1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *
4   * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5   */
6  
7  #include <linux/types.h>
8  #include <linux/string.h>
9  #include <linux/kvm.h>
10  #include <linux/kvm_host.h>
11  #include <linux/kernel.h>
12  #include <asm/lppaca.h>
13  #include <asm/opal.h>
14  #include <asm/mce.h>
15  #include <asm/machdep.h>
16  #include <asm/cputhreads.h>
17  #include <asm/hmi.h>
18  #include <asm/kvm_ppc.h>
19  
20  /* SRR1 bits for machine check on POWER7 */
21  #define SRR1_MC_LDSTERR		(1ul << (63-42))
22  #define SRR1_MC_IFETCH_SH	(63-45)
23  #define SRR1_MC_IFETCH_MASK	0x7
24  #define SRR1_MC_IFETCH_SLBPAR		2	/* SLB parity error */
25  #define SRR1_MC_IFETCH_SLBMULTI		3	/* SLB multi-hit */
26  #define SRR1_MC_IFETCH_SLBPARMULTI	4	/* SLB parity + multi-hit */
27  #define SRR1_MC_IFETCH_TLBMULTI		5	/* I-TLB multi-hit */
28  
29  /* DSISR bits for machine check on POWER7 */
30  #define DSISR_MC_DERAT_MULTI	0x800		/* D-ERAT multi-hit */
31  #define DSISR_MC_TLB_MULTI	0x400		/* D-TLB multi-hit */
32  #define DSISR_MC_SLB_PARITY	0x100		/* SLB parity error */
33  #define DSISR_MC_SLB_MULTI	0x080		/* SLB multi-hit */
34  #define DSISR_MC_SLB_PARMULTI	0x040		/* SLB parity + multi-hit */
35  
36  /* POWER7 SLB flush and reload */
reload_slb(struct kvm_vcpu * vcpu)37  static void reload_slb(struct kvm_vcpu *vcpu)
38  {
39  	struct slb_shadow *slb;
40  	unsigned long i, n;
41  
42  	/* First clear out SLB */
43  	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
44  
45  	/* Do they have an SLB shadow buffer registered? */
46  	slb = vcpu->arch.slb_shadow.pinned_addr;
47  	if (!slb)
48  		return;
49  
50  	/* Sanity check */
51  	n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
52  	if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
53  		return;
54  
55  	/* Load up the SLB from that */
56  	for (i = 0; i < n; ++i) {
57  		unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
58  		unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
59  
60  		rb = (rb & ~0xFFFul) | i;	/* insert entry number */
61  		asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
62  	}
63  }
64  
65  /*
66   * On POWER7, see if we can handle a machine check that occurred inside
67   * the guest in real mode, without switching to the host partition.
68   */
kvmppc_realmode_mc_power7(struct kvm_vcpu * vcpu)69  static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
70  {
71  	unsigned long srr1 = vcpu->arch.shregs.msr;
72  	long handled = 1;
73  
74  	if (srr1 & SRR1_MC_LDSTERR) {
75  		/* error on load/store */
76  		unsigned long dsisr = vcpu->arch.shregs.dsisr;
77  
78  		if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
79  			     DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
80  			/* flush and reload SLB; flushes D-ERAT too */
81  			reload_slb(vcpu);
82  			dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
83  				   DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
84  		}
85  		if (dsisr & DSISR_MC_TLB_MULTI) {
86  			tlbiel_all_lpid(vcpu->kvm->arch.radix);
87  			dsisr &= ~DSISR_MC_TLB_MULTI;
88  		}
89  		/* Any other errors we don't understand? */
90  		if (dsisr & 0xffffffffUL)
91  			handled = 0;
92  	}
93  
94  	switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
95  	case 0:
96  		break;
97  	case SRR1_MC_IFETCH_SLBPAR:
98  	case SRR1_MC_IFETCH_SLBMULTI:
99  	case SRR1_MC_IFETCH_SLBPARMULTI:
100  		reload_slb(vcpu);
101  		break;
102  	case SRR1_MC_IFETCH_TLBMULTI:
103  		tlbiel_all_lpid(vcpu->kvm->arch.radix);
104  		break;
105  	default:
106  		handled = 0;
107  	}
108  
109  	return handled;
110  }
111  
kvmppc_realmode_machine_check(struct kvm_vcpu * vcpu)112  void kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
113  {
114  	struct machine_check_event mce_evt;
115  	long handled;
116  
117  	if (vcpu->kvm->arch.fwnmi_enabled) {
118  		/* FWNMI guests handle their own recovery */
119  		handled = 0;
120  	} else {
121  		handled = kvmppc_realmode_mc_power7(vcpu);
122  	}
123  
124  	/*
125  	 * Now get the event and stash it in the vcpu struct so it can
126  	 * be handled by the primary thread in virtual mode.  We can't
127  	 * call machine_check_queue_event() here if we are running on
128  	 * an offline secondary thread.
129  	 */
130  	if (get_mce_event(&mce_evt, MCE_EVENT_RELEASE)) {
131  		if (handled && mce_evt.version == MCE_V1)
132  			mce_evt.disposition = MCE_DISPOSITION_RECOVERED;
133  	} else {
134  		memset(&mce_evt, 0, sizeof(mce_evt));
135  	}
136  
137  	vcpu->arch.mce_evt = mce_evt;
138  }
139  
140  
kvmppc_p9_realmode_hmi_handler(struct kvm_vcpu * vcpu)141  long kvmppc_p9_realmode_hmi_handler(struct kvm_vcpu *vcpu)
142  {
143  	struct kvmppc_vcore *vc = vcpu->arch.vcore;
144  	long ret = 0;
145  
146  	/*
147  	 * Unapply and clear the offset first. That way, if the TB was not
148  	 * resynced then it will remain in host-offset, and if it was resynced
149  	 * then it is brought into host-offset. Then the tb offset is
150  	 * re-applied before continuing with the KVM exit.
151  	 *
152  	 * This way, we don't need to actually know whether not OPAL resynced
153  	 * the timebase or do any of the complicated dance that the P7/8
154  	 * path requires.
155  	 */
156  	if (vc->tb_offset_applied) {
157  		u64 new_tb = mftb() - vc->tb_offset_applied;
158  		mtspr(SPRN_TBU40, new_tb);
159  		if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
160  			new_tb += 0x1000000;
161  			mtspr(SPRN_TBU40, new_tb);
162  		}
163  		vc->tb_offset_applied = 0;
164  	}
165  
166  	local_paca->hmi_irqs++;
167  
168  	if (hmi_handle_debugtrig(NULL) >= 0) {
169  		ret = 1;
170  		goto out;
171  	}
172  
173  	if (ppc_md.hmi_exception_early)
174  		ppc_md.hmi_exception_early(NULL);
175  
176  out:
177  	if (kvmppc_get_tb_offset(vcpu)) {
178  		u64 new_tb = mftb() + vc->tb_offset;
179  		mtspr(SPRN_TBU40, new_tb);
180  		if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
181  			new_tb += 0x1000000;
182  			mtspr(SPRN_TBU40, new_tb);
183  		}
184  		vc->tb_offset_applied = kvmppc_get_tb_offset(vcpu);
185  	}
186  
187  	return ret;
188  }
189  
190  /*
191   * The following subcore HMI handling is all only for pre-POWER9 CPUs.
192   */
193  
194  /* Check if dynamic split is in force and return subcore size accordingly. */
kvmppc_cur_subcore_size(void)195  static inline int kvmppc_cur_subcore_size(void)
196  {
197  	if (local_paca->kvm_hstate.kvm_split_mode)
198  		return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
199  
200  	return threads_per_subcore;
201  }
202  
kvmppc_subcore_enter_guest(void)203  void kvmppc_subcore_enter_guest(void)
204  {
205  	int thread_id, subcore_id;
206  
207  	thread_id = cpu_thread_in_core(local_paca->paca_index);
208  	subcore_id = thread_id / kvmppc_cur_subcore_size();
209  
210  	local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
211  }
212  EXPORT_SYMBOL_GPL(kvmppc_subcore_enter_guest);
213  
kvmppc_subcore_exit_guest(void)214  void kvmppc_subcore_exit_guest(void)
215  {
216  	int thread_id, subcore_id;
217  
218  	thread_id = cpu_thread_in_core(local_paca->paca_index);
219  	subcore_id = thread_id / kvmppc_cur_subcore_size();
220  
221  	local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
222  }
223  EXPORT_SYMBOL_GPL(kvmppc_subcore_exit_guest);
224  
kvmppc_tb_resync_required(void)225  static bool kvmppc_tb_resync_required(void)
226  {
227  	if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
228  				&local_paca->sibling_subcore_state->flags))
229  		return false;
230  
231  	return true;
232  }
233  
kvmppc_tb_resync_done(void)234  static void kvmppc_tb_resync_done(void)
235  {
236  	clear_bit(CORE_TB_RESYNC_REQ_BIT,
237  			&local_paca->sibling_subcore_state->flags);
238  }
239  
240  /*
241   * kvmppc_realmode_hmi_handler() is called only by primary thread during
242   * guest exit path.
243   *
244   * There are multiple reasons why HMI could occur, one of them is
245   * Timebase (TB) error. If this HMI is due to TB error, then TB would
246   * have been in stopped state. The opal hmi handler Will fix it and
247   * restore the TB value with host timebase value. For HMI caused due
248   * to non-TB errors, opal hmi handler will not touch/restore TB register
249   * and hence there won't be any change in TB value.
250   *
251   * Since we are not sure about the cause of this HMI, we can't be sure
252   * about the content of TB register whether it holds guest or host timebase
253   * value. Hence the idea is to resync the TB on every HMI, so that we
254   * know about the exact state of the TB value. Resync TB call will
255   * restore TB to host timebase.
256   *
257   * Things to consider:
258   * - On TB error, HMI interrupt is reported on all the threads of the core
259   *   that has encountered TB error irrespective of split-core mode.
260   * - The very first thread on the core that get chance to fix TB error
261   *   would rsync the TB with local chipTOD value.
262   * - The resync TB is a core level action i.e. it will sync all the TBs
263   *   in that core independent of split-core mode. This means if we trigger
264   *   TB sync from a thread from one subcore, it would affect TB values of
265   *   sibling subcores of the same core.
266   *
267   * All threads need to co-ordinate before making opal hmi handler.
268   * All threads will use sibling_subcore_state->in_guest[] (shared by all
269   * threads in the core) in paca which holds information about whether
270   * sibling subcores are in Guest mode or host mode. The in_guest[] array
271   * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
272   * subcore status. Only primary threads from each subcore is responsible
273   * to set/unset its designated array element while entering/exiting the
274   * guset.
275   *
276   * After invoking opal hmi handler call, one of the thread (of entire core)
277   * will need to resync the TB. Bit 63 from subcore state bitmap flags
278   * (sibling_subcore_state->flags) will be used to co-ordinate between
279   * primary threads to decide who takes up the responsibility.
280   *
281   * This is what we do:
282   * - Primary thread from each subcore tries to set resync required bit[63]
283   *   of paca->sibling_subcore_state->flags.
284   * - The first primary thread that is able to set the flag takes the
285   *   responsibility of TB resync. (Let us call it as thread leader)
286   * - All other threads which are in host will call
287   *   wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
288   *   paca->sibling_subcore_state to get cleared.
289   * - All the primary thread will clear its subcore status from subcore
290   *   state in_guest[] array respectively.
291   * - Once all primary threads clear in_guest[0-3], all of them will invoke
292   *   opal hmi handler.
293   * - Now all threads will wait for TB resync to complete by invoking
294   *   wait_for_tb_resync() except the thread leader.
295   * - Thread leader will do a TB resync by invoking opal_resync_timebase()
296   *   call and the it will clear the resync required bit.
297   * - All other threads will now come out of resync wait loop and proceed
298   *   with individual execution.
299   * - On return of this function, primary thread will signal all
300   *   secondary threads to proceed.
301   * - All secondary threads will eventually call opal hmi handler on
302   *   their exit path.
303   *
304   * Returns 1 if the timebase offset should be applied, 0 if not.
305   */
306  
kvmppc_realmode_hmi_handler(void)307  long kvmppc_realmode_hmi_handler(void)
308  {
309  	bool resync_req;
310  
311  	local_paca->hmi_irqs++;
312  
313  	if (hmi_handle_debugtrig(NULL) >= 0)
314  		return 1;
315  
316  	/*
317  	 * By now primary thread has already completed guest->host
318  	 * partition switch but haven't signaled secondaries yet.
319  	 * All the secondary threads on this subcore is waiting
320  	 * for primary thread to signal them to go ahead.
321  	 *
322  	 * For threads from subcore which isn't in guest, they all will
323  	 * wait until all other subcores on this core exit the guest.
324  	 *
325  	 * Now set the resync required bit. If you are the first to
326  	 * set this bit then kvmppc_tb_resync_required() function will
327  	 * return true. For rest all other subcores
328  	 * kvmppc_tb_resync_required() will return false.
329  	 *
330  	 * If resync_req == true, then this thread is responsible to
331  	 * initiate TB resync after hmi handler has completed.
332  	 * All other threads on this core will wait until this thread
333  	 * clears the resync required bit flag.
334  	 */
335  	resync_req = kvmppc_tb_resync_required();
336  
337  	/* Reset the subcore status to indicate it has exited guest */
338  	kvmppc_subcore_exit_guest();
339  
340  	/*
341  	 * Wait for other subcores on this core to exit the guest.
342  	 * All the primary threads and threads from subcore that are
343  	 * not in guest will wait here until all subcores are out
344  	 * of guest context.
345  	 */
346  	wait_for_subcore_guest_exit();
347  
348  	/*
349  	 * At this point we are sure that primary threads from each
350  	 * subcore on this core have completed guest->host partition
351  	 * switch. Now it is safe to call HMI handler.
352  	 */
353  	if (ppc_md.hmi_exception_early)
354  		ppc_md.hmi_exception_early(NULL);
355  
356  	/*
357  	 * Check if this thread is responsible to resync TB.
358  	 * All other threads will wait until this thread completes the
359  	 * TB resync.
360  	 */
361  	if (resync_req) {
362  		opal_resync_timebase();
363  		/* Reset TB resync req bit */
364  		kvmppc_tb_resync_done();
365  	} else {
366  		wait_for_tb_resync();
367  	}
368  
369  	/*
370  	 * Reset tb_offset_applied so the guest exit code won't try
371  	 * to subtract the previous timebase offset from the timebase.
372  	 */
373  	if (local_paca->kvm_hstate.kvm_vcore)
374  		local_paca->kvm_hstate.kvm_vcore->tb_offset_applied = 0;
375  
376  	return 0;
377  }
378