  		/* dump mem may return a zero when finished or we got a
257  		 * mailbox error, either way we are done.
258  		 */
259  		if (mb->un.varDmp.word_cnt == 0)
260  			break;
261  
262  		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
263  			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
264  		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
265  				      lpfc_vpd_data + offset,
266  				      mb->un.varDmp.word_cnt);
267  		offset += mb->un.varDmp.word_cnt;
268  	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
269  
270  	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
271  
272  	kfree(lpfc_vpd_data);
273  out_free_mbox:
274  	mempool_free(pmb, phba->mbox_mem_pool);
275  	return 0;
276  }
277  
278  /**
279   * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
280   * @phba: pointer to lpfc hba data structure.
281   * @pmboxq: pointer to the driver internal queue element for mailbox command.
282   *
283   * This is the completion handler for driver's configuring asynchronous event
284   * mailbox command to the device. If the mailbox command returns successfully,
285   * it will set internal async event support flag to 1; otherwise, it will
286   * set internal async event support flag to 0.
287   **/
288  static void
lpfc_config_async_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)289  lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
290  {
291  	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
292  		phba->temp_sensor_support = 1;
293  	else
294  		phba->temp_sensor_support = 0;
295  	mempool_free(pmboxq, phba->mbox_mem_pool);
296  	return;
297  }
298  
299  /**
300   * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
301   * @phba: pointer to lpfc hba data structure.
302   * @pmboxq: pointer to the driver internal queue element for mailbox command.
303   *
304   * This is the completion handler for dump mailbox command for getting
305   * wake up parameters. When this command complete, the response contain
306   * Option rom version of the HBA. This function translate the version number
307   * into a human readable string and store it in OptionROMVersion.
308   **/
309  static void
lpfc_dump_wakeup_param_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)310  lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
311  {
312  	struct prog_id *prg;
313  	uint32_t prog_id_word;
314  	char dist = ' ';
315  	/* character array used for decoding dist type. */
316  	char dist_char[] = "nabx";
317  
318  	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
319  		mempool_free(pmboxq, phba->mbox_mem_pool);
320  		return;
321  	}
322  
323  	prg = (struct prog_id *) &prog_id_word;
324  
325  	/* word 7 contain option rom version */
326  	prog_id_word = pmboxq->u.mb.un.varWords[7];
327  
328  	/* Decode the Option rom version word to a readable string */
329  	dist = dist_char[prg->dist];
330  
331  	if ((prg->dist == 3) && (prg->num == 0))
332  		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
333  			prg->ver, prg->rev, prg->lev);
334  	else
335  		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
336  			prg->ver, prg->rev, prg->lev,
337  			dist, prg->num);
338  	mempool_free(pmboxq, phba->mbox_mem_pool);
339  	return;
340  }
341  
342  /**
343   * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
344   * @vport: pointer to lpfc vport data structure.
345   *
346   *
347   * Return codes
348   *   None.
349   **/
350  void
lpfc_update_vport_wwn(struct lpfc_vport * vport)351  lpfc_update_vport_wwn(struct lpfc_vport *vport)
352  {
353  	struct lpfc_hba *phba = vport->phba;
354  
355  	/*
356  	 * If the name is empty or there exists a soft name
357  	 * then copy the service params name, otherwise use the fc name
358  	 */
359  	if (vport->fc_nodename.u.wwn[0] == 0)
360  		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
361  			sizeof(struct lpfc_name));
362  	else
363  		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
364  			sizeof(struct lpfc_name));
365  
366  	/*
367  	 * If the port name has changed, then set the Param changes flag
368  	 * to unreg the login
369  	 */
370  	if (vport->fc_portname.u.wwn[0] != 0 &&
371  		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
372  		       sizeof(struct lpfc_name))) {
373  		vport->vport_flag |= FAWWPN_PARAM_CHG;
374  
375  		if (phba->sli_rev == LPFC_SLI_REV4 &&
376  		    vport->port_type == LPFC_PHYSICAL_PORT &&
377  		    phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) {
378  			if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG))
379  				phba->sli4_hba.fawwpn_flag &=
380  						~LPFC_FAWWPN_FABRIC;
381  			lpfc_printf_log(phba, KERN_INFO,
382  					LOG_SLI | LOG_DISCOVERY | LOG_ELS,
383  					"2701 FA-PWWN change WWPN from %llx to "
384  					"%llx: vflag x%x fawwpn_flag x%x\n",
385  					wwn_to_u64(vport->fc_portname.u.wwn),
386  					wwn_to_u64
387  					   (vport->fc_sparam.portName.u.wwn),
388  					vport->vport_flag,
389  					phba->sli4_hba.fawwpn_flag);
390  			memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
391  			       sizeof(struct lpfc_name));
392  		}
393  	}
394  
395  	if (vport->fc_portname.u.wwn[0] == 0)
396  		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
397  		       sizeof(struct lpfc_name));
398  	else
399  		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
400  		       sizeof(struct lpfc_name));
401  }
402  
403  /**
404   * lpfc_config_port_post - Perform lpfc initialization after config port
405   * @phba: pointer to lpfc hba data structure.
406   *
407   * This routine will do LPFC initialization after the CONFIG_PORT mailbox
408   * command call. It performs all internal resource and state setups on the
409   * port: post IOCB buffers, enable appropriate host interrupt attentions,
410   * ELS ring timers, etc.
411   *
412   * Return codes
413   *   0 - success.
414   *   Any other value - error.
415   **/
416  int
lpfc_config_port_post(struct lpfc_hba * phba)417  lpfc_config_port_post(struct lpfc_hba *phba)
418  {
419  	struct lpfc_vport *vport = phba->pport;
420  	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
421  	LPFC_MBOXQ_t *pmb;
422  	MAILBOX_t *mb;
423  	struct lpfc_dmabuf *mp;
424  	struct lpfc_sli *psli = &phba->sli;
425  	uint32_t status, timeout;
426  	int i, j;
427  	int rc;
428  
429  	spin_lock_irq(&phba->hbalock);
430  	/*
431  	 * If the Config port completed correctly the HBA is not
432  	 * over heated any more.
433  	 */
434  	if (phba->over_temp_state == HBA_OVER_TEMP)
435  		phba->over_temp_state = HBA_NORMAL_TEMP;
436  	spin_unlock_irq(&phba->hbalock);
437  
438  	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
439  	if (!pmb) {
440  		phba->link_state = LPFC_HBA_ERROR;
441  		return -ENOMEM;
442  	}
443  	mb = &pmb->u.mb;
444  
445  	/* Get login parameters for NID.  */
446  	rc = lpfc_read_sparam(phba, pmb, 0);
447  	if (rc) {
448  		mempool_free(pmb, phba->mbox_mem_pool);
449  		return -ENOMEM;
450  	}
451  
452  	pmb->vport = vport;
453  	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
454  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
455  				"0448 Adapter failed init, mbxCmd x%x "
456  				"READ_SPARM mbxStatus x%x\n",
457  				mb->mbxCommand, mb->mbxStatus);
458  		phba->link_state = LPFC_HBA_ERROR;
459  		lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
460  		return -EIO;
461  	}
462  
463  	mp = pmb->ctx_buf;
464  
465  	/* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no
466  	 * longer needed.  Prevent unintended ctx_buf access as the mbox is
467  	 * reused.
468  	 */
469  	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
470  	lpfc_mbuf_free(phba, mp->virt, mp->phys);
471  	kfree(mp);
472  	pmb->ctx_buf = NULL;
473  	lpfc_update_vport_wwn(vport);
474  
475  	/* Update the fc_host data structures with new wwn. */
476  	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
477  	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
478  	fc_host_max_npiv_vports(shost) = phba->max_vpi;
479  
480  	/* If no serial number in VPD data, use low 6 bytes of WWNN */
481  	/* This should be consolidated into parse_vpd ? - mr */
482  	if (phba->SerialNumber[0] == 0) {
483  		uint8_t *outptr;
484  
485  		outptr = &vport->fc_nodename.u.s.IEEE[0];
486  		for (i = 0; i < 12; i++) {
487  			status = *outptr++;
488  			j = ((status & 0xf0) >> 4);
489  			if (j <= 9)
490  				phba->SerialNumber[i] =
491  				    (char)((uint8_t) 0x30 + (uint8_t) j);
492  			else
493  				phba->SerialNumber[i] =
494  				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
495  			i++;
496  			j = (status & 0xf);
497  			if (j <= 9)
498  				phba->SerialNumber[i] =
499  				    (char)((uint8_t) 0x30 + (uint8_t) j);
500  			else
501  				phba->SerialNumber[i] =
502  				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
503  		}
504  	}
505  
506  	lpfc_read_config(phba, pmb);
507  	pmb->vport = vport;
508  	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
509  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
510  				"0453 Adapter failed to init, mbxCmd x%x "
511  				"READ_CONFIG, mbxStatus x%x\n",
512  				mb->mbxCommand, mb->mbxStatus);
513  		phba->link_state = LPFC_HBA_ERROR;
514  		mempool_free( pmb, phba->mbox_mem_pool);
515  		return -EIO;
516  	}
517  
518  	/* Check if the port is disabled */
519  	lpfc_sli_read_link_ste(phba);
520  
521  	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
522  	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
523  		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
524  				"3359 HBA queue depth changed from %d to %d\n",
525  				phba->cfg_hba_queue_depth,
526  				mb->un.varRdConfig.max_xri);
527  		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
528  	}
529  
530  	phba->lmt = mb->un.varRdConfig.lmt;
531  
532  	/* Get the default values for Model Name and Description */
533  	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
534  
535  	phba->link_state = LPFC_LINK_DOWN;
536  
537  	/* Only process IOCBs on ELS ring till hba_state is READY */
538  	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
539  		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
540  	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
541  		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
542  
543  	/* Post receive buffers for desired rings */
544  	if (phba->sli_rev != 3)
545  		lpfc_post_rcv_buf(phba);
546  
547  	/*
548  	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
549  	 */
550  	if (phba->intr_type == MSIX) {
551  		rc = lpfc_config_msi(phba, pmb);
552  		if (rc) {
553  			mempool_free(pmb, phba->mbox_mem_pool);
554  			return -EIO;
555  		}
556  		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
557  		if (rc != MBX_SUCCESS) {
558  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
559  					"0352 Config MSI mailbox command "
560  					"failed, mbxCmd x%x, mbxStatus x%x\n",
561  					pmb->u.mb.mbxCommand,
562  					pmb->u.mb.mbxStatus);
563  			mempool_free(pmb, phba->mbox_mem_pool);
564  			return -EIO;
565  		}
566  	}
567  
568  	spin_lock_irq(&phba->hbalock);
569  	/* Initialize ERATT handling flag */
570  	clear_bit(HBA_ERATT_HANDLED, &phba->hba_flag);
571  
572  	/* Enable appropriate host interrupts */
573  	if (lpfc_readl(phba->HCregaddr, &status)) {
574  		spin_unlock_irq(&phba->hbalock);
575  		return -EIO;
576  	}
577  	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
578  	if (psli->num_rings > 0)
579  		status |= HC_R0INT_ENA;
580  	if (psli->num_rings > 1)
581  		status |= HC_R1INT_ENA;
582  	if (psli->num_rings > 2)
583  		status |= HC_R2INT_ENA;
584  	if (psli->num_rings > 3)
585  		status |= HC_R3INT_ENA;
586  
587  	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
588  	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
589  		status &= ~(HC_R0INT_ENA);
590  
591  	writel(status, phba->HCregaddr);
592  	readl(phba->HCregaddr); /* flush */
593  	spin_unlock_irq(&phba->hbalock);
594  
595  	/* Set up ring-0 (ELS) timer */
596  	timeout = phba->fc_ratov * 2;
597  	mod_timer(&vport->els_tmofunc,
598  		  jiffies + msecs_to_jiffies(1000 * timeout));
599  	/* Set up heart beat (HB) timer */
600  	mod_timer(&phba->hb_tmofunc,
601  		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
602  	clear_bit(HBA_HBEAT_INP, &phba->hba_flag);
603  	clear_bit(HBA_HBEAT_TMO, &phba->hba_flag);
604  	phba->last_completion_time = jiffies;
605  	/* Set up error attention (ERATT) polling timer */
606  	mod_timer(&phba->eratt_poll,
607  		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
608  
609  	if (test_bit(LINK_DISABLED, &phba->hba_flag)) {
610  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
611  				"2598 Adapter Link is disabled.\n");
612  		lpfc_down_link(phba, pmb);
613  		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
614  		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
615  		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
616  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
617  					"2599 Adapter failed to issue DOWN_LINK"
618  					" mbox command rc 0x%x\n", rc);
619  
620  			mempool_free(pmb, phba->mbox_mem_pool);
621  			return -EIO;
622  		}
623  	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
624  		mempool_free(pmb, phba->mbox_mem_pool);
625  		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
626  		if (rc)
627  			return rc;
628  	}
629  	/* MBOX buffer will be freed in mbox compl */
630  	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
631  	if (!pmb) {
632  		phba->link_state = LPFC_HBA_ERROR;
633  		return -ENOMEM;
634  	}
635  
636  	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
637  	pmb->mbox_cmpl = lpfc_config_async_cmpl;
638  	pmb->vport = phba->pport;
639  	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
640  
641  	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
642  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
643  				"0456 Adapter failed to issue "
644  				"ASYNCEVT_ENABLE mbox status x%x\n",
645  				rc);
646  		mempool_free(pmb, phba->mbox_mem_pool);
647  	}
648  
649  	/* Get Option rom version */
650  	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
651  	if (!pmb) {
652  		phba->link_state = LPFC_HBA_ERROR;
653  		return -ENOMEM;
654  	}
655  
656  	lpfc_dump_wakeup_param(phba, pmb);
657  	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
658  	pmb->vport = phba->pport;
659  	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
660  
661  	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
662  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
663  				"0435 Adapter failed "
664  				"to get Option ROM version status x%x\n", rc);
665  		mempool_free(pmb, phba->mbox_mem_pool);
666  	}
667  
668  	return 0;
669  }
670  
671  /**
672   * lpfc_sli4_refresh_params - update driver copy of params.
673   * @phba: Pointer to HBA context object.
674   *
675   * This is called to refresh driver copy of dynamic fields from the
676   * common_get_sli4_parameters descriptor.
677   **/
678  int
lpfc_sli4_refresh_params(struct lpfc_hba * phba)679  lpfc_sli4_refresh_params(struct lpfc_hba *phba)
680  {
681  	LPFC_MBOXQ_t *mboxq;
682  	struct lpfc_mqe *mqe;
683  	struct lpfc_sli4_parameters *mbx_sli4_parameters;
684  	int length, rc;
685  
686  	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
687  	if (!mboxq)
688  		return -ENOMEM;
689  
690  	mqe = &mboxq->u.mqe;
691  	/* Read the port's SLI4 Config Parameters */
692  	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
693  		  sizeof(struct lpfc_sli4_cfg_mhdr));
694  	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
695  			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
696  			 length, LPFC_SLI4_MBX_EMBED);
697  
698  	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
699  	if (unlikely(rc)) {
700  		mempool_free(mboxq, phba->mbox_mem_pool);
701  		return rc;
702  	}
703  	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
704  	phba->sli4_hba.pc_sli4_params.mi_cap =
705  		bf_get(cfg_mi_ver, mbx_sli4_parameters);
706  
707  	/* Are we forcing MI off via module parameter? */
708  	if (phba->cfg_enable_mi)
709  		phba->sli4_hba.pc_sli4_params.mi_ver =
710  			bf_get(cfg_mi_ver, mbx_sli4_parameters);
711  	else
712  		phba->sli4_hba.pc_sli4_params.mi_ver = 0;
713  
714  	phba->sli4_hba.pc_sli4_params.cmf =
715  			bf_get(cfg_cmf, mbx_sli4_parameters);
716  	phba->sli4_hba.pc_sli4_params.pls =
717  			bf_get(cfg_pvl, mbx_sli4_parameters);
718  
719  	mempool_free(mboxq, phba->mbox_mem_pool);
720  	return rc;
721  }
722  
723  /**
724   * lpfc_hba_init_link - Initialize the FC link
725   * @phba: pointer to lpfc hba data structure.
726   * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
727   *
728   * This routine will issue the INIT_LINK mailbox command call.
729   * It is available to other drivers through the lpfc_hba data
730   * structure for use as a delayed link up mechanism with the
731   * module parameter lpfc_suppress_link_up.
732   *
733   * Return code
734   *		0 - success
735   *		Any other value - error
736   **/
737  static int
lpfc_hba_init_link(struct lpfc_hba * phba,uint32_t flag)738  lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
739  {
740  	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
741  }
742  
743  /**
744   * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
745   * @phba: pointer to lpfc hba data structure.
746   * @fc_topology: desired fc topology.
747   * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
748   *
749   * This routine will issue the INIT_LINK mailbox command call.
750   * It is available to other drivers through the lpfc_hba data
751   * structure for use as a delayed link up mechanism with the
752   * module parameter lpfc_suppress_link_up.
753   *
754   * Return code
755   *              0 - success
756   *              Any other value - error
757   **/
758  int
lpfc_hba_init_link_fc_topology(struct lpfc_hba * phba,uint32_t fc_topology,uint32_t flag)759  lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
760  			       uint32_t flag)
761  {
762  	struct lpfc_vport *vport = phba->pport;
763  	LPFC_MBOXQ_t *pmb;
764  	MAILBOX_t *mb;
765  	int rc;
766  
767  	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
768  	if (!pmb) {
769  		phba->link_state = LPFC_HBA_ERROR;
770  		return -ENOMEM;
771  	}
772  	mb = &pmb->u.mb;
773  	pmb->vport = vport;
774  
775  	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
776  	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
777  	     !(phba->lmt & LMT_1Gb)) ||
778  	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
779  	     !(phba->lmt & LMT_2Gb)) ||
780  	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
781  	     !(phba->lmt & LMT_4Gb)) ||
782  	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
783  	     !(phba->lmt & LMT_8Gb)) ||
784  	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
785  	     !(phba->lmt & LMT_10Gb)) ||
786  	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
787  	     !(phba->lmt & LMT_16Gb)) ||
788  	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
789  	     !(phba->lmt & LMT_32Gb)) ||
790  	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
791  	     !(phba->lmt & LMT_64Gb))) {
792  		/* Reset link speed to auto */
793  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
794  				"1302 Invalid speed for this board:%d "
795  				"Reset link speed to auto.\n",
796  				phba->cfg_link_speed);
797  			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
798  	}
799  	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
800  	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
801  	if (phba->sli_rev < LPFC_SLI_REV4)
802  		lpfc_set_loopback_flag(phba);
803  	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
804  	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
805  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
806  				"0498 Adapter failed to init, mbxCmd x%x "
807  				"INIT_LINK, mbxStatus x%x\n",
808  				mb->mbxCommand, mb->mbxStatus);
809  		if (phba->sli_rev <= LPFC_SLI_REV3) {
810  			/* Clear all interrupt enable conditions */
811  			writel(0, phba->HCregaddr);
812  			readl(phba->HCregaddr); /* flush */
813  			/* Clear all pending interrupts */
814  			writel(0xffffffff, phba->HAregaddr);
815  			readl(phba->HAregaddr); /* flush */
816  		}
817  		phba->link_state = LPFC_HBA_ERROR;
818  		if (rc != MBX_BUSY || flag == MBX_POLL)
819  			mempool_free(pmb, phba->mbox_mem_pool);
820  		return -EIO;
821  	}
822  	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
823  	if (flag == MBX_POLL)
824  		mempool_free(pmb, phba->mbox_mem_pool);
825  
826  	return 0;
827  }
828  
829  /**
830   * lpfc_hba_down_link - this routine downs the FC link
831   * @phba: pointer to lpfc hba data structure.
832   * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
833   *
834   * This routine will issue the DOWN_LINK mailbox command call.
835   * It is available to other drivers through the lpfc_hba data
836   * structure for use to stop the link.
837   *
838   * Return code
839   *		0 - success
840   *		Any other value - error
841   **/
842  static int
lpfc_hba_down_link(struct lpfc_hba * phba,uint32_t flag)843  lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
844  {
845  	LPFC_MBOXQ_t *pmb;
846  	int rc;
847  
848  	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
849  	if (!pmb) {
850  		phba->link_state = LPFC_HBA_ERROR;
851  		return -ENOMEM;
852  	}
853  
854  	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
855  			"0491 Adapter Link is disabled.\n");
856  	lpfc_down_link(phba, pmb);
857  	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
858  	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
859  	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
860  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
861  				"2522 Adapter failed to issue DOWN_LINK"
862  				" mbox command rc 0x%x\n", rc);
863  
864  		mempool_free(pmb, phba->mbox_mem_pool);
865  		return -EIO;
866  	}
867  	if (flag == MBX_POLL)
868  		mempool_free(pmb, phba->mbox_mem_pool);
869  
870  	return 0;
871  }
872  
873  /**
874   * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
875   * @phba: pointer to lpfc HBA data structure.
876   *
877   * This routine will do LPFC uninitialization before the HBA is reset when
878   * bringing down the SLI Layer.
879   *
880   * Return codes
881   *   0 - success.
882   *   Any other value - error.
883   **/
884  int
lpfc_hba_down_prep(struct lpfc_hba * phba)885  lpfc_hba_down_prep(struct lpfc_hba *phba)
886  {
887  	struct lpfc_vport **vports;
888  	int i;
889  
890  	if (phba->sli_rev <= LPFC_SLI_REV3) {
891  		/* Disable interrupts */
892  		writel(0, phba->HCregaddr);
893  		readl(phba->HCregaddr); /* flush */
894  	}
895  
896  	if (test_bit(FC_UNLOADING, &phba->pport->load_flag))
897  		lpfc_cleanup_discovery_resources(phba->pport);
898  	else {
899  		vports = lpfc_create_vport_work_array(phba);
900  		if (vports != NULL)
901  			for (i = 0; i <= phba->max_vports &&
902  				vports[i] != NULL; i++)
903  				lpfc_cleanup_discovery_resources(vports[i]);
904  		lpfc_destroy_vport_work_array(phba, vports);
905  	}
906  	return 0;
907  }
908  
909  /**
910   * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
911   * rspiocb which got deferred
912   *
913   * @phba: pointer to lpfc HBA data structure.
914   *
915   * This routine will cleanup completed slow path events after HBA is reset
916   * when bringing down the SLI Layer.
917   *
918   *
919   * Return codes
920   *   void.
921   **/
922  static void
lpfc_sli4_free_sp_events(struct lpfc_hba * phba)923  lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
924  {
925  	struct lpfc_iocbq *rspiocbq;
926  	struct hbq_dmabuf *dmabuf;
927  	struct lpfc_cq_event *cq_event;
928  
929  	clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag);
930  
931  	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
932  		/* Get the response iocb from the head of work queue */
933  		spin_lock_irq(&phba->hbalock);
934  		list_remove_head(&phba->sli4_hba.sp_queue_event,
935  				 cq_event, struct lpfc_cq_event, list);
936  		spin_unlock_irq(&phba->hbalock);
937  
938  		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
939  		case CQE_CODE_COMPL_WQE:
940  			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
941  						 cq_event);
942  			lpfc_sli_release_iocbq(phba, rspiocbq);
943  			break;
944  		case CQE_CODE_RECEIVE:
945  		case CQE_CODE_RECEIVE_V1:
946  			dmabuf = container_of(cq_event, struct hbq_dmabuf,
947  					      cq_event);
948  			lpfc_in_buf_free(phba, &dmabuf->dbuf);
949  		}
950  	}
951  }
952  
953  /**
954   * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
955   * @phba: pointer to lpfc HBA data structure.
956   *
957   * This routine will cleanup posted ELS buffers after the HBA is reset
958   * when bringing down the SLI Layer.
959   *
960   *
961   * Return codes
962   *   void.
963   **/
964  static void
lpfc_hba_free_post_buf(struct lpfc_hba * phba)965  lpfc_hba_free_post_buf(struct lpfc_hba *phba)
966  {
967  	struct lpfc_sli *psli = &phba->sli;
968  	struct lpfc_sli_ring *pring;
969  	struct lpfc_dmabuf *mp, *next_mp;
970  	LIST_HEAD(buflist);
971  	int count;
972  
973  	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
974  		lpfc_sli_hbqbuf_free_all(phba);
975  	else {
976  		/* Cleanup preposted buffers on the ELS ring */
977  		pring = &psli->sli3_ring[LPFC_ELS_RING];
978  		spin_lock_irq(&phba->hbalock);
979  		list_splice_init(&pring->postbufq, &buflist);
980  		spin_unlock_irq(&phba->hbalock);
981  
982  		count = 0;
983  		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
984  			list_del(&mp->list);
985  			count++;
986  			lpfc_mbuf_free(phba, mp->virt, mp->phys);
987  			kfree(mp);
988  		}
989  
990  		spin_lock_irq(&phba->hbalock);
991  		pring->postbufq_cnt -= count;
992  		spin_unlock_irq(&phba->hbalock);
993  	}
994  }
995  
996  /**
997   * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
998   * @phba: pointer to lpfc HBA data structure.
999   *
1000   * This routine will cleanup the txcmplq after the HBA is reset when bringing
1001   * down the SLI Layer.
1002   *
1003   * Return codes
1004   *   void
1005   **/
1006  static void
lpfc_hba_clean_txcmplq(struct lpfc_hba * phba)1007  lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
1008  {
1009  	struct lpfc_sli *psli = &phba->sli;
1010  	struct lpfc_queue *qp = NULL;
1011  	struct lpfc_sli_ring *pring;
1012  	LIST_HEAD(completions);
1013  	int i;
1014  	struct lpfc_iocbq *piocb, *next_iocb;
1015  
1016  	if (phba->sli_rev != LPFC_SLI_REV4) {
1017  		for (i = 0; i < psli->num_rings; i++) {
1018  			pring = &psli->sli3_ring[i];
1019  			spin_lock_irq(&phba->hbalock);
1020  			/* At this point in time the HBA is either reset or DOA
1021  			 * Nothing should be on txcmplq as it will
1022  			 * NEVER complete.
1023  			 */
1024  			list_splice_init(&pring->txcmplq, &completions);
1025  			pring->txcmplq_cnt = 0;
1026  			spin_unlock_irq(&phba->hbalock);
1027  
1028  			lpfc_sli_abort_iocb_ring(phba, pring);
1029  		}
1030  		/* Cancel all the IOCBs from the completions list */
1031  		lpfc_sli_cancel_iocbs(phba, &completions,
1032  				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1033  		return;
1034  	}
1035  	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
1036  		pring = qp->pring;
1037  		if (!pring)
1038  			continue;
1039  		spin_lock_irq(&pring->ring_lock);
1040  		list_for_each_entry_safe(piocb, next_iocb,
1041  					 &pring->txcmplq, list)
1042  			piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
1043  		list_splice_init(&pring->txcmplq, &completions);
1044  		pring->txcmplq_cnt = 0;
1045  		spin_unlock_irq(&pring->ring_lock);
1046  		lpfc_sli_abort_iocb_ring(phba, pring);
1047  	}
1048  	/* Cancel all the IOCBs from the completions list */
1049  	lpfc_sli_cancel_iocbs(phba, &completions,
1050  			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1051  }
1052  
1053  /**
1054   * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
1055   * @phba: pointer to lpfc HBA data structure.
1056   *
1057   * This routine will do uninitialization after the HBA is reset when bring
1058   * down the SLI Layer.
1059   *
1060   * Return codes
1061   *   0 - success.
1062   *   Any other value - error.
1063   **/
1064  static int
lpfc_hba_down_post_s3(struct lpfc_hba * phba)1065  lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1066  {
1067  	lpfc_hba_free_post_buf(phba);
1068  	lpfc_hba_clean_txcmplq(phba);
1069  	return 0;
1070  }
1071  
1072  /**
1073   * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1074   * @phba: pointer to lpfc HBA data structure.
1075   *
1076   * This routine will do uninitialization after the HBA is reset when bring
1077   * down the SLI Layer.
1078   *
1079   * Return codes
1080   *   0 - success.
1081   *   Any other value - error.
1082   **/
1083  static int
lpfc_hba_down_post_s4(struct lpfc_hba * phba)1084  lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1085  {
1086  	struct lpfc_io_buf *psb, *psb_next;
1087  	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1088  	struct lpfc_sli4_hdw_queue *qp;
1089  	LIST_HEAD(aborts);
1090  	LIST_HEAD(nvme_aborts);
1091  	LIST_HEAD(nvmet_aborts);
1092  	struct lpfc_sglq *sglq_entry = NULL;
1093  	int cnt, idx;
1094  
1095  
1096  	lpfc_sli_hbqbuf_free_all(phba);
1097  	lpfc_hba_clean_txcmplq(phba);
1098  
1099  	/* At this point in time the HBA is either reset or DOA. Either
1100  	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1101  	 * on the lpfc_els_sgl_list so that it can either be freed if the
1102  	 * driver is unloading or reposted if the driver is restarting
1103  	 * the port.
1104  	 */
1105  
1106  	/* sgl_list_lock required because worker thread uses this
1107  	 * list.
1108  	 */
1109  	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1110  	list_for_each_entry(sglq_entry,
1111  		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1112  		sglq_entry->state = SGL_FREED;
1113  
1114  	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1115  			&phba->sli4_hba.lpfc_els_sgl_list);
1116  
1117  
1118  	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1119  
1120  	/* abts_xxxx_buf_list_lock required because worker thread uses this
1121  	 * list.
1122  	 */
1123  	spin_lock_irq(&phba->hbalock);
1124  	cnt = 0;
1125  	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1126  		qp = &phba->sli4_hba.hdwq[idx];
1127  
1128  		spin_lock(&qp->abts_io_buf_list_lock);
1129  		list_splice_init(&qp->lpfc_abts_io_buf_list,
1130  				 &aborts);
1131  
1132  		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1133  			psb->pCmd = NULL;
1134  			psb->status = IOSTAT_SUCCESS;
1135  			cnt++;
1136  		}
1137  		spin_lock(&qp->io_buf_list_put_lock);
1138  		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1139  		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1140  		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1141  		qp->abts_scsi_io_bufs = 0;
1142  		qp->abts_nvme_io_bufs = 0;
1143  		spin_unlock(&qp->io_buf_list_put_lock);
1144  		spin_unlock(&qp->abts_io_buf_list_lock);
1145  	}
1146  	spin_unlock_irq(&phba->hbalock);
1147  
1148  	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1149  		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1150  		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1151  				 &nvmet_aborts);
1152  		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1153  		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1154  			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1155  			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1156  		}
1157  	}
1158  
1159  	lpfc_sli4_free_sp_events(phba);
1160  	return cnt;
1161  }
1162  
1163  /**
1164   * lpfc_hba_down_post - Wrapper func for hba down post routine
1165   * @phba: pointer to lpfc HBA data structure.
1166   *
1167   * This routine wraps the actual SLI3 or SLI4 routine for performing
1168   * uninitialization after the HBA is reset when bring down the SLI Layer.
1169   *
1170   * Return codes
1171   *   0 - success.
1172   *   Any other value - error.
1173   **/
1174  int
lpfc_hba_down_post(struct lpfc_hba * phba)1175  lpfc_hba_down_post(struct lpfc_hba *phba)
1176  {
1177  	return (*phba->lpfc_hba_down_post)(phba);
1178  }
1179  
1180  /**
1181   * lpfc_hb_timeout - The HBA-timer timeout handler
1182   * @t: timer context used to obtain the pointer to lpfc hba data structure.
1183   *
1184   * This is the HBA-timer timeout handler registered to the lpfc driver. When
1185   * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1186   * work-port-events bitmap and the worker thread is notified. This timeout
1187   * event will be used by the worker thread to invoke the actual timeout
1188   * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1189   * be performed in the timeout handler and the HBA timeout event bit shall
1190   * be cleared by the worker thread after it has taken the event bitmap out.
1191   **/
1192  static void
lpfc_hb_timeout(struct timer_list * t)1193  lpfc_hb_timeout(struct timer_list *t)
1194  {
1195  	struct lpfc_hba *phba;
1196  	uint32_t tmo_posted;
1197  	unsigned long iflag;
1198  
1199  	phba = from_timer(phba, t, hb_tmofunc);
1200  
1201  	/* Check for heart beat timeout conditions */
1202  	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1203  	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1204  	if (!tmo_posted)
1205  		phba->pport->work_port_events |= WORKER_HB_TMO;
1206  	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1207  
1208  	/* Tell the worker thread there is work to do */
1209  	if (!tmo_posted)
1210  		lpfc_worker_wake_up(phba);
1211  	return;
1212  }
1213  
1214  /**
1215   * lpfc_rrq_timeout - The RRQ-timer timeout handler
1216   * @t: timer context used to obtain the pointer to lpfc hba data structure.
1217   *
1218   * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1219   * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1220   * work-port-events bitmap and the worker thread is notified. This timeout
1221   * event will be used by the worker thread to invoke the actual timeout
1222   * handler routine, lpfc_rrq_handler. Any periodical operations will
1223   * be performed in the timeout handler and the RRQ timeout event bit shall
1224   * be cleared by the worker thread after it has taken the event bitmap out.
1225   **/
1226  static void
lpfc_rrq_timeout(struct timer_list * t)1227  lpfc_rrq_timeout(struct timer_list *t)
1228  {
1229  	struct lpfc_hba *phba;
1230  
1231  	phba = from_timer(phba, t, rrq_tmr);
1232  	if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
1233  		clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
1234  		return;
1235  	}
1236  
1237  	set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
1238  	lpfc_worker_wake_up(phba);
1239  }
1240  
1241  /**
1242   * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1243   * @phba: pointer to lpfc hba data structure.
1244   * @pmboxq: pointer to the driver internal queue element for mailbox command.
1245   *
1246   * This is the callback function to the lpfc heart-beat mailbox command.
1247   * If configured, the lpfc driver issues the heart-beat mailbox command to
1248   * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1249   * heart-beat mailbox command is issued, the driver shall set up heart-beat
1250   * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1251   * heart-beat outstanding state. Once the mailbox command comes back and
1252   * no error conditions detected, the heart-beat mailbox command timer is
1253   * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1254   * state is cleared for the next heart-beat. If the timer expired with the
1255   * heart-beat outstanding state set, the driver will put the HBA offline.
1256   **/
1257  static void
lpfc_hb_mbox_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)1258  lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1259  {
1260  	clear_bit(HBA_HBEAT_INP, &phba->hba_flag);
1261  	clear_bit(HBA_HBEAT_TMO, &phba->hba_flag);
1262  
1263  	/* Check and reset heart-beat timer if necessary */
1264  	mempool_free(pmboxq, phba->mbox_mem_pool);
1265  	if (!test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) &&
1266  	    !(phba->link_state == LPFC_HBA_ERROR) &&
1267  	    !test_bit(FC_UNLOADING, &phba->pport->load_flag))
1268  		mod_timer(&phba->hb_tmofunc,
1269  			  jiffies +
1270  			  msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1271  	return;
1272  }
1273  
1274  /*
1275   * lpfc_idle_stat_delay_work - idle_stat tracking
1276   *
1277   * This routine tracks per-eq idle_stat and determines polling decisions.
1278   *
1279   * Return codes:
1280   *   None
1281   **/
1282  static void
lpfc_idle_stat_delay_work(struct work_struct * work)1283  lpfc_idle_stat_delay_work(struct work_struct *work)
1284  {
1285  	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1286  					     struct lpfc_hba,
1287  					     idle_stat_delay_work);
1288  	struct lpfc_queue *eq;
1289  	struct lpfc_sli4_hdw_queue *hdwq;
1290  	struct lpfc_idle_stat *idle_stat;
1291  	u32 i, idle_percent;
1292  	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1293  
1294  	if (test_bit(FC_UNLOADING, &phba->pport->load_flag))
1295  		return;
1296  
1297  	if (phba->link_state == LPFC_HBA_ERROR ||
1298  	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) ||
1299  	    phba->cmf_active_mode != LPFC_CFG_OFF)
1300  		goto requeue;
1301  
1302  	for_each_present_cpu(i) {
1303  		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1304  		eq = hdwq->hba_eq;
1305  
1306  		/* Skip if we've already handled this eq's primary CPU */
1307  		if (eq->chann != i)
1308  			continue;
1309  
1310  		idle_stat = &phba->sli4_hba.idle_stat[i];
1311  
1312  		/* get_cpu_idle_time returns values as running counters. Thus,
1313  		 * to know the amount for this period, the prior counter values
1314  		 * need to be subtracted from the current counter values.
1315  		 * From there, the idle time stat can be calculated as a
1316  		 * percentage of 100 - the sum of the other consumption times.
1317  		 */
1318  		wall_idle = get_cpu_idle_time(i, &wall, 1);
1319  		diff_idle = wall_idle - idle_stat->prev_idle;
1320  		diff_wall = wall - idle_stat->prev_wall;
1321  
1322  		if (diff_wall <= diff_idle)
1323  			busy_time = 0;
1324  		else
1325  			busy_time = diff_wall - diff_idle;
1326  
1327  		idle_percent = div64_u64(100 * busy_time, diff_wall);
1328  		idle_percent = 100 - idle_percent;
1329  
1330  		if (idle_percent < 15)
1331  			eq->poll_mode = LPFC_QUEUE_WORK;
1332  		else
1333  			eq->poll_mode = LPFC_THREADED_IRQ;
1334  
1335  		idle_stat->prev_idle = wall_idle;
1336  		idle_stat->prev_wall = wall;
1337  	}
1338  
1339  requeue:
1340  	schedule_delayed_work(&phba->idle_stat_delay_work,
1341  			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1342  }
1343  
1344  static void
lpfc_hb_eq_delay_work(struct work_struct * work)1345  lpfc_hb_eq_delay_work(struct work_struct *work)
1346  {
1347  	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1348  					     struct lpfc_hba, eq_delay_work);
1349  	struct lpfc_eq_intr_info *eqi, *eqi_new;
1350  	struct lpfc_queue *eq, *eq_next;
1351  	unsigned char *ena_delay = NULL;
1352  	uint32_t usdelay;
1353  	int i;
1354  
1355  	if (!phba->cfg_auto_imax ||
1356  	    test_bit(FC_UNLOADING, &phba->pport->load_flag))
1357  		return;
1358  
1359  	if (phba->link_state == LPFC_HBA_ERROR ||
1360  	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
1361  		goto requeue;
1362  
1363  	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1364  			    GFP_KERNEL);
1365  	if (!ena_delay)
1366  		goto requeue;
1367  
1368  	for (i = 0; i < phba->cfg_irq_chann; i++) {
1369  		/* Get the EQ corresponding to the IRQ vector */
1370  		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1371  		if (!eq)
1372  			continue;
1373  		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1374  			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1375  			ena_delay[eq->last_cpu] = 1;
1376  		}
1377  	}
1378  
1379  	for_each_present_cpu(i) {
1380  		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1381  		if (ena_delay[i]) {
1382  			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1383  			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1384  				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1385  		} else {
1386  			usdelay = 0;
1387  		}
1388  
1389  		eqi->icnt = 0;
1390  
1391  		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1392  			if (unlikely(eq->last_cpu != i)) {
1393  				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1394  						      eq->last_cpu);
1395  				list_move_tail(&eq->cpu_list, &eqi_new->list);
1396  				continue;
1397  			}
1398  			if (usdelay != eq->q_mode)
1399  				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1400  							 usdelay);
1401  		}
1402  	}
1403  
1404  	kfree(ena_delay);
1405  
1406  requeue:
1407  	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1408  			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1409  }
1410  
1411  /**
1412   * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1413   * @phba: pointer to lpfc hba data structure.
1414   *
1415   * For each heartbeat, this routine does some heuristic methods to adjust
1416   * XRI distribution. The goal is to fully utilize free XRIs.
1417   **/
lpfc_hb_mxp_handler(struct lpfc_hba * phba)1418  static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1419  {
1420  	u32 i;
1421  	u32 hwq_count;
1422  
1423  	hwq_count = phba->cfg_hdw_queue;
1424  	for (i = 0; i < hwq_count; i++) {
1425  		/* Adjust XRIs in private pool */
1426  		lpfc_adjust_pvt_pool_count(phba, i);
1427  
1428  		/* Adjust high watermark */
1429  		lpfc_adjust_high_watermark(phba, i);
1430  
1431  #ifdef LPFC_MXP_STAT
1432  		/* Snapshot pbl, pvt and busy count */
1433  		lpfc_snapshot_mxp(phba, i);
1434  #endif
1435  	}
1436  }
1437  
1438  /**
1439   * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1440   * @phba: pointer to lpfc hba data structure.
1441   *
1442   * If a HB mbox is not already in progrees, this routine will allocate
1443   * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1444   * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1445   **/
1446  int
lpfc_issue_hb_mbox(struct lpfc_hba * phba)1447  lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1448  {
1449  	LPFC_MBOXQ_t *pmboxq;
1450  	int retval;
1451  
1452  	/* Is a Heartbeat mbox already in progress */
1453  	if (test_bit(HBA_HBEAT_INP, &phba->hba_flag))
1454  		return 0;
1455  
1456  	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1457  	if (!pmboxq)
1458  		return -ENOMEM;
1459  
1460  	lpfc_heart_beat(phba, pmboxq);
1461  	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1462  	pmboxq->vport = phba->pport;
1463  	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1464  
1465  	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1466  		mempool_free(pmboxq, phba->mbox_mem_pool);
1467  		return -ENXIO;
1468  	}
1469  	set_bit(HBA_HBEAT_INP, &phba->hba_flag);
1470  
1471  	return 0;
1472  }
1473  
1474  /**
1475   * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1476   * @phba: pointer to lpfc hba data structure.
1477   *
1478   * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1479   * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1480   * of the value of lpfc_enable_hba_heartbeat.
1481   * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1482   * try to issue a MBX_HEARTBEAT mbox command.
1483   **/
1484  void
lpfc_issue_hb_tmo(struct lpfc_hba * phba)1485  lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1486  {
1487  	if (phba->cfg_enable_hba_heartbeat)
1488  		return;
1489  	set_bit(HBA_HBEAT_TMO, &phba->hba_flag);
1490  }
1491  
1492  /**
1493   * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1494   * @phba: pointer to lpfc hba data structure.
1495   *
1496   * This is the actual HBA-timer timeout handler to be invoked by the worker
1497   * thread whenever the HBA timer fired and HBA-timeout event posted. This
1498   * handler performs any periodic operations needed for the device. If such
1499   * periodic event has already been attended to either in the interrupt handler
1500   * or by processing slow-ring or fast-ring events within the HBA-timer
1501   * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1502   * the timer for the next timeout period. If lpfc heart-beat mailbox command
1503   * is configured and there is no heart-beat mailbox command outstanding, a
1504   * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1505   * has been a heart-beat mailbox command outstanding, the HBA shall be put
1506   * to offline.
1507   **/
1508  void
lpfc_hb_timeout_handler(struct lpfc_hba * phba)1509  lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1510  {
1511  	struct lpfc_vport **vports;
1512  	struct lpfc_dmabuf *buf_ptr;
1513  	int retval = 0;
1514  	int i, tmo;
1515  	struct lpfc_sli *psli = &phba->sli;
1516  	LIST_HEAD(completions);
1517  
1518  	if (phba->cfg_xri_rebalancing) {
1519  		/* Multi-XRI pools handler */
1520  		lpfc_hb_mxp_handler(phba);
1521  	}
1522  
1523  	vports = lpfc_create_vport_work_array(phba);
1524  	if (vports != NULL)
1525  		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1526  			lpfc_rcv_seq_check_edtov(vports[i]);
1527  			lpfc_fdmi_change_check(vports[i]);
1528  		}
1529  	lpfc_destroy_vport_work_array(phba, vports);
1530  
1531  	if (phba->link_state == LPFC_HBA_ERROR ||
1532  	    test_bit(FC_UNLOADING, &phba->pport->load_flag) ||
1533  	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
1534  		return;
1535  
1536  	if (phba->elsbuf_cnt &&
1537  		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1538  		spin_lock_irq(&phba->hbalock);
1539  		list_splice_init(&phba->elsbuf, &completions);
1540  		phba->elsbuf_cnt = 0;
1541  		phba->elsbuf_prev_cnt = 0;
1542  		spin_unlock_irq(&phba->hbalock);
1543  
1544  		while (!list_empty(&completions)) {
1545  			list_remove_head(&completions, buf_ptr,
1546  				struct lpfc_dmabuf, list);
1547  			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1548  			kfree(buf_ptr);
1549  		}
1550  	}
1551  	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1552  
1553  	/* If there is no heart beat outstanding, issue a heartbeat command */
1554  	if (phba->cfg_enable_hba_heartbeat) {
1555  		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1556  		spin_lock_irq(&phba->pport->work_port_lock);
1557  		if (time_after(phba->last_completion_time +
1558  				msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1559  				jiffies)) {
1560  			spin_unlock_irq(&phba->pport->work_port_lock);
1561  			if (test_bit(HBA_HBEAT_INP, &phba->hba_flag))
1562  				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1563  			else
1564  				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1565  			goto out;
1566  		}
1567  		spin_unlock_irq(&phba->pport->work_port_lock);
1568  
1569  		/* Check if a MBX_HEARTBEAT is already in progress */
1570  		if (test_bit(HBA_HBEAT_INP, &phba->hba_flag)) {
1571  			/*
1572  			 * If heart beat timeout called with HBA_HBEAT_INP set
1573  			 * we need to give the hb mailbox cmd a chance to
1574  			 * complete or TMO.
1575  			 */
1576  			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1577  				"0459 Adapter heartbeat still outstanding: "
1578  				"last compl time was %d ms.\n",
1579  				jiffies_to_msecs(jiffies
1580  					 - phba->last_completion_time));
1581  			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1582  		} else {
1583  			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1584  				(list_empty(&psli->mboxq))) {
1585  
1586  				retval = lpfc_issue_hb_mbox(phba);
1587  				if (retval) {
1588  					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1589  					goto out;
1590  				}
1591  				phba->skipped_hb = 0;
1592  			} else if (time_before_eq(phba->last_completion_time,
1593  					phba->skipped_hb)) {
1594  				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1595  					"2857 Last completion time not "
1596  					" updated in %d ms\n",
1597  					jiffies_to_msecs(jiffies
1598  						 - phba->last_completion_time));
1599  			} else
1600  				phba->skipped_hb = jiffies;
1601  
1602  			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1603  			goto out;
1604  		}
1605  	} else {
1606  		/* Check to see if we want to force a MBX_HEARTBEAT */
1607  		if (test_bit(HBA_HBEAT_TMO, &phba->hba_flag)) {
1608  			retval = lpfc_issue_hb_mbox(phba);
1609  			if (retval)
1610  				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1611  			else
1612  				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1613  			goto out;
1614  		}
1615  		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1616  	}
1617  out:
1618  	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1619  }
1620  
1621  /**
1622   * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1623   * @phba: pointer to lpfc hba data structure.
1624   *
1625   * This routine is called to bring the HBA offline when HBA hardware error
1626   * other than Port Error 6 has been detected.
1627   **/
1628  static void
lpfc_offline_eratt(struct lpfc_hba * phba)1629  lpfc_offline_eratt(struct lpfc_hba *phba)
1630  {
1631  	struct lpfc_sli   *psli = &phba->sli;
1632  
1633  	spin_lock_irq(&phba->hbalock);
1634  	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1635  	spin_unlock_irq(&phba->hbalock);
1636  	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1637  
1638  	lpfc_offline(phba);
1639  	lpfc_reset_barrier(phba);
1640  	spin_lock_irq(&phba->hbalock);
1641  	lpfc_sli_brdreset(phba);
1642  	spin_unlock_irq(&phba->hbalock);
1643  	lpfc_hba_down_post(phba);
1644  	lpfc_sli_brdready(phba, HS_MBRDY);
1645  	lpfc_unblock_mgmt_io(phba);
1646  	phba->link_state = LPFC_HBA_ERROR;
1647  	return;
1648  }
1649  
1650  /**
1651   * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1652   * @phba: pointer to lpfc hba data structure.
1653   *
1654   * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1655   * other than Port Error 6 has been detected.
1656   **/
1657  void
lpfc_sli4_offline_eratt(struct lpfc_hba * phba)1658  lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1659  {
1660  	spin_lock_irq(&phba->hbalock);
1661  	if (phba->link_state == LPFC_HBA_ERROR &&
1662  		test_bit(HBA_PCI_ERR, &phba->bit_flags)) {
1663  		spin_unlock_irq(&phba->hbalock);
1664  		return;
1665  	}
1666  	phba->link_state = LPFC_HBA_ERROR;
1667  	spin_unlock_irq(&phba->hbalock);
1668  
1669  	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1670  	lpfc_sli_flush_io_rings(phba);
1671  	lpfc_offline(phba);
1672  	lpfc_hba_down_post(phba);
1673  	lpfc_unblock_mgmt_io(phba);
1674  }
1675  
1676  /**
1677   * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1678   * @phba: pointer to lpfc hba data structure.
1679   *
1680   * This routine is invoked to handle the deferred HBA hardware error
1681   * conditions. This type of error is indicated by HBA by setting ER1
1682   * and another ER bit in the host status register. The driver will
1683   * wait until the ER1 bit clears before handling the error condition.
1684   **/
1685  static void
lpfc_handle_deferred_eratt(struct lpfc_hba * phba)1686  lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1687  {
1688  	uint32_t old_host_status = phba->work_hs;
1689  	struct lpfc_sli *psli = &phba->sli;
1690  
1691  	/* If the pci channel is offline, ignore possible errors,
1692  	 * since we cannot communicate with the pci card anyway.
1693  	 */
1694  	if (pci_channel_offline(phba->pcidev)) {
1695  		clear_bit(DEFER_ERATT, &phba->hba_flag);
1696  		return;
1697  	}
1698  
1699  	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1700  			"0479 Deferred Adapter Hardware Error "
1701  			"Data: x%x x%x x%x\n",
1702  			phba->work_hs, phba->work_status[0],
1703  			phba->work_status[1]);
1704  
1705  	spin_lock_irq(&phba->hbalock);
1706  	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1707  	spin_unlock_irq(&phba->hbalock);
1708  
1709  
1710  	/*
1711  	 * Firmware stops when it triggred erratt. That could cause the I/Os
1712  	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1713  	 * SCSI layer retry it after re-establishing link.
1714  	 */
1715  	lpfc_sli_abort_fcp_rings(phba);
1716  
1717  	/*
1718  	 * There was a firmware error. Take the hba offline and then
1719  	 * attempt to restart it.
1720  	 */
1721  	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1722  	lpfc_offline(phba);
1723  
1724  	/* Wait for the ER1 bit to clear.*/
1725  	while (phba->work_hs & HS_FFER1) {
1726  		msleep(100);
1727  		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1728  			phba->work_hs = UNPLUG_ERR ;
1729  			break;
1730  		}
1731  		/* If driver is unloading let the worker thread continue */
1732  		if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
1733  			phba->work_hs = 0;
1734  			break;
1735  		}
1736  	}
1737  
1738  	/*
1739  	 * This is to ptrotect against a race condition in which
1740  	 * first write to the host attention register clear the
1741  	 * host status register.
1742  	 */
1743  	if (!phba->work_hs && !test_bit(FC_UNLOADING, &phba->pport->load_flag))
1744  		phba->work_hs = old_host_status & ~HS_FFER1;
1745  
1746  	clear_bit(DEFER_ERATT, &phba->hba_flag);
1747  	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1748  	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1749  }
1750  
1751  static void
lpfc_board_errevt_to_mgmt(struct lpfc_hba * phba)1752  lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1753  {
1754  	struct lpfc_board_event_header board_event;
1755  	struct Scsi_Host *shost;
1756  
1757  	board_event.event_type = FC_REG_BOARD_EVENT;
1758  	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1759  	shost = lpfc_shost_from_vport(phba->pport);
1760  	fc_host_post_vendor_event(shost, fc_get_event_number(),
1761  				  sizeof(board_event),
1762  				  (char *) &board_event,
1763  				  LPFC_NL_VENDOR_ID);
1764  }
1765  
1766  /**
1767   * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1768   * @phba: pointer to lpfc hba data structure.
1769   *
1770   * This routine is invoked to handle the following HBA hardware error
1771   * conditions:
1772   * 1 - HBA error attention interrupt
1773   * 2 - DMA ring index out of range
1774   * 3 - Mailbox command came back as unknown
1775   **/
1776  static void
lpfc_handle_eratt_s3(struct lpfc_hba * phba)1777  lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1778  {
1779  	struct lpfc_vport *vport = phba->pport;
1780  	struct lpfc_sli   *psli = &phba->sli;
1781  	uint32_t event_data;
1782  	unsigned long temperature;
1783  	struct temp_event temp_event_data;
1784  	struct Scsi_Host  *shost;
1785  
1786  	/* If the pci channel is offline, ignore possible errors,
1787  	 * since we cannot communicate with the pci card anyway.
1788  	 */
1789  	if (pci_channel_offline(phba->pcidev)) {
1790  		clear_bit(DEFER_ERATT, &phba->hba_flag);
1791  		return;
1792  	}
1793  
1794  	/* If resets are disabled then leave the HBA alone and return */
1795  	if (!phba->cfg_enable_hba_reset)
1796  		return;
1797  
1798  	/* Send an internal error event to mgmt application */
1799  	lpfc_board_errevt_to_mgmt(phba);
1800  
1801  	if (test_bit(DEFER_ERATT, &phba->hba_flag))
1802  		lpfc_handle_deferred_eratt(phba);
1803  
1804  	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1805  		if (phba->work_hs & HS_FFER6)
1806  			/* Re-establishing Link */
1807  			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1808  					"1301 Re-establishing Link "
1809  					"Data: x%x x%x x%x\n",
1810  					phba->work_hs, phba->work_status[0],
1811  					phba->work_status[1]);
1812  		if (phba->work_hs & HS_FFER8)
1813  			/* Device Zeroization */
1814  			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1815  					"2861 Host Authentication device "
1816  					"zeroization Data:x%x x%x x%x\n",
1817  					phba->work_hs, phba->work_status[0],
1818  					phba->work_status[1]);
1819  
1820  		spin_lock_irq(&phba->hbalock);
1821  		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1822  		spin_unlock_irq(&phba->hbalock);
1823  
1824  		/*
1825  		* Firmware stops when it triggled erratt with HS_FFER6.
1826  		* That could cause the I/Os dropped by the firmware.
1827  		* Error iocb (I/O) on txcmplq and let the SCSI layer
1828  		* retry it after re-establishing link.
1829  		*/
1830  		lpfc_sli_abort_fcp_rings(phba);
1831  
1832  		/*
1833  		 * There was a firmware error.  Take the hba offline and then
1834  		 * attempt to restart it.
1835  		 */
1836  		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1837  		lpfc_offline(phba);
1838  		lpfc_sli_brdrestart(phba);
1839  		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1840  			lpfc_unblock_mgmt_io(phba);
1841  			return;
1842  		}
1843  		lpfc_unblock_mgmt_io(phba);
1844  	} else if (phba->work_hs & HS_CRIT_TEMP) {
1845  		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1846  		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1847  		temp_event_data.event_code = LPFC_CRIT_TEMP;
1848  		temp_event_data.data = (uint32_t)temperature;
1849  
1850  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1851  				"0406 Adapter maximum temperature exceeded "
1852  				"(%ld), taking this port offline "
1853  				"Data: x%x x%x x%x\n",
1854  				temperature, phba->work_hs,
1855  				phba->work_status[0], phba->work_status[1]);
1856  
1857  		shost = lpfc_shost_from_vport(phba->pport);
1858  		fc_host_post_vendor_event(shost, fc_get_event_number(),
1859  					  sizeof(temp_event_data),
1860  					  (char *) &temp_event_data,
1861  					  SCSI_NL_VID_TYPE_PCI
1862  					  | PCI_VENDOR_ID_EMULEX);
1863  
1864  		spin_lock_irq(&phba->hbalock);
1865  		phba->over_temp_state = HBA_OVER_TEMP;
1866  		spin_unlock_irq(&phba->hbalock);
1867  		lpfc_offline_eratt(phba);
1868  
1869  	} else {
1870  		/* The if clause above forces this code path when the status
1871  		 * failure is a value other than FFER6. Do not call the offline
1872  		 * twice. This is the adapter hardware error path.
1873  		 */
1874  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1875  				"0457 Adapter Hardware Error "
1876  				"Data: x%x x%x x%x\n",
1877  				phba->work_hs,
1878  				phba->work_status[0], phba->work_status[1]);
1879  
1880  		event_data = FC_REG_DUMP_EVENT;
1881  		shost = lpfc_shost_from_vport(vport);
1882  		fc_host_post_vendor_event(shost, fc_get_event_number(),
1883  				sizeof(event_data), (char *) &event_data,
1884  				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1885  
1886  		lpfc_offline_eratt(phba);
1887  	}
1888  	return;
1889  }
1890  
1891  /**
1892   * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1893   * @phba: pointer to lpfc hba data structure.
1894   * @mbx_action: flag for mailbox shutdown action.
1895   * @en_rn_msg: send reset/port recovery message.
1896   * This routine is invoked to perform an SLI4 port PCI function reset in
1897   * response to port status register polling attention. It waits for port
1898   * status register (ERR, RDY, RN) bits before proceeding with function reset.
1899   * During this process, interrupt vectors are freed and later requested
1900   * for handling possible port resource change.
1901   **/
1902  static int
lpfc_sli4_port_sta_fn_reset(struct lpfc_hba * phba,int mbx_action,bool en_rn_msg)1903  lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1904  			    bool en_rn_msg)
1905  {
1906  	int rc;
1907  	uint32_t intr_mode;
1908  	LPFC_MBOXQ_t *mboxq;
1909  
1910  	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1911  	    LPFC_SLI_INTF_IF_TYPE_2) {
1912  		/*
1913  		 * On error status condition, driver need to wait for port
1914  		 * ready before performing reset.
1915  		 */
1916  		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1917  		if (rc)
1918  			return rc;
1919  	}
1920  
1921  	/* need reset: attempt for port recovery */
1922  	if (en_rn_msg)
1923  		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1924  				"2887 Reset Needed: Attempting Port "
1925  				"Recovery...\n");
1926  
1927  	/* If we are no wait, the HBA has been reset and is not
1928  	 * functional, thus we should clear
1929  	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1930  	 */
1931  	if (mbx_action == LPFC_MBX_NO_WAIT) {
1932  		spin_lock_irq(&phba->hbalock);
1933  		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1934  		if (phba->sli.mbox_active) {
1935  			mboxq = phba->sli.mbox_active;
1936  			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1937  			__lpfc_mbox_cmpl_put(phba, mboxq);
1938  			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1939  			phba->sli.mbox_active = NULL;
1940  		}
1941  		spin_unlock_irq(&phba->hbalock);
1942  	}
1943  
1944  	lpfc_offline_prep(phba, mbx_action);
1945  	lpfc_sli_flush_io_rings(phba);
1946  	lpfc_offline(phba);
1947  	/* release interrupt for possible resource change */
1948  	lpfc_sli4_disable_intr(phba);
1949  	rc = lpfc_sli_brdrestart(phba);
1950  	if (rc) {
1951  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1952  				"6309 Failed to restart board\n");
1953  		return rc;
1954  	}
1955  	/* request and enable interrupt */
1956  	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1957  	if (intr_mode == LPFC_INTR_ERROR) {
1958  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1959  				"3175 Failed to enable interrupt\n");
1960  		return -EIO;
1961  	}
1962  	phba->intr_mode = intr_mode;
1963  	rc = lpfc_online(phba);
1964  	if (rc == 0)
1965  		lpfc_unblock_mgmt_io(phba);
1966  
1967  	return rc;
1968  }
1969  
1970  /**
1971   * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1972   * @phba: pointer to lpfc hba data structure.
1973   *
1974   * This routine is invoked to handle the SLI4 HBA hardware error attention
1975   * conditions.
1976   **/
1977  static void
lpfc_handle_eratt_s4(struct lpfc_hba * phba)1978  lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1979  {
1980  	struct lpfc_vport *vport = phba->pport;
1981  	uint32_t event_data;
1982  	struct Scsi_Host *shost;
1983  	uint32_t if_type;
1984  	struct lpfc_register portstat_reg = {0};
1985  	uint32_t reg_err1, reg_err2;
1986  	uint32_t uerrlo_reg, uemasklo_reg;
1987  	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1988  	bool en_rn_msg = true;
1989  	struct temp_event temp_event_data;
1990  	struct lpfc_register portsmphr_reg;
1991  	int rc, i;
1992  
1993  	/* If the pci channel is offline, ignore possible errors, since
1994  	 * we cannot communicate with the pci card anyway.
1995  	 */
1996  	if (pci_channel_offline(phba->pcidev)) {
1997  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1998  				"3166 pci channel is offline\n");
1999  		lpfc_sli_flush_io_rings(phba);
2000  		return;
2001  	}
2002  
2003  	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
2004  	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
2005  	switch (if_type) {
2006  	case LPFC_SLI_INTF_IF_TYPE_0:
2007  		pci_rd_rc1 = lpfc_readl(
2008  				phba->sli4_hba.u.if_type0.UERRLOregaddr,
2009  				&uerrlo_reg);
2010  		pci_rd_rc2 = lpfc_readl(
2011  				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
2012  				&uemasklo_reg);
2013  		/* consider PCI bus read error as pci_channel_offline */
2014  		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
2015  			return;
2016  		if (!test_bit(HBA_RECOVERABLE_UE, &phba->hba_flag)) {
2017  			lpfc_sli4_offline_eratt(phba);
2018  			return;
2019  		}
2020  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2021  				"7623 Checking UE recoverable");
2022  
2023  		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
2024  			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2025  				       &portsmphr_reg.word0))
2026  				continue;
2027  
2028  			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
2029  						   &portsmphr_reg);
2030  			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2031  			    LPFC_PORT_SEM_UE_RECOVERABLE)
2032  				break;
2033  			/*Sleep for 1Sec, before checking SEMAPHORE */
2034  			msleep(1000);
2035  		}
2036  
2037  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2038  				"4827 smphr_port_status x%x : Waited %dSec",
2039  				smphr_port_status, i);
2040  
2041  		/* Recoverable UE, reset the HBA device */
2042  		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2043  		    LPFC_PORT_SEM_UE_RECOVERABLE) {
2044  			for (i = 0; i < 20; i++) {
2045  				msleep(1000);
2046  				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2047  				    &portsmphr_reg.word0) &&
2048  				    (LPFC_POST_STAGE_PORT_READY ==
2049  				     bf_get(lpfc_port_smphr_port_status,
2050  				     &portsmphr_reg))) {
2051  					rc = lpfc_sli4_port_sta_fn_reset(phba,
2052  						LPFC_MBX_NO_WAIT, en_rn_msg);
2053  					if (rc == 0)
2054  						return;
2055  					lpfc_printf_log(phba, KERN_ERR,
2056  						LOG_TRACE_EVENT,
2057  						"4215 Failed to recover UE");
2058  					break;
2059  				}
2060  			}
2061  		}
2062  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2063  				"7624 Firmware not ready: Failing UE recovery,"
2064  				" waited %dSec", i);
2065  		phba->link_state = LPFC_HBA_ERROR;
2066  		break;
2067  
2068  	case LPFC_SLI_INTF_IF_TYPE_2:
2069  	case LPFC_SLI_INTF_IF_TYPE_6:
2070  		pci_rd_rc1 = lpfc_readl(
2071  				phba->sli4_hba.u.if_type2.STATUSregaddr,
2072  				&portstat_reg.word0);
2073  		/* consider PCI bus read error as pci_channel_offline */
2074  		if (pci_rd_rc1 == -EIO) {
2075  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2076  				"3151 PCI bus read access failure: x%x\n",
2077  				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2078  			lpfc_sli4_offline_eratt(phba);
2079  			return;
2080  		}
2081  		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2082  		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2083  		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2084  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2085  					"2889 Port Overtemperature event, "
2086  					"taking port offline Data: x%x x%x\n",
2087  					reg_err1, reg_err2);
2088  
2089  			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2090  			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2091  			temp_event_data.event_code = LPFC_CRIT_TEMP;
2092  			temp_event_data.data = 0xFFFFFFFF;
2093  
2094  			shost = lpfc_shost_from_vport(phba->pport);
2095  			fc_host_post_vendor_event(shost, fc_get_event_number(),
2096  						  sizeof(temp_event_data),
2097  						  (char *)&temp_event_data,
2098  						  SCSI_NL_VID_TYPE_PCI
2099  						  | PCI_VENDOR_ID_EMULEX);
2100  
2101  			spin_lock_irq(&phba->hbalock);
2102  			phba->over_temp_state = HBA_OVER_TEMP;
2103  			spin_unlock_irq(&phba->hbalock);
2104  			lpfc_sli4_offline_eratt(phba);
2105  			return;
2106  		}
2107  		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2108  		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2109  			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2110  					"3143 Port Down: Firmware Update "
2111  					"Detected\n");
2112  			en_rn_msg = false;
2113  		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2114  			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2115  			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2116  					"3144 Port Down: Debug Dump\n");
2117  		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2118  			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2119  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2120  					"3145 Port Down: Provisioning\n");
2121  
2122  		/* If resets are disabled then leave the HBA alone and return */
2123  		if (!phba->cfg_enable_hba_reset)
2124  			return;
2125  
2126  		/* Check port status register for function reset */
2127  		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2128  				en_rn_msg);
2129  		if (rc == 0) {
2130  			/* don't report event on forced debug dump */
2131  			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2132  			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2133  				return;
2134  			else
2135  				break;
2136  		}
2137  		/* fall through for not able to recover */
2138  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2139  				"3152 Unrecoverable error\n");
2140  		lpfc_sli4_offline_eratt(phba);
2141  		break;
2142  	case LPFC_SLI_INTF_IF_TYPE_1:
2143  	default:
2144  		break;
2145  	}
2146  	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2147  			"3123 Report dump event to upper layer\n");
2148  	/* Send an internal error event to mgmt application */
2149  	lpfc_board_errevt_to_mgmt(phba);
2150  
2151  	event_data = FC_REG_DUMP_EVENT;
2152  	shost = lpfc_shost_from_vport(vport);
2153  	fc_host_post_vendor_event(shost, fc_get_event_number(),
2154  				  sizeof(event_data), (char *) &event_data,
2155  				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2156  }
2157  
2158  /**
2159   * lpfc_handle_eratt - Wrapper func for handling hba error attention
2160   * @phba: pointer to lpfc HBA data structure.
2161   *
2162   * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2163   * routine from the API jump table function pointer from the lpfc_hba struct.
2164   *
2165   * Return codes
2166   *   0 - success.
2167   *   Any other value - error.
2168   **/
2169  void
lpfc_handle_eratt(struct lpfc_hba * phba)2170  lpfc_handle_eratt(struct lpfc_hba *phba)
2171  {
2172  	(*phba->lpfc_handle_eratt)(phba);
2173  }
2174  
2175  /**
2176   * lpfc_handle_latt - The HBA link event handler
2177   * @phba: pointer to lpfc hba data structure.
2178   *
2179   * This routine is invoked from the worker thread to handle a HBA host
2180   * attention link event. SLI3 only.
2181   **/
2182  void
lpfc_handle_latt(struct lpfc_hba * phba)2183  lpfc_handle_latt(struct lpfc_hba *phba)
2184  {
2185  	struct lpfc_vport *vport = phba->pport;
2186  	struct lpfc_sli   *psli = &phba->sli;
2187  	LPFC_MBOXQ_t *pmb;
2188  	volatile uint32_t control;
2189  	int rc = 0;
2190  
2191  	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2192  	if (!pmb) {
2193  		rc = 1;
2194  		goto lpfc_handle_latt_err_exit;
2195  	}
2196  
2197  	rc = lpfc_mbox_rsrc_prep(phba, pmb);
2198  	if (rc) {
2199  		rc = 2;
2200  		mempool_free(pmb, phba->mbox_mem_pool);
2201  		goto lpfc_handle_latt_err_exit;
2202  	}
2203  
2204  	/* Cleanup any outstanding ELS commands */
2205  	lpfc_els_flush_all_cmd(phba);
2206  	psli->slistat.link_event++;
2207  	lpfc_read_topology(phba, pmb, pmb->ctx_buf);
2208  	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2209  	pmb->vport = vport;
2210  	/* Block ELS IOCBs until we have processed this mbox command */
2211  	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2212  	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2213  	if (rc == MBX_NOT_FINISHED) {
2214  		rc = 4;
2215  		goto lpfc_handle_latt_free_mbuf;
2216  	}
2217  
2218  	/* Clear Link Attention in HA REG */
2219  	spin_lock_irq(&phba->hbalock);
2220  	writel(HA_LATT, phba->HAregaddr);
2221  	readl(phba->HAregaddr); /* flush */
2222  	spin_unlock_irq(&phba->hbalock);
2223  
2224  	return;
2225  
2226  lpfc_handle_latt_free_mbuf:
2227  	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2228  	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2229  lpfc_handle_latt_err_exit:
2230  	/* Enable Link attention interrupts */
2231  	spin_lock_irq(&phba->hbalock);
2232  	psli->sli_flag |= LPFC_PROCESS_LA;
2233  	control = readl(phba->HCregaddr);
2234  	control |= HC_LAINT_ENA;
2235  	writel(control, phba->HCregaddr);
2236  	readl(phba->HCregaddr); /* flush */
2237  
2238  	/* Clear Link Attention in HA REG */
2239  	writel(HA_LATT, phba->HAregaddr);
2240  	readl(phba->HAregaddr); /* flush */
2241  	spin_unlock_irq(&phba->hbalock);
2242  	lpfc_linkdown(phba);
2243  	phba->link_state = LPFC_HBA_ERROR;
2244  
2245  	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2246  			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2247  
2248  	return;
2249  }
2250  
2251  static void
lpfc_fill_vpd(struct lpfc_hba * phba,uint8_t * vpd,int length,int * pindex)2252  lpfc_fill_vpd(struct lpfc_hba *phba, uint8_t *vpd, int length, int *pindex)
2253  {
2254  	int i, j;
2255  
2256  	while (length > 0) {
2257  		/* Look for Serial Number */
2258  		if ((vpd[*pindex] == 'S') && (vpd[*pindex + 1] == 'N')) {
2259  			*pindex += 2;
2260  			i = vpd[*pindex];
2261  			*pindex += 1;
2262  			j = 0;
2263  			length -= (3+i);
2264  			while (i--) {
2265  				phba->SerialNumber[j++] = vpd[(*pindex)++];
2266  				if (j == 31)
2267  					break;
2268  			}
2269  			phba->SerialNumber[j] = 0;
2270  			continue;
2271  		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '1')) {
2272  			phba->vpd_flag |= VPD_MODEL_DESC;
2273  			*pindex += 2;
2274  			i = vpd[*pindex];
2275  			*pindex += 1;
2276  			j = 0;
2277  			length -= (3+i);
2278  			while (i--) {
2279  				phba->ModelDesc[j++] = vpd[(*pindex)++];
2280  				if (j == 255)
2281  					break;
2282  			}
2283  			phba->ModelDesc[j] = 0;
2284  			continue;
2285  		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '2')) {
2286  			phba->vpd_flag |= VPD_MODEL_NAME;
2287  			*pindex += 2;
2288  			i = vpd[*pindex];
2289  			*pindex += 1;
2290  			j = 0;
2291  			length -= (3+i);
2292  			while (i--) {
2293  				phba->ModelName[j++] = vpd[(*pindex)++];
2294  				if (j == 79)
2295  					break;
2296  			}
2297  			phba->ModelName[j] = 0;
2298  			continue;
2299  		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '3')) {
2300  			phba->vpd_flag |= VPD_PROGRAM_TYPE;
2301  			*pindex += 2;
2302  			i = vpd[*pindex];
2303  			*pindex += 1;
2304  			j = 0;
2305  			length -= (3+i);
2306  			while (i--) {
2307  				phba->ProgramType[j++] = vpd[(*pindex)++];
2308  				if (j == 255)
2309  					break;
2310  			}
2311  			phba->ProgramType[j] = 0;
2312  			continue;
2313  		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '4')) {
2314  			phba->vpd_flag |= VPD_PORT;
2315  			*pindex += 2;
2316  			i = vpd[*pindex];
2317  			*pindex += 1;
2318  			j = 0;
2319  			length -= (3 + i);
2320  			while (i--) {
2321  				if ((phba->sli_rev == LPFC_SLI_REV4) &&
2322  				    (phba->sli4_hba.pport_name_sta ==
2323  				     LPFC_SLI4_PPNAME_GET)) {
2324  					j++;
2325  					(*pindex)++;
2326  				} else
2327  					phba->Port[j++] = vpd[(*pindex)++];
2328  				if (j == 19)
2329  					break;
2330  			}
2331  			if ((phba->sli_rev != LPFC_SLI_REV4) ||
2332  			    (phba->sli4_hba.pport_name_sta ==
2333  			     LPFC_SLI4_PPNAME_NON))
2334  				phba->Port[j] = 0;
2335  			continue;
2336  		} else {
2337  			*pindex += 2;
2338  			i = vpd[*pindex];
2339  			*pindex += 1;
2340  			*pindex += i;
2341  			length -= (3 + i);
2342  		}
2343  	}
2344  }
2345  
2346  /**
2347   * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2348   * @phba: pointer to lpfc hba data structure.
2349   * @vpd: pointer to the vital product data.
2350   * @len: length of the vital product data in bytes.
2351   *
2352   * This routine parses the Vital Product Data (VPD). The VPD is treated as
2353   * an array of characters. In this routine, the ModelName, ProgramType, and
2354   * ModelDesc, etc. fields of the phba data structure will be populated.
2355   *
2356   * Return codes
2357   *   0 - pointer to the VPD passed in is NULL
2358   *   1 - success
2359   **/
2360  int
lpfc_parse_vpd(struct lpfc_hba * phba,uint8_t * vpd,int len)2361  lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2362  {
2363  	uint8_t lenlo, lenhi;
2364  	int Length;
2365  	int i;
2366  	int finished = 0;
2367  	int index = 0;
2368  
2369  	if (!vpd)
2370  		return 0;
2371  
2372  	/* Vital Product */
2373  	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2374  			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2375  			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2376  			(uint32_t) vpd[3]);
2377  	while (!finished && (index < (len - 4))) {
2378  		switch (vpd[index]) {
2379  		case 0x82:
2380  		case 0x91:
2381  			index += 1;
2382  			lenlo = vpd[index];
2383  			index += 1;
2384  			lenhi = vpd[index];
2385  			index += 1;
2386  			i = ((((unsigned short)lenhi) << 8) + lenlo);
2387  			index += i;
2388  			break;
2389  		case 0x90:
2390  			index += 1;
2391  			lenlo = vpd[index];
2392  			index += 1;
2393  			lenhi = vpd[index];
2394  			index += 1;
2395  			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2396  			if (Length > len - index)
2397  				Length = len - index;
2398  
2399  			lpfc_fill_vpd(phba, vpd, Length, &index);
2400  			finished = 0;
2401  			break;
2402  		case 0x78:
2403  			finished = 1;
2404  			break;
2405  		default:
2406  			index ++;
2407  			break;
2408  		}
2409  	}
2410  
2411  	return(1);
2412  }
2413  
2414  /**
2415   * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description
2416   * @phba: pointer to lpfc hba data structure.
2417   * @mdp: pointer to the data structure to hold the derived model name.
2418   * @descp: pointer to the data structure to hold the derived description.
2419   *
2420   * This routine retrieves HBA's description based on its registered PCI device
2421   * ID. The @descp passed into this function points to an array of 256 chars. It
2422   * shall be returned with the model name, maximum speed, and the host bus type.
2423   * The @mdp passed into this function points to an array of 80 chars. When the
2424   * function returns, the @mdp will be filled with the model name.
2425   **/
2426  static void
lpfc_get_atto_model_desc(struct lpfc_hba * phba,uint8_t * mdp,uint8_t * descp)2427  lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2428  {
2429  	uint16_t sub_dev_id = phba->pcidev->subsystem_device;
2430  	char *model = "<Unknown>";
2431  	int tbolt = 0;
2432  
2433  	switch (sub_dev_id) {
2434  	case PCI_DEVICE_ID_CLRY_161E:
2435  		model = "161E";
2436  		break;
2437  	case PCI_DEVICE_ID_CLRY_162E:
2438  		model = "162E";
2439  		break;
2440  	case PCI_DEVICE_ID_CLRY_164E:
2441  		model = "164E";
2442  		break;
2443  	case PCI_DEVICE_ID_CLRY_161P:
2444  		model = "161P";
2445  		break;
2446  	case PCI_DEVICE_ID_CLRY_162P:
2447  		model = "162P";
2448  		break;
2449  	case PCI_DEVICE_ID_CLRY_164P:
2450  		model = "164P";
2451  		break;
2452  	case PCI_DEVICE_ID_CLRY_321E:
2453  		model = "321E";
2454  		break;
2455  	case PCI_DEVICE_ID_CLRY_322E:
2456  		model = "322E";
2457  		break;
2458  	case PCI_DEVICE_ID_CLRY_324E:
2459  		model = "324E";
2460  		break;
2461  	case PCI_DEVICE_ID_CLRY_321P:
2462  		model = "321P";
2463  		break;
2464  	case PCI_DEVICE_ID_CLRY_322P:
2465  		model = "322P";
2466  		break;
2467  	case PCI_DEVICE_ID_CLRY_324P:
2468  		model = "324P";
2469  		break;
2470  	case PCI_DEVICE_ID_TLFC_2XX2:
2471  		model = "2XX2";
2472  		tbolt = 1;
2473  		break;
2474  	case PCI_DEVICE_ID_TLFC_3162:
2475  		model = "3162";
2476  		tbolt = 1;
2477  		break;
2478  	case PCI_DEVICE_ID_TLFC_3322:
2479  		model = "3322";
2480  		tbolt = 1;
2481  		break;
2482  	default:
2483  		model = "Unknown";
2484  		break;
2485  	}
2486  
2487  	if (mdp && mdp[0] == '\0')
2488  		snprintf(mdp, 79, "%s", model);
2489  
2490  	if (descp && descp[0] == '\0')
2491  		snprintf(descp, 255,
2492  			 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s",
2493  			 (tbolt) ? "ThunderLink FC " : "Celerity FC-",
2494  			 model,
2495  			 phba->Port);
2496  }
2497  
2498  /**
2499   * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2500   * @phba: pointer to lpfc hba data structure.
2501   * @mdp: pointer to the data structure to hold the derived model name.
2502   * @descp: pointer to the data structure to hold the derived description.
2503   *
2504   * This routine retrieves HBA's description based on its registered PCI device
2505   * ID. The @descp passed into this function points to an array of 256 chars. It
2506   * shall be returned with the model name, maximum speed, and the host bus type.
2507   * The @mdp passed into this function points to an array of 80 chars. When the
2508   * function returns, the @mdp will be filled with the model name.
2509   **/
2510  static void
lpfc_get_hba_model_desc(struct lpfc_hba * phba,uint8_t * mdp,uint8_t * descp)2511  lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2512  {
2513  	lpfc_vpd_t *vp;
2514  	uint16_t dev_id = phba->pcidev->device;
2515  	int max_speed;
2516  	int GE = 0;
2517  	int oneConnect = 0; /* default is not a oneConnect */
2518  	struct {
2519  		char *name;
2520  		char *bus;
2521  		char *function;
2522  	} m = {"<Unknown>", "", ""};
2523  
2524  	if (mdp && mdp[0] != '\0'
2525  		&& descp && descp[0] != '\0')
2526  		return;
2527  
2528  	if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) {
2529  		lpfc_get_atto_model_desc(phba, mdp, descp);
2530  		return;
2531  	}
2532  
2533  	if (phba->lmt & LMT_64Gb)
2534  		max_speed = 64;
2535  	else if (phba->lmt & LMT_32Gb)
2536  		max_speed = 32;
2537  	else if (phba->lmt & LMT_16Gb)
2538  		max_speed = 16;
2539  	else if (phba->lmt & LMT_10Gb)
2540  		max_speed = 10;
2541  	else if (phba->lmt & LMT_8Gb)
2542  		max_speed = 8;
2543  	else if (phba->lmt & LMT_4Gb)
2544  		max_speed = 4;
2545  	else if (phba->lmt & LMT_2Gb)
2546  		max_speed = 2;
2547  	else if (phba->lmt & LMT_1Gb)
2548  		max_speed = 1;
2549  	else
2550  		max_speed = 0;
2551  
2552  	vp = &phba->vpd;
2553  
2554  	switch (dev_id) {
2555  	case PCI_DEVICE_ID_FIREFLY:
2556  		m = (typeof(m)){"LP6000", "PCI",
2557  				"Obsolete, Unsupported Fibre Channel Adapter"};
2558  		break;
2559  	case PCI_DEVICE_ID_SUPERFLY:
2560  		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2561  			m = (typeof(m)){"LP7000", "PCI", ""};
2562  		else
2563  			m = (typeof(m)){"LP7000E", "PCI", ""};
2564  		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2565  		break;
2566  	case PCI_DEVICE_ID_DRAGONFLY:
2567  		m = (typeof(m)){"LP8000", "PCI",
2568  				"Obsolete, Unsupported Fibre Channel Adapter"};
2569  		break;
2570  	case PCI_DEVICE_ID_CENTAUR:
2571  		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2572  			m = (typeof(m)){"LP9002", "PCI", ""};
2573  		else
2574  			m = (typeof(m)){"LP9000", "PCI", ""};
2575  		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2576  		break;
2577  	case PCI_DEVICE_ID_RFLY:
2578  		m = (typeof(m)){"LP952", "PCI",
2579  				"Obsolete, Unsupported Fibre Channel Adapter"};
2580  		break;
2581  	case PCI_DEVICE_ID_PEGASUS:
2582  		m = (typeof(m)){"LP9802", "PCI-X",
2583  				"Obsolete, Unsupported Fibre Channel Adapter"};
2584  		break;
2585  	case PCI_DEVICE_ID_THOR:
2586  		m = (typeof(m)){"LP10000", "PCI-X",
2587  				"Obsolete, Unsupported Fibre Channel Adapter"};
2588  		break;
2589  	case PCI_DEVICE_ID_VIPER:
2590  		m = (typeof(m)){"LPX1000",  "PCI-X",
2591  				"Obsolete, Unsupported Fibre Channel Adapter"};
2592  		break;
2593  	case PCI_DEVICE_ID_PFLY:
2594  		m = (typeof(m)){"LP982", "PCI-X",
2595  				"Obsolete, Unsupported Fibre Channel Adapter"};
2596  		break;
2597  	case PCI_DEVICE_ID_TFLY:
2598  		m = (typeof(m)){"LP1050", "PCI-X",
2599  				"Obsolete, Unsupported Fibre Channel Adapter"};
2600  		break;
2601  	case PCI_DEVICE_ID_HELIOS:
2602  		m = (typeof(m)){"LP11000", "PCI-X2",
2603  				"Obsolete, Unsupported Fibre Channel Adapter"};
2604  		break;
2605  	case PCI_DEVICE_ID_HELIOS_SCSP:
2606  		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2607  				"Obsolete, Unsupported Fibre Channel Adapter"};
2608  		break;
2609  	case PCI_DEVICE_ID_HELIOS_DCSP:
2610  		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2611  				"Obsolete, Unsupported Fibre Channel Adapter"};
2612  		break;
2613  	case PCI_DEVICE_ID_NEPTUNE:
2614  		m = (typeof(m)){"LPe1000", "PCIe",
2615  				"Obsolete, Unsupported Fibre Channel Adapter"};
2616  		break;
2617  	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2618  		m = (typeof(m)){"LPe1000-SP", "PCIe",
2619  				"Obsolete, Unsupported Fibre Channel Adapter"};
2620  		break;
2621  	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2622  		m = (typeof(m)){"LPe1002-SP", "PCIe",
2623  				"Obsolete, Unsupported Fibre Channel Adapter"};
2624  		break;
2625  	case PCI_DEVICE_ID_BMID:
2626  		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2627  		break;
2628  	case PCI_DEVICE_ID_BSMB:
2629  		m = (typeof(m)){"LP111", "PCI-X2",
2630  				"Obsolete, Unsupported Fibre Channel Adapter"};
2631  		break;
2632  	case PCI_DEVICE_ID_ZEPHYR:
2633  		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2634  		break;
2635  	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2636  		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2637  		break;
2638  	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2639  		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2640  		GE = 1;
2641  		break;
2642  	case PCI_DEVICE_ID_ZMID:
2643  		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2644  		break;
2645  	case PCI_DEVICE_ID_ZSMB:
2646  		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2647  		break;
2648  	case PCI_DEVICE_ID_LP101:
2649  		m = (typeof(m)){"LP101", "PCI-X",
2650  				"Obsolete, Unsupported Fibre Channel Adapter"};
2651  		break;
2652  	case PCI_DEVICE_ID_LP10000S:
2653  		m = (typeof(m)){"LP10000-S", "PCI",
2654  				"Obsolete, Unsupported Fibre Channel Adapter"};
2655  		break;
2656  	case PCI_DEVICE_ID_LP11000S:
2657  		m = (typeof(m)){"LP11000-S", "PCI-X2",
2658  				"Obsolete, Unsupported Fibre Channel Adapter"};
2659  		break;
2660  	case PCI_DEVICE_ID_LPE11000S:
2661  		m = (typeof(m)){"LPe11000-S", "PCIe",
2662  				"Obsolete, Unsupported Fibre Channel Adapter"};
2663  		break;
2664  	case PCI_DEVICE_ID_SAT:
2665  		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2666  		break;
2667  	case PCI_DEVICE_ID_SAT_MID:
2668  		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2669  		break;
2670  	case PCI_DEVICE_ID_SAT_SMB:
2671  		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2672  		break;
2673  	case PCI_DEVICE_ID_SAT_DCSP:
2674  		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2675  		break;
2676  	case PCI_DEVICE_ID_SAT_SCSP:
2677  		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2678  		break;
2679  	case PCI_DEVICE_ID_SAT_S:
2680  		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2681  		break;
2682  	case PCI_DEVICE_ID_PROTEUS_VF:
2683  		m = (typeof(m)){"LPev12000", "PCIe IOV",
2684  				"Obsolete, Unsupported Fibre Channel Adapter"};
2685  		break;
2686  	case PCI_DEVICE_ID_PROTEUS_PF:
2687  		m = (typeof(m)){"LPev12000", "PCIe IOV",
2688  				"Obsolete, Unsupported Fibre Channel Adapter"};
2689  		break;
2690  	case PCI_DEVICE_ID_PROTEUS_S:
2691  		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2692  				"Obsolete, Unsupported Fibre Channel Adapter"};
2693  		break;
2694  	case PCI_DEVICE_ID_TIGERSHARK:
2695  		oneConnect = 1;
2696  		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2697  		break;
2698  	case PCI_DEVICE_ID_TOMCAT:
2699  		oneConnect = 1;
2700  		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2701  		break;
2702  	case PCI_DEVICE_ID_FALCON:
2703  		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2704  				"EmulexSecure Fibre"};
2705  		break;
2706  	case PCI_DEVICE_ID_BALIUS:
2707  		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2708  				"Obsolete, Unsupported Fibre Channel Adapter"};
2709  		break;
2710  	case PCI_DEVICE_ID_LANCER_FC:
2711  		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2712  		break;
2713  	case PCI_DEVICE_ID_LANCER_FC_VF:
2714  		m = (typeof(m)){"LPe16000", "PCIe",
2715  				"Obsolete, Unsupported Fibre Channel Adapter"};
2716  		break;
2717  	case PCI_DEVICE_ID_LANCER_FCOE:
2718  		oneConnect = 1;
2719  		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2720  		break;
2721  	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2722  		oneConnect = 1;
2723  		m = (typeof(m)){"OCe15100", "PCIe",
2724  				"Obsolete, Unsupported FCoE"};
2725  		break;
2726  	case PCI_DEVICE_ID_LANCER_G6_FC:
2727  		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2728  		break;
2729  	case PCI_DEVICE_ID_LANCER_G7_FC:
2730  		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2731  		break;
2732  	case PCI_DEVICE_ID_LANCER_G7P_FC:
2733  		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2734  		break;
2735  	case PCI_DEVICE_ID_SKYHAWK:
2736  	case PCI_DEVICE_ID_SKYHAWK_VF:
2737  		oneConnect = 1;
2738  		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2739  		break;
2740  	default:
2741  		m = (typeof(m)){"Unknown", "", ""};
2742  		break;
2743  	}
2744  
2745  	if (mdp && mdp[0] == '\0')
2746  		snprintf(mdp, 79,"%s", m.name);
2747  	/*
2748  	 * oneConnect hba requires special processing, they are all initiators
2749  	 * and we put the port number on the end
2750  	 */
2751  	if (descp && descp[0] == '\0') {
2752  		if (oneConnect)
2753  			snprintf(descp, 255,
2754  				"Emulex OneConnect %s, %s Initiator %s",
2755  				m.name, m.function,
2756  				phba->Port);
2757  		else if (max_speed == 0)
2758  			snprintf(descp, 255,
2759  				"Emulex %s %s %s",
2760  				m.name, m.bus, m.function);
2761  		else
2762  			snprintf(descp, 255,
2763  				"Emulex %s %d%s %s %s",
2764  				m.name, max_speed, (GE) ? "GE" : "Gb",
2765  				m.bus, m.function);
2766  	}
2767  }
2768  
2769  /**
2770   * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2771   * @phba: pointer to lpfc hba data structure.
2772   * @pring: pointer to a IOCB ring.
2773   * @cnt: the number of IOCBs to be posted to the IOCB ring.
2774   *
2775   * This routine posts a given number of IOCBs with the associated DMA buffer
2776   * descriptors specified by the cnt argument to the given IOCB ring.
2777   *
2778   * Return codes
2779   *   The number of IOCBs NOT able to be posted to the IOCB ring.
2780   **/
2781  int
lpfc_sli3_post_buffer(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,int cnt)2782  lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2783  {
2784  	IOCB_t *icmd;
2785  	struct lpfc_iocbq *iocb;
2786  	struct lpfc_dmabuf *mp1, *mp2;
2787  
2788  	cnt += pring->missbufcnt;
2789  
2790  	/* While there are buffers to post */
2791  	while (cnt > 0) {
2792  		/* Allocate buffer for  command iocb */
2793  		iocb = lpfc_sli_get_iocbq(phba);
2794  		if (iocb == NULL) {
2795  			pring->missbufcnt = cnt;
2796  			return cnt;
2797  		}
2798  		icmd = &iocb->iocb;
2799  
2800  		/* 2 buffers can be posted per command */
2801  		/* Allocate buffer to post */
2802  		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2803  		if (mp1)
2804  		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2805  		if (!mp1 || !mp1->virt) {
2806  			kfree(mp1);
2807  			lpfc_sli_release_iocbq(phba, iocb);
2808  			pring->missbufcnt = cnt;
2809  			return cnt;
2810  		}
2811  
2812  		INIT_LIST_HEAD(&mp1->list);
2813  		/* Allocate buffer to post */
2814  		if (cnt > 1) {
2815  			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2816  			if (mp2)
2817  				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2818  							    &mp2->phys);
2819  			if (!mp2 || !mp2->virt) {
2820  				kfree(mp2);
2821  				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2822  				kfree(mp1);
2823  				lpfc_sli_release_iocbq(phba, iocb);
2824  				pring->missbufcnt = cnt;
2825  				return cnt;
2826  			}
2827  
2828  			INIT_LIST_HEAD(&mp2->list);
2829  		} else {
2830  			mp2 = NULL;
2831  		}
2832  
2833  		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2834  		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2835  		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2836  		icmd->ulpBdeCount = 1;
2837  		cnt--;
2838  		if (mp2) {
2839  			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2840  			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2841  			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2842  			cnt--;
2843  			icmd->ulpBdeCount = 2;
2844  		}
2845  
2846  		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2847  		icmd->ulpLe = 1;
2848  
2849  		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2850  		    IOCB_ERROR) {
2851  			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2852  			kfree(mp1);
2853  			cnt++;
2854  			if (mp2) {
2855  				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2856  				kfree(mp2);
2857  				cnt++;
2858  			}
2859  			lpfc_sli_release_iocbq(phba, iocb);
2860  			pring->missbufcnt = cnt;
2861  			return cnt;
2862  		}
2863  		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2864  		if (mp2)
2865  			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2866  	}
2867  	pring->missbufcnt = 0;
2868  	return 0;
2869  }
2870  
2871  /**
2872   * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2873   * @phba: pointer to lpfc hba data structure.
2874   *
2875   * This routine posts initial receive IOCB buffers to the ELS ring. The
2876   * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2877   * set to 64 IOCBs. SLI3 only.
2878   *
2879   * Return codes
2880   *   0 - success (currently always success)
2881   **/
2882  static int
lpfc_post_rcv_buf(struct lpfc_hba * phba)2883  lpfc_post_rcv_buf(struct lpfc_hba *phba)
2884  {
2885  	struct lpfc_sli *psli = &phba->sli;
2886  
2887  	/* Ring 0, ELS / CT buffers */
2888  	lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2889  	/* Ring 2 - FCP no buffers needed */
2890  
2891  	return 0;
2892  }
2893  
2894  #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2895  
2896  /**
2897   * lpfc_sha_init - Set up initial array of hash table entries
2898   * @HashResultPointer: pointer to an array as hash table.
2899   *
2900   * This routine sets up the initial values to the array of hash table entries
2901   * for the LC HBAs.
2902   **/
2903  static void
lpfc_sha_init(uint32_t * HashResultPointer)2904  lpfc_sha_init(uint32_t * HashResultPointer)
2905  {
2906  	HashResultPointer[0] = 0x67452301;
2907  	HashResultPointer[1] = 0xEFCDAB89;
2908  	HashResultPointer[2] = 0x98BADCFE;
2909  	HashResultPointer[3] = 0x10325476;
2910  	HashResultPointer[4] = 0xC3D2E1F0;
2911  }
2912  
2913  /**
2914   * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2915   * @HashResultPointer: pointer to an initial/result hash table.
2916   * @HashWorkingPointer: pointer to an working hash table.
2917   *
2918   * This routine iterates an initial hash table pointed by @HashResultPointer
2919   * with the values from the working hash table pointeed by @HashWorkingPointer.
2920   * The results are putting back to the initial hash table, returned through
2921   * the @HashResultPointer as the result hash table.
2922   **/
2923  static void
lpfc_sha_iterate(uint32_t * HashResultPointer,uint32_t * HashWorkingPointer)2924  lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2925  {
2926  	int t;
2927  	uint32_t TEMP;
2928  	uint32_t A, B, C, D, E;
2929  	t = 16;
2930  	do {
2931  		HashWorkingPointer[t] =
2932  		    S(1,
2933  		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2934  								     8] ^
2935  		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2936  	} while (++t <= 79);
2937  	t = 0;
2938  	A = HashResultPointer[0];
2939  	B = HashResultPointer[1];
2940  	C = HashResultPointer[2];
2941  	D = HashResultPointer[3];
2942  	E = HashResultPointer[4];
2943  
2944  	do {
2945  		if (t < 20) {
2946  			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2947  		} else if (t < 40) {
2948  			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2949  		} else if (t < 60) {
2950  			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2951  		} else {
2952  			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2953  		}
2954  		TEMP += S(5, A) + E + HashWorkingPointer[t];
2955  		E = D;
2956  		D = C;
2957  		C = S(30, B);
2958  		B = A;
2959  		A = TEMP;
2960  	} while (++t <= 79);
2961  
2962  	HashResultPointer[0] += A;
2963  	HashResultPointer[1] += B;
2964  	HashResultPointer[2] += C;
2965  	HashResultPointer[3] += D;
2966  	HashResultPointer[4] += E;
2967  
2968  }
2969  
2970  /**
2971   * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2972   * @RandomChallenge: pointer to the entry of host challenge random number array.
2973   * @HashWorking: pointer to the entry of the working hash array.
2974   *
2975   * This routine calculates the working hash array referred by @HashWorking
2976   * from the challenge random numbers associated with the host, referred by
2977   * @RandomChallenge. The result is put into the entry of the working hash
2978   * array and returned by reference through @HashWorking.
2979   **/
2980  static void
lpfc_challenge_key(uint32_t * RandomChallenge,uint32_t * HashWorking)2981  lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2982  {
2983  	*HashWorking = (*RandomChallenge ^ *HashWorking);
2984  }
2985  
2986  /**
2987   * lpfc_hba_init - Perform special handling for LC HBA initialization
2988   * @phba: pointer to lpfc hba data structure.
2989   * @hbainit: pointer to an array of unsigned 32-bit integers.
2990   *
2991   * This routine performs the special handling for LC HBA initialization.
2992   **/
2993  void
lpfc_hba_init(struct lpfc_hba * phba,uint32_t * hbainit)2994  lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
2995  {
2996  	int t;
2997  	uint32_t *HashWorking;
2998  	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
2999  
3000  	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
3001  	if (!HashWorking)
3002  		return;
3003  
3004  	HashWorking[0] = HashWorking[78] = *pwwnn++;
3005  	HashWorking[1] = HashWorking[79] = *pwwnn;
3006  
3007  	for (t = 0; t < 7; t++)
3008  		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
3009  
3010  	lpfc_sha_init(hbainit);
3011  	lpfc_sha_iterate(hbainit, HashWorking);
3012  	kfree(HashWorking);
3013  }
3014  
3015  /**
3016   * lpfc_cleanup - Performs vport cleanups before deleting a vport
3017   * @vport: pointer to a virtual N_Port data structure.
3018   *
3019   * This routine performs the necessary cleanups before deleting the @vport.
3020   * It invokes the discovery state machine to perform necessary state
3021   * transitions and to release the ndlps associated with the @vport. Note,
3022   * the physical port is treated as @vport 0.
3023   **/
3024  void
lpfc_cleanup(struct lpfc_vport * vport)3025  lpfc_cleanup(struct lpfc_vport *vport)
3026  {
3027  	struct lpfc_hba   *phba = vport->phba;
3028  	struct lpfc_nodelist *ndlp, *next_ndlp;
3029  	int i = 0;
3030  
3031  	if (phba->link_state > LPFC_LINK_DOWN)
3032  		lpfc_port_link_failure(vport);
3033  
3034  	/* Clean up VMID resources */
3035  	if (lpfc_is_vmid_enabled(phba))
3036  		lpfc_vmid_vport_cleanup(vport);
3037  
3038  	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
3039  		if (vport->port_type != LPFC_PHYSICAL_PORT &&
3040  		    ndlp->nlp_DID == Fabric_DID) {
3041  			/* Just free up ndlp with Fabric_DID for vports */
3042  			lpfc_nlp_put(ndlp);
3043  			continue;
3044  		}
3045  
3046  		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
3047  		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
3048  			lpfc_nlp_put(ndlp);
3049  			continue;
3050  		}
3051  
3052  		/* Fabric Ports not in UNMAPPED state are cleaned up in the
3053  		 * DEVICE_RM event.
3054  		 */
3055  		if (ndlp->nlp_type & NLP_FABRIC &&
3056  		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
3057  			lpfc_disc_state_machine(vport, ndlp, NULL,
3058  					NLP_EVT_DEVICE_RECOVERY);
3059  
3060  		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
3061  			lpfc_disc_state_machine(vport, ndlp, NULL,
3062  					NLP_EVT_DEVICE_RM);
3063  	}
3064  
3065  	/* This is a special case flush to return all
3066  	 * IOs before entering this loop. There are
3067  	 * two points in the code where a flush is
3068  	 * avoided if the FC_UNLOADING flag is set.
3069  	 * one is in the multipool destroy,
3070  	 * (this prevents a crash) and the other is
3071  	 * in the nvme abort handler, ( also prevents
3072  	 * a crash). Both of these exceptions are
3073  	 * cases where the slot is still accessible.
3074  	 * The flush here is only when the pci slot
3075  	 * is offline.
3076  	 */
3077  	if (test_bit(FC_UNLOADING, &vport->load_flag) &&
3078  	    pci_channel_offline(phba->pcidev))
3079  		lpfc_sli_flush_io_rings(vport->phba);
3080  
3081  	/* At this point, ALL ndlp's should be gone
3082  	 * because of the previous NLP_EVT_DEVICE_RM.
3083  	 * Lets wait for this to happen, if needed.
3084  	 */
3085  	while (!list_empty(&vport->fc_nodes)) {
3086  		if (i++ > 3000) {
3087  			lpfc_printf_vlog(vport, KERN_ERR,
3088  					 LOG_TRACE_EVENT,
3089  				"0233 Nodelist not empty\n");
3090  			list_for_each_entry_safe(ndlp, next_ndlp,
3091  						&vport->fc_nodes, nlp_listp) {
3092  				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
3093  						 LOG_DISCOVERY,
3094  						 "0282 did:x%x ndlp:x%px "
3095  						 "refcnt:%d xflags x%x nflag x%x\n",
3096  						 ndlp->nlp_DID, (void *)ndlp,
3097  						 kref_read(&ndlp->kref),
3098  						 ndlp->fc4_xpt_flags,
3099  						 ndlp->nlp_flag);
3100  			}
3101  			break;
3102  		}
3103  
3104  		/* Wait for any activity on ndlps to settle */
3105  		msleep(10);
3106  	}
3107  	lpfc_cleanup_vports_rrqs(vport, NULL);
3108  }
3109  
3110  /**
3111   * lpfc_stop_vport_timers - Stop all the timers associated with a vport
3112   * @vport: pointer to a virtual N_Port data structure.
3113   *
3114   * This routine stops all the timers associated with a @vport. This function
3115   * is invoked before disabling or deleting a @vport. Note that the physical
3116   * port is treated as @vport 0.
3117   **/
3118  void
lpfc_stop_vport_timers(struct lpfc_vport * vport)3119  lpfc_stop_vport_timers(struct lpfc_vport *vport)
3120  {
3121  	del_timer_sync(&vport->els_tmofunc);
3122  	del_timer_sync(&vport->delayed_disc_tmo);
3123  	lpfc_can_disctmo(vport);
3124  	return;
3125  }
3126  
3127  /**
3128   * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3129   * @phba: pointer to lpfc hba data structure.
3130   *
3131   * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
3132   * caller of this routine should already hold the host lock.
3133   **/
3134  void
__lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba * phba)3135  __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3136  {
3137  	/* Clear pending FCF rediscovery wait flag */
3138  	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
3139  
3140  	/* Now, try to stop the timer */
3141  	del_timer(&phba->fcf.redisc_wait);
3142  }
3143  
3144  /**
3145   * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3146   * @phba: pointer to lpfc hba data structure.
3147   *
3148   * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3149   * checks whether the FCF rediscovery wait timer is pending with the host
3150   * lock held before proceeding with disabling the timer and clearing the
3151   * wait timer pendig flag.
3152   **/
3153  void
lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba * phba)3154  lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3155  {
3156  	spin_lock_irq(&phba->hbalock);
3157  	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3158  		/* FCF rediscovery timer already fired or stopped */
3159  		spin_unlock_irq(&phba->hbalock);
3160  		return;
3161  	}
3162  	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3163  	/* Clear failover in progress flags */
3164  	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3165  	spin_unlock_irq(&phba->hbalock);
3166  }
3167  
3168  /**
3169   * lpfc_cmf_stop - Stop CMF processing
3170   * @phba: pointer to lpfc hba data structure.
3171   *
3172   * This is called when the link goes down or if CMF mode is turned OFF.
3173   * It is also called when going offline or unloaded just before the
3174   * congestion info buffer is unregistered.
3175   **/
3176  void
lpfc_cmf_stop(struct lpfc_hba * phba)3177  lpfc_cmf_stop(struct lpfc_hba *phba)
3178  {
3179  	int cpu;
3180  	struct lpfc_cgn_stat *cgs;
3181  
3182  	/* We only do something if CMF is enabled */
3183  	if (!phba->sli4_hba.pc_sli4_params.cmf)
3184  		return;
3185  
3186  	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3187  			"6221 Stop CMF / Cancel Timer\n");
3188  
3189  	/* Cancel the CMF timer */
3190  	hrtimer_cancel(&phba->cmf_stats_timer);
3191  	hrtimer_cancel(&phba->cmf_timer);
3192  
3193  	/* Zero CMF counters */
3194  	atomic_set(&phba->cmf_busy, 0);
3195  	for_each_present_cpu(cpu) {
3196  		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3197  		atomic64_set(&cgs->total_bytes, 0);
3198  		atomic64_set(&cgs->rcv_bytes, 0);
3199  		atomic_set(&cgs->rx_io_cnt, 0);
3200  		atomic64_set(&cgs->rx_latency, 0);
3201  	}
3202  	atomic_set(&phba->cmf_bw_wait, 0);
3203  
3204  	/* Resume any blocked IO - Queue unblock on workqueue */
3205  	queue_work(phba->wq, &phba->unblock_request_work);
3206  }
3207  
3208  static inline uint64_t
lpfc_get_max_line_rate(struct lpfc_hba * phba)3209  lpfc_get_max_line_rate(struct lpfc_hba *phba)
3210  {
3211  	uint64_t rate = lpfc_sli_port_speed_get(phba);
3212  
3213  	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3214  }
3215  
3216  void
lpfc_cmf_signal_init(struct lpfc_hba * phba)3217  lpfc_cmf_signal_init(struct lpfc_hba *phba)
3218  {
3219  	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3220  			"6223 Signal CMF init\n");
3221  
3222  	/* Use the new fc_linkspeed to recalculate */
3223  	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3224  	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3225  	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3226  					    phba->cmf_interval_rate, 1000);
3227  	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3228  
3229  	/* This is a signal to firmware to sync up CMF BW with link speed */
3230  	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3231  }
3232  
3233  /**
3234   * lpfc_cmf_start - Start CMF processing
3235   * @phba: pointer to lpfc hba data structure.
3236   *
3237   * This is called when the link comes up or if CMF mode is turned OFF
3238   * to Monitor or Managed.
3239   **/
3240  void
lpfc_cmf_start(struct lpfc_hba * phba)3241  lpfc_cmf_start(struct lpfc_hba *phba)
3242  {
3243  	struct lpfc_cgn_stat *cgs;
3244  	int cpu;
3245  
3246  	/* We only do something if CMF is enabled */
3247  	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3248  	    phba->cmf_active_mode == LPFC_CFG_OFF)
3249  		return;
3250  
3251  	/* Reinitialize congestion buffer info */
3252  	lpfc_init_congestion_buf(phba);
3253  
3254  	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3255  	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3256  	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3257  	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3258  
3259  	atomic_set(&phba->cmf_busy, 0);
3260  	for_each_present_cpu(cpu) {
3261  		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3262  		atomic64_set(&cgs->total_bytes, 0);
3263  		atomic64_set(&cgs->rcv_bytes, 0);
3264  		atomic_set(&cgs->rx_io_cnt, 0);
3265  		atomic64_set(&cgs->rx_latency, 0);
3266  	}
3267  	phba->cmf_latency.tv_sec = 0;
3268  	phba->cmf_latency.tv_nsec = 0;
3269  
3270  	lpfc_cmf_signal_init(phba);
3271  
3272  	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3273  			"6222 Start CMF / Timer\n");
3274  
3275  	phba->cmf_timer_cnt = 0;
3276  	hrtimer_start(&phba->cmf_timer,
3277  		      ktime_set(0, LPFC_CMF_INTERVAL * NSEC_PER_MSEC),
3278  		      HRTIMER_MODE_REL);
3279  	hrtimer_start(&phba->cmf_stats_timer,
3280  		      ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC),
3281  		      HRTIMER_MODE_REL);
3282  	/* Setup for latency check in IO cmpl routines */
3283  	ktime_get_real_ts64(&phba->cmf_latency);
3284  
3285  	atomic_set(&phba->cmf_bw_wait, 0);
3286  	atomic_set(&phba->cmf_stop_io, 0);
3287  }
3288  
3289  /**
3290   * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3291   * @phba: pointer to lpfc hba data structure.
3292   *
3293   * This routine stops all the timers associated with a HBA. This function is
3294   * invoked before either putting a HBA offline or unloading the driver.
3295   **/
3296  void
lpfc_stop_hba_timers(struct lpfc_hba * phba)3297  lpfc_stop_hba_timers(struct lpfc_hba *phba)
3298  {
3299  	if (phba->pport)
3300  		lpfc_stop_vport_timers(phba->pport);
3301  	cancel_delayed_work_sync(&phba->eq_delay_work);
3302  	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3303  	del_timer_sync(&phba->sli.mbox_tmo);
3304  	del_timer_sync(&phba->fabric_block_timer);
3305  	del_timer_sync(&phba->eratt_poll);
3306  	del_timer_sync(&phba->hb_tmofunc);
3307  	if (phba->sli_rev == LPFC_SLI_REV4) {
3308  		del_timer_sync(&phba->rrq_tmr);
3309  		clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag);
3310  	}
3311  	clear_bit(HBA_HBEAT_INP, &phba->hba_flag);
3312  	clear_bit(HBA_HBEAT_TMO, &phba->hba_flag);
3313  
3314  	switch (phba->pci_dev_grp) {
3315  	case LPFC_PCI_DEV_LP:
3316  		/* Stop any LightPulse device specific driver timers */
3317  		del_timer_sync(&phba->fcp_poll_timer);
3318  		break;
3319  	case LPFC_PCI_DEV_OC:
3320  		/* Stop any OneConnect device specific driver timers */
3321  		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3322  		break;
3323  	default:
3324  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3325  				"0297 Invalid device group (x%x)\n",
3326  				phba->pci_dev_grp);
3327  		break;
3328  	}
3329  	return;
3330  }
3331  
3332  /**
3333   * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3334   * @phba: pointer to lpfc hba data structure.
3335   * @mbx_action: flag for mailbox no wait action.
3336   *
3337   * This routine marks a HBA's management interface as blocked. Once the HBA's
3338   * management interface is marked as blocked, all the user space access to
3339   * the HBA, whether they are from sysfs interface or libdfc interface will
3340   * all be blocked. The HBA is set to block the management interface when the
3341   * driver prepares the HBA interface for online or offline.
3342   **/
3343  static void
lpfc_block_mgmt_io(struct lpfc_hba * phba,int mbx_action)3344  lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3345  {
3346  	unsigned long iflag;
3347  	uint8_t actcmd = MBX_HEARTBEAT;
3348  	unsigned long timeout;
3349  
3350  	spin_lock_irqsave(&phba->hbalock, iflag);
3351  	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3352  	spin_unlock_irqrestore(&phba->hbalock, iflag);
3353  	if (mbx_action == LPFC_MBX_NO_WAIT)
3354  		return;
3355  	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3356  	spin_lock_irqsave(&phba->hbalock, iflag);
3357  	if (phba->sli.mbox_active) {
3358  		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3359  		/* Determine how long we might wait for the active mailbox
3360  		 * command to be gracefully completed by firmware.
3361  		 */
3362  		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3363  				phba->sli.mbox_active) * 1000) + jiffies;
3364  	}
3365  	spin_unlock_irqrestore(&phba->hbalock, iflag);
3366  
3367  	/* Wait for the outstnading mailbox command to complete */
3368  	while (phba->sli.mbox_active) {
3369  		/* Check active mailbox complete status every 2ms */
3370  		msleep(2);
3371  		if (time_after(jiffies, timeout)) {
3372  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3373  					"2813 Mgmt IO is Blocked %x "
3374  					"- mbox cmd %x still active\n",
3375  					phba->sli.sli_flag, actcmd);
3376  			break;
3377  		}
3378  	}
3379  }
3380  
3381  /**
3382   * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3383   * @phba: pointer to lpfc hba data structure.
3384   *
3385   * Allocate RPIs for all active remote nodes. This is needed whenever
3386   * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3387   * is to fixup the temporary rpi assignments.
3388   **/
3389  void
lpfc_sli4_node_prep(struct lpfc_hba * phba)3390  lpfc_sli4_node_prep(struct lpfc_hba *phba)
3391  {
3392  	struct lpfc_nodelist  *ndlp, *next_ndlp;
3393  	struct lpfc_vport **vports;
3394  	int i, rpi;
3395  
3396  	if (phba->sli_rev != LPFC_SLI_REV4)
3397  		return;
3398  
3399  	vports = lpfc_create_vport_work_array(phba);
3400  	if (vports == NULL)
3401  		return;
3402  
3403  	for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3404  		if (test_bit(FC_UNLOADING, &vports[i]->load_flag))
3405  			continue;
3406  
3407  		list_for_each_entry_safe(ndlp, next_ndlp,
3408  					 &vports[i]->fc_nodes,
3409  					 nlp_listp) {
3410  			rpi = lpfc_sli4_alloc_rpi(phba);
3411  			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3412  				/* TODO print log? */
3413  				continue;
3414  			}
3415  			ndlp->nlp_rpi = rpi;
3416  			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3417  					 LOG_NODE | LOG_DISCOVERY,
3418  					 "0009 Assign RPI x%x to ndlp x%px "
3419  					 "DID:x%06x flg:x%x\n",
3420  					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3421  					 ndlp->nlp_flag);
3422  		}
3423  	}
3424  	lpfc_destroy_vport_work_array(phba, vports);
3425  }
3426  
3427  /**
3428   * lpfc_create_expedite_pool - create expedite pool
3429   * @phba: pointer to lpfc hba data structure.
3430   *
3431   * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3432   * to expedite pool. Mark them as expedite.
3433   **/
lpfc_create_expedite_pool(struct lpfc_hba * phba)3434  static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3435  {
3436  	struct lpfc_sli4_hdw_queue *qp;
3437  	struct lpfc_io_buf *lpfc_ncmd;
3438  	struct lpfc_io_buf *lpfc_ncmd_next;
3439  	struct lpfc_epd_pool *epd_pool;
3440  	unsigned long iflag;
3441  
3442  	epd_pool = &phba->epd_pool;
3443  	qp = &phba->sli4_hba.hdwq[0];
3444  
3445  	spin_lock_init(&epd_pool->lock);
3446  	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3447  	spin_lock(&epd_pool->lock);
3448  	INIT_LIST_HEAD(&epd_pool->list);
3449  	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3450  				 &qp->lpfc_io_buf_list_put, list) {
3451  		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3452  		lpfc_ncmd->expedite = true;
3453  		qp->put_io_bufs--;
3454  		epd_pool->count++;
3455  		if (epd_pool->count >= XRI_BATCH)
3456  			break;
3457  	}
3458  	spin_unlock(&epd_pool->lock);
3459  	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3460  }
3461  
3462  /**
3463   * lpfc_destroy_expedite_pool - destroy expedite pool
3464   * @phba: pointer to lpfc hba data structure.
3465   *
3466   * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3467   * of HWQ 0. Clear the mark.
3468   **/
lpfc_destroy_expedite_pool(struct lpfc_hba * phba)3469  static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3470  {
3471  	struct lpfc_sli4_hdw_queue *qp;
3472  	struct lpfc_io_buf *lpfc_ncmd;
3473  	struct lpfc_io_buf *lpfc_ncmd_next;
3474  	struct lpfc_epd_pool *epd_pool;
3475  	unsigned long iflag;
3476  
3477  	epd_pool = &phba->epd_pool;
3478  	qp = &phba->sli4_hba.hdwq[0];
3479  
3480  	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3481  	spin_lock(&epd_pool->lock);
3482  	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3483  				 &epd_pool->list, list) {
3484  		list_move_tail(&lpfc_ncmd->list,
3485  			       &qp->lpfc_io_buf_list_put);
3486  		lpfc_ncmd->flags = false;
3487  		qp->put_io_bufs++;
3488  		epd_pool->count--;
3489  	}
3490  	spin_unlock(&epd_pool->lock);
3491  	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3492  }
3493  
3494  /**
3495   * lpfc_create_multixri_pools - create multi-XRI pools
3496   * @phba: pointer to lpfc hba data structure.
3497   *
3498   * This routine initialize public, private per HWQ. Then, move XRIs from
3499   * lpfc_io_buf_list_put to public pool. High and low watermark are also
3500   * Initialized.
3501   **/
lpfc_create_multixri_pools(struct lpfc_hba * phba)3502  void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3503  {
3504  	u32 i, j;
3505  	u32 hwq_count;
3506  	u32 count_per_hwq;
3507  	struct lpfc_io_buf *lpfc_ncmd;
3508  	struct lpfc_io_buf *lpfc_ncmd_next;
3509  	unsigned long iflag;
3510  	struct lpfc_sli4_hdw_queue *qp;
3511  	struct lpfc_multixri_pool *multixri_pool;
3512  	struct lpfc_pbl_pool *pbl_pool;
3513  	struct lpfc_pvt_pool *pvt_pool;
3514  
3515  	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3516  			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3517  			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3518  			phba->sli4_hba.io_xri_cnt);
3519  
3520  	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3521  		lpfc_create_expedite_pool(phba);
3522  
3523  	hwq_count = phba->cfg_hdw_queue;
3524  	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3525  
3526  	for (i = 0; i < hwq_count; i++) {
3527  		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3528  
3529  		if (!multixri_pool) {
3530  			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3531  					"1238 Failed to allocate memory for "
3532  					"multixri_pool\n");
3533  
3534  			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3535  				lpfc_destroy_expedite_pool(phba);
3536  
3537  			j = 0;
3538  			while (j < i) {
3539  				qp = &phba->sli4_hba.hdwq[j];
3540  				kfree(qp->p_multixri_pool);
3541  				j++;
3542  			}
3543  			phba->cfg_xri_rebalancing = 0;
3544  			return;
3545  		}
3546  
3547  		qp = &phba->sli4_hba.hdwq[i];
3548  		qp->p_multixri_pool = multixri_pool;
3549  
3550  		multixri_pool->xri_limit = count_per_hwq;
3551  		multixri_pool->rrb_next_hwqid = i;
3552  
3553  		/* Deal with public free xri pool */
3554  		pbl_pool = &multixri_pool->pbl_pool;
3555  		spin_lock_init(&pbl_pool->lock);
3556  		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3557  		spin_lock(&pbl_pool->lock);
3558  		INIT_LIST_HEAD(&pbl_pool->list);
3559  		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3560  					 &qp->lpfc_io_buf_list_put, list) {
3561  			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3562  			qp->put_io_bufs--;
3563  			pbl_pool->count++;
3564  		}
3565  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3566  				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3567  				pbl_pool->count, i);
3568  		spin_unlock(&pbl_pool->lock);
3569  		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3570  
3571  		/* Deal with private free xri pool */
3572  		pvt_pool = &multixri_pool->pvt_pool;
3573  		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3574  		pvt_pool->low_watermark = XRI_BATCH;
3575  		spin_lock_init(&pvt_pool->lock);
3576  		spin_lock_irqsave(&pvt_pool->lock, iflag);
3577  		INIT_LIST_HEAD(&pvt_pool->list);
3578  		pvt_pool->count = 0;
3579  		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3580  	}
3581  }
3582  
3583  /**
3584   * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3585   * @phba: pointer to lpfc hba data structure.
3586   *
3587   * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3588   **/
lpfc_destroy_multixri_pools(struct lpfc_hba * phba)3589  static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3590  {
3591  	u32 i;
3592  	u32 hwq_count;
3593  	struct lpfc_io_buf *lpfc_ncmd;
3594  	struct lpfc_io_buf *lpfc_ncmd_next;
3595  	unsigned long iflag;
3596  	struct lpfc_sli4_hdw_queue *qp;
3597  	struct lpfc_multixri_pool *multixri_pool;
3598  	struct lpfc_pbl_pool *pbl_pool;
3599  	struct lpfc_pvt_pool *pvt_pool;
3600  
3601  	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3602  		lpfc_destroy_expedite_pool(phba);
3603  
3604  	if (!test_bit(FC_UNLOADING, &phba->pport->load_flag))
3605  		lpfc_sli_flush_io_rings(phba);
3606  
3607  	hwq_count = phba->cfg_hdw_queue;
3608  
3609  	for (i = 0; i < hwq_count; i++) {
3610  		qp = &phba->sli4_hba.hdwq[i];
3611  		multixri_pool = qp->p_multixri_pool;
3612  		if (!multixri_pool)
3613  			continue;
3614  
3615  		qp->p_multixri_pool = NULL;
3616  
3617  		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3618  
3619  		/* Deal with public free xri pool */
3620  		pbl_pool = &multixri_pool->pbl_pool;
3621  		spin_lock(&pbl_pool->lock);
3622  
3623  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3624  				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3625  				pbl_pool->count, i);
3626  
3627  		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3628  					 &pbl_pool->list, list) {
3629  			list_move_tail(&lpfc_ncmd->list,
3630  				       &qp->lpfc_io_buf_list_put);
3631  			qp->put_io_bufs++;
3632  			pbl_pool->count--;
3633  		}
3634  
3635  		INIT_LIST_HEAD(&pbl_pool->list);
3636  		pbl_pool->count = 0;
3637  
3638  		spin_unlock(&pbl_pool->lock);
3639  
3640  		/* Deal with private free xri pool */
3641  		pvt_pool = &multixri_pool->pvt_pool;
3642  		spin_lock(&pvt_pool->lock);
3643  
3644  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3645  				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3646  				pvt_pool->count, i);
3647  
3648  		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3649  					 &pvt_pool->list, list) {
3650  			list_move_tail(&lpfc_ncmd->list,
3651  				       &qp->lpfc_io_buf_list_put);
3652  			qp->put_io_bufs++;
3653  			pvt_pool->count--;
3654  		}
3655  
3656  		INIT_LIST_HEAD(&pvt_pool->list);
3657  		pvt_pool->count = 0;
3658  
3659  		spin_unlock(&pvt_pool->lock);
3660  		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3661  
3662  		kfree(multixri_pool);
3663  	}
3664  }
3665  
3666  /**
3667   * lpfc_online - Initialize and bring a HBA online
3668   * @phba: pointer to lpfc hba data structure.
3669   *
3670   * This routine initializes the HBA and brings a HBA online. During this
3671   * process, the management interface is blocked to prevent user space access
3672   * to the HBA interfering with the driver initialization.
3673   *
3674   * Return codes
3675   *   0 - successful
3676   *   1 - failed
3677   **/
3678  int
lpfc_online(struct lpfc_hba * phba)3679  lpfc_online(struct lpfc_hba *phba)
3680  {
3681  	struct lpfc_vport *vport;
3682  	struct lpfc_vport **vports;
3683  	int i, error = 0;
3684  	bool vpis_cleared = false;
3685  
3686  	if (!phba)
3687  		return 0;
3688  	vport = phba->pport;
3689  
3690  	if (!test_bit(FC_OFFLINE_MODE, &vport->fc_flag))
3691  		return 0;
3692  
3693  	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3694  			"0458 Bring Adapter online\n");
3695  
3696  	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3697  
3698  	if (phba->sli_rev == LPFC_SLI_REV4) {
3699  		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3700  			lpfc_unblock_mgmt_io(phba);
3701  			return 1;
3702  		}
3703  		spin_lock_irq(&phba->hbalock);
3704  		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3705  			vpis_cleared = true;
3706  		spin_unlock_irq(&phba->hbalock);
3707  
3708  		/* Reestablish the local initiator port.
3709  		 * The offline process destroyed the previous lport.
3710  		 */
3711  		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3712  				!phba->nvmet_support) {
3713  			error = lpfc_nvme_create_localport(phba->pport);
3714  			if (error)
3715  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3716  					"6132 NVME restore reg failed "
3717  					"on nvmei error x%x\n", error);
3718  		}
3719  	} else {
3720  		lpfc_sli_queue_init(phba);
3721  		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3722  			lpfc_unblock_mgmt_io(phba);
3723  			return 1;
3724  		}
3725  	}
3726  
3727  	vports = lpfc_create_vport_work_array(phba);
3728  	if (vports != NULL) {
3729  		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3730  			clear_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag);
3731  			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3732  				set_bit(FC_VPORT_NEEDS_REG_VPI,
3733  					&vports[i]->fc_flag);
3734  			if (phba->sli_rev == LPFC_SLI_REV4) {
3735  				set_bit(FC_VPORT_NEEDS_INIT_VPI,
3736  					&vports[i]->fc_flag);
3737  				if ((vpis_cleared) &&
3738  				    (vports[i]->port_type !=
3739  					LPFC_PHYSICAL_PORT))
3740  					vports[i]->vpi = 0;
3741  			}
3742  		}
3743  	}
3744  	lpfc_destroy_vport_work_array(phba, vports);
3745  
3746  	if (phba->cfg_xri_rebalancing)
3747  		lpfc_create_multixri_pools(phba);
3748  
3749  	lpfc_cpuhp_add(phba);
3750  
3751  	lpfc_unblock_mgmt_io(phba);
3752  	return 0;
3753  }
3754  
3755  /**
3756   * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3757   * @phba: pointer to lpfc hba data structure.
3758   *
3759   * This routine marks a HBA's management interface as not blocked. Once the
3760   * HBA's management interface is marked as not blocked, all the user space
3761   * access to the HBA, whether they are from sysfs interface or libdfc
3762   * interface will be allowed. The HBA is set to block the management interface
3763   * when the driver prepares the HBA interface for online or offline and then
3764   * set to unblock the management interface afterwards.
3765   **/
3766  void
lpfc_unblock_mgmt_io(struct lpfc_hba * phba)3767  lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3768  {
3769  	unsigned long iflag;
3770  
3771  	spin_lock_irqsave(&phba->hbalock, iflag);
3772  	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3773  	spin_unlock_irqrestore(&phba->hbalock, iflag);
3774  }
3775  
3776  /**
3777   * lpfc_offline_prep - Prepare a HBA to be brought offline
3778   * @phba: pointer to lpfc hba data structure.
3779   * @mbx_action: flag for mailbox shutdown action.
3780   *
3781   * This routine is invoked to prepare a HBA to be brought offline. It performs
3782   * unregistration login to all the nodes on all vports and flushes the mailbox
3783   * queue to make it ready to be brought offline.
3784   **/
3785  void
lpfc_offline_prep(struct lpfc_hba * phba,int mbx_action)3786  lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3787  {
3788  	struct lpfc_vport *vport = phba->pport;
3789  	struct lpfc_nodelist  *ndlp, *next_ndlp;
3790  	struct lpfc_vport **vports;
3791  	struct Scsi_Host *shost;
3792  	int i;
3793  	int offline;
3794  	bool hba_pci_err;
3795  
3796  	if (test_bit(FC_OFFLINE_MODE, &vport->fc_flag))
3797  		return;
3798  
3799  	lpfc_block_mgmt_io(phba, mbx_action);
3800  
3801  	lpfc_linkdown(phba);
3802  
3803  	offline =  pci_channel_offline(phba->pcidev);
3804  	hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags);
3805  
3806  	/* Issue an unreg_login to all nodes on all vports */
3807  	vports = lpfc_create_vport_work_array(phba);
3808  	if (vports != NULL) {
3809  		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3810  			if (test_bit(FC_UNLOADING, &vports[i]->load_flag))
3811  				continue;
3812  			shost = lpfc_shost_from_vport(vports[i]);
3813  			spin_lock_irq(shost->host_lock);
3814  			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3815  			spin_unlock_irq(shost->host_lock);
3816  			set_bit(FC_VPORT_NEEDS_REG_VPI, &vports[i]->fc_flag);
3817  			clear_bit(FC_VFI_REGISTERED, &vports[i]->fc_flag);
3818  
3819  			list_for_each_entry_safe(ndlp, next_ndlp,
3820  						 &vports[i]->fc_nodes,
3821  						 nlp_listp) {
3822  
3823  				spin_lock_irq(&ndlp->lock);
3824  				ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3825  				spin_unlock_irq(&ndlp->lock);
3826  
3827  				if (offline || hba_pci_err) {
3828  					spin_lock_irq(&ndlp->lock);
3829  					ndlp->nlp_flag &= ~(NLP_UNREG_INP |
3830  							    NLP_RPI_REGISTERED);
3831  					spin_unlock_irq(&ndlp->lock);
3832  					if (phba->sli_rev == LPFC_SLI_REV4)
3833  						lpfc_sli_rpi_release(vports[i],
3834  								     ndlp);
3835  				} else {
3836  					lpfc_unreg_rpi(vports[i], ndlp);
3837  				}
3838  				/*
3839  				 * Whenever an SLI4 port goes offline, free the
3840  				 * RPI. Get a new RPI when the adapter port
3841  				 * comes back online.
3842  				 */
3843  				if (phba->sli_rev == LPFC_SLI_REV4) {
3844  					lpfc_printf_vlog(vports[i], KERN_INFO,
3845  						 LOG_NODE | LOG_DISCOVERY,
3846  						 "0011 Free RPI x%x on "
3847  						 "ndlp: x%px did x%x\n",
3848  						 ndlp->nlp_rpi, ndlp,
3849  						 ndlp->nlp_DID);
3850  					lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3851  					ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3852  				}
3853  
3854  				if (ndlp->nlp_type & NLP_FABRIC) {
3855  					lpfc_disc_state_machine(vports[i], ndlp,
3856  						NULL, NLP_EVT_DEVICE_RECOVERY);
3857  
3858  					/* Don't remove the node unless the node
3859  					 * has been unregistered with the
3860  					 * transport, and we're not in recovery
3861  					 * before dev_loss_tmo triggered.
3862  					 * Otherwise, let dev_loss take care of
3863  					 * the node.
3864  					 */
3865  					if (!(ndlp->save_flags &
3866  					      NLP_IN_RECOV_POST_DEV_LOSS) &&
3867  					    !(ndlp->fc4_xpt_flags &
3868  					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3869  						lpfc_disc_state_machine
3870  							(vports[i], ndlp,
3871  							 NULL,
3872  							 NLP_EVT_DEVICE_RM);
3873  				}
3874  			}
3875  		}
3876  	}
3877  	lpfc_destroy_vport_work_array(phba, vports);
3878  
3879  	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3880  
3881  	if (phba->wq)
3882  		flush_workqueue(phba->wq);
3883  }
3884  
3885  /**
3886   * lpfc_offline - Bring a HBA offline
3887   * @phba: pointer to lpfc hba data structure.
3888   *
3889   * This routine actually brings a HBA offline. It stops all the timers
3890   * associated with the HBA, brings down the SLI layer, and eventually
3891   * marks the HBA as in offline state for the upper layer protocol.
3892   **/
3893  void
lpfc_offline(struct lpfc_hba * phba)3894  lpfc_offline(struct lpfc_hba *phba)
3895  {
3896  	struct Scsi_Host  *shost;
3897  	struct lpfc_vport **vports;
3898  	int i;
3899  
3900  	if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
3901  		return;
3902  
3903  	/* stop port and all timers associated with this hba */
3904  	lpfc_stop_port(phba);
3905  
3906  	/* Tear down the local and target port registrations.  The
3907  	 * nvme transports need to cleanup.
3908  	 */
3909  	lpfc_nvmet_destroy_targetport(phba);
3910  	lpfc_nvme_destroy_localport(phba->pport);
3911  
3912  	vports = lpfc_create_vport_work_array(phba);
3913  	if (vports != NULL)
3914  		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3915  			lpfc_stop_vport_timers(vports[i]);
3916  	lpfc_destroy_vport_work_array(phba, vports);
3917  	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3918  			"0460 Bring Adapter offline\n");
3919  	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3920  	   now.  */
3921  	lpfc_sli_hba_down(phba);
3922  	spin_lock_irq(&phba->hbalock);
3923  	phba->work_ha = 0;
3924  	spin_unlock_irq(&phba->hbalock);
3925  	vports = lpfc_create_vport_work_array(phba);
3926  	if (vports != NULL)
3927  		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3928  			shost = lpfc_shost_from_vport(vports[i]);
3929  			spin_lock_irq(shost->host_lock);
3930  			vports[i]->work_port_events = 0;
3931  			spin_unlock_irq(shost->host_lock);
3932  			set_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag);
3933  		}
3934  	lpfc_destroy_vport_work_array(phba, vports);
3935  	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3936  	 * in hba_unset
3937  	 */
3938  	if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
3939  		__lpfc_cpuhp_remove(phba);
3940  
3941  	if (phba->cfg_xri_rebalancing)
3942  		lpfc_destroy_multixri_pools(phba);
3943  }
3944  
3945  /**
3946   * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3947   * @phba: pointer to lpfc hba data structure.
3948   *
3949   * This routine is to free all the SCSI buffers and IOCBs from the driver
3950   * list back to kernel. It is called from lpfc_pci_remove_one to free
3951   * the internal resources before the device is removed from the system.
3952   **/
3953  static void
lpfc_scsi_free(struct lpfc_hba * phba)3954  lpfc_scsi_free(struct lpfc_hba *phba)
3955  {
3956  	struct lpfc_io_buf *sb, *sb_next;
3957  
3958  	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3959  		return;
3960  
3961  	spin_lock_irq(&phba->hbalock);
3962  
3963  	/* Release all the lpfc_scsi_bufs maintained by this host. */
3964  
3965  	spin_lock(&phba->scsi_buf_list_put_lock);
3966  	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3967  				 list) {
3968  		list_del(&sb->list);
3969  		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3970  			      sb->dma_handle);
3971  		kfree(sb);
3972  		phba->total_scsi_bufs--;
3973  	}
3974  	spin_unlock(&phba->scsi_buf_list_put_lock);
3975  
3976  	spin_lock(&phba->scsi_buf_list_get_lock);
3977  	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3978  				 list) {
3979  		list_del(&sb->list);
3980  		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3981  			      sb->dma_handle);
3982  		kfree(sb);
3983  		phba->total_scsi_bufs--;
3984  	}
3985  	spin_unlock(&phba->scsi_buf_list_get_lock);
3986  	spin_unlock_irq(&phba->hbalock);
3987  }
3988  
3989  /**
3990   * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
3991   * @phba: pointer to lpfc hba data structure.
3992   *
3993   * This routine is to free all the IO buffers and IOCBs from the driver
3994   * list back to kernel. It is called from lpfc_pci_remove_one to free
3995   * the internal resources before the device is removed from the system.
3996   **/
3997  void
lpfc_io_free(struct lpfc_hba * phba)3998  lpfc_io_free(struct lpfc_hba *phba)
3999  {
4000  	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
4001  	struct lpfc_sli4_hdw_queue *qp;
4002  	int idx;
4003  
4004  	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4005  		qp = &phba->sli4_hba.hdwq[idx];
4006  		/* Release all the lpfc_nvme_bufs maintained by this host. */
4007  		spin_lock(&qp->io_buf_list_put_lock);
4008  		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4009  					 &qp->lpfc_io_buf_list_put,
4010  					 list) {
4011  			list_del(&lpfc_ncmd->list);
4012  			qp->put_io_bufs--;
4013  			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4014  				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4015  			if (phba->cfg_xpsgl && !phba->nvmet_support)
4016  				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4017  			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4018  			kfree(lpfc_ncmd);
4019  			qp->total_io_bufs--;
4020  		}
4021  		spin_unlock(&qp->io_buf_list_put_lock);
4022  
4023  		spin_lock(&qp->io_buf_list_get_lock);
4024  		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4025  					 &qp->lpfc_io_buf_list_get,
4026  					 list) {
4027  			list_del(&lpfc_ncmd->list);
4028  			qp->get_io_bufs--;
4029  			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4030  				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4031  			if (phba->cfg_xpsgl && !phba->nvmet_support)
4032  				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4033  			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4034  			kfree(lpfc_ncmd);
4035  			qp->total_io_bufs--;
4036  		}
4037  		spin_unlock(&qp->io_buf_list_get_lock);
4038  	}
4039  }
4040  
4041  /**
4042   * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
4043   * @phba: pointer to lpfc hba data structure.
4044   *
4045   * This routine first calculates the sizes of the current els and allocated
4046   * scsi sgl lists, and then goes through all sgls to updates the physical
4047   * XRIs assigned due to port function reset. During port initialization, the
4048   * current els and allocated scsi sgl lists are 0s.
4049   *
4050   * Return codes
4051   *   0 - successful (for now, it always returns 0)
4052   **/
4053  int
lpfc_sli4_els_sgl_update(struct lpfc_hba * phba)4054  lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
4055  {
4056  	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4057  	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4058  	LIST_HEAD(els_sgl_list);
4059  	int rc;
4060  
4061  	/*
4062  	 * update on pci function's els xri-sgl list
4063  	 */
4064  	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4065  
4066  	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
4067  		/* els xri-sgl expanded */
4068  		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
4069  		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4070  				"3157 ELS xri-sgl count increased from "
4071  				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4072  				els_xri_cnt);
4073  		/* allocate the additional els sgls */
4074  		for (i = 0; i < xri_cnt; i++) {
4075  			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4076  					     GFP_KERNEL);
4077  			if (sglq_entry == NULL) {
4078  				lpfc_printf_log(phba, KERN_ERR,
4079  						LOG_TRACE_EVENT,
4080  						"2562 Failure to allocate an "
4081  						"ELS sgl entry:%d\n", i);
4082  				rc = -ENOMEM;
4083  				goto out_free_mem;
4084  			}
4085  			sglq_entry->buff_type = GEN_BUFF_TYPE;
4086  			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
4087  							   &sglq_entry->phys);
4088  			if (sglq_entry->virt == NULL) {
4089  				kfree(sglq_entry);
4090  				lpfc_printf_log(phba, KERN_ERR,
4091  						LOG_TRACE_EVENT,
4092  						"2563 Failure to allocate an "
4093  						"ELS mbuf:%d\n", i);
4094  				rc = -ENOMEM;
4095  				goto out_free_mem;
4096  			}
4097  			sglq_entry->sgl = sglq_entry->virt;
4098  			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
4099  			sglq_entry->state = SGL_FREED;
4100  			list_add_tail(&sglq_entry->list, &els_sgl_list);
4101  		}
4102  		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4103  		list_splice_init(&els_sgl_list,
4104  				 &phba->sli4_hba.lpfc_els_sgl_list);
4105  		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4106  	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
4107  		/* els xri-sgl shrinked */
4108  		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
4109  		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4110  				"3158 ELS xri-sgl count decreased from "
4111  				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4112  				els_xri_cnt);
4113  		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4114  		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
4115  				 &els_sgl_list);
4116  		/* release extra els sgls from list */
4117  		for (i = 0; i < xri_cnt; i++) {
4118  			list_remove_head(&els_sgl_list,
4119  					 sglq_entry, struct lpfc_sglq, list);
4120  			if (sglq_entry) {
4121  				__lpfc_mbuf_free(phba, sglq_entry->virt,
4122  						 sglq_entry->phys);
4123  				kfree(sglq_entry);
4124  			}
4125  		}
4126  		list_splice_init(&els_sgl_list,
4127  				 &phba->sli4_hba.lpfc_els_sgl_list);
4128  		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4129  	} else
4130  		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4131  				"3163 ELS xri-sgl count unchanged: %d\n",
4132  				els_xri_cnt);
4133  	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
4134  
4135  	/* update xris to els sgls on the list */
4136  	sglq_entry = NULL;
4137  	sglq_entry_next = NULL;
4138  	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4139  				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
4140  		lxri = lpfc_sli4_next_xritag(phba);
4141  		if (lxri == NO_XRI) {
4142  			lpfc_printf_log(phba, KERN_ERR,
4143  					LOG_TRACE_EVENT,
4144  					"2400 Failed to allocate xri for "
4145  					"ELS sgl\n");
4146  			rc = -ENOMEM;
4147  			goto out_free_mem;
4148  		}
4149  		sglq_entry->sli4_lxritag = lxri;
4150  		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4151  	}
4152  	return 0;
4153  
4154  out_free_mem:
4155  	lpfc_free_els_sgl_list(phba);
4156  	return rc;
4157  }
4158  
4159  /**
4160   * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4161   * @phba: pointer to lpfc hba data structure.
4162   *
4163   * This routine first calculates the sizes of the current els and allocated
4164   * scsi sgl lists, and then goes through all sgls to updates the physical
4165   * XRIs assigned due to port function reset. During port initialization, the
4166   * current els and allocated scsi sgl lists are 0s.
4167   *
4168   * Return codes
4169   *   0 - successful (for now, it always returns 0)
4170   **/
4171  int
lpfc_sli4_nvmet_sgl_update(struct lpfc_hba * phba)4172  lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4173  {
4174  	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4175  	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4176  	uint16_t nvmet_xri_cnt;
4177  	LIST_HEAD(nvmet_sgl_list);
4178  	int rc;
4179  
4180  	/*
4181  	 * update on pci function's nvmet xri-sgl list
4182  	 */
4183  	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4184  
4185  	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4186  	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4187  	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4188  		/* els xri-sgl expanded */
4189  		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4190  		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4191  				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4192  				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4193  		/* allocate the additional nvmet sgls */
4194  		for (i = 0; i < xri_cnt; i++) {
4195  			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4196  					     GFP_KERNEL);
4197  			if (sglq_entry == NULL) {
4198  				lpfc_printf_log(phba, KERN_ERR,
4199  						LOG_TRACE_EVENT,
4200  						"6303 Failure to allocate an "
4201  						"NVMET sgl entry:%d\n", i);
4202  				rc = -ENOMEM;
4203  				goto out_free_mem;
4204  			}
4205  			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4206  			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4207  							   &sglq_entry->phys);
4208  			if (sglq_entry->virt == NULL) {
4209  				kfree(sglq_entry);
4210  				lpfc_printf_log(phba, KERN_ERR,
4211  						LOG_TRACE_EVENT,
4212  						"6304 Failure to allocate an "
4213  						"NVMET buf:%d\n", i);
4214  				rc = -ENOMEM;
4215  				goto out_free_mem;
4216  			}
4217  			sglq_entry->sgl = sglq_entry->virt;
4218  			memset(sglq_entry->sgl, 0,
4219  			       phba->cfg_sg_dma_buf_size);
4220  			sglq_entry->state = SGL_FREED;
4221  			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4222  		}
4223  		spin_lock_irq(&phba->hbalock);
4224  		spin_lock(&phba->sli4_hba.sgl_list_lock);
4225  		list_splice_init(&nvmet_sgl_list,
4226  				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4227  		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4228  		spin_unlock_irq(&phba->hbalock);
4229  	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4230  		/* nvmet xri-sgl shrunk */
4231  		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4232  		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4233  				"6305 NVMET xri-sgl count decreased from "
4234  				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4235  				nvmet_xri_cnt);
4236  		spin_lock_irq(&phba->hbalock);
4237  		spin_lock(&phba->sli4_hba.sgl_list_lock);
4238  		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4239  				 &nvmet_sgl_list);
4240  		/* release extra nvmet sgls from list */
4241  		for (i = 0; i < xri_cnt; i++) {
4242  			list_remove_head(&nvmet_sgl_list,
4243  					 sglq_entry, struct lpfc_sglq, list);
4244  			if (sglq_entry) {
4245  				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4246  						    sglq_entry->phys);
4247  				kfree(sglq_entry);
4248  			}
4249  		}
4250  		list_splice_init(&nvmet_sgl_list,
4251  				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4252  		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4253  		spin_unlock_irq(&phba->hbalock);
4254  	} else
4255  		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4256  				"6306 NVMET xri-sgl count unchanged: %d\n",
4257  				nvmet_xri_cnt);
4258  	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4259  
4260  	/* update xris to nvmet sgls on the list */
4261  	sglq_entry = NULL;
4262  	sglq_entry_next = NULL;
4263  	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4264  				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4265  		lxri = lpfc_sli4_next_xritag(phba);
4266  		if (lxri == NO_XRI) {
4267  			lpfc_printf_log(phba, KERN_ERR,
4268  					LOG_TRACE_EVENT,
4269  					"6307 Failed to allocate xri for "
4270  					"NVMET sgl\n");
4271  			rc = -ENOMEM;
4272  			goto out_free_mem;
4273  		}
4274  		sglq_entry->sli4_lxritag = lxri;
4275  		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4276  	}
4277  	return 0;
4278  
4279  out_free_mem:
4280  	lpfc_free_nvmet_sgl_list(phba);
4281  	return rc;
4282  }
4283  
4284  int
lpfc_io_buf_flush(struct lpfc_hba * phba,struct list_head * cbuf)4285  lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4286  {
4287  	LIST_HEAD(blist);
4288  	struct lpfc_sli4_hdw_queue *qp;
4289  	struct lpfc_io_buf *lpfc_cmd;
4290  	struct lpfc_io_buf *iobufp, *prev_iobufp;
4291  	int idx, cnt, xri, inserted;
4292  
4293  	cnt = 0;
4294  	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4295  		qp = &phba->sli4_hba.hdwq[idx];
4296  		spin_lock_irq(&qp->io_buf_list_get_lock);
4297  		spin_lock(&qp->io_buf_list_put_lock);
4298  
4299  		/* Take everything off the get and put lists */
4300  		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4301  		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4302  		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4303  		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4304  		cnt += qp->get_io_bufs + qp->put_io_bufs;
4305  		qp->get_io_bufs = 0;
4306  		qp->put_io_bufs = 0;
4307  		qp->total_io_bufs = 0;
4308  		spin_unlock(&qp->io_buf_list_put_lock);
4309  		spin_unlock_irq(&qp->io_buf_list_get_lock);
4310  	}
4311  
4312  	/*
4313  	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4314  	 * This is because POST_SGL takes a sequential range of XRIs
4315  	 * to post to the firmware.
4316  	 */
4317  	for (idx = 0; idx < cnt; idx++) {
4318  		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4319  		if (!lpfc_cmd)
4320  			return cnt;
4321  		if (idx == 0) {
4322  			list_add_tail(&lpfc_cmd->list, cbuf);
4323  			continue;
4324  		}
4325  		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4326  		inserted = 0;
4327  		prev_iobufp = NULL;
4328  		list_for_each_entry(iobufp, cbuf, list) {
4329  			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4330  				if (prev_iobufp)
4331  					list_add(&lpfc_cmd->list,
4332  						 &prev_iobufp->list);
4333  				else
4334  					list_add(&lpfc_cmd->list, cbuf);
4335  				inserted = 1;
4336  				break;
4337  			}
4338  			prev_iobufp = iobufp;
4339  		}
4340  		if (!inserted)
4341  			list_add_tail(&lpfc_cmd->list, cbuf);
4342  	}
4343  	return cnt;
4344  }
4345  
4346  int
lpfc_io_buf_replenish(struct lpfc_hba * phba,struct list_head * cbuf)4347  lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4348  {
4349  	struct lpfc_sli4_hdw_queue *qp;
4350  	struct lpfc_io_buf *lpfc_cmd;
4351  	int idx, cnt;
4352  	unsigned long iflags;
4353  
4354  	qp = phba->sli4_hba.hdwq;
4355  	cnt = 0;
4356  	while (!list_empty(cbuf)) {
4357  		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4358  			list_remove_head(cbuf, lpfc_cmd,
4359  					 struct lpfc_io_buf, list);
4360  			if (!lpfc_cmd)
4361  				return cnt;
4362  			cnt++;
4363  			qp = &phba->sli4_hba.hdwq[idx];
4364  			lpfc_cmd->hdwq_no = idx;
4365  			lpfc_cmd->hdwq = qp;
4366  			lpfc_cmd->cur_iocbq.cmd_cmpl = NULL;
4367  			spin_lock_irqsave(&qp->io_buf_list_put_lock, iflags);
4368  			list_add_tail(&lpfc_cmd->list,
4369  				      &qp->lpfc_io_buf_list_put);
4370  			qp->put_io_bufs++;
4371  			qp->total_io_bufs++;
4372  			spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
4373  					       iflags);
4374  		}
4375  	}
4376  	return cnt;
4377  }
4378  
4379  /**
4380   * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4381   * @phba: pointer to lpfc hba data structure.
4382   *
4383   * This routine first calculates the sizes of the current els and allocated
4384   * scsi sgl lists, and then goes through all sgls to updates the physical
4385   * XRIs assigned due to port function reset. During port initialization, the
4386   * current els and allocated scsi sgl lists are 0s.
4387   *
4388   * Return codes
4389   *   0 - successful (for now, it always returns 0)
4390   **/
4391  int
lpfc_sli4_io_sgl_update(struct lpfc_hba * phba)4392  lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4393  {
4394  	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4395  	uint16_t i, lxri, els_xri_cnt;
4396  	uint16_t io_xri_cnt, io_xri_max;
4397  	LIST_HEAD(io_sgl_list);
4398  	int rc, cnt;
4399  
4400  	/*
4401  	 * update on pci function's allocated nvme xri-sgl list
4402  	 */
4403  
4404  	/* maximum number of xris available for nvme buffers */
4405  	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4406  	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4407  	phba->sli4_hba.io_xri_max = io_xri_max;
4408  
4409  	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4410  			"6074 Current allocated XRI sgl count:%d, "
4411  			"maximum XRI count:%d els_xri_cnt:%d\n\n",
4412  			phba->sli4_hba.io_xri_cnt,
4413  			phba->sli4_hba.io_xri_max,
4414  			els_xri_cnt);
4415  
4416  	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4417  
4418  	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4419  		/* max nvme xri shrunk below the allocated nvme buffers */
4420  		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4421  					phba->sli4_hba.io_xri_max;
4422  		/* release the extra allocated nvme buffers */
4423  		for (i = 0; i < io_xri_cnt; i++) {
4424  			list_remove_head(&io_sgl_list, lpfc_ncmd,
4425  					 struct lpfc_io_buf, list);
4426  			if (lpfc_ncmd) {
4427  				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4428  					      lpfc_ncmd->data,
4429  					      lpfc_ncmd->dma_handle);
4430  				kfree(lpfc_ncmd);
4431  			}
4432  		}
4433  		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4434  	}
4435  
4436  	/* update xris associated to remaining allocated nvme buffers */
4437  	lpfc_ncmd = NULL;
4438  	lpfc_ncmd_next = NULL;
4439  	phba->sli4_hba.io_xri_cnt = cnt;
4440  	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4441  				 &io_sgl_list, list) {
4442  		lxri = lpfc_sli4_next_xritag(phba);
4443  		if (lxri == NO_XRI) {
4444  			lpfc_printf_log(phba, KERN_ERR,
4445  					LOG_TRACE_EVENT,
4446  					"6075 Failed to allocate xri for "
4447  					"nvme buffer\n");
4448  			rc = -ENOMEM;
4449  			goto out_free_mem;
4450  		}
4451  		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4452  		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4453  	}
4454  	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4455  	return 0;
4456  
4457  out_free_mem:
4458  	lpfc_io_free(phba);
4459  	return rc;
4460  }
4461  
4462  /**
4463   * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4464   * @phba: Pointer to lpfc hba data structure.
4465   * @num_to_alloc: The requested number of buffers to allocate.
4466   *
4467   * This routine allocates nvme buffers for device with SLI-4 interface spec,
4468   * the nvme buffer contains all the necessary information needed to initiate
4469   * an I/O. After allocating up to @num_to_allocate IO buffers and put
4470   * them on a list, it post them to the port by using SGL block post.
4471   *
4472   * Return codes:
4473   *   int - number of IO buffers that were allocated and posted.
4474   *   0 = failure, less than num_to_alloc is a partial failure.
4475   **/
4476  int
lpfc_new_io_buf(struct lpfc_hba * phba,int num_to_alloc)4477  lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4478  {
4479  	struct lpfc_io_buf *lpfc_ncmd;
4480  	struct lpfc_iocbq *pwqeq;
4481  	uint16_t iotag, lxri = 0;
4482  	int bcnt, num_posted;
4483  	LIST_HEAD(prep_nblist);
4484  	LIST_HEAD(post_nblist);
4485  	LIST_HEAD(nvme_nblist);
4486  
4487  	phba->sli4_hba.io_xri_cnt = 0;
4488  	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4489  		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4490  		if (!lpfc_ncmd)
4491  			break;
4492  		/*
4493  		 * Get memory from the pci pool to map the virt space to
4494  		 * pci bus space for an I/O. The DMA buffer includes the
4495  		 * number of SGE's necessary to support the sg_tablesize.
4496  		 */
4497  		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4498  						  GFP_KERNEL,
4499  						  &lpfc_ncmd->dma_handle);
4500  		if (!lpfc_ncmd->data) {
4501  			kfree(lpfc_ncmd);
4502  			break;
4503  		}
4504  
4505  		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4506  			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4507  		} else {
4508  			/*
4509  			 * 4K Page alignment is CRITICAL to BlockGuard, double
4510  			 * check to be sure.
4511  			 */
4512  			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4513  			    (((unsigned long)(lpfc_ncmd->data) &
4514  			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4515  				lpfc_printf_log(phba, KERN_ERR,
4516  						LOG_TRACE_EVENT,
4517  						"3369 Memory alignment err: "
4518  						"addr=%lx\n",
4519  						(unsigned long)lpfc_ncmd->data);
4520  				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4521  					      lpfc_ncmd->data,
4522  					      lpfc_ncmd->dma_handle);
4523  				kfree(lpfc_ncmd);
4524  				break;
4525  			}
4526  		}
4527  
4528  		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4529  
4530  		lxri = lpfc_sli4_next_xritag(phba);
4531  		if (lxri == NO_XRI) {
4532  			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4533  				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4534  			kfree(lpfc_ncmd);
4535  			break;
4536  		}
4537  		pwqeq = &lpfc_ncmd->cur_iocbq;
4538  
4539  		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4540  		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4541  		if (iotag == 0) {
4542  			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4543  				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4544  			kfree(lpfc_ncmd);
4545  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4546  					"6121 Failed to allocate IOTAG for"
4547  					" XRI:0x%x\n", lxri);
4548  			lpfc_sli4_free_xri(phba, lxri);
4549  			break;
4550  		}
4551  		pwqeq->sli4_lxritag = lxri;
4552  		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4553  
4554  		/* Initialize local short-hand pointers. */
4555  		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4556  		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4557  		lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd;
4558  		spin_lock_init(&lpfc_ncmd->buf_lock);
4559  
4560  		/* add the nvme buffer to a post list */
4561  		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4562  		phba->sli4_hba.io_xri_cnt++;
4563  	}
4564  	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4565  			"6114 Allocate %d out of %d requested new NVME "
4566  			"buffers of size x%zu bytes\n", bcnt, num_to_alloc,
4567  			sizeof(*lpfc_ncmd));
4568  
4569  
4570  	/* post the list of nvme buffer sgls to port if available */
4571  	if (!list_empty(&post_nblist))
4572  		num_posted = lpfc_sli4_post_io_sgl_list(
4573  				phba, &post_nblist, bcnt);
4574  	else
4575  		num_posted = 0;
4576  
4577  	return num_posted;
4578  }
4579  
4580  static uint64_t
lpfc_get_wwpn(struct lpfc_hba * phba)4581  lpfc_get_wwpn(struct lpfc_hba *phba)
4582  {
4583  	uint64_t wwn;
4584  	int rc;
4585  	LPFC_MBOXQ_t *mboxq;
4586  	MAILBOX_t *mb;
4587  
4588  	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4589  						GFP_KERNEL);
4590  	if (!mboxq)
4591  		return (uint64_t)-1;
4592  
4593  	/* First get WWN of HBA instance */
4594  	lpfc_read_nv(phba, mboxq);
4595  	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4596  	if (rc != MBX_SUCCESS) {
4597  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4598  				"6019 Mailbox failed , mbxCmd x%x "
4599  				"READ_NV, mbxStatus x%x\n",
4600  				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4601  				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4602  		mempool_free(mboxq, phba->mbox_mem_pool);
4603  		return (uint64_t) -1;
4604  	}
4605  	mb = &mboxq->u.mb;
4606  	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4607  	/* wwn is WWPN of HBA instance */
4608  	mempool_free(mboxq, phba->mbox_mem_pool);
4609  	if (phba->sli_rev == LPFC_SLI_REV4)
4610  		return be64_to_cpu(wwn);
4611  	else
4612  		return rol64(wwn, 32);
4613  }
4614  
lpfc_get_sg_tablesize(struct lpfc_hba * phba)4615  static unsigned short lpfc_get_sg_tablesize(struct lpfc_hba *phba)
4616  {
4617  	if (phba->sli_rev == LPFC_SLI_REV4)
4618  		if (phba->cfg_xpsgl && !phba->nvmet_support)
4619  			return LPFC_MAX_SG_TABLESIZE;
4620  		else
4621  			return phba->cfg_scsi_seg_cnt;
4622  	else
4623  		return phba->cfg_sg_seg_cnt;
4624  }
4625  
4626  /**
4627   * lpfc_vmid_res_alloc - Allocates resources for VMID
4628   * @phba: pointer to lpfc hba data structure.
4629   * @vport: pointer to vport data structure
4630   *
4631   * This routine allocated the resources needed for the VMID.
4632   *
4633   * Return codes
4634   *	0 on Success
4635   *	Non-0 on Failure
4636   */
4637  static int
lpfc_vmid_res_alloc(struct lpfc_hba * phba,struct lpfc_vport * vport)4638  lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4639  {
4640  	/* VMID feature is supported only on SLI4 */
4641  	if (phba->sli_rev == LPFC_SLI_REV3) {
4642  		phba->cfg_vmid_app_header = 0;
4643  		phba->cfg_vmid_priority_tagging = 0;
4644  	}
4645  
4646  	if (lpfc_is_vmid_enabled(phba)) {
4647  		vport->vmid =
4648  		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4649  			    GFP_KERNEL);
4650  		if (!vport->vmid)
4651  			return -ENOMEM;
4652  
4653  		rwlock_init(&vport->vmid_lock);
4654  
4655  		/* Set the VMID parameters for the vport */
4656  		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4657  		vport->vmid_inactivity_timeout =
4658  		    phba->cfg_vmid_inactivity_timeout;
4659  		vport->max_vmid = phba->cfg_max_vmid;
4660  		vport->cur_vmid_cnt = 0;
4661  
4662  		vport->vmid_priority_range = bitmap_zalloc
4663  			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4664  
4665  		if (!vport->vmid_priority_range) {
4666  			kfree(vport->vmid);
4667  			return -ENOMEM;
4668  		}
4669  
4670  		hash_init(vport->hash_table);
4671  	}
4672  	return 0;
4673  }
4674  
4675  /**
4676   * lpfc_create_port - Create an FC port
4677   * @phba: pointer to lpfc hba data structure.
4678   * @instance: a unique integer ID to this FC port.
4679   * @dev: pointer to the device data structure.
4680   *
4681   * This routine creates a FC port for the upper layer protocol. The FC port
4682   * can be created on top of either a physical port or a virtual port provided
4683   * by the HBA. This routine also allocates a SCSI host data structure (shost)
4684   * and associates the FC port created before adding the shost into the SCSI
4685   * layer.
4686   *
4687   * Return codes
4688   *   @vport - pointer to the virtual N_Port data structure.
4689   *   NULL - port create failed.
4690   **/
4691  struct lpfc_vport *
lpfc_create_port(struct lpfc_hba * phba,int instance,struct device * dev)4692  lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4693  {
4694  	struct lpfc_vport *vport;
4695  	struct Scsi_Host  *shost = NULL;
4696  	struct scsi_host_template *template;
4697  	int error = 0;
4698  	int i;
4699  	uint64_t wwn;
4700  	bool use_no_reset_hba = false;
4701  	int rc;
4702  	u8 if_type;
4703  
4704  	if (lpfc_no_hba_reset_cnt) {
4705  		if (phba->sli_rev < LPFC_SLI_REV4 &&
4706  		    dev == &phba->pcidev->dev) {
4707  			/* Reset the port first */
4708  			lpfc_sli_brdrestart(phba);
4709  			rc = lpfc_sli_chipset_init(phba);
4710  			if (rc)
4711  				return NULL;
4712  		}
4713  		wwn = lpfc_get_wwpn(phba);
4714  	}
4715  
4716  	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4717  		if (wwn == lpfc_no_hba_reset[i]) {
4718  			lpfc_printf_log(phba, KERN_ERR,
4719  					LOG_TRACE_EVENT,
4720  					"6020 Setting use_no_reset port=%llx\n",
4721  					wwn);
4722  			use_no_reset_hba = true;
4723  			break;
4724  		}
4725  	}
4726  
4727  	/* Seed template for SCSI host registration */
4728  	if (dev == &phba->pcidev->dev) {
4729  		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4730  			/* Seed physical port template */
4731  			template = &lpfc_template;
4732  
4733  			if (use_no_reset_hba)
4734  				/* template is for a no reset SCSI Host */
4735  				template->eh_host_reset_handler = NULL;
4736  
4737  			/* Seed updated value of sg_tablesize */
4738  			template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4739  		} else {
4740  			/* NVMET is for physical port only */
4741  			template = &lpfc_template_nvme;
4742  		}
4743  	} else {
4744  		/* Seed vport template */
4745  		template = &lpfc_vport_template;
4746  
4747  		/* Seed updated value of sg_tablesize */
4748  		template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4749  	}
4750  
4751  	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4752  	if (!shost)
4753  		goto out;
4754  
4755  	vport = (struct lpfc_vport *) shost->hostdata;
4756  	vport->phba = phba;
4757  	set_bit(FC_LOADING, &vport->load_flag);
4758  	set_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag);
4759  	vport->fc_rscn_flush = 0;
4760  	atomic_set(&vport->fc_plogi_cnt, 0);
4761  	atomic_set(&vport->fc_adisc_cnt, 0);
4762  	atomic_set(&vport->fc_reglogin_cnt, 0);
4763  	atomic_set(&vport->fc_prli_cnt, 0);
4764  	atomic_set(&vport->fc_unmap_cnt, 0);
4765  	atomic_set(&vport->fc_map_cnt, 0);
4766  	atomic_set(&vport->fc_npr_cnt, 0);
4767  	atomic_set(&vport->fc_unused_cnt, 0);
4768  	lpfc_get_vport_cfgparam(vport);
4769  
4770  	/* Adjust value in vport */
4771  	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4772  
4773  	shost->unique_id = instance;
4774  	shost->max_id = LPFC_MAX_TARGET;
4775  	shost->max_lun = vport->cfg_max_luns;
4776  	shost->this_id = -1;
4777  
4778  	/* Set max_cmd_len applicable to ASIC support */
4779  	if (phba->sli_rev == LPFC_SLI_REV4) {
4780  		if_type = bf_get(lpfc_sli_intf_if_type,
4781  				 &phba->sli4_hba.sli_intf);
4782  		switch (if_type) {
4783  		case LPFC_SLI_INTF_IF_TYPE_2:
4784  			fallthrough;
4785  		case LPFC_SLI_INTF_IF_TYPE_6:
4786  			shost->max_cmd_len = LPFC_FCP_CDB_LEN_32;
4787  			break;
4788  		default:
4789  			shost->max_cmd_len = LPFC_FCP_CDB_LEN;
4790  			break;
4791  		}
4792  	} else {
4793  		shost->max_cmd_len = LPFC_FCP_CDB_LEN;
4794  	}
4795  
4796  	if (phba->sli_rev == LPFC_SLI_REV4) {
4797  		if (!phba->cfg_fcp_mq_threshold ||
4798  		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4799  			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4800  
4801  		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4802  					    phba->cfg_fcp_mq_threshold);
4803  
4804  		shost->dma_boundary =
4805  			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4806  	} else
4807  		/* SLI-3 has a limited number of hardware queues (3),
4808  		 * thus there is only one for FCP processing.
4809  		 */
4810  		shost->nr_hw_queues = 1;
4811  
4812  	/*
4813  	 * Set initial can_queue value since 0 is no longer supported and
4814  	 * scsi_add_host will fail. This will be adjusted later based on the
4815  	 * max xri value determined in hba setup.
4816  	 */
4817  	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4818  	if (dev != &phba->pcidev->dev) {
4819  		shost->transportt = lpfc_vport_transport_template;
4820  		vport->port_type = LPFC_NPIV_PORT;
4821  	} else {
4822  		shost->transportt = lpfc_transport_template;
4823  		vport->port_type = LPFC_PHYSICAL_PORT;
4824  	}
4825  
4826  	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4827  			"9081 CreatePort TMPLATE type %x TBLsize %d "
4828  			"SEGcnt %d/%d\n",
4829  			vport->port_type, shost->sg_tablesize,
4830  			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4831  
4832  	/* Allocate the resources for VMID */
4833  	rc = lpfc_vmid_res_alloc(phba, vport);
4834  
4835  	if (rc)
4836  		goto out_put_shost;
4837  
4838  	/* Initialize all internally managed lists. */
4839  	INIT_LIST_HEAD(&vport->fc_nodes);
4840  	spin_lock_init(&vport->fc_nodes_list_lock);
4841  	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4842  	spin_lock_init(&vport->work_port_lock);
4843  
4844  	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4845  
4846  	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4847  
4848  	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4849  
4850  	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4851  		lpfc_setup_bg(phba, shost);
4852  
4853  	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4854  	if (error)
4855  		goto out_free_vmid;
4856  
4857  	spin_lock_irq(&phba->port_list_lock);
4858  	list_add_tail(&vport->listentry, &phba->port_list);
4859  	spin_unlock_irq(&phba->port_list_lock);
4860  	return vport;
4861  
4862  out_free_vmid:
4863  	kfree(vport->vmid);
4864  	bitmap_free(vport->vmid_priority_range);
4865  out_put_shost:
4866  	scsi_host_put(shost);
4867  out:
4868  	return NULL;
4869  }
4870  
4871  /**
4872   * destroy_port -  destroy an FC port
4873   * @vport: pointer to an lpfc virtual N_Port data structure.
4874   *
4875   * This routine destroys a FC port from the upper layer protocol. All the
4876   * resources associated with the port are released.
4877   **/
4878  void
destroy_port(struct lpfc_vport * vport)4879  destroy_port(struct lpfc_vport *vport)
4880  {
4881  	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4882  	struct lpfc_hba  *phba = vport->phba;
4883  
4884  	lpfc_debugfs_terminate(vport);
4885  	fc_remove_host(shost);
4886  	scsi_remove_host(shost);
4887  
4888  	spin_lock_irq(&phba->port_list_lock);
4889  	list_del_init(&vport->listentry);
4890  	spin_unlock_irq(&phba->port_list_lock);
4891  
4892  	lpfc_cleanup(vport);
4893  	return;
4894  }
4895  
4896  /**
4897   * lpfc_get_instance - Get a unique integer ID
4898   *
4899   * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4900   * uses the kernel idr facility to perform the task.
4901   *
4902   * Return codes:
4903   *   instance - a unique integer ID allocated as the new instance.
4904   *   -1 - lpfc get instance failed.
4905   **/
4906  int
lpfc_get_instance(void)4907  lpfc_get_instance(void)
4908  {
4909  	int ret;
4910  
4911  	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4912  	return ret < 0 ? -1 : ret;
4913  }
4914  
4915  /**
4916   * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4917   * @shost: pointer to SCSI host data structure.
4918   * @time: elapsed time of the scan in jiffies.
4919   *
4920   * This routine is called by the SCSI layer with a SCSI host to determine
4921   * whether the scan host is finished.
4922   *
4923   * Note: there is no scan_start function as adapter initialization will have
4924   * asynchronously kicked off the link initialization.
4925   *
4926   * Return codes
4927   *   0 - SCSI host scan is not over yet.
4928   *   1 - SCSI host scan is over.
4929   **/
lpfc_scan_finished(struct Scsi_Host * shost,unsigned long time)4930  int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4931  {
4932  	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4933  	struct lpfc_hba   *phba = vport->phba;
4934  	int stat = 0;
4935  
4936  	spin_lock_irq(shost->host_lock);
4937  
4938  	if (test_bit(FC_UNLOADING, &vport->load_flag)) {
4939  		stat = 1;
4940  		goto finished;
4941  	}
4942  	if (time >= msecs_to_jiffies(30 * 1000)) {
4943  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4944  				"0461 Scanning longer than 30 "
4945  				"seconds.  Continuing initialization\n");
4946  		stat = 1;
4947  		goto finished;
4948  	}
4949  	if (time >= msecs_to_jiffies(15 * 1000) &&
4950  	    phba->link_state <= LPFC_LINK_DOWN) {
4951  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4952  				"0465 Link down longer than 15 "
4953  				"seconds.  Continuing initialization\n");
4954  		stat = 1;
4955  		goto finished;
4956  	}
4957  
4958  	if (vport->port_state != LPFC_VPORT_READY)
4959  		goto finished;
4960  	if (vport->num_disc_nodes || vport->fc_prli_sent)
4961  		goto finished;
4962  	if (!atomic_read(&vport->fc_map_cnt) &&
4963  	    time < msecs_to_jiffies(2 * 1000))
4964  		goto finished;
4965  	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4966  		goto finished;
4967  
4968  	stat = 1;
4969  
4970  finished:
4971  	spin_unlock_irq(shost->host_lock);
4972  	return stat;
4973  }
4974  
lpfc_host_supported_speeds_set(struct Scsi_Host * shost)4975  static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4976  {
4977  	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4978  	struct lpfc_hba   *phba = vport->phba;
4979  
4980  	fc_host_supported_speeds(shost) = 0;
4981  	/*
4982  	 * Avoid reporting supported link speed for FCoE as it can't be
4983  	 * controlled via FCoE.
4984  	 */
4985  	if (test_bit(HBA_FCOE_MODE, &phba->hba_flag))
4986  		return;
4987  
4988  	if (phba->lmt & LMT_256Gb)
4989  		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4990  	if (phba->lmt & LMT_128Gb)
4991  		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4992  	if (phba->lmt & LMT_64Gb)
4993  		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4994  	if (phba->lmt & LMT_32Gb)
4995  		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4996  	if (phba->lmt & LMT_16Gb)
4997  		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4998  	if (phba->lmt & LMT_10Gb)
4999  		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
5000  	if (phba->lmt & LMT_8Gb)
5001  		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
5002  	if (phba->lmt & LMT_4Gb)
5003  		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
5004  	if (phba->lmt & LMT_2Gb)
5005  		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
5006  	if (phba->lmt & LMT_1Gb)
5007  		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
5008  }
5009  
5010  /**
5011   * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
5012   * @shost: pointer to SCSI host data structure.
5013   *
5014   * This routine initializes a given SCSI host attributes on a FC port. The
5015   * SCSI host can be either on top of a physical port or a virtual port.
5016   **/
lpfc_host_attrib_init(struct Scsi_Host * shost)5017  void lpfc_host_attrib_init(struct Scsi_Host *shost)
5018  {
5019  	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
5020  	struct lpfc_hba   *phba = vport->phba;
5021  	/*
5022  	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
5023  	 */
5024  
5025  	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
5026  	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
5027  	fc_host_supported_classes(shost) = FC_COS_CLASS3;
5028  
5029  	memset(fc_host_supported_fc4s(shost), 0,
5030  	       sizeof(fc_host_supported_fc4s(shost)));
5031  	fc_host_supported_fc4s(shost)[2] = 1;
5032  	fc_host_supported_fc4s(shost)[7] = 1;
5033  
5034  	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
5035  				 sizeof fc_host_symbolic_name(shost));
5036  
5037  	lpfc_host_supported_speeds_set(shost);
5038  
5039  	fc_host_maxframe_size(shost) =
5040  		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
5041  		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
5042  
5043  	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
5044  
5045  	/* This value is also unchanging */
5046  	memset(fc_host_active_fc4s(shost), 0,
5047  	       sizeof(fc_host_active_fc4s(shost)));
5048  	fc_host_active_fc4s(shost)[2] = 1;
5049  	fc_host_active_fc4s(shost)[7] = 1;
5050  
5051  	fc_host_max_npiv_vports(shost) = phba->max_vpi;
5052  	clear_bit(FC_LOADING, &vport->load_flag);
5053  }
5054  
5055  /**
5056   * lpfc_stop_port_s3 - Stop SLI3 device port
5057   * @phba: pointer to lpfc hba data structure.
5058   *
5059   * This routine is invoked to stop an SLI3 device port, it stops the device
5060   * from generating interrupts and stops the device driver's timers for the
5061   * device.
5062   **/
5063  static void
lpfc_stop_port_s3(struct lpfc_hba * phba)5064  lpfc_stop_port_s3(struct lpfc_hba *phba)
5065  {
5066  	/* Clear all interrupt enable conditions */
5067  	writel(0, phba->HCregaddr);
5068  	readl(phba->HCregaddr); /* flush */
5069  	/* Clear all pending interrupts */
5070  	writel(0xffffffff, phba->HAregaddr);
5071  	readl(phba->HAregaddr); /* flush */
5072  
5073  	/* Reset some HBA SLI setup states */
5074  	lpfc_stop_hba_timers(phba);
5075  	phba->pport->work_port_events = 0;
5076  }
5077  
5078  /**
5079   * lpfc_stop_port_s4 - Stop SLI4 device port
5080   * @phba: pointer to lpfc hba data structure.
5081   *
5082   * This routine is invoked to stop an SLI4 device port, it stops the device
5083   * from generating interrupts and stops the device driver's timers for the
5084   * device.
5085   **/
5086  static void
lpfc_stop_port_s4(struct lpfc_hba * phba)5087  lpfc_stop_port_s4(struct lpfc_hba *phba)
5088  {
5089  	/* Reset some HBA SLI4 setup states */
5090  	lpfc_stop_hba_timers(phba);
5091  	if (phba->pport)
5092  		phba->pport->work_port_events = 0;
5093  	phba->sli4_hba.intr_enable = 0;
5094  }
5095  
5096  /**
5097   * lpfc_stop_port - Wrapper function for stopping hba port
5098   * @phba: Pointer to HBA context object.
5099   *
5100   * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
5101   * the API jump table function pointer from the lpfc_hba struct.
5102   **/
5103  void
lpfc_stop_port(struct lpfc_hba * phba)5104  lpfc_stop_port(struct lpfc_hba *phba)
5105  {
5106  	phba->lpfc_stop_port(phba);
5107  
5108  	if (phba->wq)
5109  		flush_workqueue(phba->wq);
5110  }
5111  
5112  /**
5113   * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
5114   * @phba: Pointer to hba for which this call is being executed.
5115   *
5116   * This routine starts the timer waiting for the FCF rediscovery to complete.
5117   **/
5118  void
lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba * phba)5119  lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
5120  {
5121  	unsigned long fcf_redisc_wait_tmo =
5122  		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
5123  	/* Start fcf rediscovery wait period timer */
5124  	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
5125  	spin_lock_irq(&phba->hbalock);
5126  	/* Allow action to new fcf asynchronous event */
5127  	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
5128  	/* Mark the FCF rediscovery pending state */
5129  	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
5130  	spin_unlock_irq(&phba->hbalock);
5131  }
5132  
5133  /**
5134   * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
5135   * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5136   *
5137   * This routine is invoked when waiting for FCF table rediscover has been
5138   * timed out. If new FCF record(s) has (have) been discovered during the
5139   * wait period, a new FCF event shall be added to the FCOE async event
5140   * list, and then worker thread shall be waked up for processing from the
5141   * worker thread context.
5142   **/
5143  static void
lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list * t)5144  lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
5145  {
5146  	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
5147  
5148  	/* Don't send FCF rediscovery event if timer cancelled */
5149  	spin_lock_irq(&phba->hbalock);
5150  	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
5151  		spin_unlock_irq(&phba->hbalock);
5152  		return;
5153  	}
5154  	/* Clear FCF rediscovery timer pending flag */
5155  	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
5156  	/* FCF rediscovery event to worker thread */
5157  	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
5158  	spin_unlock_irq(&phba->hbalock);
5159  	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
5160  			"2776 FCF rediscover quiescent timer expired\n");
5161  	/* wake up worker thread */
5162  	lpfc_worker_wake_up(phba);
5163  }
5164  
5165  /**
5166   * lpfc_vmid_poll - VMID timeout detection
5167   * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5168   *
5169   * This routine is invoked when there is no I/O on by a VM for the specified
5170   * amount of time. When this situation is detected, the VMID has to be
5171   * deregistered from the switch and all the local resources freed. The VMID
5172   * will be reassigned to the VM once the I/O begins.
5173   **/
5174  static void
lpfc_vmid_poll(struct timer_list * t)5175  lpfc_vmid_poll(struct timer_list *t)
5176  {
5177  	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5178  	u32 wake_up = 0;
5179  
5180  	/* check if there is a need to issue QFPA */
5181  	if (phba->pport->vmid_priority_tagging) {
5182  		wake_up = 1;
5183  		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5184  	}
5185  
5186  	/* Is the vmid inactivity timer enabled */
5187  	if (phba->pport->vmid_inactivity_timeout ||
5188  	    test_bit(FC_DEREGISTER_ALL_APP_ID, &phba->pport->load_flag)) {
5189  		wake_up = 1;
5190  		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5191  	}
5192  
5193  	if (wake_up)
5194  		lpfc_worker_wake_up(phba);
5195  
5196  	/* restart the timer for the next iteration */
5197  	mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5198  							LPFC_VMID_TIMER));
5199  }
5200  
5201  /**
5202   * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5203   * @phba: pointer to lpfc hba data structure.
5204   * @acqe_link: pointer to the async link completion queue entry.
5205   *
5206   * This routine is to parse the SLI4 link-attention link fault code.
5207   **/
5208  static void
lpfc_sli4_parse_latt_fault(struct lpfc_hba * phba,struct lpfc_acqe_link * acqe_link)5209  lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5210  			   struct lpfc_acqe_link *acqe_link)
5211  {
5212  	switch (bf_get(lpfc_acqe_fc_la_att_type, acqe_link)) {
5213  	case LPFC_FC_LA_TYPE_LINK_DOWN:
5214  	case LPFC_FC_LA_TYPE_TRUNKING_EVENT:
5215  	case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
5216  	case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
5217  		break;
5218  	default:
5219  		switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5220  		case LPFC_ASYNC_LINK_FAULT_NONE:
5221  		case LPFC_ASYNC_LINK_FAULT_LOCAL:
5222  		case LPFC_ASYNC_LINK_FAULT_REMOTE:
5223  		case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5224  			break;
5225  		default:
5226  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5227  					"0398 Unknown link fault code: x%x\n",
5228  					bf_get(lpfc_acqe_link_fault, acqe_link));
5229  			break;
5230  		}
5231  		break;
5232  	}
5233  }
5234  
5235  /**
5236   * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5237   * @phba: pointer to lpfc hba data structure.
5238   * @acqe_link: pointer to the async link completion queue entry.
5239   *
5240   * This routine is to parse the SLI4 link attention type and translate it
5241   * into the base driver's link attention type coding.
5242   *
5243   * Return: Link attention type in terms of base driver's coding.
5244   **/
5245  static uint8_t
lpfc_sli4_parse_latt_type(struct lpfc_hba * phba,struct lpfc_acqe_link * acqe_link)5246  lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5247  			  struct lpfc_acqe_link *acqe_link)
5248  {
5249  	uint8_t att_type;
5250  
5251  	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5252  	case LPFC_ASYNC_LINK_STATUS_DOWN:
5253  	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5254  		att_type = LPFC_ATT_LINK_DOWN;
5255  		break;
5256  	case LPFC_ASYNC_LINK_STATUS_UP:
5257  		/* Ignore physical link up events - wait for logical link up */
5258  		att_type = LPFC_ATT_RESERVED;
5259  		break;
5260  	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5261  		att_type = LPFC_ATT_LINK_UP;
5262  		break;
5263  	default:
5264  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5265  				"0399 Invalid link attention type: x%x\n",
5266  				bf_get(lpfc_acqe_link_status, acqe_link));
5267  		att_type = LPFC_ATT_RESERVED;
5268  		break;
5269  	}
5270  	return att_type;
5271  }
5272  
5273  /**
5274   * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5275   * @phba: pointer to lpfc hba data structure.
5276   *
5277   * This routine is to get an SLI3 FC port's link speed in Mbps.
5278   *
5279   * Return: link speed in terms of Mbps.
5280   **/
5281  uint32_t
lpfc_sli_port_speed_get(struct lpfc_hba * phba)5282  lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5283  {
5284  	uint32_t link_speed;
5285  
5286  	if (!lpfc_is_link_up(phba))
5287  		return 0;
5288  
5289  	if (phba->sli_rev <= LPFC_SLI_REV3) {
5290  		switch (phba->fc_linkspeed) {
5291  		case LPFC_LINK_SPEED_1GHZ:
5292  			link_speed = 1000;
5293  			break;
5294  		case LPFC_LINK_SPEED_2GHZ:
5295  			link_speed = 2000;
5296  			break;
5297  		case LPFC_LINK_SPEED_4GHZ:
5298  			link_speed = 4000;
5299  			break;
5300  		case LPFC_LINK_SPEED_8GHZ:
5301  			link_speed = 8000;
5302  			break;
5303  		case LPFC_LINK_SPEED_10GHZ:
5304  			link_speed = 10000;
5305  			break;
5306  		case LPFC_LINK_SPEED_16GHZ:
5307  			link_speed = 16000;
5308  			break;
5309  		default:
5310  			link_speed = 0;
5311  		}
5312  	} else {
5313  		if (phba->sli4_hba.link_state.logical_speed)
5314  			link_speed =
5315  			      phba->sli4_hba.link_state.logical_speed;
5316  		else
5317  			link_speed = phba->sli4_hba.link_state.speed;
5318  	}
5319  	return link_speed;
5320  }
5321  
5322  /**
5323   * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5324   * @phba: pointer to lpfc hba data structure.
5325   * @evt_code: asynchronous event code.
5326   * @speed_code: asynchronous event link speed code.
5327   *
5328   * This routine is to parse the giving SLI4 async event link speed code into
5329   * value of Mbps for the link speed.
5330   *
5331   * Return: link speed in terms of Mbps.
5332   **/
5333  static uint32_t
lpfc_sli4_port_speed_parse(struct lpfc_hba * phba,uint32_t evt_code,uint8_t speed_code)5334  lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5335  			   uint8_t speed_code)
5336  {
5337  	uint32_t port_speed;
5338  
5339  	switch (evt_code) {
5340  	case LPFC_TRAILER_CODE_LINK:
5341  		switch (speed_code) {
5342  		case LPFC_ASYNC_LINK_SPEED_ZERO:
5343  			port_speed = 0;
5344  			break;
5345  		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5346  			port_speed = 10;
5347  			break;
5348  		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5349  			port_speed = 100;
5350  			break;
5351  		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5352  			port_speed = 1000;
5353  			break;
5354  		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5355  			port_speed = 10000;
5356  			break;
5357  		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5358  			port_speed = 20000;
5359  			break;
5360  		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5361  			port_speed = 25000;
5362  			break;
5363  		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5364  			port_speed = 40000;
5365  			break;
5366  		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5367  			port_speed = 100000;
5368  			break;
5369  		default:
5370  			port_speed = 0;
5371  		}
5372  		break;
5373  	case LPFC_TRAILER_CODE_FC:
5374  		switch (speed_code) {
5375  		case LPFC_FC_LA_SPEED_UNKNOWN:
5376  			port_speed = 0;
5377  			break;
5378  		case LPFC_FC_LA_SPEED_1G:
5379  			port_speed = 1000;
5380  			break;
5381  		case LPFC_FC_LA_SPEED_2G:
5382  			port_speed = 2000;
5383  			break;
5384  		case LPFC_FC_LA_SPEED_4G:
5385  			port_speed = 4000;
5386  			break;
5387  		case LPFC_FC_LA_SPEED_8G:
5388  			port_speed = 8000;
5389  			break;
5390  		case LPFC_FC_LA_SPEED_10G:
5391  			port_speed = 10000;
5392  			break;
5393  		case LPFC_FC_LA_SPEED_16G:
5394  			port_speed = 16000;
5395  			break;
5396  		case LPFC_FC_LA_SPEED_32G:
5397  			port_speed = 32000;
5398  			break;
5399  		case LPFC_FC_LA_SPEED_64G:
5400  			port_speed = 64000;
5401  			break;
5402  		case LPFC_FC_LA_SPEED_128G:
5403  			port_speed = 128000;
5404  			break;
5405  		case LPFC_FC_LA_SPEED_256G:
5406  			port_speed = 256000;
5407  			break;
5408  		default:
5409  			port_speed = 0;
5410  		}
5411  		break;
5412  	default:
5413  		port_speed = 0;
5414  	}
5415  	return port_speed;
5416  }
5417  
5418  /**
5419   * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5420   * @phba: pointer to lpfc hba data structure.
5421   * @acqe_link: pointer to the async link completion queue entry.
5422   *
5423   * This routine is to handle the SLI4 asynchronous FCoE link event.
5424   **/
5425  static void
lpfc_sli4_async_link_evt(struct lpfc_hba * phba,struct lpfc_acqe_link * acqe_link)5426  lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5427  			 struct lpfc_acqe_link *acqe_link)
5428  {
5429  	LPFC_MBOXQ_t *pmb;
5430  	MAILBOX_t *mb;
5431  	struct lpfc_mbx_read_top *la;
5432  	uint8_t att_type;
5433  	int rc;
5434  
5435  	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5436  	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5437  		return;
5438  	phba->fcoe_eventtag = acqe_link->event_tag;
5439  	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5440  	if (!pmb) {
5441  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5442  				"0395 The mboxq allocation failed\n");
5443  		return;
5444  	}
5445  
5446  	rc = lpfc_mbox_rsrc_prep(phba, pmb);
5447  	if (rc) {
5448  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5449  				"0396 mailbox allocation failed\n");
5450  		goto out_free_pmb;
5451  	}
5452  
5453  	/* Cleanup any outstanding ELS commands */
5454  	lpfc_els_flush_all_cmd(phba);
5455  
5456  	/* Block ELS IOCBs until we have done process link event */
5457  	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5458  
5459  	/* Update link event statistics */
5460  	phba->sli.slistat.link_event++;
5461  
5462  	/* Create lpfc_handle_latt mailbox command from link ACQE */
5463  	lpfc_read_topology(phba, pmb, pmb->ctx_buf);
5464  	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5465  	pmb->vport = phba->pport;
5466  
5467  	/* Keep the link status for extra SLI4 state machine reference */
5468  	phba->sli4_hba.link_state.speed =
5469  			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5470  				bf_get(lpfc_acqe_link_speed, acqe_link));
5471  	phba->sli4_hba.link_state.duplex =
5472  				bf_get(lpfc_acqe_link_duplex, acqe_link);
5473  	phba->sli4_hba.link_state.status =
5474  				bf_get(lpfc_acqe_link_status, acqe_link);
5475  	phba->sli4_hba.link_state.type =
5476  				bf_get(lpfc_acqe_link_type, acqe_link);
5477  	phba->sli4_hba.link_state.number =
5478  				bf_get(lpfc_acqe_link_number, acqe_link);
5479  	phba->sli4_hba.link_state.fault =
5480  				bf_get(lpfc_acqe_link_fault, acqe_link);
5481  	phba->sli4_hba.link_state.logical_speed =
5482  			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5483  
5484  	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5485  			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5486  			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5487  			"Logical speed:%dMbps Fault:%d\n",
5488  			phba->sli4_hba.link_state.speed,
5489  			phba->sli4_hba.link_state.topology,
5490  			phba->sli4_hba.link_state.status,
5491  			phba->sli4_hba.link_state.type,
5492  			phba->sli4_hba.link_state.number,
5493  			phba->sli4_hba.link_state.logical_speed,
5494  			phba->sli4_hba.link_state.fault);
5495  	/*
5496  	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5497  	 * topology info. Note: Optional for non FC-AL ports.
5498  	 */
5499  	if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) {
5500  		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5501  		if (rc == MBX_NOT_FINISHED)
5502  			goto out_free_pmb;
5503  		return;
5504  	}
5505  	/*
5506  	 * For FCoE Mode: fill in all the topology information we need and call
5507  	 * the READ_TOPOLOGY completion routine to continue without actually
5508  	 * sending the READ_TOPOLOGY mailbox command to the port.
5509  	 */
5510  	/* Initialize completion status */
5511  	mb = &pmb->u.mb;
5512  	mb->mbxStatus = MBX_SUCCESS;
5513  
5514  	/* Parse port fault information field */
5515  	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5516  
5517  	/* Parse and translate link attention fields */
5518  	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5519  	la->eventTag = acqe_link->event_tag;
5520  	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5521  	bf_set(lpfc_mbx_read_top_link_spd, la,
5522  	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5523  
5524  	/* Fake the following irrelevant fields */
5525  	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5526  	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5527  	bf_set(lpfc_mbx_read_top_il, la, 0);
5528  	bf_set(lpfc_mbx_read_top_pb, la, 0);
5529  	bf_set(lpfc_mbx_read_top_fa, la, 0);
5530  	bf_set(lpfc_mbx_read_top_mm, la, 0);
5531  
5532  	/* Invoke the lpfc_handle_latt mailbox command callback function */
5533  	lpfc_mbx_cmpl_read_topology(phba, pmb);
5534  
5535  	return;
5536  
5537  out_free_pmb:
5538  	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
5539  }
5540  
5541  /**
5542   * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5543   * topology.
5544   * @phba: pointer to lpfc hba data structure.
5545   * @speed_code: asynchronous event link speed code.
5546   *
5547   * This routine is to parse the giving SLI4 async event link speed code into
5548   * value of Read topology link speed.
5549   *
5550   * Return: link speed in terms of Read topology.
5551   **/
5552  static uint8_t
lpfc_async_link_speed_to_read_top(struct lpfc_hba * phba,uint8_t speed_code)5553  lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5554  {
5555  	uint8_t port_speed;
5556  
5557  	switch (speed_code) {
5558  	case LPFC_FC_LA_SPEED_1G:
5559  		port_speed = LPFC_LINK_SPEED_1GHZ;
5560  		break;
5561  	case LPFC_FC_LA_SPEED_2G:
5562  		port_speed = LPFC_LINK_SPEED_2GHZ;
5563  		break;
5564  	case LPFC_FC_LA_SPEED_4G:
5565  		port_speed = LPFC_LINK_SPEED_4GHZ;
5566  		break;
5567  	case LPFC_FC_LA_SPEED_8G:
5568  		port_speed = LPFC_LINK_SPEED_8GHZ;
5569  		break;
5570  	case LPFC_FC_LA_SPEED_16G:
5571  		port_speed = LPFC_LINK_SPEED_16GHZ;
5572  		break;
5573  	case LPFC_FC_LA_SPEED_32G:
5574  		port_speed = LPFC_LINK_SPEED_32GHZ;
5575  		break;
5576  	case LPFC_FC_LA_SPEED_64G:
5577  		port_speed = LPFC_LINK_SPEED_64GHZ;
5578  		break;
5579  	case LPFC_FC_LA_SPEED_128G:
5580  		port_speed = LPFC_LINK_SPEED_128GHZ;
5581  		break;
5582  	case LPFC_FC_LA_SPEED_256G:
5583  		port_speed = LPFC_LINK_SPEED_256GHZ;
5584  		break;
5585  	default:
5586  		port_speed = 0;
5587  		break;
5588  	}
5589  
5590  	return port_speed;
5591  }
5592  
5593  void
lpfc_cgn_dump_rxmonitor(struct lpfc_hba * phba)5594  lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5595  {
5596  	if (!phba->rx_monitor) {
5597  		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5598  				"4411 Rx Monitor Info is empty.\n");
5599  	} else {
5600  		lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0,
5601  				       LPFC_MAX_RXMONITOR_DUMP);
5602  	}
5603  }
5604  
5605  /**
5606   * lpfc_cgn_update_stat - Save data into congestion stats buffer
5607   * @phba: pointer to lpfc hba data structure.
5608   * @dtag: FPIN descriptor received
5609   *
5610   * Increment the FPIN received counter/time when it happens.
5611   */
5612  void
lpfc_cgn_update_stat(struct lpfc_hba * phba,uint32_t dtag)5613  lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5614  {
5615  	struct lpfc_cgn_info *cp;
5616  	u32 value;
5617  
5618  	/* Make sure we have a congestion info buffer */
5619  	if (!phba->cgn_i)
5620  		return;
5621  	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5622  
5623  	/* Update congestion statistics */
5624  	switch (dtag) {
5625  	case ELS_DTAG_LNK_INTEGRITY:
5626  		le32_add_cpu(&cp->link_integ_notification, 1);
5627  		lpfc_cgn_update_tstamp(phba, &cp->stat_lnk);
5628  		break;
5629  	case ELS_DTAG_DELIVERY:
5630  		le32_add_cpu(&cp->delivery_notification, 1);
5631  		lpfc_cgn_update_tstamp(phba, &cp->stat_delivery);
5632  		break;
5633  	case ELS_DTAG_PEER_CONGEST:
5634  		le32_add_cpu(&cp->cgn_peer_notification, 1);
5635  		lpfc_cgn_update_tstamp(phba, &cp->stat_peer);
5636  		break;
5637  	case ELS_DTAG_CONGESTION:
5638  		le32_add_cpu(&cp->cgn_notification, 1);
5639  		lpfc_cgn_update_tstamp(phba, &cp->stat_fpin);
5640  	}
5641  	if (phba->cgn_fpin_frequency &&
5642  	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5643  		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5644  		cp->cgn_stat_npm = value;
5645  	}
5646  
5647  	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5648  				    LPFC_CGN_CRC32_SEED);
5649  	cp->cgn_info_crc = cpu_to_le32(value);
5650  }
5651  
5652  /**
5653   * lpfc_cgn_update_tstamp - Update cmf timestamp
5654   * @phba: pointer to lpfc hba data structure.
5655   * @ts: structure to write the timestamp to.
5656   */
5657  void
lpfc_cgn_update_tstamp(struct lpfc_hba * phba,struct lpfc_cgn_ts * ts)5658  lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts)
5659  {
5660  	struct timespec64 cur_time;
5661  	struct tm tm_val;
5662  
5663  	ktime_get_real_ts64(&cur_time);
5664  	time64_to_tm(cur_time.tv_sec, 0, &tm_val);
5665  
5666  	ts->month = tm_val.tm_mon + 1;
5667  	ts->day	= tm_val.tm_mday;
5668  	ts->year = tm_val.tm_year - 100;
5669  	ts->hour = tm_val.tm_hour;
5670  	ts->minute = tm_val.tm_min;
5671  	ts->second = tm_val.tm_sec;
5672  
5673  	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5674  			"2646 Updated CMF timestamp : "
5675  			"%u/%u/%u %u:%u:%u\n",
5676  			ts->day, ts->month,
5677  			ts->year, ts->hour,
5678  			ts->minute, ts->second);
5679  }
5680  
5681  /**
5682   * lpfc_cmf_stats_timer - Save data into registered congestion buffer
5683   * @timer: Timer cookie to access lpfc private data
5684   *
5685   * Save the congestion event data every minute.
5686   * On the hour collapse all the minute data into hour data. Every day
5687   * collapse all the hour data into daily data. Separate driver
5688   * and fabrc congestion event counters that will be saved out
5689   * to the registered congestion buffer every minute.
5690   */
5691  static enum hrtimer_restart
lpfc_cmf_stats_timer(struct hrtimer * timer)5692  lpfc_cmf_stats_timer(struct hrtimer *timer)
5693  {
5694  	struct lpfc_hba *phba;
5695  	struct lpfc_cgn_info *cp;
5696  	uint32_t i, index;
5697  	uint16_t value, mvalue;
5698  	uint64_t bps;
5699  	uint32_t mbps;
5700  	uint32_t dvalue, wvalue, lvalue, avalue;
5701  	uint64_t latsum;
5702  	__le16 *ptr;
5703  	__le32 *lptr;
5704  	__le16 *mptr;
5705  
5706  	phba = container_of(timer, struct lpfc_hba, cmf_stats_timer);
5707  	/* Make sure we have a congestion info buffer */
5708  	if (!phba->cgn_i)
5709  		return HRTIMER_NORESTART;
5710  	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5711  
5712  	phba->cgn_evt_timestamp = jiffies +
5713  			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5714  	phba->cgn_evt_minute++;
5715  
5716  	/* We should get to this point in the routine on 1 minute intervals */
5717  	lpfc_cgn_update_tstamp(phba, &cp->base_time);
5718  
5719  	if (phba->cgn_fpin_frequency &&
5720  	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5721  		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5722  		cp->cgn_stat_npm = value;
5723  	}
5724  
5725  	/* Read and clear the latency counters for this minute */
5726  	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5727  	latsum = atomic64_read(&phba->cgn_latency_evt);
5728  	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5729  	atomic64_set(&phba->cgn_latency_evt, 0);
5730  
5731  	/* We need to store MB/sec bandwidth in the congestion information.
5732  	 * block_cnt is count of 512 byte blocks for the entire minute,
5733  	 * bps will get bytes per sec before finally converting to MB/sec.
5734  	 */
5735  	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5736  	phba->rx_block_cnt = 0;
5737  	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5738  
5739  	/* Every minute */
5740  	/* cgn parameters */
5741  	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5742  	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5743  	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5744  	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5745  
5746  	/* Fill in default LUN qdepth */
5747  	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5748  	cp->cgn_lunq = cpu_to_le16(value);
5749  
5750  	/* Record congestion buffer info - every minute
5751  	 * cgn_driver_evt_cnt (Driver events)
5752  	 * cgn_fabric_warn_cnt (Congestion Warnings)
5753  	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5754  	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5755  	 */
5756  	index = ++cp->cgn_index_minute;
5757  	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5758  		cp->cgn_index_minute = 0;
5759  		index = 0;
5760  	}
5761  
5762  	/* Get the number of driver events in this sample and reset counter */
5763  	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5764  	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5765  
5766  	/* Get the number of warning events - FPIN and Signal for this minute */
5767  	wvalue = 0;
5768  	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5769  	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5770  	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5771  		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5772  	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5773  
5774  	/* Get the number of alarm events - FPIN and Signal for this minute */
5775  	avalue = 0;
5776  	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5777  	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5778  		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5779  	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5780  
5781  	/* Collect the driver, warning, alarm and latency counts for this
5782  	 * minute into the driver congestion buffer.
5783  	 */
5784  	ptr = &cp->cgn_drvr_min[index];
5785  	value = (uint16_t)dvalue;
5786  	*ptr = cpu_to_le16(value);
5787  
5788  	ptr = &cp->cgn_warn_min[index];
5789  	value = (uint16_t)wvalue;
5790  	*ptr = cpu_to_le16(value);
5791  
5792  	ptr = &cp->cgn_alarm_min[index];
5793  	value = (uint16_t)avalue;
5794  	*ptr = cpu_to_le16(value);
5795  
5796  	lptr = &cp->cgn_latency_min[index];
5797  	if (lvalue) {
5798  		lvalue = (uint32_t)div_u64(latsum, lvalue);
5799  		*lptr = cpu_to_le32(lvalue);
5800  	} else {
5801  		*lptr = 0;
5802  	}
5803  
5804  	/* Collect the bandwidth value into the driver's congesion buffer. */
5805  	mptr = &cp->cgn_bw_min[index];
5806  	*mptr = cpu_to_le16(mvalue);
5807  
5808  	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5809  			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5810  			index, dvalue, wvalue, *lptr, mvalue, avalue);
5811  
5812  	/* Every hour */
5813  	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5814  		/* Record congestion buffer info - every hour
5815  		 * Collapse all minutes into an hour
5816  		 */
5817  		index = ++cp->cgn_index_hour;
5818  		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5819  			cp->cgn_index_hour = 0;
5820  			index = 0;
5821  		}
5822  
5823  		dvalue = 0;
5824  		wvalue = 0;
5825  		lvalue = 0;
5826  		avalue = 0;
5827  		mvalue = 0;
5828  		mbps = 0;
5829  		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5830  			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5831  			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5832  			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5833  			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5834  			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5835  		}
5836  		if (lvalue)		/* Avg of latency averages */
5837  			lvalue /= LPFC_MIN_HOUR;
5838  		if (mbps)		/* Avg of Bandwidth averages */
5839  			mvalue = mbps / LPFC_MIN_HOUR;
5840  
5841  		lptr = &cp->cgn_drvr_hr[index];
5842  		*lptr = cpu_to_le32(dvalue);
5843  		lptr = &cp->cgn_warn_hr[index];
5844  		*lptr = cpu_to_le32(wvalue);
5845  		lptr = &cp->cgn_latency_hr[index];
5846  		*lptr = cpu_to_le32(lvalue);
5847  		mptr = &cp->cgn_bw_hr[index];
5848  		*mptr = cpu_to_le16(mvalue);
5849  		lptr = &cp->cgn_alarm_hr[index];
5850  		*lptr = cpu_to_le32(avalue);
5851  
5852  		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5853  				"2419 Congestion Info - hour "
5854  				"(%d): %d %d %d %d %d\n",
5855  				index, dvalue, wvalue, lvalue, mvalue, avalue);
5856  	}
5857  
5858  	/* Every day */
5859  	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5860  		/* Record congestion buffer info - every hour
5861  		 * Collapse all hours into a day. Rotate days
5862  		 * after LPFC_MAX_CGN_DAYS.
5863  		 */
5864  		index = ++cp->cgn_index_day;
5865  		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5866  			cp->cgn_index_day = 0;
5867  			index = 0;
5868  		}
5869  
5870  		dvalue = 0;
5871  		wvalue = 0;
5872  		lvalue = 0;
5873  		mvalue = 0;
5874  		mbps = 0;
5875  		avalue = 0;
5876  		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5877  			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5878  			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5879  			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5880  			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5881  			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5882  		}
5883  		if (lvalue)		/* Avg of latency averages */
5884  			lvalue /= LPFC_HOUR_DAY;
5885  		if (mbps)		/* Avg of Bandwidth averages */
5886  			mvalue = mbps / LPFC_HOUR_DAY;
5887  
5888  		lptr = &cp->cgn_drvr_day[index];
5889  		*lptr = cpu_to_le32(dvalue);
5890  		lptr = &cp->cgn_warn_day[index];
5891  		*lptr = cpu_to_le32(wvalue);
5892  		lptr = &cp->cgn_latency_day[index];
5893  		*lptr = cpu_to_le32(lvalue);
5894  		mptr = &cp->cgn_bw_day[index];
5895  		*mptr = cpu_to_le16(mvalue);
5896  		lptr = &cp->cgn_alarm_day[index];
5897  		*lptr = cpu_to_le32(avalue);
5898  
5899  		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5900  				"2420 Congestion Info - daily (%d): "
5901  				"%d %d %d %d %d\n",
5902  				index, dvalue, wvalue, lvalue, mvalue, avalue);
5903  	}
5904  
5905  	/* Use the frequency found in the last rcv'ed FPIN */
5906  	value = phba->cgn_fpin_frequency;
5907  	cp->cgn_warn_freq = cpu_to_le16(value);
5908  	cp->cgn_alarm_freq = cpu_to_le16(value);
5909  
5910  	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5911  				     LPFC_CGN_CRC32_SEED);
5912  	cp->cgn_info_crc = cpu_to_le32(lvalue);
5913  
5914  	hrtimer_forward_now(timer, ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC));
5915  
5916  	return HRTIMER_RESTART;
5917  }
5918  
5919  /**
5920   * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5921   * @phba: The Hba for which this call is being executed.
5922   *
5923   * The routine calculates the latency from the beginning of the CMF timer
5924   * interval to the current point in time. It is called from IO completion
5925   * when we exceed our Bandwidth limitation for the time interval.
5926   */
5927  uint32_t
lpfc_calc_cmf_latency(struct lpfc_hba * phba)5928  lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5929  {
5930  	struct timespec64 cmpl_time;
5931  	uint32_t msec = 0;
5932  
5933  	ktime_get_real_ts64(&cmpl_time);
5934  
5935  	/* This routine works on a ms granularity so sec and usec are
5936  	 * converted accordingly.
5937  	 */
5938  	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5939  		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5940  			NSEC_PER_MSEC;
5941  	} else {
5942  		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5943  			msec = (cmpl_time.tv_sec -
5944  				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5945  			msec += ((cmpl_time.tv_nsec -
5946  				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5947  		} else {
5948  			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5949  				1) * MSEC_PER_SEC;
5950  			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5951  				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5952  		}
5953  	}
5954  	return msec;
5955  }
5956  
5957  /**
5958   * lpfc_cmf_timer -  This is the timer function for one congestion
5959   * rate interval.
5960   * @timer: Pointer to the high resolution timer that expired
5961   */
5962  static enum hrtimer_restart
lpfc_cmf_timer(struct hrtimer * timer)5963  lpfc_cmf_timer(struct hrtimer *timer)
5964  {
5965  	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5966  					     cmf_timer);
5967  	struct rx_info_entry entry;
5968  	uint32_t io_cnt;
5969  	uint32_t busy, max_read;
5970  	uint64_t total, rcv, lat, mbpi, extra, cnt;
5971  	int timer_interval = LPFC_CMF_INTERVAL;
5972  	uint32_t ms;
5973  	struct lpfc_cgn_stat *cgs;
5974  	int cpu;
5975  
5976  	/* Only restart the timer if congestion mgmt is on */
5977  	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
5978  	    !phba->cmf_latency.tv_sec) {
5979  		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5980  				"6224 CMF timer exit: %d %lld\n",
5981  				phba->cmf_active_mode,
5982  				(uint64_t)phba->cmf_latency.tv_sec);
5983  		return HRTIMER_NORESTART;
5984  	}
5985  
5986  	/* If pport is not ready yet, just exit and wait for
5987  	 * the next timer cycle to hit.
5988  	 */
5989  	if (!phba->pport)
5990  		goto skip;
5991  
5992  	/* Do not block SCSI IO while in the timer routine since
5993  	 * total_bytes will be cleared
5994  	 */
5995  	atomic_set(&phba->cmf_stop_io, 1);
5996  
5997  	/* First we need to calculate the actual ms between
5998  	 * the last timer interrupt and this one. We ask for
5999  	 * LPFC_CMF_INTERVAL, however the actual time may
6000  	 * vary depending on system overhead.
6001  	 */
6002  	ms = lpfc_calc_cmf_latency(phba);
6003  
6004  
6005  	/* Immediately after we calculate the time since the last
6006  	 * timer interrupt, set the start time for the next
6007  	 * interrupt
6008  	 */
6009  	ktime_get_real_ts64(&phba->cmf_latency);
6010  
6011  	phba->cmf_link_byte_count =
6012  		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
6013  
6014  	/* Collect all the stats from the prior timer interval */
6015  	total = 0;
6016  	io_cnt = 0;
6017  	lat = 0;
6018  	rcv = 0;
6019  	for_each_present_cpu(cpu) {
6020  		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
6021  		total += atomic64_xchg(&cgs->total_bytes, 0);
6022  		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
6023  		lat += atomic64_xchg(&cgs->rx_latency, 0);
6024  		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
6025  	}
6026  
6027  	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
6028  	 * returned from the last CMF_SYNC_WQE issued, from
6029  	 * cmf_last_sync_bw. This will be the target BW for
6030  	 * this next timer interval.
6031  	 */
6032  	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
6033  	    phba->link_state != LPFC_LINK_DOWN &&
6034  	    test_bit(HBA_SETUP, &phba->hba_flag)) {
6035  		mbpi = phba->cmf_last_sync_bw;
6036  		phba->cmf_last_sync_bw = 0;
6037  		extra = 0;
6038  
6039  		/* Calculate any extra bytes needed to account for the
6040  		 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
6041  		 * calculate the adjustment needed for total to reflect
6042  		 * a full LPFC_CMF_INTERVAL.
6043  		 */
6044  		if (ms && ms < LPFC_CMF_INTERVAL) {
6045  			cnt = div_u64(total, ms); /* bytes per ms */
6046  			cnt *= LPFC_CMF_INTERVAL; /* what total should be */
6047  			extra = cnt - total;
6048  		}
6049  		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
6050  	} else {
6051  		/* For Monitor mode or link down we want mbpi
6052  		 * to be the full link speed
6053  		 */
6054  		mbpi = phba->cmf_link_byte_count;
6055  		extra = 0;
6056  	}
6057  	phba->cmf_timer_cnt++;
6058  
6059  	if (io_cnt) {
6060  		/* Update congestion info buffer latency in us */
6061  		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
6062  		atomic64_add(lat, &phba->cgn_latency_evt);
6063  	}
6064  	busy = atomic_xchg(&phba->cmf_busy, 0);
6065  	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
6066  
6067  	/* Calculate MBPI for the next timer interval */
6068  	if (mbpi) {
6069  		if (mbpi > phba->cmf_link_byte_count ||
6070  		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
6071  			mbpi = phba->cmf_link_byte_count;
6072  
6073  		/* Change max_bytes_per_interval to what the prior
6074  		 * CMF_SYNC_WQE cmpl indicated.
6075  		 */
6076  		if (mbpi != phba->cmf_max_bytes_per_interval)
6077  			phba->cmf_max_bytes_per_interval = mbpi;
6078  	}
6079  
6080  	/* Save rxmonitor information for debug */
6081  	if (phba->rx_monitor) {
6082  		entry.total_bytes = total;
6083  		entry.cmf_bytes = total + extra;
6084  		entry.rcv_bytes = rcv;
6085  		entry.cmf_busy = busy;
6086  		entry.cmf_info = phba->cmf_active_info;
6087  		if (io_cnt) {
6088  			entry.avg_io_latency = div_u64(lat, io_cnt);
6089  			entry.avg_io_size = div_u64(rcv, io_cnt);
6090  		} else {
6091  			entry.avg_io_latency = 0;
6092  			entry.avg_io_size = 0;
6093  		}
6094  		entry.max_read_cnt = max_read;
6095  		entry.io_cnt = io_cnt;
6096  		entry.max_bytes_per_interval = mbpi;
6097  		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
6098  			entry.timer_utilization = phba->cmf_last_ts;
6099  		else
6100  			entry.timer_utilization = ms;
6101  		entry.timer_interval = ms;
6102  		phba->cmf_last_ts = 0;
6103  
6104  		lpfc_rx_monitor_record(phba->rx_monitor, &entry);
6105  	}
6106  
6107  	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
6108  		/* If Monitor mode, check if we are oversubscribed
6109  		 * against the full line rate.
6110  		 */
6111  		if (mbpi && total > mbpi)
6112  			atomic_inc(&phba->cgn_driver_evt_cnt);
6113  	}
6114  	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
6115  
6116  	/* Since total_bytes has already been zero'ed, its okay to unblock
6117  	 * after max_bytes_per_interval is setup.
6118  	 */
6119  	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6120  		queue_work(phba->wq, &phba->unblock_request_work);
6121  
6122  	/* SCSI IO is now unblocked */
6123  	atomic_set(&phba->cmf_stop_io, 0);
6124  
6125  skip:
6126  	hrtimer_forward_now(timer,
6127  			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6128  	return HRTIMER_RESTART;
6129  }
6130  
6131  #define trunk_link_status(__idx)\
6132  	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6133  	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6134  		"Link up" : "Link down") : "NA"
6135  /* Did port __idx reported an error */
6136  #define trunk_port_fault(__idx)\
6137  	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6138  	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6139  
6140  static void
lpfc_update_trunk_link_status(struct lpfc_hba * phba,struct lpfc_acqe_fc_la * acqe_fc)6141  lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6142  			      struct lpfc_acqe_fc_la *acqe_fc)
6143  {
6144  	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6145  	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6146  	u8 cnt = 0;
6147  
6148  	phba->sli4_hba.link_state.speed =
6149  		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6150  				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6151  
6152  	phba->sli4_hba.link_state.logical_speed =
6153  				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6154  	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6155  	phba->fc_linkspeed =
6156  		 lpfc_async_link_speed_to_read_top(
6157  				phba,
6158  				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6159  
6160  	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6161  		phba->trunk_link.link0.state =
6162  			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6163  			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6164  		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6165  		cnt++;
6166  	}
6167  	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6168  		phba->trunk_link.link1.state =
6169  			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6170  			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6171  		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6172  		cnt++;
6173  	}
6174  	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6175  		phba->trunk_link.link2.state =
6176  			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6177  			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6178  		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6179  		cnt++;
6180  	}
6181  	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6182  		phba->trunk_link.link3.state =
6183  			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6184  			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6185  		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6186  		cnt++;
6187  	}
6188  
6189  	if (cnt)
6190  		phba->trunk_link.phy_lnk_speed =
6191  			phba->sli4_hba.link_state.logical_speed / (cnt * 1000);
6192  	else
6193  		phba->trunk_link.phy_lnk_speed = LPFC_LINK_SPEED_UNKNOWN;
6194  
6195  	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6196  			"2910 Async FC Trunking Event - Speed:%d\n"
6197  			"\tLogical speed:%d "
6198  			"port0: %s port1: %s port2: %s port3: %s\n",
6199  			phba->sli4_hba.link_state.speed,
6200  			phba->sli4_hba.link_state.logical_speed,
6201  			trunk_link_status(0), trunk_link_status(1),
6202  			trunk_link_status(2), trunk_link_status(3));
6203  
6204  	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6205  		lpfc_cmf_signal_init(phba);
6206  
6207  	if (port_fault)
6208  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6209  				"3202 trunk error:0x%x (%s) seen on port0:%s "
6210  				/*
6211  				 * SLI-4: We have only 0xA error codes
6212  				 * defined as of now. print an appropriate
6213  				 * message in case driver needs to be updated.
6214  				 */
6215  				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6216  				"UNDEFINED. update driver." : trunk_errmsg[err],
6217  				trunk_port_fault(0), trunk_port_fault(1),
6218  				trunk_port_fault(2), trunk_port_fault(3));
6219  }
6220  
6221  
6222  /**
6223   * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6224   * @phba: pointer to lpfc hba data structure.
6225   * @acqe_fc: pointer to the async fc completion queue entry.
6226   *
6227   * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6228   * that the event was received and then issue a read_topology mailbox command so
6229   * that the rest of the driver will treat it the same as SLI3.
6230   **/
6231  static void
lpfc_sli4_async_fc_evt(struct lpfc_hba * phba,struct lpfc_acqe_fc_la * acqe_fc)6232  lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6233  {
6234  	LPFC_MBOXQ_t *pmb;
6235  	MAILBOX_t *mb;
6236  	struct lpfc_mbx_read_top *la;
6237  	char *log_level;
6238  	int rc;
6239  
6240  	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6241  	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6242  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6243  				"2895 Non FC link Event detected.(%d)\n",
6244  				bf_get(lpfc_trailer_type, acqe_fc));
6245  		return;
6246  	}
6247  
6248  	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6249  	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6250  		lpfc_update_trunk_link_status(phba, acqe_fc);
6251  		return;
6252  	}
6253  
6254  	/* Keep the link status for extra SLI4 state machine reference */
6255  	phba->sli4_hba.link_state.speed =
6256  			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6257  				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6258  	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6259  	phba->sli4_hba.link_state.topology =
6260  				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6261  	phba->sli4_hba.link_state.status =
6262  				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6263  	phba->sli4_hba.link_state.type =
6264  				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6265  	phba->sli4_hba.link_state.number =
6266  				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6267  	phba->sli4_hba.link_state.fault =
6268  				bf_get(lpfc_acqe_link_fault, acqe_fc);
6269  	phba->sli4_hba.link_state.link_status =
6270  				bf_get(lpfc_acqe_fc_la_link_status, acqe_fc);
6271  
6272  	/*
6273  	 * Only select attention types need logical speed modification to what
6274  	 * was previously set.
6275  	 */
6276  	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_LINK_UP &&
6277  	    phba->sli4_hba.link_state.status < LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6278  		if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6279  		    LPFC_FC_LA_TYPE_LINK_DOWN)
6280  			phba->sli4_hba.link_state.logical_speed = 0;
6281  		else if (!phba->sli4_hba.conf_trunk)
6282  			phba->sli4_hba.link_state.logical_speed =
6283  				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6284  	}
6285  
6286  	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6287  			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6288  			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6289  			"%dMbps Fault:x%x Link Status:x%x\n",
6290  			phba->sli4_hba.link_state.speed,
6291  			phba->sli4_hba.link_state.topology,
6292  			phba->sli4_hba.link_state.status,
6293  			phba->sli4_hba.link_state.type,
6294  			phba->sli4_hba.link_state.number,
6295  			phba->sli4_hba.link_state.logical_speed,
6296  			phba->sli4_hba.link_state.fault,
6297  			phba->sli4_hba.link_state.link_status);
6298  
6299  	/*
6300  	 * The following attention types are informational only, providing
6301  	 * further details about link status.  Overwrite the value of
6302  	 * link_state.status appropriately.  No further action is required.
6303  	 */
6304  	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6305  		switch (phba->sli4_hba.link_state.status) {
6306  		case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
6307  			log_level = KERN_WARNING;
6308  			phba->sli4_hba.link_state.status =
6309  					LPFC_FC_LA_TYPE_LINK_DOWN;
6310  			break;
6311  		case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
6312  			/*
6313  			 * During bb credit recovery establishment, receiving
6314  			 * this attention type is normal.  Link Up attention
6315  			 * type is expected to occur before this informational
6316  			 * attention type so keep the Link Up status.
6317  			 */
6318  			log_level = KERN_INFO;
6319  			phba->sli4_hba.link_state.status =
6320  					LPFC_FC_LA_TYPE_LINK_UP;
6321  			break;
6322  		default:
6323  			log_level = KERN_INFO;
6324  			break;
6325  		}
6326  		lpfc_log_msg(phba, log_level, LOG_SLI,
6327  			     "2992 Async FC event - Informational Link "
6328  			     "Attention Type x%x\n",
6329  			     bf_get(lpfc_acqe_fc_la_att_type, acqe_fc));
6330  		return;
6331  	}
6332  
6333  	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6334  	if (!pmb) {
6335  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6336  				"2897 The mboxq allocation failed\n");
6337  		return;
6338  	}
6339  	rc = lpfc_mbox_rsrc_prep(phba, pmb);
6340  	if (rc) {
6341  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6342  				"2898 The mboxq prep failed\n");
6343  		goto out_free_pmb;
6344  	}
6345  
6346  	/* Cleanup any outstanding ELS commands */
6347  	lpfc_els_flush_all_cmd(phba);
6348  
6349  	/* Block ELS IOCBs until we have done process link event */
6350  	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6351  
6352  	/* Update link event statistics */
6353  	phba->sli.slistat.link_event++;
6354  
6355  	/* Create lpfc_handle_latt mailbox command from link ACQE */
6356  	lpfc_read_topology(phba, pmb, pmb->ctx_buf);
6357  	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6358  	pmb->vport = phba->pport;
6359  
6360  	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6361  		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6362  
6363  		switch (phba->sli4_hba.link_state.status) {
6364  		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6365  			phba->link_flag |= LS_MDS_LINK_DOWN;
6366  			break;
6367  		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6368  			phba->link_flag |= LS_MDS_LOOPBACK;
6369  			break;
6370  		default:
6371  			break;
6372  		}
6373  
6374  		/* Initialize completion status */
6375  		mb = &pmb->u.mb;
6376  		mb->mbxStatus = MBX_SUCCESS;
6377  
6378  		/* Parse port fault information field */
6379  		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6380  
6381  		/* Parse and translate link attention fields */
6382  		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6383  		la->eventTag = acqe_fc->event_tag;
6384  
6385  		if (phba->sli4_hba.link_state.status ==
6386  		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6387  			bf_set(lpfc_mbx_read_top_att_type, la,
6388  			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6389  		} else {
6390  			bf_set(lpfc_mbx_read_top_att_type, la,
6391  			       LPFC_FC_LA_TYPE_LINK_DOWN);
6392  		}
6393  		/* Invoke the mailbox command callback function */
6394  		lpfc_mbx_cmpl_read_topology(phba, pmb);
6395  
6396  		return;
6397  	}
6398  
6399  	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6400  	if (rc == MBX_NOT_FINISHED)
6401  		goto out_free_pmb;
6402  	return;
6403  
6404  out_free_pmb:
6405  	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
6406  }
6407  
6408  /**
6409   * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6410   * @phba: pointer to lpfc hba data structure.
6411   * @acqe_sli: pointer to the async SLI completion queue entry.
6412   *
6413   * This routine is to handle the SLI4 asynchronous SLI events.
6414   **/
6415  static void
lpfc_sli4_async_sli_evt(struct lpfc_hba * phba,struct lpfc_acqe_sli * acqe_sli)6416  lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6417  {
6418  	char port_name;
6419  	char message[128];
6420  	uint8_t status;
6421  	uint8_t evt_type;
6422  	uint8_t operational = 0;
6423  	struct temp_event temp_event_data;
6424  	struct lpfc_acqe_misconfigured_event *misconfigured;
6425  	struct lpfc_acqe_cgn_signal *cgn_signal;
6426  	struct Scsi_Host  *shost;
6427  	struct lpfc_vport **vports;
6428  	int rc, i, cnt;
6429  
6430  	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6431  
6432  	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6433  			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6434  			"x%08x x%08x x%08x\n", evt_type,
6435  			acqe_sli->event_data1, acqe_sli->event_data2,
6436  			acqe_sli->event_data3, acqe_sli->trailer);
6437  
6438  	port_name = phba->Port[0];
6439  	if (port_name == 0x00)
6440  		port_name = '?'; /* get port name is empty */
6441  
6442  	switch (evt_type) {
6443  	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6444  		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6445  		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6446  		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6447  
6448  		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6449  				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6450  				acqe_sli->event_data1, port_name);
6451  
6452  		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6453  		shost = lpfc_shost_from_vport(phba->pport);
6454  		fc_host_post_vendor_event(shost, fc_get_event_number(),
6455  					  sizeof(temp_event_data),
6456  					  (char *)&temp_event_data,
6457  					  SCSI_NL_VID_TYPE_PCI
6458  					  | PCI_VENDOR_ID_EMULEX);
6459  		break;
6460  	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6461  		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6462  		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6463  		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6464  
6465  		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LDS_EVENT,
6466  				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6467  				acqe_sli->event_data1, port_name);
6468  
6469  		shost = lpfc_shost_from_vport(phba->pport);
6470  		fc_host_post_vendor_event(shost, fc_get_event_number(),
6471  					  sizeof(temp_event_data),
6472  					  (char *)&temp_event_data,
6473  					  SCSI_NL_VID_TYPE_PCI
6474  					  | PCI_VENDOR_ID_EMULEX);
6475  		break;
6476  	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6477  		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6478  					&acqe_sli->event_data1;
6479  
6480  		/* fetch the status for this port */
6481  		switch (phba->sli4_hba.lnk_info.lnk_no) {
6482  		case LPFC_LINK_NUMBER_0:
6483  			status = bf_get(lpfc_sli_misconfigured_port0_state,
6484  					&misconfigured->theEvent);
6485  			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6486  					&misconfigured->theEvent);
6487  			break;
6488  		case LPFC_LINK_NUMBER_1:
6489  			status = bf_get(lpfc_sli_misconfigured_port1_state,
6490  					&misconfigured->theEvent);
6491  			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6492  					&misconfigured->theEvent);
6493  			break;
6494  		case LPFC_LINK_NUMBER_2:
6495  			status = bf_get(lpfc_sli_misconfigured_port2_state,
6496  					&misconfigured->theEvent);
6497  			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6498  					&misconfigured->theEvent);
6499  			break;
6500  		case LPFC_LINK_NUMBER_3:
6501  			status = bf_get(lpfc_sli_misconfigured_port3_state,
6502  					&misconfigured->theEvent);
6503  			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6504  					&misconfigured->theEvent);
6505  			break;
6506  		default:
6507  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6508  					"3296 "
6509  					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6510  					"event: Invalid link %d",
6511  					phba->sli4_hba.lnk_info.lnk_no);
6512  			return;
6513  		}
6514  
6515  		/* Skip if optic state unchanged */
6516  		if (phba->sli4_hba.lnk_info.optic_state == status)
6517  			return;
6518  
6519  		switch (status) {
6520  		case LPFC_SLI_EVENT_STATUS_VALID:
6521  			sprintf(message, "Physical Link is functional");
6522  			break;
6523  		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6524  			sprintf(message, "Optics faulted/incorrectly "
6525  				"installed/not installed - Reseat optics, "
6526  				"if issue not resolved, replace.");
6527  			break;
6528  		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6529  			sprintf(message,
6530  				"Optics of two types installed - Remove one "
6531  				"optic or install matching pair of optics.");
6532  			break;
6533  		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6534  			sprintf(message, "Incompatible optics - Replace with "
6535  				"compatible optics for card to function.");
6536  			break;
6537  		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6538  			sprintf(message, "Unqualified optics - Replace with "
6539  				"Avago optics for Warranty and Technical "
6540  				"Support - Link is%s operational",
6541  				(operational) ? " not" : "");
6542  			break;
6543  		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6544  			sprintf(message, "Uncertified optics - Replace with "
6545  				"Avago-certified optics to enable link "
6546  				"operation - Link is%s operational",
6547  				(operational) ? " not" : "");
6548  			break;
6549  		default:
6550  			/* firmware is reporting a status we don't know about */
6551  			sprintf(message, "Unknown event status x%02x", status);
6552  			break;
6553  		}
6554  
6555  		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6556  		rc = lpfc_sli4_read_config(phba);
6557  		if (rc) {
6558  			phba->lmt = 0;
6559  			lpfc_printf_log(phba, KERN_ERR,
6560  					LOG_TRACE_EVENT,
6561  					"3194 Unable to retrieve supported "
6562  					"speeds, rc = 0x%x\n", rc);
6563  		}
6564  		rc = lpfc_sli4_refresh_params(phba);
6565  		if (rc) {
6566  			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6567  					"3174 Unable to update pls support, "
6568  					"rc x%x\n", rc);
6569  		}
6570  		vports = lpfc_create_vport_work_array(phba);
6571  		if (vports != NULL) {
6572  			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6573  					i++) {
6574  				shost = lpfc_shost_from_vport(vports[i]);
6575  				lpfc_host_supported_speeds_set(shost);
6576  			}
6577  		}
6578  		lpfc_destroy_vport_work_array(phba, vports);
6579  
6580  		phba->sli4_hba.lnk_info.optic_state = status;
6581  		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6582  				"3176 Port Name %c %s\n", port_name, message);
6583  		break;
6584  	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6585  		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6586  				"3192 Remote DPort Test Initiated - "
6587  				"Event Data1:x%08x Event Data2: x%08x\n",
6588  				acqe_sli->event_data1, acqe_sli->event_data2);
6589  		break;
6590  	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6591  		/* Call FW to obtain active parms */
6592  		lpfc_sli4_cgn_parm_chg_evt(phba);
6593  		break;
6594  	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6595  		/* Misconfigured WWN. Reports that the SLI Port is configured
6596  		 * to use FA-WWN, but the attached device doesn’t support it.
6597  		 * Event Data1 - N.A, Event Data2 - N.A
6598  		 * This event only happens on the physical port.
6599  		 */
6600  		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY,
6601  			     "2699 Misconfigured FA-PWWN - Attached device "
6602  			     "does not support FA-PWWN\n");
6603  		phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC;
6604  		memset(phba->pport->fc_portname.u.wwn, 0,
6605  		       sizeof(struct lpfc_name));
6606  		break;
6607  	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6608  		/* EEPROM failure. No driver action is required */
6609  		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6610  			     "2518 EEPROM failure - "
6611  			     "Event Data1: x%08x Event Data2: x%08x\n",
6612  			     acqe_sli->event_data1, acqe_sli->event_data2);
6613  		break;
6614  	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6615  		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6616  			break;
6617  		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6618  					&acqe_sli->event_data1;
6619  		phba->cgn_acqe_cnt++;
6620  
6621  		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6622  		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6623  		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6624  
6625  		/* no threshold for CMF, even 1 signal will trigger an event */
6626  
6627  		/* Alarm overrides warning, so check that first */
6628  		if (cgn_signal->alarm_cnt) {
6629  			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6630  				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6631  				atomic_add(cgn_signal->alarm_cnt,
6632  					   &phba->cgn_sync_alarm_cnt);
6633  			}
6634  		} else if (cnt) {
6635  			/* signal action needs to be taken */
6636  			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6637  			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6638  				/* Keep track of warning cnt for CMF_SYNC_WQE */
6639  				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6640  			}
6641  		}
6642  		break;
6643  	case LPFC_SLI_EVENT_TYPE_RD_SIGNAL:
6644  		/* May be accompanied by a temperature event */
6645  		lpfc_printf_log(phba, KERN_INFO,
6646  				LOG_SLI | LOG_LINK_EVENT | LOG_LDS_EVENT,
6647  				"2902 Remote Degrade Signaling: x%08x x%08x "
6648  				"x%08x\n",
6649  				acqe_sli->event_data1, acqe_sli->event_data2,
6650  				acqe_sli->event_data3);
6651  		break;
6652  	case LPFC_SLI_EVENT_TYPE_RESET_CM_STATS:
6653  		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
6654  				"2905 Reset CM statistics\n");
6655  		lpfc_sli4_async_cmstat_evt(phba);
6656  		break;
6657  	default:
6658  		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6659  				"3193 Unrecognized SLI event, type: 0x%x",
6660  				evt_type);
6661  		break;
6662  	}
6663  }
6664  
6665  /**
6666   * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6667   * @vport: pointer to vport data structure.
6668   *
6669   * This routine is to perform Clear Virtual Link (CVL) on a vport in
6670   * response to a CVL event.
6671   *
6672   * Return the pointer to the ndlp with the vport if successful, otherwise
6673   * return NULL.
6674   **/
6675  static struct lpfc_nodelist *
lpfc_sli4_perform_vport_cvl(struct lpfc_vport * vport)6676  lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6677  {
6678  	struct lpfc_nodelist *ndlp;
6679  	struct Scsi_Host *shost;
6680  	struct lpfc_hba *phba;
6681  
6682  	if (!vport)
6683  		return NULL;
6684  	phba = vport->phba;
6685  	if (!phba)
6686  		return NULL;
6687  	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6688  	if (!ndlp) {
6689  		/* Cannot find existing Fabric ndlp, so allocate a new one */
6690  		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6691  		if (!ndlp)
6692  			return NULL;
6693  		/* Set the node type */
6694  		ndlp->nlp_type |= NLP_FABRIC;
6695  		/* Put ndlp onto node list */
6696  		lpfc_enqueue_node(vport, ndlp);
6697  	}
6698  	if ((phba->pport->port_state < LPFC_FLOGI) &&
6699  		(phba->pport->port_state != LPFC_VPORT_FAILED))
6700  		return NULL;
6701  	/* If virtual link is not yet instantiated ignore CVL */
6702  	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6703  		&& (vport->port_state != LPFC_VPORT_FAILED))
6704  		return NULL;
6705  	shost = lpfc_shost_from_vport(vport);
6706  	if (!shost)
6707  		return NULL;
6708  	lpfc_linkdown_port(vport);
6709  	lpfc_cleanup_pending_mbox(vport);
6710  	set_bit(FC_VPORT_CVL_RCVD, &vport->fc_flag);
6711  
6712  	return ndlp;
6713  }
6714  
6715  /**
6716   * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6717   * @phba: pointer to lpfc hba data structure.
6718   *
6719   * This routine is to perform Clear Virtual Link (CVL) on all vports in
6720   * response to a FCF dead event.
6721   **/
6722  static void
lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba * phba)6723  lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6724  {
6725  	struct lpfc_vport **vports;
6726  	int i;
6727  
6728  	vports = lpfc_create_vport_work_array(phba);
6729  	if (vports)
6730  		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6731  			lpfc_sli4_perform_vport_cvl(vports[i]);
6732  	lpfc_destroy_vport_work_array(phba, vports);
6733  }
6734  
6735  /**
6736   * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6737   * @phba: pointer to lpfc hba data structure.
6738   * @acqe_fip: pointer to the async fcoe completion queue entry.
6739   *
6740   * This routine is to handle the SLI4 asynchronous fcoe event.
6741   **/
6742  static void
lpfc_sli4_async_fip_evt(struct lpfc_hba * phba,struct lpfc_acqe_fip * acqe_fip)6743  lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6744  			struct lpfc_acqe_fip *acqe_fip)
6745  {
6746  	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6747  	int rc;
6748  	struct lpfc_vport *vport;
6749  	struct lpfc_nodelist *ndlp;
6750  	int active_vlink_present;
6751  	struct lpfc_vport **vports;
6752  	int i;
6753  
6754  	phba->fc_eventTag = acqe_fip->event_tag;
6755  	phba->fcoe_eventtag = acqe_fip->event_tag;
6756  	switch (event_type) {
6757  	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6758  	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6759  		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6760  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6761  					"2546 New FCF event, evt_tag:x%x, "
6762  					"index:x%x\n",
6763  					acqe_fip->event_tag,
6764  					acqe_fip->index);
6765  		else
6766  			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6767  					LOG_DISCOVERY,
6768  					"2788 FCF param modified event, "
6769  					"evt_tag:x%x, index:x%x\n",
6770  					acqe_fip->event_tag,
6771  					acqe_fip->index);
6772  		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6773  			/*
6774  			 * During period of FCF discovery, read the FCF
6775  			 * table record indexed by the event to update
6776  			 * FCF roundrobin failover eligible FCF bmask.
6777  			 */
6778  			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6779  					LOG_DISCOVERY,
6780  					"2779 Read FCF (x%x) for updating "
6781  					"roundrobin FCF failover bmask\n",
6782  					acqe_fip->index);
6783  			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6784  		}
6785  
6786  		/* If the FCF discovery is in progress, do nothing. */
6787  		if (test_bit(FCF_TS_INPROG, &phba->hba_flag))
6788  			break;
6789  		spin_lock_irq(&phba->hbalock);
6790  		/* If fast FCF failover rescan event is pending, do nothing */
6791  		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6792  			spin_unlock_irq(&phba->hbalock);
6793  			break;
6794  		}
6795  
6796  		/* If the FCF has been in discovered state, do nothing. */
6797  		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6798  			spin_unlock_irq(&phba->hbalock);
6799  			break;
6800  		}
6801  		spin_unlock_irq(&phba->hbalock);
6802  
6803  		/* Otherwise, scan the entire FCF table and re-discover SAN */
6804  		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6805  				"2770 Start FCF table scan per async FCF "
6806  				"event, evt_tag:x%x, index:x%x\n",
6807  				acqe_fip->event_tag, acqe_fip->index);
6808  		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6809  						     LPFC_FCOE_FCF_GET_FIRST);
6810  		if (rc)
6811  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6812  					"2547 Issue FCF scan read FCF mailbox "
6813  					"command failed (x%x)\n", rc);
6814  		break;
6815  
6816  	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6817  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6818  				"2548 FCF Table full count 0x%x tag 0x%x\n",
6819  				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6820  				acqe_fip->event_tag);
6821  		break;
6822  
6823  	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6824  		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6825  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6826  				"2549 FCF (x%x) disconnected from network, "
6827  				 "tag:x%x\n", acqe_fip->index,
6828  				 acqe_fip->event_tag);
6829  		/*
6830  		 * If we are in the middle of FCF failover process, clear
6831  		 * the corresponding FCF bit in the roundrobin bitmap.
6832  		 */
6833  		spin_lock_irq(&phba->hbalock);
6834  		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6835  		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6836  			spin_unlock_irq(&phba->hbalock);
6837  			/* Update FLOGI FCF failover eligible FCF bmask */
6838  			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6839  			break;
6840  		}
6841  		spin_unlock_irq(&phba->hbalock);
6842  
6843  		/* If the event is not for currently used fcf do nothing */
6844  		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6845  			break;
6846  
6847  		/*
6848  		 * Otherwise, request the port to rediscover the entire FCF
6849  		 * table for a fast recovery from case that the current FCF
6850  		 * is no longer valid as we are not in the middle of FCF
6851  		 * failover process already.
6852  		 */
6853  		spin_lock_irq(&phba->hbalock);
6854  		/* Mark the fast failover process in progress */
6855  		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6856  		spin_unlock_irq(&phba->hbalock);
6857  
6858  		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6859  				"2771 Start FCF fast failover process due to "
6860  				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6861  				"\n", acqe_fip->event_tag, acqe_fip->index);
6862  		rc = lpfc_sli4_redisc_fcf_table(phba);
6863  		if (rc) {
6864  			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6865  					LOG_TRACE_EVENT,
6866  					"2772 Issue FCF rediscover mailbox "
6867  					"command failed, fail through to FCF "
6868  					"dead event\n");
6869  			spin_lock_irq(&phba->hbalock);
6870  			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6871  			spin_unlock_irq(&phba->hbalock);
6872  			/*
6873  			 * Last resort will fail over by treating this
6874  			 * as a link down to FCF registration.
6875  			 */
6876  			lpfc_sli4_fcf_dead_failthrough(phba);
6877  		} else {
6878  			/* Reset FCF roundrobin bmask for new discovery */
6879  			lpfc_sli4_clear_fcf_rr_bmask(phba);
6880  			/*
6881  			 * Handling fast FCF failover to a DEAD FCF event is
6882  			 * considered equalivant to receiving CVL to all vports.
6883  			 */
6884  			lpfc_sli4_perform_all_vport_cvl(phba);
6885  		}
6886  		break;
6887  	case LPFC_FIP_EVENT_TYPE_CVL:
6888  		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6889  		lpfc_printf_log(phba, KERN_ERR,
6890  				LOG_TRACE_EVENT,
6891  			"2718 Clear Virtual Link Received for VPI 0x%x"
6892  			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6893  
6894  		vport = lpfc_find_vport_by_vpid(phba,
6895  						acqe_fip->index);
6896  		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6897  		if (!ndlp)
6898  			break;
6899  		active_vlink_present = 0;
6900  
6901  		vports = lpfc_create_vport_work_array(phba);
6902  		if (vports) {
6903  			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6904  					i++) {
6905  				if (!test_bit(FC_VPORT_CVL_RCVD,
6906  					      &vports[i]->fc_flag) &&
6907  				    vports[i]->port_state > LPFC_FDISC) {
6908  					active_vlink_present = 1;
6909  					break;
6910  				}
6911  			}
6912  			lpfc_destroy_vport_work_array(phba, vports);
6913  		}
6914  
6915  		/*
6916  		 * Don't re-instantiate if vport is marked for deletion.
6917  		 * If we are here first then vport_delete is going to wait
6918  		 * for discovery to complete.
6919  		 */
6920  		if (!test_bit(FC_UNLOADING, &vport->load_flag) &&
6921  		    active_vlink_present) {
6922  			/*
6923  			 * If there are other active VLinks present,
6924  			 * re-instantiate the Vlink using FDISC.
6925  			 */
6926  			mod_timer(&ndlp->nlp_delayfunc,
6927  				  jiffies + msecs_to_jiffies(1000));
6928  			spin_lock_irq(&ndlp->lock);
6929  			ndlp->nlp_flag |= NLP_DELAY_TMO;
6930  			spin_unlock_irq(&ndlp->lock);
6931  			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6932  			vport->port_state = LPFC_FDISC;
6933  		} else {
6934  			/*
6935  			 * Otherwise, we request port to rediscover
6936  			 * the entire FCF table for a fast recovery
6937  			 * from possible case that the current FCF
6938  			 * is no longer valid if we are not already
6939  			 * in the FCF failover process.
6940  			 */
6941  			spin_lock_irq(&phba->hbalock);
6942  			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6943  				spin_unlock_irq(&phba->hbalock);
6944  				break;
6945  			}
6946  			/* Mark the fast failover process in progress */
6947  			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
6948  			spin_unlock_irq(&phba->hbalock);
6949  			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6950  					LOG_DISCOVERY,
6951  					"2773 Start FCF failover per CVL, "
6952  					"evt_tag:x%x\n", acqe_fip->event_tag);
6953  			rc = lpfc_sli4_redisc_fcf_table(phba);
6954  			if (rc) {
6955  				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6956  						LOG_TRACE_EVENT,
6957  						"2774 Issue FCF rediscover "
6958  						"mailbox command failed, "
6959  						"through to CVL event\n");
6960  				spin_lock_irq(&phba->hbalock);
6961  				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
6962  				spin_unlock_irq(&phba->hbalock);
6963  				/*
6964  				 * Last resort will be re-try on the
6965  				 * the current registered FCF entry.
6966  				 */
6967  				lpfc_retry_pport_discovery(phba);
6968  			} else
6969  				/*
6970  				 * Reset FCF roundrobin bmask for new
6971  				 * discovery.
6972  				 */
6973  				lpfc_sli4_clear_fcf_rr_bmask(phba);
6974  		}
6975  		break;
6976  	default:
6977  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6978  				"0288 Unknown FCoE event type 0x%x event tag "
6979  				"0x%x\n", event_type, acqe_fip->event_tag);
6980  		break;
6981  	}
6982  }
6983  
6984  /**
6985   * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
6986   * @phba: pointer to lpfc hba data structure.
6987   * @acqe_dcbx: pointer to the async dcbx completion queue entry.
6988   *
6989   * This routine is to handle the SLI4 asynchronous dcbx event.
6990   **/
6991  static void
lpfc_sli4_async_dcbx_evt(struct lpfc_hba * phba,struct lpfc_acqe_dcbx * acqe_dcbx)6992  lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
6993  			 struct lpfc_acqe_dcbx *acqe_dcbx)
6994  {
6995  	phba->fc_eventTag = acqe_dcbx->event_tag;
6996  	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6997  			"0290 The SLI4 DCBX asynchronous event is not "
6998  			"handled yet\n");
6999  }
7000  
7001  /**
7002   * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
7003   * @phba: pointer to lpfc hba data structure.
7004   * @acqe_grp5: pointer to the async grp5 completion queue entry.
7005   *
7006   * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
7007   * is an asynchronous notified of a logical link speed change.  The Port
7008   * reports the logical link speed in units of 10Mbps.
7009   **/
7010  static void
lpfc_sli4_async_grp5_evt(struct lpfc_hba * phba,struct lpfc_acqe_grp5 * acqe_grp5)7011  lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
7012  			 struct lpfc_acqe_grp5 *acqe_grp5)
7013  {
7014  	uint16_t prev_ll_spd;
7015  
7016  	phba->fc_eventTag = acqe_grp5->event_tag;
7017  	phba->fcoe_eventtag = acqe_grp5->event_tag;
7018  	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
7019  	phba->sli4_hba.link_state.logical_speed =
7020  		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
7021  	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
7022  			"2789 GRP5 Async Event: Updating logical link speed "
7023  			"from %dMbps to %dMbps\n", prev_ll_spd,
7024  			phba->sli4_hba.link_state.logical_speed);
7025  }
7026  
7027  /**
7028   * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
7029   * @phba: pointer to lpfc hba data structure.
7030   *
7031   * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
7032   * is an asynchronous notification of a request to reset CM stats.
7033   **/
7034  static void
lpfc_sli4_async_cmstat_evt(struct lpfc_hba * phba)7035  lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
7036  {
7037  	if (!phba->cgn_i)
7038  		return;
7039  	lpfc_init_congestion_stat(phba);
7040  }
7041  
7042  /**
7043   * lpfc_cgn_params_val - Validate FW congestion parameters.
7044   * @phba: pointer to lpfc hba data structure.
7045   * @p_cfg_param: pointer to FW provided congestion parameters.
7046   *
7047   * This routine validates the congestion parameters passed
7048   * by the FW to the driver via an ACQE event.
7049   **/
7050  static void
lpfc_cgn_params_val(struct lpfc_hba * phba,struct lpfc_cgn_param * p_cfg_param)7051  lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
7052  {
7053  	spin_lock_irq(&phba->hbalock);
7054  
7055  	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
7056  			     LPFC_CFG_MONITOR)) {
7057  		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
7058  				"6225 CMF mode param out of range: %d\n",
7059  				 p_cfg_param->cgn_param_mode);
7060  		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
7061  	}
7062  
7063  	spin_unlock_irq(&phba->hbalock);
7064  }
7065  
7066  static const char * const lpfc_cmf_mode_to_str[] = {
7067  	"OFF",
7068  	"MANAGED",
7069  	"MONITOR",
7070  };
7071  
7072  /**
7073   * lpfc_cgn_params_parse - Process a FW cong parm change event
7074   * @phba: pointer to lpfc hba data structure.
7075   * @p_cgn_param: pointer to a data buffer with the FW cong params.
7076   * @len: the size of pdata in bytes.
7077   *
7078   * This routine validates the congestion management buffer signature
7079   * from the FW, validates the contents and makes corrections for
7080   * valid, in-range values.  If the signature magic is correct and
7081   * after parameter validation, the contents are copied to the driver's
7082   * @phba structure. If the magic is incorrect, an error message is
7083   * logged.
7084   **/
7085  static void
lpfc_cgn_params_parse(struct lpfc_hba * phba,struct lpfc_cgn_param * p_cgn_param,uint32_t len)7086  lpfc_cgn_params_parse(struct lpfc_hba *phba,
7087  		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
7088  {
7089  	struct lpfc_cgn_info *cp;
7090  	uint32_t crc, oldmode;
7091  	char acr_string[4] = {0};
7092  
7093  	/* Make sure the FW has encoded the correct magic number to
7094  	 * validate the congestion parameter in FW memory.
7095  	 */
7096  	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
7097  		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7098  				"4668 FW cgn parm buffer data: "
7099  				"magic 0x%x version %d mode %d "
7100  				"level0 %d level1 %d "
7101  				"level2 %d byte13 %d "
7102  				"byte14 %d byte15 %d "
7103  				"byte11 %d byte12 %d activeMode %d\n",
7104  				p_cgn_param->cgn_param_magic,
7105  				p_cgn_param->cgn_param_version,
7106  				p_cgn_param->cgn_param_mode,
7107  				p_cgn_param->cgn_param_level0,
7108  				p_cgn_param->cgn_param_level1,
7109  				p_cgn_param->cgn_param_level2,
7110  				p_cgn_param->byte13,
7111  				p_cgn_param->byte14,
7112  				p_cgn_param->byte15,
7113  				p_cgn_param->byte11,
7114  				p_cgn_param->byte12,
7115  				phba->cmf_active_mode);
7116  
7117  		oldmode = phba->cmf_active_mode;
7118  
7119  		/* Any parameters out of range are corrected to defaults
7120  		 * by this routine.  No need to fail.
7121  		 */
7122  		lpfc_cgn_params_val(phba, p_cgn_param);
7123  
7124  		/* Parameters are verified, move them into driver storage */
7125  		spin_lock_irq(&phba->hbalock);
7126  		memcpy(&phba->cgn_p, p_cgn_param,
7127  		       sizeof(struct lpfc_cgn_param));
7128  
7129  		/* Update parameters in congestion info buffer now */
7130  		if (phba->cgn_i) {
7131  			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
7132  			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
7133  			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
7134  			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
7135  			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
7136  			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
7137  						  LPFC_CGN_CRC32_SEED);
7138  			cp->cgn_info_crc = cpu_to_le32(crc);
7139  		}
7140  		spin_unlock_irq(&phba->hbalock);
7141  
7142  		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
7143  
7144  		switch (oldmode) {
7145  		case LPFC_CFG_OFF:
7146  			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
7147  				/* Turning CMF on */
7148  				lpfc_cmf_start(phba);
7149  
7150  				if (phba->link_state >= LPFC_LINK_UP) {
7151  					phba->cgn_reg_fpin =
7152  						phba->cgn_init_reg_fpin;
7153  					phba->cgn_reg_signal =
7154  						phba->cgn_init_reg_signal;
7155  					lpfc_issue_els_edc(phba->pport, 0);
7156  				}
7157  			}
7158  			break;
7159  		case LPFC_CFG_MANAGED:
7160  			switch (phba->cgn_p.cgn_param_mode) {
7161  			case LPFC_CFG_OFF:
7162  				/* Turning CMF off */
7163  				lpfc_cmf_stop(phba);
7164  				if (phba->link_state >= LPFC_LINK_UP)
7165  					lpfc_issue_els_edc(phba->pport, 0);
7166  				break;
7167  			case LPFC_CFG_MONITOR:
7168  				phba->cmf_max_bytes_per_interval =
7169  					phba->cmf_link_byte_count;
7170  
7171  				/* Resume blocked IO - unblock on workqueue */
7172  				queue_work(phba->wq,
7173  					   &phba->unblock_request_work);
7174  				break;
7175  			}
7176  			break;
7177  		case LPFC_CFG_MONITOR:
7178  			switch (phba->cgn_p.cgn_param_mode) {
7179  			case LPFC_CFG_OFF:
7180  				/* Turning CMF off */
7181  				lpfc_cmf_stop(phba);
7182  				if (phba->link_state >= LPFC_LINK_UP)
7183  					lpfc_issue_els_edc(phba->pport, 0);
7184  				break;
7185  			case LPFC_CFG_MANAGED:
7186  				lpfc_cmf_signal_init(phba);
7187  				break;
7188  			}
7189  			break;
7190  		}
7191  		if (oldmode != LPFC_CFG_OFF ||
7192  		    oldmode != phba->cgn_p.cgn_param_mode) {
7193  			if (phba->cgn_p.cgn_param_mode == LPFC_CFG_MANAGED)
7194  				scnprintf(acr_string, sizeof(acr_string), "%u",
7195  					  phba->cgn_p.cgn_param_level0);
7196  			else
7197  				scnprintf(acr_string, sizeof(acr_string), "NA");
7198  
7199  			dev_info(&phba->pcidev->dev, "%d: "
7200  				 "4663 CMF: Mode %s acr %s\n",
7201  				 phba->brd_no,
7202  				 lpfc_cmf_mode_to_str
7203  				 [phba->cgn_p.cgn_param_mode],
7204  				 acr_string);
7205  		}
7206  	} else {
7207  		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7208  				"4669 FW cgn parm buf wrong magic 0x%x "
7209  				"version %d\n", p_cgn_param->cgn_param_magic,
7210  				p_cgn_param->cgn_param_version);
7211  	}
7212  }
7213  
7214  /**
7215   * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7216   * @phba: pointer to lpfc hba data structure.
7217   *
7218   * This routine issues a read_object mailbox command to
7219   * get the congestion management parameters from the FW
7220   * parses it and updates the driver maintained values.
7221   *
7222   * Returns
7223   *  0     if the object was empty
7224   *  -Eval if an error was encountered
7225   *  Count if bytes were read from object
7226   **/
7227  int
lpfc_sli4_cgn_params_read(struct lpfc_hba * phba)7228  lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7229  {
7230  	int ret = 0;
7231  	struct lpfc_cgn_param *p_cgn_param = NULL;
7232  	u32 *pdata = NULL;
7233  	u32 len = 0;
7234  
7235  	/* Find out if the FW has a new set of congestion parameters. */
7236  	len = sizeof(struct lpfc_cgn_param);
7237  	pdata = kzalloc(len, GFP_KERNEL);
7238  	if (!pdata)
7239  		return -ENOMEM;
7240  	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7241  			       pdata, len);
7242  
7243  	/* 0 means no data.  A negative means error.  A positive means
7244  	 * bytes were copied.
7245  	 */
7246  	if (!ret) {
7247  		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7248  				"4670 CGN RD OBJ returns no data\n");
7249  		goto rd_obj_err;
7250  	} else if (ret < 0) {
7251  		/* Some error.  Just exit and return it to the caller.*/
7252  		goto rd_obj_err;
7253  	}
7254  
7255  	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7256  			"6234 READ CGN PARAMS Successful %d\n", len);
7257  
7258  	/* Parse data pointer over len and update the phba congestion
7259  	 * parameters with values passed back.  The receive rate values
7260  	 * may have been altered in FW, but take no action here.
7261  	 */
7262  	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7263  	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7264  
7265   rd_obj_err:
7266  	kfree(pdata);
7267  	return ret;
7268  }
7269  
7270  /**
7271   * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7272   * @phba: pointer to lpfc hba data structure.
7273   *
7274   * The FW generated Async ACQE SLI event calls this routine when
7275   * the event type is an SLI Internal Port Event and the Event Code
7276   * indicates a change to the FW maintained congestion parameters.
7277   *
7278   * This routine executes a Read_Object mailbox call to obtain the
7279   * current congestion parameters maintained in FW and corrects
7280   * the driver's active congestion parameters.
7281   *
7282   * The acqe event is not passed because there is no further data
7283   * required.
7284   *
7285   * Returns nonzero error if event processing encountered an error.
7286   * Zero otherwise for success.
7287   **/
7288  static int
lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba * phba)7289  lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7290  {
7291  	int ret = 0;
7292  
7293  	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7294  		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7295  				"4664 Cgn Evt when E2E off. Drop event\n");
7296  		return -EACCES;
7297  	}
7298  
7299  	/* If the event is claiming an empty object, it's ok.  A write
7300  	 * could have cleared it.  Only error is a negative return
7301  	 * status.
7302  	 */
7303  	ret = lpfc_sli4_cgn_params_read(phba);
7304  	if (ret < 0) {
7305  		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7306  				"4667 Error reading Cgn Params (%d)\n",
7307  				ret);
7308  	} else if (!ret) {
7309  		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7310  				"4673 CGN Event empty object.\n");
7311  	}
7312  	return ret;
7313  }
7314  
7315  /**
7316   * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7317   * @phba: pointer to lpfc hba data structure.
7318   *
7319   * This routine is invoked by the worker thread to process all the pending
7320   * SLI4 asynchronous events.
7321   **/
lpfc_sli4_async_event_proc(struct lpfc_hba * phba)7322  void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7323  {
7324  	struct lpfc_cq_event *cq_event;
7325  	unsigned long iflags;
7326  
7327  	/* First, declare the async event has been handled */
7328  	clear_bit(ASYNC_EVENT, &phba->hba_flag);
7329  
7330  	/* Now, handle all the async events */
7331  	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7332  	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7333  		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7334  				 cq_event, struct lpfc_cq_event, list);
7335  		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7336  				       iflags);
7337  
7338  		/* Process the asynchronous event */
7339  		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7340  		case LPFC_TRAILER_CODE_LINK:
7341  			lpfc_sli4_async_link_evt(phba,
7342  						 &cq_event->cqe.acqe_link);
7343  			break;
7344  		case LPFC_TRAILER_CODE_FCOE:
7345  			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7346  			break;
7347  		case LPFC_TRAILER_CODE_DCBX:
7348  			lpfc_sli4_async_dcbx_evt(phba,
7349  						 &cq_event->cqe.acqe_dcbx);
7350  			break;
7351  		case LPFC_TRAILER_CODE_GRP5:
7352  			lpfc_sli4_async_grp5_evt(phba,
7353  						 &cq_event->cqe.acqe_grp5);
7354  			break;
7355  		case LPFC_TRAILER_CODE_FC:
7356  			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7357  			break;
7358  		case LPFC_TRAILER_CODE_SLI:
7359  			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7360  			break;
7361  		default:
7362  			lpfc_printf_log(phba, KERN_ERR,
7363  					LOG_TRACE_EVENT,
7364  					"1804 Invalid asynchronous event code: "
7365  					"x%x\n", bf_get(lpfc_trailer_code,
7366  					&cq_event->cqe.mcqe_cmpl));
7367  			break;
7368  		}
7369  
7370  		/* Free the completion event processed to the free pool */
7371  		lpfc_sli4_cq_event_release(phba, cq_event);
7372  		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7373  	}
7374  	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7375  }
7376  
7377  /**
7378   * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7379   * @phba: pointer to lpfc hba data structure.
7380   *
7381   * This routine is invoked by the worker thread to process FCF table
7382   * rediscovery pending completion event.
7383   **/
lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba * phba)7384  void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7385  {
7386  	int rc;
7387  
7388  	spin_lock_irq(&phba->hbalock);
7389  	/* Clear FCF rediscovery timeout event */
7390  	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7391  	/* Clear driver fast failover FCF record flag */
7392  	phba->fcf.failover_rec.flag = 0;
7393  	/* Set state for FCF fast failover */
7394  	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7395  	spin_unlock_irq(&phba->hbalock);
7396  
7397  	/* Scan FCF table from the first entry to re-discover SAN */
7398  	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7399  			"2777 Start post-quiescent FCF table scan\n");
7400  	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7401  	if (rc)
7402  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7403  				"2747 Issue FCF scan read FCF mailbox "
7404  				"command failed 0x%x\n", rc);
7405  }
7406  
7407  /**
7408   * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7409   * @phba: pointer to lpfc hba data structure.
7410   * @dev_grp: The HBA PCI-Device group number.
7411   *
7412   * This routine is invoked to set up the per HBA PCI-Device group function
7413   * API jump table entries.
7414   *
7415   * Return: 0 if success, otherwise -ENODEV
7416   **/
7417  int
lpfc_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)7418  lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7419  {
7420  	int rc;
7421  
7422  	/* Set up lpfc PCI-device group */
7423  	phba->pci_dev_grp = dev_grp;
7424  
7425  	/* The LPFC_PCI_DEV_OC uses SLI4 */
7426  	if (dev_grp == LPFC_PCI_DEV_OC)
7427  		phba->sli_rev = LPFC_SLI_REV4;
7428  
7429  	/* Set up device INIT API function jump table */
7430  	rc = lpfc_init_api_table_setup(phba, dev_grp);
7431  	if (rc)
7432  		return -ENODEV;
7433  	/* Set up SCSI API function jump table */
7434  	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7435  	if (rc)
7436  		return -ENODEV;
7437  	/* Set up SLI API function jump table */
7438  	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7439  	if (rc)
7440  		return -ENODEV;
7441  	/* Set up MBOX API function jump table */
7442  	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7443  	if (rc)
7444  		return -ENODEV;
7445  
7446  	return 0;
7447  }
7448  
7449  /**
7450   * lpfc_log_intr_mode - Log the active interrupt mode
7451   * @phba: pointer to lpfc hba data structure.
7452   * @intr_mode: active interrupt mode adopted.
7453   *
7454   * This routine it invoked to log the currently used active interrupt mode
7455   * to the device.
7456   **/
lpfc_log_intr_mode(struct lpfc_hba * phba,uint32_t intr_mode)7457  static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7458  {
7459  	switch (intr_mode) {
7460  	case 0:
7461  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7462  				"0470 Enable INTx interrupt mode.\n");
7463  		break;
7464  	case 1:
7465  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7466  				"0481 Enabled MSI interrupt mode.\n");
7467  		break;
7468  	case 2:
7469  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7470  				"0480 Enabled MSI-X interrupt mode.\n");
7471  		break;
7472  	default:
7473  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7474  				"0482 Illegal interrupt mode.\n");
7475  		break;
7476  	}
7477  	return;
7478  }
7479  
7480  /**
7481   * lpfc_enable_pci_dev - Enable a generic PCI device.
7482   * @phba: pointer to lpfc hba data structure.
7483   *
7484   * This routine is invoked to enable the PCI device that is common to all
7485   * PCI devices.
7486   *
7487   * Return codes
7488   * 	0 - successful
7489   * 	other values - error
7490   **/
7491  static int
lpfc_enable_pci_dev(struct lpfc_hba * phba)7492  lpfc_enable_pci_dev(struct lpfc_hba *phba)
7493  {
7494  	struct pci_dev *pdev;
7495  
7496  	/* Obtain PCI device reference */
7497  	if (!phba->pcidev)
7498  		goto out_error;
7499  	else
7500  		pdev = phba->pcidev;
7501  	/* Enable PCI device */
7502  	if (pci_enable_device_mem(pdev))
7503  		goto out_error;
7504  	/* Request PCI resource for the device */
7505  	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7506  		goto out_disable_device;
7507  	/* Set up device as PCI master and save state for EEH */
7508  	pci_set_master(pdev);
7509  	pci_try_set_mwi(pdev);
7510  	pci_save_state(pdev);
7511  
7512  	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7513  	if (pci_is_pcie(pdev))
7514  		pdev->needs_freset = 1;
7515  
7516  	return 0;
7517  
7518  out_disable_device:
7519  	pci_disable_device(pdev);
7520  out_error:
7521  	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7522  			"1401 Failed to enable pci device\n");
7523  	return -ENODEV;
7524  }
7525  
7526  /**
7527   * lpfc_disable_pci_dev - Disable a generic PCI device.
7528   * @phba: pointer to lpfc hba data structure.
7529   *
7530   * This routine is invoked to disable the PCI device that is common to all
7531   * PCI devices.
7532   **/
7533  static void
lpfc_disable_pci_dev(struct lpfc_hba * phba)7534  lpfc_disable_pci_dev(struct lpfc_hba *phba)
7535  {
7536  	struct pci_dev *pdev;
7537  
7538  	/* Obtain PCI device reference */
7539  	if (!phba->pcidev)
7540  		return;
7541  	else
7542  		pdev = phba->pcidev;
7543  	/* Release PCI resource and disable PCI device */
7544  	pci_release_mem_regions(pdev);
7545  	pci_disable_device(pdev);
7546  
7547  	return;
7548  }
7549  
7550  /**
7551   * lpfc_reset_hba - Reset a hba
7552   * @phba: pointer to lpfc hba data structure.
7553   *
7554   * This routine is invoked to reset a hba device. It brings the HBA
7555   * offline, performs a board restart, and then brings the board back
7556   * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7557   * on outstanding mailbox commands.
7558   **/
7559  void
lpfc_reset_hba(struct lpfc_hba * phba)7560  lpfc_reset_hba(struct lpfc_hba *phba)
7561  {
7562  	int rc = 0;
7563  
7564  	/* If resets are disabled then set error state and return. */
7565  	if (!phba->cfg_enable_hba_reset) {
7566  		phba->link_state = LPFC_HBA_ERROR;
7567  		return;
7568  	}
7569  
7570  	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7571  	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7572  		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7573  	} else {
7574  		if (test_bit(MBX_TMO_ERR, &phba->bit_flags)) {
7575  			/* Perform a PCI function reset to start from clean */
7576  			rc = lpfc_pci_function_reset(phba);
7577  			lpfc_els_flush_all_cmd(phba);
7578  		}
7579  		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7580  		lpfc_sli_flush_io_rings(phba);
7581  	}
7582  	lpfc_offline(phba);
7583  	clear_bit(MBX_TMO_ERR, &phba->bit_flags);
7584  	if (unlikely(rc)) {
7585  		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7586  				"8888 PCI function reset failed rc %x\n",
7587  				rc);
7588  	} else {
7589  		lpfc_sli_brdrestart(phba);
7590  		lpfc_online(phba);
7591  		lpfc_unblock_mgmt_io(phba);
7592  	}
7593  }
7594  
7595  /**
7596   * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7597   * @phba: pointer to lpfc hba data structure.
7598   *
7599   * This function enables the PCI SR-IOV virtual functions to a physical
7600   * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7601   * enable the number of virtual functions to the physical function. As
7602   * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7603   * API call does not considered as an error condition for most of the device.
7604   **/
7605  uint16_t
lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba * phba)7606  lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7607  {
7608  	struct pci_dev *pdev = phba->pcidev;
7609  	uint16_t nr_virtfn;
7610  	int pos;
7611  
7612  	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7613  	if (pos == 0)
7614  		return 0;
7615  
7616  	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7617  	return nr_virtfn;
7618  }
7619  
7620  /**
7621   * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7622   * @phba: pointer to lpfc hba data structure.
7623   * @nr_vfn: number of virtual functions to be enabled.
7624   *
7625   * This function enables the PCI SR-IOV virtual functions to a physical
7626   * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7627   * enable the number of virtual functions to the physical function. As
7628   * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7629   * API call does not considered as an error condition for most of the device.
7630   **/
7631  int
lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba * phba,int nr_vfn)7632  lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7633  {
7634  	struct pci_dev *pdev = phba->pcidev;
7635  	uint16_t max_nr_vfn;
7636  	int rc;
7637  
7638  	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7639  	if (nr_vfn > max_nr_vfn) {
7640  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7641  				"3057 Requested vfs (%d) greater than "
7642  				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7643  		return -EINVAL;
7644  	}
7645  
7646  	rc = pci_enable_sriov(pdev, nr_vfn);
7647  	if (rc) {
7648  		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7649  				"2806 Failed to enable sriov on this device "
7650  				"with vfn number nr_vf:%d, rc:%d\n",
7651  				nr_vfn, rc);
7652  	} else
7653  		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7654  				"2807 Successful enable sriov on this device "
7655  				"with vfn number nr_vf:%d\n", nr_vfn);
7656  	return rc;
7657  }
7658  
7659  static void
lpfc_unblock_requests_work(struct work_struct * work)7660  lpfc_unblock_requests_work(struct work_struct *work)
7661  {
7662  	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7663  					     unblock_request_work);
7664  
7665  	lpfc_unblock_requests(phba);
7666  }
7667  
7668  /**
7669   * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7670   * @phba: pointer to lpfc hba data structure.
7671   *
7672   * This routine is invoked to set up the driver internal resources before the
7673   * device specific resource setup to support the HBA device it attached to.
7674   *
7675   * Return codes
7676   *	0 - successful
7677   *	other values - error
7678   **/
7679  static int
lpfc_setup_driver_resource_phase1(struct lpfc_hba * phba)7680  lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7681  {
7682  	struct lpfc_sli *psli = &phba->sli;
7683  
7684  	/*
7685  	 * Driver resources common to all SLI revisions
7686  	 */
7687  	atomic_set(&phba->fast_event_count, 0);
7688  	atomic_set(&phba->dbg_log_idx, 0);
7689  	atomic_set(&phba->dbg_log_cnt, 0);
7690  	atomic_set(&phba->dbg_log_dmping, 0);
7691  	spin_lock_init(&phba->hbalock);
7692  
7693  	/* Initialize port_list spinlock */
7694  	spin_lock_init(&phba->port_list_lock);
7695  	INIT_LIST_HEAD(&phba->port_list);
7696  
7697  	INIT_LIST_HEAD(&phba->work_list);
7698  
7699  	/* Initialize the wait queue head for the kernel thread */
7700  	init_waitqueue_head(&phba->work_waitq);
7701  
7702  	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7703  			"1403 Protocols supported %s %s %s\n",
7704  			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7705  				"SCSI" : " "),
7706  			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7707  				"NVME" : " "),
7708  			(phba->nvmet_support ? "NVMET" : " "));
7709  
7710  	/* ras_fwlog state */
7711  	spin_lock_init(&phba->ras_fwlog_lock);
7712  
7713  	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7714  	spin_lock_init(&phba->scsi_buf_list_get_lock);
7715  	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7716  	spin_lock_init(&phba->scsi_buf_list_put_lock);
7717  	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7718  
7719  	/* Initialize the fabric iocb list */
7720  	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7721  
7722  	/* Initialize list to save ELS buffers */
7723  	INIT_LIST_HEAD(&phba->elsbuf);
7724  
7725  	/* Initialize FCF connection rec list */
7726  	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7727  
7728  	/* Initialize OAS configuration list */
7729  	spin_lock_init(&phba->devicelock);
7730  	INIT_LIST_HEAD(&phba->luns);
7731  
7732  	/* MBOX heartbeat timer */
7733  	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7734  	/* Fabric block timer */
7735  	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7736  	/* EA polling mode timer */
7737  	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7738  	/* Heartbeat timer */
7739  	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7740  
7741  	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7742  
7743  	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7744  			  lpfc_idle_stat_delay_work);
7745  	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7746  	return 0;
7747  }
7748  
7749  /**
7750   * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7751   * @phba: pointer to lpfc hba data structure.
7752   *
7753   * This routine is invoked to set up the driver internal resources specific to
7754   * support the SLI-3 HBA device it attached to.
7755   *
7756   * Return codes
7757   * 0 - successful
7758   * other values - error
7759   **/
7760  static int
lpfc_sli_driver_resource_setup(struct lpfc_hba * phba)7761  lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7762  {
7763  	int rc, entry_sz;
7764  
7765  	/*
7766  	 * Initialize timers used by driver
7767  	 */
7768  
7769  	/* FCP polling mode timer */
7770  	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7771  
7772  	/* Host attention work mask setup */
7773  	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7774  	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7775  
7776  	/* Get all the module params for configuring this host */
7777  	lpfc_get_cfgparam(phba);
7778  	/* Set up phase-1 common device driver resources */
7779  
7780  	rc = lpfc_setup_driver_resource_phase1(phba);
7781  	if (rc)
7782  		return -ENODEV;
7783  
7784  	if (!phba->sli.sli3_ring)
7785  		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7786  					      sizeof(struct lpfc_sli_ring),
7787  					      GFP_KERNEL);
7788  	if (!phba->sli.sli3_ring)
7789  		return -ENOMEM;
7790  
7791  	/*
7792  	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7793  	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7794  	 */
7795  
7796  	if (phba->sli_rev == LPFC_SLI_REV4)
7797  		entry_sz = sizeof(struct sli4_sge);
7798  	else
7799  		entry_sz = sizeof(struct ulp_bde64);
7800  
7801  	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7802  	if (phba->cfg_enable_bg) {
7803  		/*
7804  		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7805  		 * the FCP rsp, and a BDE for each. Sice we have no control
7806  		 * over how many protection data segments the SCSI Layer
7807  		 * will hand us (ie: there could be one for every block
7808  		 * in the IO), we just allocate enough BDEs to accomidate
7809  		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7810  		 * minimize the risk of running out.
7811  		 */
7812  		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7813  			sizeof(struct fcp_rsp) +
7814  			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7815  
7816  		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7817  			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7818  
7819  		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7820  		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7821  	} else {
7822  		/*
7823  		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7824  		 * the FCP rsp, a BDE for each, and a BDE for up to
7825  		 * cfg_sg_seg_cnt data segments.
7826  		 */
7827  		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7828  			sizeof(struct fcp_rsp) +
7829  			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7830  
7831  		/* Total BDEs in BPL for scsi_sg_list */
7832  		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7833  	}
7834  
7835  	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7836  			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7837  			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7838  			phba->cfg_total_seg_cnt);
7839  
7840  	phba->max_vpi = LPFC_MAX_VPI;
7841  	/* This will be set to correct value after config_port mbox */
7842  	phba->max_vports = 0;
7843  
7844  	/*
7845  	 * Initialize the SLI Layer to run with lpfc HBAs.
7846  	 */
7847  	lpfc_sli_setup(phba);
7848  	lpfc_sli_queue_init(phba);
7849  
7850  	/* Allocate device driver memory */
7851  	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7852  		return -ENOMEM;
7853  
7854  	phba->lpfc_sg_dma_buf_pool =
7855  		dma_pool_create("lpfc_sg_dma_buf_pool",
7856  				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7857  				BPL_ALIGN_SZ, 0);
7858  
7859  	if (!phba->lpfc_sg_dma_buf_pool)
7860  		goto fail_free_mem;
7861  
7862  	phba->lpfc_cmd_rsp_buf_pool =
7863  			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7864  					&phba->pcidev->dev,
7865  					sizeof(struct fcp_cmnd) +
7866  					sizeof(struct fcp_rsp),
7867  					BPL_ALIGN_SZ, 0);
7868  
7869  	if (!phba->lpfc_cmd_rsp_buf_pool)
7870  		goto fail_free_dma_buf_pool;
7871  
7872  	/*
7873  	 * Enable sr-iov virtual functions if supported and configured
7874  	 * through the module parameter.
7875  	 */
7876  	if (phba->cfg_sriov_nr_virtfn > 0) {
7877  		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7878  						 phba->cfg_sriov_nr_virtfn);
7879  		if (rc) {
7880  			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7881  					"2808 Requested number of SR-IOV "
7882  					"virtual functions (%d) is not "
7883  					"supported\n",
7884  					phba->cfg_sriov_nr_virtfn);
7885  			phba->cfg_sriov_nr_virtfn = 0;
7886  		}
7887  	}
7888  
7889  	return 0;
7890  
7891  fail_free_dma_buf_pool:
7892  	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7893  	phba->lpfc_sg_dma_buf_pool = NULL;
7894  fail_free_mem:
7895  	lpfc_mem_free(phba);
7896  	return -ENOMEM;
7897  }
7898  
7899  /**
7900   * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7901   * @phba: pointer to lpfc hba data structure.
7902   *
7903   * This routine is invoked to unset the driver internal resources set up
7904   * specific for supporting the SLI-3 HBA device it attached to.
7905   **/
7906  static void
lpfc_sli_driver_resource_unset(struct lpfc_hba * phba)7907  lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7908  {
7909  	/* Free device driver memory allocated */
7910  	lpfc_mem_free_all(phba);
7911  
7912  	return;
7913  }
7914  
7915  /**
7916   * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7917   * @phba: pointer to lpfc hba data structure.
7918   *
7919   * This routine is invoked to set up the driver internal resources specific to
7920   * support the SLI-4 HBA device it attached to.
7921   *
7922   * Return codes
7923   * 	0 - successful
7924   * 	other values - error
7925   **/
7926  static int
lpfc_sli4_driver_resource_setup(struct lpfc_hba * phba)7927  lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7928  {
7929  	LPFC_MBOXQ_t *mboxq;
7930  	MAILBOX_t *mb;
7931  	int rc, i, max_buf_size;
7932  	int longs;
7933  	int extra;
7934  	uint64_t wwn;
7935  	u32 if_type;
7936  	u32 if_fam;
7937  
7938  	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7939  	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7940  	phba->sli4_hba.curr_disp_cpu = 0;
7941  
7942  	/* Get all the module params for configuring this host */
7943  	lpfc_get_cfgparam(phba);
7944  
7945  	/* Set up phase-1 common device driver resources */
7946  	rc = lpfc_setup_driver_resource_phase1(phba);
7947  	if (rc)
7948  		return -ENODEV;
7949  
7950  	/* Before proceed, wait for POST done and device ready */
7951  	rc = lpfc_sli4_post_status_check(phba);
7952  	if (rc)
7953  		return -ENODEV;
7954  
7955  	/* Allocate all driver workqueues here */
7956  
7957  	/* The lpfc_wq workqueue for deferred irq use */
7958  	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
7959  	if (!phba->wq)
7960  		return -ENOMEM;
7961  
7962  	/*
7963  	 * Initialize timers used by driver
7964  	 */
7965  
7966  	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
7967  
7968  	/* FCF rediscover timer */
7969  	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
7970  
7971  	/* CMF congestion timer */
7972  	hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7973  	phba->cmf_timer.function = lpfc_cmf_timer;
7974  	/* CMF 1 minute stats collection timer */
7975  	hrtimer_init(&phba->cmf_stats_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7976  	phba->cmf_stats_timer.function = lpfc_cmf_stats_timer;
7977  
7978  	/*
7979  	 * Control structure for handling external multi-buffer mailbox
7980  	 * command pass-through.
7981  	 */
7982  	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
7983  		sizeof(struct lpfc_mbox_ext_buf_ctx));
7984  	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
7985  
7986  	phba->max_vpi = LPFC_MAX_VPI;
7987  
7988  	/* This will be set to correct value after the read_config mbox */
7989  	phba->max_vports = 0;
7990  
7991  	/* Program the default value of vlan_id and fc_map */
7992  	phba->valid_vlan = 0;
7993  	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
7994  	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
7995  	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
7996  
7997  	/*
7998  	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
7999  	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
8000  	 * The WQ create will allocate the ring.
8001  	 */
8002  
8003  	/* Initialize buffer queue management fields */
8004  	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
8005  	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
8006  	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
8007  
8008  	/* for VMID idle timeout if VMID is enabled */
8009  	if (lpfc_is_vmid_enabled(phba))
8010  		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
8011  
8012  	/*
8013  	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
8014  	 */
8015  	/* Initialize the Abort buffer list used by driver */
8016  	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
8017  	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
8018  
8019  	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8020  		/* Initialize the Abort nvme buffer list used by driver */
8021  		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
8022  		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8023  		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
8024  		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
8025  		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
8026  	}
8027  
8028  	/* This abort list used by worker thread */
8029  	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
8030  	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
8031  	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
8032  	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
8033  
8034  	/*
8035  	 * Initialize driver internal slow-path work queues
8036  	 */
8037  
8038  	/* Driver internel slow-path CQ Event pool */
8039  	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
8040  	/* Response IOCB work queue list */
8041  	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
8042  	/* Asynchronous event CQ Event work queue list */
8043  	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
8044  	/* Slow-path XRI aborted CQ Event work queue list */
8045  	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
8046  	/* Receive queue CQ Event work queue list */
8047  	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
8048  
8049  	/* Initialize extent block lists. */
8050  	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
8051  	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
8052  	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
8053  	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
8054  
8055  	/* Initialize mboxq lists. If the early init routines fail
8056  	 * these lists need to be correctly initialized.
8057  	 */
8058  	INIT_LIST_HEAD(&phba->sli.mboxq);
8059  	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
8060  
8061  	/* initialize optic_state to 0xFF */
8062  	phba->sli4_hba.lnk_info.optic_state = 0xff;
8063  
8064  	/* Allocate device driver memory */
8065  	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
8066  	if (rc)
8067  		goto out_destroy_workqueue;
8068  
8069  	/* IF Type 2 ports get initialized now. */
8070  	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
8071  	    LPFC_SLI_INTF_IF_TYPE_2) {
8072  		rc = lpfc_pci_function_reset(phba);
8073  		if (unlikely(rc)) {
8074  			rc = -ENODEV;
8075  			goto out_free_mem;
8076  		}
8077  		phba->temp_sensor_support = 1;
8078  	}
8079  
8080  	/* Create the bootstrap mailbox command */
8081  	rc = lpfc_create_bootstrap_mbox(phba);
8082  	if (unlikely(rc))
8083  		goto out_free_mem;
8084  
8085  	/* Set up the host's endian order with the device. */
8086  	rc = lpfc_setup_endian_order(phba);
8087  	if (unlikely(rc))
8088  		goto out_free_bsmbx;
8089  
8090  	/* Set up the hba's configuration parameters. */
8091  	rc = lpfc_sli4_read_config(phba);
8092  	if (unlikely(rc))
8093  		goto out_free_bsmbx;
8094  
8095  	if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) {
8096  		/* Right now the link is down, if FA-PWWN is configured the
8097  		 * firmware will try FLOGI before the driver gets a link up.
8098  		 * If it fails, the driver should get a MISCONFIGURED async
8099  		 * event which will clear this flag. The only notification
8100  		 * the driver gets is if it fails, if it succeeds there is no
8101  		 * notification given. Assume success.
8102  		 */
8103  		phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
8104  	}
8105  
8106  	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
8107  	if (unlikely(rc))
8108  		goto out_free_bsmbx;
8109  
8110  	/* IF Type 0 ports get initialized now. */
8111  	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8112  	    LPFC_SLI_INTF_IF_TYPE_0) {
8113  		rc = lpfc_pci_function_reset(phba);
8114  		if (unlikely(rc))
8115  			goto out_free_bsmbx;
8116  	}
8117  
8118  	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
8119  						       GFP_KERNEL);
8120  	if (!mboxq) {
8121  		rc = -ENOMEM;
8122  		goto out_free_bsmbx;
8123  	}
8124  
8125  	/* Check for NVMET being configured */
8126  	phba->nvmet_support = 0;
8127  	if (lpfc_enable_nvmet_cnt) {
8128  
8129  		/* First get WWN of HBA instance */
8130  		lpfc_read_nv(phba, mboxq);
8131  		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8132  		if (rc != MBX_SUCCESS) {
8133  			lpfc_printf_log(phba, KERN_ERR,
8134  					LOG_TRACE_EVENT,
8135  					"6016 Mailbox failed , mbxCmd x%x "
8136  					"READ_NV, mbxStatus x%x\n",
8137  					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8138  					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
8139  			mempool_free(mboxq, phba->mbox_mem_pool);
8140  			rc = -EIO;
8141  			goto out_free_bsmbx;
8142  		}
8143  		mb = &mboxq->u.mb;
8144  		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
8145  		       sizeof(uint64_t));
8146  		wwn = cpu_to_be64(wwn);
8147  		phba->sli4_hba.wwnn.u.name = wwn;
8148  		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
8149  		       sizeof(uint64_t));
8150  		/* wwn is WWPN of HBA instance */
8151  		wwn = cpu_to_be64(wwn);
8152  		phba->sli4_hba.wwpn.u.name = wwn;
8153  
8154  		/* Check to see if it matches any module parameter */
8155  		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
8156  			if (wwn == lpfc_enable_nvmet[i]) {
8157  #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
8158  				if (lpfc_nvmet_mem_alloc(phba))
8159  					break;
8160  
8161  				phba->nvmet_support = 1; /* a match */
8162  
8163  				lpfc_printf_log(phba, KERN_ERR,
8164  						LOG_TRACE_EVENT,
8165  						"6017 NVME Target %016llx\n",
8166  						wwn);
8167  #else
8168  				lpfc_printf_log(phba, KERN_ERR,
8169  						LOG_TRACE_EVENT,
8170  						"6021 Can't enable NVME Target."
8171  						" NVME_TARGET_FC infrastructure"
8172  						" is not in kernel\n");
8173  #endif
8174  				/* Not supported for NVMET */
8175  				phba->cfg_xri_rebalancing = 0;
8176  				if (phba->irq_chann_mode == NHT_MODE) {
8177  					phba->cfg_irq_chann =
8178  						phba->sli4_hba.num_present_cpu;
8179  					phba->cfg_hdw_queue =
8180  						phba->sli4_hba.num_present_cpu;
8181  					phba->irq_chann_mode = NORMAL_MODE;
8182  				}
8183  				break;
8184  			}
8185  		}
8186  	}
8187  
8188  	lpfc_nvme_mod_param_dep(phba);
8189  
8190  	/*
8191  	 * Get sli4 parameters that override parameters from Port capabilities.
8192  	 * If this call fails, it isn't critical unless the SLI4 parameters come
8193  	 * back in conflict.
8194  	 */
8195  	rc = lpfc_get_sli4_parameters(phba, mboxq);
8196  	if (rc) {
8197  		if_type = bf_get(lpfc_sli_intf_if_type,
8198  				 &phba->sli4_hba.sli_intf);
8199  		if_fam = bf_get(lpfc_sli_intf_sli_family,
8200  				&phba->sli4_hba.sli_intf);
8201  		if (phba->sli4_hba.extents_in_use &&
8202  		    phba->sli4_hba.rpi_hdrs_in_use) {
8203  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8204  					"2999 Unsupported SLI4 Parameters "
8205  					"Extents and RPI headers enabled.\n");
8206  			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8207  			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8208  				mempool_free(mboxq, phba->mbox_mem_pool);
8209  				rc = -EIO;
8210  				goto out_free_bsmbx;
8211  			}
8212  		}
8213  		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8214  		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8215  			mempool_free(mboxq, phba->mbox_mem_pool);
8216  			rc = -EIO;
8217  			goto out_free_bsmbx;
8218  		}
8219  	}
8220  
8221  	/*
8222  	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8223  	 * for boundary conditions in its max_sgl_segment template.
8224  	 */
8225  	extra = 2;
8226  	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8227  		extra++;
8228  
8229  	/*
8230  	 * It doesn't matter what family our adapter is in, we are
8231  	 * limited to 2 Pages, 512 SGEs, for our SGL.
8232  	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8233  	 */
8234  	max_buf_size = (2 * SLI4_PAGE_SIZE);
8235  
8236  	/*
8237  	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8238  	 * used to create the sg_dma_buf_pool must be calculated.
8239  	 */
8240  	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8241  		/* Both cfg_enable_bg and cfg_external_dif code paths */
8242  
8243  		/*
8244  		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8245  		 * the FCP rsp, and a SGE. Sice we have no control
8246  		 * over how many protection segments the SCSI Layer
8247  		 * will hand us (ie: there could be one for every block
8248  		 * in the IO), just allocate enough SGEs to accomidate
8249  		 * our max amount and we need to limit lpfc_sg_seg_cnt
8250  		 * to minimize the risk of running out.
8251  		 */
8252  		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd32) +
8253  				sizeof(struct fcp_rsp) + max_buf_size;
8254  
8255  		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8256  		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8257  
8258  		/*
8259  		 * If supporting DIF, reduce the seg count for scsi to
8260  		 * allow room for the DIF sges.
8261  		 */
8262  		if (phba->cfg_enable_bg &&
8263  		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8264  			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8265  		else
8266  			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8267  
8268  	} else {
8269  		/*
8270  		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8271  		 * the FCP rsp, a SGE for each, and a SGE for up to
8272  		 * cfg_sg_seg_cnt data segments.
8273  		 */
8274  		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd32) +
8275  				sizeof(struct fcp_rsp) +
8276  				((phba->cfg_sg_seg_cnt + extra) *
8277  				sizeof(struct sli4_sge));
8278  
8279  		/* Total SGEs for scsi_sg_list */
8280  		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8281  		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8282  
8283  		/*
8284  		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8285  		 * need to post 1 page for the SGL.
8286  		 */
8287  	}
8288  
8289  	if (phba->cfg_xpsgl && !phba->nvmet_support)
8290  		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8291  	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8292  		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8293  	else
8294  		phba->cfg_sg_dma_buf_size =
8295  				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8296  
8297  	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8298  			       sizeof(struct sli4_sge);
8299  
8300  	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8301  	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8302  		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8303  			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8304  					"6300 Reducing NVME sg segment "
8305  					"cnt to %d\n",
8306  					LPFC_MAX_NVME_SEG_CNT);
8307  			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8308  		} else
8309  			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8310  	}
8311  
8312  	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8313  			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8314  			"total:%d scsi:%d nvme:%d\n",
8315  			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8316  			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8317  			phba->cfg_nvme_seg_cnt);
8318  
8319  	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8320  		i = phba->cfg_sg_dma_buf_size;
8321  	else
8322  		i = SLI4_PAGE_SIZE;
8323  
8324  	phba->lpfc_sg_dma_buf_pool =
8325  			dma_pool_create("lpfc_sg_dma_buf_pool",
8326  					&phba->pcidev->dev,
8327  					phba->cfg_sg_dma_buf_size,
8328  					i, 0);
8329  	if (!phba->lpfc_sg_dma_buf_pool) {
8330  		rc = -ENOMEM;
8331  		goto out_free_bsmbx;
8332  	}
8333  
8334  	phba->lpfc_cmd_rsp_buf_pool =
8335  			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8336  					&phba->pcidev->dev,
8337  					sizeof(struct fcp_cmnd32) +
8338  					sizeof(struct fcp_rsp),
8339  					i, 0);
8340  	if (!phba->lpfc_cmd_rsp_buf_pool) {
8341  		rc = -ENOMEM;
8342  		goto out_free_sg_dma_buf;
8343  	}
8344  
8345  	mempool_free(mboxq, phba->mbox_mem_pool);
8346  
8347  	/* Verify OAS is supported */
8348  	lpfc_sli4_oas_verify(phba);
8349  
8350  	/* Verify RAS support on adapter */
8351  	lpfc_sli4_ras_init(phba);
8352  
8353  	/* Verify all the SLI4 queues */
8354  	rc = lpfc_sli4_queue_verify(phba);
8355  	if (rc)
8356  		goto out_free_cmd_rsp_buf;
8357  
8358  	/* Create driver internal CQE event pool */
8359  	rc = lpfc_sli4_cq_event_pool_create(phba);
8360  	if (rc)
8361  		goto out_free_cmd_rsp_buf;
8362  
8363  	/* Initialize sgl lists per host */
8364  	lpfc_init_sgl_list(phba);
8365  
8366  	/* Allocate and initialize active sgl array */
8367  	rc = lpfc_init_active_sgl_array(phba);
8368  	if (rc) {
8369  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8370  				"1430 Failed to initialize sgl list.\n");
8371  		goto out_destroy_cq_event_pool;
8372  	}
8373  	rc = lpfc_sli4_init_rpi_hdrs(phba);
8374  	if (rc) {
8375  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8376  				"1432 Failed to initialize rpi headers.\n");
8377  		goto out_free_active_sgl;
8378  	}
8379  
8380  	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8381  	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8382  	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8383  					 GFP_KERNEL);
8384  	if (!phba->fcf.fcf_rr_bmask) {
8385  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8386  				"2759 Failed allocate memory for FCF round "
8387  				"robin failover bmask\n");
8388  		rc = -ENOMEM;
8389  		goto out_remove_rpi_hdrs;
8390  	}
8391  
8392  	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8393  					    sizeof(struct lpfc_hba_eq_hdl),
8394  					    GFP_KERNEL);
8395  	if (!phba->sli4_hba.hba_eq_hdl) {
8396  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8397  				"2572 Failed allocate memory for "
8398  				"fast-path per-EQ handle array\n");
8399  		rc = -ENOMEM;
8400  		goto out_free_fcf_rr_bmask;
8401  	}
8402  
8403  	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8404  					sizeof(struct lpfc_vector_map_info),
8405  					GFP_KERNEL);
8406  	if (!phba->sli4_hba.cpu_map) {
8407  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8408  				"3327 Failed allocate memory for msi-x "
8409  				"interrupt vector mapping\n");
8410  		rc = -ENOMEM;
8411  		goto out_free_hba_eq_hdl;
8412  	}
8413  
8414  	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8415  	if (!phba->sli4_hba.eq_info) {
8416  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8417  				"3321 Failed allocation for per_cpu stats\n");
8418  		rc = -ENOMEM;
8419  		goto out_free_hba_cpu_map;
8420  	}
8421  
8422  	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8423  					   sizeof(*phba->sli4_hba.idle_stat),
8424  					   GFP_KERNEL);
8425  	if (!phba->sli4_hba.idle_stat) {
8426  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8427  				"3390 Failed allocation for idle_stat\n");
8428  		rc = -ENOMEM;
8429  		goto out_free_hba_eq_info;
8430  	}
8431  
8432  #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8433  	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8434  	if (!phba->sli4_hba.c_stat) {
8435  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8436  				"3332 Failed allocating per cpu hdwq stats\n");
8437  		rc = -ENOMEM;
8438  		goto out_free_hba_idle_stat;
8439  	}
8440  #endif
8441  
8442  	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8443  	if (!phba->cmf_stat) {
8444  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8445  				"3331 Failed allocating per cpu cgn stats\n");
8446  		rc = -ENOMEM;
8447  		goto out_free_hba_hdwq_info;
8448  	}
8449  
8450  	/*
8451  	 * Enable sr-iov virtual functions if supported and configured
8452  	 * through the module parameter.
8453  	 */
8454  	if (phba->cfg_sriov_nr_virtfn > 0) {
8455  		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8456  						 phba->cfg_sriov_nr_virtfn);
8457  		if (rc) {
8458  			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8459  					"3020 Requested number of SR-IOV "
8460  					"virtual functions (%d) is not "
8461  					"supported\n",
8462  					phba->cfg_sriov_nr_virtfn);
8463  			phba->cfg_sriov_nr_virtfn = 0;
8464  		}
8465  	}
8466  
8467  	return 0;
8468  
8469  out_free_hba_hdwq_info:
8470  #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8471  	free_percpu(phba->sli4_hba.c_stat);
8472  out_free_hba_idle_stat:
8473  #endif
8474  	kfree(phba->sli4_hba.idle_stat);
8475  out_free_hba_eq_info:
8476  	free_percpu(phba->sli4_hba.eq_info);
8477  out_free_hba_cpu_map:
8478  	kfree(phba->sli4_hba.cpu_map);
8479  out_free_hba_eq_hdl:
8480  	kfree(phba->sli4_hba.hba_eq_hdl);
8481  out_free_fcf_rr_bmask:
8482  	kfree(phba->fcf.fcf_rr_bmask);
8483  out_remove_rpi_hdrs:
8484  	lpfc_sli4_remove_rpi_hdrs(phba);
8485  out_free_active_sgl:
8486  	lpfc_free_active_sgl(phba);
8487  out_destroy_cq_event_pool:
8488  	lpfc_sli4_cq_event_pool_destroy(phba);
8489  out_free_cmd_rsp_buf:
8490  	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8491  	phba->lpfc_cmd_rsp_buf_pool = NULL;
8492  out_free_sg_dma_buf:
8493  	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8494  	phba->lpfc_sg_dma_buf_pool = NULL;
8495  out_free_bsmbx:
8496  	lpfc_destroy_bootstrap_mbox(phba);
8497  out_free_mem:
8498  	lpfc_mem_free(phba);
8499  out_destroy_workqueue:
8500  	destroy_workqueue(phba->wq);
8501  	phba->wq = NULL;
8502  	return rc;
8503  }
8504  
8505  /**
8506   * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8507   * @phba: pointer to lpfc hba data structure.
8508   *
8509   * This routine is invoked to unset the driver internal resources set up
8510   * specific for supporting the SLI-4 HBA device it attached to.
8511   **/
8512  static void
lpfc_sli4_driver_resource_unset(struct lpfc_hba * phba)8513  lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8514  {
8515  	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8516  
8517  	free_percpu(phba->sli4_hba.eq_info);
8518  #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8519  	free_percpu(phba->sli4_hba.c_stat);
8520  #endif
8521  	free_percpu(phba->cmf_stat);
8522  	kfree(phba->sli4_hba.idle_stat);
8523  
8524  	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8525  	kfree(phba->sli4_hba.cpu_map);
8526  	phba->sli4_hba.num_possible_cpu = 0;
8527  	phba->sli4_hba.num_present_cpu = 0;
8528  	phba->sli4_hba.curr_disp_cpu = 0;
8529  	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8530  
8531  	/* Free memory allocated for fast-path work queue handles */
8532  	kfree(phba->sli4_hba.hba_eq_hdl);
8533  
8534  	/* Free the allocated rpi headers. */
8535  	lpfc_sli4_remove_rpi_hdrs(phba);
8536  	lpfc_sli4_remove_rpis(phba);
8537  
8538  	/* Free eligible FCF index bmask */
8539  	kfree(phba->fcf.fcf_rr_bmask);
8540  
8541  	/* Free the ELS sgl list */
8542  	lpfc_free_active_sgl(phba);
8543  	lpfc_free_els_sgl_list(phba);
8544  	lpfc_free_nvmet_sgl_list(phba);
8545  
8546  	/* Free the completion queue EQ event pool */
8547  	lpfc_sli4_cq_event_release_all(phba);
8548  	lpfc_sli4_cq_event_pool_destroy(phba);
8549  
8550  	/* Release resource identifiers. */
8551  	lpfc_sli4_dealloc_resource_identifiers(phba);
8552  
8553  	/* Free the bsmbx region. */
8554  	lpfc_destroy_bootstrap_mbox(phba);
8555  
8556  	/* Free the SLI Layer memory with SLI4 HBAs */
8557  	lpfc_mem_free_all(phba);
8558  
8559  	/* Free the current connect table */
8560  	list_for_each_entry_safe(conn_entry, next_conn_entry,
8561  		&phba->fcf_conn_rec_list, list) {
8562  		list_del_init(&conn_entry->list);
8563  		kfree(conn_entry);
8564  	}
8565  
8566  	return;
8567  }
8568  
8569  /**
8570   * lpfc_init_api_table_setup - Set up init api function jump table
8571   * @phba: The hba struct for which this call is being executed.
8572   * @dev_grp: The HBA PCI-Device group number.
8573   *
8574   * This routine sets up the device INIT interface API function jump table
8575   * in @phba struct.
8576   *
8577   * Returns: 0 - success, -ENODEV - failure.
8578   **/
8579  int
lpfc_init_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)8580  lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8581  {
8582  	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8583  	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8584  	phba->lpfc_selective_reset = lpfc_selective_reset;
8585  	switch (dev_grp) {
8586  	case LPFC_PCI_DEV_LP:
8587  		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8588  		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8589  		phba->lpfc_stop_port = lpfc_stop_port_s3;
8590  		break;
8591  	case LPFC_PCI_DEV_OC:
8592  		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8593  		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8594  		phba->lpfc_stop_port = lpfc_stop_port_s4;
8595  		break;
8596  	default:
8597  		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8598  				"1431 Invalid HBA PCI-device group: 0x%x\n",
8599  				dev_grp);
8600  		return -ENODEV;
8601  	}
8602  	return 0;
8603  }
8604  
8605  /**
8606   * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8607   * @phba: pointer to lpfc hba data structure.
8608   *
8609   * This routine is invoked to set up the driver internal resources after the
8610   * device specific resource setup to support the HBA device it attached to.
8611   *
8612   * Return codes
8613   * 	0 - successful
8614   * 	other values - error
8615   **/
8616  static int
lpfc_setup_driver_resource_phase2(struct lpfc_hba * phba)8617  lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8618  {
8619  	int error;
8620  
8621  	/* Startup the kernel thread for this host adapter. */
8622  	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8623  					  "lpfc_worker_%d", phba->brd_no);
8624  	if (IS_ERR(phba->worker_thread)) {
8625  		error = PTR_ERR(phba->worker_thread);
8626  		return error;
8627  	}
8628  
8629  	return 0;
8630  }
8631  
8632  /**
8633   * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8634   * @phba: pointer to lpfc hba data structure.
8635   *
8636   * This routine is invoked to unset the driver internal resources set up after
8637   * the device specific resource setup for supporting the HBA device it
8638   * attached to.
8639   **/
8640  static void
lpfc_unset_driver_resource_phase2(struct lpfc_hba * phba)8641  lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8642  {
8643  	if (phba->wq) {
8644  		destroy_workqueue(phba->wq);
8645  		phba->wq = NULL;
8646  	}
8647  
8648  	/* Stop kernel worker thread */
8649  	if (phba->worker_thread)
8650  		kthread_stop(phba->worker_thread);
8651  }
8652  
8653  /**
8654   * lpfc_free_iocb_list - Free iocb list.
8655   * @phba: pointer to lpfc hba data structure.
8656   *
8657   * This routine is invoked to free the driver's IOCB list and memory.
8658   **/
8659  void
lpfc_free_iocb_list(struct lpfc_hba * phba)8660  lpfc_free_iocb_list(struct lpfc_hba *phba)
8661  {
8662  	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8663  
8664  	spin_lock_irq(&phba->hbalock);
8665  	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8666  				 &phba->lpfc_iocb_list, list) {
8667  		list_del(&iocbq_entry->list);
8668  		kfree(iocbq_entry);
8669  		phba->total_iocbq_bufs--;
8670  	}
8671  	spin_unlock_irq(&phba->hbalock);
8672  
8673  	return;
8674  }
8675  
8676  /**
8677   * lpfc_init_iocb_list - Allocate and initialize iocb list.
8678   * @phba: pointer to lpfc hba data structure.
8679   * @iocb_count: number of requested iocbs
8680   *
8681   * This routine is invoked to allocate and initizlize the driver's IOCB
8682   * list and set up the IOCB tag array accordingly.
8683   *
8684   * Return codes
8685   *	0 - successful
8686   *	other values - error
8687   **/
8688  int
lpfc_init_iocb_list(struct lpfc_hba * phba,int iocb_count)8689  lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8690  {
8691  	struct lpfc_iocbq *iocbq_entry = NULL;
8692  	uint16_t iotag;
8693  	int i;
8694  
8695  	/* Initialize and populate the iocb list per host.  */
8696  	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8697  	for (i = 0; i < iocb_count; i++) {
8698  		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8699  		if (iocbq_entry == NULL) {
8700  			printk(KERN_ERR "%s: only allocated %d iocbs of "
8701  				"expected %d count. Unloading driver.\n",
8702  				__func__, i, iocb_count);
8703  			goto out_free_iocbq;
8704  		}
8705  
8706  		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8707  		if (iotag == 0) {
8708  			kfree(iocbq_entry);
8709  			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8710  				"Unloading driver.\n", __func__);
8711  			goto out_free_iocbq;
8712  		}
8713  		iocbq_entry->sli4_lxritag = NO_XRI;
8714  		iocbq_entry->sli4_xritag = NO_XRI;
8715  
8716  		spin_lock_irq(&phba->hbalock);
8717  		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8718  		phba->total_iocbq_bufs++;
8719  		spin_unlock_irq(&phba->hbalock);
8720  	}
8721  
8722  	return 0;
8723  
8724  out_free_iocbq:
8725  	lpfc_free_iocb_list(phba);
8726  
8727  	return -ENOMEM;
8728  }
8729  
8730  /**
8731   * lpfc_free_sgl_list - Free a given sgl list.
8732   * @phba: pointer to lpfc hba data structure.
8733   * @sglq_list: pointer to the head of sgl list.
8734   *
8735   * This routine is invoked to free a give sgl list and memory.
8736   **/
8737  void
lpfc_free_sgl_list(struct lpfc_hba * phba,struct list_head * sglq_list)8738  lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8739  {
8740  	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8741  
8742  	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8743  		list_del(&sglq_entry->list);
8744  		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8745  		kfree(sglq_entry);
8746  	}
8747  }
8748  
8749  /**
8750   * lpfc_free_els_sgl_list - Free els sgl list.
8751   * @phba: pointer to lpfc hba data structure.
8752   *
8753   * This routine is invoked to free the driver's els sgl list and memory.
8754   **/
8755  static void
lpfc_free_els_sgl_list(struct lpfc_hba * phba)8756  lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8757  {
8758  	LIST_HEAD(sglq_list);
8759  
8760  	/* Retrieve all els sgls from driver list */
8761  	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8762  	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8763  	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8764  
8765  	/* Now free the sgl list */
8766  	lpfc_free_sgl_list(phba, &sglq_list);
8767  }
8768  
8769  /**
8770   * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8771   * @phba: pointer to lpfc hba data structure.
8772   *
8773   * This routine is invoked to free the driver's nvmet sgl list and memory.
8774   **/
8775  static void
lpfc_free_nvmet_sgl_list(struct lpfc_hba * phba)8776  lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8777  {
8778  	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8779  	LIST_HEAD(sglq_list);
8780  
8781  	/* Retrieve all nvmet sgls from driver list */
8782  	spin_lock_irq(&phba->hbalock);
8783  	spin_lock(&phba->sli4_hba.sgl_list_lock);
8784  	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8785  	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8786  	spin_unlock_irq(&phba->hbalock);
8787  
8788  	/* Now free the sgl list */
8789  	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8790  		list_del(&sglq_entry->list);
8791  		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8792  		kfree(sglq_entry);
8793  	}
8794  
8795  	/* Update the nvmet_xri_cnt to reflect no current sgls.
8796  	 * The next initialization cycle sets the count and allocates
8797  	 * the sgls over again.
8798  	 */
8799  	phba->sli4_hba.nvmet_xri_cnt = 0;
8800  }
8801  
8802  /**
8803   * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8804   * @phba: pointer to lpfc hba data structure.
8805   *
8806   * This routine is invoked to allocate the driver's active sgl memory.
8807   * This array will hold the sglq_entry's for active IOs.
8808   **/
8809  static int
lpfc_init_active_sgl_array(struct lpfc_hba * phba)8810  lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8811  {
8812  	int size;
8813  	size = sizeof(struct lpfc_sglq *);
8814  	size *= phba->sli4_hba.max_cfg_param.max_xri;
8815  
8816  	phba->sli4_hba.lpfc_sglq_active_list =
8817  		kzalloc(size, GFP_KERNEL);
8818  	if (!phba->sli4_hba.lpfc_sglq_active_list)
8819  		return -ENOMEM;
8820  	return 0;
8821  }
8822  
8823  /**
8824   * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8825   * @phba: pointer to lpfc hba data structure.
8826   *
8827   * This routine is invoked to walk through the array of active sglq entries
8828   * and free all of the resources.
8829   * This is just a place holder for now.
8830   **/
8831  static void
lpfc_free_active_sgl(struct lpfc_hba * phba)8832  lpfc_free_active_sgl(struct lpfc_hba *phba)
8833  {
8834  	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8835  }
8836  
8837  /**
8838   * lpfc_init_sgl_list - Allocate and initialize sgl list.
8839   * @phba: pointer to lpfc hba data structure.
8840   *
8841   * This routine is invoked to allocate and initizlize the driver's sgl
8842   * list and set up the sgl xritag tag array accordingly.
8843   *
8844   **/
8845  static void
lpfc_init_sgl_list(struct lpfc_hba * phba)8846  lpfc_init_sgl_list(struct lpfc_hba *phba)
8847  {
8848  	/* Initialize and populate the sglq list per host/VF. */
8849  	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8850  	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8851  	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8852  	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8853  
8854  	/* els xri-sgl book keeping */
8855  	phba->sli4_hba.els_xri_cnt = 0;
8856  
8857  	/* nvme xri-buffer book keeping */
8858  	phba->sli4_hba.io_xri_cnt = 0;
8859  }
8860  
8861  /**
8862   * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8863   * @phba: pointer to lpfc hba data structure.
8864   *
8865   * This routine is invoked to post rpi header templates to the
8866   * port for those SLI4 ports that do not support extents.  This routine
8867   * posts a PAGE_SIZE memory region to the port to hold up to
8868   * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8869   * and should be called only when interrupts are disabled.
8870   *
8871   * Return codes
8872   * 	0 - successful
8873   *	-ERROR - otherwise.
8874   **/
8875  int
lpfc_sli4_init_rpi_hdrs(struct lpfc_hba * phba)8876  lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8877  {
8878  	int rc = 0;
8879  	struct lpfc_rpi_hdr *rpi_hdr;
8880  
8881  	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8882  	if (!phba->sli4_hba.rpi_hdrs_in_use)
8883  		return rc;
8884  	if (phba->sli4_hba.extents_in_use)
8885  		return -EIO;
8886  
8887  	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8888  	if (!rpi_hdr) {
8889  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8890  				"0391 Error during rpi post operation\n");
8891  		lpfc_sli4_remove_rpis(phba);
8892  		rc = -ENODEV;
8893  	}
8894  
8895  	return rc;
8896  }
8897  
8898  /**
8899   * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8900   * @phba: pointer to lpfc hba data structure.
8901   *
8902   * This routine is invoked to allocate a single 4KB memory region to
8903   * support rpis and stores them in the phba.  This single region
8904   * provides support for up to 64 rpis.  The region is used globally
8905   * by the device.
8906   *
8907   * Returns:
8908   *   A valid rpi hdr on success.
8909   *   A NULL pointer on any failure.
8910   **/
8911  struct lpfc_rpi_hdr *
lpfc_sli4_create_rpi_hdr(struct lpfc_hba * phba)8912  lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8913  {
8914  	uint16_t rpi_limit, curr_rpi_range;
8915  	struct lpfc_dmabuf *dmabuf;
8916  	struct lpfc_rpi_hdr *rpi_hdr;
8917  
8918  	/*
8919  	 * If the SLI4 port supports extents, posting the rpi header isn't
8920  	 * required.  Set the expected maximum count and let the actual value
8921  	 * get set when extents are fully allocated.
8922  	 */
8923  	if (!phba->sli4_hba.rpi_hdrs_in_use)
8924  		return NULL;
8925  	if (phba->sli4_hba.extents_in_use)
8926  		return NULL;
8927  
8928  	/* The limit on the logical index is just the max_rpi count. */
8929  	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8930  
8931  	spin_lock_irq(&phba->hbalock);
8932  	/*
8933  	 * Establish the starting RPI in this header block.  The starting
8934  	 * rpi is normalized to a zero base because the physical rpi is
8935  	 * port based.
8936  	 */
8937  	curr_rpi_range = phba->sli4_hba.next_rpi;
8938  	spin_unlock_irq(&phba->hbalock);
8939  
8940  	/* Reached full RPI range */
8941  	if (curr_rpi_range == rpi_limit)
8942  		return NULL;
8943  
8944  	/*
8945  	 * First allocate the protocol header region for the port.  The
8946  	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8947  	 */
8948  	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8949  	if (!dmabuf)
8950  		return NULL;
8951  
8952  	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8953  					  LPFC_HDR_TEMPLATE_SIZE,
8954  					  &dmabuf->phys, GFP_KERNEL);
8955  	if (!dmabuf->virt) {
8956  		rpi_hdr = NULL;
8957  		goto err_free_dmabuf;
8958  	}
8959  
8960  	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
8961  		rpi_hdr = NULL;
8962  		goto err_free_coherent;
8963  	}
8964  
8965  	/* Save the rpi header data for cleanup later. */
8966  	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
8967  	if (!rpi_hdr)
8968  		goto err_free_coherent;
8969  
8970  	rpi_hdr->dmabuf = dmabuf;
8971  	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
8972  	rpi_hdr->page_count = 1;
8973  	spin_lock_irq(&phba->hbalock);
8974  
8975  	/* The rpi_hdr stores the logical index only. */
8976  	rpi_hdr->start_rpi = curr_rpi_range;
8977  	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
8978  	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
8979  
8980  	spin_unlock_irq(&phba->hbalock);
8981  	return rpi_hdr;
8982  
8983   err_free_coherent:
8984  	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
8985  			  dmabuf->virt, dmabuf->phys);
8986   err_free_dmabuf:
8987  	kfree(dmabuf);
8988  	return NULL;
8989  }
8990  
8991  /**
8992   * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
8993   * @phba: pointer to lpfc hba data structure.
8994   *
8995   * This routine is invoked to remove all memory resources allocated
8996   * to support rpis for SLI4 ports not supporting extents. This routine
8997   * presumes the caller has released all rpis consumed by fabric or port
8998   * logins and is prepared to have the header pages removed.
8999   **/
9000  void
lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba * phba)9001  lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
9002  {
9003  	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
9004  
9005  	if (!phba->sli4_hba.rpi_hdrs_in_use)
9006  		goto exit;
9007  
9008  	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
9009  				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
9010  		list_del(&rpi_hdr->list);
9011  		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
9012  				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
9013  		kfree(rpi_hdr->dmabuf);
9014  		kfree(rpi_hdr);
9015  	}
9016   exit:
9017  	/* There are no rpis available to the port now. */
9018  	phba->sli4_hba.next_rpi = 0;
9019  }
9020  
9021  /**
9022   * lpfc_hba_alloc - Allocate driver hba data structure for a device.
9023   * @pdev: pointer to pci device data structure.
9024   *
9025   * This routine is invoked to allocate the driver hba data structure for an
9026   * HBA device. If the allocation is successful, the phba reference to the
9027   * PCI device data structure is set.
9028   *
9029   * Return codes
9030   *      pointer to @phba - successful
9031   *      NULL - error
9032   **/
9033  static struct lpfc_hba *
lpfc_hba_alloc(struct pci_dev * pdev)9034  lpfc_hba_alloc(struct pci_dev *pdev)
9035  {
9036  	struct lpfc_hba *phba;
9037  
9038  	/* Allocate memory for HBA structure */
9039  	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
9040  	if (!phba) {
9041  		dev_err(&pdev->dev, "failed to allocate hba struct\n");
9042  		return NULL;
9043  	}
9044  
9045  	/* Set reference to PCI device in HBA structure */
9046  	phba->pcidev = pdev;
9047  
9048  	/* Assign an unused board number */
9049  	phba->brd_no = lpfc_get_instance();
9050  	if (phba->brd_no < 0) {
9051  		kfree(phba);
9052  		return NULL;
9053  	}
9054  	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
9055  
9056  	spin_lock_init(&phba->ct_ev_lock);
9057  	INIT_LIST_HEAD(&phba->ct_ev_waiters);
9058  
9059  	return phba;
9060  }
9061  
9062  /**
9063   * lpfc_hba_free - Free driver hba data structure with a device.
9064   * @phba: pointer to lpfc hba data structure.
9065   *
9066   * This routine is invoked to free the driver hba data structure with an
9067   * HBA device.
9068   **/
9069  static void
lpfc_hba_free(struct lpfc_hba * phba)9070  lpfc_hba_free(struct lpfc_hba *phba)
9071  {
9072  	if (phba->sli_rev == LPFC_SLI_REV4)
9073  		kfree(phba->sli4_hba.hdwq);
9074  
9075  	/* Release the driver assigned board number */
9076  	idr_remove(&lpfc_hba_index, phba->brd_no);
9077  
9078  	/* Free memory allocated with sli3 rings */
9079  	kfree(phba->sli.sli3_ring);
9080  	phba->sli.sli3_ring = NULL;
9081  
9082  	kfree(phba);
9083  	return;
9084  }
9085  
9086  /**
9087   * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes
9088   * @vport: pointer to lpfc vport data structure.
9089   *
9090   * This routine is will setup initial FDMI attribute masks for
9091   * FDMI2 or SmartSAN depending on module parameters. The driver will attempt
9092   * to get these attributes first before falling back, the attribute
9093   * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1
9094   **/
9095  void
lpfc_setup_fdmi_mask(struct lpfc_vport * vport)9096  lpfc_setup_fdmi_mask(struct lpfc_vport *vport)
9097  {
9098  	struct lpfc_hba *phba = vport->phba;
9099  
9100  	set_bit(FC_ALLOW_FDMI, &vport->load_flag);
9101  	if (phba->cfg_enable_SmartSAN ||
9102  	    phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) {
9103  		/* Setup appropriate attribute masks */
9104  		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
9105  		if (phba->cfg_enable_SmartSAN)
9106  			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
9107  		else
9108  			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
9109  	}
9110  
9111  	lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY,
9112  			"6077 Setup FDMI mask: hba x%x port x%x\n",
9113  			vport->fdmi_hba_mask, vport->fdmi_port_mask);
9114  }
9115  
9116  /**
9117   * lpfc_create_shost - Create hba physical port with associated scsi host.
9118   * @phba: pointer to lpfc hba data structure.
9119   *
9120   * This routine is invoked to create HBA physical port and associate a SCSI
9121   * host with it.
9122   *
9123   * Return codes
9124   *      0 - successful
9125   *      other values - error
9126   **/
9127  static int
lpfc_create_shost(struct lpfc_hba * phba)9128  lpfc_create_shost(struct lpfc_hba *phba)
9129  {
9130  	struct lpfc_vport *vport;
9131  	struct Scsi_Host  *shost;
9132  
9133  	/* Initialize HBA FC structure */
9134  	phba->fc_edtov = FF_DEF_EDTOV;
9135  	phba->fc_ratov = FF_DEF_RATOV;
9136  	phba->fc_altov = FF_DEF_ALTOV;
9137  	phba->fc_arbtov = FF_DEF_ARBTOV;
9138  
9139  	atomic_set(&phba->sdev_cnt, 0);
9140  	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
9141  	if (!vport)
9142  		return -ENODEV;
9143  
9144  	shost = lpfc_shost_from_vport(vport);
9145  	phba->pport = vport;
9146  
9147  	if (phba->nvmet_support) {
9148  		/* Only 1 vport (pport) will support NVME target */
9149  		phba->targetport = NULL;
9150  		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
9151  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
9152  				"6076 NVME Target Found\n");
9153  	}
9154  
9155  	lpfc_debugfs_initialize(vport);
9156  	/* Put reference to SCSI host to driver's device private data */
9157  	pci_set_drvdata(phba->pcidev, shost);
9158  
9159  	lpfc_setup_fdmi_mask(vport);
9160  
9161  	/*
9162  	 * At this point we are fully registered with PSA. In addition,
9163  	 * any initial discovery should be completed.
9164  	 */
9165  	return 0;
9166  }
9167  
9168  /**
9169   * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
9170   * @phba: pointer to lpfc hba data structure.
9171   *
9172   * This routine is invoked to destroy HBA physical port and the associated
9173   * SCSI host.
9174   **/
9175  static void
lpfc_destroy_shost(struct lpfc_hba * phba)9176  lpfc_destroy_shost(struct lpfc_hba *phba)
9177  {
9178  	struct lpfc_vport *vport = phba->pport;
9179  
9180  	/* Destroy physical port that associated with the SCSI host */
9181  	destroy_port(vport);
9182  
9183  	return;
9184  }
9185  
9186  /**
9187   * lpfc_setup_bg - Setup Block guard structures and debug areas.
9188   * @phba: pointer to lpfc hba data structure.
9189   * @shost: the shost to be used to detect Block guard settings.
9190   *
9191   * This routine sets up the local Block guard protocol settings for @shost.
9192   * This routine also allocates memory for debugging bg buffers.
9193   **/
9194  static void
lpfc_setup_bg(struct lpfc_hba * phba,struct Scsi_Host * shost)9195  lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
9196  {
9197  	uint32_t old_mask;
9198  	uint32_t old_guard;
9199  
9200  	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9201  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9202  				"1478 Registering BlockGuard with the "
9203  				"SCSI layer\n");
9204  
9205  		old_mask = phba->cfg_prot_mask;
9206  		old_guard = phba->cfg_prot_guard;
9207  
9208  		/* Only allow supported values */
9209  		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
9210  			SHOST_DIX_TYPE0_PROTECTION |
9211  			SHOST_DIX_TYPE1_PROTECTION);
9212  		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
9213  					 SHOST_DIX_GUARD_CRC);
9214  
9215  		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
9216  		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
9217  			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
9218  
9219  		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9220  			if ((old_mask != phba->cfg_prot_mask) ||
9221  				(old_guard != phba->cfg_prot_guard))
9222  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9223  					"1475 Registering BlockGuard with the "
9224  					"SCSI layer: mask %d  guard %d\n",
9225  					phba->cfg_prot_mask,
9226  					phba->cfg_prot_guard);
9227  
9228  			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9229  			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9230  		} else
9231  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9232  				"1479 Not Registering BlockGuard with the SCSI "
9233  				"layer, Bad protection parameters: %d %d\n",
9234  				old_mask, old_guard);
9235  	}
9236  }
9237  
9238  /**
9239   * lpfc_post_init_setup - Perform necessary device post initialization setup.
9240   * @phba: pointer to lpfc hba data structure.
9241   *
9242   * This routine is invoked to perform all the necessary post initialization
9243   * setup for the device.
9244   **/
9245  static void
lpfc_post_init_setup(struct lpfc_hba * phba)9246  lpfc_post_init_setup(struct lpfc_hba *phba)
9247  {
9248  	struct Scsi_Host  *shost;
9249  	struct lpfc_adapter_event_header adapter_event;
9250  
9251  	/* Get the default values for Model Name and Description */
9252  	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9253  
9254  	/*
9255  	 * hba setup may have changed the hba_queue_depth so we need to
9256  	 * adjust the value of can_queue.
9257  	 */
9258  	shost = pci_get_drvdata(phba->pcidev);
9259  	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9260  
9261  	lpfc_host_attrib_init(shost);
9262  
9263  	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9264  		spin_lock_irq(shost->host_lock);
9265  		lpfc_poll_start_timer(phba);
9266  		spin_unlock_irq(shost->host_lock);
9267  	}
9268  
9269  	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9270  			"0428 Perform SCSI scan\n");
9271  	/* Send board arrival event to upper layer */
9272  	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9273  	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9274  	fc_host_post_vendor_event(shost, fc_get_event_number(),
9275  				  sizeof(adapter_event),
9276  				  (char *) &adapter_event,
9277  				  LPFC_NL_VENDOR_ID);
9278  	return;
9279  }
9280  
9281  /**
9282   * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9283   * @phba: pointer to lpfc hba data structure.
9284   *
9285   * This routine is invoked to set up the PCI device memory space for device
9286   * with SLI-3 interface spec.
9287   *
9288   * Return codes
9289   * 	0 - successful
9290   * 	other values - error
9291   **/
9292  static int
lpfc_sli_pci_mem_setup(struct lpfc_hba * phba)9293  lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9294  {
9295  	struct pci_dev *pdev = phba->pcidev;
9296  	unsigned long bar0map_len, bar2map_len;
9297  	int i, hbq_count;
9298  	void *ptr;
9299  	int error;
9300  
9301  	if (!pdev)
9302  		return -ENODEV;
9303  
9304  	/* Set the device DMA mask size */
9305  	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9306  	if (error)
9307  		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9308  	if (error)
9309  		return error;
9310  	error = -ENODEV;
9311  
9312  	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9313  	 * required by each mapping.
9314  	 */
9315  	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9316  	bar0map_len = pci_resource_len(pdev, 0);
9317  
9318  	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9319  	bar2map_len = pci_resource_len(pdev, 2);
9320  
9321  	/* Map HBA SLIM to a kernel virtual address. */
9322  	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9323  	if (!phba->slim_memmap_p) {
9324  		dev_printk(KERN_ERR, &pdev->dev,
9325  			   "ioremap failed for SLIM memory.\n");
9326  		goto out;
9327  	}
9328  
9329  	/* Map HBA Control Registers to a kernel virtual address. */
9330  	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9331  	if (!phba->ctrl_regs_memmap_p) {
9332  		dev_printk(KERN_ERR, &pdev->dev,
9333  			   "ioremap failed for HBA control registers.\n");
9334  		goto out_iounmap_slim;
9335  	}
9336  
9337  	/* Allocate memory for SLI-2 structures */
9338  	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9339  					       &phba->slim2p.phys, GFP_KERNEL);
9340  	if (!phba->slim2p.virt)
9341  		goto out_iounmap;
9342  
9343  	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9344  	phba->mbox_ext = (phba->slim2p.virt +
9345  		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9346  	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9347  	phba->IOCBs = (phba->slim2p.virt +
9348  		       offsetof(struct lpfc_sli2_slim, IOCBs));
9349  
9350  	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9351  						 lpfc_sli_hbq_size(),
9352  						 &phba->hbqslimp.phys,
9353  						 GFP_KERNEL);
9354  	if (!phba->hbqslimp.virt)
9355  		goto out_free_slim;
9356  
9357  	hbq_count = lpfc_sli_hbq_count();
9358  	ptr = phba->hbqslimp.virt;
9359  	for (i = 0; i < hbq_count; ++i) {
9360  		phba->hbqs[i].hbq_virt = ptr;
9361  		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9362  		ptr += (lpfc_hbq_defs[i]->entry_count *
9363  			sizeof(struct lpfc_hbq_entry));
9364  	}
9365  	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9366  	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9367  
9368  	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9369  
9370  	phba->MBslimaddr = phba->slim_memmap_p;
9371  	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9372  	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9373  	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9374  	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9375  
9376  	return 0;
9377  
9378  out_free_slim:
9379  	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9380  			  phba->slim2p.virt, phba->slim2p.phys);
9381  out_iounmap:
9382  	iounmap(phba->ctrl_regs_memmap_p);
9383  out_iounmap_slim:
9384  	iounmap(phba->slim_memmap_p);
9385  out:
9386  	return error;
9387  }
9388  
9389  /**
9390   * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9391   * @phba: pointer to lpfc hba data structure.
9392   *
9393   * This routine is invoked to unset the PCI device memory space for device
9394   * with SLI-3 interface spec.
9395   **/
9396  static void
lpfc_sli_pci_mem_unset(struct lpfc_hba * phba)9397  lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9398  {
9399  	struct pci_dev *pdev;
9400  
9401  	/* Obtain PCI device reference */
9402  	if (!phba->pcidev)
9403  		return;
9404  	else
9405  		pdev = phba->pcidev;
9406  
9407  	/* Free coherent DMA memory allocated */
9408  	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9409  			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9410  	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9411  			  phba->slim2p.virt, phba->slim2p.phys);
9412  
9413  	/* I/O memory unmap */
9414  	iounmap(phba->ctrl_regs_memmap_p);
9415  	iounmap(phba->slim_memmap_p);
9416  
9417  	return;
9418  }
9419  
9420  /**
9421   * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9422   * @phba: pointer to lpfc hba data structure.
9423   *
9424   * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9425   * done and check status.
9426   *
9427   * Return 0 if successful, otherwise -ENODEV.
9428   **/
9429  int
lpfc_sli4_post_status_check(struct lpfc_hba * phba)9430  lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9431  {
9432  	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9433  	struct lpfc_register reg_data;
9434  	int i, port_error = 0;
9435  	uint32_t if_type;
9436  
9437  	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9438  	memset(&reg_data, 0, sizeof(reg_data));
9439  	if (!phba->sli4_hba.PSMPHRregaddr)
9440  		return -ENODEV;
9441  
9442  	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9443  	for (i = 0; i < 3000; i++) {
9444  		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9445  			&portsmphr_reg.word0) ||
9446  			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9447  			/* Port has a fatal POST error, break out */
9448  			port_error = -ENODEV;
9449  			break;
9450  		}
9451  		if (LPFC_POST_STAGE_PORT_READY ==
9452  		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9453  			break;
9454  		msleep(10);
9455  	}
9456  
9457  	/*
9458  	 * If there was a port error during POST, then don't proceed with
9459  	 * other register reads as the data may not be valid.  Just exit.
9460  	 */
9461  	if (port_error) {
9462  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9463  			"1408 Port Failed POST - portsmphr=0x%x, "
9464  			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9465  			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9466  			portsmphr_reg.word0,
9467  			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9468  			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9469  			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9470  			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9471  			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9472  			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9473  			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9474  			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9475  	} else {
9476  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9477  				"2534 Device Info: SLIFamily=0x%x, "
9478  				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9479  				"SLIHint_2=0x%x, FT=0x%x\n",
9480  				bf_get(lpfc_sli_intf_sli_family,
9481  				       &phba->sli4_hba.sli_intf),
9482  				bf_get(lpfc_sli_intf_slirev,
9483  				       &phba->sli4_hba.sli_intf),
9484  				bf_get(lpfc_sli_intf_if_type,
9485  				       &phba->sli4_hba.sli_intf),
9486  				bf_get(lpfc_sli_intf_sli_hint1,
9487  				       &phba->sli4_hba.sli_intf),
9488  				bf_get(lpfc_sli_intf_sli_hint2,
9489  				       &phba->sli4_hba.sli_intf),
9490  				bf_get(lpfc_sli_intf_func_type,
9491  				       &phba->sli4_hba.sli_intf));
9492  		/*
9493  		 * Check for other Port errors during the initialization
9494  		 * process.  Fail the load if the port did not come up
9495  		 * correctly.
9496  		 */
9497  		if_type = bf_get(lpfc_sli_intf_if_type,
9498  				 &phba->sli4_hba.sli_intf);
9499  		switch (if_type) {
9500  		case LPFC_SLI_INTF_IF_TYPE_0:
9501  			phba->sli4_hba.ue_mask_lo =
9502  			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9503  			phba->sli4_hba.ue_mask_hi =
9504  			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9505  			uerrlo_reg.word0 =
9506  			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9507  			uerrhi_reg.word0 =
9508  				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9509  			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9510  			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9511  				lpfc_printf_log(phba, KERN_ERR,
9512  						LOG_TRACE_EVENT,
9513  						"1422 Unrecoverable Error "
9514  						"Detected during POST "
9515  						"uerr_lo_reg=0x%x, "
9516  						"uerr_hi_reg=0x%x, "
9517  						"ue_mask_lo_reg=0x%x, "
9518  						"ue_mask_hi_reg=0x%x\n",
9519  						uerrlo_reg.word0,
9520  						uerrhi_reg.word0,
9521  						phba->sli4_hba.ue_mask_lo,
9522  						phba->sli4_hba.ue_mask_hi);
9523  				port_error = -ENODEV;
9524  			}
9525  			break;
9526  		case LPFC_SLI_INTF_IF_TYPE_2:
9527  		case LPFC_SLI_INTF_IF_TYPE_6:
9528  			/* Final checks.  The port status should be clean. */
9529  			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9530  				&reg_data.word0) ||
9531  				lpfc_sli4_unrecoverable_port(&reg_data)) {
9532  				phba->work_status[0] =
9533  					readl(phba->sli4_hba.u.if_type2.
9534  					      ERR1regaddr);
9535  				phba->work_status[1] =
9536  					readl(phba->sli4_hba.u.if_type2.
9537  					      ERR2regaddr);
9538  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9539  					"2888 Unrecoverable port error "
9540  					"following POST: port status reg "
9541  					"0x%x, port_smphr reg 0x%x, "
9542  					"error 1=0x%x, error 2=0x%x\n",
9543  					reg_data.word0,
9544  					portsmphr_reg.word0,
9545  					phba->work_status[0],
9546  					phba->work_status[1]);
9547  				port_error = -ENODEV;
9548  				break;
9549  			}
9550  
9551  			if (lpfc_pldv_detect &&
9552  			    bf_get(lpfc_sli_intf_sli_family,
9553  				   &phba->sli4_hba.sli_intf) ==
9554  					LPFC_SLI_INTF_FAMILY_G6)
9555  				pci_write_config_byte(phba->pcidev,
9556  						      LPFC_SLI_INTF, CFG_PLD);
9557  			break;
9558  		case LPFC_SLI_INTF_IF_TYPE_1:
9559  		default:
9560  			break;
9561  		}
9562  	}
9563  	return port_error;
9564  }
9565  
9566  /**
9567   * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9568   * @phba: pointer to lpfc hba data structure.
9569   * @if_type:  The SLI4 interface type getting configured.
9570   *
9571   * This routine is invoked to set up SLI4 BAR0 PCI config space register
9572   * memory map.
9573   **/
9574  static void
lpfc_sli4_bar0_register_memmap(struct lpfc_hba * phba,uint32_t if_type)9575  lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9576  {
9577  	switch (if_type) {
9578  	case LPFC_SLI_INTF_IF_TYPE_0:
9579  		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9580  			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9581  		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9582  			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9583  		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9584  			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9585  		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9586  			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9587  		phba->sli4_hba.SLIINTFregaddr =
9588  			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9589  		break;
9590  	case LPFC_SLI_INTF_IF_TYPE_2:
9591  		phba->sli4_hba.u.if_type2.EQDregaddr =
9592  			phba->sli4_hba.conf_regs_memmap_p +
9593  						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9594  		phba->sli4_hba.u.if_type2.ERR1regaddr =
9595  			phba->sli4_hba.conf_regs_memmap_p +
9596  						LPFC_CTL_PORT_ER1_OFFSET;
9597  		phba->sli4_hba.u.if_type2.ERR2regaddr =
9598  			phba->sli4_hba.conf_regs_memmap_p +
9599  						LPFC_CTL_PORT_ER2_OFFSET;
9600  		phba->sli4_hba.u.if_type2.CTRLregaddr =
9601  			phba->sli4_hba.conf_regs_memmap_p +
9602  						LPFC_CTL_PORT_CTL_OFFSET;
9603  		phba->sli4_hba.u.if_type2.STATUSregaddr =
9604  			phba->sli4_hba.conf_regs_memmap_p +
9605  						LPFC_CTL_PORT_STA_OFFSET;
9606  		phba->sli4_hba.SLIINTFregaddr =
9607  			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9608  		phba->sli4_hba.PSMPHRregaddr =
9609  			phba->sli4_hba.conf_regs_memmap_p +
9610  						LPFC_CTL_PORT_SEM_OFFSET;
9611  		phba->sli4_hba.RQDBregaddr =
9612  			phba->sli4_hba.conf_regs_memmap_p +
9613  						LPFC_ULP0_RQ_DOORBELL;
9614  		phba->sli4_hba.WQDBregaddr =
9615  			phba->sli4_hba.conf_regs_memmap_p +
9616  						LPFC_ULP0_WQ_DOORBELL;
9617  		phba->sli4_hba.CQDBregaddr =
9618  			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9619  		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9620  		phba->sli4_hba.MQDBregaddr =
9621  			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9622  		phba->sli4_hba.BMBXregaddr =
9623  			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9624  		break;
9625  	case LPFC_SLI_INTF_IF_TYPE_6:
9626  		phba->sli4_hba.u.if_type2.EQDregaddr =
9627  			phba->sli4_hba.conf_regs_memmap_p +
9628  						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9629  		phba->sli4_hba.u.if_type2.ERR1regaddr =
9630  			phba->sli4_hba.conf_regs_memmap_p +
9631  						LPFC_CTL_PORT_ER1_OFFSET;
9632  		phba->sli4_hba.u.if_type2.ERR2regaddr =
9633  			phba->sli4_hba.conf_regs_memmap_p +
9634  						LPFC_CTL_PORT_ER2_OFFSET;
9635  		phba->sli4_hba.u.if_type2.CTRLregaddr =
9636  			phba->sli4_hba.conf_regs_memmap_p +
9637  						LPFC_CTL_PORT_CTL_OFFSET;
9638  		phba->sli4_hba.u.if_type2.STATUSregaddr =
9639  			phba->sli4_hba.conf_regs_memmap_p +
9640  						LPFC_CTL_PORT_STA_OFFSET;
9641  		phba->sli4_hba.PSMPHRregaddr =
9642  			phba->sli4_hba.conf_regs_memmap_p +
9643  						LPFC_CTL_PORT_SEM_OFFSET;
9644  		phba->sli4_hba.BMBXregaddr =
9645  			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9646  		break;
9647  	case LPFC_SLI_INTF_IF_TYPE_1:
9648  	default:
9649  		dev_printk(KERN_ERR, &phba->pcidev->dev,
9650  			   "FATAL - unsupported SLI4 interface type - %d\n",
9651  			   if_type);
9652  		break;
9653  	}
9654  }
9655  
9656  /**
9657   * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9658   * @phba: pointer to lpfc hba data structure.
9659   * @if_type: sli if type to operate on.
9660   *
9661   * This routine is invoked to set up SLI4 BAR1 register memory map.
9662   **/
9663  static void
lpfc_sli4_bar1_register_memmap(struct lpfc_hba * phba,uint32_t if_type)9664  lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9665  {
9666  	switch (if_type) {
9667  	case LPFC_SLI_INTF_IF_TYPE_0:
9668  		phba->sli4_hba.PSMPHRregaddr =
9669  			phba->sli4_hba.ctrl_regs_memmap_p +
9670  			LPFC_SLIPORT_IF0_SMPHR;
9671  		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9672  			LPFC_HST_ISR0;
9673  		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9674  			LPFC_HST_IMR0;
9675  		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9676  			LPFC_HST_ISCR0;
9677  		break;
9678  	case LPFC_SLI_INTF_IF_TYPE_6:
9679  		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9680  			LPFC_IF6_RQ_DOORBELL;
9681  		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9682  			LPFC_IF6_WQ_DOORBELL;
9683  		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9684  			LPFC_IF6_CQ_DOORBELL;
9685  		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9686  			LPFC_IF6_EQ_DOORBELL;
9687  		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9688  			LPFC_IF6_MQ_DOORBELL;
9689  		break;
9690  	case LPFC_SLI_INTF_IF_TYPE_2:
9691  	case LPFC_SLI_INTF_IF_TYPE_1:
9692  	default:
9693  		dev_err(&phba->pcidev->dev,
9694  			   "FATAL - unsupported SLI4 interface type - %d\n",
9695  			   if_type);
9696  		break;
9697  	}
9698  }
9699  
9700  /**
9701   * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9702   * @phba: pointer to lpfc hba data structure.
9703   * @vf: virtual function number
9704   *
9705   * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9706   * based on the given viftual function number, @vf.
9707   *
9708   * Return 0 if successful, otherwise -ENODEV.
9709   **/
9710  static int
lpfc_sli4_bar2_register_memmap(struct lpfc_hba * phba,uint32_t vf)9711  lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9712  {
9713  	if (vf > LPFC_VIR_FUNC_MAX)
9714  		return -ENODEV;
9715  
9716  	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9717  				vf * LPFC_VFR_PAGE_SIZE +
9718  					LPFC_ULP0_RQ_DOORBELL);
9719  	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9720  				vf * LPFC_VFR_PAGE_SIZE +
9721  					LPFC_ULP0_WQ_DOORBELL);
9722  	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9723  				vf * LPFC_VFR_PAGE_SIZE +
9724  					LPFC_EQCQ_DOORBELL);
9725  	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9726  	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9727  				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9728  	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9729  				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9730  	return 0;
9731  }
9732  
9733  /**
9734   * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9735   * @phba: pointer to lpfc hba data structure.
9736   *
9737   * This routine is invoked to create the bootstrap mailbox
9738   * region consistent with the SLI-4 interface spec.  This
9739   * routine allocates all memory necessary to communicate
9740   * mailbox commands to the port and sets up all alignment
9741   * needs.  No locks are expected to be held when calling
9742   * this routine.
9743   *
9744   * Return codes
9745   * 	0 - successful
9746   * 	-ENOMEM - could not allocated memory.
9747   **/
9748  static int
lpfc_create_bootstrap_mbox(struct lpfc_hba * phba)9749  lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9750  {
9751  	uint32_t bmbx_size;
9752  	struct lpfc_dmabuf *dmabuf;
9753  	struct dma_address *dma_address;
9754  	uint32_t pa_addr;
9755  	uint64_t phys_addr;
9756  
9757  	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9758  	if (!dmabuf)
9759  		return -ENOMEM;
9760  
9761  	/*
9762  	 * The bootstrap mailbox region is comprised of 2 parts
9763  	 * plus an alignment restriction of 16 bytes.
9764  	 */
9765  	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9766  	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9767  					  &dmabuf->phys, GFP_KERNEL);
9768  	if (!dmabuf->virt) {
9769  		kfree(dmabuf);
9770  		return -ENOMEM;
9771  	}
9772  
9773  	/*
9774  	 * Initialize the bootstrap mailbox pointers now so that the register
9775  	 * operations are simple later.  The mailbox dma address is required
9776  	 * to be 16-byte aligned.  Also align the virtual memory as each
9777  	 * maibox is copied into the bmbx mailbox region before issuing the
9778  	 * command to the port.
9779  	 */
9780  	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9781  	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9782  
9783  	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9784  					      LPFC_ALIGN_16_BYTE);
9785  	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9786  					      LPFC_ALIGN_16_BYTE);
9787  
9788  	/*
9789  	 * Set the high and low physical addresses now.  The SLI4 alignment
9790  	 * requirement is 16 bytes and the mailbox is posted to the port
9791  	 * as two 30-bit addresses.  The other data is a bit marking whether
9792  	 * the 30-bit address is the high or low address.
9793  	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9794  	 * clean on 32 bit machines.
9795  	 */
9796  	dma_address = &phba->sli4_hba.bmbx.dma_address;
9797  	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9798  	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9799  	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9800  					   LPFC_BMBX_BIT1_ADDR_HI);
9801  
9802  	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9803  	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9804  					   LPFC_BMBX_BIT1_ADDR_LO);
9805  	return 0;
9806  }
9807  
9808  /**
9809   * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9810   * @phba: pointer to lpfc hba data structure.
9811   *
9812   * This routine is invoked to teardown the bootstrap mailbox
9813   * region and release all host resources. This routine requires
9814   * the caller to ensure all mailbox commands recovered, no
9815   * additional mailbox comands are sent, and interrupts are disabled
9816   * before calling this routine.
9817   *
9818   **/
9819  static void
lpfc_destroy_bootstrap_mbox(struct lpfc_hba * phba)9820  lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9821  {
9822  	dma_free_coherent(&phba->pcidev->dev,
9823  			  phba->sli4_hba.bmbx.bmbx_size,
9824  			  phba->sli4_hba.bmbx.dmabuf->virt,
9825  			  phba->sli4_hba.bmbx.dmabuf->phys);
9826  
9827  	kfree(phba->sli4_hba.bmbx.dmabuf);
9828  	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9829  }
9830  
9831  static const char * const lpfc_topo_to_str[] = {
9832  	"Loop then P2P",
9833  	"Loopback",
9834  	"P2P Only",
9835  	"Unsupported",
9836  	"Loop Only",
9837  	"Unsupported",
9838  	"P2P then Loop",
9839  };
9840  
9841  #define	LINK_FLAGS_DEF	0x0
9842  #define	LINK_FLAGS_P2P	0x1
9843  #define	LINK_FLAGS_LOOP	0x2
9844  /**
9845   * lpfc_map_topology - Map the topology read from READ_CONFIG
9846   * @phba: pointer to lpfc hba data structure.
9847   * @rd_config: pointer to read config data
9848   *
9849   * This routine is invoked to map the topology values as read
9850   * from the read config mailbox command. If the persistent
9851   * topology feature is supported, the firmware will provide the
9852   * saved topology information to be used in INIT_LINK
9853   **/
9854  static void
lpfc_map_topology(struct lpfc_hba * phba,struct lpfc_mbx_read_config * rd_config)9855  lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9856  {
9857  	u8 ptv, tf, pt;
9858  
9859  	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9860  	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9861  	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9862  
9863  	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9864  			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9865  			 ptv, tf, pt);
9866  	if (!ptv) {
9867  		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9868  				"2019 FW does not support persistent topology "
9869  				"Using driver parameter defined value [%s]",
9870  				lpfc_topo_to_str[phba->cfg_topology]);
9871  		return;
9872  	}
9873  	/* FW supports persistent topology - override module parameter value */
9874  	set_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag);
9875  
9876  	/* if ASIC_GEN_NUM >= 0xC) */
9877  	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9878  		    LPFC_SLI_INTF_IF_TYPE_6) ||
9879  	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9880  		    LPFC_SLI_INTF_FAMILY_G6)) {
9881  		if (!tf)
9882  			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9883  					? FLAGS_TOPOLOGY_MODE_LOOP
9884  					: FLAGS_TOPOLOGY_MODE_PT_PT);
9885  		else
9886  			clear_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag);
9887  	} else { /* G5 */
9888  		if (tf)
9889  			/* If topology failover set - pt is '0' or '1' */
9890  			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9891  					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9892  		else
9893  			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9894  					? FLAGS_TOPOLOGY_MODE_PT_PT
9895  					: FLAGS_TOPOLOGY_MODE_LOOP);
9896  	}
9897  	if (test_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag))
9898  		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9899  				"2020 Using persistent topology value [%s]",
9900  				lpfc_topo_to_str[phba->cfg_topology]);
9901  	else
9902  		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9903  				"2021 Invalid topology values from FW "
9904  				"Using driver parameter defined value [%s]",
9905  				lpfc_topo_to_str[phba->cfg_topology]);
9906  }
9907  
9908  /**
9909   * lpfc_sli4_read_config - Get the config parameters.
9910   * @phba: pointer to lpfc hba data structure.
9911   *
9912   * This routine is invoked to read the configuration parameters from the HBA.
9913   * The configuration parameters are used to set the base and maximum values
9914   * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9915   * allocation for the port.
9916   *
9917   * Return codes
9918   * 	0 - successful
9919   * 	-ENOMEM - No available memory
9920   *      -EIO - The mailbox failed to complete successfully.
9921   **/
9922  int
lpfc_sli4_read_config(struct lpfc_hba * phba)9923  lpfc_sli4_read_config(struct lpfc_hba *phba)
9924  {
9925  	LPFC_MBOXQ_t *pmb;
9926  	struct lpfc_mbx_read_config *rd_config;
9927  	union  lpfc_sli4_cfg_shdr *shdr;
9928  	uint32_t shdr_status, shdr_add_status;
9929  	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9930  	struct lpfc_rsrc_desc_fcfcoe *desc;
9931  	char *pdesc_0;
9932  	uint16_t forced_link_speed;
9933  	uint32_t if_type, qmin, fawwpn;
9934  	int length, i, rc = 0, rc2;
9935  
9936  	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9937  	if (!pmb) {
9938  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9939  				"2011 Unable to allocate memory for issuing "
9940  				"SLI_CONFIG_SPECIAL mailbox command\n");
9941  		return -ENOMEM;
9942  	}
9943  
9944  	lpfc_read_config(phba, pmb);
9945  
9946  	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9947  	if (rc != MBX_SUCCESS) {
9948  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9949  				"2012 Mailbox failed , mbxCmd x%x "
9950  				"READ_CONFIG, mbxStatus x%x\n",
9951  				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9952  				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9953  		rc = -EIO;
9954  	} else {
9955  		rd_config = &pmb->u.mqe.un.rd_config;
9956  		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
9957  			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
9958  			phba->sli4_hba.lnk_info.lnk_tp =
9959  				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
9960  			phba->sli4_hba.lnk_info.lnk_no =
9961  				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
9962  			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9963  					"3081 lnk_type:%d, lnk_numb:%d\n",
9964  					phba->sli4_hba.lnk_info.lnk_tp,
9965  					phba->sli4_hba.lnk_info.lnk_no);
9966  		} else
9967  			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9968  					"3082 Mailbox (x%x) returned ldv:x0\n",
9969  					bf_get(lpfc_mqe_command, &pmb->u.mqe));
9970  		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
9971  			phba->bbcredit_support = 1;
9972  			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
9973  		}
9974  
9975  		fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config);
9976  
9977  		if (fawwpn) {
9978  			lpfc_printf_log(phba, KERN_INFO,
9979  					LOG_INIT | LOG_DISCOVERY,
9980  					"2702 READ_CONFIG: FA-PWWN is "
9981  					"configured on\n");
9982  			phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG;
9983  		} else {
9984  			/* Clear FW configured flag, preserve driver flag */
9985  			phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG;
9986  		}
9987  
9988  		phba->sli4_hba.conf_trunk =
9989  			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
9990  		phba->sli4_hba.extents_in_use =
9991  			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
9992  
9993  		phba->sli4_hba.max_cfg_param.max_xri =
9994  			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
9995  		/* Reduce resource usage in kdump environment */
9996  		if (is_kdump_kernel() &&
9997  		    phba->sli4_hba.max_cfg_param.max_xri > 512)
9998  			phba->sli4_hba.max_cfg_param.max_xri = 512;
9999  		phba->sli4_hba.max_cfg_param.xri_base =
10000  			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
10001  		phba->sli4_hba.max_cfg_param.max_vpi =
10002  			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
10003  		/* Limit the max we support */
10004  		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
10005  			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
10006  		phba->sli4_hba.max_cfg_param.vpi_base =
10007  			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
10008  		phba->sli4_hba.max_cfg_param.max_rpi =
10009  			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
10010  		phba->sli4_hba.max_cfg_param.rpi_base =
10011  			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
10012  		phba->sli4_hba.max_cfg_param.max_vfi =
10013  			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
10014  		phba->sli4_hba.max_cfg_param.vfi_base =
10015  			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
10016  		phba->sli4_hba.max_cfg_param.max_fcfi =
10017  			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
10018  		phba->sli4_hba.max_cfg_param.max_eq =
10019  			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
10020  		phba->sli4_hba.max_cfg_param.max_rq =
10021  			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
10022  		phba->sli4_hba.max_cfg_param.max_wq =
10023  			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
10024  		phba->sli4_hba.max_cfg_param.max_cq =
10025  			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
10026  		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
10027  		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
10028  		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
10029  		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
10030  		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
10031  				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
10032  		phba->max_vports = phba->max_vpi;
10033  
10034  		/* Next decide on FPIN or Signal E2E CGN support
10035  		 * For congestion alarms and warnings valid combination are:
10036  		 * 1. FPIN alarms / FPIN warnings
10037  		 * 2. Signal alarms / Signal warnings
10038  		 * 3. FPIN alarms / Signal warnings
10039  		 * 4. Signal alarms / FPIN warnings
10040  		 *
10041  		 * Initialize the adapter frequency to 100 mSecs
10042  		 */
10043  		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10044  		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
10045  		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
10046  
10047  		if (lpfc_use_cgn_signal) {
10048  			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
10049  				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
10050  				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
10051  			}
10052  			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
10053  				/* MUST support both alarm and warning
10054  				 * because EDC does not support alarm alone.
10055  				 */
10056  				if (phba->cgn_reg_signal !=
10057  				    EDC_CG_SIG_WARN_ONLY) {
10058  					/* Must support both or none */
10059  					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10060  					phba->cgn_reg_signal =
10061  						EDC_CG_SIG_NOTSUPPORTED;
10062  				} else {
10063  					phba->cgn_reg_signal =
10064  						EDC_CG_SIG_WARN_ALARM;
10065  					phba->cgn_reg_fpin =
10066  						LPFC_CGN_FPIN_NONE;
10067  				}
10068  			}
10069  		}
10070  
10071  		/* Set the congestion initial signal and fpin values. */
10072  		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
10073  		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
10074  
10075  		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
10076  				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
10077  				phba->cgn_reg_signal, phba->cgn_reg_fpin);
10078  
10079  		lpfc_map_topology(phba, rd_config);
10080  		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10081  				"2003 cfg params Extents? %d "
10082  				"XRI(B:%d M:%d), "
10083  				"VPI(B:%d M:%d) "
10084  				"VFI(B:%d M:%d) "
10085  				"RPI(B:%d M:%d) "
10086  				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
10087  				phba->sli4_hba.extents_in_use,
10088  				phba->sli4_hba.max_cfg_param.xri_base,
10089  				phba->sli4_hba.max_cfg_param.max_xri,
10090  				phba->sli4_hba.max_cfg_param.vpi_base,
10091  				phba->sli4_hba.max_cfg_param.max_vpi,
10092  				phba->sli4_hba.max_cfg_param.vfi_base,
10093  				phba->sli4_hba.max_cfg_param.max_vfi,
10094  				phba->sli4_hba.max_cfg_param.rpi_base,
10095  				phba->sli4_hba.max_cfg_param.max_rpi,
10096  				phba->sli4_hba.max_cfg_param.max_fcfi,
10097  				phba->sli4_hba.max_cfg_param.max_eq,
10098  				phba->sli4_hba.max_cfg_param.max_cq,
10099  				phba->sli4_hba.max_cfg_param.max_wq,
10100  				phba->sli4_hba.max_cfg_param.max_rq,
10101  				phba->lmt);
10102  
10103  		/*
10104  		 * Calculate queue resources based on how
10105  		 * many WQ/CQ/EQs are available.
10106  		 */
10107  		qmin = phba->sli4_hba.max_cfg_param.max_wq;
10108  		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
10109  			qmin = phba->sli4_hba.max_cfg_param.max_cq;
10110  		/*
10111  		 * Reserve 4 (ELS, NVME LS, MBOX, plus one extra) and
10112  		 * the remainder can be used for NVME / FCP.
10113  		 */
10114  		qmin -= 4;
10115  		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
10116  			qmin = phba->sli4_hba.max_cfg_param.max_eq;
10117  
10118  		/* Check to see if there is enough for default cfg */
10119  		if ((phba->cfg_irq_chann > qmin) ||
10120  		    (phba->cfg_hdw_queue > qmin)) {
10121  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10122  					"2005 Reducing Queues - "
10123  					"FW resource limitation: "
10124  					"WQ %d CQ %d EQ %d: min %d: "
10125  					"IRQ %d HDWQ %d\n",
10126  					phba->sli4_hba.max_cfg_param.max_wq,
10127  					phba->sli4_hba.max_cfg_param.max_cq,
10128  					phba->sli4_hba.max_cfg_param.max_eq,
10129  					qmin, phba->cfg_irq_chann,
10130  					phba->cfg_hdw_queue);
10131  
10132  			if (phba->cfg_irq_chann > qmin)
10133  				phba->cfg_irq_chann = qmin;
10134  			if (phba->cfg_hdw_queue > qmin)
10135  				phba->cfg_hdw_queue = qmin;
10136  		}
10137  	}
10138  
10139  	if (rc)
10140  		goto read_cfg_out;
10141  
10142  	/* Update link speed if forced link speed is supported */
10143  	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10144  	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10145  		forced_link_speed =
10146  			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
10147  		if (forced_link_speed) {
10148  			set_bit(HBA_FORCED_LINK_SPEED, &phba->hba_flag);
10149  
10150  			switch (forced_link_speed) {
10151  			case LINK_SPEED_1G:
10152  				phba->cfg_link_speed =
10153  					LPFC_USER_LINK_SPEED_1G;
10154  				break;
10155  			case LINK_SPEED_2G:
10156  				phba->cfg_link_speed =
10157  					LPFC_USER_LINK_SPEED_2G;
10158  				break;
10159  			case LINK_SPEED_4G:
10160  				phba->cfg_link_speed =
10161  					LPFC_USER_LINK_SPEED_4G;
10162  				break;
10163  			case LINK_SPEED_8G:
10164  				phba->cfg_link_speed =
10165  					LPFC_USER_LINK_SPEED_8G;
10166  				break;
10167  			case LINK_SPEED_10G:
10168  				phba->cfg_link_speed =
10169  					LPFC_USER_LINK_SPEED_10G;
10170  				break;
10171  			case LINK_SPEED_16G:
10172  				phba->cfg_link_speed =
10173  					LPFC_USER_LINK_SPEED_16G;
10174  				break;
10175  			case LINK_SPEED_32G:
10176  				phba->cfg_link_speed =
10177  					LPFC_USER_LINK_SPEED_32G;
10178  				break;
10179  			case LINK_SPEED_64G:
10180  				phba->cfg_link_speed =
10181  					LPFC_USER_LINK_SPEED_64G;
10182  				break;
10183  			case 0xffff:
10184  				phba->cfg_link_speed =
10185  					LPFC_USER_LINK_SPEED_AUTO;
10186  				break;
10187  			default:
10188  				lpfc_printf_log(phba, KERN_ERR,
10189  						LOG_TRACE_EVENT,
10190  						"0047 Unrecognized link "
10191  						"speed : %d\n",
10192  						forced_link_speed);
10193  				phba->cfg_link_speed =
10194  					LPFC_USER_LINK_SPEED_AUTO;
10195  			}
10196  		}
10197  	}
10198  
10199  	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
10200  	length = phba->sli4_hba.max_cfg_param.max_xri -
10201  			lpfc_sli4_get_els_iocb_cnt(phba);
10202  	if (phba->cfg_hba_queue_depth > length) {
10203  		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10204  				"3361 HBA queue depth changed from %d to %d\n",
10205  				phba->cfg_hba_queue_depth, length);
10206  		phba->cfg_hba_queue_depth = length;
10207  	}
10208  
10209  	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
10210  	    LPFC_SLI_INTF_IF_TYPE_2)
10211  		goto read_cfg_out;
10212  
10213  	/* get the pf# and vf# for SLI4 if_type 2 port */
10214  	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
10215  		  sizeof(struct lpfc_sli4_cfg_mhdr));
10216  	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
10217  			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
10218  			 length, LPFC_SLI4_MBX_EMBED);
10219  
10220  	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
10221  	shdr = (union lpfc_sli4_cfg_shdr *)
10222  				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
10223  	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10224  	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10225  	if (rc2 || shdr_status || shdr_add_status) {
10226  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10227  				"3026 Mailbox failed , mbxCmd x%x "
10228  				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
10229  				bf_get(lpfc_mqe_command, &pmb->u.mqe),
10230  				bf_get(lpfc_mqe_status, &pmb->u.mqe));
10231  		goto read_cfg_out;
10232  	}
10233  
10234  	/* search for fc_fcoe resrouce descriptor */
10235  	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
10236  
10237  	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
10238  	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
10239  	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10240  	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10241  		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10242  	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10243  		goto read_cfg_out;
10244  
10245  	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10246  		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10247  		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10248  		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10249  			phba->sli4_hba.iov.pf_number =
10250  				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10251  			phba->sli4_hba.iov.vf_number =
10252  				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10253  			break;
10254  		}
10255  	}
10256  
10257  	if (i < LPFC_RSRC_DESC_MAX_NUM)
10258  		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10259  				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10260  				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10261  				phba->sli4_hba.iov.vf_number);
10262  	else
10263  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10264  				"3028 GET_FUNCTION_CONFIG: failed to find "
10265  				"Resource Descriptor:x%x\n",
10266  				LPFC_RSRC_DESC_TYPE_FCFCOE);
10267  
10268  read_cfg_out:
10269  	mempool_free(pmb, phba->mbox_mem_pool);
10270  	return rc;
10271  }
10272  
10273  /**
10274   * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10275   * @phba: pointer to lpfc hba data structure.
10276   *
10277   * This routine is invoked to setup the port-side endian order when
10278   * the port if_type is 0.  This routine has no function for other
10279   * if_types.
10280   *
10281   * Return codes
10282   * 	0 - successful
10283   * 	-ENOMEM - No available memory
10284   *      -EIO - The mailbox failed to complete successfully.
10285   **/
10286  static int
lpfc_setup_endian_order(struct lpfc_hba * phba)10287  lpfc_setup_endian_order(struct lpfc_hba *phba)
10288  {
10289  	LPFC_MBOXQ_t *mboxq;
10290  	uint32_t if_type, rc = 0;
10291  	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10292  				      HOST_ENDIAN_HIGH_WORD1};
10293  
10294  	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10295  	switch (if_type) {
10296  	case LPFC_SLI_INTF_IF_TYPE_0:
10297  		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10298  						       GFP_KERNEL);
10299  		if (!mboxq) {
10300  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10301  					"0492 Unable to allocate memory for "
10302  					"issuing SLI_CONFIG_SPECIAL mailbox "
10303  					"command\n");
10304  			return -ENOMEM;
10305  		}
10306  
10307  		/*
10308  		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10309  		 * two words to contain special data values and no other data.
10310  		 */
10311  		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10312  		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10313  		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10314  		if (rc != MBX_SUCCESS) {
10315  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10316  					"0493 SLI_CONFIG_SPECIAL mailbox "
10317  					"failed with status x%x\n",
10318  					rc);
10319  			rc = -EIO;
10320  		}
10321  		mempool_free(mboxq, phba->mbox_mem_pool);
10322  		break;
10323  	case LPFC_SLI_INTF_IF_TYPE_6:
10324  	case LPFC_SLI_INTF_IF_TYPE_2:
10325  	case LPFC_SLI_INTF_IF_TYPE_1:
10326  	default:
10327  		break;
10328  	}
10329  	return rc;
10330  }
10331  
10332  /**
10333   * lpfc_sli4_queue_verify - Verify and update EQ counts
10334   * @phba: pointer to lpfc hba data structure.
10335   *
10336   * This routine is invoked to check the user settable queue counts for EQs.
10337   * After this routine is called the counts will be set to valid values that
10338   * adhere to the constraints of the system's interrupt vectors and the port's
10339   * queue resources.
10340   *
10341   * Return codes
10342   *      0 - successful
10343   *      -ENOMEM - No available memory
10344   **/
10345  static int
lpfc_sli4_queue_verify(struct lpfc_hba * phba)10346  lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10347  {
10348  	/*
10349  	 * Sanity check for configured queue parameters against the run-time
10350  	 * device parameters
10351  	 */
10352  
10353  	if (phba->nvmet_support) {
10354  		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10355  			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10356  		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10357  			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10358  	}
10359  
10360  	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10361  			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10362  			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10363  			phba->cfg_nvmet_mrq);
10364  
10365  	/* Get EQ depth from module parameter, fake the default for now */
10366  	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10367  	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10368  
10369  	/* Get CQ depth from module parameter, fake the default for now */
10370  	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10371  	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10372  	return 0;
10373  }
10374  
10375  static int
lpfc_alloc_io_wq_cq(struct lpfc_hba * phba,int idx)10376  lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10377  {
10378  	struct lpfc_queue *qdesc;
10379  	u32 wqesize;
10380  	int cpu;
10381  
10382  	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10383  	/* Create Fast Path IO CQs */
10384  	if (phba->enab_exp_wqcq_pages)
10385  		/* Increase the CQ size when WQEs contain an embedded cdb */
10386  		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10387  					      phba->sli4_hba.cq_esize,
10388  					      LPFC_CQE_EXP_COUNT, cpu);
10389  
10390  	else
10391  		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10392  					      phba->sli4_hba.cq_esize,
10393  					      phba->sli4_hba.cq_ecount, cpu);
10394  	if (!qdesc) {
10395  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10396  				"0499 Failed allocate fast-path IO CQ (%d)\n",
10397  				idx);
10398  		return 1;
10399  	}
10400  	qdesc->qe_valid = 1;
10401  	qdesc->hdwq = idx;
10402  	qdesc->chann = cpu;
10403  	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10404  
10405  	/* Create Fast Path IO WQs */
10406  	if (phba->enab_exp_wqcq_pages) {
10407  		/* Increase the WQ size when WQEs contain an embedded cdb */
10408  		wqesize = (phba->fcp_embed_io) ?
10409  			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10410  		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10411  					      wqesize,
10412  					      LPFC_WQE_EXP_COUNT, cpu);
10413  	} else
10414  		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10415  					      phba->sli4_hba.wq_esize,
10416  					      phba->sli4_hba.wq_ecount, cpu);
10417  
10418  	if (!qdesc) {
10419  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10420  				"0503 Failed allocate fast-path IO WQ (%d)\n",
10421  				idx);
10422  		return 1;
10423  	}
10424  	qdesc->hdwq = idx;
10425  	qdesc->chann = cpu;
10426  	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10427  	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10428  	return 0;
10429  }
10430  
10431  /**
10432   * lpfc_sli4_queue_create - Create all the SLI4 queues
10433   * @phba: pointer to lpfc hba data structure.
10434   *
10435   * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10436   * operation. For each SLI4 queue type, the parameters such as queue entry
10437   * count (queue depth) shall be taken from the module parameter. For now,
10438   * we just use some constant number as place holder.
10439   *
10440   * Return codes
10441   *      0 - successful
10442   *      -ENOMEM - No availble memory
10443   *      -EIO - The mailbox failed to complete successfully.
10444   **/
10445  int
lpfc_sli4_queue_create(struct lpfc_hba * phba)10446  lpfc_sli4_queue_create(struct lpfc_hba *phba)
10447  {
10448  	struct lpfc_queue *qdesc;
10449  	int idx, cpu, eqcpu;
10450  	struct lpfc_sli4_hdw_queue *qp;
10451  	struct lpfc_vector_map_info *cpup;
10452  	struct lpfc_vector_map_info *eqcpup;
10453  	struct lpfc_eq_intr_info *eqi;
10454  	u32 wqesize;
10455  
10456  	/*
10457  	 * Create HBA Record arrays.
10458  	 * Both NVME and FCP will share that same vectors / EQs
10459  	 */
10460  	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10461  	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10462  	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10463  	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10464  	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10465  	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10466  	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10467  	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10468  	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10469  	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10470  
10471  	if (!phba->sli4_hba.hdwq) {
10472  		phba->sli4_hba.hdwq = kcalloc(
10473  			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10474  			GFP_KERNEL);
10475  		if (!phba->sli4_hba.hdwq) {
10476  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10477  					"6427 Failed allocate memory for "
10478  					"fast-path Hardware Queue array\n");
10479  			goto out_error;
10480  		}
10481  		/* Prepare hardware queues to take IO buffers */
10482  		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10483  			qp = &phba->sli4_hba.hdwq[idx];
10484  			spin_lock_init(&qp->io_buf_list_get_lock);
10485  			spin_lock_init(&qp->io_buf_list_put_lock);
10486  			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10487  			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10488  			qp->get_io_bufs = 0;
10489  			qp->put_io_bufs = 0;
10490  			qp->total_io_bufs = 0;
10491  			spin_lock_init(&qp->abts_io_buf_list_lock);
10492  			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10493  			qp->abts_scsi_io_bufs = 0;
10494  			qp->abts_nvme_io_bufs = 0;
10495  			INIT_LIST_HEAD(&qp->sgl_list);
10496  			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10497  			spin_lock_init(&qp->hdwq_lock);
10498  		}
10499  	}
10500  
10501  	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10502  		if (phba->nvmet_support) {
10503  			phba->sli4_hba.nvmet_cqset = kcalloc(
10504  					phba->cfg_nvmet_mrq,
10505  					sizeof(struct lpfc_queue *),
10506  					GFP_KERNEL);
10507  			if (!phba->sli4_hba.nvmet_cqset) {
10508  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10509  					"3121 Fail allocate memory for "
10510  					"fast-path CQ set array\n");
10511  				goto out_error;
10512  			}
10513  			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10514  					phba->cfg_nvmet_mrq,
10515  					sizeof(struct lpfc_queue *),
10516  					GFP_KERNEL);
10517  			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10518  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10519  					"3122 Fail allocate memory for "
10520  					"fast-path RQ set hdr array\n");
10521  				goto out_error;
10522  			}
10523  			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10524  					phba->cfg_nvmet_mrq,
10525  					sizeof(struct lpfc_queue *),
10526  					GFP_KERNEL);
10527  			if (!phba->sli4_hba.nvmet_mrq_data) {
10528  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10529  					"3124 Fail allocate memory for "
10530  					"fast-path RQ set data array\n");
10531  				goto out_error;
10532  			}
10533  		}
10534  	}
10535  
10536  	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10537  
10538  	/* Create HBA Event Queues (EQs) */
10539  	for_each_present_cpu(cpu) {
10540  		/* We only want to create 1 EQ per vector, even though
10541  		 * multiple CPUs might be using that vector. so only
10542  		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10543  		 */
10544  		cpup = &phba->sli4_hba.cpu_map[cpu];
10545  		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10546  			continue;
10547  
10548  		/* Get a ptr to the Hardware Queue associated with this CPU */
10549  		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10550  
10551  		/* Allocate an EQ */
10552  		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10553  					      phba->sli4_hba.eq_esize,
10554  					      phba->sli4_hba.eq_ecount, cpu);
10555  		if (!qdesc) {
10556  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10557  					"0497 Failed allocate EQ (%d)\n",
10558  					cpup->hdwq);
10559  			goto out_error;
10560  		}
10561  		qdesc->qe_valid = 1;
10562  		qdesc->hdwq = cpup->hdwq;
10563  		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10564  		qdesc->last_cpu = qdesc->chann;
10565  
10566  		/* Save the allocated EQ in the Hardware Queue */
10567  		qp->hba_eq = qdesc;
10568  
10569  		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10570  		list_add(&qdesc->cpu_list, &eqi->list);
10571  	}
10572  
10573  	/* Now we need to populate the other Hardware Queues, that share
10574  	 * an IRQ vector, with the associated EQ ptr.
10575  	 */
10576  	for_each_present_cpu(cpu) {
10577  		cpup = &phba->sli4_hba.cpu_map[cpu];
10578  
10579  		/* Check for EQ already allocated in previous loop */
10580  		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10581  			continue;
10582  
10583  		/* Check for multiple CPUs per hdwq */
10584  		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10585  		if (qp->hba_eq)
10586  			continue;
10587  
10588  		/* We need to share an EQ for this hdwq */
10589  		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10590  		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10591  		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10592  	}
10593  
10594  	/* Allocate IO Path SLI4 CQ/WQs */
10595  	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10596  		if (lpfc_alloc_io_wq_cq(phba, idx))
10597  			goto out_error;
10598  	}
10599  
10600  	if (phba->nvmet_support) {
10601  		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10602  			cpu = lpfc_find_cpu_handle(phba, idx,
10603  						   LPFC_FIND_BY_HDWQ);
10604  			qdesc = lpfc_sli4_queue_alloc(phba,
10605  						      LPFC_DEFAULT_PAGE_SIZE,
10606  						      phba->sli4_hba.cq_esize,
10607  						      phba->sli4_hba.cq_ecount,
10608  						      cpu);
10609  			if (!qdesc) {
10610  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10611  						"3142 Failed allocate NVME "
10612  						"CQ Set (%d)\n", idx);
10613  				goto out_error;
10614  			}
10615  			qdesc->qe_valid = 1;
10616  			qdesc->hdwq = idx;
10617  			qdesc->chann = cpu;
10618  			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10619  		}
10620  	}
10621  
10622  	/*
10623  	 * Create Slow Path Completion Queues (CQs)
10624  	 */
10625  
10626  	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10627  	/* Create slow-path Mailbox Command Complete Queue */
10628  	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10629  				      phba->sli4_hba.cq_esize,
10630  				      phba->sli4_hba.cq_ecount, cpu);
10631  	if (!qdesc) {
10632  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10633  				"0500 Failed allocate slow-path mailbox CQ\n");
10634  		goto out_error;
10635  	}
10636  	qdesc->qe_valid = 1;
10637  	phba->sli4_hba.mbx_cq = qdesc;
10638  
10639  	/* Create slow-path ELS Complete Queue */
10640  	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10641  				      phba->sli4_hba.cq_esize,
10642  				      phba->sli4_hba.cq_ecount, cpu);
10643  	if (!qdesc) {
10644  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10645  				"0501 Failed allocate slow-path ELS CQ\n");
10646  		goto out_error;
10647  	}
10648  	qdesc->qe_valid = 1;
10649  	qdesc->chann = cpu;
10650  	phba->sli4_hba.els_cq = qdesc;
10651  
10652  
10653  	/*
10654  	 * Create Slow Path Work Queues (WQs)
10655  	 */
10656  
10657  	/* Create Mailbox Command Queue */
10658  
10659  	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10660  				      phba->sli4_hba.mq_esize,
10661  				      phba->sli4_hba.mq_ecount, cpu);
10662  	if (!qdesc) {
10663  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10664  				"0505 Failed allocate slow-path MQ\n");
10665  		goto out_error;
10666  	}
10667  	qdesc->chann = cpu;
10668  	phba->sli4_hba.mbx_wq = qdesc;
10669  
10670  	/*
10671  	 * Create ELS Work Queues
10672  	 */
10673  
10674  	/*
10675  	 * Create slow-path ELS Work Queue.
10676  	 * Increase the ELS WQ size when WQEs contain an embedded cdb
10677  	 */
10678  	wqesize = (phba->fcp_embed_io) ?
10679  			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10680  
10681  	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10682  				      wqesize,
10683  				      phba->sli4_hba.wq_ecount, cpu);
10684  	if (!qdesc) {
10685  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10686  				"0504 Failed allocate slow-path ELS WQ\n");
10687  		goto out_error;
10688  	}
10689  	qdesc->chann = cpu;
10690  	phba->sli4_hba.els_wq = qdesc;
10691  	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10692  
10693  	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10694  		/* Create NVME LS Complete Queue */
10695  		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10696  					      phba->sli4_hba.cq_esize,
10697  					      phba->sli4_hba.cq_ecount, cpu);
10698  		if (!qdesc) {
10699  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10700  					"6079 Failed allocate NVME LS CQ\n");
10701  			goto out_error;
10702  		}
10703  		qdesc->chann = cpu;
10704  		qdesc->qe_valid = 1;
10705  		phba->sli4_hba.nvmels_cq = qdesc;
10706  
10707  		/* Create NVME LS Work Queue */
10708  		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10709  					      phba->sli4_hba.wq_esize,
10710  					      phba->sli4_hba.wq_ecount, cpu);
10711  		if (!qdesc) {
10712  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10713  					"6080 Failed allocate NVME LS WQ\n");
10714  			goto out_error;
10715  		}
10716  		qdesc->chann = cpu;
10717  		phba->sli4_hba.nvmels_wq = qdesc;
10718  		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10719  	}
10720  
10721  	/*
10722  	 * Create Receive Queue (RQ)
10723  	 */
10724  
10725  	/* Create Receive Queue for header */
10726  	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10727  				      phba->sli4_hba.rq_esize,
10728  				      phba->sli4_hba.rq_ecount, cpu);
10729  	if (!qdesc) {
10730  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10731  				"0506 Failed allocate receive HRQ\n");
10732  		goto out_error;
10733  	}
10734  	phba->sli4_hba.hdr_rq = qdesc;
10735  
10736  	/* Create Receive Queue for data */
10737  	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10738  				      phba->sli4_hba.rq_esize,
10739  				      phba->sli4_hba.rq_ecount, cpu);
10740  	if (!qdesc) {
10741  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10742  				"0507 Failed allocate receive DRQ\n");
10743  		goto out_error;
10744  	}
10745  	phba->sli4_hba.dat_rq = qdesc;
10746  
10747  	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10748  	    phba->nvmet_support) {
10749  		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10750  			cpu = lpfc_find_cpu_handle(phba, idx,
10751  						   LPFC_FIND_BY_HDWQ);
10752  			/* Create NVMET Receive Queue for header */
10753  			qdesc = lpfc_sli4_queue_alloc(phba,
10754  						      LPFC_DEFAULT_PAGE_SIZE,
10755  						      phba->sli4_hba.rq_esize,
10756  						      LPFC_NVMET_RQE_DEF_COUNT,
10757  						      cpu);
10758  			if (!qdesc) {
10759  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10760  						"3146 Failed allocate "
10761  						"receive HRQ\n");
10762  				goto out_error;
10763  			}
10764  			qdesc->hdwq = idx;
10765  			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10766  
10767  			/* Only needed for header of RQ pair */
10768  			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10769  						   GFP_KERNEL,
10770  						   cpu_to_node(cpu));
10771  			if (qdesc->rqbp == NULL) {
10772  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10773  						"6131 Failed allocate "
10774  						"Header RQBP\n");
10775  				goto out_error;
10776  			}
10777  
10778  			/* Put list in known state in case driver load fails. */
10779  			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10780  
10781  			/* Create NVMET Receive Queue for data */
10782  			qdesc = lpfc_sli4_queue_alloc(phba,
10783  						      LPFC_DEFAULT_PAGE_SIZE,
10784  						      phba->sli4_hba.rq_esize,
10785  						      LPFC_NVMET_RQE_DEF_COUNT,
10786  						      cpu);
10787  			if (!qdesc) {
10788  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10789  						"3156 Failed allocate "
10790  						"receive DRQ\n");
10791  				goto out_error;
10792  			}
10793  			qdesc->hdwq = idx;
10794  			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10795  		}
10796  	}
10797  
10798  	/* Clear NVME stats */
10799  	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10800  		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10801  			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10802  			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10803  		}
10804  	}
10805  
10806  	/* Clear SCSI stats */
10807  	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10808  		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10809  			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10810  			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10811  		}
10812  	}
10813  
10814  	return 0;
10815  
10816  out_error:
10817  	lpfc_sli4_queue_destroy(phba);
10818  	return -ENOMEM;
10819  }
10820  
10821  static inline void
__lpfc_sli4_release_queue(struct lpfc_queue ** qp)10822  __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10823  {
10824  	if (*qp != NULL) {
10825  		lpfc_sli4_queue_free(*qp);
10826  		*qp = NULL;
10827  	}
10828  }
10829  
10830  static inline void
lpfc_sli4_release_queues(struct lpfc_queue *** qs,int max)10831  lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10832  {
10833  	int idx;
10834  
10835  	if (*qs == NULL)
10836  		return;
10837  
10838  	for (idx = 0; idx < max; idx++)
10839  		__lpfc_sli4_release_queue(&(*qs)[idx]);
10840  
10841  	kfree(*qs);
10842  	*qs = NULL;
10843  }
10844  
10845  static inline void
lpfc_sli4_release_hdwq(struct lpfc_hba * phba)10846  lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10847  {
10848  	struct lpfc_sli4_hdw_queue *hdwq;
10849  	struct lpfc_queue *eq;
10850  	uint32_t idx;
10851  
10852  	hdwq = phba->sli4_hba.hdwq;
10853  
10854  	/* Loop thru all Hardware Queues */
10855  	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10856  		/* Free the CQ/WQ corresponding to the Hardware Queue */
10857  		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10858  		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10859  		hdwq[idx].hba_eq = NULL;
10860  		hdwq[idx].io_cq = NULL;
10861  		hdwq[idx].io_wq = NULL;
10862  		if (phba->cfg_xpsgl && !phba->nvmet_support)
10863  			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10864  		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10865  	}
10866  	/* Loop thru all IRQ vectors */
10867  	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10868  		/* Free the EQ corresponding to the IRQ vector */
10869  		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10870  		lpfc_sli4_queue_free(eq);
10871  		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10872  	}
10873  }
10874  
10875  /**
10876   * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10877   * @phba: pointer to lpfc hba data structure.
10878   *
10879   * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10880   * operation.
10881   *
10882   * Return codes
10883   *      0 - successful
10884   *      -ENOMEM - No available memory
10885   *      -EIO - The mailbox failed to complete successfully.
10886   **/
10887  void
lpfc_sli4_queue_destroy(struct lpfc_hba * phba)10888  lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10889  {
10890  	/*
10891  	 * Set FREE_INIT before beginning to free the queues.
10892  	 * Wait until the users of queues to acknowledge to
10893  	 * release queues by clearing FREE_WAIT.
10894  	 */
10895  	spin_lock_irq(&phba->hbalock);
10896  	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10897  	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10898  		spin_unlock_irq(&phba->hbalock);
10899  		msleep(20);
10900  		spin_lock_irq(&phba->hbalock);
10901  	}
10902  	spin_unlock_irq(&phba->hbalock);
10903  
10904  	lpfc_sli4_cleanup_poll_list(phba);
10905  
10906  	/* Release HBA eqs */
10907  	if (phba->sli4_hba.hdwq)
10908  		lpfc_sli4_release_hdwq(phba);
10909  
10910  	if (phba->nvmet_support) {
10911  		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10912  					 phba->cfg_nvmet_mrq);
10913  
10914  		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10915  					 phba->cfg_nvmet_mrq);
10916  		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10917  					 phba->cfg_nvmet_mrq);
10918  	}
10919  
10920  	/* Release mailbox command work queue */
10921  	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10922  
10923  	/* Release ELS work queue */
10924  	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10925  
10926  	/* Release ELS work queue */
10927  	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10928  
10929  	/* Release unsolicited receive queue */
10930  	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10931  	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10932  
10933  	/* Release ELS complete queue */
10934  	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10935  
10936  	/* Release NVME LS complete queue */
10937  	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10938  
10939  	/* Release mailbox command complete queue */
10940  	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10941  
10942  	/* Everything on this list has been freed */
10943  	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10944  
10945  	/* Done with freeing the queues */
10946  	spin_lock_irq(&phba->hbalock);
10947  	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10948  	spin_unlock_irq(&phba->hbalock);
10949  }
10950  
10951  int
lpfc_free_rq_buffer(struct lpfc_hba * phba,struct lpfc_queue * rq)10952  lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10953  {
10954  	struct lpfc_rqb *rqbp;
10955  	struct lpfc_dmabuf *h_buf;
10956  	struct rqb_dmabuf *rqb_buffer;
10957  
10958  	rqbp = rq->rqbp;
10959  	while (!list_empty(&rqbp->rqb_buffer_list)) {
10960  		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10961  				 struct lpfc_dmabuf, list);
10962  
10963  		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
10964  		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
10965  		rqbp->buffer_count--;
10966  	}
10967  	return 1;
10968  }
10969  
10970  static int
lpfc_create_wq_cq(struct lpfc_hba * phba,struct lpfc_queue * eq,struct lpfc_queue * cq,struct lpfc_queue * wq,uint16_t * cq_map,int qidx,uint32_t qtype)10971  lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
10972  	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
10973  	int qidx, uint32_t qtype)
10974  {
10975  	struct lpfc_sli_ring *pring;
10976  	int rc;
10977  
10978  	if (!eq || !cq || !wq) {
10979  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10980  			"6085 Fast-path %s (%d) not allocated\n",
10981  			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
10982  		return -ENOMEM;
10983  	}
10984  
10985  	/* create the Cq first */
10986  	rc = lpfc_cq_create(phba, cq, eq,
10987  			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
10988  	if (rc) {
10989  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10990  				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
10991  				qidx, (uint32_t)rc);
10992  		return rc;
10993  	}
10994  
10995  	if (qtype != LPFC_MBOX) {
10996  		/* Setup cq_map for fast lookup */
10997  		if (cq_map)
10998  			*cq_map = cq->queue_id;
10999  
11000  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11001  			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
11002  			qidx, cq->queue_id, qidx, eq->queue_id);
11003  
11004  		/* create the wq */
11005  		rc = lpfc_wq_create(phba, wq, cq, qtype);
11006  		if (rc) {
11007  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11008  				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
11009  				qidx, (uint32_t)rc);
11010  			/* no need to tear down cq - caller will do so */
11011  			return rc;
11012  		}
11013  
11014  		/* Bind this CQ/WQ to the NVME ring */
11015  		pring = wq->pring;
11016  		pring->sli.sli4.wqp = (void *)wq;
11017  		cq->pring = pring;
11018  
11019  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11020  			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
11021  			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
11022  	} else {
11023  		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
11024  		if (rc) {
11025  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11026  					"0539 Failed setup of slow-path MQ: "
11027  					"rc = 0x%x\n", rc);
11028  			/* no need to tear down cq - caller will do so */
11029  			return rc;
11030  		}
11031  
11032  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11033  			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
11034  			phba->sli4_hba.mbx_wq->queue_id,
11035  			phba->sli4_hba.mbx_cq->queue_id);
11036  	}
11037  
11038  	return 0;
11039  }
11040  
11041  /**
11042   * lpfc_setup_cq_lookup - Setup the CQ lookup table
11043   * @phba: pointer to lpfc hba data structure.
11044   *
11045   * This routine will populate the cq_lookup table by all
11046   * available CQ queue_id's.
11047   **/
11048  static void
lpfc_setup_cq_lookup(struct lpfc_hba * phba)11049  lpfc_setup_cq_lookup(struct lpfc_hba *phba)
11050  {
11051  	struct lpfc_queue *eq, *childq;
11052  	int qidx;
11053  
11054  	memset(phba->sli4_hba.cq_lookup, 0,
11055  	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
11056  	/* Loop thru all IRQ vectors */
11057  	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11058  		/* Get the EQ corresponding to the IRQ vector */
11059  		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11060  		if (!eq)
11061  			continue;
11062  		/* Loop through all CQs associated with that EQ */
11063  		list_for_each_entry(childq, &eq->child_list, list) {
11064  			if (childq->queue_id > phba->sli4_hba.cq_max)
11065  				continue;
11066  			if (childq->subtype == LPFC_IO)
11067  				phba->sli4_hba.cq_lookup[childq->queue_id] =
11068  					childq;
11069  		}
11070  	}
11071  }
11072  
11073  /**
11074   * lpfc_sli4_queue_setup - Set up all the SLI4 queues
11075   * @phba: pointer to lpfc hba data structure.
11076   *
11077   * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
11078   * operation.
11079   *
11080   * Return codes
11081   *      0 - successful
11082   *      -ENOMEM - No available memory
11083   *      -EIO - The mailbox failed to complete successfully.
11084   **/
11085  int
lpfc_sli4_queue_setup(struct lpfc_hba * phba)11086  lpfc_sli4_queue_setup(struct lpfc_hba *phba)
11087  {
11088  	uint32_t shdr_status, shdr_add_status;
11089  	union lpfc_sli4_cfg_shdr *shdr;
11090  	struct lpfc_vector_map_info *cpup;
11091  	struct lpfc_sli4_hdw_queue *qp;
11092  	LPFC_MBOXQ_t *mboxq;
11093  	int qidx, cpu;
11094  	uint32_t length, usdelay;
11095  	int rc = -ENOMEM;
11096  
11097  	/* Check for dual-ULP support */
11098  	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11099  	if (!mboxq) {
11100  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11101  				"3249 Unable to allocate memory for "
11102  				"QUERY_FW_CFG mailbox command\n");
11103  		return -ENOMEM;
11104  	}
11105  	length = (sizeof(struct lpfc_mbx_query_fw_config) -
11106  		  sizeof(struct lpfc_sli4_cfg_mhdr));
11107  	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11108  			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
11109  			 length, LPFC_SLI4_MBX_EMBED);
11110  
11111  	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11112  
11113  	shdr = (union lpfc_sli4_cfg_shdr *)
11114  			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11115  	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11116  	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
11117  	if (shdr_status || shdr_add_status || rc) {
11118  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11119  				"3250 QUERY_FW_CFG mailbox failed with status "
11120  				"x%x add_status x%x, mbx status x%x\n",
11121  				shdr_status, shdr_add_status, rc);
11122  		mempool_free(mboxq, phba->mbox_mem_pool);
11123  		rc = -ENXIO;
11124  		goto out_error;
11125  	}
11126  
11127  	phba->sli4_hba.fw_func_mode =
11128  			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
11129  	phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
11130  	phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
11131  	phba->sli4_hba.physical_port =
11132  			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
11133  	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11134  			"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
11135  			"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
11136  			phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
11137  
11138  	mempool_free(mboxq, phba->mbox_mem_pool);
11139  
11140  	/*
11141  	 * Set up HBA Event Queues (EQs)
11142  	 */
11143  	qp = phba->sli4_hba.hdwq;
11144  
11145  	/* Set up HBA event queue */
11146  	if (!qp) {
11147  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11148  				"3147 Fast-path EQs not allocated\n");
11149  		rc = -ENOMEM;
11150  		goto out_error;
11151  	}
11152  
11153  	/* Loop thru all IRQ vectors */
11154  	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11155  		/* Create HBA Event Queues (EQs) in order */
11156  		for_each_present_cpu(cpu) {
11157  			cpup = &phba->sli4_hba.cpu_map[cpu];
11158  
11159  			/* Look for the CPU thats using that vector with
11160  			 * LPFC_CPU_FIRST_IRQ set.
11161  			 */
11162  			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
11163  				continue;
11164  			if (qidx != cpup->eq)
11165  				continue;
11166  
11167  			/* Create an EQ for that vector */
11168  			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
11169  					    phba->cfg_fcp_imax);
11170  			if (rc) {
11171  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11172  						"0523 Failed setup of fast-path"
11173  						" EQ (%d), rc = 0x%x\n",
11174  						cpup->eq, (uint32_t)rc);
11175  				goto out_destroy;
11176  			}
11177  
11178  			/* Save the EQ for that vector in the hba_eq_hdl */
11179  			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
11180  				qp[cpup->hdwq].hba_eq;
11181  
11182  			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11183  					"2584 HBA EQ setup: queue[%d]-id=%d\n",
11184  					cpup->eq,
11185  					qp[cpup->hdwq].hba_eq->queue_id);
11186  		}
11187  	}
11188  
11189  	/* Loop thru all Hardware Queues */
11190  	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11191  		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
11192  		cpup = &phba->sli4_hba.cpu_map[cpu];
11193  
11194  		/* Create the CQ/WQ corresponding to the Hardware Queue */
11195  		rc = lpfc_create_wq_cq(phba,
11196  				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
11197  				       qp[qidx].io_cq,
11198  				       qp[qidx].io_wq,
11199  				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
11200  				       qidx,
11201  				       LPFC_IO);
11202  		if (rc) {
11203  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11204  					"0535 Failed to setup fastpath "
11205  					"IO WQ/CQ (%d), rc = 0x%x\n",
11206  					qidx, (uint32_t)rc);
11207  			goto out_destroy;
11208  		}
11209  	}
11210  
11211  	/*
11212  	 * Set up Slow Path Complete Queues (CQs)
11213  	 */
11214  
11215  	/* Set up slow-path MBOX CQ/MQ */
11216  
11217  	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
11218  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11219  				"0528 %s not allocated\n",
11220  				phba->sli4_hba.mbx_cq ?
11221  				"Mailbox WQ" : "Mailbox CQ");
11222  		rc = -ENOMEM;
11223  		goto out_destroy;
11224  	}
11225  
11226  	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11227  			       phba->sli4_hba.mbx_cq,
11228  			       phba->sli4_hba.mbx_wq,
11229  			       NULL, 0, LPFC_MBOX);
11230  	if (rc) {
11231  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11232  			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
11233  			(uint32_t)rc);
11234  		goto out_destroy;
11235  	}
11236  	if (phba->nvmet_support) {
11237  		if (!phba->sli4_hba.nvmet_cqset) {
11238  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11239  					"3165 Fast-path NVME CQ Set "
11240  					"array not allocated\n");
11241  			rc = -ENOMEM;
11242  			goto out_destroy;
11243  		}
11244  		if (phba->cfg_nvmet_mrq > 1) {
11245  			rc = lpfc_cq_create_set(phba,
11246  					phba->sli4_hba.nvmet_cqset,
11247  					qp,
11248  					LPFC_WCQ, LPFC_NVMET);
11249  			if (rc) {
11250  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11251  						"3164 Failed setup of NVME CQ "
11252  						"Set, rc = 0x%x\n",
11253  						(uint32_t)rc);
11254  				goto out_destroy;
11255  			}
11256  		} else {
11257  			/* Set up NVMET Receive Complete Queue */
11258  			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11259  					    qp[0].hba_eq,
11260  					    LPFC_WCQ, LPFC_NVMET);
11261  			if (rc) {
11262  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11263  						"6089 Failed setup NVMET CQ: "
11264  						"rc = 0x%x\n", (uint32_t)rc);
11265  				goto out_destroy;
11266  			}
11267  			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11268  
11269  			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11270  					"6090 NVMET CQ setup: cq-id=%d, "
11271  					"parent eq-id=%d\n",
11272  					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11273  					qp[0].hba_eq->queue_id);
11274  		}
11275  	}
11276  
11277  	/* Set up slow-path ELS WQ/CQ */
11278  	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11279  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11280  				"0530 ELS %s not allocated\n",
11281  				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11282  		rc = -ENOMEM;
11283  		goto out_destroy;
11284  	}
11285  	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11286  			       phba->sli4_hba.els_cq,
11287  			       phba->sli4_hba.els_wq,
11288  			       NULL, 0, LPFC_ELS);
11289  	if (rc) {
11290  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11291  				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11292  				(uint32_t)rc);
11293  		goto out_destroy;
11294  	}
11295  	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11296  			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11297  			phba->sli4_hba.els_wq->queue_id,
11298  			phba->sli4_hba.els_cq->queue_id);
11299  
11300  	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11301  		/* Set up NVME LS Complete Queue */
11302  		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11303  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11304  					"6091 LS %s not allocated\n",
11305  					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11306  			rc = -ENOMEM;
11307  			goto out_destroy;
11308  		}
11309  		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11310  				       phba->sli4_hba.nvmels_cq,
11311  				       phba->sli4_hba.nvmels_wq,
11312  				       NULL, 0, LPFC_NVME_LS);
11313  		if (rc) {
11314  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11315  					"0526 Failed setup of NVVME LS WQ/CQ: "
11316  					"rc = 0x%x\n", (uint32_t)rc);
11317  			goto out_destroy;
11318  		}
11319  
11320  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11321  				"6096 ELS WQ setup: wq-id=%d, "
11322  				"parent cq-id=%d\n",
11323  				phba->sli4_hba.nvmels_wq->queue_id,
11324  				phba->sli4_hba.nvmels_cq->queue_id);
11325  	}
11326  
11327  	/*
11328  	 * Create NVMET Receive Queue (RQ)
11329  	 */
11330  	if (phba->nvmet_support) {
11331  		if ((!phba->sli4_hba.nvmet_cqset) ||
11332  		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11333  		    (!phba->sli4_hba.nvmet_mrq_data)) {
11334  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11335  					"6130 MRQ CQ Queues not "
11336  					"allocated\n");
11337  			rc = -ENOMEM;
11338  			goto out_destroy;
11339  		}
11340  		if (phba->cfg_nvmet_mrq > 1) {
11341  			rc = lpfc_mrq_create(phba,
11342  					     phba->sli4_hba.nvmet_mrq_hdr,
11343  					     phba->sli4_hba.nvmet_mrq_data,
11344  					     phba->sli4_hba.nvmet_cqset,
11345  					     LPFC_NVMET);
11346  			if (rc) {
11347  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11348  						"6098 Failed setup of NVMET "
11349  						"MRQ: rc = 0x%x\n",
11350  						(uint32_t)rc);
11351  				goto out_destroy;
11352  			}
11353  
11354  		} else {
11355  			rc = lpfc_rq_create(phba,
11356  					    phba->sli4_hba.nvmet_mrq_hdr[0],
11357  					    phba->sli4_hba.nvmet_mrq_data[0],
11358  					    phba->sli4_hba.nvmet_cqset[0],
11359  					    LPFC_NVMET);
11360  			if (rc) {
11361  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11362  						"6057 Failed setup of NVMET "
11363  						"Receive Queue: rc = 0x%x\n",
11364  						(uint32_t)rc);
11365  				goto out_destroy;
11366  			}
11367  
11368  			lpfc_printf_log(
11369  				phba, KERN_INFO, LOG_INIT,
11370  				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11371  				"dat-rq-id=%d parent cq-id=%d\n",
11372  				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11373  				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11374  				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11375  
11376  		}
11377  	}
11378  
11379  	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11380  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11381  				"0540 Receive Queue not allocated\n");
11382  		rc = -ENOMEM;
11383  		goto out_destroy;
11384  	}
11385  
11386  	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11387  			    phba->sli4_hba.els_cq, LPFC_USOL);
11388  	if (rc) {
11389  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11390  				"0541 Failed setup of Receive Queue: "
11391  				"rc = 0x%x\n", (uint32_t)rc);
11392  		goto out_destroy;
11393  	}
11394  
11395  	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11396  			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11397  			"parent cq-id=%d\n",
11398  			phba->sli4_hba.hdr_rq->queue_id,
11399  			phba->sli4_hba.dat_rq->queue_id,
11400  			phba->sli4_hba.els_cq->queue_id);
11401  
11402  	if (phba->cfg_fcp_imax)
11403  		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11404  	else
11405  		usdelay = 0;
11406  
11407  	for (qidx = 0; qidx < phba->cfg_irq_chann;
11408  	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11409  		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11410  					 usdelay);
11411  
11412  	if (phba->sli4_hba.cq_max) {
11413  		kfree(phba->sli4_hba.cq_lookup);
11414  		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11415  			sizeof(struct lpfc_queue *), GFP_KERNEL);
11416  		if (!phba->sli4_hba.cq_lookup) {
11417  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11418  					"0549 Failed setup of CQ Lookup table: "
11419  					"size 0x%x\n", phba->sli4_hba.cq_max);
11420  			rc = -ENOMEM;
11421  			goto out_destroy;
11422  		}
11423  		lpfc_setup_cq_lookup(phba);
11424  	}
11425  	return 0;
11426  
11427  out_destroy:
11428  	lpfc_sli4_queue_unset(phba);
11429  out_error:
11430  	return rc;
11431  }
11432  
11433  /**
11434   * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11435   * @phba: pointer to lpfc hba data structure.
11436   *
11437   * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11438   * operation.
11439   *
11440   * Return codes
11441   *      0 - successful
11442   *      -ENOMEM - No available memory
11443   *      -EIO - The mailbox failed to complete successfully.
11444   **/
11445  void
lpfc_sli4_queue_unset(struct lpfc_hba * phba)11446  lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11447  {
11448  	struct lpfc_sli4_hdw_queue *qp;
11449  	struct lpfc_queue *eq;
11450  	int qidx;
11451  
11452  	/* Unset mailbox command work queue */
11453  	if (phba->sli4_hba.mbx_wq)
11454  		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11455  
11456  	/* Unset NVME LS work queue */
11457  	if (phba->sli4_hba.nvmels_wq)
11458  		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11459  
11460  	/* Unset ELS work queue */
11461  	if (phba->sli4_hba.els_wq)
11462  		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11463  
11464  	/* Unset unsolicited receive queue */
11465  	if (phba->sli4_hba.hdr_rq)
11466  		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11467  				phba->sli4_hba.dat_rq);
11468  
11469  	/* Unset mailbox command complete queue */
11470  	if (phba->sli4_hba.mbx_cq)
11471  		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11472  
11473  	/* Unset ELS complete queue */
11474  	if (phba->sli4_hba.els_cq)
11475  		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11476  
11477  	/* Unset NVME LS complete queue */
11478  	if (phba->sli4_hba.nvmels_cq)
11479  		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11480  
11481  	if (phba->nvmet_support) {
11482  		/* Unset NVMET MRQ queue */
11483  		if (phba->sli4_hba.nvmet_mrq_hdr) {
11484  			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11485  				lpfc_rq_destroy(
11486  					phba,
11487  					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11488  					phba->sli4_hba.nvmet_mrq_data[qidx]);
11489  		}
11490  
11491  		/* Unset NVMET CQ Set complete queue */
11492  		if (phba->sli4_hba.nvmet_cqset) {
11493  			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11494  				lpfc_cq_destroy(
11495  					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11496  		}
11497  	}
11498  
11499  	/* Unset fast-path SLI4 queues */
11500  	if (phba->sli4_hba.hdwq) {
11501  		/* Loop thru all Hardware Queues */
11502  		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11503  			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11504  			qp = &phba->sli4_hba.hdwq[qidx];
11505  			lpfc_wq_destroy(phba, qp->io_wq);
11506  			lpfc_cq_destroy(phba, qp->io_cq);
11507  		}
11508  		/* Loop thru all IRQ vectors */
11509  		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11510  			/* Destroy the EQ corresponding to the IRQ vector */
11511  			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11512  			lpfc_eq_destroy(phba, eq);
11513  		}
11514  	}
11515  
11516  	kfree(phba->sli4_hba.cq_lookup);
11517  	phba->sli4_hba.cq_lookup = NULL;
11518  	phba->sli4_hba.cq_max = 0;
11519  }
11520  
11521  /**
11522   * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11523   * @phba: pointer to lpfc hba data structure.
11524   *
11525   * This routine is invoked to allocate and set up a pool of completion queue
11526   * events. The body of the completion queue event is a completion queue entry
11527   * CQE. For now, this pool is used for the interrupt service routine to queue
11528   * the following HBA completion queue events for the worker thread to process:
11529   *   - Mailbox asynchronous events
11530   *   - Receive queue completion unsolicited events
11531   * Later, this can be used for all the slow-path events.
11532   *
11533   * Return codes
11534   *      0 - successful
11535   *      -ENOMEM - No available memory
11536   **/
11537  static int
lpfc_sli4_cq_event_pool_create(struct lpfc_hba * phba)11538  lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11539  {
11540  	struct lpfc_cq_event *cq_event;
11541  	int i;
11542  
11543  	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11544  		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11545  		if (!cq_event)
11546  			goto out_pool_create_fail;
11547  		list_add_tail(&cq_event->list,
11548  			      &phba->sli4_hba.sp_cqe_event_pool);
11549  	}
11550  	return 0;
11551  
11552  out_pool_create_fail:
11553  	lpfc_sli4_cq_event_pool_destroy(phba);
11554  	return -ENOMEM;
11555  }
11556  
11557  /**
11558   * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11559   * @phba: pointer to lpfc hba data structure.
11560   *
11561   * This routine is invoked to free the pool of completion queue events at
11562   * driver unload time. Note that, it is the responsibility of the driver
11563   * cleanup routine to free all the outstanding completion-queue events
11564   * allocated from this pool back into the pool before invoking this routine
11565   * to destroy the pool.
11566   **/
11567  static void
lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba * phba)11568  lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11569  {
11570  	struct lpfc_cq_event *cq_event, *next_cq_event;
11571  
11572  	list_for_each_entry_safe(cq_event, next_cq_event,
11573  				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11574  		list_del(&cq_event->list);
11575  		kfree(cq_event);
11576  	}
11577  }
11578  
11579  /**
11580   * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11581   * @phba: pointer to lpfc hba data structure.
11582   *
11583   * This routine is the lock free version of the API invoked to allocate a
11584   * completion-queue event from the free pool.
11585   *
11586   * Return: Pointer to the newly allocated completion-queue event if successful
11587   *         NULL otherwise.
11588   **/
11589  struct lpfc_cq_event *
__lpfc_sli4_cq_event_alloc(struct lpfc_hba * phba)11590  __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11591  {
11592  	struct lpfc_cq_event *cq_event = NULL;
11593  
11594  	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11595  			 struct lpfc_cq_event, list);
11596  	return cq_event;
11597  }
11598  
11599  /**
11600   * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11601   * @phba: pointer to lpfc hba data structure.
11602   *
11603   * This routine is the lock version of the API invoked to allocate a
11604   * completion-queue event from the free pool.
11605   *
11606   * Return: Pointer to the newly allocated completion-queue event if successful
11607   *         NULL otherwise.
11608   **/
11609  struct lpfc_cq_event *
lpfc_sli4_cq_event_alloc(struct lpfc_hba * phba)11610  lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11611  {
11612  	struct lpfc_cq_event *cq_event;
11613  	unsigned long iflags;
11614  
11615  	spin_lock_irqsave(&phba->hbalock, iflags);
11616  	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11617  	spin_unlock_irqrestore(&phba->hbalock, iflags);
11618  	return cq_event;
11619  }
11620  
11621  /**
11622   * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11623   * @phba: pointer to lpfc hba data structure.
11624   * @cq_event: pointer to the completion queue event to be freed.
11625   *
11626   * This routine is the lock free version of the API invoked to release a
11627   * completion-queue event back into the free pool.
11628   **/
11629  void
__lpfc_sli4_cq_event_release(struct lpfc_hba * phba,struct lpfc_cq_event * cq_event)11630  __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11631  			     struct lpfc_cq_event *cq_event)
11632  {
11633  	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11634  }
11635  
11636  /**
11637   * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11638   * @phba: pointer to lpfc hba data structure.
11639   * @cq_event: pointer to the completion queue event to be freed.
11640   *
11641   * This routine is the lock version of the API invoked to release a
11642   * completion-queue event back into the free pool.
11643   **/
11644  void
lpfc_sli4_cq_event_release(struct lpfc_hba * phba,struct lpfc_cq_event * cq_event)11645  lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11646  			   struct lpfc_cq_event *cq_event)
11647  {
11648  	unsigned long iflags;
11649  	spin_lock_irqsave(&phba->hbalock, iflags);
11650  	__lpfc_sli4_cq_event_release(phba, cq_event);
11651  	spin_unlock_irqrestore(&phba->hbalock, iflags);
11652  }
11653  
11654  /**
11655   * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11656   * @phba: pointer to lpfc hba data structure.
11657   *
11658   * This routine is to free all the pending completion-queue events to the
11659   * back into the free pool for device reset.
11660   **/
11661  static void
lpfc_sli4_cq_event_release_all(struct lpfc_hba * phba)11662  lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11663  {
11664  	LIST_HEAD(cq_event_list);
11665  	struct lpfc_cq_event *cq_event;
11666  	unsigned long iflags;
11667  
11668  	/* Retrieve all the pending WCQEs from pending WCQE lists */
11669  
11670  	/* Pending ELS XRI abort events */
11671  	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11672  	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11673  			 &cq_event_list);
11674  	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11675  
11676  	/* Pending asynnc events */
11677  	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11678  	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11679  			 &cq_event_list);
11680  	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11681  
11682  	while (!list_empty(&cq_event_list)) {
11683  		list_remove_head(&cq_event_list, cq_event,
11684  				 struct lpfc_cq_event, list);
11685  		lpfc_sli4_cq_event_release(phba, cq_event);
11686  	}
11687  }
11688  
11689  /**
11690   * lpfc_pci_function_reset - Reset pci function.
11691   * @phba: pointer to lpfc hba data structure.
11692   *
11693   * This routine is invoked to request a PCI function reset. It will destroys
11694   * all resources assigned to the PCI function which originates this request.
11695   *
11696   * Return codes
11697   *      0 - successful
11698   *      -ENOMEM - No available memory
11699   *      -EIO - The mailbox failed to complete successfully.
11700   **/
11701  int
lpfc_pci_function_reset(struct lpfc_hba * phba)11702  lpfc_pci_function_reset(struct lpfc_hba *phba)
11703  {
11704  	LPFC_MBOXQ_t *mboxq;
11705  	uint32_t rc = 0, if_type;
11706  	uint32_t shdr_status, shdr_add_status;
11707  	uint32_t rdy_chk;
11708  	uint32_t port_reset = 0;
11709  	union lpfc_sli4_cfg_shdr *shdr;
11710  	struct lpfc_register reg_data;
11711  	uint16_t devid;
11712  
11713  	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11714  	switch (if_type) {
11715  	case LPFC_SLI_INTF_IF_TYPE_0:
11716  		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11717  						       GFP_KERNEL);
11718  		if (!mboxq) {
11719  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11720  					"0494 Unable to allocate memory for "
11721  					"issuing SLI_FUNCTION_RESET mailbox "
11722  					"command\n");
11723  			return -ENOMEM;
11724  		}
11725  
11726  		/* Setup PCI function reset mailbox-ioctl command */
11727  		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11728  				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11729  				 LPFC_SLI4_MBX_EMBED);
11730  		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11731  		shdr = (union lpfc_sli4_cfg_shdr *)
11732  			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11733  		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11734  		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11735  					 &shdr->response);
11736  		mempool_free(mboxq, phba->mbox_mem_pool);
11737  		if (shdr_status || shdr_add_status || rc) {
11738  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11739  					"0495 SLI_FUNCTION_RESET mailbox "
11740  					"failed with status x%x add_status x%x,"
11741  					" mbx status x%x\n",
11742  					shdr_status, shdr_add_status, rc);
11743  			rc = -ENXIO;
11744  		}
11745  		break;
11746  	case LPFC_SLI_INTF_IF_TYPE_2:
11747  	case LPFC_SLI_INTF_IF_TYPE_6:
11748  wait:
11749  		/*
11750  		 * Poll the Port Status Register and wait for RDY for
11751  		 * up to 30 seconds. If the port doesn't respond, treat
11752  		 * it as an error.
11753  		 */
11754  		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11755  			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11756  				STATUSregaddr, &reg_data.word0)) {
11757  				rc = -ENODEV;
11758  				goto out;
11759  			}
11760  			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11761  				break;
11762  			msleep(20);
11763  		}
11764  
11765  		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11766  			phba->work_status[0] = readl(
11767  				phba->sli4_hba.u.if_type2.ERR1regaddr);
11768  			phba->work_status[1] = readl(
11769  				phba->sli4_hba.u.if_type2.ERR2regaddr);
11770  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11771  					"2890 Port not ready, port status reg "
11772  					"0x%x error 1=0x%x, error 2=0x%x\n",
11773  					reg_data.word0,
11774  					phba->work_status[0],
11775  					phba->work_status[1]);
11776  			rc = -ENODEV;
11777  			goto out;
11778  		}
11779  
11780  		if (bf_get(lpfc_sliport_status_pldv, &reg_data))
11781  			lpfc_pldv_detect = true;
11782  
11783  		if (!port_reset) {
11784  			/*
11785  			 * Reset the port now
11786  			 */
11787  			reg_data.word0 = 0;
11788  			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11789  			       LPFC_SLIPORT_LITTLE_ENDIAN);
11790  			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11791  			       LPFC_SLIPORT_INIT_PORT);
11792  			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11793  			       CTRLregaddr);
11794  			/* flush */
11795  			pci_read_config_word(phba->pcidev,
11796  					     PCI_DEVICE_ID, &devid);
11797  
11798  			port_reset = 1;
11799  			msleep(20);
11800  			goto wait;
11801  		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11802  			rc = -ENODEV;
11803  			goto out;
11804  		}
11805  		break;
11806  
11807  	case LPFC_SLI_INTF_IF_TYPE_1:
11808  	default:
11809  		break;
11810  	}
11811  
11812  out:
11813  	/* Catch the not-ready port failure after a port reset. */
11814  	if (rc) {
11815  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11816  				"3317 HBA not functional: IP Reset Failed "
11817  				"try: echo fw_reset > board_mode\n");
11818  		rc = -ENODEV;
11819  	}
11820  
11821  	return rc;
11822  }
11823  
11824  /**
11825   * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11826   * @phba: pointer to lpfc hba data structure.
11827   *
11828   * This routine is invoked to set up the PCI device memory space for device
11829   * with SLI-4 interface spec.
11830   *
11831   * Return codes
11832   * 	0 - successful
11833   * 	other values - error
11834   **/
11835  static int
lpfc_sli4_pci_mem_setup(struct lpfc_hba * phba)11836  lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11837  {
11838  	struct pci_dev *pdev = phba->pcidev;
11839  	unsigned long bar0map_len, bar1map_len, bar2map_len;
11840  	int error;
11841  	uint32_t if_type;
11842  
11843  	if (!pdev)
11844  		return -ENODEV;
11845  
11846  	/* Set the device DMA mask size */
11847  	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11848  	if (error)
11849  		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11850  	if (error)
11851  		return error;
11852  
11853  	/*
11854  	 * The BARs and register set definitions and offset locations are
11855  	 * dependent on the if_type.
11856  	 */
11857  	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11858  				  &phba->sli4_hba.sli_intf.word0)) {
11859  		return -ENODEV;
11860  	}
11861  
11862  	/* There is no SLI3 failback for SLI4 devices. */
11863  	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11864  	    LPFC_SLI_INTF_VALID) {
11865  		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11866  				"2894 SLI_INTF reg contents invalid "
11867  				"sli_intf reg 0x%x\n",
11868  				phba->sli4_hba.sli_intf.word0);
11869  		return -ENODEV;
11870  	}
11871  
11872  	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11873  	/*
11874  	 * Get the bus address of SLI4 device Bar regions and the
11875  	 * number of bytes required by each mapping. The mapping of the
11876  	 * particular PCI BARs regions is dependent on the type of
11877  	 * SLI4 device.
11878  	 */
11879  	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11880  		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11881  		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11882  
11883  		/*
11884  		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11885  		 * addr
11886  		 */
11887  		phba->sli4_hba.conf_regs_memmap_p =
11888  			ioremap(phba->pci_bar0_map, bar0map_len);
11889  		if (!phba->sli4_hba.conf_regs_memmap_p) {
11890  			dev_printk(KERN_ERR, &pdev->dev,
11891  				   "ioremap failed for SLI4 PCI config "
11892  				   "registers.\n");
11893  			return -ENODEV;
11894  		}
11895  		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11896  		/* Set up BAR0 PCI config space register memory map */
11897  		lpfc_sli4_bar0_register_memmap(phba, if_type);
11898  	} else {
11899  		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11900  		bar0map_len = pci_resource_len(pdev, 1);
11901  		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11902  			dev_printk(KERN_ERR, &pdev->dev,
11903  			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11904  			return -ENODEV;
11905  		}
11906  		phba->sli4_hba.conf_regs_memmap_p =
11907  				ioremap(phba->pci_bar0_map, bar0map_len);
11908  		if (!phba->sli4_hba.conf_regs_memmap_p) {
11909  			dev_printk(KERN_ERR, &pdev->dev,
11910  				"ioremap failed for SLI4 PCI config "
11911  				"registers.\n");
11912  			return -ENODEV;
11913  		}
11914  		lpfc_sli4_bar0_register_memmap(phba, if_type);
11915  	}
11916  
11917  	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11918  		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11919  			/*
11920  			 * Map SLI4 if type 0 HBA Control Register base to a
11921  			 * kernel virtual address and setup the registers.
11922  			 */
11923  			phba->pci_bar1_map = pci_resource_start(pdev,
11924  								PCI_64BIT_BAR2);
11925  			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11926  			phba->sli4_hba.ctrl_regs_memmap_p =
11927  					ioremap(phba->pci_bar1_map,
11928  						bar1map_len);
11929  			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11930  				dev_err(&pdev->dev,
11931  					   "ioremap failed for SLI4 HBA "
11932  					    "control registers.\n");
11933  				error = -ENOMEM;
11934  				goto out_iounmap_conf;
11935  			}
11936  			phba->pci_bar2_memmap_p =
11937  					 phba->sli4_hba.ctrl_regs_memmap_p;
11938  			lpfc_sli4_bar1_register_memmap(phba, if_type);
11939  		} else {
11940  			error = -ENOMEM;
11941  			goto out_iounmap_conf;
11942  		}
11943  	}
11944  
11945  	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11946  	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11947  		/*
11948  		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11949  		 * virtual address and setup the registers.
11950  		 */
11951  		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11952  		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11953  		phba->sli4_hba.drbl_regs_memmap_p =
11954  				ioremap(phba->pci_bar1_map, bar1map_len);
11955  		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11956  			dev_err(&pdev->dev,
11957  			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11958  			error = -ENOMEM;
11959  			goto out_iounmap_conf;
11960  		}
11961  		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11962  		lpfc_sli4_bar1_register_memmap(phba, if_type);
11963  	}
11964  
11965  	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11966  		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11967  			/*
11968  			 * Map SLI4 if type 0 HBA Doorbell Register base to
11969  			 * a kernel virtual address and setup the registers.
11970  			 */
11971  			phba->pci_bar2_map = pci_resource_start(pdev,
11972  								PCI_64BIT_BAR4);
11973  			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11974  			phba->sli4_hba.drbl_regs_memmap_p =
11975  					ioremap(phba->pci_bar2_map,
11976  						bar2map_len);
11977  			if (!phba->sli4_hba.drbl_regs_memmap_p) {
11978  				dev_err(&pdev->dev,
11979  					   "ioremap failed for SLI4 HBA"
11980  					   " doorbell registers.\n");
11981  				error = -ENOMEM;
11982  				goto out_iounmap_ctrl;
11983  			}
11984  			phba->pci_bar4_memmap_p =
11985  					phba->sli4_hba.drbl_regs_memmap_p;
11986  			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
11987  			if (error)
11988  				goto out_iounmap_all;
11989  		} else {
11990  			error = -ENOMEM;
11991  			goto out_iounmap_ctrl;
11992  		}
11993  	}
11994  
11995  	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
11996  	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11997  		/*
11998  		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
11999  		 * virtual address and setup the registers.
12000  		 */
12001  		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
12002  		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
12003  		phba->sli4_hba.dpp_regs_memmap_p =
12004  				ioremap(phba->pci_bar2_map, bar2map_len);
12005  		if (!phba->sli4_hba.dpp_regs_memmap_p) {
12006  			dev_err(&pdev->dev,
12007  			   "ioremap failed for SLI4 HBA dpp registers.\n");
12008  			error = -ENOMEM;
12009  			goto out_iounmap_all;
12010  		}
12011  		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
12012  	}
12013  
12014  	/* Set up the EQ/CQ register handeling functions now */
12015  	switch (if_type) {
12016  	case LPFC_SLI_INTF_IF_TYPE_0:
12017  	case LPFC_SLI_INTF_IF_TYPE_2:
12018  		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
12019  		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
12020  		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
12021  		break;
12022  	case LPFC_SLI_INTF_IF_TYPE_6:
12023  		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
12024  		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
12025  		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
12026  		break;
12027  	default:
12028  		break;
12029  	}
12030  
12031  	return 0;
12032  
12033  out_iounmap_all:
12034  	if (phba->sli4_hba.drbl_regs_memmap_p)
12035  		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12036  out_iounmap_ctrl:
12037  	if (phba->sli4_hba.ctrl_regs_memmap_p)
12038  		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12039  out_iounmap_conf:
12040  	iounmap(phba->sli4_hba.conf_regs_memmap_p);
12041  
12042  	return error;
12043  }
12044  
12045  /**
12046   * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
12047   * @phba: pointer to lpfc hba data structure.
12048   *
12049   * This routine is invoked to unset the PCI device memory space for device
12050   * with SLI-4 interface spec.
12051   **/
12052  static void
lpfc_sli4_pci_mem_unset(struct lpfc_hba * phba)12053  lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
12054  {
12055  	uint32_t if_type;
12056  	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12057  
12058  	switch (if_type) {
12059  	case LPFC_SLI_INTF_IF_TYPE_0:
12060  		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12061  		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12062  		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12063  		break;
12064  	case LPFC_SLI_INTF_IF_TYPE_2:
12065  		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12066  		break;
12067  	case LPFC_SLI_INTF_IF_TYPE_6:
12068  		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12069  		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12070  		if (phba->sli4_hba.dpp_regs_memmap_p)
12071  			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
12072  		break;
12073  	case LPFC_SLI_INTF_IF_TYPE_1:
12074  		break;
12075  	default:
12076  		dev_printk(KERN_ERR, &phba->pcidev->dev,
12077  			   "FATAL - unsupported SLI4 interface type - %d\n",
12078  			   if_type);
12079  		break;
12080  	}
12081  }
12082  
12083  /**
12084   * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
12085   * @phba: pointer to lpfc hba data structure.
12086   *
12087   * This routine is invoked to enable the MSI-X interrupt vectors to device
12088   * with SLI-3 interface specs.
12089   *
12090   * Return codes
12091   *   0 - successful
12092   *   other values - error
12093   **/
12094  static int
lpfc_sli_enable_msix(struct lpfc_hba * phba)12095  lpfc_sli_enable_msix(struct lpfc_hba *phba)
12096  {
12097  	int rc;
12098  	LPFC_MBOXQ_t *pmb;
12099  
12100  	/* Set up MSI-X multi-message vectors */
12101  	rc = pci_alloc_irq_vectors(phba->pcidev,
12102  			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
12103  	if (rc < 0) {
12104  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12105  				"0420 PCI enable MSI-X failed (%d)\n", rc);
12106  		goto vec_fail_out;
12107  	}
12108  
12109  	/*
12110  	 * Assign MSI-X vectors to interrupt handlers
12111  	 */
12112  
12113  	/* vector-0 is associated to slow-path handler */
12114  	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
12115  			 &lpfc_sli_sp_intr_handler, 0,
12116  			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
12117  	if (rc) {
12118  		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12119  				"0421 MSI-X slow-path request_irq failed "
12120  				"(%d)\n", rc);
12121  		goto msi_fail_out;
12122  	}
12123  
12124  	/* vector-1 is associated to fast-path handler */
12125  	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
12126  			 &lpfc_sli_fp_intr_handler, 0,
12127  			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
12128  
12129  	if (rc) {
12130  		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12131  				"0429 MSI-X fast-path request_irq failed "
12132  				"(%d)\n", rc);
12133  		goto irq_fail_out;
12134  	}
12135  
12136  	/*
12137  	 * Configure HBA MSI-X attention conditions to messages
12138  	 */
12139  	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12140  
12141  	if (!pmb) {
12142  		rc = -ENOMEM;
12143  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12144  				"0474 Unable to allocate memory for issuing "
12145  				"MBOX_CONFIG_MSI command\n");
12146  		goto mem_fail_out;
12147  	}
12148  	rc = lpfc_config_msi(phba, pmb);
12149  	if (rc)
12150  		goto mbx_fail_out;
12151  	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
12152  	if (rc != MBX_SUCCESS) {
12153  		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
12154  				"0351 Config MSI mailbox command failed, "
12155  				"mbxCmd x%x, mbxStatus x%x\n",
12156  				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
12157  		goto mbx_fail_out;
12158  	}
12159  
12160  	/* Free memory allocated for mailbox command */
12161  	mempool_free(pmb, phba->mbox_mem_pool);
12162  	return rc;
12163  
12164  mbx_fail_out:
12165  	/* Free memory allocated for mailbox command */
12166  	mempool_free(pmb, phba->mbox_mem_pool);
12167  
12168  mem_fail_out:
12169  	/* free the irq already requested */
12170  	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
12171  
12172  irq_fail_out:
12173  	/* free the irq already requested */
12174  	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
12175  
12176  msi_fail_out:
12177  	/* Unconfigure MSI-X capability structure */
12178  	pci_free_irq_vectors(phba->pcidev);
12179  
12180  vec_fail_out:
12181  	return rc;
12182  }
12183  
12184  /**
12185   * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
12186   * @phba: pointer to lpfc hba data structure.
12187   *
12188   * This routine is invoked to enable the MSI interrupt mode to device with
12189   * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
12190   * enable the MSI vector. The device driver is responsible for calling the
12191   * request_irq() to register MSI vector with a interrupt the handler, which
12192   * is done in this function.
12193   *
12194   * Return codes
12195   * 	0 - successful
12196   * 	other values - error
12197   */
12198  static int
lpfc_sli_enable_msi(struct lpfc_hba * phba)12199  lpfc_sli_enable_msi(struct lpfc_hba *phba)
12200  {
12201  	int rc;
12202  
12203  	rc = pci_enable_msi(phba->pcidev);
12204  	if (!rc)
12205  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12206  				"0012 PCI enable MSI mode success.\n");
12207  	else {
12208  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12209  				"0471 PCI enable MSI mode failed (%d)\n", rc);
12210  		return rc;
12211  	}
12212  
12213  	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12214  			 0, LPFC_DRIVER_NAME, phba);
12215  	if (rc) {
12216  		pci_disable_msi(phba->pcidev);
12217  		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12218  				"0478 MSI request_irq failed (%d)\n", rc);
12219  	}
12220  	return rc;
12221  }
12222  
12223  /**
12224   * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
12225   * @phba: pointer to lpfc hba data structure.
12226   * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12227   *
12228   * This routine is invoked to enable device interrupt and associate driver's
12229   * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
12230   * spec. Depends on the interrupt mode configured to the driver, the driver
12231   * will try to fallback from the configured interrupt mode to an interrupt
12232   * mode which is supported by the platform, kernel, and device in the order
12233   * of:
12234   * MSI-X -> MSI -> IRQ.
12235   *
12236   * Return codes
12237   *   0 - successful
12238   *   other values - error
12239   **/
12240  static uint32_t
lpfc_sli_enable_intr(struct lpfc_hba * phba,uint32_t cfg_mode)12241  lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12242  {
12243  	uint32_t intr_mode = LPFC_INTR_ERROR;
12244  	int retval;
12245  
12246  	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
12247  	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
12248  	if (retval)
12249  		return intr_mode;
12250  	clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag);
12251  
12252  	if (cfg_mode == 2) {
12253  		/* Now, try to enable MSI-X interrupt mode */
12254  		retval = lpfc_sli_enable_msix(phba);
12255  		if (!retval) {
12256  			/* Indicate initialization to MSI-X mode */
12257  			phba->intr_type = MSIX;
12258  			intr_mode = 2;
12259  		}
12260  	}
12261  
12262  	/* Fallback to MSI if MSI-X initialization failed */
12263  	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12264  		retval = lpfc_sli_enable_msi(phba);
12265  		if (!retval) {
12266  			/* Indicate initialization to MSI mode */
12267  			phba->intr_type = MSI;
12268  			intr_mode = 1;
12269  		}
12270  	}
12271  
12272  	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12273  	if (phba->intr_type == NONE) {
12274  		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12275  				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12276  		if (!retval) {
12277  			/* Indicate initialization to INTx mode */
12278  			phba->intr_type = INTx;
12279  			intr_mode = 0;
12280  		}
12281  	}
12282  	return intr_mode;
12283  }
12284  
12285  /**
12286   * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12287   * @phba: pointer to lpfc hba data structure.
12288   *
12289   * This routine is invoked to disable device interrupt and disassociate the
12290   * driver's interrupt handler(s) from interrupt vector(s) to device with
12291   * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12292   * release the interrupt vector(s) for the message signaled interrupt.
12293   **/
12294  static void
lpfc_sli_disable_intr(struct lpfc_hba * phba)12295  lpfc_sli_disable_intr(struct lpfc_hba *phba)
12296  {
12297  	int nr_irqs, i;
12298  
12299  	if (phba->intr_type == MSIX)
12300  		nr_irqs = LPFC_MSIX_VECTORS;
12301  	else
12302  		nr_irqs = 1;
12303  
12304  	for (i = 0; i < nr_irqs; i++)
12305  		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12306  	pci_free_irq_vectors(phba->pcidev);
12307  
12308  	/* Reset interrupt management states */
12309  	phba->intr_type = NONE;
12310  	phba->sli.slistat.sli_intr = 0;
12311  }
12312  
12313  /**
12314   * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12315   * @phba: pointer to lpfc hba data structure.
12316   * @id: EQ vector index or Hardware Queue index
12317   * @match: LPFC_FIND_BY_EQ = match by EQ
12318   *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12319   * Return the CPU that matches the selection criteria
12320   */
12321  static uint16_t
lpfc_find_cpu_handle(struct lpfc_hba * phba,uint16_t id,int match)12322  lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12323  {
12324  	struct lpfc_vector_map_info *cpup;
12325  	int cpu;
12326  
12327  	/* Loop through all CPUs */
12328  	for_each_present_cpu(cpu) {
12329  		cpup = &phba->sli4_hba.cpu_map[cpu];
12330  
12331  		/* If we are matching by EQ, there may be multiple CPUs using
12332  		 * using the same vector, so select the one with
12333  		 * LPFC_CPU_FIRST_IRQ set.
12334  		 */
12335  		if ((match == LPFC_FIND_BY_EQ) &&
12336  		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12337  		    (cpup->eq == id))
12338  			return cpu;
12339  
12340  		/* If matching by HDWQ, select the first CPU that matches */
12341  		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12342  			return cpu;
12343  	}
12344  	return 0;
12345  }
12346  
12347  #ifdef CONFIG_X86
12348  /**
12349   * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12350   * @phba: pointer to lpfc hba data structure.
12351   * @cpu: CPU map index
12352   * @phys_id: CPU package physical id
12353   * @core_id: CPU core id
12354   */
12355  static int
lpfc_find_hyper(struct lpfc_hba * phba,int cpu,uint16_t phys_id,uint16_t core_id)12356  lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12357  		uint16_t phys_id, uint16_t core_id)
12358  {
12359  	struct lpfc_vector_map_info *cpup;
12360  	int idx;
12361  
12362  	for_each_present_cpu(idx) {
12363  		cpup = &phba->sli4_hba.cpu_map[idx];
12364  		/* Does the cpup match the one we are looking for */
12365  		if ((cpup->phys_id == phys_id) &&
12366  		    (cpup->core_id == core_id) &&
12367  		    (cpu != idx))
12368  			return 1;
12369  	}
12370  	return 0;
12371  }
12372  #endif
12373  
12374  /*
12375   * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12376   * @phba: pointer to lpfc hba data structure.
12377   * @eqidx: index for eq and irq vector
12378   * @flag: flags to set for vector_map structure
12379   * @cpu: cpu used to index vector_map structure
12380   *
12381   * The routine assigns eq info into vector_map structure
12382   */
12383  static inline void
lpfc_assign_eq_map_info(struct lpfc_hba * phba,uint16_t eqidx,uint16_t flag,unsigned int cpu)12384  lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12385  			unsigned int cpu)
12386  {
12387  	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12388  	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12389  
12390  	cpup->eq = eqidx;
12391  	cpup->flag |= flag;
12392  
12393  	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12394  			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12395  			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12396  }
12397  
12398  /**
12399   * lpfc_cpu_map_array_init - Initialize cpu_map structure
12400   * @phba: pointer to lpfc hba data structure.
12401   *
12402   * The routine initializes the cpu_map array structure
12403   */
12404  static void
lpfc_cpu_map_array_init(struct lpfc_hba * phba)12405  lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12406  {
12407  	struct lpfc_vector_map_info *cpup;
12408  	struct lpfc_eq_intr_info *eqi;
12409  	int cpu;
12410  
12411  	for_each_possible_cpu(cpu) {
12412  		cpup = &phba->sli4_hba.cpu_map[cpu];
12413  		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12414  		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12415  		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12416  		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12417  		cpup->flag = 0;
12418  		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12419  		INIT_LIST_HEAD(&eqi->list);
12420  		eqi->icnt = 0;
12421  	}
12422  }
12423  
12424  /**
12425   * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12426   * @phba: pointer to lpfc hba data structure.
12427   *
12428   * The routine initializes the hba_eq_hdl array structure
12429   */
12430  static void
lpfc_hba_eq_hdl_array_init(struct lpfc_hba * phba)12431  lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12432  {
12433  	struct lpfc_hba_eq_hdl *eqhdl;
12434  	int i;
12435  
12436  	for (i = 0; i < phba->cfg_irq_chann; i++) {
12437  		eqhdl = lpfc_get_eq_hdl(i);
12438  		eqhdl->irq = LPFC_IRQ_EMPTY;
12439  		eqhdl->phba = phba;
12440  	}
12441  }
12442  
12443  /**
12444   * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12445   * @phba: pointer to lpfc hba data structure.
12446   * @vectors: number of msix vectors allocated.
12447   *
12448   * The routine will figure out the CPU affinity assignment for every
12449   * MSI-X vector allocated for the HBA.
12450   * In addition, the CPU to IO channel mapping will be calculated
12451   * and the phba->sli4_hba.cpu_map array will reflect this.
12452   */
12453  static void
lpfc_cpu_affinity_check(struct lpfc_hba * phba,int vectors)12454  lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12455  {
12456  	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12457  	int max_phys_id, min_phys_id;
12458  	int max_core_id, min_core_id;
12459  	struct lpfc_vector_map_info *cpup;
12460  	struct lpfc_vector_map_info *new_cpup;
12461  #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12462  	struct lpfc_hdwq_stat *c_stat;
12463  #endif
12464  
12465  	max_phys_id = 0;
12466  	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12467  	max_core_id = 0;
12468  	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12469  
12470  	/* Update CPU map with physical id and core id of each CPU */
12471  	for_each_present_cpu(cpu) {
12472  		cpup = &phba->sli4_hba.cpu_map[cpu];
12473  #ifdef CONFIG_X86
12474  		cpup->phys_id = topology_physical_package_id(cpu);
12475  		cpup->core_id = topology_core_id(cpu);
12476  		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12477  			cpup->flag |= LPFC_CPU_MAP_HYPER;
12478  #else
12479  		/* No distinction between CPUs for other platforms */
12480  		cpup->phys_id = 0;
12481  		cpup->core_id = cpu;
12482  #endif
12483  
12484  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12485  				"3328 CPU %d physid %d coreid %d flag x%x\n",
12486  				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12487  
12488  		if (cpup->phys_id > max_phys_id)
12489  			max_phys_id = cpup->phys_id;
12490  		if (cpup->phys_id < min_phys_id)
12491  			min_phys_id = cpup->phys_id;
12492  
12493  		if (cpup->core_id > max_core_id)
12494  			max_core_id = cpup->core_id;
12495  		if (cpup->core_id < min_core_id)
12496  			min_core_id = cpup->core_id;
12497  	}
12498  
12499  	/* After looking at each irq vector assigned to this pcidev, its
12500  	 * possible to see that not ALL CPUs have been accounted for.
12501  	 * Next we will set any unassigned (unaffinitized) cpu map
12502  	 * entries to a IRQ on the same phys_id.
12503  	 */
12504  	first_cpu = cpumask_first(cpu_present_mask);
12505  	start_cpu = first_cpu;
12506  
12507  	for_each_present_cpu(cpu) {
12508  		cpup = &phba->sli4_hba.cpu_map[cpu];
12509  
12510  		/* Is this CPU entry unassigned */
12511  		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12512  			/* Mark CPU as IRQ not assigned by the kernel */
12513  			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12514  
12515  			/* If so, find a new_cpup that is on the SAME
12516  			 * phys_id as cpup. start_cpu will start where we
12517  			 * left off so all unassigned entries don't get assgined
12518  			 * the IRQ of the first entry.
12519  			 */
12520  			new_cpu = start_cpu;
12521  			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12522  				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12523  				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12524  				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12525  				    (new_cpup->phys_id == cpup->phys_id))
12526  					goto found_same;
12527  				new_cpu = lpfc_next_present_cpu(new_cpu);
12528  			}
12529  			/* At this point, we leave the CPU as unassigned */
12530  			continue;
12531  found_same:
12532  			/* We found a matching phys_id, so copy the IRQ info */
12533  			cpup->eq = new_cpup->eq;
12534  
12535  			/* Bump start_cpu to the next slot to minmize the
12536  			 * chance of having multiple unassigned CPU entries
12537  			 * selecting the same IRQ.
12538  			 */
12539  			start_cpu = lpfc_next_present_cpu(new_cpu);
12540  
12541  			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12542  					"3337 Set Affinity: CPU %d "
12543  					"eq %d from peer cpu %d same "
12544  					"phys_id (%d)\n",
12545  					cpu, cpup->eq, new_cpu,
12546  					cpup->phys_id);
12547  		}
12548  	}
12549  
12550  	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12551  	start_cpu = first_cpu;
12552  
12553  	for_each_present_cpu(cpu) {
12554  		cpup = &phba->sli4_hba.cpu_map[cpu];
12555  
12556  		/* Is this entry unassigned */
12557  		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12558  			/* Mark it as IRQ not assigned by the kernel */
12559  			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12560  
12561  			/* If so, find a new_cpup thats on ANY phys_id
12562  			 * as the cpup. start_cpu will start where we
12563  			 * left off so all unassigned entries don't get
12564  			 * assigned the IRQ of the first entry.
12565  			 */
12566  			new_cpu = start_cpu;
12567  			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12568  				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12569  				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12570  				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12571  					goto found_any;
12572  				new_cpu = lpfc_next_present_cpu(new_cpu);
12573  			}
12574  			/* We should never leave an entry unassigned */
12575  			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12576  					"3339 Set Affinity: CPU %d "
12577  					"eq %d UNASSIGNED\n",
12578  					cpup->hdwq, cpup->eq);
12579  			continue;
12580  found_any:
12581  			/* We found an available entry, copy the IRQ info */
12582  			cpup->eq = new_cpup->eq;
12583  
12584  			/* Bump start_cpu to the next slot to minmize the
12585  			 * chance of having multiple unassigned CPU entries
12586  			 * selecting the same IRQ.
12587  			 */
12588  			start_cpu = lpfc_next_present_cpu(new_cpu);
12589  
12590  			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12591  					"3338 Set Affinity: CPU %d "
12592  					"eq %d from peer cpu %d (%d/%d)\n",
12593  					cpu, cpup->eq, new_cpu,
12594  					new_cpup->phys_id, new_cpup->core_id);
12595  		}
12596  	}
12597  
12598  	/* Assign hdwq indices that are unique across all cpus in the map
12599  	 * that are also FIRST_CPUs.
12600  	 */
12601  	idx = 0;
12602  	for_each_present_cpu(cpu) {
12603  		cpup = &phba->sli4_hba.cpu_map[cpu];
12604  
12605  		/* Only FIRST IRQs get a hdwq index assignment. */
12606  		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12607  			continue;
12608  
12609  		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12610  		cpup->hdwq = idx;
12611  		idx++;
12612  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12613  				"3333 Set Affinity: CPU %d (phys %d core %d): "
12614  				"hdwq %d eq %d flg x%x\n",
12615  				cpu, cpup->phys_id, cpup->core_id,
12616  				cpup->hdwq, cpup->eq, cpup->flag);
12617  	}
12618  	/* Associate a hdwq with each cpu_map entry
12619  	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12620  	 * hardware queues then CPUs. For that case we will just round-robin
12621  	 * the available hardware queues as they get assigned to CPUs.
12622  	 * The next_idx is the idx from the FIRST_CPU loop above to account
12623  	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12624  	 * and needs to start at 0.
12625  	 */
12626  	next_idx = idx;
12627  	start_cpu = 0;
12628  	idx = 0;
12629  	for_each_present_cpu(cpu) {
12630  		cpup = &phba->sli4_hba.cpu_map[cpu];
12631  
12632  		/* FIRST cpus are already mapped. */
12633  		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12634  			continue;
12635  
12636  		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12637  		 * of the unassigned cpus to the next idx so that all
12638  		 * hdw queues are fully utilized.
12639  		 */
12640  		if (next_idx < phba->cfg_hdw_queue) {
12641  			cpup->hdwq = next_idx;
12642  			next_idx++;
12643  			continue;
12644  		}
12645  
12646  		/* Not a First CPU and all hdw_queues are used.  Reuse a
12647  		 * Hardware Queue for another CPU, so be smart about it
12648  		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12649  		 * (CPU package) and core_id.
12650  		 */
12651  		new_cpu = start_cpu;
12652  		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12653  			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12654  			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12655  			    new_cpup->phys_id == cpup->phys_id &&
12656  			    new_cpup->core_id == cpup->core_id) {
12657  				goto found_hdwq;
12658  			}
12659  			new_cpu = lpfc_next_present_cpu(new_cpu);
12660  		}
12661  
12662  		/* If we can't match both phys_id and core_id,
12663  		 * settle for just a phys_id match.
12664  		 */
12665  		new_cpu = start_cpu;
12666  		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12667  			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12668  			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12669  			    new_cpup->phys_id == cpup->phys_id)
12670  				goto found_hdwq;
12671  			new_cpu = lpfc_next_present_cpu(new_cpu);
12672  		}
12673  
12674  		/* Otherwise just round robin on cfg_hdw_queue */
12675  		cpup->hdwq = idx % phba->cfg_hdw_queue;
12676  		idx++;
12677  		goto logit;
12678   found_hdwq:
12679  		/* We found an available entry, copy the IRQ info */
12680  		start_cpu = lpfc_next_present_cpu(new_cpu);
12681  		cpup->hdwq = new_cpup->hdwq;
12682   logit:
12683  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12684  				"3335 Set Affinity: CPU %d (phys %d core %d): "
12685  				"hdwq %d eq %d flg x%x\n",
12686  				cpu, cpup->phys_id, cpup->core_id,
12687  				cpup->hdwq, cpup->eq, cpup->flag);
12688  	}
12689  
12690  	/*
12691  	 * Initialize the cpu_map slots for not-present cpus in case
12692  	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12693  	 */
12694  	idx = 0;
12695  	for_each_possible_cpu(cpu) {
12696  		cpup = &phba->sli4_hba.cpu_map[cpu];
12697  #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12698  		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12699  		c_stat->hdwq_no = cpup->hdwq;
12700  #endif
12701  		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12702  			continue;
12703  
12704  		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12705  #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12706  		c_stat->hdwq_no = cpup->hdwq;
12707  #endif
12708  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12709  				"3340 Set Affinity: not present "
12710  				"CPU %d hdwq %d\n",
12711  				cpu, cpup->hdwq);
12712  	}
12713  
12714  	/* The cpu_map array will be used later during initialization
12715  	 * when EQ / CQ / WQs are allocated and configured.
12716  	 */
12717  	return;
12718  }
12719  
12720  /**
12721   * lpfc_cpuhp_get_eq
12722   *
12723   * @phba:   pointer to lpfc hba data structure.
12724   * @cpu:    cpu going offline
12725   * @eqlist: eq list to append to
12726   */
12727  static int
lpfc_cpuhp_get_eq(struct lpfc_hba * phba,unsigned int cpu,struct list_head * eqlist)12728  lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12729  		  struct list_head *eqlist)
12730  {
12731  	const struct cpumask *maskp;
12732  	struct lpfc_queue *eq;
12733  	struct cpumask *tmp;
12734  	u16 idx;
12735  
12736  	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12737  	if (!tmp)
12738  		return -ENOMEM;
12739  
12740  	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12741  		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12742  		if (!maskp)
12743  			continue;
12744  		/*
12745  		 * if irq is not affinitized to the cpu going
12746  		 * then we don't need to poll the eq attached
12747  		 * to it.
12748  		 */
12749  		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12750  			continue;
12751  		/* get the cpus that are online and are affini-
12752  		 * tized to this irq vector.  If the count is
12753  		 * more than 1 then cpuhp is not going to shut-
12754  		 * down this vector.  Since this cpu has not
12755  		 * gone offline yet, we need >1.
12756  		 */
12757  		cpumask_and(tmp, maskp, cpu_online_mask);
12758  		if (cpumask_weight(tmp) > 1)
12759  			continue;
12760  
12761  		/* Now that we have an irq to shutdown, get the eq
12762  		 * mapped to this irq.  Note: multiple hdwq's in
12763  		 * the software can share an eq, but eventually
12764  		 * only eq will be mapped to this vector
12765  		 */
12766  		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12767  		list_add(&eq->_poll_list, eqlist);
12768  	}
12769  	kfree(tmp);
12770  	return 0;
12771  }
12772  
__lpfc_cpuhp_remove(struct lpfc_hba * phba)12773  static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12774  {
12775  	if (phba->sli_rev != LPFC_SLI_REV4)
12776  		return;
12777  
12778  	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12779  					    &phba->cpuhp);
12780  	/*
12781  	 * unregistering the instance doesn't stop the polling
12782  	 * timer. Wait for the poll timer to retire.
12783  	 */
12784  	synchronize_rcu();
12785  	del_timer_sync(&phba->cpuhp_poll_timer);
12786  }
12787  
lpfc_cpuhp_remove(struct lpfc_hba * phba)12788  static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12789  {
12790  	if (phba->pport &&
12791  	    test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag))
12792  		return;
12793  
12794  	__lpfc_cpuhp_remove(phba);
12795  }
12796  
lpfc_cpuhp_add(struct lpfc_hba * phba)12797  static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12798  {
12799  	if (phba->sli_rev != LPFC_SLI_REV4)
12800  		return;
12801  
12802  	rcu_read_lock();
12803  
12804  	if (!list_empty(&phba->poll_list))
12805  		mod_timer(&phba->cpuhp_poll_timer,
12806  			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12807  
12808  	rcu_read_unlock();
12809  
12810  	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12811  					 &phba->cpuhp);
12812  }
12813  
__lpfc_cpuhp_checks(struct lpfc_hba * phba,int * retval)12814  static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12815  {
12816  	if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
12817  		*retval = -EAGAIN;
12818  		return true;
12819  	}
12820  
12821  	if (phba->sli_rev != LPFC_SLI_REV4) {
12822  		*retval = 0;
12823  		return true;
12824  	}
12825  
12826  	/* proceed with the hotplug */
12827  	return false;
12828  }
12829  
12830  /**
12831   * lpfc_irq_set_aff - set IRQ affinity
12832   * @eqhdl: EQ handle
12833   * @cpu: cpu to set affinity
12834   *
12835   **/
12836  static inline void
lpfc_irq_set_aff(struct lpfc_hba_eq_hdl * eqhdl,unsigned int cpu)12837  lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12838  {
12839  	cpumask_clear(&eqhdl->aff_mask);
12840  	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12841  	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12842  	irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask);
12843  }
12844  
12845  /**
12846   * lpfc_irq_clear_aff - clear IRQ affinity
12847   * @eqhdl: EQ handle
12848   *
12849   **/
12850  static inline void
lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl * eqhdl)12851  lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12852  {
12853  	cpumask_clear(&eqhdl->aff_mask);
12854  	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12855  }
12856  
12857  /**
12858   * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12859   * @phba: pointer to HBA context object.
12860   * @cpu: cpu going offline/online
12861   * @offline: true, cpu is going offline. false, cpu is coming online.
12862   *
12863   * If cpu is going offline, we'll try our best effort to find the next
12864   * online cpu on the phba's original_mask and migrate all offlining IRQ
12865   * affinities.
12866   *
12867   * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12868   *
12869   * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12870   *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12871   *
12872   **/
12873  static void
lpfc_irq_rebalance(struct lpfc_hba * phba,unsigned int cpu,bool offline)12874  lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12875  {
12876  	struct lpfc_vector_map_info *cpup;
12877  	struct cpumask *aff_mask;
12878  	unsigned int cpu_select, cpu_next, idx;
12879  	const struct cpumask *orig_mask;
12880  
12881  	if (phba->irq_chann_mode == NORMAL_MODE)
12882  		return;
12883  
12884  	orig_mask = &phba->sli4_hba.irq_aff_mask;
12885  
12886  	if (!cpumask_test_cpu(cpu, orig_mask))
12887  		return;
12888  
12889  	cpup = &phba->sli4_hba.cpu_map[cpu];
12890  
12891  	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12892  		return;
12893  
12894  	if (offline) {
12895  		/* Find next online CPU on original mask */
12896  		cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12897  		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12898  
12899  		/* Found a valid CPU */
12900  		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12901  			/* Go through each eqhdl and ensure offlining
12902  			 * cpu aff_mask is migrated
12903  			 */
12904  			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12905  				aff_mask = lpfc_get_aff_mask(idx);
12906  
12907  				/* Migrate affinity */
12908  				if (cpumask_test_cpu(cpu, aff_mask))
12909  					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12910  							 cpu_select);
12911  			}
12912  		} else {
12913  			/* Rely on irqbalance if no online CPUs left on NUMA */
12914  			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12915  				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12916  		}
12917  	} else {
12918  		/* Migrate affinity back to this CPU */
12919  		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12920  	}
12921  }
12922  
lpfc_cpu_offline(unsigned int cpu,struct hlist_node * node)12923  static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12924  {
12925  	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12926  	struct lpfc_queue *eq, *next;
12927  	LIST_HEAD(eqlist);
12928  	int retval;
12929  
12930  	if (!phba) {
12931  		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12932  		return 0;
12933  	}
12934  
12935  	if (__lpfc_cpuhp_checks(phba, &retval))
12936  		return retval;
12937  
12938  	lpfc_irq_rebalance(phba, cpu, true);
12939  
12940  	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12941  	if (retval)
12942  		return retval;
12943  
12944  	/* start polling on these eq's */
12945  	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12946  		list_del_init(&eq->_poll_list);
12947  		lpfc_sli4_start_polling(eq);
12948  	}
12949  
12950  	return 0;
12951  }
12952  
lpfc_cpu_online(unsigned int cpu,struct hlist_node * node)12953  static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
12954  {
12955  	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12956  	struct lpfc_queue *eq, *next;
12957  	unsigned int n;
12958  	int retval;
12959  
12960  	if (!phba) {
12961  		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12962  		return 0;
12963  	}
12964  
12965  	if (__lpfc_cpuhp_checks(phba, &retval))
12966  		return retval;
12967  
12968  	lpfc_irq_rebalance(phba, cpu, false);
12969  
12970  	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
12971  		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
12972  		if (n == cpu)
12973  			lpfc_sli4_stop_polling(eq);
12974  	}
12975  
12976  	return 0;
12977  }
12978  
12979  /**
12980   * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
12981   * @phba: pointer to lpfc hba data structure.
12982   *
12983   * This routine is invoked to enable the MSI-X interrupt vectors to device
12984   * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
12985   * to cpus on the system.
12986   *
12987   * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
12988   * the number of cpus on the same numa node as this adapter.  The vectors are
12989   * allocated without requesting OS affinity mapping.  A vector will be
12990   * allocated and assigned to each online and offline cpu.  If the cpu is
12991   * online, then affinity will be set to that cpu.  If the cpu is offline, then
12992   * affinity will be set to the nearest peer cpu within the numa node that is
12993   * online.  If there are no online cpus within the numa node, affinity is not
12994   * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
12995   * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
12996   * configured.
12997   *
12998   * If numa mode is not enabled and there is more than 1 vector allocated, then
12999   * the driver relies on the managed irq interface where the OS assigns vector to
13000   * cpu affinity.  The driver will then use that affinity mapping to setup its
13001   * cpu mapping table.
13002   *
13003   * Return codes
13004   * 0 - successful
13005   * other values - error
13006   **/
13007  static int
lpfc_sli4_enable_msix(struct lpfc_hba * phba)13008  lpfc_sli4_enable_msix(struct lpfc_hba *phba)
13009  {
13010  	int vectors, rc, index;
13011  	char *name;
13012  	const struct cpumask *aff_mask = NULL;
13013  	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
13014  	struct lpfc_vector_map_info *cpup;
13015  	struct lpfc_hba_eq_hdl *eqhdl;
13016  	const struct cpumask *maskp;
13017  	unsigned int flags = PCI_IRQ_MSIX;
13018  
13019  	/* Set up MSI-X multi-message vectors */
13020  	vectors = phba->cfg_irq_chann;
13021  
13022  	if (phba->irq_chann_mode != NORMAL_MODE)
13023  		aff_mask = &phba->sli4_hba.irq_aff_mask;
13024  
13025  	if (aff_mask) {
13026  		cpu_cnt = cpumask_weight(aff_mask);
13027  		vectors = min(phba->cfg_irq_chann, cpu_cnt);
13028  
13029  		/* cpu: iterates over aff_mask including offline or online
13030  		 * cpu_select: iterates over online aff_mask to set affinity
13031  		 */
13032  		cpu = cpumask_first(aff_mask);
13033  		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13034  	} else {
13035  		flags |= PCI_IRQ_AFFINITY;
13036  	}
13037  
13038  	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
13039  	if (rc < 0) {
13040  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13041  				"0484 PCI enable MSI-X failed (%d)\n", rc);
13042  		goto vec_fail_out;
13043  	}
13044  	vectors = rc;
13045  
13046  	/* Assign MSI-X vectors to interrupt handlers */
13047  	for (index = 0; index < vectors; index++) {
13048  		eqhdl = lpfc_get_eq_hdl(index);
13049  		name = eqhdl->handler_name;
13050  		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
13051  		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
13052  			 LPFC_DRIVER_HANDLER_NAME"%d", index);
13053  
13054  		eqhdl->idx = index;
13055  		rc = pci_irq_vector(phba->pcidev, index);
13056  		if (rc < 0) {
13057  			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13058  					"0489 MSI-X fast-path (%d) "
13059  					"pci_irq_vec failed (%d)\n", index, rc);
13060  			goto cfg_fail_out;
13061  		}
13062  		eqhdl->irq = rc;
13063  
13064  		rc = request_threaded_irq(eqhdl->irq,
13065  					  &lpfc_sli4_hba_intr_handler,
13066  					  &lpfc_sli4_hba_intr_handler_th,
13067  					  0, name, eqhdl);
13068  		if (rc) {
13069  			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13070  					"0486 MSI-X fast-path (%d) "
13071  					"request_irq failed (%d)\n", index, rc);
13072  			goto cfg_fail_out;
13073  		}
13074  
13075  		if (aff_mask) {
13076  			/* If found a neighboring online cpu, set affinity */
13077  			if (cpu_select < nr_cpu_ids)
13078  				lpfc_irq_set_aff(eqhdl, cpu_select);
13079  
13080  			/* Assign EQ to cpu_map */
13081  			lpfc_assign_eq_map_info(phba, index,
13082  						LPFC_CPU_FIRST_IRQ,
13083  						cpu);
13084  
13085  			/* Iterate to next offline or online cpu in aff_mask */
13086  			cpu = cpumask_next(cpu, aff_mask);
13087  
13088  			/* Find next online cpu in aff_mask to set affinity */
13089  			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13090  		} else if (vectors == 1) {
13091  			cpu = cpumask_first(cpu_present_mask);
13092  			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
13093  						cpu);
13094  		} else {
13095  			maskp = pci_irq_get_affinity(phba->pcidev, index);
13096  
13097  			/* Loop through all CPUs associated with vector index */
13098  			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
13099  				cpup = &phba->sli4_hba.cpu_map[cpu];
13100  
13101  				/* If this is the first CPU thats assigned to
13102  				 * this vector, set LPFC_CPU_FIRST_IRQ.
13103  				 *
13104  				 * With certain platforms its possible that irq
13105  				 * vectors are affinitized to all the cpu's.
13106  				 * This can result in each cpu_map.eq to be set
13107  				 * to the last vector, resulting in overwrite
13108  				 * of all the previous cpu_map.eq.  Ensure that
13109  				 * each vector receives a place in cpu_map.
13110  				 * Later call to lpfc_cpu_affinity_check will
13111  				 * ensure we are nicely balanced out.
13112  				 */
13113  				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
13114  					continue;
13115  				lpfc_assign_eq_map_info(phba, index,
13116  							LPFC_CPU_FIRST_IRQ,
13117  							cpu);
13118  				break;
13119  			}
13120  		}
13121  	}
13122  
13123  	if (vectors != phba->cfg_irq_chann) {
13124  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13125  				"3238 Reducing IO channels to match number of "
13126  				"MSI-X vectors, requested %d got %d\n",
13127  				phba->cfg_irq_chann, vectors);
13128  		if (phba->cfg_irq_chann > vectors)
13129  			phba->cfg_irq_chann = vectors;
13130  	}
13131  
13132  	return rc;
13133  
13134  cfg_fail_out:
13135  	/* free the irq already requested */
13136  	for (--index; index >= 0; index--) {
13137  		eqhdl = lpfc_get_eq_hdl(index);
13138  		lpfc_irq_clear_aff(eqhdl);
13139  		free_irq(eqhdl->irq, eqhdl);
13140  	}
13141  
13142  	/* Unconfigure MSI-X capability structure */
13143  	pci_free_irq_vectors(phba->pcidev);
13144  
13145  vec_fail_out:
13146  	return rc;
13147  }
13148  
13149  /**
13150   * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
13151   * @phba: pointer to lpfc hba data structure.
13152   *
13153   * This routine is invoked to enable the MSI interrupt mode to device with
13154   * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
13155   * called to enable the MSI vector. The device driver is responsible for
13156   * calling the request_irq() to register MSI vector with a interrupt the
13157   * handler, which is done in this function.
13158   *
13159   * Return codes
13160   * 	0 - successful
13161   * 	other values - error
13162   **/
13163  static int
lpfc_sli4_enable_msi(struct lpfc_hba * phba)13164  lpfc_sli4_enable_msi(struct lpfc_hba *phba)
13165  {
13166  	int rc, index;
13167  	unsigned int cpu;
13168  	struct lpfc_hba_eq_hdl *eqhdl;
13169  
13170  	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
13171  				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
13172  	if (rc > 0)
13173  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13174  				"0487 PCI enable MSI mode success.\n");
13175  	else {
13176  		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13177  				"0488 PCI enable MSI mode failed (%d)\n", rc);
13178  		return rc ? rc : -1;
13179  	}
13180  
13181  	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13182  			 0, LPFC_DRIVER_NAME, phba);
13183  	if (rc) {
13184  		pci_free_irq_vectors(phba->pcidev);
13185  		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13186  				"0490 MSI request_irq failed (%d)\n", rc);
13187  		return rc;
13188  	}
13189  
13190  	eqhdl = lpfc_get_eq_hdl(0);
13191  	rc = pci_irq_vector(phba->pcidev, 0);
13192  	if (rc < 0) {
13193  		pci_free_irq_vectors(phba->pcidev);
13194  		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13195  				"0496 MSI pci_irq_vec failed (%d)\n", rc);
13196  		return rc;
13197  	}
13198  	eqhdl->irq = rc;
13199  
13200  	cpu = cpumask_first(cpu_present_mask);
13201  	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
13202  
13203  	for (index = 0; index < phba->cfg_irq_chann; index++) {
13204  		eqhdl = lpfc_get_eq_hdl(index);
13205  		eqhdl->idx = index;
13206  	}
13207  
13208  	return 0;
13209  }
13210  
13211  /**
13212   * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
13213   * @phba: pointer to lpfc hba data structure.
13214   * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
13215   *
13216   * This routine is invoked to enable device interrupt and associate driver's
13217   * interrupt handler(s) to interrupt vector(s) to device with SLI-4
13218   * interface spec. Depends on the interrupt mode configured to the driver,
13219   * the driver will try to fallback from the configured interrupt mode to an
13220   * interrupt mode which is supported by the platform, kernel, and device in
13221   * the order of:
13222   * MSI-X -> MSI -> IRQ.
13223   *
13224   * Return codes
13225   *	Interrupt mode (2, 1, 0) - successful
13226   *	LPFC_INTR_ERROR - error
13227   **/
13228  static uint32_t
lpfc_sli4_enable_intr(struct lpfc_hba * phba,uint32_t cfg_mode)13229  lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
13230  {
13231  	uint32_t intr_mode = LPFC_INTR_ERROR;
13232  	int retval, idx;
13233  
13234  	if (cfg_mode == 2) {
13235  		/* Preparation before conf_msi mbox cmd */
13236  		retval = 0;
13237  		if (!retval) {
13238  			/* Now, try to enable MSI-X interrupt mode */
13239  			retval = lpfc_sli4_enable_msix(phba);
13240  			if (!retval) {
13241  				/* Indicate initialization to MSI-X mode */
13242  				phba->intr_type = MSIX;
13243  				intr_mode = 2;
13244  			}
13245  		}
13246  	}
13247  
13248  	/* Fallback to MSI if MSI-X initialization failed */
13249  	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13250  		retval = lpfc_sli4_enable_msi(phba);
13251  		if (!retval) {
13252  			/* Indicate initialization to MSI mode */
13253  			phba->intr_type = MSI;
13254  			intr_mode = 1;
13255  		}
13256  	}
13257  
13258  	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13259  	if (phba->intr_type == NONE) {
13260  		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13261  				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13262  		if (!retval) {
13263  			struct lpfc_hba_eq_hdl *eqhdl;
13264  			unsigned int cpu;
13265  
13266  			/* Indicate initialization to INTx mode */
13267  			phba->intr_type = INTx;
13268  			intr_mode = 0;
13269  
13270  			eqhdl = lpfc_get_eq_hdl(0);
13271  			retval = pci_irq_vector(phba->pcidev, 0);
13272  			if (retval < 0) {
13273  				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13274  					"0502 INTR pci_irq_vec failed (%d)\n",
13275  					 retval);
13276  				return LPFC_INTR_ERROR;
13277  			}
13278  			eqhdl->irq = retval;
13279  
13280  			cpu = cpumask_first(cpu_present_mask);
13281  			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13282  						cpu);
13283  			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13284  				eqhdl = lpfc_get_eq_hdl(idx);
13285  				eqhdl->idx = idx;
13286  			}
13287  		}
13288  	}
13289  	return intr_mode;
13290  }
13291  
13292  /**
13293   * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13294   * @phba: pointer to lpfc hba data structure.
13295   *
13296   * This routine is invoked to disable device interrupt and disassociate
13297   * the driver's interrupt handler(s) from interrupt vector(s) to device
13298   * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13299   * will release the interrupt vector(s) for the message signaled interrupt.
13300   **/
13301  static void
lpfc_sli4_disable_intr(struct lpfc_hba * phba)13302  lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13303  {
13304  	/* Disable the currently initialized interrupt mode */
13305  	if (phba->intr_type == MSIX) {
13306  		int index;
13307  		struct lpfc_hba_eq_hdl *eqhdl;
13308  
13309  		/* Free up MSI-X multi-message vectors */
13310  		for (index = 0; index < phba->cfg_irq_chann; index++) {
13311  			eqhdl = lpfc_get_eq_hdl(index);
13312  			lpfc_irq_clear_aff(eqhdl);
13313  			free_irq(eqhdl->irq, eqhdl);
13314  		}
13315  	} else {
13316  		free_irq(phba->pcidev->irq, phba);
13317  	}
13318  
13319  	pci_free_irq_vectors(phba->pcidev);
13320  
13321  	/* Reset interrupt management states */
13322  	phba->intr_type = NONE;
13323  	phba->sli.slistat.sli_intr = 0;
13324  }
13325  
13326  /**
13327   * lpfc_unset_hba - Unset SLI3 hba device initialization
13328   * @phba: pointer to lpfc hba data structure.
13329   *
13330   * This routine is invoked to unset the HBA device initialization steps to
13331   * a device with SLI-3 interface spec.
13332   **/
13333  static void
lpfc_unset_hba(struct lpfc_hba * phba)13334  lpfc_unset_hba(struct lpfc_hba *phba)
13335  {
13336  	set_bit(FC_UNLOADING, &phba->pport->load_flag);
13337  
13338  	kfree(phba->vpi_bmask);
13339  	kfree(phba->vpi_ids);
13340  
13341  	lpfc_stop_hba_timers(phba);
13342  
13343  	phba->pport->work_port_events = 0;
13344  
13345  	lpfc_sli_hba_down(phba);
13346  
13347  	lpfc_sli_brdrestart(phba);
13348  
13349  	lpfc_sli_disable_intr(phba);
13350  
13351  	return;
13352  }
13353  
13354  /**
13355   * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13356   * @phba: Pointer to HBA context object.
13357   *
13358   * This function is called in the SLI4 code path to wait for completion
13359   * of device's XRIs exchange busy. It will check the XRI exchange busy
13360   * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13361   * that, it will check the XRI exchange busy on outstanding FCP and ELS
13362   * I/Os every 30 seconds, log error message, and wait forever. Only when
13363   * all XRI exchange busy complete, the driver unload shall proceed with
13364   * invoking the function reset ioctl mailbox command to the CNA and the
13365   * the rest of the driver unload resource release.
13366   **/
13367  static void
lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba * phba)13368  lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13369  {
13370  	struct lpfc_sli4_hdw_queue *qp;
13371  	int idx, ccnt;
13372  	int wait_time = 0;
13373  	int io_xri_cmpl = 1;
13374  	int nvmet_xri_cmpl = 1;
13375  	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13376  
13377  	/* Driver just aborted IOs during the hba_unset process.  Pause
13378  	 * here to give the HBA time to complete the IO and get entries
13379  	 * into the abts lists.
13380  	 */
13381  	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13382  
13383  	/* Wait for NVME pending IO to flush back to transport. */
13384  	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13385  		lpfc_nvme_wait_for_io_drain(phba);
13386  
13387  	ccnt = 0;
13388  	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13389  		qp = &phba->sli4_hba.hdwq[idx];
13390  		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13391  		if (!io_xri_cmpl) /* if list is NOT empty */
13392  			ccnt++;
13393  	}
13394  	if (ccnt)
13395  		io_xri_cmpl = 0;
13396  
13397  	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13398  		nvmet_xri_cmpl =
13399  			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13400  	}
13401  
13402  	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13403  		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13404  			if (!nvmet_xri_cmpl)
13405  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13406  						"6424 NVMET XRI exchange busy "
13407  						"wait time: %d seconds.\n",
13408  						wait_time/1000);
13409  			if (!io_xri_cmpl)
13410  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13411  						"6100 IO XRI exchange busy "
13412  						"wait time: %d seconds.\n",
13413  						wait_time/1000);
13414  			if (!els_xri_cmpl)
13415  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13416  						"2878 ELS XRI exchange busy "
13417  						"wait time: %d seconds.\n",
13418  						wait_time/1000);
13419  			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13420  			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13421  		} else {
13422  			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13423  			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13424  		}
13425  
13426  		ccnt = 0;
13427  		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13428  			qp = &phba->sli4_hba.hdwq[idx];
13429  			io_xri_cmpl = list_empty(
13430  			    &qp->lpfc_abts_io_buf_list);
13431  			if (!io_xri_cmpl) /* if list is NOT empty */
13432  				ccnt++;
13433  		}
13434  		if (ccnt)
13435  			io_xri_cmpl = 0;
13436  
13437  		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13438  			nvmet_xri_cmpl = list_empty(
13439  				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13440  		}
13441  		els_xri_cmpl =
13442  			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13443  
13444  	}
13445  }
13446  
13447  /**
13448   * lpfc_sli4_hba_unset - Unset the fcoe hba
13449   * @phba: Pointer to HBA context object.
13450   *
13451   * This function is called in the SLI4 code path to reset the HBA's FCoE
13452   * function. The caller is not required to hold any lock. This routine
13453   * issues PCI function reset mailbox command to reset the FCoE function.
13454   * At the end of the function, it calls lpfc_hba_down_post function to
13455   * free any pending commands.
13456   **/
13457  static void
lpfc_sli4_hba_unset(struct lpfc_hba * phba)13458  lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13459  {
13460  	int wait_cnt = 0;
13461  	LPFC_MBOXQ_t *mboxq;
13462  	struct pci_dev *pdev = phba->pcidev;
13463  
13464  	lpfc_stop_hba_timers(phba);
13465  	hrtimer_cancel(&phba->cmf_stats_timer);
13466  	hrtimer_cancel(&phba->cmf_timer);
13467  
13468  	if (phba->pport)
13469  		phba->sli4_hba.intr_enable = 0;
13470  
13471  	/*
13472  	 * Gracefully wait out the potential current outstanding asynchronous
13473  	 * mailbox command.
13474  	 */
13475  
13476  	/* First, block any pending async mailbox command from posted */
13477  	spin_lock_irq(&phba->hbalock);
13478  	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13479  	spin_unlock_irq(&phba->hbalock);
13480  	/* Now, trying to wait it out if we can */
13481  	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13482  		msleep(10);
13483  		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13484  			break;
13485  	}
13486  	/* Forcefully release the outstanding mailbox command if timed out */
13487  	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13488  		spin_lock_irq(&phba->hbalock);
13489  		mboxq = phba->sli.mbox_active;
13490  		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13491  		__lpfc_mbox_cmpl_put(phba, mboxq);
13492  		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13493  		phba->sli.mbox_active = NULL;
13494  		spin_unlock_irq(&phba->hbalock);
13495  	}
13496  
13497  	/* Abort all iocbs associated with the hba */
13498  	lpfc_sli_hba_iocb_abort(phba);
13499  
13500  	if (!pci_channel_offline(phba->pcidev))
13501  		/* Wait for completion of device XRI exchange busy */
13502  		lpfc_sli4_xri_exchange_busy_wait(phba);
13503  
13504  	/* per-phba callback de-registration for hotplug event */
13505  	if (phba->pport)
13506  		lpfc_cpuhp_remove(phba);
13507  
13508  	/* Disable PCI subsystem interrupt */
13509  	lpfc_sli4_disable_intr(phba);
13510  
13511  	/* Disable SR-IOV if enabled */
13512  	if (phba->cfg_sriov_nr_virtfn)
13513  		pci_disable_sriov(pdev);
13514  
13515  	/* Stop kthread signal shall trigger work_done one more time */
13516  	kthread_stop(phba->worker_thread);
13517  
13518  	/* Disable FW logging to host memory */
13519  	lpfc_ras_stop_fwlog(phba);
13520  
13521  	/* Reset SLI4 HBA FCoE function */
13522  	lpfc_pci_function_reset(phba);
13523  
13524  	/* release all queue allocated resources. */
13525  	lpfc_sli4_queue_destroy(phba);
13526  
13527  	/* Free RAS DMA memory */
13528  	if (phba->ras_fwlog.ras_enabled)
13529  		lpfc_sli4_ras_dma_free(phba);
13530  
13531  	/* Stop the SLI4 device port */
13532  	if (phba->pport)
13533  		phba->pport->work_port_events = 0;
13534  }
13535  
13536  static uint32_t
lpfc_cgn_crc32(uint32_t crc,u8 byte)13537  lpfc_cgn_crc32(uint32_t crc, u8 byte)
13538  {
13539  	uint32_t msb = 0;
13540  	uint32_t bit;
13541  
13542  	for (bit = 0; bit < 8; bit++) {
13543  		msb = (crc >> 31) & 1;
13544  		crc <<= 1;
13545  
13546  		if (msb ^ (byte & 1)) {
13547  			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13548  			crc |= 1;
13549  		}
13550  		byte >>= 1;
13551  	}
13552  	return crc;
13553  }
13554  
13555  static uint32_t
lpfc_cgn_reverse_bits(uint32_t wd)13556  lpfc_cgn_reverse_bits(uint32_t wd)
13557  {
13558  	uint32_t result = 0;
13559  	uint32_t i;
13560  
13561  	for (i = 0; i < 32; i++) {
13562  		result <<= 1;
13563  		result |= (1 & (wd >> i));
13564  	}
13565  	return result;
13566  }
13567  
13568  /*
13569   * The routine corresponds with the algorithm the HBA firmware
13570   * uses to validate the data integrity.
13571   */
13572  uint32_t
lpfc_cgn_calc_crc32(void * ptr,uint32_t byteLen,uint32_t crc)13573  lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13574  {
13575  	uint32_t  i;
13576  	uint32_t result;
13577  	uint8_t  *data = (uint8_t *)ptr;
13578  
13579  	for (i = 0; i < byteLen; ++i)
13580  		crc = lpfc_cgn_crc32(crc, data[i]);
13581  
13582  	result = ~lpfc_cgn_reverse_bits(crc);
13583  	return result;
13584  }
13585  
13586  void
lpfc_init_congestion_buf(struct lpfc_hba * phba)13587  lpfc_init_congestion_buf(struct lpfc_hba *phba)
13588  {
13589  	struct lpfc_cgn_info *cp;
13590  	uint16_t size;
13591  	uint32_t crc;
13592  
13593  	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13594  			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13595  
13596  	if (!phba->cgn_i)
13597  		return;
13598  	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13599  
13600  	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13601  	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13602  	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13603  	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13604  
13605  	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13606  	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13607  	atomic64_set(&phba->cgn_latency_evt, 0);
13608  	phba->cgn_evt_minute = 0;
13609  
13610  	memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat));
13611  	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13612  	cp->cgn_info_version = LPFC_CGN_INFO_V4;
13613  
13614  	/* cgn parameters */
13615  	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13616  	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13617  	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13618  	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13619  
13620  	lpfc_cgn_update_tstamp(phba, &cp->base_time);
13621  
13622  	/* Fill in default LUN qdepth */
13623  	if (phba->pport) {
13624  		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13625  		cp->cgn_lunq = cpu_to_le16(size);
13626  	}
13627  
13628  	/* last used Index initialized to 0xff already */
13629  
13630  	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13631  	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13632  	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13633  	cp->cgn_info_crc = cpu_to_le32(crc);
13634  
13635  	phba->cgn_evt_timestamp = jiffies +
13636  		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13637  }
13638  
13639  void
lpfc_init_congestion_stat(struct lpfc_hba * phba)13640  lpfc_init_congestion_stat(struct lpfc_hba *phba)
13641  {
13642  	struct lpfc_cgn_info *cp;
13643  	uint32_t crc;
13644  
13645  	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13646  			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13647  
13648  	if (!phba->cgn_i)
13649  		return;
13650  
13651  	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13652  	memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat));
13653  
13654  	lpfc_cgn_update_tstamp(phba, &cp->stat_start);
13655  	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13656  	cp->cgn_info_crc = cpu_to_le32(crc);
13657  }
13658  
13659  /**
13660   * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13661   * @phba: Pointer to hba context object.
13662   * @reg: flag to determine register or unregister.
13663   */
13664  static int
__lpfc_reg_congestion_buf(struct lpfc_hba * phba,int reg)13665  __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13666  {
13667  	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13668  	union  lpfc_sli4_cfg_shdr *shdr;
13669  	uint32_t shdr_status, shdr_add_status;
13670  	LPFC_MBOXQ_t *mboxq;
13671  	int length, rc;
13672  
13673  	if (!phba->cgn_i)
13674  		return -ENXIO;
13675  
13676  	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13677  	if (!mboxq) {
13678  		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13679  				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13680  				"HBA state x%x reg %d\n",
13681  				phba->pport->port_state, reg);
13682  		return -ENOMEM;
13683  	}
13684  
13685  	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13686  		sizeof(struct lpfc_sli4_cfg_mhdr));
13687  	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13688  			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13689  			 LPFC_SLI4_MBX_EMBED);
13690  	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13691  	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13692  	if (reg > 0)
13693  		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13694  	else
13695  		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13696  	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13697  	reg_congestion_buf->addr_lo =
13698  		putPaddrLow(phba->cgn_i->phys);
13699  	reg_congestion_buf->addr_hi =
13700  		putPaddrHigh(phba->cgn_i->phys);
13701  
13702  	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13703  	shdr = (union lpfc_sli4_cfg_shdr *)
13704  		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13705  	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13706  	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13707  				 &shdr->response);
13708  	mempool_free(mboxq, phba->mbox_mem_pool);
13709  	if (shdr_status || shdr_add_status || rc) {
13710  		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13711  				"2642 REG_CONGESTION_BUF mailbox "
13712  				"failed with status x%x add_status x%x,"
13713  				" mbx status x%x reg %d\n",
13714  				shdr_status, shdr_add_status, rc, reg);
13715  		return -ENXIO;
13716  	}
13717  	return 0;
13718  }
13719  
13720  int
lpfc_unreg_congestion_buf(struct lpfc_hba * phba)13721  lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13722  {
13723  	lpfc_cmf_stop(phba);
13724  	return __lpfc_reg_congestion_buf(phba, 0);
13725  }
13726  
13727  int
lpfc_reg_congestion_buf(struct lpfc_hba * phba)13728  lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13729  {
13730  	return __lpfc_reg_congestion_buf(phba, 1);
13731  }
13732  
13733  /**
13734   * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13735   * @phba: Pointer to HBA context object.
13736   * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13737   *
13738   * This function is called in the SLI4 code path to read the port's
13739   * sli4 capabilities.
13740   *
13741   * This function may be be called from any context that can block-wait
13742   * for the completion.  The expectation is that this routine is called
13743   * typically from probe_one or from the online routine.
13744   **/
13745  int
lpfc_get_sli4_parameters(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)13746  lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13747  {
13748  	int rc;
13749  	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13750  	struct lpfc_pc_sli4_params *sli4_params;
13751  	uint32_t mbox_tmo;
13752  	int length;
13753  	bool exp_wqcq_pages = true;
13754  	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13755  
13756  	/*
13757  	 * By default, the driver assumes the SLI4 port requires RPI
13758  	 * header postings.  The SLI4_PARAM response will correct this
13759  	 * assumption.
13760  	 */
13761  	phba->sli4_hba.rpi_hdrs_in_use = 1;
13762  
13763  	/* Read the port's SLI4 Config Parameters */
13764  	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13765  		  sizeof(struct lpfc_sli4_cfg_mhdr));
13766  	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13767  			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13768  			 length, LPFC_SLI4_MBX_EMBED);
13769  	if (!phba->sli4_hba.intr_enable)
13770  		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13771  	else {
13772  		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13773  		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13774  	}
13775  	if (unlikely(rc))
13776  		return rc;
13777  	sli4_params = &phba->sli4_hba.pc_sli4_params;
13778  	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13779  	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13780  	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13781  	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13782  	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13783  					     mbx_sli4_parameters);
13784  	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13785  					     mbx_sli4_parameters);
13786  	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13787  		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13788  	else
13789  		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13790  	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13791  	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13792  					   mbx_sli4_parameters);
13793  	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13794  	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13795  	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13796  	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13797  	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13798  	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13799  	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13800  	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13801  	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13802  	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13803  	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13804  					    mbx_sli4_parameters);
13805  	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13806  	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13807  					   mbx_sli4_parameters);
13808  	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13809  	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13810  	sli4_params->mi_cap = bf_get(cfg_mi_ver, mbx_sli4_parameters);
13811  
13812  	/* Check for Extended Pre-Registered SGL support */
13813  	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13814  
13815  	/* Check for firmware nvme support */
13816  	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13817  		     bf_get(cfg_xib, mbx_sli4_parameters));
13818  
13819  	if (rc) {
13820  		/* Save this to indicate the Firmware supports NVME */
13821  		sli4_params->nvme = 1;
13822  
13823  		/* Firmware NVME support, check driver FC4 NVME support */
13824  		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13825  			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13826  					"6133 Disabling NVME support: "
13827  					"FC4 type not supported: x%x\n",
13828  					phba->cfg_enable_fc4_type);
13829  			goto fcponly;
13830  		}
13831  	} else {
13832  		/* No firmware NVME support, check driver FC4 NVME support */
13833  		sli4_params->nvme = 0;
13834  		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13835  			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13836  					"6101 Disabling NVME support: Not "
13837  					"supported by firmware (%d %d) x%x\n",
13838  					bf_get(cfg_nvme, mbx_sli4_parameters),
13839  					bf_get(cfg_xib, mbx_sli4_parameters),
13840  					phba->cfg_enable_fc4_type);
13841  fcponly:
13842  			phba->nvmet_support = 0;
13843  			phba->cfg_nvmet_mrq = 0;
13844  			phba->cfg_nvme_seg_cnt = 0;
13845  
13846  			/* If no FC4 type support, move to just SCSI support */
13847  			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13848  				return -ENODEV;
13849  			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13850  		}
13851  	}
13852  
13853  	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13854  	 * accommodate 512K and 1M IOs in a single nvme buf.
13855  	 */
13856  	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13857  		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13858  
13859  	/* Enable embedded Payload BDE if support is indicated */
13860  	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13861  		phba->cfg_enable_pbde = 1;
13862  	else
13863  		phba->cfg_enable_pbde = 0;
13864  
13865  	/*
13866  	 * To support Suppress Response feature we must satisfy 3 conditions.
13867  	 * lpfc_suppress_rsp module parameter must be set (default).
13868  	 * In SLI4-Parameters Descriptor:
13869  	 * Extended Inline Buffers (XIB) must be supported.
13870  	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13871  	 * (double negative).
13872  	 */
13873  	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13874  	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13875  		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13876  	else
13877  		phba->cfg_suppress_rsp = 0;
13878  
13879  	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13880  		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13881  
13882  	/* Make sure that sge_supp_len can be handled by the driver */
13883  	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13884  		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13885  
13886  	dma_set_max_seg_size(&phba->pcidev->dev, sli4_params->sge_supp_len);
13887  
13888  	/*
13889  	 * Check whether the adapter supports an embedded copy of the
13890  	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13891  	 * to use this option, 128-byte WQEs must be used.
13892  	 */
13893  	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13894  		phba->fcp_embed_io = 1;
13895  	else
13896  		phba->fcp_embed_io = 0;
13897  
13898  	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13899  			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13900  			bf_get(cfg_xib, mbx_sli4_parameters),
13901  			phba->cfg_enable_pbde,
13902  			phba->fcp_embed_io, sli4_params->nvme,
13903  			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13904  
13905  	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
13906  	    LPFC_SLI_INTF_IF_TYPE_2) &&
13907  	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
13908  		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
13909  		exp_wqcq_pages = false;
13910  
13911  	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
13912  	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
13913  	    exp_wqcq_pages &&
13914  	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
13915  		phba->enab_exp_wqcq_pages = 1;
13916  	else
13917  		phba->enab_exp_wqcq_pages = 0;
13918  	/*
13919  	 * Check if the SLI port supports MDS Diagnostics
13920  	 */
13921  	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
13922  		phba->mds_diags_support = 1;
13923  	else
13924  		phba->mds_diags_support = 0;
13925  
13926  	/*
13927  	 * Check if the SLI port supports NSLER
13928  	 */
13929  	if (bf_get(cfg_nsler, mbx_sli4_parameters))
13930  		phba->nsler = 1;
13931  	else
13932  		phba->nsler = 0;
13933  
13934  	return 0;
13935  }
13936  
13937  /**
13938   * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
13939   * @pdev: pointer to PCI device
13940   * @pid: pointer to PCI device identifier
13941   *
13942   * This routine is to be called to attach a device with SLI-3 interface spec
13943   * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13944   * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
13945   * information of the device and driver to see if the driver state that it can
13946   * support this kind of device. If the match is successful, the driver core
13947   * invokes this routine. If this routine determines it can claim the HBA, it
13948   * does all the initialization that it needs to do to handle the HBA properly.
13949   *
13950   * Return code
13951   * 	0 - driver can claim the device
13952   * 	negative value - driver can not claim the device
13953   **/
13954  static int
lpfc_pci_probe_one_s3(struct pci_dev * pdev,const struct pci_device_id * pid)13955  lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
13956  {
13957  	struct lpfc_hba   *phba;
13958  	struct lpfc_vport *vport = NULL;
13959  	struct Scsi_Host  *shost = NULL;
13960  	int error;
13961  	uint32_t cfg_mode, intr_mode;
13962  
13963  	/* Allocate memory for HBA structure */
13964  	phba = lpfc_hba_alloc(pdev);
13965  	if (!phba)
13966  		return -ENOMEM;
13967  
13968  	/* Perform generic PCI device enabling operation */
13969  	error = lpfc_enable_pci_dev(phba);
13970  	if (error)
13971  		goto out_free_phba;
13972  
13973  	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
13974  	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
13975  	if (error)
13976  		goto out_disable_pci_dev;
13977  
13978  	/* Set up SLI-3 specific device PCI memory space */
13979  	error = lpfc_sli_pci_mem_setup(phba);
13980  	if (error) {
13981  		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13982  				"1402 Failed to set up pci memory space.\n");
13983  		goto out_disable_pci_dev;
13984  	}
13985  
13986  	/* Set up SLI-3 specific device driver resources */
13987  	error = lpfc_sli_driver_resource_setup(phba);
13988  	if (error) {
13989  		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13990  				"1404 Failed to set up driver resource.\n");
13991  		goto out_unset_pci_mem_s3;
13992  	}
13993  
13994  	/* Initialize and populate the iocb list per host */
13995  
13996  	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
13997  	if (error) {
13998  		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13999  				"1405 Failed to initialize iocb list.\n");
14000  		goto out_unset_driver_resource_s3;
14001  	}
14002  
14003  	/* Set up common device driver resources */
14004  	error = lpfc_setup_driver_resource_phase2(phba);
14005  	if (error) {
14006  		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14007  				"1406 Failed to set up driver resource.\n");
14008  		goto out_free_iocb_list;
14009  	}
14010  
14011  	/* Get the default values for Model Name and Description */
14012  	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14013  
14014  	/* Create SCSI host to the physical port */
14015  	error = lpfc_create_shost(phba);
14016  	if (error) {
14017  		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14018  				"1407 Failed to create scsi host.\n");
14019  		goto out_unset_driver_resource;
14020  	}
14021  
14022  	/* Configure sysfs attributes */
14023  	vport = phba->pport;
14024  	error = lpfc_alloc_sysfs_attr(vport);
14025  	if (error) {
14026  		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14027  				"1476 Failed to allocate sysfs attr\n");
14028  		goto out_destroy_shost;
14029  	}
14030  
14031  	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14032  	/* Now, trying to enable interrupt and bring up the device */
14033  	cfg_mode = phba->cfg_use_msi;
14034  	while (true) {
14035  		/* Put device to a known state before enabling interrupt */
14036  		lpfc_stop_port(phba);
14037  		/* Configure and enable interrupt */
14038  		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
14039  		if (intr_mode == LPFC_INTR_ERROR) {
14040  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14041  					"0431 Failed to enable interrupt.\n");
14042  			error = -ENODEV;
14043  			goto out_free_sysfs_attr;
14044  		}
14045  		/* SLI-3 HBA setup */
14046  		if (lpfc_sli_hba_setup(phba)) {
14047  			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14048  					"1477 Failed to set up hba\n");
14049  			error = -ENODEV;
14050  			goto out_remove_device;
14051  		}
14052  
14053  		/* Wait 50ms for the interrupts of previous mailbox commands */
14054  		msleep(50);
14055  		/* Check active interrupts on message signaled interrupts */
14056  		if (intr_mode == 0 ||
14057  		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
14058  			/* Log the current active interrupt mode */
14059  			phba->intr_mode = intr_mode;
14060  			lpfc_log_intr_mode(phba, intr_mode);
14061  			break;
14062  		} else {
14063  			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14064  					"0447 Configure interrupt mode (%d) "
14065  					"failed active interrupt test.\n",
14066  					intr_mode);
14067  			/* Disable the current interrupt mode */
14068  			lpfc_sli_disable_intr(phba);
14069  			/* Try next level of interrupt mode */
14070  			cfg_mode = --intr_mode;
14071  		}
14072  	}
14073  
14074  	/* Perform post initialization setup */
14075  	lpfc_post_init_setup(phba);
14076  
14077  	/* Check if there are static vports to be created. */
14078  	lpfc_create_static_vport(phba);
14079  
14080  	return 0;
14081  
14082  out_remove_device:
14083  	lpfc_unset_hba(phba);
14084  out_free_sysfs_attr:
14085  	lpfc_free_sysfs_attr(vport);
14086  out_destroy_shost:
14087  	lpfc_destroy_shost(phba);
14088  out_unset_driver_resource:
14089  	lpfc_unset_driver_resource_phase2(phba);
14090  out_free_iocb_list:
14091  	lpfc_free_iocb_list(phba);
14092  out_unset_driver_resource_s3:
14093  	lpfc_sli_driver_resource_unset(phba);
14094  out_unset_pci_mem_s3:
14095  	lpfc_sli_pci_mem_unset(phba);
14096  out_disable_pci_dev:
14097  	lpfc_disable_pci_dev(phba);
14098  	if (shost)
14099  		scsi_host_put(shost);
14100  out_free_phba:
14101  	lpfc_hba_free(phba);
14102  	return error;
14103  }
14104  
14105  /**
14106   * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
14107   * @pdev: pointer to PCI device
14108   *
14109   * This routine is to be called to disattach a device with SLI-3 interface
14110   * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
14111   * removed from PCI bus, it performs all the necessary cleanup for the HBA
14112   * device to be removed from the PCI subsystem properly.
14113   **/
14114  static void
lpfc_pci_remove_one_s3(struct pci_dev * pdev)14115  lpfc_pci_remove_one_s3(struct pci_dev *pdev)
14116  {
14117  	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
14118  	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14119  	struct lpfc_vport **vports;
14120  	struct lpfc_hba   *phba = vport->phba;
14121  	int i;
14122  
14123  	set_bit(FC_UNLOADING, &vport->load_flag);
14124  
14125  	lpfc_free_sysfs_attr(vport);
14126  
14127  	/* Release all the vports against this physical port */
14128  	vports = lpfc_create_vport_work_array(phba);
14129  	if (vports != NULL)
14130  		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14131  			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14132  				continue;
14133  			fc_vport_terminate(vports[i]->fc_vport);
14134  		}
14135  	lpfc_destroy_vport_work_array(phba, vports);
14136  
14137  	/* Remove FC host with the physical port */
14138  	fc_remove_host(shost);
14139  	scsi_remove_host(shost);
14140  
14141  	/* Clean up all nodes, mailboxes and IOs. */
14142  	lpfc_cleanup(vport);
14143  
14144  	/*
14145  	 * Bring down the SLI Layer. This step disable all interrupts,
14146  	 * clears the rings, discards all mailbox commands, and resets
14147  	 * the HBA.
14148  	 */
14149  
14150  	/* HBA interrupt will be disabled after this call */
14151  	lpfc_sli_hba_down(phba);
14152  	/* Stop kthread signal shall trigger work_done one more time */
14153  	kthread_stop(phba->worker_thread);
14154  	/* Final cleanup of txcmplq and reset the HBA */
14155  	lpfc_sli_brdrestart(phba);
14156  
14157  	kfree(phba->vpi_bmask);
14158  	kfree(phba->vpi_ids);
14159  
14160  	lpfc_stop_hba_timers(phba);
14161  	spin_lock_irq(&phba->port_list_lock);
14162  	list_del_init(&vport->listentry);
14163  	spin_unlock_irq(&phba->port_list_lock);
14164  
14165  	lpfc_debugfs_terminate(vport);
14166  
14167  	/* Disable SR-IOV if enabled */
14168  	if (phba->cfg_sriov_nr_virtfn)
14169  		pci_disable_sriov(pdev);
14170  
14171  	/* Disable interrupt */
14172  	lpfc_sli_disable_intr(phba);
14173  
14174  	scsi_host_put(shost);
14175  
14176  	/*
14177  	 * Call scsi_free before mem_free since scsi bufs are released to their
14178  	 * corresponding pools here.
14179  	 */
14180  	lpfc_scsi_free(phba);
14181  	lpfc_free_iocb_list(phba);
14182  
14183  	lpfc_mem_free_all(phba);
14184  
14185  	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
14186  			  phba->hbqslimp.virt, phba->hbqslimp.phys);
14187  
14188  	/* Free resources associated with SLI2 interface */
14189  	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
14190  			  phba->slim2p.virt, phba->slim2p.phys);
14191  
14192  	/* unmap adapter SLIM and Control Registers */
14193  	iounmap(phba->ctrl_regs_memmap_p);
14194  	iounmap(phba->slim_memmap_p);
14195  
14196  	lpfc_hba_free(phba);
14197  
14198  	pci_release_mem_regions(pdev);
14199  	pci_disable_device(pdev);
14200  }
14201  
14202  /**
14203   * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
14204   * @dev_d: pointer to device
14205   *
14206   * This routine is to be called from the kernel's PCI subsystem to support
14207   * system Power Management (PM) to device with SLI-3 interface spec. When
14208   * PM invokes this method, it quiesces the device by stopping the driver's
14209   * worker thread for the device, turning off device's interrupt and DMA,
14210   * and bring the device offline. Note that as the driver implements the
14211   * minimum PM requirements to a power-aware driver's PM support for the
14212   * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14213   * to the suspend() method call will be treated as SUSPEND and the driver will
14214   * fully reinitialize its device during resume() method call, the driver will
14215   * set device to PCI_D3hot state in PCI config space instead of setting it
14216   * according to the @msg provided by the PM.
14217   *
14218   * Return code
14219   * 	0 - driver suspended the device
14220   * 	Error otherwise
14221   **/
14222  static int __maybe_unused
lpfc_pci_suspend_one_s3(struct device * dev_d)14223  lpfc_pci_suspend_one_s3(struct device *dev_d)
14224  {
14225  	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14226  	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14227  
14228  	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14229  			"0473 PCI device Power Management suspend.\n");
14230  
14231  	/* Bring down the device */
14232  	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14233  	lpfc_offline(phba);
14234  	kthread_stop(phba->worker_thread);
14235  
14236  	/* Disable interrupt from device */
14237  	lpfc_sli_disable_intr(phba);
14238  
14239  	return 0;
14240  }
14241  
14242  /**
14243   * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14244   * @dev_d: pointer to device
14245   *
14246   * This routine is to be called from the kernel's PCI subsystem to support
14247   * system Power Management (PM) to device with SLI-3 interface spec. When PM
14248   * invokes this method, it restores the device's PCI config space state and
14249   * fully reinitializes the device and brings it online. Note that as the
14250   * driver implements the minimum PM requirements to a power-aware driver's
14251   * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14252   * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14253   * driver will fully reinitialize its device during resume() method call,
14254   * the device will be set to PCI_D0 directly in PCI config space before
14255   * restoring the state.
14256   *
14257   * Return code
14258   * 	0 - driver suspended the device
14259   * 	Error otherwise
14260   **/
14261  static int __maybe_unused
lpfc_pci_resume_one_s3(struct device * dev_d)14262  lpfc_pci_resume_one_s3(struct device *dev_d)
14263  {
14264  	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14265  	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14266  	uint32_t intr_mode;
14267  	int error;
14268  
14269  	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14270  			"0452 PCI device Power Management resume.\n");
14271  
14272  	/* Startup the kernel thread for this host adapter. */
14273  	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14274  					"lpfc_worker_%d", phba->brd_no);
14275  	if (IS_ERR(phba->worker_thread)) {
14276  		error = PTR_ERR(phba->worker_thread);
14277  		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14278  				"0434 PM resume failed to start worker "
14279  				"thread: error=x%x.\n", error);
14280  		return error;
14281  	}
14282  
14283  	/* Init cpu_map array */
14284  	lpfc_cpu_map_array_init(phba);
14285  	/* Init hba_eq_hdl array */
14286  	lpfc_hba_eq_hdl_array_init(phba);
14287  	/* Configure and enable interrupt */
14288  	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14289  	if (intr_mode == LPFC_INTR_ERROR) {
14290  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14291  				"0430 PM resume Failed to enable interrupt\n");
14292  		return -EIO;
14293  	} else
14294  		phba->intr_mode = intr_mode;
14295  
14296  	/* Restart HBA and bring it online */
14297  	lpfc_sli_brdrestart(phba);
14298  	lpfc_online(phba);
14299  
14300  	/* Log the current active interrupt mode */
14301  	lpfc_log_intr_mode(phba, phba->intr_mode);
14302  
14303  	return 0;
14304  }
14305  
14306  /**
14307   * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14308   * @phba: pointer to lpfc hba data structure.
14309   *
14310   * This routine is called to prepare the SLI3 device for PCI slot recover. It
14311   * aborts all the outstanding SCSI I/Os to the pci device.
14312   **/
14313  static void
lpfc_sli_prep_dev_for_recover(struct lpfc_hba * phba)14314  lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14315  {
14316  	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14317  			"2723 PCI channel I/O abort preparing for recovery\n");
14318  
14319  	/*
14320  	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14321  	 * and let the SCSI mid-layer to retry them to recover.
14322  	 */
14323  	lpfc_sli_abort_fcp_rings(phba);
14324  }
14325  
14326  /**
14327   * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14328   * @phba: pointer to lpfc hba data structure.
14329   *
14330   * This routine is called to prepare the SLI3 device for PCI slot reset. It
14331   * disables the device interrupt and pci device, and aborts the internal FCP
14332   * pending I/Os.
14333   **/
14334  static void
lpfc_sli_prep_dev_for_reset(struct lpfc_hba * phba)14335  lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14336  {
14337  	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14338  			"2710 PCI channel disable preparing for reset\n");
14339  
14340  	/* Block any management I/Os to the device */
14341  	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14342  
14343  	/* Block all SCSI devices' I/Os on the host */
14344  	lpfc_scsi_dev_block(phba);
14345  
14346  	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14347  	lpfc_sli_flush_io_rings(phba);
14348  
14349  	/* stop all timers */
14350  	lpfc_stop_hba_timers(phba);
14351  
14352  	/* Disable interrupt and pci device */
14353  	lpfc_sli_disable_intr(phba);
14354  	pci_disable_device(phba->pcidev);
14355  }
14356  
14357  /**
14358   * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14359   * @phba: pointer to lpfc hba data structure.
14360   *
14361   * This routine is called to prepare the SLI3 device for PCI slot permanently
14362   * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14363   * pending I/Os.
14364   **/
14365  static void
lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba * phba)14366  lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14367  {
14368  	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14369  			"2711 PCI channel permanent disable for failure\n");
14370  	/* Block all SCSI devices' I/Os on the host */
14371  	lpfc_scsi_dev_block(phba);
14372  	lpfc_sli4_prep_dev_for_reset(phba);
14373  
14374  	/* stop all timers */
14375  	lpfc_stop_hba_timers(phba);
14376  
14377  	/* Clean up all driver's outstanding SCSI I/Os */
14378  	lpfc_sli_flush_io_rings(phba);
14379  }
14380  
14381  /**
14382   * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14383   * @pdev: pointer to PCI device.
14384   * @state: the current PCI connection state.
14385   *
14386   * This routine is called from the PCI subsystem for I/O error handling to
14387   * device with SLI-3 interface spec. This function is called by the PCI
14388   * subsystem after a PCI bus error affecting this device has been detected.
14389   * When this function is invoked, it will need to stop all the I/Os and
14390   * interrupt(s) to the device. Once that is done, it will return
14391   * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14392   * as desired.
14393   *
14394   * Return codes
14395   * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14396   * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14397   * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14398   **/
14399  static pci_ers_result_t
lpfc_io_error_detected_s3(struct pci_dev * pdev,pci_channel_state_t state)14400  lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14401  {
14402  	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14403  	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14404  
14405  	switch (state) {
14406  	case pci_channel_io_normal:
14407  		/* Non-fatal error, prepare for recovery */
14408  		lpfc_sli_prep_dev_for_recover(phba);
14409  		return PCI_ERS_RESULT_CAN_RECOVER;
14410  	case pci_channel_io_frozen:
14411  		/* Fatal error, prepare for slot reset */
14412  		lpfc_sli_prep_dev_for_reset(phba);
14413  		return PCI_ERS_RESULT_NEED_RESET;
14414  	case pci_channel_io_perm_failure:
14415  		/* Permanent failure, prepare for device down */
14416  		lpfc_sli_prep_dev_for_perm_failure(phba);
14417  		return PCI_ERS_RESULT_DISCONNECT;
14418  	default:
14419  		/* Unknown state, prepare and request slot reset */
14420  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14421  				"0472 Unknown PCI error state: x%x\n", state);
14422  		lpfc_sli_prep_dev_for_reset(phba);
14423  		return PCI_ERS_RESULT_NEED_RESET;
14424  	}
14425  }
14426  
14427  /**
14428   * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14429   * @pdev: pointer to PCI device.
14430   *
14431   * This routine is called from the PCI subsystem for error handling to
14432   * device with SLI-3 interface spec. This is called after PCI bus has been
14433   * reset to restart the PCI card from scratch, as if from a cold-boot.
14434   * During the PCI subsystem error recovery, after driver returns
14435   * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14436   * recovery and then call this routine before calling the .resume method
14437   * to recover the device. This function will initialize the HBA device,
14438   * enable the interrupt, but it will just put the HBA to offline state
14439   * without passing any I/O traffic.
14440   *
14441   * Return codes
14442   * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14443   * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14444   */
14445  static pci_ers_result_t
lpfc_io_slot_reset_s3(struct pci_dev * pdev)14446  lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14447  {
14448  	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14449  	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14450  	struct lpfc_sli *psli = &phba->sli;
14451  	uint32_t intr_mode;
14452  
14453  	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14454  	if (pci_enable_device_mem(pdev)) {
14455  		printk(KERN_ERR "lpfc: Cannot re-enable "
14456  			"PCI device after reset.\n");
14457  		return PCI_ERS_RESULT_DISCONNECT;
14458  	}
14459  
14460  	pci_restore_state(pdev);
14461  
14462  	/*
14463  	 * As the new kernel behavior of pci_restore_state() API call clears
14464  	 * device saved_state flag, need to save the restored state again.
14465  	 */
14466  	pci_save_state(pdev);
14467  
14468  	if (pdev->is_busmaster)
14469  		pci_set_master(pdev);
14470  
14471  	spin_lock_irq(&phba->hbalock);
14472  	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14473  	spin_unlock_irq(&phba->hbalock);
14474  
14475  	/* Configure and enable interrupt */
14476  	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14477  	if (intr_mode == LPFC_INTR_ERROR) {
14478  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14479  				"0427 Cannot re-enable interrupt after "
14480  				"slot reset.\n");
14481  		return PCI_ERS_RESULT_DISCONNECT;
14482  	} else
14483  		phba->intr_mode = intr_mode;
14484  
14485  	/* Take device offline, it will perform cleanup */
14486  	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14487  	lpfc_offline(phba);
14488  	lpfc_sli_brdrestart(phba);
14489  
14490  	/* Log the current active interrupt mode */
14491  	lpfc_log_intr_mode(phba, phba->intr_mode);
14492  
14493  	return PCI_ERS_RESULT_RECOVERED;
14494  }
14495  
14496  /**
14497   * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14498   * @pdev: pointer to PCI device
14499   *
14500   * This routine is called from the PCI subsystem for error handling to device
14501   * with SLI-3 interface spec. It is called when kernel error recovery tells
14502   * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14503   * error recovery. After this call, traffic can start to flow from this device
14504   * again.
14505   */
14506  static void
lpfc_io_resume_s3(struct pci_dev * pdev)14507  lpfc_io_resume_s3(struct pci_dev *pdev)
14508  {
14509  	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14510  	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14511  
14512  	/* Bring device online, it will be no-op for non-fatal error resume */
14513  	lpfc_online(phba);
14514  }
14515  
14516  /**
14517   * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14518   * @phba: pointer to lpfc hba data structure.
14519   *
14520   * returns the number of ELS/CT IOCBs to reserve
14521   **/
14522  int
lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba * phba)14523  lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14524  {
14525  	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14526  
14527  	if (phba->sli_rev == LPFC_SLI_REV4) {
14528  		if (max_xri <= 100)
14529  			return 10;
14530  		else if (max_xri <= 256)
14531  			return 25;
14532  		else if (max_xri <= 512)
14533  			return 50;
14534  		else if (max_xri <= 1024)
14535  			return 100;
14536  		else if (max_xri <= 1536)
14537  			return 150;
14538  		else if (max_xri <= 2048)
14539  			return 200;
14540  		else
14541  			return 250;
14542  	} else
14543  		return 0;
14544  }
14545  
14546  /**
14547   * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14548   * @phba: pointer to lpfc hba data structure.
14549   *
14550   * returns the number of ELS/CT + NVMET IOCBs to reserve
14551   **/
14552  int
lpfc_sli4_get_iocb_cnt(struct lpfc_hba * phba)14553  lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14554  {
14555  	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14556  
14557  	if (phba->nvmet_support)
14558  		max_xri += LPFC_NVMET_BUF_POST;
14559  	return max_xri;
14560  }
14561  
14562  
14563  static int
lpfc_log_write_firmware_error(struct lpfc_hba * phba,uint32_t offset,uint32_t magic_number,uint32_t ftype,uint32_t fid,uint32_t fsize,const struct firmware * fw)14564  lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14565  	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14566  	const struct firmware *fw)
14567  {
14568  	int rc;
14569  	u8 sli_family;
14570  
14571  	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14572  	/* Three cases:  (1) FW was not supported on the detected adapter.
14573  	 * (2) FW update has been locked out administratively.
14574  	 * (3) Some other error during FW update.
14575  	 * In each case, an unmaskable message is written to the console
14576  	 * for admin diagnosis.
14577  	 */
14578  	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14579  	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14580  	     magic_number != MAGIC_NUMBER_G6) ||
14581  	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14582  	     magic_number != MAGIC_NUMBER_G7) ||
14583  	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14584  	     magic_number != MAGIC_NUMBER_G7P)) {
14585  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14586  				"3030 This firmware version is not supported on"
14587  				" this HBA model. Device:%x Magic:%x Type:%x "
14588  				"ID:%x Size %d %zd\n",
14589  				phba->pcidev->device, magic_number, ftype, fid,
14590  				fsize, fw->size);
14591  		rc = -EINVAL;
14592  	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14593  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14594  				"3021 Firmware downloads have been prohibited "
14595  				"by a system configuration setting on "
14596  				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14597  				"%zd\n",
14598  				phba->pcidev->device, magic_number, ftype, fid,
14599  				fsize, fw->size);
14600  		rc = -EACCES;
14601  	} else {
14602  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14603  				"3022 FW Download failed. Add Status x%x "
14604  				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14605  				"%zd\n",
14606  				offset, phba->pcidev->device, magic_number,
14607  				ftype, fid, fsize, fw->size);
14608  		rc = -EIO;
14609  	}
14610  	return rc;
14611  }
14612  
14613  /**
14614   * lpfc_write_firmware - attempt to write a firmware image to the port
14615   * @fw: pointer to firmware image returned from request_firmware.
14616   * @context: pointer to firmware image returned from request_firmware.
14617   *
14618   **/
14619  static void
lpfc_write_firmware(const struct firmware * fw,void * context)14620  lpfc_write_firmware(const struct firmware *fw, void *context)
14621  {
14622  	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14623  	char fwrev[FW_REV_STR_SIZE];
14624  	struct lpfc_grp_hdr *image;
14625  	struct list_head dma_buffer_list;
14626  	int i, rc = 0;
14627  	struct lpfc_dmabuf *dmabuf, *next;
14628  	uint32_t offset = 0, temp_offset = 0;
14629  	uint32_t magic_number, ftype, fid, fsize;
14630  
14631  	/* It can be null in no-wait mode, sanity check */
14632  	if (!fw) {
14633  		rc = -ENXIO;
14634  		goto out;
14635  	}
14636  	image = (struct lpfc_grp_hdr *)fw->data;
14637  
14638  	magic_number = be32_to_cpu(image->magic_number);
14639  	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14640  	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14641  	fsize = be32_to_cpu(image->size);
14642  
14643  	INIT_LIST_HEAD(&dma_buffer_list);
14644  	lpfc_decode_firmware_rev(phba, fwrev, 1);
14645  	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14646  		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14647  			     "3023 Updating Firmware, Current Version:%s "
14648  			     "New Version:%s\n",
14649  			     fwrev, image->revision);
14650  		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14651  			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14652  					 GFP_KERNEL);
14653  			if (!dmabuf) {
14654  				rc = -ENOMEM;
14655  				goto release_out;
14656  			}
14657  			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14658  							  SLI4_PAGE_SIZE,
14659  							  &dmabuf->phys,
14660  							  GFP_KERNEL);
14661  			if (!dmabuf->virt) {
14662  				kfree(dmabuf);
14663  				rc = -ENOMEM;
14664  				goto release_out;
14665  			}
14666  			list_add_tail(&dmabuf->list, &dma_buffer_list);
14667  		}
14668  		while (offset < fw->size) {
14669  			temp_offset = offset;
14670  			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14671  				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14672  					memcpy(dmabuf->virt,
14673  					       fw->data + temp_offset,
14674  					       fw->size - temp_offset);
14675  					temp_offset = fw->size;
14676  					break;
14677  				}
14678  				memcpy(dmabuf->virt, fw->data + temp_offset,
14679  				       SLI4_PAGE_SIZE);
14680  				temp_offset += SLI4_PAGE_SIZE;
14681  			}
14682  			rc = lpfc_wr_object(phba, &dma_buffer_list,
14683  				    (fw->size - offset), &offset);
14684  			if (rc) {
14685  				rc = lpfc_log_write_firmware_error(phba, offset,
14686  								   magic_number,
14687  								   ftype,
14688  								   fid,
14689  								   fsize,
14690  								   fw);
14691  				goto release_out;
14692  			}
14693  		}
14694  		rc = offset;
14695  	} else
14696  		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14697  			     "3029 Skipped Firmware update, Current "
14698  			     "Version:%s New Version:%s\n",
14699  			     fwrev, image->revision);
14700  
14701  release_out:
14702  	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14703  		list_del(&dmabuf->list);
14704  		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14705  				  dmabuf->virt, dmabuf->phys);
14706  		kfree(dmabuf);
14707  	}
14708  	release_firmware(fw);
14709  out:
14710  	if (rc < 0)
14711  		lpfc_log_msg(phba, KERN_ERR, LOG_INIT | LOG_SLI,
14712  			     "3062 Firmware update error, status %d.\n", rc);
14713  	else
14714  		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14715  			     "3024 Firmware update success: size %d.\n", rc);
14716  }
14717  
14718  /**
14719   * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14720   * @phba: pointer to lpfc hba data structure.
14721   * @fw_upgrade: which firmware to update.
14722   *
14723   * This routine is called to perform Linux generic firmware upgrade on device
14724   * that supports such feature.
14725   **/
14726  int
lpfc_sli4_request_firmware_update(struct lpfc_hba * phba,uint8_t fw_upgrade)14727  lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14728  {
14729  	char file_name[ELX_FW_NAME_SIZE] = {0};
14730  	int ret;
14731  	const struct firmware *fw;
14732  
14733  	/* Only supported on SLI4 interface type 2 for now */
14734  	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14735  	    LPFC_SLI_INTF_IF_TYPE_2)
14736  		return -EPERM;
14737  
14738  	scnprintf(file_name, sizeof(file_name), "%s.grp", phba->ModelName);
14739  
14740  	if (fw_upgrade == INT_FW_UPGRADE) {
14741  		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14742  					file_name, &phba->pcidev->dev,
14743  					GFP_KERNEL, (void *)phba,
14744  					lpfc_write_firmware);
14745  	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14746  		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14747  		if (!ret)
14748  			lpfc_write_firmware(fw, (void *)phba);
14749  	} else {
14750  		ret = -EINVAL;
14751  	}
14752  
14753  	return ret;
14754  }
14755  
14756  /**
14757   * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14758   * @pdev: pointer to PCI device
14759   * @pid: pointer to PCI device identifier
14760   *
14761   * This routine is called from the kernel's PCI subsystem to device with
14762   * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14763   * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14764   * information of the device and driver to see if the driver state that it
14765   * can support this kind of device. If the match is successful, the driver
14766   * core invokes this routine. If this routine determines it can claim the HBA,
14767   * it does all the initialization that it needs to do to handle the HBA
14768   * properly.
14769   *
14770   * Return code
14771   * 	0 - driver can claim the device
14772   * 	negative value - driver can not claim the device
14773   **/
14774  static int
lpfc_pci_probe_one_s4(struct pci_dev * pdev,const struct pci_device_id * pid)14775  lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14776  {
14777  	struct lpfc_hba   *phba;
14778  	struct lpfc_vport *vport = NULL;
14779  	struct Scsi_Host  *shost = NULL;
14780  	int error;
14781  	uint32_t cfg_mode, intr_mode;
14782  
14783  	/* Allocate memory for HBA structure */
14784  	phba = lpfc_hba_alloc(pdev);
14785  	if (!phba)
14786  		return -ENOMEM;
14787  
14788  	INIT_LIST_HEAD(&phba->poll_list);
14789  
14790  	/* Perform generic PCI device enabling operation */
14791  	error = lpfc_enable_pci_dev(phba);
14792  	if (error)
14793  		goto out_free_phba;
14794  
14795  	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14796  	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14797  	if (error)
14798  		goto out_disable_pci_dev;
14799  
14800  	/* Set up SLI-4 specific device PCI memory space */
14801  	error = lpfc_sli4_pci_mem_setup(phba);
14802  	if (error) {
14803  		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14804  				"1410 Failed to set up pci memory space.\n");
14805  		goto out_disable_pci_dev;
14806  	}
14807  
14808  	/* Set up SLI-4 Specific device driver resources */
14809  	error = lpfc_sli4_driver_resource_setup(phba);
14810  	if (error) {
14811  		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14812  				"1412 Failed to set up driver resource.\n");
14813  		goto out_unset_pci_mem_s4;
14814  	}
14815  
14816  	spin_lock_init(&phba->rrq_list_lock);
14817  	INIT_LIST_HEAD(&phba->active_rrq_list);
14818  	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14819  
14820  	/* Set up common device driver resources */
14821  	error = lpfc_setup_driver_resource_phase2(phba);
14822  	if (error) {
14823  		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14824  				"1414 Failed to set up driver resource.\n");
14825  		goto out_unset_driver_resource_s4;
14826  	}
14827  
14828  	/* Get the default values for Model Name and Description */
14829  	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14830  
14831  	/* Now, trying to enable interrupt and bring up the device */
14832  	cfg_mode = phba->cfg_use_msi;
14833  
14834  	/* Put device to a known state before enabling interrupt */
14835  	phba->pport = NULL;
14836  	lpfc_stop_port(phba);
14837  
14838  	/* Init cpu_map array */
14839  	lpfc_cpu_map_array_init(phba);
14840  
14841  	/* Init hba_eq_hdl array */
14842  	lpfc_hba_eq_hdl_array_init(phba);
14843  
14844  	/* Configure and enable interrupt */
14845  	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14846  	if (intr_mode == LPFC_INTR_ERROR) {
14847  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14848  				"0426 Failed to enable interrupt.\n");
14849  		error = -ENODEV;
14850  		goto out_unset_driver_resource;
14851  	}
14852  	/* Default to single EQ for non-MSI-X */
14853  	if (phba->intr_type != MSIX) {
14854  		phba->cfg_irq_chann = 1;
14855  		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14856  			if (phba->nvmet_support)
14857  				phba->cfg_nvmet_mrq = 1;
14858  		}
14859  	}
14860  	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14861  
14862  	/* Create SCSI host to the physical port */
14863  	error = lpfc_create_shost(phba);
14864  	if (error) {
14865  		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14866  				"1415 Failed to create scsi host.\n");
14867  		goto out_disable_intr;
14868  	}
14869  	vport = phba->pport;
14870  	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14871  
14872  	/* Configure sysfs attributes */
14873  	error = lpfc_alloc_sysfs_attr(vport);
14874  	if (error) {
14875  		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14876  				"1416 Failed to allocate sysfs attr\n");
14877  		goto out_destroy_shost;
14878  	}
14879  
14880  	/* Set up SLI-4 HBA */
14881  	if (lpfc_sli4_hba_setup(phba)) {
14882  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14883  				"1421 Failed to set up hba\n");
14884  		error = -ENODEV;
14885  		goto out_free_sysfs_attr;
14886  	}
14887  
14888  	/* Log the current active interrupt mode */
14889  	phba->intr_mode = intr_mode;
14890  	lpfc_log_intr_mode(phba, intr_mode);
14891  
14892  	/* Perform post initialization setup */
14893  	lpfc_post_init_setup(phba);
14894  
14895  	/* NVME support in FW earlier in the driver load corrects the
14896  	 * FC4 type making a check for nvme_support unnecessary.
14897  	 */
14898  	if (phba->nvmet_support == 0) {
14899  		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14900  			/* Create NVME binding with nvme_fc_transport. This
14901  			 * ensures the vport is initialized.  If the localport
14902  			 * create fails, it should not unload the driver to
14903  			 * support field issues.
14904  			 */
14905  			error = lpfc_nvme_create_localport(vport);
14906  			if (error) {
14907  				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14908  						"6004 NVME registration "
14909  						"failed, error x%x\n",
14910  						error);
14911  			}
14912  		}
14913  	}
14914  
14915  	/* check for firmware upgrade or downgrade */
14916  	if (phba->cfg_request_firmware_upgrade)
14917  		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
14918  
14919  	/* Check if there are static vports to be created. */
14920  	lpfc_create_static_vport(phba);
14921  
14922  	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14923  	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
14924  
14925  	return 0;
14926  
14927  out_free_sysfs_attr:
14928  	lpfc_free_sysfs_attr(vport);
14929  out_destroy_shost:
14930  	lpfc_destroy_shost(phba);
14931  out_disable_intr:
14932  	lpfc_sli4_disable_intr(phba);
14933  out_unset_driver_resource:
14934  	lpfc_unset_driver_resource_phase2(phba);
14935  out_unset_driver_resource_s4:
14936  	lpfc_sli4_driver_resource_unset(phba);
14937  out_unset_pci_mem_s4:
14938  	lpfc_sli4_pci_mem_unset(phba);
14939  out_disable_pci_dev:
14940  	lpfc_disable_pci_dev(phba);
14941  	if (shost)
14942  		scsi_host_put(shost);
14943  out_free_phba:
14944  	lpfc_hba_free(phba);
14945  	return error;
14946  }
14947  
14948  /**
14949   * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
14950   * @pdev: pointer to PCI device
14951   *
14952   * This routine is called from the kernel's PCI subsystem to device with
14953   * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14954   * removed from PCI bus, it performs all the necessary cleanup for the HBA
14955   * device to be removed from the PCI subsystem properly.
14956   **/
14957  static void
lpfc_pci_remove_one_s4(struct pci_dev * pdev)14958  lpfc_pci_remove_one_s4(struct pci_dev *pdev)
14959  {
14960  	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14961  	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14962  	struct lpfc_vport **vports;
14963  	struct lpfc_hba *phba = vport->phba;
14964  	int i;
14965  
14966  	/* Mark the device unloading flag */
14967  	set_bit(FC_UNLOADING, &vport->load_flag);
14968  	if (phba->cgn_i)
14969  		lpfc_unreg_congestion_buf(phba);
14970  
14971  	lpfc_free_sysfs_attr(vport);
14972  
14973  	/* Release all the vports against this physical port */
14974  	vports = lpfc_create_vport_work_array(phba);
14975  	if (vports != NULL)
14976  		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14977  			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14978  				continue;
14979  			fc_vport_terminate(vports[i]->fc_vport);
14980  		}
14981  	lpfc_destroy_vport_work_array(phba, vports);
14982  
14983  	/* Remove FC host with the physical port */
14984  	fc_remove_host(shost);
14985  	scsi_remove_host(shost);
14986  
14987  	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
14988  	 * localports are destroyed after to cleanup all transport memory.
14989  	 */
14990  	lpfc_cleanup(vport);
14991  	lpfc_nvmet_destroy_targetport(phba);
14992  	lpfc_nvme_destroy_localport(vport);
14993  
14994  	/* De-allocate multi-XRI pools */
14995  	if (phba->cfg_xri_rebalancing)
14996  		lpfc_destroy_multixri_pools(phba);
14997  
14998  	/*
14999  	 * Bring down the SLI Layer. This step disables all interrupts,
15000  	 * clears the rings, discards all mailbox commands, and resets
15001  	 * the HBA FCoE function.
15002  	 */
15003  	lpfc_debugfs_terminate(vport);
15004  
15005  	lpfc_stop_hba_timers(phba);
15006  	spin_lock_irq(&phba->port_list_lock);
15007  	list_del_init(&vport->listentry);
15008  	spin_unlock_irq(&phba->port_list_lock);
15009  
15010  	/* Perform scsi free before driver resource_unset since scsi
15011  	 * buffers are released to their corresponding pools here.
15012  	 */
15013  	lpfc_io_free(phba);
15014  	lpfc_free_iocb_list(phba);
15015  	lpfc_sli4_hba_unset(phba);
15016  
15017  	lpfc_unset_driver_resource_phase2(phba);
15018  	lpfc_sli4_driver_resource_unset(phba);
15019  
15020  	/* Unmap adapter Control and Doorbell registers */
15021  	lpfc_sli4_pci_mem_unset(phba);
15022  
15023  	/* Release PCI resources and disable device's PCI function */
15024  	scsi_host_put(shost);
15025  	lpfc_disable_pci_dev(phba);
15026  
15027  	/* Finally, free the driver's device data structure */
15028  	lpfc_hba_free(phba);
15029  
15030  	return;
15031  }
15032  
15033  /**
15034   * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
15035   * @dev_d: pointer to device
15036   *
15037   * This routine is called from the kernel's PCI subsystem to support system
15038   * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
15039   * this method, it quiesces the device by stopping the driver's worker
15040   * thread for the device, turning off device's interrupt and DMA, and bring
15041   * the device offline. Note that as the driver implements the minimum PM
15042   * requirements to a power-aware driver's PM support for suspend/resume -- all
15043   * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
15044   * method call will be treated as SUSPEND and the driver will fully
15045   * reinitialize its device during resume() method call, the driver will set
15046   * device to PCI_D3hot state in PCI config space instead of setting it
15047   * according to the @msg provided by the PM.
15048   *
15049   * Return code
15050   * 	0 - driver suspended the device
15051   * 	Error otherwise
15052   **/
15053  static int __maybe_unused
lpfc_pci_suspend_one_s4(struct device * dev_d)15054  lpfc_pci_suspend_one_s4(struct device *dev_d)
15055  {
15056  	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15057  	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15058  
15059  	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15060  			"2843 PCI device Power Management suspend.\n");
15061  
15062  	/* Bring down the device */
15063  	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15064  	lpfc_offline(phba);
15065  	kthread_stop(phba->worker_thread);
15066  
15067  	/* Disable interrupt from device */
15068  	lpfc_sli4_disable_intr(phba);
15069  	lpfc_sli4_queue_destroy(phba);
15070  
15071  	return 0;
15072  }
15073  
15074  /**
15075   * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
15076   * @dev_d: pointer to device
15077   *
15078   * This routine is called from the kernel's PCI subsystem to support system
15079   * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
15080   * this method, it restores the device's PCI config space state and fully
15081   * reinitializes the device and brings it online. Note that as the driver
15082   * implements the minimum PM requirements to a power-aware driver's PM for
15083   * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
15084   * to the suspend() method call will be treated as SUSPEND and the driver
15085   * will fully reinitialize its device during resume() method call, the device
15086   * will be set to PCI_D0 directly in PCI config space before restoring the
15087   * state.
15088   *
15089   * Return code
15090   * 	0 - driver suspended the device
15091   * 	Error otherwise
15092   **/
15093  static int __maybe_unused
lpfc_pci_resume_one_s4(struct device * dev_d)15094  lpfc_pci_resume_one_s4(struct device *dev_d)
15095  {
15096  	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15097  	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15098  	uint32_t intr_mode;
15099  	int error;
15100  
15101  	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15102  			"0292 PCI device Power Management resume.\n");
15103  
15104  	 /* Startup the kernel thread for this host adapter. */
15105  	phba->worker_thread = kthread_run(lpfc_do_work, phba,
15106  					"lpfc_worker_%d", phba->brd_no);
15107  	if (IS_ERR(phba->worker_thread)) {
15108  		error = PTR_ERR(phba->worker_thread);
15109  		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15110  				"0293 PM resume failed to start worker "
15111  				"thread: error=x%x.\n", error);
15112  		return error;
15113  	}
15114  
15115  	/* Configure and enable interrupt */
15116  	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15117  	if (intr_mode == LPFC_INTR_ERROR) {
15118  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15119  				"0294 PM resume Failed to enable interrupt\n");
15120  		return -EIO;
15121  	} else
15122  		phba->intr_mode = intr_mode;
15123  
15124  	/* Restart HBA and bring it online */
15125  	lpfc_sli_brdrestart(phba);
15126  	lpfc_online(phba);
15127  
15128  	/* Log the current active interrupt mode */
15129  	lpfc_log_intr_mode(phba, phba->intr_mode);
15130  
15131  	return 0;
15132  }
15133  
15134  /**
15135   * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
15136   * @phba: pointer to lpfc hba data structure.
15137   *
15138   * This routine is called to prepare the SLI4 device for PCI slot recover. It
15139   * aborts all the outstanding SCSI I/Os to the pci device.
15140   **/
15141  static void
lpfc_sli4_prep_dev_for_recover(struct lpfc_hba * phba)15142  lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
15143  {
15144  	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15145  			"2828 PCI channel I/O abort preparing for recovery\n");
15146  	/*
15147  	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
15148  	 * and let the SCSI mid-layer to retry them to recover.
15149  	 */
15150  	lpfc_sli_abort_fcp_rings(phba);
15151  }
15152  
15153  /**
15154   * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
15155   * @phba: pointer to lpfc hba data structure.
15156   *
15157   * This routine is called to prepare the SLI4 device for PCI slot reset. It
15158   * disables the device interrupt and pci device, and aborts the internal FCP
15159   * pending I/Os.
15160   **/
15161  static void
lpfc_sli4_prep_dev_for_reset(struct lpfc_hba * phba)15162  lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
15163  {
15164  	int offline =  pci_channel_offline(phba->pcidev);
15165  
15166  	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15167  			"2826 PCI channel disable preparing for reset offline"
15168  			" %d\n", offline);
15169  
15170  	/* Block any management I/Os to the device */
15171  	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
15172  
15173  
15174  	/* HBA_PCI_ERR was set in io_error_detect */
15175  	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
15176  	/* Flush all driver's outstanding I/Os as we are to reset */
15177  	lpfc_sli_flush_io_rings(phba);
15178  	lpfc_offline(phba);
15179  
15180  	/* stop all timers */
15181  	lpfc_stop_hba_timers(phba);
15182  
15183  	lpfc_sli4_queue_destroy(phba);
15184  	/* Disable interrupt and pci device */
15185  	lpfc_sli4_disable_intr(phba);
15186  	pci_disable_device(phba->pcidev);
15187  }
15188  
15189  /**
15190   * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
15191   * @phba: pointer to lpfc hba data structure.
15192   *
15193   * This routine is called to prepare the SLI4 device for PCI slot permanently
15194   * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
15195   * pending I/Os.
15196   **/
15197  static void
lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba * phba)15198  lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
15199  {
15200  	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15201  			"2827 PCI channel permanent disable for failure\n");
15202  
15203  	/* Block all SCSI devices' I/Os on the host */
15204  	lpfc_scsi_dev_block(phba);
15205  
15206  	/* stop all timers */
15207  	lpfc_stop_hba_timers(phba);
15208  
15209  	/* Clean up all driver's outstanding I/Os */
15210  	lpfc_sli_flush_io_rings(phba);
15211  }
15212  
15213  /**
15214   * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15215   * @pdev: pointer to PCI device.
15216   * @state: the current PCI connection state.
15217   *
15218   * This routine is called from the PCI subsystem for error handling to device
15219   * with SLI-4 interface spec. This function is called by the PCI subsystem
15220   * after a PCI bus error affecting this device has been detected. When this
15221   * function is invoked, it will need to stop all the I/Os and interrupt(s)
15222   * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15223   * for the PCI subsystem to perform proper recovery as desired.
15224   *
15225   * Return codes
15226   * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15227   * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15228   **/
15229  static pci_ers_result_t
lpfc_io_error_detected_s4(struct pci_dev * pdev,pci_channel_state_t state)15230  lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15231  {
15232  	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15233  	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15234  	bool hba_pci_err;
15235  
15236  	switch (state) {
15237  	case pci_channel_io_normal:
15238  		/* Non-fatal error, prepare for recovery */
15239  		lpfc_sli4_prep_dev_for_recover(phba);
15240  		return PCI_ERS_RESULT_CAN_RECOVER;
15241  	case pci_channel_io_frozen:
15242  		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15243  		/* Fatal error, prepare for slot reset */
15244  		if (!hba_pci_err)
15245  			lpfc_sli4_prep_dev_for_reset(phba);
15246  		else
15247  			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15248  					"2832  Already handling PCI error "
15249  					"state: x%x\n", state);
15250  		return PCI_ERS_RESULT_NEED_RESET;
15251  	case pci_channel_io_perm_failure:
15252  		set_bit(HBA_PCI_ERR, &phba->bit_flags);
15253  		/* Permanent failure, prepare for device down */
15254  		lpfc_sli4_prep_dev_for_perm_failure(phba);
15255  		return PCI_ERS_RESULT_DISCONNECT;
15256  	default:
15257  		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15258  		if (!hba_pci_err)
15259  			lpfc_sli4_prep_dev_for_reset(phba);
15260  		/* Unknown state, prepare and request slot reset */
15261  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15262  				"2825 Unknown PCI error state: x%x\n", state);
15263  		lpfc_sli4_prep_dev_for_reset(phba);
15264  		return PCI_ERS_RESULT_NEED_RESET;
15265  	}
15266  }
15267  
15268  /**
15269   * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15270   * @pdev: pointer to PCI device.
15271   *
15272   * This routine is called from the PCI subsystem for error handling to device
15273   * with SLI-4 interface spec. It is called after PCI bus has been reset to
15274   * restart the PCI card from scratch, as if from a cold-boot. During the
15275   * PCI subsystem error recovery, after the driver returns
15276   * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15277   * recovery and then call this routine before calling the .resume method to
15278   * recover the device. This function will initialize the HBA device, enable
15279   * the interrupt, but it will just put the HBA to offline state without
15280   * passing any I/O traffic.
15281   *
15282   * Return codes
15283   * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15284   * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15285   */
15286  static pci_ers_result_t
lpfc_io_slot_reset_s4(struct pci_dev * pdev)15287  lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15288  {
15289  	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15290  	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15291  	struct lpfc_sli *psli = &phba->sli;
15292  	uint32_t intr_mode;
15293  	bool hba_pci_err;
15294  
15295  	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15296  	if (pci_enable_device_mem(pdev)) {
15297  		printk(KERN_ERR "lpfc: Cannot re-enable "
15298  		       "PCI device after reset.\n");
15299  		return PCI_ERS_RESULT_DISCONNECT;
15300  	}
15301  
15302  	pci_restore_state(pdev);
15303  
15304  	hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags);
15305  	if (!hba_pci_err)
15306  		dev_info(&pdev->dev,
15307  			 "hba_pci_err was not set, recovering slot reset.\n");
15308  	/*
15309  	 * As the new kernel behavior of pci_restore_state() API call clears
15310  	 * device saved_state flag, need to save the restored state again.
15311  	 */
15312  	pci_save_state(pdev);
15313  
15314  	if (pdev->is_busmaster)
15315  		pci_set_master(pdev);
15316  
15317  	spin_lock_irq(&phba->hbalock);
15318  	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15319  	spin_unlock_irq(&phba->hbalock);
15320  
15321  	/* Init cpu_map array */
15322  	lpfc_cpu_map_array_init(phba);
15323  	/* Configure and enable interrupt */
15324  	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15325  	if (intr_mode == LPFC_INTR_ERROR) {
15326  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15327  				"2824 Cannot re-enable interrupt after "
15328  				"slot reset.\n");
15329  		return PCI_ERS_RESULT_DISCONNECT;
15330  	} else
15331  		phba->intr_mode = intr_mode;
15332  	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15333  
15334  	/* Log the current active interrupt mode */
15335  	lpfc_log_intr_mode(phba, phba->intr_mode);
15336  
15337  	return PCI_ERS_RESULT_RECOVERED;
15338  }
15339  
15340  /**
15341   * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15342   * @pdev: pointer to PCI device
15343   *
15344   * This routine is called from the PCI subsystem for error handling to device
15345   * with SLI-4 interface spec. It is called when kernel error recovery tells
15346   * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15347   * error recovery. After this call, traffic can start to flow from this device
15348   * again.
15349   **/
15350  static void
lpfc_io_resume_s4(struct pci_dev * pdev)15351  lpfc_io_resume_s4(struct pci_dev *pdev)
15352  {
15353  	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15354  	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15355  
15356  	/*
15357  	 * In case of slot reset, as function reset is performed through
15358  	 * mailbox command which needs DMA to be enabled, this operation
15359  	 * has to be moved to the io resume phase. Taking device offline
15360  	 * will perform the necessary cleanup.
15361  	 */
15362  	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15363  		/* Perform device reset */
15364  		lpfc_sli_brdrestart(phba);
15365  		/* Bring the device back online */
15366  		lpfc_online(phba);
15367  	}
15368  }
15369  
15370  /**
15371   * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15372   * @pdev: pointer to PCI device
15373   * @pid: pointer to PCI device identifier
15374   *
15375   * This routine is to be registered to the kernel's PCI subsystem. When an
15376   * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15377   * at PCI device-specific information of the device and driver to see if the
15378   * driver state that it can support this kind of device. If the match is
15379   * successful, the driver core invokes this routine. This routine dispatches
15380   * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15381   * do all the initialization that it needs to do to handle the HBA device
15382   * properly.
15383   *
15384   * Return code
15385   * 	0 - driver can claim the device
15386   * 	negative value - driver can not claim the device
15387   **/
15388  static int
lpfc_pci_probe_one(struct pci_dev * pdev,const struct pci_device_id * pid)15389  lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15390  {
15391  	int rc;
15392  	struct lpfc_sli_intf intf;
15393  
15394  	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15395  		return -ENODEV;
15396  
15397  	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15398  	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15399  		rc = lpfc_pci_probe_one_s4(pdev, pid);
15400  	else
15401  		rc = lpfc_pci_probe_one_s3(pdev, pid);
15402  
15403  	return rc;
15404  }
15405  
15406  /**
15407   * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15408   * @pdev: pointer to PCI device
15409   *
15410   * This routine is to be registered to the kernel's PCI subsystem. When an
15411   * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15412   * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15413   * remove routine, which will perform all the necessary cleanup for the
15414   * device to be removed from the PCI subsystem properly.
15415   **/
15416  static void
lpfc_pci_remove_one(struct pci_dev * pdev)15417  lpfc_pci_remove_one(struct pci_dev *pdev)
15418  {
15419  	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15420  	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15421  
15422  	switch (phba->pci_dev_grp) {
15423  	case LPFC_PCI_DEV_LP:
15424  		lpfc_pci_remove_one_s3(pdev);
15425  		break;
15426  	case LPFC_PCI_DEV_OC:
15427  		lpfc_pci_remove_one_s4(pdev);
15428  		break;
15429  	default:
15430  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15431  				"1424 Invalid PCI device group: 0x%x\n",
15432  				phba->pci_dev_grp);
15433  		break;
15434  	}
15435  	return;
15436  }
15437  
15438  /**
15439   * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15440   * @dev: pointer to device
15441   *
15442   * This routine is to be registered to the kernel's PCI subsystem to support
15443   * system Power Management (PM). When PM invokes this method, it dispatches
15444   * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15445   * suspend the device.
15446   *
15447   * Return code
15448   * 	0 - driver suspended the device
15449   * 	Error otherwise
15450   **/
15451  static int __maybe_unused
lpfc_pci_suspend_one(struct device * dev)15452  lpfc_pci_suspend_one(struct device *dev)
15453  {
15454  	struct Scsi_Host *shost = dev_get_drvdata(dev);
15455  	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15456  	int rc = -ENODEV;
15457  
15458  	switch (phba->pci_dev_grp) {
15459  	case LPFC_PCI_DEV_LP:
15460  		rc = lpfc_pci_suspend_one_s3(dev);
15461  		break;
15462  	case LPFC_PCI_DEV_OC:
15463  		rc = lpfc_pci_suspend_one_s4(dev);
15464  		break;
15465  	default:
15466  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15467  				"1425 Invalid PCI device group: 0x%x\n",
15468  				phba->pci_dev_grp);
15469  		break;
15470  	}
15471  	return rc;
15472  }
15473  
15474  /**
15475   * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15476   * @dev: pointer to device
15477   *
15478   * This routine is to be registered to the kernel's PCI subsystem to support
15479   * system Power Management (PM). When PM invokes this method, it dispatches
15480   * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15481   * resume the device.
15482   *
15483   * Return code
15484   * 	0 - driver suspended the device
15485   * 	Error otherwise
15486   **/
15487  static int __maybe_unused
lpfc_pci_resume_one(struct device * dev)15488  lpfc_pci_resume_one(struct device *dev)
15489  {
15490  	struct Scsi_Host *shost = dev_get_drvdata(dev);
15491  	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15492  	int rc = -ENODEV;
15493  
15494  	switch (phba->pci_dev_grp) {
15495  	case LPFC_PCI_DEV_LP:
15496  		rc = lpfc_pci_resume_one_s3(dev);
15497  		break;
15498  	case LPFC_PCI_DEV_OC:
15499  		rc = lpfc_pci_resume_one_s4(dev);
15500  		break;
15501  	default:
15502  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15503  				"1426 Invalid PCI device group: 0x%x\n",
15504  				phba->pci_dev_grp);
15505  		break;
15506  	}
15507  	return rc;
15508  }
15509  
15510  /**
15511   * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15512   * @pdev: pointer to PCI device.
15513   * @state: the current PCI connection state.
15514   *
15515   * This routine is registered to the PCI subsystem for error handling. This
15516   * function is called by the PCI subsystem after a PCI bus error affecting
15517   * this device has been detected. When this routine is invoked, it dispatches
15518   * the action to the proper SLI-3 or SLI-4 device error detected handling
15519   * routine, which will perform the proper error detected operation.
15520   *
15521   * Return codes
15522   * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15523   * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15524   **/
15525  static pci_ers_result_t
lpfc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)15526  lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15527  {
15528  	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15529  	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15530  	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15531  
15532  	if (phba->link_state == LPFC_HBA_ERROR &&
15533  	    test_bit(HBA_IOQ_FLUSH, &phba->hba_flag))
15534  		return PCI_ERS_RESULT_NEED_RESET;
15535  
15536  	switch (phba->pci_dev_grp) {
15537  	case LPFC_PCI_DEV_LP:
15538  		rc = lpfc_io_error_detected_s3(pdev, state);
15539  		break;
15540  	case LPFC_PCI_DEV_OC:
15541  		rc = lpfc_io_error_detected_s4(pdev, state);
15542  		break;
15543  	default:
15544  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15545  				"1427 Invalid PCI device group: 0x%x\n",
15546  				phba->pci_dev_grp);
15547  		break;
15548  	}
15549  	return rc;
15550  }
15551  
15552  /**
15553   * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15554   * @pdev: pointer to PCI device.
15555   *
15556   * This routine is registered to the PCI subsystem for error handling. This
15557   * function is called after PCI bus has been reset to restart the PCI card
15558   * from scratch, as if from a cold-boot. When this routine is invoked, it
15559   * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15560   * routine, which will perform the proper device reset.
15561   *
15562   * Return codes
15563   * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15564   * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15565   **/
15566  static pci_ers_result_t
lpfc_io_slot_reset(struct pci_dev * pdev)15567  lpfc_io_slot_reset(struct pci_dev *pdev)
15568  {
15569  	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15570  	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15571  	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15572  
15573  	switch (phba->pci_dev_grp) {
15574  	case LPFC_PCI_DEV_LP:
15575  		rc = lpfc_io_slot_reset_s3(pdev);
15576  		break;
15577  	case LPFC_PCI_DEV_OC:
15578  		rc = lpfc_io_slot_reset_s4(pdev);
15579  		break;
15580  	default:
15581  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15582  				"1428 Invalid PCI device group: 0x%x\n",
15583  				phba->pci_dev_grp);
15584  		break;
15585  	}
15586  	return rc;
15587  }
15588  
15589  /**
15590   * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15591   * @pdev: pointer to PCI device
15592   *
15593   * This routine is registered to the PCI subsystem for error handling. It
15594   * is called when kernel error recovery tells the lpfc driver that it is
15595   * OK to resume normal PCI operation after PCI bus error recovery. When
15596   * this routine is invoked, it dispatches the action to the proper SLI-3
15597   * or SLI-4 device io_resume routine, which will resume the device operation.
15598   **/
15599  static void
lpfc_io_resume(struct pci_dev * pdev)15600  lpfc_io_resume(struct pci_dev *pdev)
15601  {
15602  	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15603  	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15604  
15605  	switch (phba->pci_dev_grp) {
15606  	case LPFC_PCI_DEV_LP:
15607  		lpfc_io_resume_s3(pdev);
15608  		break;
15609  	case LPFC_PCI_DEV_OC:
15610  		lpfc_io_resume_s4(pdev);
15611  		break;
15612  	default:
15613  		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15614  				"1429 Invalid PCI device group: 0x%x\n",
15615  				phba->pci_dev_grp);
15616  		break;
15617  	}
15618  	return;
15619  }
15620  
15621  /**
15622   * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15623   * @phba: pointer to lpfc hba data structure.
15624   *
15625   * This routine checks to see if OAS is supported for this adapter. If
15626   * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15627   * the enable oas flag is cleared and the pool created for OAS device data
15628   * is destroyed.
15629   *
15630   **/
15631  static void
lpfc_sli4_oas_verify(struct lpfc_hba * phba)15632  lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15633  {
15634  
15635  	if (!phba->cfg_EnableXLane)
15636  		return;
15637  
15638  	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15639  		phba->cfg_fof = 1;
15640  	} else {
15641  		phba->cfg_fof = 0;
15642  		mempool_destroy(phba->device_data_mem_pool);
15643  		phba->device_data_mem_pool = NULL;
15644  	}
15645  
15646  	return;
15647  }
15648  
15649  /**
15650   * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15651   * @phba: pointer to lpfc hba data structure.
15652   *
15653   * This routine checks to see if RAS is supported by the adapter. Check the
15654   * function through which RAS support enablement is to be done.
15655   **/
15656  void
lpfc_sli4_ras_init(struct lpfc_hba * phba)15657  lpfc_sli4_ras_init(struct lpfc_hba *phba)
15658  {
15659  	/* if ASIC_GEN_NUM >= 0xC) */
15660  	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15661  		    LPFC_SLI_INTF_IF_TYPE_6) ||
15662  	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15663  		    LPFC_SLI_INTF_FAMILY_G6)) {
15664  		phba->ras_fwlog.ras_hwsupport = true;
15665  		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15666  		    phba->cfg_ras_fwlog_buffsize)
15667  			phba->ras_fwlog.ras_enabled = true;
15668  		else
15669  			phba->ras_fwlog.ras_enabled = false;
15670  	} else {
15671  		phba->ras_fwlog.ras_hwsupport = false;
15672  	}
15673  }
15674  
15675  
15676  MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15677  
15678  static const struct pci_error_handlers lpfc_err_handler = {
15679  	.error_detected = lpfc_io_error_detected,
15680  	.slot_reset = lpfc_io_slot_reset,
15681  	.resume = lpfc_io_resume,
15682  };
15683  
15684  static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15685  			 lpfc_pci_suspend_one,
15686  			 lpfc_pci_resume_one);
15687  
15688  static struct pci_driver lpfc_driver = {
15689  	.name		= LPFC_DRIVER_NAME,
15690  	.id_table	= lpfc_id_table,
15691  	.probe		= lpfc_pci_probe_one,
15692  	.remove		= lpfc_pci_remove_one,
15693  	.shutdown	= lpfc_pci_remove_one,
15694  	.driver.pm	= &lpfc_pci_pm_ops_one,
15695  	.err_handler    = &lpfc_err_handler,
15696  };
15697  
15698  static const struct file_operations lpfc_mgmt_fop = {
15699  	.owner = THIS_MODULE,
15700  };
15701  
15702  static struct miscdevice lpfc_mgmt_dev = {
15703  	.minor = MISC_DYNAMIC_MINOR,
15704  	.name = "lpfcmgmt",
15705  	.fops = &lpfc_mgmt_fop,
15706  };
15707  
15708  /**
15709   * lpfc_init - lpfc module initialization routine
15710   *
15711   * This routine is to be invoked when the lpfc module is loaded into the
15712   * kernel. The special kernel macro module_init() is used to indicate the
15713   * role of this routine to the kernel as lpfc module entry point.
15714   *
15715   * Return codes
15716   *   0 - successful
15717   *   -ENOMEM - FC attach transport failed
15718   *   all others - failed
15719   */
15720  static int __init
lpfc_init(void)15721  lpfc_init(void)
15722  {
15723  	int error = 0;
15724  
15725  	pr_info(LPFC_MODULE_DESC "\n");
15726  	pr_info(LPFC_COPYRIGHT "\n");
15727  
15728  	error = misc_register(&lpfc_mgmt_dev);
15729  	if (error)
15730  		printk(KERN_ERR "Could not register lpfcmgmt device, "
15731  			"misc_register returned with status %d", error);
15732  
15733  	error = -ENOMEM;
15734  	lpfc_transport_functions.vport_create = lpfc_vport_create;
15735  	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15736  	lpfc_transport_template =
15737  				fc_attach_transport(&lpfc_transport_functions);
15738  	if (lpfc_transport_template == NULL)
15739  		goto unregister;
15740  	lpfc_vport_transport_template =
15741  		fc_attach_transport(&lpfc_vport_transport_functions);
15742  	if (lpfc_vport_transport_template == NULL) {
15743  		fc_release_transport(lpfc_transport_template);
15744  		goto unregister;
15745  	}
15746  	lpfc_wqe_cmd_template();
15747  	lpfc_nvmet_cmd_template();
15748  
15749  	/* Initialize in case vector mapping is needed */
15750  	lpfc_present_cpu = num_present_cpus();
15751  
15752  	lpfc_pldv_detect = false;
15753  
15754  	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15755  					"lpfc/sli4:online",
15756  					lpfc_cpu_online, lpfc_cpu_offline);
15757  	if (error < 0)
15758  		goto cpuhp_failure;
15759  	lpfc_cpuhp_state = error;
15760  
15761  	error = pci_register_driver(&lpfc_driver);
15762  	if (error)
15763  		goto unwind;
15764  
15765  	return error;
15766  
15767  unwind:
15768  	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15769  cpuhp_failure:
15770  	fc_release_transport(lpfc_transport_template);
15771  	fc_release_transport(lpfc_vport_transport_template);
15772  unregister:
15773  	misc_deregister(&lpfc_mgmt_dev);
15774  
15775  	return error;
15776  }
15777  
lpfc_dmp_dbg(struct lpfc_hba * phba)15778  void lpfc_dmp_dbg(struct lpfc_hba *phba)
15779  {
15780  	unsigned int start_idx;
15781  	unsigned int dbg_cnt;
15782  	unsigned int temp_idx;
15783  	int i;
15784  	int j = 0;
15785  	unsigned long rem_nsec;
15786  
15787  	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15788  		return;
15789  
15790  	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15791  	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15792  	if (!dbg_cnt)
15793  		goto out;
15794  	temp_idx = start_idx;
15795  	if (dbg_cnt >= DBG_LOG_SZ) {
15796  		dbg_cnt = DBG_LOG_SZ;
15797  		temp_idx -= 1;
15798  	} else {
15799  		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15800  			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15801  		} else {
15802  			if (start_idx < dbg_cnt)
15803  				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15804  			else
15805  				start_idx -= dbg_cnt;
15806  		}
15807  	}
15808  	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15809  		 start_idx, temp_idx, dbg_cnt);
15810  
15811  	for (i = 0; i < dbg_cnt; i++) {
15812  		if ((start_idx + i) < DBG_LOG_SZ)
15813  			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15814  		else
15815  			temp_idx = j++;
15816  		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15817  		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15818  			 temp_idx,
15819  			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15820  			 rem_nsec / 1000,
15821  			 phba->dbg_log[temp_idx].log);
15822  	}
15823  out:
15824  	atomic_set(&phba->dbg_log_cnt, 0);
15825  	atomic_set(&phba->dbg_log_dmping, 0);
15826  }
15827  
15828  __printf(2, 3)
lpfc_dbg_print(struct lpfc_hba * phba,const char * fmt,...)15829  void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15830  {
15831  	unsigned int idx;
15832  	va_list args;
15833  	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15834  	struct va_format vaf;
15835  
15836  
15837  	va_start(args, fmt);
15838  	if (unlikely(dbg_dmping)) {
15839  		vaf.fmt = fmt;
15840  		vaf.va = &args;
15841  		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15842  		va_end(args);
15843  		return;
15844  	}
15845  	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15846  		DBG_LOG_SZ;
15847  
15848  	atomic_inc(&phba->dbg_log_cnt);
15849  
15850  	vscnprintf(phba->dbg_log[idx].log,
15851  		   sizeof(phba->dbg_log[idx].log), fmt, args);
15852  	va_end(args);
15853  
15854  	phba->dbg_log[idx].t_ns = local_clock();
15855  }
15856  
15857  /**
15858   * lpfc_exit - lpfc module removal routine
15859   *
15860   * This routine is invoked when the lpfc module is removed from the kernel.
15861   * The special kernel macro module_exit() is used to indicate the role of
15862   * this routine to the kernel as lpfc module exit point.
15863   */
15864  static void __exit
lpfc_exit(void)15865  lpfc_exit(void)
15866  {
15867  	misc_deregister(&lpfc_mgmt_dev);
15868  	pci_unregister_driver(&lpfc_driver);
15869  	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15870  	fc_release_transport(lpfc_transport_template);
15871  	fc_release_transport(lpfc_vport_transport_template);
15872  	idr_destroy(&lpfc_hba_index);
15873  }
15874  
15875  module_init(lpfc_init);
15876  module_exit(lpfc_exit);
15877  MODULE_LICENSE("GPL");
15878  MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15879  MODULE_AUTHOR("Broadcom");
15880  MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15881