1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  */
5 
6 #include <linux/cpu.h>
7 #include <linux/kvm_host.h>
8 #include <linux/preempt.h>
9 #include <linux/export.h>
10 #include <linux/sched.h>
11 #include <linux/spinlock.h>
12 #include <linux/init.h>
13 #include <linux/memblock.h>
14 #include <linux/sizes.h>
15 #include <linux/cma.h>
16 #include <linux/bitops.h>
17 
18 #include <asm/cputable.h>
19 #include <asm/interrupt.h>
20 #include <asm/kvm_ppc.h>
21 #include <asm/kvm_book3s.h>
22 #include <asm/machdep.h>
23 #include <asm/xics.h>
24 #include <asm/xive.h>
25 #include <asm/dbell.h>
26 #include <asm/cputhreads.h>
27 #include <asm/io.h>
28 #include <asm/opal.h>
29 #include <asm/smp.h>
30 
31 #define KVM_CMA_CHUNK_ORDER	18
32 
33 #include "book3s_xics.h"
34 #include "book3s_xive.h"
35 #include "book3s_hv.h"
36 
37 /*
38  * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
39  * should be power of 2.
40  */
41 #define HPT_ALIGN_PAGES		((1 << 18) >> PAGE_SHIFT) /* 256k */
42 /*
43  * By default we reserve 5% of memory for hash pagetable allocation.
44  */
45 static unsigned long kvm_cma_resv_ratio = 5;
46 
47 static struct cma *kvm_cma;
48 
early_parse_kvm_cma_resv(char * p)49 static int __init early_parse_kvm_cma_resv(char *p)
50 {
51 	pr_debug("%s(%s)\n", __func__, p);
52 	if (!p)
53 		return -EINVAL;
54 	return kstrtoul(p, 0, &kvm_cma_resv_ratio);
55 }
56 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
57 
kvm_alloc_hpt_cma(unsigned long nr_pages)58 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
59 {
60 	VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
61 
62 	return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
63 			 false);
64 }
65 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
66 
kvm_free_hpt_cma(struct page * page,unsigned long nr_pages)67 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
68 {
69 	cma_release(kvm_cma, page, nr_pages);
70 }
71 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
72 
73 /**
74  * kvm_cma_reserve() - reserve area for kvm hash pagetable
75  *
76  * This function reserves memory from early allocator. It should be
77  * called by arch specific code once the memblock allocator
78  * has been activated and all other subsystems have already allocated/reserved
79  * memory.
80  */
kvm_cma_reserve(void)81 void __init kvm_cma_reserve(void)
82 {
83 	unsigned long align_size;
84 	phys_addr_t selected_size;
85 
86 	/*
87 	 * We need CMA reservation only when we are in HV mode
88 	 */
89 	if (!cpu_has_feature(CPU_FTR_HVMODE))
90 		return;
91 
92 	selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100);
93 	if (selected_size) {
94 		pr_info("%s: reserving %ld MiB for global area\n", __func__,
95 			 (unsigned long)selected_size / SZ_1M);
96 		align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
97 		cma_declare_contiguous(0, selected_size, 0, align_size,
98 			KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
99 			&kvm_cma);
100 	}
101 }
102 
103 /*
104  * Real-mode H_CONFER implementation.
105  * We check if we are the only vcpu out of this virtual core
106  * still running in the guest and not ceded.  If so, we pop up
107  * to the virtual-mode implementation; if not, just return to
108  * the guest.
109  */
kvmppc_rm_h_confer(struct kvm_vcpu * vcpu,int target,unsigned int yield_count)110 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
111 			    unsigned int yield_count)
112 {
113 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
114 	int ptid = local_paca->kvm_hstate.ptid;
115 	int threads_running;
116 	int threads_ceded;
117 	int threads_conferring;
118 	u64 stop = get_tb() + 10 * tb_ticks_per_usec;
119 	int rv = H_SUCCESS; /* => don't yield */
120 
121 	set_bit(ptid, &vc->conferring_threads);
122 	while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
123 		threads_running = VCORE_ENTRY_MAP(vc);
124 		threads_ceded = vc->napping_threads;
125 		threads_conferring = vc->conferring_threads;
126 		if ((threads_ceded | threads_conferring) == threads_running) {
127 			rv = H_TOO_HARD; /* => do yield */
128 			break;
129 		}
130 	}
131 	clear_bit(ptid, &vc->conferring_threads);
132 	return rv;
133 }
134 
135 /*
136  * When running HV mode KVM we need to block certain operations while KVM VMs
137  * exist in the system. We use a counter of VMs to track this.
138  *
139  * One of the operations we need to block is onlining of secondaries, so we
140  * protect hv_vm_count with cpus_read_lock/unlock().
141  */
142 static atomic_t hv_vm_count;
143 
kvm_hv_vm_activated(void)144 void kvm_hv_vm_activated(void)
145 {
146 	cpus_read_lock();
147 	atomic_inc(&hv_vm_count);
148 	cpus_read_unlock();
149 }
150 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
151 
kvm_hv_vm_deactivated(void)152 void kvm_hv_vm_deactivated(void)
153 {
154 	cpus_read_lock();
155 	atomic_dec(&hv_vm_count);
156 	cpus_read_unlock();
157 }
158 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
159 
kvm_hv_mode_active(void)160 bool kvm_hv_mode_active(void)
161 {
162 	return atomic_read(&hv_vm_count) != 0;
163 }
164 
165 extern int hcall_real_table[], hcall_real_table_end[];
166 
kvmppc_hcall_impl_hv_realmode(unsigned long cmd)167 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
168 {
169 	cmd /= 4;
170 	if (cmd < hcall_real_table_end - hcall_real_table &&
171 	    hcall_real_table[cmd])
172 		return 1;
173 
174 	return 0;
175 }
176 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
177 
kvmppc_hwrng_present(void)178 int kvmppc_hwrng_present(void)
179 {
180 	return ppc_md.get_random_seed != NULL;
181 }
182 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
183 
kvmppc_rm_h_random(struct kvm_vcpu * vcpu)184 long kvmppc_rm_h_random(struct kvm_vcpu *vcpu)
185 {
186 	unsigned long rand;
187 
188 	if (ppc_md.get_random_seed &&
189 	    ppc_md.get_random_seed(&rand)) {
190 		kvmppc_set_gpr(vcpu, 4, rand);
191 		return H_SUCCESS;
192 	}
193 
194 	return H_HARDWARE;
195 }
196 
197 /*
198  * Send an interrupt or message to another CPU.
199  * The caller needs to include any barrier needed to order writes
200  * to memory vs. the IPI/message.
201  */
kvmhv_rm_send_ipi(int cpu)202 void kvmhv_rm_send_ipi(int cpu)
203 {
204 	void __iomem *xics_phys;
205 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
206 
207 	/* On POWER9 we can use msgsnd for any destination cpu. */
208 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
209 		msg |= get_hard_smp_processor_id(cpu);
210 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
211 		return;
212 	}
213 
214 	/* On POWER8 for IPIs to threads in the same core, use msgsnd. */
215 	if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
216 	    cpu_first_thread_sibling(cpu) ==
217 	    cpu_first_thread_sibling(raw_smp_processor_id())) {
218 		msg |= cpu_thread_in_core(cpu);
219 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
220 		return;
221 	}
222 
223 	/* We should never reach this */
224 	if (WARN_ON_ONCE(xics_on_xive()))
225 	    return;
226 
227 	/* Else poke the target with an IPI */
228 	xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys;
229 	if (xics_phys)
230 		__raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
231 	else
232 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
233 }
234 
235 /*
236  * The following functions are called from the assembly code
237  * in book3s_hv_rmhandlers.S.
238  */
kvmhv_interrupt_vcore(struct kvmppc_vcore * vc,int active)239 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
240 {
241 	int cpu = vc->pcpu;
242 
243 	/* Order setting of exit map vs. msgsnd/IPI */
244 	smp_mb();
245 	for (; active; active >>= 1, ++cpu)
246 		if (active & 1)
247 			kvmhv_rm_send_ipi(cpu);
248 }
249 
kvmhv_commence_exit(int trap)250 void kvmhv_commence_exit(int trap)
251 {
252 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
253 	int ptid = local_paca->kvm_hstate.ptid;
254 	struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
255 	int me, ee, i;
256 
257 	/* Set our bit in the threads-exiting-guest map in the 0xff00
258 	   bits of vcore->entry_exit_map */
259 	me = 0x100 << ptid;
260 	do {
261 		ee = vc->entry_exit_map;
262 	} while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
263 
264 	/* Are we the first here? */
265 	if ((ee >> 8) != 0)
266 		return;
267 
268 	/*
269 	 * Trigger the other threads in this vcore to exit the guest.
270 	 * If this is a hypervisor decrementer interrupt then they
271 	 * will be already on their way out of the guest.
272 	 */
273 	if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
274 		kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
275 
276 	/*
277 	 * If we are doing dynamic micro-threading, interrupt the other
278 	 * subcores to pull them out of their guests too.
279 	 */
280 	if (!sip)
281 		return;
282 
283 	for (i = 0; i < MAX_SUBCORES; ++i) {
284 		vc = sip->vc[i];
285 		if (!vc)
286 			break;
287 		do {
288 			ee = vc->entry_exit_map;
289 			/* Already asked to exit? */
290 			if ((ee >> 8) != 0)
291 				break;
292 		} while (cmpxchg(&vc->entry_exit_map, ee,
293 				 ee | VCORE_EXIT_REQ) != ee);
294 		if ((ee >> 8) == 0)
295 			kvmhv_interrupt_vcore(vc, ee);
296 	}
297 }
298 
299 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
300 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
301 
302 #ifdef CONFIG_KVM_XICS
get_irqmap(struct kvmppc_passthru_irqmap * pimap,u32 xisr)303 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
304 					 u32 xisr)
305 {
306 	int i;
307 
308 	/*
309 	 * We access the mapped array here without a lock.  That
310 	 * is safe because we never reduce the number of entries
311 	 * in the array and we never change the v_hwirq field of
312 	 * an entry once it is set.
313 	 *
314 	 * We have also carefully ordered the stores in the writer
315 	 * and the loads here in the reader, so that if we find a matching
316 	 * hwirq here, the associated GSI and irq_desc fields are valid.
317 	 */
318 	for (i = 0; i < pimap->n_mapped; i++)  {
319 		if (xisr == pimap->mapped[i].r_hwirq) {
320 			/*
321 			 * Order subsequent reads in the caller to serialize
322 			 * with the writer.
323 			 */
324 			smp_rmb();
325 			return &pimap->mapped[i];
326 		}
327 	}
328 	return NULL;
329 }
330 
331 /*
332  * If we have an interrupt that's not an IPI, check if we have a
333  * passthrough adapter and if so, check if this external interrupt
334  * is for the adapter.
335  * We will attempt to deliver the IRQ directly to the target VCPU's
336  * ICP, the virtual ICP (based on affinity - the xive value in ICS).
337  *
338  * If the delivery fails or if this is not for a passthrough adapter,
339  * return to the host to handle this interrupt. We earlier
340  * saved a copy of the XIRR in the PACA, it will be picked up by
341  * the host ICP driver.
342  */
kvmppc_check_passthru(u32 xisr,__be32 xirr,bool * again)343 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
344 {
345 	struct kvmppc_passthru_irqmap *pimap;
346 	struct kvmppc_irq_map *irq_map;
347 	struct kvm_vcpu *vcpu;
348 
349 	vcpu = local_paca->kvm_hstate.kvm_vcpu;
350 	if (!vcpu)
351 		return 1;
352 	pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
353 	if (!pimap)
354 		return 1;
355 	irq_map = get_irqmap(pimap, xisr);
356 	if (!irq_map)
357 		return 1;
358 
359 	/* We're handling this interrupt, generic code doesn't need to */
360 	local_paca->kvm_hstate.saved_xirr = 0;
361 
362 	return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
363 }
364 
365 #else
kvmppc_check_passthru(u32 xisr,__be32 xirr,bool * again)366 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
367 {
368 	return 1;
369 }
370 #endif
371 
372 /*
373  * Determine what sort of external interrupt is pending (if any).
374  * Returns:
375  *	0 if no interrupt is pending
376  *	1 if an interrupt is pending that needs to be handled by the host
377  *	2 Passthrough that needs completion in the host
378  *	-1 if there was a guest wakeup IPI (which has now been cleared)
379  *	-2 if there is PCI passthrough external interrupt that was handled
380  */
381 static long kvmppc_read_one_intr(bool *again);
382 
kvmppc_read_intr(void)383 long kvmppc_read_intr(void)
384 {
385 	long ret = 0;
386 	long rc;
387 	bool again;
388 
389 	if (xive_enabled())
390 		return 1;
391 
392 	do {
393 		again = false;
394 		rc = kvmppc_read_one_intr(&again);
395 		if (rc && (ret == 0 || rc > ret))
396 			ret = rc;
397 	} while (again);
398 	return ret;
399 }
400 
kvmppc_read_one_intr(bool * again)401 static long kvmppc_read_one_intr(bool *again)
402 {
403 	void __iomem *xics_phys;
404 	u32 h_xirr;
405 	__be32 xirr;
406 	u32 xisr;
407 	u8 host_ipi;
408 	int64_t rc;
409 
410 	if (xive_enabled())
411 		return 1;
412 
413 	/* see if a host IPI is pending */
414 	host_ipi = READ_ONCE(local_paca->kvm_hstate.host_ipi);
415 	if (host_ipi)
416 		return 1;
417 
418 	/* Now read the interrupt from the ICP */
419 	xics_phys = local_paca->kvm_hstate.xics_phys;
420 	rc = 0;
421 	if (!xics_phys)
422 		rc = opal_int_get_xirr(&xirr, false);
423 	else
424 		xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
425 	if (rc < 0)
426 		return 1;
427 
428 	/*
429 	 * Save XIRR for later. Since we get control in reverse endian
430 	 * on LE systems, save it byte reversed and fetch it back in
431 	 * host endian. Note that xirr is the value read from the
432 	 * XIRR register, while h_xirr is the host endian version.
433 	 */
434 	h_xirr = be32_to_cpu(xirr);
435 	local_paca->kvm_hstate.saved_xirr = h_xirr;
436 	xisr = h_xirr & 0xffffff;
437 	/*
438 	 * Ensure that the store/load complete to guarantee all side
439 	 * effects of loading from XIRR has completed
440 	 */
441 	smp_mb();
442 
443 	/* if nothing pending in the ICP */
444 	if (!xisr)
445 		return 0;
446 
447 	/* We found something in the ICP...
448 	 *
449 	 * If it is an IPI, clear the MFRR and EOI it.
450 	 */
451 	if (xisr == XICS_IPI) {
452 		rc = 0;
453 		if (xics_phys) {
454 			__raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
455 			__raw_rm_writel(xirr, xics_phys + XICS_XIRR);
456 		} else {
457 			opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
458 			rc = opal_int_eoi(h_xirr);
459 		}
460 		/* If rc > 0, there is another interrupt pending */
461 		*again = rc > 0;
462 
463 		/*
464 		 * Need to ensure side effects of above stores
465 		 * complete before proceeding.
466 		 */
467 		smp_mb();
468 
469 		/*
470 		 * We need to re-check host IPI now in case it got set in the
471 		 * meantime. If it's clear, we bounce the interrupt to the
472 		 * guest
473 		 */
474 		host_ipi = READ_ONCE(local_paca->kvm_hstate.host_ipi);
475 		if (unlikely(host_ipi != 0)) {
476 			/* We raced with the host,
477 			 * we need to resend that IPI, bummer
478 			 */
479 			if (xics_phys)
480 				__raw_rm_writeb(IPI_PRIORITY,
481 						xics_phys + XICS_MFRR);
482 			else
483 				opal_int_set_mfrr(hard_smp_processor_id(),
484 						  IPI_PRIORITY);
485 			/* Let side effects complete */
486 			smp_mb();
487 			return 1;
488 		}
489 
490 		/* OK, it's an IPI for us */
491 		local_paca->kvm_hstate.saved_xirr = 0;
492 		return -1;
493 	}
494 
495 	return kvmppc_check_passthru(xisr, xirr, again);
496 }
497 
kvmppc_end_cede(struct kvm_vcpu * vcpu)498 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
499 {
500 	vcpu->arch.ceded = 0;
501 	if (vcpu->arch.timer_running) {
502 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
503 		vcpu->arch.timer_running = 0;
504 	}
505 }
506 
kvmppc_set_msr_hv(struct kvm_vcpu * vcpu,u64 msr)507 void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
508 {
509 	/* Guest must always run with ME enabled, HV disabled. */
510 	msr = (msr | MSR_ME) & ~MSR_HV;
511 
512 	/*
513 	 * Check for illegal transactional state bit combination
514 	 * and if we find it, force the TS field to a safe state.
515 	 */
516 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
517 		msr &= ~MSR_TS_MASK;
518 	__kvmppc_set_msr_hv(vcpu, msr);
519 	kvmppc_end_cede(vcpu);
520 }
521 EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv);
522 
inject_interrupt(struct kvm_vcpu * vcpu,int vec,u64 srr1_flags)523 static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
524 {
525 	unsigned long msr, pc, new_msr, new_pc;
526 
527 	msr = kvmppc_get_msr(vcpu);
528 	pc = kvmppc_get_pc(vcpu);
529 	new_msr = vcpu->arch.intr_msr;
530 	new_pc = vec;
531 
532 	/* If transactional, change to suspend mode on IRQ delivery */
533 	if (MSR_TM_TRANSACTIONAL(msr))
534 		new_msr |= MSR_TS_S;
535 	else
536 		new_msr |= msr & MSR_TS_MASK;
537 
538 	/*
539 	 * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and
540 	 * applicable. AIL=2 is not supported.
541 	 *
542 	 * AIL does not apply to SRESET, MCE, or HMI (which is never
543 	 * delivered to the guest), and does not apply if IR=0 or DR=0.
544 	 */
545 	if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET &&
546 	    vec != BOOK3S_INTERRUPT_MACHINE_CHECK &&
547 	    (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 &&
548 	    (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) {
549 		new_msr |= MSR_IR | MSR_DR;
550 		new_pc += 0xC000000000004000ULL;
551 	}
552 
553 	kvmppc_set_srr0(vcpu, pc);
554 	kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
555 	kvmppc_set_pc(vcpu, new_pc);
556 	__kvmppc_set_msr_hv(vcpu, new_msr);
557 }
558 
kvmppc_inject_interrupt_hv(struct kvm_vcpu * vcpu,int vec,u64 srr1_flags)559 void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
560 {
561 	inject_interrupt(vcpu, vec, srr1_flags);
562 	kvmppc_end_cede(vcpu);
563 }
564 EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv);
565 
566 /*
567  * Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
568  * Can we inject a Decrementer or a External interrupt?
569  */
kvmppc_guest_entry_inject_int(struct kvm_vcpu * vcpu)570 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
571 {
572 	int ext;
573 	unsigned long lpcr;
574 
575 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
576 
577 	/* Insert EXTERNAL bit into LPCR at the MER bit position */
578 	ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
579 	lpcr = mfspr(SPRN_LPCR);
580 	lpcr |= ext << LPCR_MER_SH;
581 	mtspr(SPRN_LPCR, lpcr);
582 	isync();
583 
584 	if (vcpu->arch.shregs.msr & MSR_EE) {
585 		if (ext) {
586 			inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0);
587 		} else {
588 			long int dec = mfspr(SPRN_DEC);
589 			if (!(lpcr & LPCR_LD))
590 				dec = (int) dec;
591 			if (dec < 0)
592 				inject_interrupt(vcpu,
593 					BOOK3S_INTERRUPT_DECREMENTER, 0);
594 		}
595 	}
596 
597 	if (vcpu->arch.doorbell_request) {
598 		mtspr(SPRN_DPDES, 1);
599 		vcpu->arch.vcore->dpdes = 1;
600 		smp_wmb();
601 		vcpu->arch.doorbell_request = 0;
602 	}
603 }
604 
flush_guest_tlb(struct kvm * kvm)605 static void flush_guest_tlb(struct kvm *kvm)
606 {
607 	unsigned long rb, set;
608 
609 	rb = PPC_BIT(52);	/* IS = 2 */
610 	for (set = 0; set < kvm->arch.tlb_sets; ++set) {
611 		/* R=0 PRS=0 RIC=0 */
612 		asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
613 			     : : "r" (rb), "i" (0), "i" (0), "i" (0),
614 			       "r" (0) : "memory");
615 		rb += PPC_BIT(51);	/* increment set number */
616 	}
617 	asm volatile("ptesync": : :"memory");
618 }
619 
kvmppc_check_need_tlb_flush(struct kvm * kvm,int pcpu)620 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu)
621 {
622 	if (cpumask_test_cpu(pcpu, &kvm->arch.need_tlb_flush)) {
623 		flush_guest_tlb(kvm);
624 
625 		/* Clear the bit after the TLB flush */
626 		cpumask_clear_cpu(pcpu, &kvm->arch.need_tlb_flush);
627 	}
628 }
629 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush);
630