1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * PCMCIA high-level CIS access functions
4   *
5   * The initial developer of the original code is David A. Hinds
6   * <dahinds@users.sourceforge.net>.  Portions created by David A. Hinds
7   * are Copyright (C) 1999 David A. Hinds.  All Rights Reserved.
8   *
9   * Copyright (C) 1999	     David A. Hinds
10   * Copyright (C) 2004-2010   Dominik Brodowski
11   */
12  
13  #include <linux/slab.h>
14  #include <linux/module.h>
15  #include <linux/kernel.h>
16  #include <linux/netdevice.h>
17  #include <linux/etherdevice.h>
18  
19  #include <pcmcia/cisreg.h>
20  #include <pcmcia/cistpl.h>
21  #include <pcmcia/ss.h>
22  #include <pcmcia/ds.h>
23  #include "cs_internal.h"
24  
25  
26  /**
27   * pccard_read_tuple() - internal CIS tuple access
28   * @s:		the struct pcmcia_socket where the card is inserted
29   * @function:	the device function we loop for
30   * @code:	which CIS code shall we look for?
31   * @parse:	buffer where the tuple shall be parsed (or NULL, if no parse)
32   *
33   * pccard_read_tuple() reads out one tuple and attempts to parse it
34   */
pccard_read_tuple(struct pcmcia_socket * s,unsigned int function,cisdata_t code,void * parse)35  int pccard_read_tuple(struct pcmcia_socket *s, unsigned int function,
36  		cisdata_t code, void *parse)
37  {
38  	tuple_t tuple;
39  	cisdata_t *buf;
40  	int ret;
41  
42  	buf = kmalloc(256, GFP_KERNEL);
43  	if (buf == NULL) {
44  		dev_warn(&s->dev, "no memory to read tuple\n");
45  		return -ENOMEM;
46  	}
47  	tuple.DesiredTuple = code;
48  	tuple.Attributes = 0;
49  	if (function == BIND_FN_ALL)
50  		tuple.Attributes = TUPLE_RETURN_COMMON;
51  	ret = pccard_get_first_tuple(s, function, &tuple);
52  	if (ret != 0)
53  		goto done;
54  	tuple.TupleData = buf;
55  	tuple.TupleOffset = 0;
56  	tuple.TupleDataMax = 255;
57  	ret = pccard_get_tuple_data(s, &tuple);
58  	if (ret != 0)
59  		goto done;
60  	ret = pcmcia_parse_tuple(&tuple, parse);
61  done:
62  	kfree(buf);
63  	return ret;
64  }
65  
66  
67  /**
68   * pccard_loop_tuple() - loop over tuples in the CIS
69   * @s:		the struct pcmcia_socket where the card is inserted
70   * @function:	the device function we loop for
71   * @code:	which CIS code shall we look for?
72   * @parse:	buffer where the tuple shall be parsed (or NULL, if no parse)
73   * @priv_data:	private data to be passed to the loop_tuple function.
74   * @loop_tuple:	function to call for each CIS entry of type @function. IT
75   *		gets passed the raw tuple, the paresed tuple (if @parse is
76   *		set) and @priv_data.
77   *
78   * pccard_loop_tuple() loops over all CIS entries of type @function, and
79   * calls the @loop_tuple function for each entry. If the call to @loop_tuple
80   * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
81   */
pccard_loop_tuple(struct pcmcia_socket * s,unsigned int function,cisdata_t code,cisparse_t * parse,void * priv_data,int (* loop_tuple)(tuple_t * tuple,cisparse_t * parse,void * priv_data))82  static int pccard_loop_tuple(struct pcmcia_socket *s, unsigned int function,
83  			     cisdata_t code, cisparse_t *parse, void *priv_data,
84  			     int (*loop_tuple) (tuple_t *tuple,
85  					 cisparse_t *parse,
86  					 void *priv_data))
87  {
88  	tuple_t tuple;
89  	cisdata_t *buf;
90  	int ret;
91  
92  	buf = kzalloc(256, GFP_KERNEL);
93  	if (buf == NULL) {
94  		dev_warn(&s->dev, "no memory to read tuple\n");
95  		return -ENOMEM;
96  	}
97  
98  	tuple.TupleData = buf;
99  	tuple.TupleDataMax = 255;
100  	tuple.TupleOffset = 0;
101  	tuple.DesiredTuple = code;
102  	tuple.Attributes = 0;
103  
104  	ret = pccard_get_first_tuple(s, function, &tuple);
105  	while (!ret) {
106  		if (pccard_get_tuple_data(s, &tuple))
107  			goto next_entry;
108  
109  		if (parse)
110  			if (pcmcia_parse_tuple(&tuple, parse))
111  				goto next_entry;
112  
113  		ret = loop_tuple(&tuple, parse, priv_data);
114  		if (!ret)
115  			break;
116  
117  next_entry:
118  		ret = pccard_get_next_tuple(s, function, &tuple);
119  	}
120  
121  	kfree(buf);
122  	return ret;
123  }
124  
125  
126  /*
127   * pcmcia_io_cfg_data_width() - convert cfgtable to data path width parameter
128   */
pcmcia_io_cfg_data_width(unsigned int flags)129  static int pcmcia_io_cfg_data_width(unsigned int flags)
130  {
131  	if (!(flags & CISTPL_IO_8BIT))
132  		return IO_DATA_PATH_WIDTH_16;
133  	if (!(flags & CISTPL_IO_16BIT))
134  		return IO_DATA_PATH_WIDTH_8;
135  	return IO_DATA_PATH_WIDTH_AUTO;
136  }
137  
138  
139  struct pcmcia_cfg_mem {
140  	struct pcmcia_device *p_dev;
141  	int (*conf_check) (struct pcmcia_device *p_dev, void *priv_data);
142  	void *priv_data;
143  	cisparse_t parse;
144  	cistpl_cftable_entry_t dflt;
145  };
146  
147  /*
148   * pcmcia_do_loop_config() - internal helper for pcmcia_loop_config()
149   *
150   * pcmcia_do_loop_config() is the internal callback for the call from
151   * pcmcia_loop_config() to pccard_loop_tuple(). Data is transferred
152   * by a struct pcmcia_cfg_mem.
153   */
pcmcia_do_loop_config(tuple_t * tuple,cisparse_t * parse,void * priv)154  static int pcmcia_do_loop_config(tuple_t *tuple, cisparse_t *parse, void *priv)
155  {
156  	struct pcmcia_cfg_mem *cfg_mem = priv;
157  	struct pcmcia_device *p_dev = cfg_mem->p_dev;
158  	cistpl_cftable_entry_t *cfg = &parse->cftable_entry;
159  	cistpl_cftable_entry_t *dflt = &cfg_mem->dflt;
160  	unsigned int flags = p_dev->config_flags;
161  	unsigned int vcc = p_dev->socket->socket.Vcc;
162  
163  	dev_dbg(&p_dev->dev, "testing configuration %x, autoconf %x\n",
164  		cfg->index, flags);
165  
166  	/* default values */
167  	cfg_mem->p_dev->config_index = cfg->index;
168  	if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
169  		cfg_mem->dflt = *cfg;
170  
171  	/* check for matching Vcc? */
172  	if (flags & CONF_AUTO_CHECK_VCC) {
173  		if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
174  			if (vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000)
175  				return -ENODEV;
176  		} else if (dflt->vcc.present & (1 << CISTPL_POWER_VNOM)) {
177  			if (vcc != dflt->vcc.param[CISTPL_POWER_VNOM] / 10000)
178  				return -ENODEV;
179  		}
180  	}
181  
182  	/* set Vpp? */
183  	if (flags & CONF_AUTO_SET_VPP) {
184  		if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM))
185  			p_dev->vpp = cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
186  		else if (dflt->vpp1.present & (1 << CISTPL_POWER_VNOM))
187  			p_dev->vpp =
188  				dflt->vpp1.param[CISTPL_POWER_VNOM] / 10000;
189  	}
190  
191  	/* enable audio? */
192  	if ((flags & CONF_AUTO_AUDIO) && (cfg->flags & CISTPL_CFTABLE_AUDIO))
193  		p_dev->config_flags |= CONF_ENABLE_SPKR;
194  
195  
196  	/* IO window settings? */
197  	if (flags & CONF_AUTO_SET_IO) {
198  		cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt->io;
199  		int i = 0;
200  
201  		p_dev->resource[0]->start = p_dev->resource[0]->end = 0;
202  		p_dev->resource[1]->start = p_dev->resource[1]->end = 0;
203  		if (io->nwin == 0)
204  			return -ENODEV;
205  
206  		p_dev->resource[0]->flags &= ~IO_DATA_PATH_WIDTH;
207  		p_dev->resource[0]->flags |=
208  					pcmcia_io_cfg_data_width(io->flags);
209  		if (io->nwin > 1) {
210  			/* For multifunction cards, by convention, we
211  			 * configure the network function with window 0,
212  			 * and serial with window 1 */
213  			i = (io->win[1].len > io->win[0].len);
214  			p_dev->resource[1]->flags = p_dev->resource[0]->flags;
215  			p_dev->resource[1]->start = io->win[1-i].base;
216  			p_dev->resource[1]->end = io->win[1-i].len;
217  		}
218  		p_dev->resource[0]->start = io->win[i].base;
219  		p_dev->resource[0]->end = io->win[i].len;
220  		p_dev->io_lines = io->flags & CISTPL_IO_LINES_MASK;
221  	}
222  
223  	/* MEM window settings? */
224  	if (flags & CONF_AUTO_SET_IOMEM) {
225  		/* so far, we only set one memory window */
226  		cistpl_mem_t *mem = (cfg->mem.nwin) ? &cfg->mem : &dflt->mem;
227  
228  		p_dev->resource[2]->start = p_dev->resource[2]->end = 0;
229  		if (mem->nwin == 0)
230  			return -ENODEV;
231  
232  		p_dev->resource[2]->start = mem->win[0].host_addr;
233  		p_dev->resource[2]->end = mem->win[0].len;
234  		if (p_dev->resource[2]->end < 0x1000)
235  			p_dev->resource[2]->end = 0x1000;
236  		p_dev->card_addr = mem->win[0].card_addr;
237  	}
238  
239  	dev_dbg(&p_dev->dev,
240  		"checking configuration %x: %pr %pr %pr (%d lines)\n",
241  		p_dev->config_index, p_dev->resource[0], p_dev->resource[1],
242  		p_dev->resource[2], p_dev->io_lines);
243  
244  	return cfg_mem->conf_check(p_dev, cfg_mem->priv_data);
245  }
246  
247  /**
248   * pcmcia_loop_config() - loop over configuration options
249   * @p_dev:	the struct pcmcia_device which we need to loop for.
250   * @conf_check:	function to call for each configuration option.
251   *		It gets passed the struct pcmcia_device and private data
252   *		being passed to pcmcia_loop_config()
253   * @priv_data:	private data to be passed to the conf_check function.
254   *
255   * pcmcia_loop_config() loops over all configuration options, and calls
256   * the driver-specific conf_check() for each one, checking whether
257   * it is a valid one. Returns 0 on success or errorcode otherwise.
258   */
pcmcia_loop_config(struct pcmcia_device * p_dev,int (* conf_check)(struct pcmcia_device * p_dev,void * priv_data),void * priv_data)259  int pcmcia_loop_config(struct pcmcia_device *p_dev,
260  		       int	(*conf_check)	(struct pcmcia_device *p_dev,
261  						 void *priv_data),
262  		       void *priv_data)
263  {
264  	struct pcmcia_cfg_mem *cfg_mem;
265  	int ret;
266  
267  	cfg_mem = kzalloc(sizeof(struct pcmcia_cfg_mem), GFP_KERNEL);
268  	if (cfg_mem == NULL)
269  		return -ENOMEM;
270  
271  	cfg_mem->p_dev = p_dev;
272  	cfg_mem->conf_check = conf_check;
273  	cfg_mem->priv_data = priv_data;
274  
275  	ret = pccard_loop_tuple(p_dev->socket, p_dev->func,
276  				CISTPL_CFTABLE_ENTRY, &cfg_mem->parse,
277  				cfg_mem, pcmcia_do_loop_config);
278  
279  	kfree(cfg_mem);
280  	return ret;
281  }
282  EXPORT_SYMBOL(pcmcia_loop_config);
283  
284  
285  struct pcmcia_loop_mem {
286  	struct pcmcia_device *p_dev;
287  	void *priv_data;
288  	int (*loop_tuple) (struct pcmcia_device *p_dev,
289  			   tuple_t *tuple,
290  			   void *priv_data);
291  };
292  
293  /*
294   * pcmcia_do_loop_tuple() - internal helper for pcmcia_loop_config()
295   *
296   * pcmcia_do_loop_tuple() is the internal callback for the call from
297   * pcmcia_loop_tuple() to pccard_loop_tuple(). Data is transferred
298   * by a struct pcmcia_cfg_mem.
299   */
pcmcia_do_loop_tuple(tuple_t * tuple,cisparse_t * parse,void * priv)300  static int pcmcia_do_loop_tuple(tuple_t *tuple, cisparse_t *parse, void *priv)
301  {
302  	struct pcmcia_loop_mem *loop = priv;
303  
304  	return loop->loop_tuple(loop->p_dev, tuple, loop->priv_data);
305  };
306  
307  /**
308   * pcmcia_loop_tuple() - loop over tuples in the CIS
309   * @p_dev:	the struct pcmcia_device which we need to loop for.
310   * @code:	which CIS code shall we look for?
311   * @priv_data:	private data to be passed to the loop_tuple function.
312   * @loop_tuple:	function to call for each CIS entry of type @function. IT
313   *		gets passed the raw tuple and @priv_data.
314   *
315   * pcmcia_loop_tuple() loops over all CIS entries of type @function, and
316   * calls the @loop_tuple function for each entry. If the call to @loop_tuple
317   * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
318   */
pcmcia_loop_tuple(struct pcmcia_device * p_dev,cisdata_t code,int (* loop_tuple)(struct pcmcia_device * p_dev,tuple_t * tuple,void * priv_data),void * priv_data)319  int pcmcia_loop_tuple(struct pcmcia_device *p_dev, cisdata_t code,
320  		      int (*loop_tuple) (struct pcmcia_device *p_dev,
321  					 tuple_t *tuple,
322  					 void *priv_data),
323  		      void *priv_data)
324  {
325  	struct pcmcia_loop_mem loop = {
326  		.p_dev = p_dev,
327  		.loop_tuple = loop_tuple,
328  		.priv_data = priv_data};
329  
330  	return pccard_loop_tuple(p_dev->socket, p_dev->func, code, NULL,
331  				 &loop, pcmcia_do_loop_tuple);
332  }
333  EXPORT_SYMBOL(pcmcia_loop_tuple);
334  
335  
336  struct pcmcia_loop_get {
337  	size_t len;
338  	cisdata_t **buf;
339  };
340  
341  /*
342   * pcmcia_do_get_tuple() - internal helper for pcmcia_get_tuple()
343   *
344   * pcmcia_do_get_tuple() is the internal callback for the call from
345   * pcmcia_get_tuple() to pcmcia_loop_tuple(). As we're only interested in
346   * the first tuple, return 0 unconditionally. Create a memory buffer large
347   * enough to hold the content of the tuple, and fill it with the tuple data.
348   * The caller is responsible to free the buffer.
349   */
pcmcia_do_get_tuple(struct pcmcia_device * p_dev,tuple_t * tuple,void * priv)350  static int pcmcia_do_get_tuple(struct pcmcia_device *p_dev, tuple_t *tuple,
351  			       void *priv)
352  {
353  	struct pcmcia_loop_get *get = priv;
354  
355  	*get->buf = kzalloc(tuple->TupleDataLen, GFP_KERNEL);
356  	if (*get->buf) {
357  		get->len = tuple->TupleDataLen;
358  		memcpy(*get->buf, tuple->TupleData, tuple->TupleDataLen);
359  	} else
360  		dev_dbg(&p_dev->dev, "do_get_tuple: out of memory\n");
361  	return 0;
362  }
363  
364  /**
365   * pcmcia_get_tuple() - get first tuple from CIS
366   * @p_dev:	the struct pcmcia_device which we need to loop for.
367   * @code:	which CIS code shall we look for?
368   * @buf:        pointer to store the buffer to.
369   *
370   * pcmcia_get_tuple() gets the content of the first CIS entry of type @code.
371   * It returns the buffer length (or zero). The caller is responsible to free
372   * the buffer passed in @buf.
373   */
pcmcia_get_tuple(struct pcmcia_device * p_dev,cisdata_t code,unsigned char ** buf)374  size_t pcmcia_get_tuple(struct pcmcia_device *p_dev, cisdata_t code,
375  			unsigned char **buf)
376  {
377  	struct pcmcia_loop_get get = {
378  		.len = 0,
379  		.buf = buf,
380  	};
381  
382  	*get.buf = NULL;
383  	pcmcia_loop_tuple(p_dev, code, pcmcia_do_get_tuple, &get);
384  
385  	return get.len;
386  }
387  EXPORT_SYMBOL(pcmcia_get_tuple);
388  
389  #ifdef CONFIG_NET
390  /*
391   * pcmcia_do_get_mac() - internal helper for pcmcia_get_mac_from_cis()
392   *
393   * pcmcia_do_get_mac() is the internal callback for the call from
394   * pcmcia_get_mac_from_cis() to pcmcia_loop_tuple(). We check whether the
395   * tuple contains a proper LAN_NODE_ID of length 6, and copy the data
396   * to struct net_device->dev_addr[i].
397   */
pcmcia_do_get_mac(struct pcmcia_device * p_dev,tuple_t * tuple,void * priv)398  static int pcmcia_do_get_mac(struct pcmcia_device *p_dev, tuple_t *tuple,
399  			     void *priv)
400  {
401  	struct net_device *dev = priv;
402  
403  	if (tuple->TupleData[0] != CISTPL_FUNCE_LAN_NODE_ID)
404  		return -EINVAL;
405  	if (tuple->TupleDataLen < ETH_ALEN + 2) {
406  		dev_warn(&p_dev->dev, "Invalid CIS tuple length for "
407  			"LAN_NODE_ID\n");
408  		return -EINVAL;
409  	}
410  
411  	if (tuple->TupleData[1] != ETH_ALEN) {
412  		dev_warn(&p_dev->dev, "Invalid header for LAN_NODE_ID\n");
413  		return -EINVAL;
414  	}
415  	eth_hw_addr_set(dev, &tuple->TupleData[2]);
416  	return 0;
417  }
418  
419  /**
420   * pcmcia_get_mac_from_cis() - read out MAC address from CISTPL_FUNCE
421   * @p_dev:	the struct pcmcia_device for which we want the address.
422   * @dev:	a properly prepared struct net_device to store the info to.
423   *
424   * pcmcia_get_mac_from_cis() reads out the hardware MAC address from
425   * CISTPL_FUNCE and stores it into struct net_device *dev->dev_addr which
426   * must be set up properly by the driver (see examples!).
427   */
pcmcia_get_mac_from_cis(struct pcmcia_device * p_dev,struct net_device * dev)428  int pcmcia_get_mac_from_cis(struct pcmcia_device *p_dev, struct net_device *dev)
429  {
430  	return pcmcia_loop_tuple(p_dev, CISTPL_FUNCE, pcmcia_do_get_mac, dev);
431  }
432  EXPORT_SYMBOL(pcmcia_get_mac_from_cis);
433  
434  #endif /* CONFIG_NET */
435