1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4 
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18 
19 struct folio_batch;
20 
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 					pgoff_t start, pgoff_t end);
23 
invalidate_remote_inode(struct inode * inode)24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 	    S_ISLNK(inode->i_mode))
28 		invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32 		pgoff_t start, pgoff_t end);
33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35 int filemap_invalidate_pages(struct address_space *mapping,
36 			     loff_t pos, loff_t end, bool nowait);
37 
38 int write_inode_now(struct inode *, int sync);
39 int filemap_fdatawrite(struct address_space *);
40 int filemap_flush(struct address_space *);
41 int filemap_fdatawait_keep_errors(struct address_space *mapping);
42 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
43 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
44 		loff_t start_byte, loff_t end_byte);
45 int filemap_invalidate_inode(struct inode *inode, bool flush,
46 			     loff_t start, loff_t end);
47 
filemap_fdatawait(struct address_space * mapping)48 static inline int filemap_fdatawait(struct address_space *mapping)
49 {
50 	return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
51 }
52 
53 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
54 int filemap_write_and_wait_range(struct address_space *mapping,
55 		loff_t lstart, loff_t lend);
56 int __filemap_fdatawrite_range(struct address_space *mapping,
57 		loff_t start, loff_t end, int sync_mode);
58 int filemap_fdatawrite_range(struct address_space *mapping,
59 		loff_t start, loff_t end);
60 int filemap_check_errors(struct address_space *mapping);
61 void __filemap_set_wb_err(struct address_space *mapping, int err);
62 int filemap_fdatawrite_wbc(struct address_space *mapping,
63 			   struct writeback_control *wbc);
64 int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
65 
filemap_write_and_wait(struct address_space * mapping)66 static inline int filemap_write_and_wait(struct address_space *mapping)
67 {
68 	return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
69 }
70 
71 /**
72  * filemap_set_wb_err - set a writeback error on an address_space
73  * @mapping: mapping in which to set writeback error
74  * @err: error to be set in mapping
75  *
76  * When writeback fails in some way, we must record that error so that
77  * userspace can be informed when fsync and the like are called.  We endeavor
78  * to report errors on any file that was open at the time of the error.  Some
79  * internal callers also need to know when writeback errors have occurred.
80  *
81  * When a writeback error occurs, most filesystems will want to call
82  * filemap_set_wb_err to record the error in the mapping so that it will be
83  * automatically reported whenever fsync is called on the file.
84  */
filemap_set_wb_err(struct address_space * mapping,int err)85 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
86 {
87 	/* Fastpath for common case of no error */
88 	if (unlikely(err))
89 		__filemap_set_wb_err(mapping, err);
90 }
91 
92 /**
93  * filemap_check_wb_err - has an error occurred since the mark was sampled?
94  * @mapping: mapping to check for writeback errors
95  * @since: previously-sampled errseq_t
96  *
97  * Grab the errseq_t value from the mapping, and see if it has changed "since"
98  * the given value was sampled.
99  *
100  * If it has then report the latest error set, otherwise return 0.
101  */
filemap_check_wb_err(struct address_space * mapping,errseq_t since)102 static inline int filemap_check_wb_err(struct address_space *mapping,
103 					errseq_t since)
104 {
105 	return errseq_check(&mapping->wb_err, since);
106 }
107 
108 /**
109  * filemap_sample_wb_err - sample the current errseq_t to test for later errors
110  * @mapping: mapping to be sampled
111  *
112  * Writeback errors are always reported relative to a particular sample point
113  * in the past. This function provides those sample points.
114  */
filemap_sample_wb_err(struct address_space * mapping)115 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
116 {
117 	return errseq_sample(&mapping->wb_err);
118 }
119 
120 /**
121  * file_sample_sb_err - sample the current errseq_t to test for later errors
122  * @file: file pointer to be sampled
123  *
124  * Grab the most current superblock-level errseq_t value for the given
125  * struct file.
126  */
file_sample_sb_err(struct file * file)127 static inline errseq_t file_sample_sb_err(struct file *file)
128 {
129 	return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
130 }
131 
132 /*
133  * Flush file data before changing attributes.  Caller must hold any locks
134  * required to prevent further writes to this file until we're done setting
135  * flags.
136  */
inode_drain_writes(struct inode * inode)137 static inline int inode_drain_writes(struct inode *inode)
138 {
139 	inode_dio_wait(inode);
140 	return filemap_write_and_wait(inode->i_mapping);
141 }
142 
mapping_empty(struct address_space * mapping)143 static inline bool mapping_empty(struct address_space *mapping)
144 {
145 	return xa_empty(&mapping->i_pages);
146 }
147 
148 /*
149  * mapping_shrinkable - test if page cache state allows inode reclaim
150  * @mapping: the page cache mapping
151  *
152  * This checks the mapping's cache state for the pupose of inode
153  * reclaim and LRU management.
154  *
155  * The caller is expected to hold the i_lock, but is not required to
156  * hold the i_pages lock, which usually protects cache state. That's
157  * because the i_lock and the list_lru lock that protect the inode and
158  * its LRU state don't nest inside the irq-safe i_pages lock.
159  *
160  * Cache deletions are performed under the i_lock, which ensures that
161  * when an inode goes empty, it will reliably get queued on the LRU.
162  *
163  * Cache additions do not acquire the i_lock and may race with this
164  * check, in which case we'll report the inode as shrinkable when it
165  * has cache pages. This is okay: the shrinker also checks the
166  * refcount and the referenced bit, which will be elevated or set in
167  * the process of adding new cache pages to an inode.
168  */
mapping_shrinkable(struct address_space * mapping)169 static inline bool mapping_shrinkable(struct address_space *mapping)
170 {
171 	void *head;
172 
173 	/*
174 	 * On highmem systems, there could be lowmem pressure from the
175 	 * inodes before there is highmem pressure from the page
176 	 * cache. Make inodes shrinkable regardless of cache state.
177 	 */
178 	if (IS_ENABLED(CONFIG_HIGHMEM))
179 		return true;
180 
181 	/* Cache completely empty? Shrink away. */
182 	head = rcu_access_pointer(mapping->i_pages.xa_head);
183 	if (!head)
184 		return true;
185 
186 	/*
187 	 * The xarray stores single offset-0 entries directly in the
188 	 * head pointer, which allows non-resident page cache entries
189 	 * to escape the shadow shrinker's list of xarray nodes. The
190 	 * inode shrinker needs to pick them up under memory pressure.
191 	 */
192 	if (!xa_is_node(head) && xa_is_value(head))
193 		return true;
194 
195 	return false;
196 }
197 
198 /*
199  * Bits in mapping->flags.
200  */
201 enum mapping_flags {
202 	AS_EIO		= 0,	/* IO error on async write */
203 	AS_ENOSPC	= 1,	/* ENOSPC on async write */
204 	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
205 	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
206 	AS_EXITING	= 4, 	/* final truncate in progress */
207 	/* writeback related tags are not used */
208 	AS_NO_WRITEBACK_TAGS = 5,
209 	AS_RELEASE_ALWAYS = 6,	/* Call ->release_folio(), even if no private data */
210 	AS_STABLE_WRITES = 7,	/* must wait for writeback before modifying
211 				   folio contents */
212 	AS_INACCESSIBLE = 8,	/* Do not attempt direct R/W access to the mapping */
213 	/* Bits 16-25 are used for FOLIO_ORDER */
214 	AS_FOLIO_ORDER_BITS = 5,
215 	AS_FOLIO_ORDER_MIN = 16,
216 	AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS,
217 };
218 
219 #define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1)
220 #define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN)
221 #define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX)
222 #define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK)
223 
224 /**
225  * mapping_set_error - record a writeback error in the address_space
226  * @mapping: the mapping in which an error should be set
227  * @error: the error to set in the mapping
228  *
229  * When writeback fails in some way, we must record that error so that
230  * userspace can be informed when fsync and the like are called.  We endeavor
231  * to report errors on any file that was open at the time of the error.  Some
232  * internal callers also need to know when writeback errors have occurred.
233  *
234  * When a writeback error occurs, most filesystems will want to call
235  * mapping_set_error to record the error in the mapping so that it can be
236  * reported when the application calls fsync(2).
237  */
mapping_set_error(struct address_space * mapping,int error)238 static inline void mapping_set_error(struct address_space *mapping, int error)
239 {
240 	if (likely(!error))
241 		return;
242 
243 	/* Record in wb_err for checkers using errseq_t based tracking */
244 	__filemap_set_wb_err(mapping, error);
245 
246 	/* Record it in superblock */
247 	if (mapping->host)
248 		errseq_set(&mapping->host->i_sb->s_wb_err, error);
249 
250 	/* Record it in flags for now, for legacy callers */
251 	if (error == -ENOSPC)
252 		set_bit(AS_ENOSPC, &mapping->flags);
253 	else
254 		set_bit(AS_EIO, &mapping->flags);
255 }
256 
mapping_set_unevictable(struct address_space * mapping)257 static inline void mapping_set_unevictable(struct address_space *mapping)
258 {
259 	set_bit(AS_UNEVICTABLE, &mapping->flags);
260 }
261 
mapping_clear_unevictable(struct address_space * mapping)262 static inline void mapping_clear_unevictable(struct address_space *mapping)
263 {
264 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
265 }
266 
mapping_unevictable(struct address_space * mapping)267 static inline bool mapping_unevictable(struct address_space *mapping)
268 {
269 	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
270 }
271 
mapping_set_exiting(struct address_space * mapping)272 static inline void mapping_set_exiting(struct address_space *mapping)
273 {
274 	set_bit(AS_EXITING, &mapping->flags);
275 }
276 
mapping_exiting(struct address_space * mapping)277 static inline int mapping_exiting(struct address_space *mapping)
278 {
279 	return test_bit(AS_EXITING, &mapping->flags);
280 }
281 
mapping_set_no_writeback_tags(struct address_space * mapping)282 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
283 {
284 	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
285 }
286 
mapping_use_writeback_tags(struct address_space * mapping)287 static inline int mapping_use_writeback_tags(struct address_space *mapping)
288 {
289 	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
290 }
291 
mapping_release_always(const struct address_space * mapping)292 static inline bool mapping_release_always(const struct address_space *mapping)
293 {
294 	return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
295 }
296 
mapping_set_release_always(struct address_space * mapping)297 static inline void mapping_set_release_always(struct address_space *mapping)
298 {
299 	set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
300 }
301 
mapping_clear_release_always(struct address_space * mapping)302 static inline void mapping_clear_release_always(struct address_space *mapping)
303 {
304 	clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
305 }
306 
mapping_stable_writes(const struct address_space * mapping)307 static inline bool mapping_stable_writes(const struct address_space *mapping)
308 {
309 	return test_bit(AS_STABLE_WRITES, &mapping->flags);
310 }
311 
mapping_set_stable_writes(struct address_space * mapping)312 static inline void mapping_set_stable_writes(struct address_space *mapping)
313 {
314 	set_bit(AS_STABLE_WRITES, &mapping->flags);
315 }
316 
mapping_clear_stable_writes(struct address_space * mapping)317 static inline void mapping_clear_stable_writes(struct address_space *mapping)
318 {
319 	clear_bit(AS_STABLE_WRITES, &mapping->flags);
320 }
321 
mapping_set_inaccessible(struct address_space * mapping)322 static inline void mapping_set_inaccessible(struct address_space *mapping)
323 {
324 	/*
325 	 * It's expected inaccessible mappings are also unevictable. Compaction
326 	 * migrate scanner (isolate_migratepages_block()) relies on this to
327 	 * reduce page locking.
328 	 */
329 	set_bit(AS_UNEVICTABLE, &mapping->flags);
330 	set_bit(AS_INACCESSIBLE, &mapping->flags);
331 }
332 
mapping_inaccessible(struct address_space * mapping)333 static inline bool mapping_inaccessible(struct address_space *mapping)
334 {
335 	return test_bit(AS_INACCESSIBLE, &mapping->flags);
336 }
337 
mapping_gfp_mask(struct address_space * mapping)338 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
339 {
340 	return mapping->gfp_mask;
341 }
342 
343 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(struct address_space * mapping,gfp_t gfp_mask)344 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
345 		gfp_t gfp_mask)
346 {
347 	return mapping_gfp_mask(mapping) & gfp_mask;
348 }
349 
350 /*
351  * This is non-atomic.  Only to be used before the mapping is activated.
352  * Probably needs a barrier...
353  */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)354 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
355 {
356 	m->gfp_mask = mask;
357 }
358 
359 /*
360  * There are some parts of the kernel which assume that PMD entries
361  * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
362  * limit the maximum allocation order to PMD size.  I'm not aware of any
363  * assumptions about maximum order if THP are disabled, but 8 seems like
364  * a good order (that's 1MB if you're using 4kB pages)
365  */
366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
367 #define PREFERRED_MAX_PAGECACHE_ORDER	HPAGE_PMD_ORDER
368 #else
369 #define PREFERRED_MAX_PAGECACHE_ORDER	8
370 #endif
371 
372 /*
373  * xas_split_alloc() does not support arbitrary orders. This implies no
374  * 512MB THP on ARM64 with 64KB base page size.
375  */
376 #define MAX_XAS_ORDER		(XA_CHUNK_SHIFT * 2 - 1)
377 #define MAX_PAGECACHE_ORDER	min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER)
378 
379 /*
380  * mapping_max_folio_size_supported() - Check the max folio size supported
381  *
382  * The filesystem should call this function at mount time if there is a
383  * requirement on the folio mapping size in the page cache.
384  */
mapping_max_folio_size_supported(void)385 static inline size_t mapping_max_folio_size_supported(void)
386 {
387 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
388 		return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER);
389 	return PAGE_SIZE;
390 }
391 
392 /*
393  * mapping_set_folio_order_range() - Set the orders supported by a file.
394  * @mapping: The address space of the file.
395  * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive).
396  * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive).
397  *
398  * The filesystem should call this function in its inode constructor to
399  * indicate which base size (min) and maximum size (max) of folio the VFS
400  * can use to cache the contents of the file.  This should only be used
401  * if the filesystem needs special handling of folio sizes (ie there is
402  * something the core cannot know).
403  * Do not tune it based on, eg, i_size.
404  *
405  * Context: This should not be called while the inode is active as it
406  * is non-atomic.
407  */
mapping_set_folio_order_range(struct address_space * mapping,unsigned int min,unsigned int max)408 static inline void mapping_set_folio_order_range(struct address_space *mapping,
409 						 unsigned int min,
410 						 unsigned int max)
411 {
412 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
413 		return;
414 
415 	if (min > MAX_PAGECACHE_ORDER)
416 		min = MAX_PAGECACHE_ORDER;
417 
418 	if (max > MAX_PAGECACHE_ORDER)
419 		max = MAX_PAGECACHE_ORDER;
420 
421 	if (max < min)
422 		max = min;
423 
424 	mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) |
425 		(min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX);
426 }
427 
mapping_set_folio_min_order(struct address_space * mapping,unsigned int min)428 static inline void mapping_set_folio_min_order(struct address_space *mapping,
429 					       unsigned int min)
430 {
431 	mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER);
432 }
433 
434 /**
435  * mapping_set_large_folios() - Indicate the file supports large folios.
436  * @mapping: The address space of the file.
437  *
438  * The filesystem should call this function in its inode constructor to
439  * indicate that the VFS can use large folios to cache the contents of
440  * the file.
441  *
442  * Context: This should not be called while the inode is active as it
443  * is non-atomic.
444  */
mapping_set_large_folios(struct address_space * mapping)445 static inline void mapping_set_large_folios(struct address_space *mapping)
446 {
447 	mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER);
448 }
449 
450 static inline unsigned int
mapping_max_folio_order(const struct address_space * mapping)451 mapping_max_folio_order(const struct address_space *mapping)
452 {
453 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
454 		return 0;
455 	return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX;
456 }
457 
458 static inline unsigned int
mapping_min_folio_order(const struct address_space * mapping)459 mapping_min_folio_order(const struct address_space *mapping)
460 {
461 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
462 		return 0;
463 	return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN;
464 }
465 
466 static inline unsigned long
mapping_min_folio_nrpages(struct address_space * mapping)467 mapping_min_folio_nrpages(struct address_space *mapping)
468 {
469 	return 1UL << mapping_min_folio_order(mapping);
470 }
471 
472 /**
473  * mapping_align_index() - Align index for this mapping.
474  * @mapping: The address_space.
475  * @index: The page index.
476  *
477  * The index of a folio must be naturally aligned.  If you are adding a
478  * new folio to the page cache and need to know what index to give it,
479  * call this function.
480  */
mapping_align_index(struct address_space * mapping,pgoff_t index)481 static inline pgoff_t mapping_align_index(struct address_space *mapping,
482 					  pgoff_t index)
483 {
484 	return round_down(index, mapping_min_folio_nrpages(mapping));
485 }
486 
487 /*
488  * Large folio support currently depends on THP.  These dependencies are
489  * being worked on but are not yet fixed.
490  */
mapping_large_folio_support(struct address_space * mapping)491 static inline bool mapping_large_folio_support(struct address_space *mapping)
492 {
493 	/* AS_FOLIO_ORDER is only reasonable for pagecache folios */
494 	VM_WARN_ONCE((unsigned long)mapping & PAGE_MAPPING_ANON,
495 			"Anonymous mapping always supports large folio");
496 
497 	return mapping_max_folio_order(mapping) > 0;
498 }
499 
500 /* Return the maximum folio size for this pagecache mapping, in bytes. */
mapping_max_folio_size(const struct address_space * mapping)501 static inline size_t mapping_max_folio_size(const struct address_space *mapping)
502 {
503 	return PAGE_SIZE << mapping_max_folio_order(mapping);
504 }
505 
filemap_nr_thps(struct address_space * mapping)506 static inline int filemap_nr_thps(struct address_space *mapping)
507 {
508 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
509 	return atomic_read(&mapping->nr_thps);
510 #else
511 	return 0;
512 #endif
513 }
514 
filemap_nr_thps_inc(struct address_space * mapping)515 static inline void filemap_nr_thps_inc(struct address_space *mapping)
516 {
517 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
518 	if (!mapping_large_folio_support(mapping))
519 		atomic_inc(&mapping->nr_thps);
520 #else
521 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
522 #endif
523 }
524 
filemap_nr_thps_dec(struct address_space * mapping)525 static inline void filemap_nr_thps_dec(struct address_space *mapping)
526 {
527 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
528 	if (!mapping_large_folio_support(mapping))
529 		atomic_dec(&mapping->nr_thps);
530 #else
531 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
532 #endif
533 }
534 
535 struct address_space *folio_mapping(struct folio *);
536 struct address_space *swapcache_mapping(struct folio *);
537 
538 /**
539  * folio_file_mapping - Find the mapping this folio belongs to.
540  * @folio: The folio.
541  *
542  * For folios which are in the page cache, return the mapping that this
543  * page belongs to.  Folios in the swap cache return the mapping of the
544  * swap file or swap device where the data is stored.  This is different
545  * from the mapping returned by folio_mapping().  The only reason to
546  * use it is if, like NFS, you return 0 from ->activate_swapfile.
547  *
548  * Do not call this for folios which aren't in the page cache or swap cache.
549  */
folio_file_mapping(struct folio * folio)550 static inline struct address_space *folio_file_mapping(struct folio *folio)
551 {
552 	if (unlikely(folio_test_swapcache(folio)))
553 		return swapcache_mapping(folio);
554 
555 	return folio->mapping;
556 }
557 
558 /**
559  * folio_flush_mapping - Find the file mapping this folio belongs to.
560  * @folio: The folio.
561  *
562  * For folios which are in the page cache, return the mapping that this
563  * page belongs to.  Anonymous folios return NULL, even if they're in
564  * the swap cache.  Other kinds of folio also return NULL.
565  *
566  * This is ONLY used by architecture cache flushing code.  If you aren't
567  * writing cache flushing code, you want either folio_mapping() or
568  * folio_file_mapping().
569  */
folio_flush_mapping(struct folio * folio)570 static inline struct address_space *folio_flush_mapping(struct folio *folio)
571 {
572 	if (unlikely(folio_test_swapcache(folio)))
573 		return NULL;
574 
575 	return folio_mapping(folio);
576 }
577 
page_file_mapping(struct page * page)578 static inline struct address_space *page_file_mapping(struct page *page)
579 {
580 	return folio_file_mapping(page_folio(page));
581 }
582 
583 /**
584  * folio_inode - Get the host inode for this folio.
585  * @folio: The folio.
586  *
587  * For folios which are in the page cache, return the inode that this folio
588  * belongs to.
589  *
590  * Do not call this for folios which aren't in the page cache.
591  */
folio_inode(struct folio * folio)592 static inline struct inode *folio_inode(struct folio *folio)
593 {
594 	return folio->mapping->host;
595 }
596 
597 /**
598  * folio_attach_private - Attach private data to a folio.
599  * @folio: Folio to attach data to.
600  * @data: Data to attach to folio.
601  *
602  * Attaching private data to a folio increments the page's reference count.
603  * The data must be detached before the folio will be freed.
604  */
folio_attach_private(struct folio * folio,void * data)605 static inline void folio_attach_private(struct folio *folio, void *data)
606 {
607 	folio_get(folio);
608 	folio->private = data;
609 	folio_set_private(folio);
610 }
611 
612 /**
613  * folio_change_private - Change private data on a folio.
614  * @folio: Folio to change the data on.
615  * @data: Data to set on the folio.
616  *
617  * Change the private data attached to a folio and return the old
618  * data.  The page must previously have had data attached and the data
619  * must be detached before the folio will be freed.
620  *
621  * Return: Data that was previously attached to the folio.
622  */
folio_change_private(struct folio * folio,void * data)623 static inline void *folio_change_private(struct folio *folio, void *data)
624 {
625 	void *old = folio_get_private(folio);
626 
627 	folio->private = data;
628 	return old;
629 }
630 
631 /**
632  * folio_detach_private - Detach private data from a folio.
633  * @folio: Folio to detach data from.
634  *
635  * Removes the data that was previously attached to the folio and decrements
636  * the refcount on the page.
637  *
638  * Return: Data that was attached to the folio.
639  */
folio_detach_private(struct folio * folio)640 static inline void *folio_detach_private(struct folio *folio)
641 {
642 	void *data = folio_get_private(folio);
643 
644 	if (!folio_test_private(folio))
645 		return NULL;
646 	folio_clear_private(folio);
647 	folio->private = NULL;
648 	folio_put(folio);
649 
650 	return data;
651 }
652 
attach_page_private(struct page * page,void * data)653 static inline void attach_page_private(struct page *page, void *data)
654 {
655 	folio_attach_private(page_folio(page), data);
656 }
657 
detach_page_private(struct page * page)658 static inline void *detach_page_private(struct page *page)
659 {
660 	return folio_detach_private(page_folio(page));
661 }
662 
663 #ifdef CONFIG_NUMA
664 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order);
665 #else
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order)666 static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
667 {
668 	return folio_alloc_noprof(gfp, order);
669 }
670 #endif
671 
672 #define filemap_alloc_folio(...)				\
673 	alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__))
674 
__page_cache_alloc(gfp_t gfp)675 static inline struct page *__page_cache_alloc(gfp_t gfp)
676 {
677 	return &filemap_alloc_folio(gfp, 0)->page;
678 }
679 
readahead_gfp_mask(struct address_space * x)680 static inline gfp_t readahead_gfp_mask(struct address_space *x)
681 {
682 	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
683 }
684 
685 typedef int filler_t(struct file *, struct folio *);
686 
687 pgoff_t page_cache_next_miss(struct address_space *mapping,
688 			     pgoff_t index, unsigned long max_scan);
689 pgoff_t page_cache_prev_miss(struct address_space *mapping,
690 			     pgoff_t index, unsigned long max_scan);
691 
692 /**
693  * typedef fgf_t - Flags for getting folios from the page cache.
694  *
695  * Most users of the page cache will not need to use these flags;
696  * there are convenience functions such as filemap_get_folio() and
697  * filemap_lock_folio().  For users which need more control over exactly
698  * what is done with the folios, these flags to __filemap_get_folio()
699  * are available.
700  *
701  * * %FGP_ACCESSED - The folio will be marked accessed.
702  * * %FGP_LOCK - The folio is returned locked.
703  * * %FGP_CREAT - If no folio is present then a new folio is allocated,
704  *   added to the page cache and the VM's LRU list.  The folio is
705  *   returned locked.
706  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
707  *   folio is already in cache.  If the folio was allocated, unlock it
708  *   before returning so the caller can do the same dance.
709  * * %FGP_WRITE - The folio will be written to by the caller.
710  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
711  * * %FGP_NOWAIT - Don't block on the folio lock.
712  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
713  * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
714  *   implementation.
715  */
716 typedef unsigned int __bitwise fgf_t;
717 
718 #define FGP_ACCESSED		((__force fgf_t)0x00000001)
719 #define FGP_LOCK		((__force fgf_t)0x00000002)
720 #define FGP_CREAT		((__force fgf_t)0x00000004)
721 #define FGP_WRITE		((__force fgf_t)0x00000008)
722 #define FGP_NOFS		((__force fgf_t)0x00000010)
723 #define FGP_NOWAIT		((__force fgf_t)0x00000020)
724 #define FGP_FOR_MMAP		((__force fgf_t)0x00000040)
725 #define FGP_STABLE		((__force fgf_t)0x00000080)
726 #define FGF_GET_ORDER(fgf)	(((__force unsigned)fgf) >> 26)	/* top 6 bits */
727 
728 #define FGP_WRITEBEGIN		(FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
729 
730 /**
731  * fgf_set_order - Encode a length in the fgf_t flags.
732  * @size: The suggested size of the folio to create.
733  *
734  * The caller of __filemap_get_folio() can use this to suggest a preferred
735  * size for the folio that is created.  If there is already a folio at
736  * the index, it will be returned, no matter what its size.  If a folio
737  * is freshly created, it may be of a different size than requested
738  * due to alignment constraints, memory pressure, or the presence of
739  * other folios at nearby indices.
740  */
fgf_set_order(size_t size)741 static inline fgf_t fgf_set_order(size_t size)
742 {
743 	unsigned int shift = ilog2(size);
744 
745 	if (shift <= PAGE_SHIFT)
746 		return 0;
747 	return (__force fgf_t)((shift - PAGE_SHIFT) << 26);
748 }
749 
750 void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
751 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
752 		fgf_t fgp_flags, gfp_t gfp);
753 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
754 		fgf_t fgp_flags, gfp_t gfp);
755 
756 /**
757  * filemap_get_folio - Find and get a folio.
758  * @mapping: The address_space to search.
759  * @index: The page index.
760  *
761  * Looks up the page cache entry at @mapping & @index.  If a folio is
762  * present, it is returned with an increased refcount.
763  *
764  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
765  * this index.  Will not return a shadow, swap or DAX entry.
766  */
filemap_get_folio(struct address_space * mapping,pgoff_t index)767 static inline struct folio *filemap_get_folio(struct address_space *mapping,
768 					pgoff_t index)
769 {
770 	return __filemap_get_folio(mapping, index, 0, 0);
771 }
772 
773 /**
774  * filemap_lock_folio - Find and lock a folio.
775  * @mapping: The address_space to search.
776  * @index: The page index.
777  *
778  * Looks up the page cache entry at @mapping & @index.  If a folio is
779  * present, it is returned locked with an increased refcount.
780  *
781  * Context: May sleep.
782  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
783  * this index.  Will not return a shadow, swap or DAX entry.
784  */
filemap_lock_folio(struct address_space * mapping,pgoff_t index)785 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
786 					pgoff_t index)
787 {
788 	return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
789 }
790 
791 /**
792  * filemap_grab_folio - grab a folio from the page cache
793  * @mapping: The address space to search
794  * @index: The page index
795  *
796  * Looks up the page cache entry at @mapping & @index. If no folio is found,
797  * a new folio is created. The folio is locked, marked as accessed, and
798  * returned.
799  *
800  * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
801  * and failed to create a folio.
802  */
filemap_grab_folio(struct address_space * mapping,pgoff_t index)803 static inline struct folio *filemap_grab_folio(struct address_space *mapping,
804 					pgoff_t index)
805 {
806 	return __filemap_get_folio(mapping, index,
807 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
808 			mapping_gfp_mask(mapping));
809 }
810 
811 /**
812  * find_get_page - find and get a page reference
813  * @mapping: the address_space to search
814  * @offset: the page index
815  *
816  * Looks up the page cache slot at @mapping & @offset.  If there is a
817  * page cache page, it is returned with an increased refcount.
818  *
819  * Otherwise, %NULL is returned.
820  */
find_get_page(struct address_space * mapping,pgoff_t offset)821 static inline struct page *find_get_page(struct address_space *mapping,
822 					pgoff_t offset)
823 {
824 	return pagecache_get_page(mapping, offset, 0, 0);
825 }
826 
find_get_page_flags(struct address_space * mapping,pgoff_t offset,fgf_t fgp_flags)827 static inline struct page *find_get_page_flags(struct address_space *mapping,
828 					pgoff_t offset, fgf_t fgp_flags)
829 {
830 	return pagecache_get_page(mapping, offset, fgp_flags, 0);
831 }
832 
833 /**
834  * find_lock_page - locate, pin and lock a pagecache page
835  * @mapping: the address_space to search
836  * @index: the page index
837  *
838  * Looks up the page cache entry at @mapping & @index.  If there is a
839  * page cache page, it is returned locked and with an increased
840  * refcount.
841  *
842  * Context: May sleep.
843  * Return: A struct page or %NULL if there is no page in the cache for this
844  * index.
845  */
find_lock_page(struct address_space * mapping,pgoff_t index)846 static inline struct page *find_lock_page(struct address_space *mapping,
847 					pgoff_t index)
848 {
849 	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
850 }
851 
852 /**
853  * find_or_create_page - locate or add a pagecache page
854  * @mapping: the page's address_space
855  * @index: the page's index into the mapping
856  * @gfp_mask: page allocation mode
857  *
858  * Looks up the page cache slot at @mapping & @offset.  If there is a
859  * page cache page, it is returned locked and with an increased
860  * refcount.
861  *
862  * If the page is not present, a new page is allocated using @gfp_mask
863  * and added to the page cache and the VM's LRU list.  The page is
864  * returned locked and with an increased refcount.
865  *
866  * On memory exhaustion, %NULL is returned.
867  *
868  * find_or_create_page() may sleep, even if @gfp_flags specifies an
869  * atomic allocation!
870  */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)871 static inline struct page *find_or_create_page(struct address_space *mapping,
872 					pgoff_t index, gfp_t gfp_mask)
873 {
874 	return pagecache_get_page(mapping, index,
875 					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
876 					gfp_mask);
877 }
878 
879 /**
880  * grab_cache_page_nowait - returns locked page at given index in given cache
881  * @mapping: target address_space
882  * @index: the page index
883  *
884  * Same as grab_cache_page(), but do not wait if the page is unavailable.
885  * This is intended for speculative data generators, where the data can
886  * be regenerated if the page couldn't be grabbed.  This routine should
887  * be safe to call while holding the lock for another page.
888  *
889  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
890  * and deadlock against the caller's locked page.
891  */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)892 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
893 				pgoff_t index)
894 {
895 	return pagecache_get_page(mapping, index,
896 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
897 			mapping_gfp_mask(mapping));
898 }
899 
900 extern pgoff_t __folio_swap_cache_index(struct folio *folio);
901 
902 /**
903  * folio_index - File index of a folio.
904  * @folio: The folio.
905  *
906  * For a folio which is either in the page cache or the swap cache,
907  * return its index within the address_space it belongs to.  If you know
908  * the page is definitely in the page cache, you can look at the folio's
909  * index directly.
910  *
911  * Return: The index (offset in units of pages) of a folio in its file.
912  */
folio_index(struct folio * folio)913 static inline pgoff_t folio_index(struct folio *folio)
914 {
915 	if (unlikely(folio_test_swapcache(folio)))
916 		return __folio_swap_cache_index(folio);
917 	return folio->index;
918 }
919 
920 /**
921  * folio_next_index - Get the index of the next folio.
922  * @folio: The current folio.
923  *
924  * Return: The index of the folio which follows this folio in the file.
925  */
folio_next_index(struct folio * folio)926 static inline pgoff_t folio_next_index(struct folio *folio)
927 {
928 	return folio->index + folio_nr_pages(folio);
929 }
930 
931 /**
932  * folio_file_page - The page for a particular index.
933  * @folio: The folio which contains this index.
934  * @index: The index we want to look up.
935  *
936  * Sometimes after looking up a folio in the page cache, we need to
937  * obtain the specific page for an index (eg a page fault).
938  *
939  * Return: The page containing the file data for this index.
940  */
folio_file_page(struct folio * folio,pgoff_t index)941 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
942 {
943 	return folio_page(folio, index & (folio_nr_pages(folio) - 1));
944 }
945 
946 /**
947  * folio_contains - Does this folio contain this index?
948  * @folio: The folio.
949  * @index: The page index within the file.
950  *
951  * Context: The caller should have the page locked in order to prevent
952  * (eg) shmem from moving the page between the page cache and swap cache
953  * and changing its index in the middle of the operation.
954  * Return: true or false.
955  */
folio_contains(struct folio * folio,pgoff_t index)956 static inline bool folio_contains(struct folio *folio, pgoff_t index)
957 {
958 	return index - folio_index(folio) < folio_nr_pages(folio);
959 }
960 
961 /*
962  * Given the page we found in the page cache, return the page corresponding
963  * to this index in the file
964  */
find_subpage(struct page * head,pgoff_t index)965 static inline struct page *find_subpage(struct page *head, pgoff_t index)
966 {
967 	/* HugeTLBfs wants the head page regardless */
968 	if (PageHuge(head))
969 		return head;
970 
971 	return head + (index & (thp_nr_pages(head) - 1));
972 }
973 
974 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
975 		pgoff_t end, struct folio_batch *fbatch);
976 unsigned filemap_get_folios_contig(struct address_space *mapping,
977 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
978 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
979 		pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
980 
981 struct page *grab_cache_page_write_begin(struct address_space *mapping,
982 			pgoff_t index);
983 
984 /*
985  * Returns locked page at given index in given cache, creating it if needed.
986  */
grab_cache_page(struct address_space * mapping,pgoff_t index)987 static inline struct page *grab_cache_page(struct address_space *mapping,
988 								pgoff_t index)
989 {
990 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
991 }
992 
993 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
994 		filler_t *filler, struct file *file);
995 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
996 		gfp_t flags);
997 struct page *read_cache_page(struct address_space *, pgoff_t index,
998 		filler_t *filler, struct file *file);
999 extern struct page * read_cache_page_gfp(struct address_space *mapping,
1000 				pgoff_t index, gfp_t gfp_mask);
1001 
read_mapping_page(struct address_space * mapping,pgoff_t index,struct file * file)1002 static inline struct page *read_mapping_page(struct address_space *mapping,
1003 				pgoff_t index, struct file *file)
1004 {
1005 	return read_cache_page(mapping, index, NULL, file);
1006 }
1007 
read_mapping_folio(struct address_space * mapping,pgoff_t index,struct file * file)1008 static inline struct folio *read_mapping_folio(struct address_space *mapping,
1009 				pgoff_t index, struct file *file)
1010 {
1011 	return read_cache_folio(mapping, index, NULL, file);
1012 }
1013 
1014 /*
1015  * Get the offset in PAGE_SIZE (even for hugetlb pages).
1016  */
page_to_pgoff(struct page * page)1017 static inline pgoff_t page_to_pgoff(struct page *page)
1018 {
1019 	struct page *head;
1020 
1021 	if (likely(!PageTransTail(page)))
1022 		return page->index;
1023 
1024 	head = compound_head(page);
1025 	/*
1026 	 *  We don't initialize ->index for tail pages: calculate based on
1027 	 *  head page
1028 	 */
1029 	return head->index + page - head;
1030 }
1031 
1032 /*
1033  * Return byte-offset into filesystem object for page.
1034  */
page_offset(struct page * page)1035 static inline loff_t page_offset(struct page *page)
1036 {
1037 	return ((loff_t)page->index) << PAGE_SHIFT;
1038 }
1039 
1040 /**
1041  * folio_pos - Returns the byte position of this folio in its file.
1042  * @folio: The folio.
1043  */
folio_pos(struct folio * folio)1044 static inline loff_t folio_pos(struct folio *folio)
1045 {
1046 	return page_offset(&folio->page);
1047 }
1048 
1049 /*
1050  * Get the offset in PAGE_SIZE (even for hugetlb folios).
1051  */
folio_pgoff(struct folio * folio)1052 static inline pgoff_t folio_pgoff(struct folio *folio)
1053 {
1054 	return folio->index;
1055 }
1056 
linear_page_index(struct vm_area_struct * vma,unsigned long address)1057 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
1058 					unsigned long address)
1059 {
1060 	pgoff_t pgoff;
1061 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1062 	pgoff += vma->vm_pgoff;
1063 	return pgoff;
1064 }
1065 
1066 struct wait_page_key {
1067 	struct folio *folio;
1068 	int bit_nr;
1069 	int page_match;
1070 };
1071 
1072 struct wait_page_queue {
1073 	struct folio *folio;
1074 	int bit_nr;
1075 	wait_queue_entry_t wait;
1076 };
1077 
wake_page_match(struct wait_page_queue * wait_page,struct wait_page_key * key)1078 static inline bool wake_page_match(struct wait_page_queue *wait_page,
1079 				  struct wait_page_key *key)
1080 {
1081 	if (wait_page->folio != key->folio)
1082 	       return false;
1083 	key->page_match = 1;
1084 
1085 	if (wait_page->bit_nr != key->bit_nr)
1086 		return false;
1087 
1088 	return true;
1089 }
1090 
1091 void __folio_lock(struct folio *folio);
1092 int __folio_lock_killable(struct folio *folio);
1093 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
1094 void unlock_page(struct page *page);
1095 void folio_unlock(struct folio *folio);
1096 
1097 /**
1098  * folio_trylock() - Attempt to lock a folio.
1099  * @folio: The folio to attempt to lock.
1100  *
1101  * Sometimes it is undesirable to wait for a folio to be unlocked (eg
1102  * when the locks are being taken in the wrong order, or if making
1103  * progress through a batch of folios is more important than processing
1104  * them in order).  Usually folio_lock() is the correct function to call.
1105  *
1106  * Context: Any context.
1107  * Return: Whether the lock was successfully acquired.
1108  */
folio_trylock(struct folio * folio)1109 static inline bool folio_trylock(struct folio *folio)
1110 {
1111 	return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1112 }
1113 
1114 /*
1115  * Return true if the page was successfully locked
1116  */
trylock_page(struct page * page)1117 static inline bool trylock_page(struct page *page)
1118 {
1119 	return folio_trylock(page_folio(page));
1120 }
1121 
1122 /**
1123  * folio_lock() - Lock this folio.
1124  * @folio: The folio to lock.
1125  *
1126  * The folio lock protects against many things, probably more than it
1127  * should.  It is primarily held while a folio is being brought uptodate,
1128  * either from its backing file or from swap.  It is also held while a
1129  * folio is being truncated from its address_space, so holding the lock
1130  * is sufficient to keep folio->mapping stable.
1131  *
1132  * The folio lock is also held while write() is modifying the page to
1133  * provide POSIX atomicity guarantees (as long as the write does not
1134  * cross a page boundary).  Other modifications to the data in the folio
1135  * do not hold the folio lock and can race with writes, eg DMA and stores
1136  * to mapped pages.
1137  *
1138  * Context: May sleep.  If you need to acquire the locks of two or
1139  * more folios, they must be in order of ascending index, if they are
1140  * in the same address_space.  If they are in different address_spaces,
1141  * acquire the lock of the folio which belongs to the address_space which
1142  * has the lowest address in memory first.
1143  */
folio_lock(struct folio * folio)1144 static inline void folio_lock(struct folio *folio)
1145 {
1146 	might_sleep();
1147 	if (!folio_trylock(folio))
1148 		__folio_lock(folio);
1149 }
1150 
1151 /**
1152  * lock_page() - Lock the folio containing this page.
1153  * @page: The page to lock.
1154  *
1155  * See folio_lock() for a description of what the lock protects.
1156  * This is a legacy function and new code should probably use folio_lock()
1157  * instead.
1158  *
1159  * Context: May sleep.  Pages in the same folio share a lock, so do not
1160  * attempt to lock two pages which share a folio.
1161  */
lock_page(struct page * page)1162 static inline void lock_page(struct page *page)
1163 {
1164 	struct folio *folio;
1165 	might_sleep();
1166 
1167 	folio = page_folio(page);
1168 	if (!folio_trylock(folio))
1169 		__folio_lock(folio);
1170 }
1171 
1172 /**
1173  * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1174  * @folio: The folio to lock.
1175  *
1176  * Attempts to lock the folio, like folio_lock(), except that the sleep
1177  * to acquire the lock is interruptible by a fatal signal.
1178  *
1179  * Context: May sleep; see folio_lock().
1180  * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1181  */
folio_lock_killable(struct folio * folio)1182 static inline int folio_lock_killable(struct folio *folio)
1183 {
1184 	might_sleep();
1185 	if (!folio_trylock(folio))
1186 		return __folio_lock_killable(folio);
1187 	return 0;
1188 }
1189 
1190 /*
1191  * folio_lock_or_retry - Lock the folio, unless this would block and the
1192  * caller indicated that it can handle a retry.
1193  *
1194  * Return value and mmap_lock implications depend on flags; see
1195  * __folio_lock_or_retry().
1196  */
folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1197 static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1198 					     struct vm_fault *vmf)
1199 {
1200 	might_sleep();
1201 	if (!folio_trylock(folio))
1202 		return __folio_lock_or_retry(folio, vmf);
1203 	return 0;
1204 }
1205 
1206 /*
1207  * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1208  * and should not be used directly.
1209  */
1210 void folio_wait_bit(struct folio *folio, int bit_nr);
1211 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1212 
1213 /*
1214  * Wait for a folio to be unlocked.
1215  *
1216  * This must be called with the caller "holding" the folio,
1217  * ie with increased folio reference count so that the folio won't
1218  * go away during the wait.
1219  */
folio_wait_locked(struct folio * folio)1220 static inline void folio_wait_locked(struct folio *folio)
1221 {
1222 	if (folio_test_locked(folio))
1223 		folio_wait_bit(folio, PG_locked);
1224 }
1225 
folio_wait_locked_killable(struct folio * folio)1226 static inline int folio_wait_locked_killable(struct folio *folio)
1227 {
1228 	if (!folio_test_locked(folio))
1229 		return 0;
1230 	return folio_wait_bit_killable(folio, PG_locked);
1231 }
1232 
wait_on_page_locked(struct page * page)1233 static inline void wait_on_page_locked(struct page *page)
1234 {
1235 	folio_wait_locked(page_folio(page));
1236 }
1237 
1238 void folio_end_read(struct folio *folio, bool success);
1239 void wait_on_page_writeback(struct page *page);
1240 void folio_wait_writeback(struct folio *folio);
1241 int folio_wait_writeback_killable(struct folio *folio);
1242 void end_page_writeback(struct page *page);
1243 void folio_end_writeback(struct folio *folio);
1244 void wait_for_stable_page(struct page *page);
1245 void folio_wait_stable(struct folio *folio);
1246 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1247 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1248 void __folio_cancel_dirty(struct folio *folio);
folio_cancel_dirty(struct folio * folio)1249 static inline void folio_cancel_dirty(struct folio *folio)
1250 {
1251 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1252 	if (folio_test_dirty(folio))
1253 		__folio_cancel_dirty(folio);
1254 }
1255 bool folio_clear_dirty_for_io(struct folio *folio);
1256 bool clear_page_dirty_for_io(struct page *page);
1257 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1258 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1259 
1260 #ifdef CONFIG_MIGRATION
1261 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1262 		struct folio *src, enum migrate_mode mode);
1263 #else
1264 #define filemap_migrate_folio NULL
1265 #endif
1266 void folio_end_private_2(struct folio *folio);
1267 void folio_wait_private_2(struct folio *folio);
1268 int folio_wait_private_2_killable(struct folio *folio);
1269 
1270 /*
1271  * Add an arbitrary waiter to a page's wait queue
1272  */
1273 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
1274 
1275 /*
1276  * Fault in userspace address range.
1277  */
1278 size_t fault_in_writeable(char __user *uaddr, size_t size);
1279 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1280 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1281 size_t fault_in_readable(const char __user *uaddr, size_t size);
1282 
1283 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1284 		pgoff_t index, gfp_t gfp);
1285 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1286 		pgoff_t index, gfp_t gfp);
1287 void filemap_remove_folio(struct folio *folio);
1288 void __filemap_remove_folio(struct folio *folio, void *shadow);
1289 void replace_page_cache_folio(struct folio *old, struct folio *new);
1290 void delete_from_page_cache_batch(struct address_space *mapping,
1291 				  struct folio_batch *fbatch);
1292 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1293 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1294 		int whence);
1295 
1296 /* Must be non-static for BPF error injection */
1297 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1298 		pgoff_t index, gfp_t gfp, void **shadowp);
1299 
1300 bool filemap_range_has_writeback(struct address_space *mapping,
1301 				 loff_t start_byte, loff_t end_byte);
1302 
1303 /**
1304  * filemap_range_needs_writeback - check if range potentially needs writeback
1305  * @mapping:           address space within which to check
1306  * @start_byte:        offset in bytes where the range starts
1307  * @end_byte:          offset in bytes where the range ends (inclusive)
1308  *
1309  * Find at least one page in the range supplied, usually used to check if
1310  * direct writing in this range will trigger a writeback. Used by O_DIRECT
1311  * read/write with IOCB_NOWAIT, to see if the caller needs to do
1312  * filemap_write_and_wait_range() before proceeding.
1313  *
1314  * Return: %true if the caller should do filemap_write_and_wait_range() before
1315  * doing O_DIRECT to a page in this range, %false otherwise.
1316  */
filemap_range_needs_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)1317 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1318 						 loff_t start_byte,
1319 						 loff_t end_byte)
1320 {
1321 	if (!mapping->nrpages)
1322 		return false;
1323 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1324 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1325 		return false;
1326 	return filemap_range_has_writeback(mapping, start_byte, end_byte);
1327 }
1328 
1329 /**
1330  * struct readahead_control - Describes a readahead request.
1331  *
1332  * A readahead request is for consecutive pages.  Filesystems which
1333  * implement the ->readahead method should call readahead_page() or
1334  * readahead_page_batch() in a loop and attempt to start I/O against
1335  * each page in the request.
1336  *
1337  * Most of the fields in this struct are private and should be accessed
1338  * by the functions below.
1339  *
1340  * @file: The file, used primarily by network filesystems for authentication.
1341  *	  May be NULL if invoked internally by the filesystem.
1342  * @mapping: Readahead this filesystem object.
1343  * @ra: File readahead state.  May be NULL.
1344  */
1345 struct readahead_control {
1346 	struct file *file;
1347 	struct address_space *mapping;
1348 	struct file_ra_state *ra;
1349 /* private: use the readahead_* accessors instead */
1350 	pgoff_t _index;
1351 	unsigned int _nr_pages;
1352 	unsigned int _batch_count;
1353 	bool _workingset;
1354 	unsigned long _pflags;
1355 };
1356 
1357 #define DEFINE_READAHEAD(ractl, f, r, m, i)				\
1358 	struct readahead_control ractl = {				\
1359 		.file = f,						\
1360 		.mapping = m,						\
1361 		.ra = r,						\
1362 		._index = i,						\
1363 	}
1364 
1365 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
1366 
1367 void page_cache_ra_unbounded(struct readahead_control *,
1368 		unsigned long nr_to_read, unsigned long lookahead_count);
1369 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1370 void page_cache_async_ra(struct readahead_control *, struct folio *,
1371 		unsigned long req_count);
1372 void readahead_expand(struct readahead_control *ractl,
1373 		      loff_t new_start, size_t new_len);
1374 
1375 /**
1376  * page_cache_sync_readahead - generic file readahead
1377  * @mapping: address_space which holds the pagecache and I/O vectors
1378  * @ra: file_ra_state which holds the readahead state
1379  * @file: Used by the filesystem for authentication.
1380  * @index: Index of first page to be read.
1381  * @req_count: Total number of pages being read by the caller.
1382  *
1383  * page_cache_sync_readahead() should be called when a cache miss happened:
1384  * it will submit the read.  The readahead logic may decide to piggyback more
1385  * pages onto the read request if access patterns suggest it will improve
1386  * performance.
1387  */
1388 static inline
page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t index,unsigned long req_count)1389 void page_cache_sync_readahead(struct address_space *mapping,
1390 		struct file_ra_state *ra, struct file *file, pgoff_t index,
1391 		unsigned long req_count)
1392 {
1393 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1394 	page_cache_sync_ra(&ractl, req_count);
1395 }
1396 
1397 /**
1398  * page_cache_async_readahead - file readahead for marked pages
1399  * @mapping: address_space which holds the pagecache and I/O vectors
1400  * @ra: file_ra_state which holds the readahead state
1401  * @file: Used by the filesystem for authentication.
1402  * @folio: The folio which triggered the readahead call.
1403  * @req_count: Total number of pages being read by the caller.
1404  *
1405  * page_cache_async_readahead() should be called when a page is used which
1406  * is marked as PageReadahead; this is a marker to suggest that the application
1407  * has used up enough of the readahead window that we should start pulling in
1408  * more pages.
1409  */
1410 static inline
page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,struct folio * folio,unsigned long req_count)1411 void page_cache_async_readahead(struct address_space *mapping,
1412 		struct file_ra_state *ra, struct file *file,
1413 		struct folio *folio, unsigned long req_count)
1414 {
1415 	DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index);
1416 	page_cache_async_ra(&ractl, folio, req_count);
1417 }
1418 
__readahead_folio(struct readahead_control * ractl)1419 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1420 {
1421 	struct folio *folio;
1422 
1423 	BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1424 	ractl->_nr_pages -= ractl->_batch_count;
1425 	ractl->_index += ractl->_batch_count;
1426 
1427 	if (!ractl->_nr_pages) {
1428 		ractl->_batch_count = 0;
1429 		return NULL;
1430 	}
1431 
1432 	folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1433 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1434 	ractl->_batch_count = folio_nr_pages(folio);
1435 
1436 	return folio;
1437 }
1438 
1439 /**
1440  * readahead_page - Get the next page to read.
1441  * @ractl: The current readahead request.
1442  *
1443  * Context: The page is locked and has an elevated refcount.  The caller
1444  * should decreases the refcount once the page has been submitted for I/O
1445  * and unlock the page once all I/O to that page has completed.
1446  * Return: A pointer to the next page, or %NULL if we are done.
1447  */
readahead_page(struct readahead_control * ractl)1448 static inline struct page *readahead_page(struct readahead_control *ractl)
1449 {
1450 	struct folio *folio = __readahead_folio(ractl);
1451 
1452 	return &folio->page;
1453 }
1454 
1455 /**
1456  * readahead_folio - Get the next folio to read.
1457  * @ractl: The current readahead request.
1458  *
1459  * Context: The folio is locked.  The caller should unlock the folio once
1460  * all I/O to that folio has completed.
1461  * Return: A pointer to the next folio, or %NULL if we are done.
1462  */
readahead_folio(struct readahead_control * ractl)1463 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1464 {
1465 	struct folio *folio = __readahead_folio(ractl);
1466 
1467 	if (folio)
1468 		folio_put(folio);
1469 	return folio;
1470 }
1471 
__readahead_batch(struct readahead_control * rac,struct page ** array,unsigned int array_sz)1472 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1473 		struct page **array, unsigned int array_sz)
1474 {
1475 	unsigned int i = 0;
1476 	XA_STATE(xas, &rac->mapping->i_pages, 0);
1477 	struct page *page;
1478 
1479 	BUG_ON(rac->_batch_count > rac->_nr_pages);
1480 	rac->_nr_pages -= rac->_batch_count;
1481 	rac->_index += rac->_batch_count;
1482 	rac->_batch_count = 0;
1483 
1484 	xas_set(&xas, rac->_index);
1485 	rcu_read_lock();
1486 	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1487 		if (xas_retry(&xas, page))
1488 			continue;
1489 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1490 		VM_BUG_ON_PAGE(PageTail(page), page);
1491 		array[i++] = page;
1492 		rac->_batch_count += thp_nr_pages(page);
1493 		if (i == array_sz)
1494 			break;
1495 	}
1496 	rcu_read_unlock();
1497 
1498 	return i;
1499 }
1500 
1501 /**
1502  * readahead_page_batch - Get a batch of pages to read.
1503  * @rac: The current readahead request.
1504  * @array: An array of pointers to struct page.
1505  *
1506  * Context: The pages are locked and have an elevated refcount.  The caller
1507  * should decreases the refcount once the page has been submitted for I/O
1508  * and unlock the page once all I/O to that page has completed.
1509  * Return: The number of pages placed in the array.  0 indicates the request
1510  * is complete.
1511  */
1512 #define readahead_page_batch(rac, array)				\
1513 	__readahead_batch(rac, array, ARRAY_SIZE(array))
1514 
1515 /**
1516  * readahead_pos - The byte offset into the file of this readahead request.
1517  * @rac: The readahead request.
1518  */
readahead_pos(struct readahead_control * rac)1519 static inline loff_t readahead_pos(struct readahead_control *rac)
1520 {
1521 	return (loff_t)rac->_index * PAGE_SIZE;
1522 }
1523 
1524 /**
1525  * readahead_length - The number of bytes in this readahead request.
1526  * @rac: The readahead request.
1527  */
readahead_length(struct readahead_control * rac)1528 static inline size_t readahead_length(struct readahead_control *rac)
1529 {
1530 	return rac->_nr_pages * PAGE_SIZE;
1531 }
1532 
1533 /**
1534  * readahead_index - The index of the first page in this readahead request.
1535  * @rac: The readahead request.
1536  */
readahead_index(struct readahead_control * rac)1537 static inline pgoff_t readahead_index(struct readahead_control *rac)
1538 {
1539 	return rac->_index;
1540 }
1541 
1542 /**
1543  * readahead_count - The number of pages in this readahead request.
1544  * @rac: The readahead request.
1545  */
readahead_count(struct readahead_control * rac)1546 static inline unsigned int readahead_count(struct readahead_control *rac)
1547 {
1548 	return rac->_nr_pages;
1549 }
1550 
1551 /**
1552  * readahead_batch_length - The number of bytes in the current batch.
1553  * @rac: The readahead request.
1554  */
readahead_batch_length(struct readahead_control * rac)1555 static inline size_t readahead_batch_length(struct readahead_control *rac)
1556 {
1557 	return rac->_batch_count * PAGE_SIZE;
1558 }
1559 
dir_pages(struct inode * inode)1560 static inline unsigned long dir_pages(struct inode *inode)
1561 {
1562 	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1563 			       PAGE_SHIFT;
1564 }
1565 
1566 /**
1567  * folio_mkwrite_check_truncate - check if folio was truncated
1568  * @folio: the folio to check
1569  * @inode: the inode to check the folio against
1570  *
1571  * Return: the number of bytes in the folio up to EOF,
1572  * or -EFAULT if the folio was truncated.
1573  */
folio_mkwrite_check_truncate(struct folio * folio,struct inode * inode)1574 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1575 					      struct inode *inode)
1576 {
1577 	loff_t size = i_size_read(inode);
1578 	pgoff_t index = size >> PAGE_SHIFT;
1579 	size_t offset = offset_in_folio(folio, size);
1580 
1581 	if (!folio->mapping)
1582 		return -EFAULT;
1583 
1584 	/* folio is wholly inside EOF */
1585 	if (folio_next_index(folio) - 1 < index)
1586 		return folio_size(folio);
1587 	/* folio is wholly past EOF */
1588 	if (folio->index > index || !offset)
1589 		return -EFAULT;
1590 	/* folio is partially inside EOF */
1591 	return offset;
1592 }
1593 
1594 /**
1595  * page_mkwrite_check_truncate - check if page was truncated
1596  * @page: the page to check
1597  * @inode: the inode to check the page against
1598  *
1599  * Returns the number of bytes in the page up to EOF,
1600  * or -EFAULT if the page was truncated.
1601  */
page_mkwrite_check_truncate(struct page * page,struct inode * inode)1602 static inline int page_mkwrite_check_truncate(struct page *page,
1603 					      struct inode *inode)
1604 {
1605 	loff_t size = i_size_read(inode);
1606 	pgoff_t index = size >> PAGE_SHIFT;
1607 	int offset = offset_in_page(size);
1608 
1609 	if (page->mapping != inode->i_mapping)
1610 		return -EFAULT;
1611 
1612 	/* page is wholly inside EOF */
1613 	if (page->index < index)
1614 		return PAGE_SIZE;
1615 	/* page is wholly past EOF */
1616 	if (page->index > index || !offset)
1617 		return -EFAULT;
1618 	/* page is partially inside EOF */
1619 	return offset;
1620 }
1621 
1622 /**
1623  * i_blocks_per_folio - How many blocks fit in this folio.
1624  * @inode: The inode which contains the blocks.
1625  * @folio: The folio.
1626  *
1627  * If the block size is larger than the size of this folio, return zero.
1628  *
1629  * Context: The caller should hold a refcount on the folio to prevent it
1630  * from being split.
1631  * Return: The number of filesystem blocks covered by this folio.
1632  */
1633 static inline
i_blocks_per_folio(struct inode * inode,struct folio * folio)1634 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1635 {
1636 	return folio_size(folio) >> inode->i_blkbits;
1637 }
1638 #endif /* _LINUX_PAGEMAP_H */
1639