1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *
4   * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5   */
6  
7  #include <linux/types.h>
8  #include <linux/string.h>
9  #include <linux/kvm.h>
10  #include <linux/kvm_host.h>
11  #include <linux/highmem.h>
12  #include <linux/gfp.h>
13  #include <linux/slab.h>
14  #include <linux/hugetlb.h>
15  #include <linux/vmalloc.h>
16  #include <linux/srcu.h>
17  #include <linux/anon_inodes.h>
18  #include <linux/file.h>
19  #include <linux/debugfs.h>
20  
21  #include <asm/kvm_ppc.h>
22  #include <asm/kvm_book3s.h>
23  #include <asm/book3s/64/mmu-hash.h>
24  #include <asm/hvcall.h>
25  #include <asm/synch.h>
26  #include <asm/ppc-opcode.h>
27  #include <asm/cputable.h>
28  #include <asm/pte-walk.h>
29  
30  #include "book3s.h"
31  #include "book3s_hv.h"
32  #include "trace_hv.h"
33  
34  //#define DEBUG_RESIZE_HPT	1
35  
36  #ifdef DEBUG_RESIZE_HPT
37  #define resize_hpt_debug(resize, ...)				\
38  	do {							\
39  		printk(KERN_DEBUG "RESIZE HPT %p: ", resize);	\
40  		printk(__VA_ARGS__);				\
41  	} while (0)
42  #else
43  #define resize_hpt_debug(resize, ...)				\
44  	do { } while (0)
45  #endif
46  
47  static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
48  				long pte_index, unsigned long pteh,
49  				unsigned long ptel, unsigned long *pte_idx_ret);
50  
51  struct kvm_resize_hpt {
52  	/* These fields read-only after init */
53  	struct kvm *kvm;
54  	struct work_struct work;
55  	u32 order;
56  
57  	/* These fields protected by kvm->arch.mmu_setup_lock */
58  
59  	/* Possible values and their usage:
60  	 *  <0     an error occurred during allocation,
61  	 *  -EBUSY allocation is in the progress,
62  	 *  0      allocation made successfully.
63  	 */
64  	int error;
65  
66  	/* Private to the work thread, until error != -EBUSY,
67  	 * then protected by kvm->arch.mmu_setup_lock.
68  	 */
69  	struct kvm_hpt_info hpt;
70  };
71  
kvmppc_allocate_hpt(struct kvm_hpt_info * info,u32 order)72  int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
73  {
74  	unsigned long hpt = 0;
75  	int cma = 0;
76  	struct page *page = NULL;
77  	struct revmap_entry *rev;
78  	unsigned long npte;
79  
80  	if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
81  		return -EINVAL;
82  
83  	page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
84  	if (page) {
85  		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
86  		memset((void *)hpt, 0, (1ul << order));
87  		cma = 1;
88  	}
89  
90  	if (!hpt)
91  		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
92  				       |__GFP_NOWARN, order - PAGE_SHIFT);
93  
94  	if (!hpt)
95  		return -ENOMEM;
96  
97  	/* HPTEs are 2**4 bytes long */
98  	npte = 1ul << (order - 4);
99  
100  	/* Allocate reverse map array */
101  	rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
102  	if (!rev) {
103  		if (cma)
104  			kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
105  		else
106  			free_pages(hpt, order - PAGE_SHIFT);
107  		return -ENOMEM;
108  	}
109  
110  	info->order = order;
111  	info->virt = hpt;
112  	info->cma = cma;
113  	info->rev = rev;
114  
115  	return 0;
116  }
117  
kvmppc_set_hpt(struct kvm * kvm,struct kvm_hpt_info * info)118  void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
119  {
120  	atomic64_set(&kvm->arch.mmio_update, 0);
121  	kvm->arch.hpt = *info;
122  	kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
123  
124  	pr_debug("KVM guest htab at %lx (order %ld), LPID %llx\n",
125  		 info->virt, (long)info->order, kvm->arch.lpid);
126  }
127  
kvmppc_alloc_reset_hpt(struct kvm * kvm,int order)128  int kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
129  {
130  	int err = -EBUSY;
131  	struct kvm_hpt_info info;
132  
133  	mutex_lock(&kvm->arch.mmu_setup_lock);
134  	if (kvm->arch.mmu_ready) {
135  		kvm->arch.mmu_ready = 0;
136  		/* order mmu_ready vs. vcpus_running */
137  		smp_mb();
138  		if (atomic_read(&kvm->arch.vcpus_running)) {
139  			kvm->arch.mmu_ready = 1;
140  			goto out;
141  		}
142  	}
143  	if (kvm_is_radix(kvm)) {
144  		err = kvmppc_switch_mmu_to_hpt(kvm);
145  		if (err)
146  			goto out;
147  	}
148  
149  	if (kvm->arch.hpt.order == order) {
150  		/* We already have a suitable HPT */
151  
152  		/* Set the entire HPT to 0, i.e. invalid HPTEs */
153  		memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
154  		/*
155  		 * Reset all the reverse-mapping chains for all memslots
156  		 */
157  		kvmppc_rmap_reset(kvm);
158  		err = 0;
159  		goto out;
160  	}
161  
162  	if (kvm->arch.hpt.virt) {
163  		kvmppc_free_hpt(&kvm->arch.hpt);
164  		kvmppc_rmap_reset(kvm);
165  	}
166  
167  	err = kvmppc_allocate_hpt(&info, order);
168  	if (err < 0)
169  		goto out;
170  	kvmppc_set_hpt(kvm, &info);
171  
172  out:
173  	if (err == 0)
174  		/* Ensure that each vcpu will flush its TLB on next entry. */
175  		cpumask_setall(&kvm->arch.need_tlb_flush);
176  
177  	mutex_unlock(&kvm->arch.mmu_setup_lock);
178  	return err;
179  }
180  
kvmppc_free_hpt(struct kvm_hpt_info * info)181  void kvmppc_free_hpt(struct kvm_hpt_info *info)
182  {
183  	vfree(info->rev);
184  	info->rev = NULL;
185  	if (info->cma)
186  		kvm_free_hpt_cma(virt_to_page((void *)info->virt),
187  				 1 << (info->order - PAGE_SHIFT));
188  	else if (info->virt)
189  		free_pages(info->virt, info->order - PAGE_SHIFT);
190  	info->virt = 0;
191  	info->order = 0;
192  }
193  
194  /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
hpte0_pgsize_encoding(unsigned long pgsize)195  static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
196  {
197  	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
198  }
199  
200  /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
hpte1_pgsize_encoding(unsigned long pgsize)201  static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
202  {
203  	return (pgsize == 0x10000) ? 0x1000 : 0;
204  }
205  
kvmppc_map_vrma(struct kvm_vcpu * vcpu,struct kvm_memory_slot * memslot,unsigned long porder)206  void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
207  		     unsigned long porder)
208  {
209  	unsigned long i;
210  	unsigned long npages;
211  	unsigned long hp_v, hp_r;
212  	unsigned long addr, hash;
213  	unsigned long psize;
214  	unsigned long hp0, hp1;
215  	unsigned long idx_ret;
216  	long ret;
217  	struct kvm *kvm = vcpu->kvm;
218  
219  	psize = 1ul << porder;
220  	npages = memslot->npages >> (porder - PAGE_SHIFT);
221  
222  	/* VRMA can't be > 1TB */
223  	if (npages > 1ul << (40 - porder))
224  		npages = 1ul << (40 - porder);
225  	/* Can't use more than 1 HPTE per HPTEG */
226  	if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
227  		npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
228  
229  	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
230  		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
231  	hp1 = hpte1_pgsize_encoding(psize) |
232  		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
233  
234  	for (i = 0; i < npages; ++i) {
235  		addr = i << porder;
236  		/* can't use hpt_hash since va > 64 bits */
237  		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
238  			& kvmppc_hpt_mask(&kvm->arch.hpt);
239  		/*
240  		 * We assume that the hash table is empty and no
241  		 * vcpus are using it at this stage.  Since we create
242  		 * at most one HPTE per HPTEG, we just assume entry 7
243  		 * is available and use it.
244  		 */
245  		hash = (hash << 3) + 7;
246  		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
247  		hp_r = hp1 | addr;
248  		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
249  						 &idx_ret);
250  		if (ret != H_SUCCESS) {
251  			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
252  			       addr, ret);
253  			break;
254  		}
255  	}
256  }
257  
kvmppc_mmu_hv_init(void)258  int kvmppc_mmu_hv_init(void)
259  {
260  	unsigned long nr_lpids;
261  
262  	if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
263  		return -EINVAL;
264  
265  	if (cpu_has_feature(CPU_FTR_HVMODE)) {
266  		if (WARN_ON(mfspr(SPRN_LPID) != 0))
267  			return -EINVAL;
268  		nr_lpids = 1UL << mmu_lpid_bits;
269  	} else {
270  		nr_lpids = 1UL << KVM_MAX_NESTED_GUESTS_SHIFT;
271  	}
272  
273  	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
274  		/* POWER7 has 10-bit LPIDs, POWER8 has 12-bit LPIDs */
275  		if (cpu_has_feature(CPU_FTR_ARCH_207S))
276  			WARN_ON(nr_lpids != 1UL << 12);
277  		else
278  			WARN_ON(nr_lpids != 1UL << 10);
279  
280  		/*
281  		 * Reserve the last implemented LPID use in partition
282  		 * switching for POWER7 and POWER8.
283  		 */
284  		nr_lpids -= 1;
285  	}
286  
287  	kvmppc_init_lpid(nr_lpids);
288  
289  	return 0;
290  }
291  
kvmppc_virtmode_do_h_enter(struct kvm * kvm,unsigned long flags,long pte_index,unsigned long pteh,unsigned long ptel,unsigned long * pte_idx_ret)292  static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
293  				long pte_index, unsigned long pteh,
294  				unsigned long ptel, unsigned long *pte_idx_ret)
295  {
296  	long ret;
297  
298  	preempt_disable();
299  	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
300  				kvm->mm->pgd, false, pte_idx_ret);
301  	preempt_enable();
302  	if (ret == H_TOO_HARD) {
303  		/* this can't happen */
304  		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
305  		ret = H_RESOURCE;	/* or something */
306  	}
307  	return ret;
308  
309  }
310  
kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu * vcpu,gva_t eaddr)311  static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
312  							 gva_t eaddr)
313  {
314  	u64 mask;
315  	int i;
316  
317  	for (i = 0; i < vcpu->arch.slb_nr; i++) {
318  		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
319  			continue;
320  
321  		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
322  			mask = ESID_MASK_1T;
323  		else
324  			mask = ESID_MASK;
325  
326  		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
327  			return &vcpu->arch.slb[i];
328  	}
329  	return NULL;
330  }
331  
kvmppc_mmu_get_real_addr(unsigned long v,unsigned long r,unsigned long ea)332  static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
333  			unsigned long ea)
334  {
335  	unsigned long ra_mask;
336  
337  	ra_mask = kvmppc_actual_pgsz(v, r) - 1;
338  	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
339  }
340  
kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu * vcpu,gva_t eaddr,struct kvmppc_pte * gpte,bool data,bool iswrite)341  static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
342  			struct kvmppc_pte *gpte, bool data, bool iswrite)
343  {
344  	struct kvm *kvm = vcpu->kvm;
345  	struct kvmppc_slb *slbe;
346  	unsigned long slb_v;
347  	unsigned long pp, key;
348  	unsigned long v, orig_v, gr;
349  	__be64 *hptep;
350  	long int index;
351  	int virtmode = __kvmppc_get_msr_hv(vcpu) & (data ? MSR_DR : MSR_IR);
352  
353  	if (kvm_is_radix(vcpu->kvm))
354  		return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
355  
356  	/* Get SLB entry */
357  	if (virtmode) {
358  		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
359  		if (!slbe)
360  			return -EINVAL;
361  		slb_v = slbe->origv;
362  	} else {
363  		/* real mode access */
364  		slb_v = vcpu->kvm->arch.vrma_slb_v;
365  	}
366  
367  	preempt_disable();
368  	/* Find the HPTE in the hash table */
369  	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
370  					 HPTE_V_VALID | HPTE_V_ABSENT);
371  	if (index < 0) {
372  		preempt_enable();
373  		return -ENOENT;
374  	}
375  	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
376  	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
377  	if (cpu_has_feature(CPU_FTR_ARCH_300))
378  		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
379  	gr = kvm->arch.hpt.rev[index].guest_rpte;
380  
381  	unlock_hpte(hptep, orig_v);
382  	preempt_enable();
383  
384  	gpte->eaddr = eaddr;
385  	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
386  
387  	/* Get PP bits and key for permission check */
388  	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
389  	key = (__kvmppc_get_msr_hv(vcpu) & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
390  	key &= slb_v;
391  
392  	/* Calculate permissions */
393  	gpte->may_read = hpte_read_permission(pp, key);
394  	gpte->may_write = hpte_write_permission(pp, key);
395  	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
396  
397  	/* Storage key permission check for POWER7 */
398  	if (data && virtmode) {
399  		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
400  		if (amrfield & 1)
401  			gpte->may_read = 0;
402  		if (amrfield & 2)
403  			gpte->may_write = 0;
404  	}
405  
406  	/* Get the guest physical address */
407  	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
408  	return 0;
409  }
410  
411  /*
412   * Quick test for whether an instruction is a load or a store.
413   * If the instruction is a load or a store, then this will indicate
414   * which it is, at least on server processors.  (Embedded processors
415   * have some external PID instructions that don't follow the rule
416   * embodied here.)  If the instruction isn't a load or store, then
417   * this doesn't return anything useful.
418   */
instruction_is_store(ppc_inst_t instr)419  static int instruction_is_store(ppc_inst_t instr)
420  {
421  	unsigned int mask;
422  	unsigned int suffix;
423  
424  	mask = 0x10000000;
425  	suffix = ppc_inst_val(instr);
426  	if (ppc_inst_prefixed(instr))
427  		suffix = ppc_inst_suffix(instr);
428  	else if ((suffix & 0xfc000000) == 0x7c000000)
429  		mask = 0x100;		/* major opcode 31 */
430  	return (suffix & mask) != 0;
431  }
432  
kvmppc_hv_emulate_mmio(struct kvm_vcpu * vcpu,unsigned long gpa,gva_t ea,int is_store)433  int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
434  			   unsigned long gpa, gva_t ea, int is_store)
435  {
436  	ppc_inst_t last_inst;
437  	bool is_prefixed = !!(kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
438  
439  	/*
440  	 * Fast path - check if the guest physical address corresponds to a
441  	 * device on the FAST_MMIO_BUS, if so we can avoid loading the
442  	 * instruction all together, then we can just handle it and return.
443  	 */
444  	if (is_store) {
445  		int idx, ret;
446  
447  		idx = srcu_read_lock(&vcpu->kvm->srcu);
448  		ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
449  				       NULL);
450  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
451  		if (!ret) {
452  			kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + (is_prefixed ? 8 : 4));
453  			return RESUME_GUEST;
454  		}
455  	}
456  
457  	/*
458  	 * If we fail, we just return to the guest and try executing it again.
459  	 */
460  	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
461  		EMULATE_DONE)
462  		return RESUME_GUEST;
463  
464  	/*
465  	 * WARNING: We do not know for sure whether the instruction we just
466  	 * read from memory is the same that caused the fault in the first
467  	 * place.
468  	 *
469  	 * If the fault is prefixed but the instruction is not or vice
470  	 * versa, try again so that we don't advance pc the wrong amount.
471  	 */
472  	if (ppc_inst_prefixed(last_inst) != is_prefixed)
473  		return RESUME_GUEST;
474  
475  	/*
476  	 * If the instruction we read is neither an load or a store,
477  	 * then it can't access memory, so we don't need to worry about
478  	 * enforcing access permissions.  So, assuming it is a load or
479  	 * store, we just check that its direction (load or store) is
480  	 * consistent with the original fault, since that's what we
481  	 * checked the access permissions against.  If there is a mismatch
482  	 * we just return and retry the instruction.
483  	 */
484  
485  	if (instruction_is_store(last_inst) != !!is_store)
486  		return RESUME_GUEST;
487  
488  	/*
489  	 * Emulated accesses are emulated by looking at the hash for
490  	 * translation once, then performing the access later. The
491  	 * translation could be invalidated in the meantime in which
492  	 * point performing the subsequent memory access on the old
493  	 * physical address could possibly be a security hole for the
494  	 * guest (but not the host).
495  	 *
496  	 * This is less of an issue for MMIO stores since they aren't
497  	 * globally visible. It could be an issue for MMIO loads to
498  	 * a certain extent but we'll ignore it for now.
499  	 */
500  
501  	vcpu->arch.paddr_accessed = gpa;
502  	vcpu->arch.vaddr_accessed = ea;
503  	return kvmppc_emulate_mmio(vcpu);
504  }
505  
kvmppc_book3s_hv_page_fault(struct kvm_vcpu * vcpu,unsigned long ea,unsigned long dsisr)506  int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
507  				unsigned long ea, unsigned long dsisr)
508  {
509  	struct kvm *kvm = vcpu->kvm;
510  	unsigned long hpte[3], r;
511  	unsigned long hnow_v, hnow_r;
512  	__be64 *hptep;
513  	unsigned long mmu_seq, psize, pte_size;
514  	unsigned long gpa_base, gfn_base;
515  	unsigned long gpa, gfn, hva, pfn, hpa;
516  	struct kvm_memory_slot *memslot;
517  	unsigned long *rmap;
518  	struct revmap_entry *rev;
519  	struct page *page;
520  	long index, ret;
521  	bool is_ci;
522  	bool writing, write_ok;
523  	unsigned int shift;
524  	unsigned long rcbits;
525  	long mmio_update;
526  	pte_t pte, *ptep;
527  
528  	if (kvm_is_radix(kvm))
529  		return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
530  
531  	/*
532  	 * Real-mode code has already searched the HPT and found the
533  	 * entry we're interested in.  Lock the entry and check that
534  	 * it hasn't changed.  If it has, just return and re-execute the
535  	 * instruction.
536  	 */
537  	if (ea != vcpu->arch.pgfault_addr)
538  		return RESUME_GUEST;
539  
540  	if (vcpu->arch.pgfault_cache) {
541  		mmio_update = atomic64_read(&kvm->arch.mmio_update);
542  		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
543  			r = vcpu->arch.pgfault_cache->rpte;
544  			psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
545  						   r);
546  			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
547  			gfn_base = gpa_base >> PAGE_SHIFT;
548  			gpa = gpa_base | (ea & (psize - 1));
549  			return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
550  						dsisr & DSISR_ISSTORE);
551  		}
552  	}
553  	index = vcpu->arch.pgfault_index;
554  	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
555  	rev = &kvm->arch.hpt.rev[index];
556  	preempt_disable();
557  	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
558  		cpu_relax();
559  	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
560  	hpte[1] = be64_to_cpu(hptep[1]);
561  	hpte[2] = r = rev->guest_rpte;
562  	unlock_hpte(hptep, hpte[0]);
563  	preempt_enable();
564  
565  	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
566  		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
567  		hpte[1] = hpte_new_to_old_r(hpte[1]);
568  	}
569  	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
570  	    hpte[1] != vcpu->arch.pgfault_hpte[1])
571  		return RESUME_GUEST;
572  
573  	/* Translate the logical address and get the page */
574  	psize = kvmppc_actual_pgsz(hpte[0], r);
575  	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
576  	gfn_base = gpa_base >> PAGE_SHIFT;
577  	gpa = gpa_base | (ea & (psize - 1));
578  	gfn = gpa >> PAGE_SHIFT;
579  	memslot = gfn_to_memslot(kvm, gfn);
580  
581  	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
582  
583  	/* No memslot means it's an emulated MMIO region */
584  	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
585  		return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
586  					      dsisr & DSISR_ISSTORE);
587  
588  	/*
589  	 * This should never happen, because of the slot_is_aligned()
590  	 * check in kvmppc_do_h_enter().
591  	 */
592  	if (gfn_base < memslot->base_gfn)
593  		return -EFAULT;
594  
595  	/* used to check for invalidations in progress */
596  	mmu_seq = kvm->mmu_invalidate_seq;
597  	smp_rmb();
598  
599  	ret = -EFAULT;
600  	page = NULL;
601  	writing = (dsisr & DSISR_ISSTORE) != 0;
602  	/* If writing != 0, then the HPTE must allow writing, if we get here */
603  	write_ok = writing;
604  	hva = gfn_to_hva_memslot(memslot, gfn);
605  
606  	/*
607  	 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
608  	 * do it with !atomic && !async, which is how we call it.
609  	 * We always ask for write permission since the common case
610  	 * is that the page is writable.
611  	 */
612  	if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
613  		write_ok = true;
614  	} else {
615  		/* Call KVM generic code to do the slow-path check */
616  		pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
617  					   writing, &write_ok, NULL);
618  		if (is_error_noslot_pfn(pfn))
619  			return -EFAULT;
620  		page = NULL;
621  		if (pfn_valid(pfn)) {
622  			page = pfn_to_page(pfn);
623  			if (PageReserved(page))
624  				page = NULL;
625  		}
626  	}
627  
628  	/*
629  	 * Read the PTE from the process' radix tree and use that
630  	 * so we get the shift and attribute bits.
631  	 */
632  	spin_lock(&kvm->mmu_lock);
633  	ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
634  	pte = __pte(0);
635  	if (ptep)
636  		pte = READ_ONCE(*ptep);
637  	spin_unlock(&kvm->mmu_lock);
638  	/*
639  	 * If the PTE disappeared temporarily due to a THP
640  	 * collapse, just return and let the guest try again.
641  	 */
642  	if (!pte_present(pte)) {
643  		if (page)
644  			put_page(page);
645  		return RESUME_GUEST;
646  	}
647  	hpa = pte_pfn(pte) << PAGE_SHIFT;
648  	pte_size = PAGE_SIZE;
649  	if (shift)
650  		pte_size = 1ul << shift;
651  	is_ci = pte_ci(pte);
652  
653  	if (psize > pte_size)
654  		goto out_put;
655  	if (pte_size > psize)
656  		hpa |= hva & (pte_size - psize);
657  
658  	/* Check WIMG vs. the actual page we're accessing */
659  	if (!hpte_cache_flags_ok(r, is_ci)) {
660  		if (is_ci)
661  			goto out_put;
662  		/*
663  		 * Allow guest to map emulated device memory as
664  		 * uncacheable, but actually make it cacheable.
665  		 */
666  		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
667  	}
668  
669  	/*
670  	 * Set the HPTE to point to hpa.
671  	 * Since the hpa is at PAGE_SIZE granularity, make sure we
672  	 * don't mask out lower-order bits if psize < PAGE_SIZE.
673  	 */
674  	if (psize < PAGE_SIZE)
675  		psize = PAGE_SIZE;
676  	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
677  	if (hpte_is_writable(r) && !write_ok)
678  		r = hpte_make_readonly(r);
679  	ret = RESUME_GUEST;
680  	preempt_disable();
681  	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
682  		cpu_relax();
683  	hnow_v = be64_to_cpu(hptep[0]);
684  	hnow_r = be64_to_cpu(hptep[1]);
685  	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
686  		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
687  		hnow_r = hpte_new_to_old_r(hnow_r);
688  	}
689  
690  	/*
691  	 * If the HPT is being resized, don't update the HPTE,
692  	 * instead let the guest retry after the resize operation is complete.
693  	 * The synchronization for mmu_ready test vs. set is provided
694  	 * by the HPTE lock.
695  	 */
696  	if (!kvm->arch.mmu_ready)
697  		goto out_unlock;
698  
699  	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
700  	    rev->guest_rpte != hpte[2])
701  		/* HPTE has been changed under us; let the guest retry */
702  		goto out_unlock;
703  	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
704  
705  	/* Always put the HPTE in the rmap chain for the page base address */
706  	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
707  	lock_rmap(rmap);
708  
709  	/* Check if we might have been invalidated; let the guest retry if so */
710  	ret = RESUME_GUEST;
711  	if (mmu_invalidate_retry(vcpu->kvm, mmu_seq)) {
712  		unlock_rmap(rmap);
713  		goto out_unlock;
714  	}
715  
716  	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
717  	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
718  	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
719  
720  	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
721  		/* HPTE was previously valid, so we need to invalidate it */
722  		unlock_rmap(rmap);
723  		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
724  		kvmppc_invalidate_hpte(kvm, hptep, index);
725  		/* don't lose previous R and C bits */
726  		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
727  	} else {
728  		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
729  	}
730  
731  	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
732  		r = hpte_old_to_new_r(hpte[0], r);
733  		hpte[0] = hpte_old_to_new_v(hpte[0]);
734  	}
735  	hptep[1] = cpu_to_be64(r);
736  	eieio();
737  	__unlock_hpte(hptep, hpte[0]);
738  	asm volatile("ptesync" : : : "memory");
739  	preempt_enable();
740  	if (page && hpte_is_writable(r))
741  		set_page_dirty_lock(page);
742  
743   out_put:
744  	trace_kvm_page_fault_exit(vcpu, hpte, ret);
745  
746  	if (page)
747  		put_page(page);
748  	return ret;
749  
750   out_unlock:
751  	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
752  	preempt_enable();
753  	goto out_put;
754  }
755  
kvmppc_rmap_reset(struct kvm * kvm)756  void kvmppc_rmap_reset(struct kvm *kvm)
757  {
758  	struct kvm_memslots *slots;
759  	struct kvm_memory_slot *memslot;
760  	int srcu_idx, bkt;
761  
762  	srcu_idx = srcu_read_lock(&kvm->srcu);
763  	slots = kvm_memslots(kvm);
764  	kvm_for_each_memslot(memslot, bkt, slots) {
765  		/* Mutual exclusion with kvm_unmap_hva_range etc. */
766  		spin_lock(&kvm->mmu_lock);
767  		/*
768  		 * This assumes it is acceptable to lose reference and
769  		 * change bits across a reset.
770  		 */
771  		memset(memslot->arch.rmap, 0,
772  		       memslot->npages * sizeof(*memslot->arch.rmap));
773  		spin_unlock(&kvm->mmu_lock);
774  	}
775  	srcu_read_unlock(&kvm->srcu, srcu_idx);
776  }
777  
778  /* Must be called with both HPTE and rmap locked */
kvmppc_unmap_hpte(struct kvm * kvm,unsigned long i,struct kvm_memory_slot * memslot,unsigned long * rmapp,unsigned long gfn)779  static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
780  			      struct kvm_memory_slot *memslot,
781  			      unsigned long *rmapp, unsigned long gfn)
782  {
783  	__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
784  	struct revmap_entry *rev = kvm->arch.hpt.rev;
785  	unsigned long j, h;
786  	unsigned long ptel, psize, rcbits;
787  
788  	j = rev[i].forw;
789  	if (j == i) {
790  		/* chain is now empty */
791  		*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
792  	} else {
793  		/* remove i from chain */
794  		h = rev[i].back;
795  		rev[h].forw = j;
796  		rev[j].back = h;
797  		rev[i].forw = rev[i].back = i;
798  		*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
799  	}
800  
801  	/* Now check and modify the HPTE */
802  	ptel = rev[i].guest_rpte;
803  	psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
804  	if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
805  	    hpte_rpn(ptel, psize) == gfn) {
806  		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
807  		kvmppc_invalidate_hpte(kvm, hptep, i);
808  		hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
809  		/* Harvest R and C */
810  		rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
811  		*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
812  		if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
813  			kvmppc_update_dirty_map(memslot, gfn, psize);
814  		if (rcbits & ~rev[i].guest_rpte) {
815  			rev[i].guest_rpte = ptel | rcbits;
816  			note_hpte_modification(kvm, &rev[i]);
817  		}
818  	}
819  }
820  
kvm_unmap_rmapp(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long gfn)821  static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
822  			    unsigned long gfn)
823  {
824  	unsigned long i;
825  	__be64 *hptep;
826  	unsigned long *rmapp;
827  
828  	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
829  	for (;;) {
830  		lock_rmap(rmapp);
831  		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
832  			unlock_rmap(rmapp);
833  			break;
834  		}
835  
836  		/*
837  		 * To avoid an ABBA deadlock with the HPTE lock bit,
838  		 * we can't spin on the HPTE lock while holding the
839  		 * rmap chain lock.
840  		 */
841  		i = *rmapp & KVMPPC_RMAP_INDEX;
842  		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
843  		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
844  			/* unlock rmap before spinning on the HPTE lock */
845  			unlock_rmap(rmapp);
846  			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
847  				cpu_relax();
848  			continue;
849  		}
850  
851  		kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
852  		unlock_rmap(rmapp);
853  		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
854  	}
855  }
856  
kvm_unmap_gfn_range_hv(struct kvm * kvm,struct kvm_gfn_range * range)857  bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range)
858  {
859  	gfn_t gfn;
860  
861  	if (kvm_is_radix(kvm)) {
862  		for (gfn = range->start; gfn < range->end; gfn++)
863  			kvm_unmap_radix(kvm, range->slot, gfn);
864  	} else {
865  		for (gfn = range->start; gfn < range->end; gfn++)
866  			kvm_unmap_rmapp(kvm, range->slot, gfn);
867  	}
868  
869  	return false;
870  }
871  
kvmppc_core_flush_memslot_hv(struct kvm * kvm,struct kvm_memory_slot * memslot)872  void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
873  				  struct kvm_memory_slot *memslot)
874  {
875  	unsigned long gfn;
876  	unsigned long n;
877  	unsigned long *rmapp;
878  
879  	gfn = memslot->base_gfn;
880  	rmapp = memslot->arch.rmap;
881  	if (kvm_is_radix(kvm)) {
882  		kvmppc_radix_flush_memslot(kvm, memslot);
883  		return;
884  	}
885  
886  	for (n = memslot->npages; n; --n, ++gfn) {
887  		/*
888  		 * Testing the present bit without locking is OK because
889  		 * the memslot has been marked invalid already, and hence
890  		 * no new HPTEs referencing this page can be created,
891  		 * thus the present bit can't go from 0 to 1.
892  		 */
893  		if (*rmapp & KVMPPC_RMAP_PRESENT)
894  			kvm_unmap_rmapp(kvm, memslot, gfn);
895  		++rmapp;
896  	}
897  }
898  
kvm_age_rmapp(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long gfn)899  static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
900  			  unsigned long gfn)
901  {
902  	struct revmap_entry *rev = kvm->arch.hpt.rev;
903  	unsigned long head, i, j;
904  	__be64 *hptep;
905  	bool ret = false;
906  	unsigned long *rmapp;
907  
908  	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
909   retry:
910  	lock_rmap(rmapp);
911  	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
912  		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
913  		ret = true;
914  	}
915  	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
916  		unlock_rmap(rmapp);
917  		return ret;
918  	}
919  
920  	i = head = *rmapp & KVMPPC_RMAP_INDEX;
921  	do {
922  		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
923  		j = rev[i].forw;
924  
925  		/* If this HPTE isn't referenced, ignore it */
926  		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
927  			continue;
928  
929  		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
930  			/* unlock rmap before spinning on the HPTE lock */
931  			unlock_rmap(rmapp);
932  			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
933  				cpu_relax();
934  			goto retry;
935  		}
936  
937  		/* Now check and modify the HPTE */
938  		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
939  		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
940  			kvmppc_clear_ref_hpte(kvm, hptep, i);
941  			if (!(rev[i].guest_rpte & HPTE_R_R)) {
942  				rev[i].guest_rpte |= HPTE_R_R;
943  				note_hpte_modification(kvm, &rev[i]);
944  			}
945  			ret = true;
946  		}
947  		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
948  	} while ((i = j) != head);
949  
950  	unlock_rmap(rmapp);
951  	return ret;
952  }
953  
kvm_age_gfn_hv(struct kvm * kvm,struct kvm_gfn_range * range)954  bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
955  {
956  	gfn_t gfn;
957  	bool ret = false;
958  
959  	if (kvm_is_radix(kvm)) {
960  		for (gfn = range->start; gfn < range->end; gfn++)
961  			ret |= kvm_age_radix(kvm, range->slot, gfn);
962  	} else {
963  		for (gfn = range->start; gfn < range->end; gfn++)
964  			ret |= kvm_age_rmapp(kvm, range->slot, gfn);
965  	}
966  
967  	return ret;
968  }
969  
kvm_test_age_rmapp(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long gfn)970  static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
971  			       unsigned long gfn)
972  {
973  	struct revmap_entry *rev = kvm->arch.hpt.rev;
974  	unsigned long head, i, j;
975  	unsigned long *hp;
976  	bool ret = true;
977  	unsigned long *rmapp;
978  
979  	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
980  	if (*rmapp & KVMPPC_RMAP_REFERENCED)
981  		return true;
982  
983  	lock_rmap(rmapp);
984  	if (*rmapp & KVMPPC_RMAP_REFERENCED)
985  		goto out;
986  
987  	if (*rmapp & KVMPPC_RMAP_PRESENT) {
988  		i = head = *rmapp & KVMPPC_RMAP_INDEX;
989  		do {
990  			hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
991  			j = rev[i].forw;
992  			if (be64_to_cpu(hp[1]) & HPTE_R_R)
993  				goto out;
994  		} while ((i = j) != head);
995  	}
996  	ret = false;
997  
998   out:
999  	unlock_rmap(rmapp);
1000  	return ret;
1001  }
1002  
kvm_test_age_gfn_hv(struct kvm * kvm,struct kvm_gfn_range * range)1003  bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
1004  {
1005  	WARN_ON(range->start + 1 != range->end);
1006  
1007  	if (kvm_is_radix(kvm))
1008  		return kvm_test_age_radix(kvm, range->slot, range->start);
1009  	else
1010  		return kvm_test_age_rmapp(kvm, range->slot, range->start);
1011  }
1012  
vcpus_running(struct kvm * kvm)1013  static int vcpus_running(struct kvm *kvm)
1014  {
1015  	return atomic_read(&kvm->arch.vcpus_running) != 0;
1016  }
1017  
1018  /*
1019   * Returns the number of system pages that are dirty.
1020   * This can be more than 1 if we find a huge-page HPTE.
1021   */
kvm_test_clear_dirty_npages(struct kvm * kvm,unsigned long * rmapp)1022  static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1023  {
1024  	struct revmap_entry *rev = kvm->arch.hpt.rev;
1025  	unsigned long head, i, j;
1026  	unsigned long n;
1027  	unsigned long v, r;
1028  	__be64 *hptep;
1029  	int npages_dirty = 0;
1030  
1031   retry:
1032  	lock_rmap(rmapp);
1033  	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1034  		unlock_rmap(rmapp);
1035  		return npages_dirty;
1036  	}
1037  
1038  	i = head = *rmapp & KVMPPC_RMAP_INDEX;
1039  	do {
1040  		unsigned long hptep1;
1041  		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1042  		j = rev[i].forw;
1043  
1044  		/*
1045  		 * Checking the C (changed) bit here is racy since there
1046  		 * is no guarantee about when the hardware writes it back.
1047  		 * If the HPTE is not writable then it is stable since the
1048  		 * page can't be written to, and we would have done a tlbie
1049  		 * (which forces the hardware to complete any writeback)
1050  		 * when making the HPTE read-only.
1051  		 * If vcpus are running then this call is racy anyway
1052  		 * since the page could get dirtied subsequently, so we
1053  		 * expect there to be a further call which would pick up
1054  		 * any delayed C bit writeback.
1055  		 * Otherwise we need to do the tlbie even if C==0 in
1056  		 * order to pick up any delayed writeback of C.
1057  		 */
1058  		hptep1 = be64_to_cpu(hptep[1]);
1059  		if (!(hptep1 & HPTE_R_C) &&
1060  		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1061  			continue;
1062  
1063  		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1064  			/* unlock rmap before spinning on the HPTE lock */
1065  			unlock_rmap(rmapp);
1066  			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1067  				cpu_relax();
1068  			goto retry;
1069  		}
1070  
1071  		/* Now check and modify the HPTE */
1072  		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1073  			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1074  			continue;
1075  		}
1076  
1077  		/* need to make it temporarily absent so C is stable */
1078  		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1079  		kvmppc_invalidate_hpte(kvm, hptep, i);
1080  		v = be64_to_cpu(hptep[0]);
1081  		r = be64_to_cpu(hptep[1]);
1082  		if (r & HPTE_R_C) {
1083  			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1084  			if (!(rev[i].guest_rpte & HPTE_R_C)) {
1085  				rev[i].guest_rpte |= HPTE_R_C;
1086  				note_hpte_modification(kvm, &rev[i]);
1087  			}
1088  			n = kvmppc_actual_pgsz(v, r);
1089  			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1090  			if (n > npages_dirty)
1091  				npages_dirty = n;
1092  			eieio();
1093  		}
1094  		v &= ~HPTE_V_ABSENT;
1095  		v |= HPTE_V_VALID;
1096  		__unlock_hpte(hptep, v);
1097  	} while ((i = j) != head);
1098  
1099  	unlock_rmap(rmapp);
1100  	return npages_dirty;
1101  }
1102  
kvmppc_harvest_vpa_dirty(struct kvmppc_vpa * vpa,struct kvm_memory_slot * memslot,unsigned long * map)1103  void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1104  			      struct kvm_memory_slot *memslot,
1105  			      unsigned long *map)
1106  {
1107  	unsigned long gfn;
1108  
1109  	if (!vpa->dirty || !vpa->pinned_addr)
1110  		return;
1111  	gfn = vpa->gpa >> PAGE_SHIFT;
1112  	if (gfn < memslot->base_gfn ||
1113  	    gfn >= memslot->base_gfn + memslot->npages)
1114  		return;
1115  
1116  	vpa->dirty = false;
1117  	if (map)
1118  		__set_bit_le(gfn - memslot->base_gfn, map);
1119  }
1120  
kvmppc_hv_get_dirty_log_hpt(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long * map)1121  long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1122  			struct kvm_memory_slot *memslot, unsigned long *map)
1123  {
1124  	unsigned long i;
1125  	unsigned long *rmapp;
1126  
1127  	preempt_disable();
1128  	rmapp = memslot->arch.rmap;
1129  	for (i = 0; i < memslot->npages; ++i) {
1130  		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1131  		/*
1132  		 * Note that if npages > 0 then i must be a multiple of npages,
1133  		 * since we always put huge-page HPTEs in the rmap chain
1134  		 * corresponding to their page base address.
1135  		 */
1136  		if (npages)
1137  			set_dirty_bits(map, i, npages);
1138  		++rmapp;
1139  	}
1140  	preempt_enable();
1141  	return 0;
1142  }
1143  
kvmppc_pin_guest_page(struct kvm * kvm,unsigned long gpa,unsigned long * nb_ret)1144  void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1145  			    unsigned long *nb_ret)
1146  {
1147  	struct kvm_memory_slot *memslot;
1148  	unsigned long gfn = gpa >> PAGE_SHIFT;
1149  	struct page *page, *pages[1];
1150  	int npages;
1151  	unsigned long hva, offset;
1152  	int srcu_idx;
1153  
1154  	srcu_idx = srcu_read_lock(&kvm->srcu);
1155  	memslot = gfn_to_memslot(kvm, gfn);
1156  	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1157  		goto err;
1158  	hva = gfn_to_hva_memslot(memslot, gfn);
1159  	npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1160  	if (npages < 1)
1161  		goto err;
1162  	page = pages[0];
1163  	srcu_read_unlock(&kvm->srcu, srcu_idx);
1164  
1165  	offset = gpa & (PAGE_SIZE - 1);
1166  	if (nb_ret)
1167  		*nb_ret = PAGE_SIZE - offset;
1168  	return page_address(page) + offset;
1169  
1170   err:
1171  	srcu_read_unlock(&kvm->srcu, srcu_idx);
1172  	return NULL;
1173  }
1174  
kvmppc_unpin_guest_page(struct kvm * kvm,void * va,unsigned long gpa,bool dirty)1175  void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1176  			     bool dirty)
1177  {
1178  	struct page *page = virt_to_page(va);
1179  	struct kvm_memory_slot *memslot;
1180  	unsigned long gfn;
1181  	int srcu_idx;
1182  
1183  	put_page(page);
1184  
1185  	if (!dirty)
1186  		return;
1187  
1188  	/* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1189  	gfn = gpa >> PAGE_SHIFT;
1190  	srcu_idx = srcu_read_lock(&kvm->srcu);
1191  	memslot = gfn_to_memslot(kvm, gfn);
1192  	if (memslot && memslot->dirty_bitmap)
1193  		set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1194  	srcu_read_unlock(&kvm->srcu, srcu_idx);
1195  }
1196  
1197  /*
1198   * HPT resizing
1199   */
resize_hpt_allocate(struct kvm_resize_hpt * resize)1200  static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1201  {
1202  	int rc;
1203  
1204  	rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1205  	if (rc < 0)
1206  		return rc;
1207  
1208  	resize_hpt_debug(resize, "%s(): HPT @ 0x%lx\n", __func__,
1209  			 resize->hpt.virt);
1210  
1211  	return 0;
1212  }
1213  
resize_hpt_rehash_hpte(struct kvm_resize_hpt * resize,unsigned long idx)1214  static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1215  					    unsigned long idx)
1216  {
1217  	struct kvm *kvm = resize->kvm;
1218  	struct kvm_hpt_info *old = &kvm->arch.hpt;
1219  	struct kvm_hpt_info *new = &resize->hpt;
1220  	unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1221  	unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1222  	__be64 *hptep, *new_hptep;
1223  	unsigned long vpte, rpte, guest_rpte;
1224  	int ret;
1225  	struct revmap_entry *rev;
1226  	unsigned long apsize, avpn, pteg, hash;
1227  	unsigned long new_idx, new_pteg, replace_vpte;
1228  	int pshift;
1229  
1230  	hptep = (__be64 *)(old->virt + (idx << 4));
1231  
1232  	/* Guest is stopped, so new HPTEs can't be added or faulted
1233  	 * in, only unmapped or altered by host actions.  So, it's
1234  	 * safe to check this before we take the HPTE lock */
1235  	vpte = be64_to_cpu(hptep[0]);
1236  	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1237  		return 0; /* nothing to do */
1238  
1239  	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1240  		cpu_relax();
1241  
1242  	vpte = be64_to_cpu(hptep[0]);
1243  
1244  	ret = 0;
1245  	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1246  		/* Nothing to do */
1247  		goto out;
1248  
1249  	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1250  		rpte = be64_to_cpu(hptep[1]);
1251  		vpte = hpte_new_to_old_v(vpte, rpte);
1252  	}
1253  
1254  	/* Unmap */
1255  	rev = &old->rev[idx];
1256  	guest_rpte = rev->guest_rpte;
1257  
1258  	ret = -EIO;
1259  	apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1260  	if (!apsize)
1261  		goto out;
1262  
1263  	if (vpte & HPTE_V_VALID) {
1264  		unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1265  		int srcu_idx = srcu_read_lock(&kvm->srcu);
1266  		struct kvm_memory_slot *memslot =
1267  			__gfn_to_memslot(kvm_memslots(kvm), gfn);
1268  
1269  		if (memslot) {
1270  			unsigned long *rmapp;
1271  			rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1272  
1273  			lock_rmap(rmapp);
1274  			kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1275  			unlock_rmap(rmapp);
1276  		}
1277  
1278  		srcu_read_unlock(&kvm->srcu, srcu_idx);
1279  	}
1280  
1281  	/* Reload PTE after unmap */
1282  	vpte = be64_to_cpu(hptep[0]);
1283  	BUG_ON(vpte & HPTE_V_VALID);
1284  	BUG_ON(!(vpte & HPTE_V_ABSENT));
1285  
1286  	ret = 0;
1287  	if (!(vpte & HPTE_V_BOLTED))
1288  		goto out;
1289  
1290  	rpte = be64_to_cpu(hptep[1]);
1291  
1292  	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1293  		vpte = hpte_new_to_old_v(vpte, rpte);
1294  		rpte = hpte_new_to_old_r(rpte);
1295  	}
1296  
1297  	pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1298  	avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1299  	pteg = idx / HPTES_PER_GROUP;
1300  	if (vpte & HPTE_V_SECONDARY)
1301  		pteg = ~pteg;
1302  
1303  	if (!(vpte & HPTE_V_1TB_SEG)) {
1304  		unsigned long offset, vsid;
1305  
1306  		/* We only have 28 - 23 bits of offset in avpn */
1307  		offset = (avpn & 0x1f) << 23;
1308  		vsid = avpn >> 5;
1309  		/* We can find more bits from the pteg value */
1310  		if (pshift < 23)
1311  			offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1312  
1313  		hash = vsid ^ (offset >> pshift);
1314  	} else {
1315  		unsigned long offset, vsid;
1316  
1317  		/* We only have 40 - 23 bits of seg_off in avpn */
1318  		offset = (avpn & 0x1ffff) << 23;
1319  		vsid = avpn >> 17;
1320  		if (pshift < 23)
1321  			offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1322  
1323  		hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1324  	}
1325  
1326  	new_pteg = hash & new_hash_mask;
1327  	if (vpte & HPTE_V_SECONDARY)
1328  		new_pteg = ~hash & new_hash_mask;
1329  
1330  	new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1331  	new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1332  
1333  	replace_vpte = be64_to_cpu(new_hptep[0]);
1334  	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1335  		unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1336  		replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1337  	}
1338  
1339  	if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1340  		BUG_ON(new->order >= old->order);
1341  
1342  		if (replace_vpte & HPTE_V_BOLTED) {
1343  			if (vpte & HPTE_V_BOLTED)
1344  				/* Bolted collision, nothing we can do */
1345  				ret = -ENOSPC;
1346  			/* Discard the new HPTE */
1347  			goto out;
1348  		}
1349  
1350  		/* Discard the previous HPTE */
1351  	}
1352  
1353  	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1354  		rpte = hpte_old_to_new_r(vpte, rpte);
1355  		vpte = hpte_old_to_new_v(vpte);
1356  	}
1357  
1358  	new_hptep[1] = cpu_to_be64(rpte);
1359  	new->rev[new_idx].guest_rpte = guest_rpte;
1360  	/* No need for a barrier, since new HPT isn't active */
1361  	new_hptep[0] = cpu_to_be64(vpte);
1362  	unlock_hpte(new_hptep, vpte);
1363  
1364  out:
1365  	unlock_hpte(hptep, vpte);
1366  	return ret;
1367  }
1368  
resize_hpt_rehash(struct kvm_resize_hpt * resize)1369  static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1370  {
1371  	struct kvm *kvm = resize->kvm;
1372  	unsigned  long i;
1373  	int rc;
1374  
1375  	for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1376  		rc = resize_hpt_rehash_hpte(resize, i);
1377  		if (rc != 0)
1378  			return rc;
1379  	}
1380  
1381  	return 0;
1382  }
1383  
resize_hpt_pivot(struct kvm_resize_hpt * resize)1384  static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1385  {
1386  	struct kvm *kvm = resize->kvm;
1387  	struct kvm_hpt_info hpt_tmp;
1388  
1389  	/* Exchange the pending tables in the resize structure with
1390  	 * the active tables */
1391  
1392  	resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1393  
1394  	spin_lock(&kvm->mmu_lock);
1395  	asm volatile("ptesync" : : : "memory");
1396  
1397  	hpt_tmp = kvm->arch.hpt;
1398  	kvmppc_set_hpt(kvm, &resize->hpt);
1399  	resize->hpt = hpt_tmp;
1400  
1401  	spin_unlock(&kvm->mmu_lock);
1402  
1403  	synchronize_srcu_expedited(&kvm->srcu);
1404  
1405  	if (cpu_has_feature(CPU_FTR_ARCH_300))
1406  		kvmppc_setup_partition_table(kvm);
1407  
1408  	resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1409  }
1410  
resize_hpt_release(struct kvm * kvm,struct kvm_resize_hpt * resize)1411  static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1412  {
1413  	if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1414  		return;
1415  
1416  	if (!resize)
1417  		return;
1418  
1419  	if (resize->error != -EBUSY) {
1420  		if (resize->hpt.virt)
1421  			kvmppc_free_hpt(&resize->hpt);
1422  		kfree(resize);
1423  	}
1424  
1425  	if (kvm->arch.resize_hpt == resize)
1426  		kvm->arch.resize_hpt = NULL;
1427  }
1428  
resize_hpt_prepare_work(struct work_struct * work)1429  static void resize_hpt_prepare_work(struct work_struct *work)
1430  {
1431  	struct kvm_resize_hpt *resize = container_of(work,
1432  						     struct kvm_resize_hpt,
1433  						     work);
1434  	struct kvm *kvm = resize->kvm;
1435  	int err = 0;
1436  
1437  	if (WARN_ON(resize->error != -EBUSY))
1438  		return;
1439  
1440  	mutex_lock(&kvm->arch.mmu_setup_lock);
1441  
1442  	/* Request is still current? */
1443  	if (kvm->arch.resize_hpt == resize) {
1444  		/* We may request large allocations here:
1445  		 * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1446  		 */
1447  		mutex_unlock(&kvm->arch.mmu_setup_lock);
1448  
1449  		resize_hpt_debug(resize, "%s(): order = %d\n", __func__,
1450  				 resize->order);
1451  
1452  		err = resize_hpt_allocate(resize);
1453  
1454  		/* We have strict assumption about -EBUSY
1455  		 * when preparing for HPT resize.
1456  		 */
1457  		if (WARN_ON(err == -EBUSY))
1458  			err = -EINPROGRESS;
1459  
1460  		mutex_lock(&kvm->arch.mmu_setup_lock);
1461  		/* It is possible that kvm->arch.resize_hpt != resize
1462  		 * after we grab kvm->arch.mmu_setup_lock again.
1463  		 */
1464  	}
1465  
1466  	resize->error = err;
1467  
1468  	if (kvm->arch.resize_hpt != resize)
1469  		resize_hpt_release(kvm, resize);
1470  
1471  	mutex_unlock(&kvm->arch.mmu_setup_lock);
1472  }
1473  
kvm_vm_ioctl_resize_hpt_prepare(struct kvm * kvm,struct kvm_ppc_resize_hpt * rhpt)1474  int kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1475  				    struct kvm_ppc_resize_hpt *rhpt)
1476  {
1477  	unsigned long flags = rhpt->flags;
1478  	unsigned long shift = rhpt->shift;
1479  	struct kvm_resize_hpt *resize;
1480  	int ret;
1481  
1482  	if (flags != 0 || kvm_is_radix(kvm))
1483  		return -EINVAL;
1484  
1485  	if (shift && ((shift < 18) || (shift > 46)))
1486  		return -EINVAL;
1487  
1488  	mutex_lock(&kvm->arch.mmu_setup_lock);
1489  
1490  	resize = kvm->arch.resize_hpt;
1491  
1492  	if (resize) {
1493  		if (resize->order == shift) {
1494  			/* Suitable resize in progress? */
1495  			ret = resize->error;
1496  			if (ret == -EBUSY)
1497  				ret = 100; /* estimated time in ms */
1498  			else if (ret)
1499  				resize_hpt_release(kvm, resize);
1500  
1501  			goto out;
1502  		}
1503  
1504  		/* not suitable, cancel it */
1505  		resize_hpt_release(kvm, resize);
1506  	}
1507  
1508  	ret = 0;
1509  	if (!shift)
1510  		goto out; /* nothing to do */
1511  
1512  	/* start new resize */
1513  
1514  	resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1515  	if (!resize) {
1516  		ret = -ENOMEM;
1517  		goto out;
1518  	}
1519  
1520  	resize->error = -EBUSY;
1521  	resize->order = shift;
1522  	resize->kvm = kvm;
1523  	INIT_WORK(&resize->work, resize_hpt_prepare_work);
1524  	kvm->arch.resize_hpt = resize;
1525  
1526  	schedule_work(&resize->work);
1527  
1528  	ret = 100; /* estimated time in ms */
1529  
1530  out:
1531  	mutex_unlock(&kvm->arch.mmu_setup_lock);
1532  	return ret;
1533  }
1534  
resize_hpt_boot_vcpu(void * opaque)1535  static void resize_hpt_boot_vcpu(void *opaque)
1536  {
1537  	/* Nothing to do, just force a KVM exit */
1538  }
1539  
kvm_vm_ioctl_resize_hpt_commit(struct kvm * kvm,struct kvm_ppc_resize_hpt * rhpt)1540  int kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1541  				   struct kvm_ppc_resize_hpt *rhpt)
1542  {
1543  	unsigned long flags = rhpt->flags;
1544  	unsigned long shift = rhpt->shift;
1545  	struct kvm_resize_hpt *resize;
1546  	int ret;
1547  
1548  	if (flags != 0 || kvm_is_radix(kvm))
1549  		return -EINVAL;
1550  
1551  	if (shift && ((shift < 18) || (shift > 46)))
1552  		return -EINVAL;
1553  
1554  	mutex_lock(&kvm->arch.mmu_setup_lock);
1555  
1556  	resize = kvm->arch.resize_hpt;
1557  
1558  	/* This shouldn't be possible */
1559  	ret = -EIO;
1560  	if (WARN_ON(!kvm->arch.mmu_ready))
1561  		goto out_no_hpt;
1562  
1563  	/* Stop VCPUs from running while we mess with the HPT */
1564  	kvm->arch.mmu_ready = 0;
1565  	smp_mb();
1566  
1567  	/* Boot all CPUs out of the guest so they re-read
1568  	 * mmu_ready */
1569  	on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1570  
1571  	ret = -ENXIO;
1572  	if (!resize || (resize->order != shift))
1573  		goto out;
1574  
1575  	ret = resize->error;
1576  	if (ret)
1577  		goto out;
1578  
1579  	ret = resize_hpt_rehash(resize);
1580  	if (ret)
1581  		goto out;
1582  
1583  	resize_hpt_pivot(resize);
1584  
1585  out:
1586  	/* Let VCPUs run again */
1587  	kvm->arch.mmu_ready = 1;
1588  	smp_mb();
1589  out_no_hpt:
1590  	resize_hpt_release(kvm, resize);
1591  	mutex_unlock(&kvm->arch.mmu_setup_lock);
1592  	return ret;
1593  }
1594  
1595  /*
1596   * Functions for reading and writing the hash table via reads and
1597   * writes on a file descriptor.
1598   *
1599   * Reads return the guest view of the hash table, which has to be
1600   * pieced together from the real hash table and the guest_rpte
1601   * values in the revmap array.
1602   *
1603   * On writes, each HPTE written is considered in turn, and if it
1604   * is valid, it is written to the HPT as if an H_ENTER with the
1605   * exact flag set was done.  When the invalid count is non-zero
1606   * in the header written to the stream, the kernel will make
1607   * sure that that many HPTEs are invalid, and invalidate them
1608   * if not.
1609   */
1610  
1611  struct kvm_htab_ctx {
1612  	unsigned long	index;
1613  	unsigned long	flags;
1614  	struct kvm	*kvm;
1615  	int		first_pass;
1616  };
1617  
1618  #define HPTE_SIZE	(2 * sizeof(unsigned long))
1619  
1620  /*
1621   * Returns 1 if this HPT entry has been modified or has pending
1622   * R/C bit changes.
1623   */
hpte_dirty(struct revmap_entry * revp,__be64 * hptp)1624  static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1625  {
1626  	unsigned long rcbits_unset;
1627  
1628  	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1629  		return 1;
1630  
1631  	/* Also need to consider changes in reference and changed bits */
1632  	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1633  	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1634  	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1635  		return 1;
1636  
1637  	return 0;
1638  }
1639  
record_hpte(unsigned long flags,__be64 * hptp,unsigned long * hpte,struct revmap_entry * revp,int want_valid,int first_pass)1640  static long record_hpte(unsigned long flags, __be64 *hptp,
1641  			unsigned long *hpte, struct revmap_entry *revp,
1642  			int want_valid, int first_pass)
1643  {
1644  	unsigned long v, r, hr;
1645  	unsigned long rcbits_unset;
1646  	int ok = 1;
1647  	int valid, dirty;
1648  
1649  	/* Unmodified entries are uninteresting except on the first pass */
1650  	dirty = hpte_dirty(revp, hptp);
1651  	if (!first_pass && !dirty)
1652  		return 0;
1653  
1654  	valid = 0;
1655  	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1656  		valid = 1;
1657  		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1658  		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1659  			valid = 0;
1660  	}
1661  	if (valid != want_valid)
1662  		return 0;
1663  
1664  	v = r = 0;
1665  	if (valid || dirty) {
1666  		/* lock the HPTE so it's stable and read it */
1667  		preempt_disable();
1668  		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1669  			cpu_relax();
1670  		v = be64_to_cpu(hptp[0]);
1671  		hr = be64_to_cpu(hptp[1]);
1672  		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1673  			v = hpte_new_to_old_v(v, hr);
1674  			hr = hpte_new_to_old_r(hr);
1675  		}
1676  
1677  		/* re-evaluate valid and dirty from synchronized HPTE value */
1678  		valid = !!(v & HPTE_V_VALID);
1679  		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1680  
1681  		/* Harvest R and C into guest view if necessary */
1682  		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1683  		if (valid && (rcbits_unset & hr)) {
1684  			revp->guest_rpte |= (hr &
1685  				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1686  			dirty = 1;
1687  		}
1688  
1689  		if (v & HPTE_V_ABSENT) {
1690  			v &= ~HPTE_V_ABSENT;
1691  			v |= HPTE_V_VALID;
1692  			valid = 1;
1693  		}
1694  		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1695  			valid = 0;
1696  
1697  		r = revp->guest_rpte;
1698  		/* only clear modified if this is the right sort of entry */
1699  		if (valid == want_valid && dirty) {
1700  			r &= ~HPTE_GR_MODIFIED;
1701  			revp->guest_rpte = r;
1702  		}
1703  		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1704  		preempt_enable();
1705  		if (!(valid == want_valid && (first_pass || dirty)))
1706  			ok = 0;
1707  	}
1708  	hpte[0] = cpu_to_be64(v);
1709  	hpte[1] = cpu_to_be64(r);
1710  	return ok;
1711  }
1712  
kvm_htab_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1713  static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1714  			     size_t count, loff_t *ppos)
1715  {
1716  	struct kvm_htab_ctx *ctx = file->private_data;
1717  	struct kvm *kvm = ctx->kvm;
1718  	struct kvm_get_htab_header hdr;
1719  	__be64 *hptp;
1720  	struct revmap_entry *revp;
1721  	unsigned long i, nb, nw;
1722  	unsigned long __user *lbuf;
1723  	struct kvm_get_htab_header __user *hptr;
1724  	unsigned long flags;
1725  	int first_pass;
1726  	unsigned long hpte[2];
1727  
1728  	if (!access_ok(buf, count))
1729  		return -EFAULT;
1730  	if (kvm_is_radix(kvm))
1731  		return 0;
1732  
1733  	first_pass = ctx->first_pass;
1734  	flags = ctx->flags;
1735  
1736  	i = ctx->index;
1737  	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1738  	revp = kvm->arch.hpt.rev + i;
1739  	lbuf = (unsigned long __user *)buf;
1740  
1741  	nb = 0;
1742  	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1743  		/* Initialize header */
1744  		hptr = (struct kvm_get_htab_header __user *)buf;
1745  		hdr.n_valid = 0;
1746  		hdr.n_invalid = 0;
1747  		nw = nb;
1748  		nb += sizeof(hdr);
1749  		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1750  
1751  		/* Skip uninteresting entries, i.e. clean on not-first pass */
1752  		if (!first_pass) {
1753  			while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1754  			       !hpte_dirty(revp, hptp)) {
1755  				++i;
1756  				hptp += 2;
1757  				++revp;
1758  			}
1759  		}
1760  		hdr.index = i;
1761  
1762  		/* Grab a series of valid entries */
1763  		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1764  		       hdr.n_valid < 0xffff &&
1765  		       nb + HPTE_SIZE < count &&
1766  		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1767  			/* valid entry, write it out */
1768  			++hdr.n_valid;
1769  			if (__put_user(hpte[0], lbuf) ||
1770  			    __put_user(hpte[1], lbuf + 1))
1771  				return -EFAULT;
1772  			nb += HPTE_SIZE;
1773  			lbuf += 2;
1774  			++i;
1775  			hptp += 2;
1776  			++revp;
1777  		}
1778  		/* Now skip invalid entries while we can */
1779  		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1780  		       hdr.n_invalid < 0xffff &&
1781  		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1782  			/* found an invalid entry */
1783  			++hdr.n_invalid;
1784  			++i;
1785  			hptp += 2;
1786  			++revp;
1787  		}
1788  
1789  		if (hdr.n_valid || hdr.n_invalid) {
1790  			/* write back the header */
1791  			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1792  				return -EFAULT;
1793  			nw = nb;
1794  			buf = (char __user *)lbuf;
1795  		} else {
1796  			nb = nw;
1797  		}
1798  
1799  		/* Check if we've wrapped around the hash table */
1800  		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1801  			i = 0;
1802  			ctx->first_pass = 0;
1803  			break;
1804  		}
1805  	}
1806  
1807  	ctx->index = i;
1808  
1809  	return nb;
1810  }
1811  
kvm_htab_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1812  static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1813  			      size_t count, loff_t *ppos)
1814  {
1815  	struct kvm_htab_ctx *ctx = file->private_data;
1816  	struct kvm *kvm = ctx->kvm;
1817  	struct kvm_get_htab_header hdr;
1818  	unsigned long i, j;
1819  	unsigned long v, r;
1820  	unsigned long __user *lbuf;
1821  	__be64 *hptp;
1822  	unsigned long tmp[2];
1823  	ssize_t nb;
1824  	long int err, ret;
1825  	int mmu_ready;
1826  	int pshift;
1827  
1828  	if (!access_ok(buf, count))
1829  		return -EFAULT;
1830  	if (kvm_is_radix(kvm))
1831  		return -EINVAL;
1832  
1833  	/* lock out vcpus from running while we're doing this */
1834  	mutex_lock(&kvm->arch.mmu_setup_lock);
1835  	mmu_ready = kvm->arch.mmu_ready;
1836  	if (mmu_ready) {
1837  		kvm->arch.mmu_ready = 0;	/* temporarily */
1838  		/* order mmu_ready vs. vcpus_running */
1839  		smp_mb();
1840  		if (atomic_read(&kvm->arch.vcpus_running)) {
1841  			kvm->arch.mmu_ready = 1;
1842  			mutex_unlock(&kvm->arch.mmu_setup_lock);
1843  			return -EBUSY;
1844  		}
1845  	}
1846  
1847  	err = 0;
1848  	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1849  		err = -EFAULT;
1850  		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1851  			break;
1852  
1853  		err = 0;
1854  		if (nb + hdr.n_valid * HPTE_SIZE > count)
1855  			break;
1856  
1857  		nb += sizeof(hdr);
1858  		buf += sizeof(hdr);
1859  
1860  		err = -EINVAL;
1861  		i = hdr.index;
1862  		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1863  		    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1864  			break;
1865  
1866  		hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1867  		lbuf = (unsigned long __user *)buf;
1868  		for (j = 0; j < hdr.n_valid; ++j) {
1869  			__be64 hpte_v;
1870  			__be64 hpte_r;
1871  
1872  			err = -EFAULT;
1873  			if (__get_user(hpte_v, lbuf) ||
1874  			    __get_user(hpte_r, lbuf + 1))
1875  				goto out;
1876  			v = be64_to_cpu(hpte_v);
1877  			r = be64_to_cpu(hpte_r);
1878  			err = -EINVAL;
1879  			if (!(v & HPTE_V_VALID))
1880  				goto out;
1881  			pshift = kvmppc_hpte_base_page_shift(v, r);
1882  			if (pshift <= 0)
1883  				goto out;
1884  			lbuf += 2;
1885  			nb += HPTE_SIZE;
1886  
1887  			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1888  				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1889  			err = -EIO;
1890  			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1891  							 tmp);
1892  			if (ret != H_SUCCESS) {
1893  				pr_err("%s ret %ld i=%ld v=%lx r=%lx\n", __func__, ret, i, v, r);
1894  				goto out;
1895  			}
1896  			if (!mmu_ready && is_vrma_hpte(v)) {
1897  				unsigned long senc, lpcr;
1898  
1899  				senc = slb_pgsize_encoding(1ul << pshift);
1900  				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1901  					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1902  				if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1903  					lpcr = senc << (LPCR_VRMASD_SH - 4);
1904  					kvmppc_update_lpcr(kvm, lpcr,
1905  							   LPCR_VRMASD);
1906  				} else {
1907  					kvmppc_setup_partition_table(kvm);
1908  				}
1909  				mmu_ready = 1;
1910  			}
1911  			++i;
1912  			hptp += 2;
1913  		}
1914  
1915  		for (j = 0; j < hdr.n_invalid; ++j) {
1916  			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1917  				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1918  			++i;
1919  			hptp += 2;
1920  		}
1921  		err = 0;
1922  	}
1923  
1924   out:
1925  	/* Order HPTE updates vs. mmu_ready */
1926  	smp_wmb();
1927  	kvm->arch.mmu_ready = mmu_ready;
1928  	mutex_unlock(&kvm->arch.mmu_setup_lock);
1929  
1930  	if (err)
1931  		return err;
1932  	return nb;
1933  }
1934  
kvm_htab_release(struct inode * inode,struct file * filp)1935  static int kvm_htab_release(struct inode *inode, struct file *filp)
1936  {
1937  	struct kvm_htab_ctx *ctx = filp->private_data;
1938  
1939  	filp->private_data = NULL;
1940  	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1941  		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1942  	kvm_put_kvm(ctx->kvm);
1943  	kfree(ctx);
1944  	return 0;
1945  }
1946  
1947  static const struct file_operations kvm_htab_fops = {
1948  	.read		= kvm_htab_read,
1949  	.write		= kvm_htab_write,
1950  	.llseek		= default_llseek,
1951  	.release	= kvm_htab_release,
1952  };
1953  
kvm_vm_ioctl_get_htab_fd(struct kvm * kvm,struct kvm_get_htab_fd * ghf)1954  int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1955  {
1956  	int ret;
1957  	struct kvm_htab_ctx *ctx;
1958  	int rwflag;
1959  
1960  	/* reject flags we don't recognize */
1961  	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1962  		return -EINVAL;
1963  	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1964  	if (!ctx)
1965  		return -ENOMEM;
1966  	kvm_get_kvm(kvm);
1967  	ctx->kvm = kvm;
1968  	ctx->index = ghf->start_index;
1969  	ctx->flags = ghf->flags;
1970  	ctx->first_pass = 1;
1971  
1972  	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1973  	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1974  	if (ret < 0) {
1975  		kfree(ctx);
1976  		kvm_put_kvm_no_destroy(kvm);
1977  		return ret;
1978  	}
1979  
1980  	if (rwflag == O_RDONLY) {
1981  		mutex_lock(&kvm->slots_lock);
1982  		atomic_inc(&kvm->arch.hpte_mod_interest);
1983  		/* make sure kvmppc_do_h_enter etc. see the increment */
1984  		synchronize_srcu_expedited(&kvm->srcu);
1985  		mutex_unlock(&kvm->slots_lock);
1986  	}
1987  
1988  	return ret;
1989  }
1990  
1991  struct debugfs_htab_state {
1992  	struct kvm	*kvm;
1993  	struct mutex	mutex;
1994  	unsigned long	hpt_index;
1995  	int		chars_left;
1996  	int		buf_index;
1997  	char		buf[64];
1998  };
1999  
debugfs_htab_open(struct inode * inode,struct file * file)2000  static int debugfs_htab_open(struct inode *inode, struct file *file)
2001  {
2002  	struct kvm *kvm = inode->i_private;
2003  	struct debugfs_htab_state *p;
2004  
2005  	p = kzalloc(sizeof(*p), GFP_KERNEL);
2006  	if (!p)
2007  		return -ENOMEM;
2008  
2009  	kvm_get_kvm(kvm);
2010  	p->kvm = kvm;
2011  	mutex_init(&p->mutex);
2012  	file->private_data = p;
2013  
2014  	return nonseekable_open(inode, file);
2015  }
2016  
debugfs_htab_release(struct inode * inode,struct file * file)2017  static int debugfs_htab_release(struct inode *inode, struct file *file)
2018  {
2019  	struct debugfs_htab_state *p = file->private_data;
2020  
2021  	kvm_put_kvm(p->kvm);
2022  	kfree(p);
2023  	return 0;
2024  }
2025  
debugfs_htab_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)2026  static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2027  				 size_t len, loff_t *ppos)
2028  {
2029  	struct debugfs_htab_state *p = file->private_data;
2030  	ssize_t ret, r;
2031  	unsigned long i, n;
2032  	unsigned long v, hr, gr;
2033  	struct kvm *kvm;
2034  	__be64 *hptp;
2035  
2036  	kvm = p->kvm;
2037  	if (kvm_is_radix(kvm))
2038  		return 0;
2039  
2040  	ret = mutex_lock_interruptible(&p->mutex);
2041  	if (ret)
2042  		return ret;
2043  
2044  	if (p->chars_left) {
2045  		n = p->chars_left;
2046  		if (n > len)
2047  			n = len;
2048  		r = copy_to_user(buf, p->buf + p->buf_index, n);
2049  		n -= r;
2050  		p->chars_left -= n;
2051  		p->buf_index += n;
2052  		buf += n;
2053  		len -= n;
2054  		ret = n;
2055  		if (r) {
2056  			if (!n)
2057  				ret = -EFAULT;
2058  			goto out;
2059  		}
2060  	}
2061  
2062  	i = p->hpt_index;
2063  	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2064  	for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2065  	     ++i, hptp += 2) {
2066  		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2067  			continue;
2068  
2069  		/* lock the HPTE so it's stable and read it */
2070  		preempt_disable();
2071  		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2072  			cpu_relax();
2073  		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2074  		hr = be64_to_cpu(hptp[1]);
2075  		gr = kvm->arch.hpt.rev[i].guest_rpte;
2076  		unlock_hpte(hptp, v);
2077  		preempt_enable();
2078  
2079  		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2080  			continue;
2081  
2082  		n = scnprintf(p->buf, sizeof(p->buf),
2083  			      "%6lx %.16lx %.16lx %.16lx\n",
2084  			      i, v, hr, gr);
2085  		p->chars_left = n;
2086  		if (n > len)
2087  			n = len;
2088  		r = copy_to_user(buf, p->buf, n);
2089  		n -= r;
2090  		p->chars_left -= n;
2091  		p->buf_index = n;
2092  		buf += n;
2093  		len -= n;
2094  		ret += n;
2095  		if (r) {
2096  			if (!ret)
2097  				ret = -EFAULT;
2098  			goto out;
2099  		}
2100  	}
2101  	p->hpt_index = i;
2102  
2103   out:
2104  	mutex_unlock(&p->mutex);
2105  	return ret;
2106  }
2107  
debugfs_htab_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)2108  static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2109  			   size_t len, loff_t *ppos)
2110  {
2111  	return -EACCES;
2112  }
2113  
2114  static const struct file_operations debugfs_htab_fops = {
2115  	.owner	 = THIS_MODULE,
2116  	.open	 = debugfs_htab_open,
2117  	.release = debugfs_htab_release,
2118  	.read	 = debugfs_htab_read,
2119  	.write	 = debugfs_htab_write,
2120  	.llseek	 = generic_file_llseek,
2121  };
2122  
kvmppc_mmu_debugfs_init(struct kvm * kvm)2123  void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2124  {
2125  	debugfs_create_file("htab", 0400, kvm->debugfs_dentry, kvm,
2126  			    &debugfs_htab_fops);
2127  }
2128  
kvmppc_mmu_book3s_hv_init(struct kvm_vcpu * vcpu)2129  void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2130  {
2131  	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2132  
2133  	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
2134  
2135  	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2136  
2137  	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2138  }
2139