1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright IBM Corporation, 2018
4   * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
5   *	   Paul Mackerras <paulus@ozlabs.org>
6   *
7   * Description: KVM functions specific to running nested KVM-HV guests
8   * on Book3S processors (specifically POWER9 and later).
9   */
10  
11  #include <linux/kernel.h>
12  #include <linux/kvm_host.h>
13  #include <linux/llist.h>
14  #include <linux/pgtable.h>
15  
16  #include <asm/kvm_ppc.h>
17  #include <asm/kvm_book3s.h>
18  #include <asm/mmu.h>
19  #include <asm/pgalloc.h>
20  #include <asm/pte-walk.h>
21  #include <asm/reg.h>
22  #include <asm/plpar_wrappers.h>
23  #include <asm/firmware.h>
24  
25  static struct patb_entry *pseries_partition_tb;
26  
27  static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
28  static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
29  
kvmhv_save_hv_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)30  void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
31  {
32  	struct kvmppc_vcore *vc = vcpu->arch.vcore;
33  
34  	hr->pcr = vc->pcr | PCR_MASK;
35  	hr->dpdes = vc->dpdes;
36  	hr->hfscr = vcpu->arch.hfscr;
37  	hr->tb_offset = vc->tb_offset;
38  	hr->dawr0 = vcpu->arch.dawr0;
39  	hr->dawrx0 = vcpu->arch.dawrx0;
40  	hr->ciabr = vcpu->arch.ciabr;
41  	hr->purr = vcpu->arch.purr;
42  	hr->spurr = vcpu->arch.spurr;
43  	hr->ic = vcpu->arch.ic;
44  	hr->vtb = vc->vtb;
45  	hr->srr0 = vcpu->arch.shregs.srr0;
46  	hr->srr1 = vcpu->arch.shregs.srr1;
47  	hr->sprg[0] = vcpu->arch.shregs.sprg0;
48  	hr->sprg[1] = vcpu->arch.shregs.sprg1;
49  	hr->sprg[2] = vcpu->arch.shregs.sprg2;
50  	hr->sprg[3] = vcpu->arch.shregs.sprg3;
51  	hr->pidr = vcpu->arch.pid;
52  	hr->cfar = vcpu->arch.cfar;
53  	hr->ppr = vcpu->arch.ppr;
54  	hr->dawr1 = vcpu->arch.dawr1;
55  	hr->dawrx1 = vcpu->arch.dawrx1;
56  }
57  
58  /* Use noinline_for_stack due to https://llvm.org/pr49610 */
byteswap_pt_regs(struct pt_regs * regs)59  static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs)
60  {
61  	unsigned long *addr = (unsigned long *) regs;
62  
63  	for (; addr < ((unsigned long *) (regs + 1)); addr++)
64  		*addr = swab64(*addr);
65  }
66  
byteswap_hv_regs(struct hv_guest_state * hr)67  static void byteswap_hv_regs(struct hv_guest_state *hr)
68  {
69  	hr->version = swab64(hr->version);
70  	hr->lpid = swab32(hr->lpid);
71  	hr->vcpu_token = swab32(hr->vcpu_token);
72  	hr->lpcr = swab64(hr->lpcr);
73  	hr->pcr = swab64(hr->pcr) | PCR_MASK;
74  	hr->amor = swab64(hr->amor);
75  	hr->dpdes = swab64(hr->dpdes);
76  	hr->hfscr = swab64(hr->hfscr);
77  	hr->tb_offset = swab64(hr->tb_offset);
78  	hr->dawr0 = swab64(hr->dawr0);
79  	hr->dawrx0 = swab64(hr->dawrx0);
80  	hr->ciabr = swab64(hr->ciabr);
81  	hr->hdec_expiry = swab64(hr->hdec_expiry);
82  	hr->purr = swab64(hr->purr);
83  	hr->spurr = swab64(hr->spurr);
84  	hr->ic = swab64(hr->ic);
85  	hr->vtb = swab64(hr->vtb);
86  	hr->hdar = swab64(hr->hdar);
87  	hr->hdsisr = swab64(hr->hdsisr);
88  	hr->heir = swab64(hr->heir);
89  	hr->asdr = swab64(hr->asdr);
90  	hr->srr0 = swab64(hr->srr0);
91  	hr->srr1 = swab64(hr->srr1);
92  	hr->sprg[0] = swab64(hr->sprg[0]);
93  	hr->sprg[1] = swab64(hr->sprg[1]);
94  	hr->sprg[2] = swab64(hr->sprg[2]);
95  	hr->sprg[3] = swab64(hr->sprg[3]);
96  	hr->pidr = swab64(hr->pidr);
97  	hr->cfar = swab64(hr->cfar);
98  	hr->ppr = swab64(hr->ppr);
99  	hr->dawr1 = swab64(hr->dawr1);
100  	hr->dawrx1 = swab64(hr->dawrx1);
101  }
102  
save_hv_return_state(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)103  static void save_hv_return_state(struct kvm_vcpu *vcpu,
104  				 struct hv_guest_state *hr)
105  {
106  	struct kvmppc_vcore *vc = vcpu->arch.vcore;
107  
108  	hr->dpdes = vc->dpdes;
109  	hr->purr = vcpu->arch.purr;
110  	hr->spurr = vcpu->arch.spurr;
111  	hr->ic = vcpu->arch.ic;
112  	hr->vtb = vc->vtb;
113  	hr->srr0 = vcpu->arch.shregs.srr0;
114  	hr->srr1 = vcpu->arch.shregs.srr1;
115  	hr->sprg[0] = vcpu->arch.shregs.sprg0;
116  	hr->sprg[1] = vcpu->arch.shregs.sprg1;
117  	hr->sprg[2] = vcpu->arch.shregs.sprg2;
118  	hr->sprg[3] = vcpu->arch.shregs.sprg3;
119  	hr->pidr = vcpu->arch.pid;
120  	hr->cfar = vcpu->arch.cfar;
121  	hr->ppr = vcpu->arch.ppr;
122  	switch (vcpu->arch.trap) {
123  	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
124  		hr->hdar = vcpu->arch.fault_dar;
125  		hr->hdsisr = vcpu->arch.fault_dsisr;
126  		hr->asdr = vcpu->arch.fault_gpa;
127  		break;
128  	case BOOK3S_INTERRUPT_H_INST_STORAGE:
129  		hr->asdr = vcpu->arch.fault_gpa;
130  		break;
131  	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
132  		hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) |
133  			     (HFSCR_INTR_CAUSE & vcpu->arch.hfscr));
134  		break;
135  	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
136  		hr->heir = vcpu->arch.emul_inst;
137  		break;
138  	}
139  }
140  
restore_hv_regs(struct kvm_vcpu * vcpu,const struct hv_guest_state * hr)141  static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr)
142  {
143  	struct kvmppc_vcore *vc = vcpu->arch.vcore;
144  
145  	vc->pcr = hr->pcr | PCR_MASK;
146  	vc->dpdes = hr->dpdes;
147  	vcpu->arch.hfscr = hr->hfscr;
148  	vcpu->arch.dawr0 = hr->dawr0;
149  	vcpu->arch.dawrx0 = hr->dawrx0;
150  	vcpu->arch.ciabr = hr->ciabr;
151  	vcpu->arch.purr = hr->purr;
152  	vcpu->arch.spurr = hr->spurr;
153  	vcpu->arch.ic = hr->ic;
154  	vc->vtb = hr->vtb;
155  	vcpu->arch.shregs.srr0 = hr->srr0;
156  	vcpu->arch.shregs.srr1 = hr->srr1;
157  	vcpu->arch.shregs.sprg0 = hr->sprg[0];
158  	vcpu->arch.shregs.sprg1 = hr->sprg[1];
159  	vcpu->arch.shregs.sprg2 = hr->sprg[2];
160  	vcpu->arch.shregs.sprg3 = hr->sprg[3];
161  	vcpu->arch.pid = hr->pidr;
162  	vcpu->arch.cfar = hr->cfar;
163  	vcpu->arch.ppr = hr->ppr;
164  	vcpu->arch.dawr1 = hr->dawr1;
165  	vcpu->arch.dawrx1 = hr->dawrx1;
166  }
167  
kvmhv_restore_hv_return_state(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)168  void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
169  				   struct hv_guest_state *hr)
170  {
171  	struct kvmppc_vcore *vc = vcpu->arch.vcore;
172  
173  	vc->dpdes = hr->dpdes;
174  	vcpu->arch.hfscr = hr->hfscr;
175  	vcpu->arch.purr = hr->purr;
176  	vcpu->arch.spurr = hr->spurr;
177  	vcpu->arch.ic = hr->ic;
178  	vc->vtb = hr->vtb;
179  	vcpu->arch.fault_dar = hr->hdar;
180  	vcpu->arch.fault_dsisr = hr->hdsisr;
181  	vcpu->arch.fault_gpa = hr->asdr;
182  	vcpu->arch.emul_inst = hr->heir;
183  	vcpu->arch.shregs.srr0 = hr->srr0;
184  	vcpu->arch.shregs.srr1 = hr->srr1;
185  	vcpu->arch.shregs.sprg0 = hr->sprg[0];
186  	vcpu->arch.shregs.sprg1 = hr->sprg[1];
187  	vcpu->arch.shregs.sprg2 = hr->sprg[2];
188  	vcpu->arch.shregs.sprg3 = hr->sprg[3];
189  	vcpu->arch.pid = hr->pidr;
190  	vcpu->arch.cfar = hr->cfar;
191  	vcpu->arch.ppr = hr->ppr;
192  }
193  
kvmhv_nested_mmio_needed(struct kvm_vcpu * vcpu,u64 regs_ptr)194  static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr)
195  {
196  	/* No need to reflect the page fault to L1, we've handled it */
197  	vcpu->arch.trap = 0;
198  
199  	/*
200  	 * Since the L2 gprs have already been written back into L1 memory when
201  	 * we complete the mmio, store the L1 memory location of the L2 gpr
202  	 * being loaded into by the mmio so that the loaded value can be
203  	 * written there in kvmppc_complete_mmio_load()
204  	 */
205  	if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR)
206  	    && (vcpu->mmio_is_write == 0)) {
207  		vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr +
208  					   offsetof(struct pt_regs,
209  						    gpr[vcpu->arch.io_gpr]);
210  		vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR;
211  	}
212  }
213  
kvmhv_read_guest_state_and_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * l2_hv,struct pt_regs * l2_regs,u64 hv_ptr,u64 regs_ptr)214  static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu,
215  					   struct hv_guest_state *l2_hv,
216  					   struct pt_regs *l2_regs,
217  					   u64 hv_ptr, u64 regs_ptr)
218  {
219  	int size;
220  
221  	if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version,
222  				sizeof(l2_hv->version)))
223  		return -1;
224  
225  	if (kvmppc_need_byteswap(vcpu))
226  		l2_hv->version = swab64(l2_hv->version);
227  
228  	size = hv_guest_state_size(l2_hv->version);
229  	if (size < 0)
230  		return -1;
231  
232  	return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) ||
233  		kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs,
234  				    sizeof(struct pt_regs));
235  }
236  
kvmhv_write_guest_state_and_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * l2_hv,struct pt_regs * l2_regs,u64 hv_ptr,u64 regs_ptr)237  static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu,
238  					    struct hv_guest_state *l2_hv,
239  					    struct pt_regs *l2_regs,
240  					    u64 hv_ptr, u64 regs_ptr)
241  {
242  	int size;
243  
244  	size = hv_guest_state_size(l2_hv->version);
245  	if (size < 0)
246  		return -1;
247  
248  	return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) ||
249  		kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs,
250  				     sizeof(struct pt_regs));
251  }
252  
load_l2_hv_regs(struct kvm_vcpu * vcpu,const struct hv_guest_state * l2_hv,const struct hv_guest_state * l1_hv,u64 * lpcr)253  static void load_l2_hv_regs(struct kvm_vcpu *vcpu,
254  			    const struct hv_guest_state *l2_hv,
255  			    const struct hv_guest_state *l1_hv, u64 *lpcr)
256  {
257  	struct kvmppc_vcore *vc = vcpu->arch.vcore;
258  	u64 mask;
259  
260  	restore_hv_regs(vcpu, l2_hv);
261  
262  	/*
263  	 * Don't let L1 change LPCR bits for the L2 except these:
264  	 */
265  	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | LPCR_MER;
266  
267  	/*
268  	 * Additional filtering is required depending on hardware
269  	 * and configuration.
270  	 */
271  	*lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm,
272  				      (vc->lpcr & ~mask) | (*lpcr & mask));
273  
274  	/*
275  	 * Don't let L1 enable features for L2 which we don't allow for L1,
276  	 * but preserve the interrupt cause field.
277  	 */
278  	vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted);
279  
280  	/* Don't let data address watchpoint match in hypervisor state */
281  	vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP;
282  	vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP;
283  
284  	/* Don't let completed instruction address breakpt match in HV state */
285  	if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
286  		vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV;
287  }
288  
kvmhv_enter_nested_guest(struct kvm_vcpu * vcpu)289  long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
290  {
291  	long int err, r;
292  	struct kvm_nested_guest *l2;
293  	struct pt_regs l2_regs, saved_l1_regs;
294  	struct hv_guest_state l2_hv = {0}, saved_l1_hv;
295  	struct kvmppc_vcore *vc = vcpu->arch.vcore;
296  	u64 hv_ptr, regs_ptr;
297  	u64 hdec_exp, lpcr;
298  	s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
299  
300  	if (vcpu->kvm->arch.l1_ptcr == 0)
301  		return H_NOT_AVAILABLE;
302  
303  	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
304  		return H_BAD_MODE;
305  
306  	/* copy parameters in */
307  	hv_ptr = kvmppc_get_gpr(vcpu, 4);
308  	regs_ptr = kvmppc_get_gpr(vcpu, 5);
309  	kvm_vcpu_srcu_read_lock(vcpu);
310  	err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
311  					      hv_ptr, regs_ptr);
312  	kvm_vcpu_srcu_read_unlock(vcpu);
313  	if (err)
314  		return H_PARAMETER;
315  
316  	if (kvmppc_need_byteswap(vcpu))
317  		byteswap_hv_regs(&l2_hv);
318  	if (l2_hv.version > HV_GUEST_STATE_VERSION)
319  		return H_P2;
320  
321  	if (kvmppc_need_byteswap(vcpu))
322  		byteswap_pt_regs(&l2_regs);
323  	if (l2_hv.vcpu_token >= NR_CPUS)
324  		return H_PARAMETER;
325  
326  	/*
327  	 * L1 must have set up a suspended state to enter the L2 in a
328  	 * transactional state, and only in that case. These have to be
329  	 * filtered out here to prevent causing a TM Bad Thing in the
330  	 * host HRFID. We could synthesize a TM Bad Thing back to the L1
331  	 * here but there doesn't seem like much point.
332  	 */
333  	if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) {
334  		if (!MSR_TM_ACTIVE(l2_regs.msr))
335  			return H_BAD_MODE;
336  	} else {
337  		if (l2_regs.msr & MSR_TS_MASK)
338  			return H_BAD_MODE;
339  		if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK))
340  			return H_BAD_MODE;
341  	}
342  
343  	/* translate lpid */
344  	l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
345  	if (!l2)
346  		return H_PARAMETER;
347  	if (!l2->l1_gr_to_hr) {
348  		mutex_lock(&l2->tlb_lock);
349  		kvmhv_update_ptbl_cache(l2);
350  		mutex_unlock(&l2->tlb_lock);
351  	}
352  
353  	/* save l1 values of things */
354  	vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
355  	saved_l1_regs = vcpu->arch.regs;
356  	kvmhv_save_hv_regs(vcpu, &saved_l1_hv);
357  
358  	/* convert TB values/offsets to host (L0) values */
359  	hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
360  	vc->tb_offset += l2_hv.tb_offset;
361  	vcpu->arch.dec_expires += l2_hv.tb_offset;
362  
363  	/* set L1 state to L2 state */
364  	vcpu->arch.nested = l2;
365  	vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
366  	vcpu->arch.nested_hfscr = l2_hv.hfscr;
367  	vcpu->arch.regs = l2_regs;
368  
369  	/* Guest must always run with ME enabled, HV disabled. */
370  	vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV;
371  
372  	lpcr = l2_hv.lpcr;
373  	load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr);
374  
375  	vcpu->arch.ret = RESUME_GUEST;
376  	vcpu->arch.trap = 0;
377  	do {
378  		r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr);
379  	} while (is_kvmppc_resume_guest(r));
380  
381  	/* save L2 state for return */
382  	l2_regs = vcpu->arch.regs;
383  	l2_regs.msr = vcpu->arch.shregs.msr;
384  	delta_purr = vcpu->arch.purr - l2_hv.purr;
385  	delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
386  	delta_ic = vcpu->arch.ic - l2_hv.ic;
387  	delta_vtb = vc->vtb - l2_hv.vtb;
388  	save_hv_return_state(vcpu, &l2_hv);
389  
390  	/* restore L1 state */
391  	vcpu->arch.nested = NULL;
392  	vcpu->arch.regs = saved_l1_regs;
393  	vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
394  	/* set L1 MSR TS field according to L2 transaction state */
395  	if (l2_regs.msr & MSR_TS_MASK)
396  		vcpu->arch.shregs.msr |= MSR_TS_S;
397  	vc->tb_offset = saved_l1_hv.tb_offset;
398  	/* XXX: is this always the same delta as saved_l1_hv.tb_offset? */
399  	vcpu->arch.dec_expires -= l2_hv.tb_offset;
400  	restore_hv_regs(vcpu, &saved_l1_hv);
401  	vcpu->arch.purr += delta_purr;
402  	vcpu->arch.spurr += delta_spurr;
403  	vcpu->arch.ic += delta_ic;
404  	vc->vtb += delta_vtb;
405  
406  	kvmhv_put_nested(l2);
407  
408  	/* copy l2_hv_state and regs back to guest */
409  	if (kvmppc_need_byteswap(vcpu)) {
410  		byteswap_hv_regs(&l2_hv);
411  		byteswap_pt_regs(&l2_regs);
412  	}
413  	kvm_vcpu_srcu_read_lock(vcpu);
414  	err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
415  					       hv_ptr, regs_ptr);
416  	kvm_vcpu_srcu_read_unlock(vcpu);
417  	if (err)
418  		return H_AUTHORITY;
419  
420  	if (r == -EINTR)
421  		return H_INTERRUPT;
422  
423  	if (vcpu->mmio_needed) {
424  		kvmhv_nested_mmio_needed(vcpu, regs_ptr);
425  		return H_TOO_HARD;
426  	}
427  
428  	return vcpu->arch.trap;
429  }
430  
431  unsigned long nested_capabilities;
432  
kvmhv_nested_init(void)433  long kvmhv_nested_init(void)
434  {
435  	long int ptb_order;
436  	unsigned long ptcr, host_capabilities;
437  	long rc;
438  
439  	if (!kvmhv_on_pseries())
440  		return 0;
441  	if (!radix_enabled())
442  		return -ENODEV;
443  
444  	rc = plpar_guest_get_capabilities(0, &host_capabilities);
445  	if (rc == H_SUCCESS) {
446  		unsigned long capabilities = 0;
447  
448  		if (cpu_has_feature(CPU_FTR_ARCH_31))
449  			capabilities |= H_GUEST_CAP_POWER10;
450  		if (cpu_has_feature(CPU_FTR_ARCH_300))
451  			capabilities |= H_GUEST_CAP_POWER9;
452  
453  		nested_capabilities = capabilities & host_capabilities;
454  		rc = plpar_guest_set_capabilities(0, nested_capabilities);
455  		if (rc != H_SUCCESS) {
456  			pr_err("kvm-hv: Could not configure parent hypervisor capabilities (rc=%ld)",
457  			       rc);
458  			return -ENODEV;
459  		}
460  
461  		static_branch_enable(&__kvmhv_is_nestedv2);
462  		return 0;
463  	}
464  
465  	pr_info("kvm-hv: nestedv2 get capabilities hcall failed, falling back to nestedv1 (rc=%ld)\n",
466  		rc);
467  	/* Partition table entry is 1<<4 bytes in size, hence the 4. */
468  	ptb_order = KVM_MAX_NESTED_GUESTS_SHIFT + 4;
469  	/* Minimum partition table size is 1<<12 bytes */
470  	if (ptb_order < 12)
471  		ptb_order = 12;
472  	pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
473  				       GFP_KERNEL);
474  	if (!pseries_partition_tb) {
475  		pr_err("kvm-hv: failed to allocated nested partition table\n");
476  		return -ENOMEM;
477  	}
478  
479  	ptcr = __pa(pseries_partition_tb) | (ptb_order - 12);
480  	rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
481  	if (rc != H_SUCCESS) {
482  		pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
483  		       rc);
484  		kfree(pseries_partition_tb);
485  		pseries_partition_tb = NULL;
486  		return -ENODEV;
487  	}
488  
489  	return 0;
490  }
491  
kvmhv_nested_exit(void)492  void kvmhv_nested_exit(void)
493  {
494  	/*
495  	 * N.B. the kvmhv_on_pseries() test is there because it enables
496  	 * the compiler to remove the call to plpar_hcall_norets()
497  	 * when CONFIG_PPC_PSERIES=n.
498  	 */
499  	if (kvmhv_on_pseries() && pseries_partition_tb) {
500  		plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
501  		kfree(pseries_partition_tb);
502  		pseries_partition_tb = NULL;
503  	}
504  }
505  
kvmhv_flush_lpid(u64 lpid)506  void kvmhv_flush_lpid(u64 lpid)
507  {
508  	long rc;
509  
510  	if (!kvmhv_on_pseries()) {
511  		radix__flush_all_lpid(lpid);
512  		return;
513  	}
514  
515  	if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
516  		rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
517  					lpid, TLBIEL_INVAL_SET_LPID);
518  	else
519  		rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
520  					    H_RPTI_TYPE_NESTED |
521  					    H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
522  					    H_RPTI_TYPE_PAT,
523  					    H_RPTI_PAGE_ALL, 0, -1UL);
524  	if (rc)
525  		pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
526  }
527  
kvmhv_set_ptbl_entry(u64 lpid,u64 dw0,u64 dw1)528  void kvmhv_set_ptbl_entry(u64 lpid, u64 dw0, u64 dw1)
529  {
530  	if (!kvmhv_on_pseries()) {
531  		mmu_partition_table_set_entry(lpid, dw0, dw1, true);
532  		return;
533  	}
534  
535  	if (kvmhv_is_nestedv1()) {
536  		pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
537  		pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
538  		/* L0 will do the necessary barriers */
539  		kvmhv_flush_lpid(lpid);
540  	}
541  
542  	if (kvmhv_is_nestedv2())
543  		kvmhv_nestedv2_set_ptbl_entry(lpid, dw0, dw1);
544  }
545  
kvmhv_set_nested_ptbl(struct kvm_nested_guest * gp)546  static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
547  {
548  	unsigned long dw0;
549  
550  	dw0 = PATB_HR | radix__get_tree_size() |
551  		__pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
552  	kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
553  }
554  
555  /*
556   * Handle the H_SET_PARTITION_TABLE hcall.
557   * r4 = guest real address of partition table + log_2(size) - 12
558   * (formatted as for the PTCR).
559   */
kvmhv_set_partition_table(struct kvm_vcpu * vcpu)560  long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
561  {
562  	struct kvm *kvm = vcpu->kvm;
563  	unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
564  	int srcu_idx;
565  	long ret = H_SUCCESS;
566  
567  	srcu_idx = srcu_read_lock(&kvm->srcu);
568  	/* Check partition size and base address. */
569  	if ((ptcr & PRTS_MASK) + 12 - 4 > KVM_MAX_NESTED_GUESTS_SHIFT ||
570  	    !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
571  		ret = H_PARAMETER;
572  	srcu_read_unlock(&kvm->srcu, srcu_idx);
573  	if (ret == H_SUCCESS)
574  		kvm->arch.l1_ptcr = ptcr;
575  
576  	return ret;
577  }
578  
579  /*
580   * Handle the H_COPY_TOFROM_GUEST hcall.
581   * r4 = L1 lpid of nested guest
582   * r5 = pid
583   * r6 = eaddr to access
584   * r7 = to buffer (L1 gpa)
585   * r8 = from buffer (L1 gpa)
586   * r9 = n bytes to copy
587   */
kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu * vcpu)588  long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu)
589  {
590  	struct kvm_nested_guest *gp;
591  	int l1_lpid = kvmppc_get_gpr(vcpu, 4);
592  	int pid = kvmppc_get_gpr(vcpu, 5);
593  	gva_t eaddr = kvmppc_get_gpr(vcpu, 6);
594  	gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7);
595  	gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8);
596  	void *buf;
597  	unsigned long n = kvmppc_get_gpr(vcpu, 9);
598  	bool is_load = !!gp_to;
599  	long rc;
600  
601  	if (gp_to && gp_from) /* One must be NULL to determine the direction */
602  		return H_PARAMETER;
603  
604  	if (eaddr & (0xFFFUL << 52))
605  		return H_PARAMETER;
606  
607  	buf = kzalloc(n, GFP_KERNEL | __GFP_NOWARN);
608  	if (!buf)
609  		return H_NO_MEM;
610  
611  	gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false);
612  	if (!gp) {
613  		rc = H_PARAMETER;
614  		goto out_free;
615  	}
616  
617  	mutex_lock(&gp->tlb_lock);
618  
619  	if (is_load) {
620  		/* Load from the nested guest into our buffer */
621  		rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
622  						     eaddr, buf, NULL, n);
623  		if (rc)
624  			goto not_found;
625  
626  		/* Write what was loaded into our buffer back to the L1 guest */
627  		kvm_vcpu_srcu_read_lock(vcpu);
628  		rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n);
629  		kvm_vcpu_srcu_read_unlock(vcpu);
630  		if (rc)
631  			goto not_found;
632  	} else {
633  		/* Load the data to be stored from the L1 guest into our buf */
634  		kvm_vcpu_srcu_read_lock(vcpu);
635  		rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n);
636  		kvm_vcpu_srcu_read_unlock(vcpu);
637  		if (rc)
638  			goto not_found;
639  
640  		/* Store from our buffer into the nested guest */
641  		rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
642  						     eaddr, NULL, buf, n);
643  		if (rc)
644  			goto not_found;
645  	}
646  
647  out_unlock:
648  	mutex_unlock(&gp->tlb_lock);
649  	kvmhv_put_nested(gp);
650  out_free:
651  	kfree(buf);
652  	return rc;
653  not_found:
654  	rc = H_NOT_FOUND;
655  	goto out_unlock;
656  }
657  
658  /*
659   * Reload the partition table entry for a guest.
660   * Caller must hold gp->tlb_lock.
661   */
kvmhv_update_ptbl_cache(struct kvm_nested_guest * gp)662  static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
663  {
664  	int ret;
665  	struct patb_entry ptbl_entry;
666  	unsigned long ptbl_addr;
667  	struct kvm *kvm = gp->l1_host;
668  
669  	ret = -EFAULT;
670  	ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
671  	if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) {
672  		int srcu_idx = srcu_read_lock(&kvm->srcu);
673  		ret = kvm_read_guest(kvm, ptbl_addr,
674  				     &ptbl_entry, sizeof(ptbl_entry));
675  		srcu_read_unlock(&kvm->srcu, srcu_idx);
676  	}
677  	if (ret) {
678  		gp->l1_gr_to_hr = 0;
679  		gp->process_table = 0;
680  	} else {
681  		gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
682  		gp->process_table = be64_to_cpu(ptbl_entry.patb1);
683  	}
684  	kvmhv_set_nested_ptbl(gp);
685  }
686  
kvmhv_vm_nested_init(struct kvm * kvm)687  void kvmhv_vm_nested_init(struct kvm *kvm)
688  {
689  	idr_init(&kvm->arch.kvm_nested_guest_idr);
690  }
691  
__find_nested(struct kvm * kvm,int lpid)692  static struct kvm_nested_guest *__find_nested(struct kvm *kvm, int lpid)
693  {
694  	return idr_find(&kvm->arch.kvm_nested_guest_idr, lpid);
695  }
696  
__prealloc_nested(struct kvm * kvm,int lpid)697  static bool __prealloc_nested(struct kvm *kvm, int lpid)
698  {
699  	if (idr_alloc(&kvm->arch.kvm_nested_guest_idr,
700  				NULL, lpid, lpid + 1, GFP_KERNEL) != lpid)
701  		return false;
702  	return true;
703  }
704  
__add_nested(struct kvm * kvm,int lpid,struct kvm_nested_guest * gp)705  static void __add_nested(struct kvm *kvm, int lpid, struct kvm_nested_guest *gp)
706  {
707  	if (idr_replace(&kvm->arch.kvm_nested_guest_idr, gp, lpid))
708  		WARN_ON(1);
709  }
710  
__remove_nested(struct kvm * kvm,int lpid)711  static void __remove_nested(struct kvm *kvm, int lpid)
712  {
713  	idr_remove(&kvm->arch.kvm_nested_guest_idr, lpid);
714  }
715  
kvmhv_alloc_nested(struct kvm * kvm,unsigned int lpid)716  static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
717  {
718  	struct kvm_nested_guest *gp;
719  	long shadow_lpid;
720  
721  	gp = kzalloc(sizeof(*gp), GFP_KERNEL);
722  	if (!gp)
723  		return NULL;
724  	gp->l1_host = kvm;
725  	gp->l1_lpid = lpid;
726  	mutex_init(&gp->tlb_lock);
727  	gp->shadow_pgtable = pgd_alloc(kvm->mm);
728  	if (!gp->shadow_pgtable)
729  		goto out_free;
730  	shadow_lpid = kvmppc_alloc_lpid();
731  	if (shadow_lpid < 0)
732  		goto out_free2;
733  	gp->shadow_lpid = shadow_lpid;
734  	gp->radix = 1;
735  
736  	memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));
737  
738  	return gp;
739  
740   out_free2:
741  	pgd_free(kvm->mm, gp->shadow_pgtable);
742   out_free:
743  	kfree(gp);
744  	return NULL;
745  }
746  
747  /*
748   * Free up any resources allocated for a nested guest.
749   */
kvmhv_release_nested(struct kvm_nested_guest * gp)750  static void kvmhv_release_nested(struct kvm_nested_guest *gp)
751  {
752  	struct kvm *kvm = gp->l1_host;
753  
754  	if (gp->shadow_pgtable) {
755  		/*
756  		 * No vcpu is using this struct and no call to
757  		 * kvmhv_get_nested can find this struct,
758  		 * so we don't need to hold kvm->mmu_lock.
759  		 */
760  		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
761  					  gp->shadow_lpid);
762  		pgd_free(kvm->mm, gp->shadow_pgtable);
763  	}
764  	kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
765  	kvmppc_free_lpid(gp->shadow_lpid);
766  	kfree(gp);
767  }
768  
kvmhv_remove_nested(struct kvm_nested_guest * gp)769  static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
770  {
771  	struct kvm *kvm = gp->l1_host;
772  	int lpid = gp->l1_lpid;
773  	long ref;
774  
775  	spin_lock(&kvm->mmu_lock);
776  	if (gp == __find_nested(kvm, lpid)) {
777  		__remove_nested(kvm, lpid);
778  		--gp->refcnt;
779  	}
780  	ref = gp->refcnt;
781  	spin_unlock(&kvm->mmu_lock);
782  	if (ref == 0)
783  		kvmhv_release_nested(gp);
784  }
785  
786  /*
787   * Free up all nested resources allocated for this guest.
788   * This is called with no vcpus of the guest running, when
789   * switching the guest to HPT mode or when destroying the
790   * guest.
791   */
kvmhv_release_all_nested(struct kvm * kvm)792  void kvmhv_release_all_nested(struct kvm *kvm)
793  {
794  	int lpid;
795  	struct kvm_nested_guest *gp;
796  	struct kvm_nested_guest *freelist = NULL;
797  	struct kvm_memory_slot *memslot;
798  	int srcu_idx, bkt;
799  
800  	spin_lock(&kvm->mmu_lock);
801  	idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
802  		__remove_nested(kvm, lpid);
803  		if (--gp->refcnt == 0) {
804  			gp->next = freelist;
805  			freelist = gp;
806  		}
807  	}
808  	idr_destroy(&kvm->arch.kvm_nested_guest_idr);
809  	/* idr is empty and may be reused at this point */
810  	spin_unlock(&kvm->mmu_lock);
811  	while ((gp = freelist) != NULL) {
812  		freelist = gp->next;
813  		kvmhv_release_nested(gp);
814  	}
815  
816  	srcu_idx = srcu_read_lock(&kvm->srcu);
817  	kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
818  		kvmhv_free_memslot_nest_rmap(memslot);
819  	srcu_read_unlock(&kvm->srcu, srcu_idx);
820  }
821  
822  /* caller must hold gp->tlb_lock */
kvmhv_flush_nested(struct kvm_nested_guest * gp)823  static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
824  {
825  	struct kvm *kvm = gp->l1_host;
826  
827  	spin_lock(&kvm->mmu_lock);
828  	kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
829  	spin_unlock(&kvm->mmu_lock);
830  	kvmhv_flush_lpid(gp->shadow_lpid);
831  	kvmhv_update_ptbl_cache(gp);
832  	if (gp->l1_gr_to_hr == 0)
833  		kvmhv_remove_nested(gp);
834  }
835  
kvmhv_get_nested(struct kvm * kvm,int l1_lpid,bool create)836  struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
837  					  bool create)
838  {
839  	struct kvm_nested_guest *gp, *newgp;
840  
841  	if (l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
842  		return NULL;
843  
844  	spin_lock(&kvm->mmu_lock);
845  	gp = __find_nested(kvm, l1_lpid);
846  	if (gp)
847  		++gp->refcnt;
848  	spin_unlock(&kvm->mmu_lock);
849  
850  	if (gp || !create)
851  		return gp;
852  
853  	newgp = kvmhv_alloc_nested(kvm, l1_lpid);
854  	if (!newgp)
855  		return NULL;
856  
857  	if (!__prealloc_nested(kvm, l1_lpid)) {
858  		kvmhv_release_nested(newgp);
859  		return NULL;
860  	}
861  
862  	spin_lock(&kvm->mmu_lock);
863  	gp = __find_nested(kvm, l1_lpid);
864  	if (!gp) {
865  		__add_nested(kvm, l1_lpid, newgp);
866  		++newgp->refcnt;
867  		gp = newgp;
868  		newgp = NULL;
869  	}
870  	++gp->refcnt;
871  	spin_unlock(&kvm->mmu_lock);
872  
873  	if (newgp)
874  		kvmhv_release_nested(newgp);
875  
876  	return gp;
877  }
878  
kvmhv_put_nested(struct kvm_nested_guest * gp)879  void kvmhv_put_nested(struct kvm_nested_guest *gp)
880  {
881  	struct kvm *kvm = gp->l1_host;
882  	long ref;
883  
884  	spin_lock(&kvm->mmu_lock);
885  	ref = --gp->refcnt;
886  	spin_unlock(&kvm->mmu_lock);
887  	if (ref == 0)
888  		kvmhv_release_nested(gp);
889  }
890  
find_kvm_nested_guest_pte(struct kvm * kvm,unsigned long lpid,unsigned long ea,unsigned * hshift)891  pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
892  				 unsigned long ea, unsigned *hshift)
893  {
894  	struct kvm_nested_guest *gp;
895  	pte_t *pte;
896  
897  	gp = __find_nested(kvm, lpid);
898  	if (!gp)
899  		return NULL;
900  
901  	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
902  		"%s called with kvm mmu_lock not held \n", __func__);
903  	pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift);
904  
905  	return pte;
906  }
907  
kvmhv_n_rmap_is_equal(u64 rmap_1,u64 rmap_2)908  static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
909  {
910  	return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
911  				       RMAP_NESTED_GPA_MASK));
912  }
913  
kvmhv_insert_nest_rmap(struct kvm * kvm,unsigned long * rmapp,struct rmap_nested ** n_rmap)914  void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
915  			    struct rmap_nested **n_rmap)
916  {
917  	struct llist_node *entry = ((struct llist_head *) rmapp)->first;
918  	struct rmap_nested *cursor;
919  	u64 rmap, new_rmap = (*n_rmap)->rmap;
920  
921  	/* Are there any existing entries? */
922  	if (!(*rmapp)) {
923  		/* No -> use the rmap as a single entry */
924  		*rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
925  		return;
926  	}
927  
928  	/* Do any entries match what we're trying to insert? */
929  	for_each_nest_rmap_safe(cursor, entry, &rmap) {
930  		if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
931  			return;
932  	}
933  
934  	/* Do we need to create a list or just add the new entry? */
935  	rmap = *rmapp;
936  	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
937  		*rmapp = 0UL;
938  	llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
939  	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
940  		(*n_rmap)->list.next = (struct llist_node *) rmap;
941  
942  	/* Set NULL so not freed by caller */
943  	*n_rmap = NULL;
944  }
945  
kvmhv_update_nest_rmap_rc(struct kvm * kvm,u64 n_rmap,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long mask)946  static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap,
947  				      unsigned long clr, unsigned long set,
948  				      unsigned long hpa, unsigned long mask)
949  {
950  	unsigned long gpa;
951  	unsigned int shift, lpid;
952  	pte_t *ptep;
953  
954  	gpa = n_rmap & RMAP_NESTED_GPA_MASK;
955  	lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
956  
957  	/* Find the pte */
958  	ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
959  	/*
960  	 * If the pte is present and the pfn is still the same, update the pte.
961  	 * If the pfn has changed then this is a stale rmap entry, the nested
962  	 * gpa actually points somewhere else now, and there is nothing to do.
963  	 * XXX A future optimisation would be to remove the rmap entry here.
964  	 */
965  	if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) {
966  		__radix_pte_update(ptep, clr, set);
967  		kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
968  	}
969  }
970  
971  /*
972   * For a given list of rmap entries, update the rc bits in all ptes in shadow
973   * page tables for nested guests which are referenced by the rmap list.
974   */
kvmhv_update_nest_rmap_rc_list(struct kvm * kvm,unsigned long * rmapp,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long nbytes)975  void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
976  				    unsigned long clr, unsigned long set,
977  				    unsigned long hpa, unsigned long nbytes)
978  {
979  	struct llist_node *entry = ((struct llist_head *) rmapp)->first;
980  	struct rmap_nested *cursor;
981  	unsigned long rmap, mask;
982  
983  	if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED))
984  		return;
985  
986  	mask = PTE_RPN_MASK & ~(nbytes - 1);
987  	hpa &= mask;
988  
989  	for_each_nest_rmap_safe(cursor, entry, &rmap)
990  		kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask);
991  }
992  
kvmhv_remove_nest_rmap(struct kvm * kvm,u64 n_rmap,unsigned long hpa,unsigned long mask)993  static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
994  				   unsigned long hpa, unsigned long mask)
995  {
996  	struct kvm_nested_guest *gp;
997  	unsigned long gpa;
998  	unsigned int shift, lpid;
999  	pte_t *ptep;
1000  
1001  	gpa = n_rmap & RMAP_NESTED_GPA_MASK;
1002  	lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
1003  	gp = __find_nested(kvm, lpid);
1004  	if (!gp)
1005  		return;
1006  
1007  	/* Find and invalidate the pte */
1008  	ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
1009  	/* Don't spuriously invalidate ptes if the pfn has changed */
1010  	if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
1011  		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1012  }
1013  
kvmhv_remove_nest_rmap_list(struct kvm * kvm,unsigned long * rmapp,unsigned long hpa,unsigned long mask)1014  static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
1015  					unsigned long hpa, unsigned long mask)
1016  {
1017  	struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
1018  	struct rmap_nested *cursor;
1019  	unsigned long rmap;
1020  
1021  	for_each_nest_rmap_safe(cursor, entry, &rmap) {
1022  		kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
1023  		kfree(cursor);
1024  	}
1025  }
1026  
1027  /* called with kvm->mmu_lock held */
kvmhv_remove_nest_rmap_range(struct kvm * kvm,const struct kvm_memory_slot * memslot,unsigned long gpa,unsigned long hpa,unsigned long nbytes)1028  void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
1029  				  const struct kvm_memory_slot *memslot,
1030  				  unsigned long gpa, unsigned long hpa,
1031  				  unsigned long nbytes)
1032  {
1033  	unsigned long gfn, end_gfn;
1034  	unsigned long addr_mask;
1035  
1036  	if (!memslot)
1037  		return;
1038  	gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
1039  	end_gfn = gfn + (nbytes >> PAGE_SHIFT);
1040  
1041  	addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
1042  	hpa &= addr_mask;
1043  
1044  	for (; gfn < end_gfn; gfn++) {
1045  		unsigned long *rmap = &memslot->arch.rmap[gfn];
1046  		kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
1047  	}
1048  }
1049  
kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot * free)1050  static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
1051  {
1052  	unsigned long page;
1053  
1054  	for (page = 0; page < free->npages; page++) {
1055  		unsigned long rmap, *rmapp = &free->arch.rmap[page];
1056  		struct rmap_nested *cursor;
1057  		struct llist_node *entry;
1058  
1059  		entry = llist_del_all((struct llist_head *) rmapp);
1060  		for_each_nest_rmap_safe(cursor, entry, &rmap)
1061  			kfree(cursor);
1062  	}
1063  }
1064  
kvmhv_invalidate_shadow_pte(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,long gpa,int * shift_ret)1065  static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
1066  					struct kvm_nested_guest *gp,
1067  					long gpa, int *shift_ret)
1068  {
1069  	struct kvm *kvm = vcpu->kvm;
1070  	bool ret = false;
1071  	pte_t *ptep;
1072  	int shift;
1073  
1074  	spin_lock(&kvm->mmu_lock);
1075  	ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift);
1076  	if (!shift)
1077  		shift = PAGE_SHIFT;
1078  	if (ptep && pte_present(*ptep)) {
1079  		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1080  		ret = true;
1081  	}
1082  	spin_unlock(&kvm->mmu_lock);
1083  
1084  	if (shift_ret)
1085  		*shift_ret = shift;
1086  	return ret;
1087  }
1088  
get_ric(unsigned int instr)1089  static inline int get_ric(unsigned int instr)
1090  {
1091  	return (instr >> 18) & 0x3;
1092  }
1093  
get_prs(unsigned int instr)1094  static inline int get_prs(unsigned int instr)
1095  {
1096  	return (instr >> 17) & 0x1;
1097  }
1098  
get_r(unsigned int instr)1099  static inline int get_r(unsigned int instr)
1100  {
1101  	return (instr >> 16) & 0x1;
1102  }
1103  
get_lpid(unsigned long r_val)1104  static inline int get_lpid(unsigned long r_val)
1105  {
1106  	return r_val & 0xffffffff;
1107  }
1108  
get_is(unsigned long r_val)1109  static inline int get_is(unsigned long r_val)
1110  {
1111  	return (r_val >> 10) & 0x3;
1112  }
1113  
get_ap(unsigned long r_val)1114  static inline int get_ap(unsigned long r_val)
1115  {
1116  	return (r_val >> 5) & 0x7;
1117  }
1118  
get_epn(unsigned long r_val)1119  static inline long get_epn(unsigned long r_val)
1120  {
1121  	return r_val >> 12;
1122  }
1123  
kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu * vcpu,int lpid,int ap,long epn)1124  static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
1125  					int ap, long epn)
1126  {
1127  	struct kvm *kvm = vcpu->kvm;
1128  	struct kvm_nested_guest *gp;
1129  	long npages;
1130  	int shift, shadow_shift;
1131  	unsigned long addr;
1132  
1133  	shift = ap_to_shift(ap);
1134  	addr = epn << 12;
1135  	if (shift < 0)
1136  		/* Invalid ap encoding */
1137  		return -EINVAL;
1138  
1139  	addr &= ~((1UL << shift) - 1);
1140  	npages = 1UL << (shift - PAGE_SHIFT);
1141  
1142  	gp = kvmhv_get_nested(kvm, lpid, false);
1143  	if (!gp) /* No such guest -> nothing to do */
1144  		return 0;
1145  	mutex_lock(&gp->tlb_lock);
1146  
1147  	/* There may be more than one host page backing this single guest pte */
1148  	do {
1149  		kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);
1150  
1151  		npages -= 1UL << (shadow_shift - PAGE_SHIFT);
1152  		addr += 1UL << shadow_shift;
1153  	} while (npages > 0);
1154  
1155  	mutex_unlock(&gp->tlb_lock);
1156  	kvmhv_put_nested(gp);
1157  	return 0;
1158  }
1159  
kvmhv_emulate_tlbie_lpid(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,int ric)1160  static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
1161  				     struct kvm_nested_guest *gp, int ric)
1162  {
1163  	struct kvm *kvm = vcpu->kvm;
1164  
1165  	mutex_lock(&gp->tlb_lock);
1166  	switch (ric) {
1167  	case 0:
1168  		/* Invalidate TLB */
1169  		spin_lock(&kvm->mmu_lock);
1170  		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
1171  					  gp->shadow_lpid);
1172  		kvmhv_flush_lpid(gp->shadow_lpid);
1173  		spin_unlock(&kvm->mmu_lock);
1174  		break;
1175  	case 1:
1176  		/*
1177  		 * Invalidate PWC
1178  		 * We don't cache this -> nothing to do
1179  		 */
1180  		break;
1181  	case 2:
1182  		/* Invalidate TLB, PWC and caching of partition table entries */
1183  		kvmhv_flush_nested(gp);
1184  		break;
1185  	default:
1186  		break;
1187  	}
1188  	mutex_unlock(&gp->tlb_lock);
1189  }
1190  
kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu * vcpu,int ric)1191  static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
1192  {
1193  	struct kvm *kvm = vcpu->kvm;
1194  	struct kvm_nested_guest *gp;
1195  	int lpid;
1196  
1197  	spin_lock(&kvm->mmu_lock);
1198  	idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
1199  		spin_unlock(&kvm->mmu_lock);
1200  		kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1201  		spin_lock(&kvm->mmu_lock);
1202  	}
1203  	spin_unlock(&kvm->mmu_lock);
1204  }
1205  
kvmhv_emulate_priv_tlbie(struct kvm_vcpu * vcpu,unsigned int instr,unsigned long rsval,unsigned long rbval)1206  static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
1207  				    unsigned long rsval, unsigned long rbval)
1208  {
1209  	struct kvm *kvm = vcpu->kvm;
1210  	struct kvm_nested_guest *gp;
1211  	int r, ric, prs, is, ap;
1212  	int lpid;
1213  	long epn;
1214  	int ret = 0;
1215  
1216  	ric = get_ric(instr);
1217  	prs = get_prs(instr);
1218  	r = get_r(instr);
1219  	lpid = get_lpid(rsval);
1220  	is = get_is(rbval);
1221  
1222  	/*
1223  	 * These cases are invalid and are not handled:
1224  	 * r   != 1 -> Only radix supported
1225  	 * prs == 1 -> Not HV privileged
1226  	 * ric == 3 -> No cluster bombs for radix
1227  	 * is  == 1 -> Partition scoped translations not associated with pid
1228  	 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
1229  	 */
1230  	if ((!r) || (prs) || (ric == 3) || (is == 1) ||
1231  	    ((!is) && (ric == 1 || ric == 2)))
1232  		return -EINVAL;
1233  
1234  	switch (is) {
1235  	case 0:
1236  		/*
1237  		 * We know ric == 0
1238  		 * Invalidate TLB for a given target address
1239  		 */
1240  		epn = get_epn(rbval);
1241  		ap = get_ap(rbval);
1242  		ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
1243  		break;
1244  	case 2:
1245  		/* Invalidate matching LPID */
1246  		gp = kvmhv_get_nested(kvm, lpid, false);
1247  		if (gp) {
1248  			kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1249  			kvmhv_put_nested(gp);
1250  		}
1251  		break;
1252  	case 3:
1253  		/* Invalidate ALL LPIDs */
1254  		kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
1255  		break;
1256  	default:
1257  		ret = -EINVAL;
1258  		break;
1259  	}
1260  
1261  	return ret;
1262  }
1263  
1264  /*
1265   * This handles the H_TLB_INVALIDATE hcall.
1266   * Parameters are (r4) tlbie instruction code, (r5) rS contents,
1267   * (r6) rB contents.
1268   */
kvmhv_do_nested_tlbie(struct kvm_vcpu * vcpu)1269  long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
1270  {
1271  	int ret;
1272  
1273  	ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
1274  			kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
1275  	if (ret)
1276  		return H_PARAMETER;
1277  	return H_SUCCESS;
1278  }
1279  
do_tlb_invalidate_nested_all(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long ric)1280  static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu,
1281  					 unsigned long lpid, unsigned long ric)
1282  {
1283  	struct kvm *kvm = vcpu->kvm;
1284  	struct kvm_nested_guest *gp;
1285  
1286  	gp = kvmhv_get_nested(kvm, lpid, false);
1287  	if (gp) {
1288  		kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1289  		kvmhv_put_nested(gp);
1290  	}
1291  	return H_SUCCESS;
1292  }
1293  
1294  /*
1295   * Number of pages above which we invalidate the entire LPID rather than
1296   * flush individual pages.
1297   */
1298  static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33;
1299  
do_tlb_invalidate_nested_tlb(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long pg_sizes,unsigned long start,unsigned long end)1300  static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu,
1301  					 unsigned long lpid,
1302  					 unsigned long pg_sizes,
1303  					 unsigned long start,
1304  					 unsigned long end)
1305  {
1306  	int ret = H_P4;
1307  	unsigned long addr, nr_pages;
1308  	struct mmu_psize_def *def;
1309  	unsigned long psize, ap, page_size;
1310  	bool flush_lpid;
1311  
1312  	for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1313  		def = &mmu_psize_defs[psize];
1314  		if (!(pg_sizes & def->h_rpt_pgsize))
1315  			continue;
1316  
1317  		nr_pages = (end - start) >> def->shift;
1318  		flush_lpid = nr_pages > tlb_range_flush_page_ceiling;
1319  		if (flush_lpid)
1320  			return do_tlb_invalidate_nested_all(vcpu, lpid,
1321  							RIC_FLUSH_TLB);
1322  		addr = start;
1323  		ap = mmu_get_ap(psize);
1324  		page_size = 1UL << def->shift;
1325  		do {
1326  			ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap,
1327  						   get_epn(addr));
1328  			if (ret)
1329  				return H_P4;
1330  			addr += page_size;
1331  		} while (addr < end);
1332  	}
1333  	return ret;
1334  }
1335  
1336  /*
1337   * Performs partition-scoped invalidations for nested guests
1338   * as part of H_RPT_INVALIDATE hcall.
1339   */
do_h_rpt_invalidate_pat(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long type,unsigned long pg_sizes,unsigned long start,unsigned long end)1340  long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid,
1341  			     unsigned long type, unsigned long pg_sizes,
1342  			     unsigned long start, unsigned long end)
1343  {
1344  	/*
1345  	 * If L2 lpid isn't valid, we need to return H_PARAMETER.
1346  	 *
1347  	 * However, nested KVM issues a L2 lpid flush call when creating
1348  	 * partition table entries for L2. This happens even before the
1349  	 * corresponding shadow lpid is created in HV which happens in
1350  	 * H_ENTER_NESTED call. Since we can't differentiate this case from
1351  	 * the invalid case, we ignore such flush requests and return success.
1352  	 */
1353  	if (!__find_nested(vcpu->kvm, lpid))
1354  		return H_SUCCESS;
1355  
1356  	/*
1357  	 * A flush all request can be handled by a full lpid flush only.
1358  	 */
1359  	if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL)
1360  		return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL);
1361  
1362  	/*
1363  	 * We don't need to handle a PWC flush like process table here,
1364  	 * because intermediate partition scoped table in nested guest doesn't
1365  	 * really have PWC. Only level we have PWC is in L0 and for nested
1366  	 * invalidate at L0 we always do kvm_flush_lpid() which does
1367  	 * radix__flush_all_lpid(). For range invalidate at any level, we
1368  	 * are not removing the higher level page tables and hence there is
1369  	 * no PWC invalidate needed.
1370  	 *
1371  	 * if (type & H_RPTI_TYPE_PWC) {
1372  	 *	ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC);
1373  	 *	if (ret)
1374  	 *		return H_P4;
1375  	 * }
1376  	 */
1377  
1378  	if (start == 0 && end == -1)
1379  		return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB);
1380  
1381  	if (type & H_RPTI_TYPE_TLB)
1382  		return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes,
1383  						    start, end);
1384  	return H_SUCCESS;
1385  }
1386  
1387  /* Used to convert a nested guest real address to a L1 guest real address */
kvmhv_translate_addr_nested(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,unsigned long dsisr,struct kvmppc_pte * gpte_p)1388  static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
1389  				       struct kvm_nested_guest *gp,
1390  				       unsigned long n_gpa, unsigned long dsisr,
1391  				       struct kvmppc_pte *gpte_p)
1392  {
1393  	u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
1394  	int ret;
1395  
1396  	ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
1397  					 &fault_addr);
1398  
1399  	if (ret) {
1400  		/* We didn't find a pte */
1401  		if (ret == -EINVAL) {
1402  			/* Unsupported mmu config */
1403  			flags |= DSISR_UNSUPP_MMU;
1404  		} else if (ret == -ENOENT) {
1405  			/* No translation found */
1406  			flags |= DSISR_NOHPTE;
1407  		} else if (ret == -EFAULT) {
1408  			/* Couldn't access L1 real address */
1409  			flags |= DSISR_PRTABLE_FAULT;
1410  			vcpu->arch.fault_gpa = fault_addr;
1411  		} else {
1412  			/* Unknown error */
1413  			return ret;
1414  		}
1415  		goto forward_to_l1;
1416  	} else {
1417  		/* We found a pte -> check permissions */
1418  		if (dsisr & DSISR_ISSTORE) {
1419  			/* Can we write? */
1420  			if (!gpte_p->may_write) {
1421  				flags |= DSISR_PROTFAULT;
1422  				goto forward_to_l1;
1423  			}
1424  		} else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1425  			/* Can we execute? */
1426  			if (!gpte_p->may_execute) {
1427  				flags |= SRR1_ISI_N_G_OR_CIP;
1428  				goto forward_to_l1;
1429  			}
1430  		} else {
1431  			/* Can we read? */
1432  			if (!gpte_p->may_read && !gpte_p->may_write) {
1433  				flags |= DSISR_PROTFAULT;
1434  				goto forward_to_l1;
1435  			}
1436  		}
1437  	}
1438  
1439  	return 0;
1440  
1441  forward_to_l1:
1442  	vcpu->arch.fault_dsisr = flags;
1443  	if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1444  		vcpu->arch.shregs.msr &= SRR1_MSR_BITS;
1445  		vcpu->arch.shregs.msr |= flags;
1446  	}
1447  	return RESUME_HOST;
1448  }
1449  
kvmhv_handle_nested_set_rc(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,struct kvmppc_pte gpte,unsigned long dsisr)1450  static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
1451  				       struct kvm_nested_guest *gp,
1452  				       unsigned long n_gpa,
1453  				       struct kvmppc_pte gpte,
1454  				       unsigned long dsisr)
1455  {
1456  	struct kvm *kvm = vcpu->kvm;
1457  	bool writing = !!(dsisr & DSISR_ISSTORE);
1458  	u64 pgflags;
1459  	long ret;
1460  
1461  	/* Are the rc bits set in the L1 partition scoped pte? */
1462  	pgflags = _PAGE_ACCESSED;
1463  	if (writing)
1464  		pgflags |= _PAGE_DIRTY;
1465  	if (pgflags & ~gpte.rc)
1466  		return RESUME_HOST;
1467  
1468  	spin_lock(&kvm->mmu_lock);
1469  	/* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
1470  	ret = kvmppc_hv_handle_set_rc(kvm, false, writing,
1471  				      gpte.raddr, kvm->arch.lpid);
1472  	if (!ret) {
1473  		ret = -EINVAL;
1474  		goto out_unlock;
1475  	}
1476  
1477  	/* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
1478  	ret = kvmppc_hv_handle_set_rc(kvm, true, writing,
1479  				      n_gpa, gp->l1_lpid);
1480  	if (!ret)
1481  		ret = -EINVAL;
1482  	else
1483  		ret = 0;
1484  
1485  out_unlock:
1486  	spin_unlock(&kvm->mmu_lock);
1487  	return ret;
1488  }
1489  
kvmppc_radix_level_to_shift(int level)1490  static inline int kvmppc_radix_level_to_shift(int level)
1491  {
1492  	switch (level) {
1493  	case 2:
1494  		return PUD_SHIFT;
1495  	case 1:
1496  		return PMD_SHIFT;
1497  	default:
1498  		return PAGE_SHIFT;
1499  	}
1500  }
1501  
kvmppc_radix_shift_to_level(int shift)1502  static inline int kvmppc_radix_shift_to_level(int shift)
1503  {
1504  	if (shift == PUD_SHIFT)
1505  		return 2;
1506  	if (shift == PMD_SHIFT)
1507  		return 1;
1508  	if (shift == PAGE_SHIFT)
1509  		return 0;
1510  	WARN_ON_ONCE(1);
1511  	return 0;
1512  }
1513  
1514  /* called with gp->tlb_lock held */
__kvmhv_nested_page_fault(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp)1515  static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
1516  					  struct kvm_nested_guest *gp)
1517  {
1518  	struct kvm *kvm = vcpu->kvm;
1519  	struct kvm_memory_slot *memslot;
1520  	struct rmap_nested *n_rmap;
1521  	struct kvmppc_pte gpte;
1522  	pte_t pte, *pte_p;
1523  	unsigned long mmu_seq;
1524  	unsigned long dsisr = vcpu->arch.fault_dsisr;
1525  	unsigned long ea = vcpu->arch.fault_dar;
1526  	unsigned long *rmapp;
1527  	unsigned long n_gpa, gpa, gfn, perm = 0UL;
1528  	unsigned int shift, l1_shift, level;
1529  	bool writing = !!(dsisr & DSISR_ISSTORE);
1530  	bool kvm_ro = false;
1531  	long int ret;
1532  
1533  	if (!gp->l1_gr_to_hr) {
1534  		kvmhv_update_ptbl_cache(gp);
1535  		if (!gp->l1_gr_to_hr)
1536  			return RESUME_HOST;
1537  	}
1538  
1539  	/* Convert the nested guest real address into a L1 guest real address */
1540  
1541  	n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
1542  	if (!(dsisr & DSISR_PRTABLE_FAULT))
1543  		n_gpa |= ea & 0xFFF;
1544  	ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
1545  
1546  	/*
1547  	 * If the hardware found a translation but we don't now have a usable
1548  	 * translation in the l1 partition-scoped tree, remove the shadow pte
1549  	 * and let the guest retry.
1550  	 */
1551  	if (ret == RESUME_HOST &&
1552  	    (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
1553  		      DSISR_BAD_COPYPASTE)))
1554  		goto inval;
1555  	if (ret)
1556  		return ret;
1557  
1558  	/* Failed to set the reference/change bits */
1559  	if (dsisr & DSISR_SET_RC) {
1560  		ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
1561  		if (ret == RESUME_HOST)
1562  			return ret;
1563  		if (ret)
1564  			goto inval;
1565  		dsisr &= ~DSISR_SET_RC;
1566  		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1567  			       DSISR_PROTFAULT)))
1568  			return RESUME_GUEST;
1569  	}
1570  
1571  	/*
1572  	 * We took an HISI or HDSI while we were running a nested guest which
1573  	 * means we have no partition scoped translation for that. This means
1574  	 * we need to insert a pte for the mapping into our shadow_pgtable.
1575  	 */
1576  
1577  	l1_shift = gpte.page_shift;
1578  	if (l1_shift < PAGE_SHIFT) {
1579  		/* We don't support l1 using a page size smaller than our own */
1580  		pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
1581  			l1_shift, PAGE_SHIFT);
1582  		return -EINVAL;
1583  	}
1584  	gpa = gpte.raddr;
1585  	gfn = gpa >> PAGE_SHIFT;
1586  
1587  	/* 1. Get the corresponding host memslot */
1588  
1589  	memslot = gfn_to_memslot(kvm, gfn);
1590  	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
1591  		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
1592  			/* unusual error -> reflect to the guest as a DSI */
1593  			kvmppc_core_queue_data_storage(vcpu,
1594  					kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1595  					ea, dsisr);
1596  			return RESUME_GUEST;
1597  		}
1598  
1599  		/* passthrough of emulated MMIO case */
1600  		return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
1601  	}
1602  	if (memslot->flags & KVM_MEM_READONLY) {
1603  		if (writing) {
1604  			/* Give the guest a DSI */
1605  			kvmppc_core_queue_data_storage(vcpu,
1606  					kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1607  					ea, DSISR_ISSTORE | DSISR_PROTFAULT);
1608  			return RESUME_GUEST;
1609  		}
1610  		kvm_ro = true;
1611  	}
1612  
1613  	/* 2. Find the host pte for this L1 guest real address */
1614  
1615  	/* Used to check for invalidations in progress */
1616  	mmu_seq = kvm->mmu_invalidate_seq;
1617  	smp_rmb();
1618  
1619  	/* See if can find translation in our partition scoped tables for L1 */
1620  	pte = __pte(0);
1621  	spin_lock(&kvm->mmu_lock);
1622  	pte_p = find_kvm_secondary_pte(kvm, gpa, &shift);
1623  	if (!shift)
1624  		shift = PAGE_SHIFT;
1625  	if (pte_p)
1626  		pte = *pte_p;
1627  	spin_unlock(&kvm->mmu_lock);
1628  
1629  	if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
1630  		/* No suitable pte found -> try to insert a mapping */
1631  		ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
1632  					writing, kvm_ro, &pte, &level);
1633  		if (ret == -EAGAIN)
1634  			return RESUME_GUEST;
1635  		else if (ret)
1636  			return ret;
1637  		shift = kvmppc_radix_level_to_shift(level);
1638  	}
1639  	/* Align gfn to the start of the page */
1640  	gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT;
1641  
1642  	/* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
1643  
1644  	/* The permissions is the combination of the host and l1 guest ptes */
1645  	perm |= gpte.may_read ? 0UL : _PAGE_READ;
1646  	perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
1647  	perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
1648  	/* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */
1649  	perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED;
1650  	perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY;
1651  	pte = __pte(pte_val(pte) & ~perm);
1652  
1653  	/* What size pte can we insert? */
1654  	if (shift > l1_shift) {
1655  		u64 mask;
1656  		unsigned int actual_shift = PAGE_SHIFT;
1657  		if (PMD_SHIFT < l1_shift)
1658  			actual_shift = PMD_SHIFT;
1659  		mask = (1UL << shift) - (1UL << actual_shift);
1660  		pte = __pte(pte_val(pte) | (gpa & mask));
1661  		shift = actual_shift;
1662  	}
1663  	level = kvmppc_radix_shift_to_level(shift);
1664  	n_gpa &= ~((1UL << shift) - 1);
1665  
1666  	/* 4. Insert the pte into our shadow_pgtable */
1667  
1668  	n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
1669  	if (!n_rmap)
1670  		return RESUME_GUEST; /* Let the guest try again */
1671  	n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
1672  		(((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
1673  	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1674  	ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
1675  				mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
1676  	kfree(n_rmap);
1677  	if (ret == -EAGAIN)
1678  		ret = RESUME_GUEST;	/* Let the guest try again */
1679  
1680  	return ret;
1681  
1682   inval:
1683  	kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
1684  	return RESUME_GUEST;
1685  }
1686  
kvmhv_nested_page_fault(struct kvm_vcpu * vcpu)1687  long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
1688  {
1689  	struct kvm_nested_guest *gp = vcpu->arch.nested;
1690  	long int ret;
1691  
1692  	mutex_lock(&gp->tlb_lock);
1693  	ret = __kvmhv_nested_page_fault(vcpu, gp);
1694  	mutex_unlock(&gp->tlb_lock);
1695  	return ret;
1696  }
1697  
kvmhv_nested_next_lpid(struct kvm * kvm,int lpid)1698  int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
1699  {
1700  	int ret = lpid + 1;
1701  
1702  	spin_lock(&kvm->mmu_lock);
1703  	if (!idr_get_next(&kvm->arch.kvm_nested_guest_idr, &ret))
1704  		ret = -1;
1705  	spin_unlock(&kvm->mmu_lock);
1706  
1707  	return ret;
1708  }
1709