1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /*
4 * Local APIC virtualization
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2007 Novell
8 * Copyright (C) 2007 Intel
9 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Dor Laor <dor.laor@qumranet.com>
13 * Gregory Haskins <ghaskins@novell.com>
14 * Yaozu (Eddie) Dong <eddie.dong@intel.com>
15 *
16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/smp.h>
25 #include <linux/hrtimer.h>
26 #include <linux/io.h>
27 #include <linux/export.h>
28 #include <linux/math64.h>
29 #include <linux/slab.h>
30 #include <asm/processor.h>
31 #include <asm/mce.h>
32 #include <asm/msr.h>
33 #include <asm/page.h>
34 #include <asm/current.h>
35 #include <asm/apicdef.h>
36 #include <asm/delay.h>
37 #include <linux/atomic.h>
38 #include <linux/jump_label.h>
39 #include "kvm_cache_regs.h"
40 #include "irq.h"
41 #include "ioapic.h"
42 #include "trace.h"
43 #include "x86.h"
44 #include "xen.h"
45 #include "cpuid.h"
46 #include "hyperv.h"
47 #include "smm.h"
48
49 #ifndef CONFIG_X86_64
50 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
51 #else
52 #define mod_64(x, y) ((x) % (y))
53 #endif
54
55 /* 14 is the version for Xeon and Pentium 8.4.8*/
56 #define APIC_VERSION 0x14UL
57 #define LAPIC_MMIO_LENGTH (1 << 12)
58 /* followed define is not in apicdef.h */
59 #define MAX_APIC_VECTOR 256
60 #define APIC_VECTORS_PER_REG 32
61
62 /*
63 * Enable local APIC timer advancement (tscdeadline mode only) with adaptive
64 * tuning. When enabled, KVM programs the host timer event to fire early, i.e.
65 * before the deadline expires, to account for the delay between taking the
66 * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume
67 * the guest, i.e. so that the interrupt arrives in the guest with minimal
68 * latency relative to the deadline programmed by the guest.
69 */
70 static bool lapic_timer_advance __read_mostly = true;
71 module_param(lapic_timer_advance, bool, 0444);
72
73 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */
74 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */
75 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000
76 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000
77 /* step-by-step approximation to mitigate fluctuation */
78 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
79 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
80 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
81
__kvm_lapic_set_reg(char * regs,int reg_off,u32 val)82 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val)
83 {
84 *((u32 *) (regs + reg_off)) = val;
85 }
86
kvm_lapic_set_reg(struct kvm_lapic * apic,int reg_off,u32 val)87 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
88 {
89 __kvm_lapic_set_reg(apic->regs, reg_off, val);
90 }
91
__kvm_lapic_get_reg64(char * regs,int reg)92 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg)
93 {
94 BUILD_BUG_ON(reg != APIC_ICR);
95 return *((u64 *) (regs + reg));
96 }
97
kvm_lapic_get_reg64(struct kvm_lapic * apic,int reg)98 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
99 {
100 return __kvm_lapic_get_reg64(apic->regs, reg);
101 }
102
__kvm_lapic_set_reg64(char * regs,int reg,u64 val)103 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val)
104 {
105 BUILD_BUG_ON(reg != APIC_ICR);
106 *((u64 *) (regs + reg)) = val;
107 }
108
kvm_lapic_set_reg64(struct kvm_lapic * apic,int reg,u64 val)109 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
110 int reg, u64 val)
111 {
112 __kvm_lapic_set_reg64(apic->regs, reg, val);
113 }
114
apic_test_vector(int vec,void * bitmap)115 static inline int apic_test_vector(int vec, void *bitmap)
116 {
117 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
118 }
119
kvm_apic_pending_eoi(struct kvm_vcpu * vcpu,int vector)120 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
121 {
122 struct kvm_lapic *apic = vcpu->arch.apic;
123
124 return apic_test_vector(vector, apic->regs + APIC_ISR) ||
125 apic_test_vector(vector, apic->regs + APIC_IRR);
126 }
127
__apic_test_and_set_vector(int vec,void * bitmap)128 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
129 {
130 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
131 }
132
__apic_test_and_clear_vector(int vec,void * bitmap)133 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
134 {
135 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
136 }
137
138 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
139 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
140
141 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
142 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
143
apic_enabled(struct kvm_lapic * apic)144 static inline int apic_enabled(struct kvm_lapic *apic)
145 {
146 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic);
147 }
148
149 #define LVT_MASK \
150 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
151
152 #define LINT_MASK \
153 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
154 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
155
kvm_x2apic_id(struct kvm_lapic * apic)156 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
157 {
158 return apic->vcpu->vcpu_id;
159 }
160
kvm_can_post_timer_interrupt(struct kvm_vcpu * vcpu)161 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
162 {
163 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
164 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
165 }
166
kvm_can_use_hv_timer(struct kvm_vcpu * vcpu)167 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
168 {
169 return kvm_x86_ops.set_hv_timer
170 && !(kvm_mwait_in_guest(vcpu->kvm) ||
171 kvm_can_post_timer_interrupt(vcpu));
172 }
173
kvm_use_posted_timer_interrupt(struct kvm_vcpu * vcpu)174 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
175 {
176 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
177 }
178
kvm_apic_calc_x2apic_ldr(u32 id)179 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
180 {
181 return ((id >> 4) << 16) | (1 << (id & 0xf));
182 }
183
kvm_apic_map_get_logical_dest(struct kvm_apic_map * map,u32 dest_id,struct kvm_lapic *** cluster,u16 * mask)184 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
185 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
186 switch (map->logical_mode) {
187 case KVM_APIC_MODE_SW_DISABLED:
188 /* Arbitrarily use the flat map so that @cluster isn't NULL. */
189 *cluster = map->xapic_flat_map;
190 *mask = 0;
191 return true;
192 case KVM_APIC_MODE_X2APIC: {
193 u32 offset = (dest_id >> 16) * 16;
194 u32 max_apic_id = map->max_apic_id;
195
196 if (offset <= max_apic_id) {
197 u8 cluster_size = min(max_apic_id - offset + 1, 16U);
198
199 offset = array_index_nospec(offset, map->max_apic_id + 1);
200 *cluster = &map->phys_map[offset];
201 *mask = dest_id & (0xffff >> (16 - cluster_size));
202 } else {
203 *mask = 0;
204 }
205
206 return true;
207 }
208 case KVM_APIC_MODE_XAPIC_FLAT:
209 *cluster = map->xapic_flat_map;
210 *mask = dest_id & 0xff;
211 return true;
212 case KVM_APIC_MODE_XAPIC_CLUSTER:
213 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
214 *mask = dest_id & 0xf;
215 return true;
216 case KVM_APIC_MODE_MAP_DISABLED:
217 return false;
218 default:
219 WARN_ON_ONCE(1);
220 return false;
221 }
222 }
223
kvm_apic_map_free(struct rcu_head * rcu)224 static void kvm_apic_map_free(struct rcu_head *rcu)
225 {
226 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
227
228 kvfree(map);
229 }
230
kvm_recalculate_phys_map(struct kvm_apic_map * new,struct kvm_vcpu * vcpu,bool * xapic_id_mismatch)231 static int kvm_recalculate_phys_map(struct kvm_apic_map *new,
232 struct kvm_vcpu *vcpu,
233 bool *xapic_id_mismatch)
234 {
235 struct kvm_lapic *apic = vcpu->arch.apic;
236 u32 x2apic_id = kvm_x2apic_id(apic);
237 u32 xapic_id = kvm_xapic_id(apic);
238 u32 physical_id;
239
240 /*
241 * For simplicity, KVM always allocates enough space for all possible
242 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on
243 * without the optimized map.
244 */
245 if (WARN_ON_ONCE(xapic_id > new->max_apic_id))
246 return -EINVAL;
247
248 /*
249 * Bail if a vCPU was added and/or enabled its APIC between allocating
250 * the map and doing the actual calculations for the map. Note, KVM
251 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
252 * the compiler decides to reload x2apic_id after this check.
253 */
254 if (x2apic_id > new->max_apic_id)
255 return -E2BIG;
256
257 /*
258 * Deliberately truncate the vCPU ID when detecting a mismatched APIC
259 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
260 * 32-bit value. Any unwanted aliasing due to truncation results will
261 * be detected below.
262 */
263 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id)
264 *xapic_id_mismatch = true;
265
266 /*
267 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
268 * Allow sending events to vCPUs by their x2APIC ID even if the target
269 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
270 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
271 * and collide).
272 *
273 * Honor the architectural (and KVM's non-optimized) behavior if
274 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed
275 * to process messages independently. If multiple vCPUs have the same
276 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest
277 * manually modified its xAPIC IDs, events targeting that ID are
278 * supposed to be recognized by all vCPUs with said ID.
279 */
280 if (vcpu->kvm->arch.x2apic_format) {
281 /* See also kvm_apic_match_physical_addr(). */
282 if (apic_x2apic_mode(apic) || x2apic_id > 0xff)
283 new->phys_map[x2apic_id] = apic;
284
285 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
286 new->phys_map[xapic_id] = apic;
287 } else {
288 /*
289 * Disable the optimized map if the physical APIC ID is already
290 * mapped, i.e. is aliased to multiple vCPUs. The optimized
291 * map requires a strict 1:1 mapping between IDs and vCPUs.
292 */
293 if (apic_x2apic_mode(apic))
294 physical_id = x2apic_id;
295 else
296 physical_id = xapic_id;
297
298 if (new->phys_map[physical_id])
299 return -EINVAL;
300
301 new->phys_map[physical_id] = apic;
302 }
303
304 return 0;
305 }
306
kvm_recalculate_logical_map(struct kvm_apic_map * new,struct kvm_vcpu * vcpu)307 static void kvm_recalculate_logical_map(struct kvm_apic_map *new,
308 struct kvm_vcpu *vcpu)
309 {
310 struct kvm_lapic *apic = vcpu->arch.apic;
311 enum kvm_apic_logical_mode logical_mode;
312 struct kvm_lapic **cluster;
313 u16 mask;
314 u32 ldr;
315
316 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
317 return;
318
319 if (!kvm_apic_sw_enabled(apic))
320 return;
321
322 ldr = kvm_lapic_get_reg(apic, APIC_LDR);
323 if (!ldr)
324 return;
325
326 if (apic_x2apic_mode(apic)) {
327 logical_mode = KVM_APIC_MODE_X2APIC;
328 } else {
329 ldr = GET_APIC_LOGICAL_ID(ldr);
330 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
331 logical_mode = KVM_APIC_MODE_XAPIC_FLAT;
332 else
333 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER;
334 }
335
336 /*
337 * To optimize logical mode delivery, all software-enabled APICs must
338 * be configured for the same mode.
339 */
340 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) {
341 new->logical_mode = logical_mode;
342 } else if (new->logical_mode != logical_mode) {
343 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
344 return;
345 }
346
347 /*
348 * In x2APIC mode, the LDR is read-only and derived directly from the
349 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses
350 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
351 * reversing the LDR calculation to get cluster of APICs, i.e. no
352 * additional work is required.
353 */
354 if (apic_x2apic_mode(apic))
355 return;
356
357 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr,
358 &cluster, &mask))) {
359 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
360 return;
361 }
362
363 if (!mask)
364 return;
365
366 ldr = ffs(mask) - 1;
367 if (!is_power_of_2(mask) || cluster[ldr])
368 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
369 else
370 cluster[ldr] = apic;
371 }
372
373 /*
374 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
375 *
376 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
377 * apic_map_lock_held.
378 */
379 enum {
380 CLEAN,
381 UPDATE_IN_PROGRESS,
382 DIRTY
383 };
384
kvm_recalculate_apic_map(struct kvm * kvm)385 void kvm_recalculate_apic_map(struct kvm *kvm)
386 {
387 struct kvm_apic_map *new, *old = NULL;
388 struct kvm_vcpu *vcpu;
389 unsigned long i;
390 u32 max_id = 255; /* enough space for any xAPIC ID */
391 bool xapic_id_mismatch;
392 int r;
393
394 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */
395 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
396 return;
397
398 WARN_ONCE(!irqchip_in_kernel(kvm),
399 "Dirty APIC map without an in-kernel local APIC");
400
401 mutex_lock(&kvm->arch.apic_map_lock);
402
403 retry:
404 /*
405 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean)
406 * or the APIC registers (if dirty). Note, on retry the map may have
407 * not yet been marked dirty by whatever task changed a vCPU's x2APIC
408 * ID, i.e. the map may still show up as in-progress. In that case
409 * this task still needs to retry and complete its calculation.
410 */
411 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
412 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
413 /* Someone else has updated the map. */
414 mutex_unlock(&kvm->arch.apic_map_lock);
415 return;
416 }
417
418 /*
419 * Reset the mismatch flag between attempts so that KVM does the right
420 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e.
421 * keep max_id strictly increasing. Disallowing max_id from shrinking
422 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU
423 * with the highest x2APIC ID is toggling its APIC on and off.
424 */
425 xapic_id_mismatch = false;
426
427 kvm_for_each_vcpu(i, vcpu, kvm)
428 if (kvm_apic_present(vcpu))
429 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
430
431 new = kvzalloc(sizeof(struct kvm_apic_map) +
432 sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
433 GFP_KERNEL_ACCOUNT);
434
435 if (!new)
436 goto out;
437
438 new->max_apic_id = max_id;
439 new->logical_mode = KVM_APIC_MODE_SW_DISABLED;
440
441 kvm_for_each_vcpu(i, vcpu, kvm) {
442 if (!kvm_apic_present(vcpu))
443 continue;
444
445 r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch);
446 if (r) {
447 kvfree(new);
448 new = NULL;
449 if (r == -E2BIG) {
450 cond_resched();
451 goto retry;
452 }
453
454 goto out;
455 }
456
457 kvm_recalculate_logical_map(new, vcpu);
458 }
459 out:
460 /*
461 * The optimized map is effectively KVM's internal version of APICv,
462 * and all unwanted aliasing that results in disabling the optimized
463 * map also applies to APICv.
464 */
465 if (!new)
466 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
467 else
468 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
469
470 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
471 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
472 else
473 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
474
475 if (xapic_id_mismatch)
476 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
477 else
478 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
479
480 old = rcu_dereference_protected(kvm->arch.apic_map,
481 lockdep_is_held(&kvm->arch.apic_map_lock));
482 rcu_assign_pointer(kvm->arch.apic_map, new);
483 /*
484 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
485 * If another update has come in, leave it DIRTY.
486 */
487 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
488 UPDATE_IN_PROGRESS, CLEAN);
489 mutex_unlock(&kvm->arch.apic_map_lock);
490
491 if (old)
492 call_rcu(&old->rcu, kvm_apic_map_free);
493
494 kvm_make_scan_ioapic_request(kvm);
495 }
496
apic_set_spiv(struct kvm_lapic * apic,u32 val)497 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
498 {
499 bool enabled = val & APIC_SPIV_APIC_ENABLED;
500
501 kvm_lapic_set_reg(apic, APIC_SPIV, val);
502
503 if (enabled != apic->sw_enabled) {
504 apic->sw_enabled = enabled;
505 if (enabled)
506 static_branch_slow_dec_deferred(&apic_sw_disabled);
507 else
508 static_branch_inc(&apic_sw_disabled.key);
509
510 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
511 }
512
513 /* Check if there are APF page ready requests pending */
514 if (enabled) {
515 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
516 kvm_xen_sw_enable_lapic(apic->vcpu);
517 }
518 }
519
kvm_apic_set_xapic_id(struct kvm_lapic * apic,u8 id)520 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
521 {
522 kvm_lapic_set_reg(apic, APIC_ID, id << 24);
523 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
524 }
525
kvm_apic_set_ldr(struct kvm_lapic * apic,u32 id)526 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
527 {
528 kvm_lapic_set_reg(apic, APIC_LDR, id);
529 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
530 }
531
kvm_apic_set_dfr(struct kvm_lapic * apic,u32 val)532 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
533 {
534 kvm_lapic_set_reg(apic, APIC_DFR, val);
535 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
536 }
537
kvm_apic_set_x2apic_id(struct kvm_lapic * apic,u32 id)538 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
539 {
540 u32 ldr = kvm_apic_calc_x2apic_ldr(id);
541
542 WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
543
544 kvm_lapic_set_reg(apic, APIC_ID, id);
545 kvm_lapic_set_reg(apic, APIC_LDR, ldr);
546 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
547 }
548
apic_lvt_enabled(struct kvm_lapic * apic,int lvt_type)549 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
550 {
551 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
552 }
553
apic_lvtt_oneshot(struct kvm_lapic * apic)554 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
555 {
556 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
557 }
558
apic_lvtt_period(struct kvm_lapic * apic)559 static inline int apic_lvtt_period(struct kvm_lapic *apic)
560 {
561 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
562 }
563
apic_lvtt_tscdeadline(struct kvm_lapic * apic)564 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
565 {
566 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
567 }
568
apic_lvt_nmi_mode(u32 lvt_val)569 static inline int apic_lvt_nmi_mode(u32 lvt_val)
570 {
571 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
572 }
573
kvm_lapic_lvt_supported(struct kvm_lapic * apic,int lvt_index)574 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
575 {
576 return apic->nr_lvt_entries > lvt_index;
577 }
578
kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu * vcpu)579 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
580 {
581 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
582 }
583
kvm_apic_set_version(struct kvm_vcpu * vcpu)584 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
585 {
586 struct kvm_lapic *apic = vcpu->arch.apic;
587 u32 v = 0;
588
589 if (!lapic_in_kernel(vcpu))
590 return;
591
592 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
593
594 /*
595 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
596 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
597 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
598 * version first and level-triggered interrupts never get EOIed in
599 * IOAPIC.
600 */
601 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
602 !ioapic_in_kernel(vcpu->kvm))
603 v |= APIC_LVR_DIRECTED_EOI;
604 kvm_lapic_set_reg(apic, APIC_LVR, v);
605 }
606
kvm_apic_after_set_mcg_cap(struct kvm_vcpu * vcpu)607 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
608 {
609 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
610 struct kvm_lapic *apic = vcpu->arch.apic;
611 int i;
612
613 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
614 return;
615
616 /* Initialize/mask any "new" LVT entries. */
617 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
618 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
619
620 apic->nr_lvt_entries = nr_lvt_entries;
621
622 /* The number of LVT entries is reflected in the version register. */
623 kvm_apic_set_version(vcpu);
624 }
625
626 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
627 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */
628 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
629 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
630 [LVT_LINT0] = LINT_MASK,
631 [LVT_LINT1] = LINT_MASK,
632 [LVT_ERROR] = LVT_MASK,
633 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
634 };
635
find_highest_vector(void * bitmap)636 static int find_highest_vector(void *bitmap)
637 {
638 int vec;
639 u32 *reg;
640
641 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
642 vec >= 0; vec -= APIC_VECTORS_PER_REG) {
643 reg = bitmap + REG_POS(vec);
644 if (*reg)
645 return __fls(*reg) + vec;
646 }
647
648 return -1;
649 }
650
count_vectors(void * bitmap)651 static u8 count_vectors(void *bitmap)
652 {
653 int vec;
654 u32 *reg;
655 u8 count = 0;
656
657 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
658 reg = bitmap + REG_POS(vec);
659 count += hweight32(*reg);
660 }
661
662 return count;
663 }
664
__kvm_apic_update_irr(u32 * pir,void * regs,int * max_irr)665 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
666 {
667 u32 i, vec;
668 u32 pir_val, irr_val, prev_irr_val;
669 int max_updated_irr;
670
671 max_updated_irr = -1;
672 *max_irr = -1;
673
674 for (i = vec = 0; i <= 7; i++, vec += 32) {
675 u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10);
676
677 irr_val = *p_irr;
678 pir_val = READ_ONCE(pir[i]);
679
680 if (pir_val) {
681 pir_val = xchg(&pir[i], 0);
682
683 prev_irr_val = irr_val;
684 do {
685 irr_val = prev_irr_val | pir_val;
686 } while (prev_irr_val != irr_val &&
687 !try_cmpxchg(p_irr, &prev_irr_val, irr_val));
688
689 if (prev_irr_val != irr_val)
690 max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec;
691 }
692 if (irr_val)
693 *max_irr = __fls(irr_val) + vec;
694 }
695
696 return ((max_updated_irr != -1) &&
697 (max_updated_irr == *max_irr));
698 }
699 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
700
kvm_apic_update_irr(struct kvm_vcpu * vcpu,u32 * pir,int * max_irr)701 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
702 {
703 struct kvm_lapic *apic = vcpu->arch.apic;
704 bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr);
705
706 if (unlikely(!apic->apicv_active && irr_updated))
707 apic->irr_pending = true;
708 return irr_updated;
709 }
710 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
711
apic_search_irr(struct kvm_lapic * apic)712 static inline int apic_search_irr(struct kvm_lapic *apic)
713 {
714 return find_highest_vector(apic->regs + APIC_IRR);
715 }
716
apic_find_highest_irr(struct kvm_lapic * apic)717 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
718 {
719 int result;
720
721 /*
722 * Note that irr_pending is just a hint. It will be always
723 * true with virtual interrupt delivery enabled.
724 */
725 if (!apic->irr_pending)
726 return -1;
727
728 result = apic_search_irr(apic);
729 ASSERT(result == -1 || result >= 16);
730
731 return result;
732 }
733
apic_clear_irr(int vec,struct kvm_lapic * apic)734 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
735 {
736 if (unlikely(apic->apicv_active)) {
737 /* need to update RVI */
738 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
739 kvm_x86_call(hwapic_irr_update)(apic->vcpu,
740 apic_find_highest_irr(apic));
741 } else {
742 apic->irr_pending = false;
743 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
744 if (apic_search_irr(apic) != -1)
745 apic->irr_pending = true;
746 }
747 }
748
kvm_apic_clear_irr(struct kvm_vcpu * vcpu,int vec)749 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
750 {
751 apic_clear_irr(vec, vcpu->arch.apic);
752 }
753 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
754
apic_set_isr(int vec,struct kvm_lapic * apic)755 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
756 {
757 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
758 return;
759
760 /*
761 * With APIC virtualization enabled, all caching is disabled
762 * because the processor can modify ISR under the hood. Instead
763 * just set SVI.
764 */
765 if (unlikely(apic->apicv_active))
766 kvm_x86_call(hwapic_isr_update)(vec);
767 else {
768 ++apic->isr_count;
769 BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
770 /*
771 * ISR (in service register) bit is set when injecting an interrupt.
772 * The highest vector is injected. Thus the latest bit set matches
773 * the highest bit in ISR.
774 */
775 apic->highest_isr_cache = vec;
776 }
777 }
778
apic_find_highest_isr(struct kvm_lapic * apic)779 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
780 {
781 int result;
782
783 /*
784 * Note that isr_count is always 1, and highest_isr_cache
785 * is always -1, with APIC virtualization enabled.
786 */
787 if (!apic->isr_count)
788 return -1;
789 if (likely(apic->highest_isr_cache != -1))
790 return apic->highest_isr_cache;
791
792 result = find_highest_vector(apic->regs + APIC_ISR);
793 ASSERT(result == -1 || result >= 16);
794
795 return result;
796 }
797
apic_clear_isr(int vec,struct kvm_lapic * apic)798 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
799 {
800 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
801 return;
802
803 /*
804 * We do get here for APIC virtualization enabled if the guest
805 * uses the Hyper-V APIC enlightenment. In this case we may need
806 * to trigger a new interrupt delivery by writing the SVI field;
807 * on the other hand isr_count and highest_isr_cache are unused
808 * and must be left alone.
809 */
810 if (unlikely(apic->apicv_active))
811 kvm_x86_call(hwapic_isr_update)(apic_find_highest_isr(apic));
812 else {
813 --apic->isr_count;
814 BUG_ON(apic->isr_count < 0);
815 apic->highest_isr_cache = -1;
816 }
817 }
818
kvm_lapic_find_highest_irr(struct kvm_vcpu * vcpu)819 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
820 {
821 /* This may race with setting of irr in __apic_accept_irq() and
822 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
823 * will cause vmexit immediately and the value will be recalculated
824 * on the next vmentry.
825 */
826 return apic_find_highest_irr(vcpu->arch.apic);
827 }
828 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
829
830 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
831 int vector, int level, int trig_mode,
832 struct dest_map *dest_map);
833
kvm_apic_set_irq(struct kvm_vcpu * vcpu,struct kvm_lapic_irq * irq,struct dest_map * dest_map)834 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
835 struct dest_map *dest_map)
836 {
837 struct kvm_lapic *apic = vcpu->arch.apic;
838
839 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
840 irq->level, irq->trig_mode, dest_map);
841 }
842
__pv_send_ipi(unsigned long * ipi_bitmap,struct kvm_apic_map * map,struct kvm_lapic_irq * irq,u32 min)843 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
844 struct kvm_lapic_irq *irq, u32 min)
845 {
846 int i, count = 0;
847 struct kvm_vcpu *vcpu;
848
849 if (min > map->max_apic_id)
850 return 0;
851
852 for_each_set_bit(i, ipi_bitmap,
853 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
854 if (map->phys_map[min + i]) {
855 vcpu = map->phys_map[min + i]->vcpu;
856 count += kvm_apic_set_irq(vcpu, irq, NULL);
857 }
858 }
859
860 return count;
861 }
862
kvm_pv_send_ipi(struct kvm * kvm,unsigned long ipi_bitmap_low,unsigned long ipi_bitmap_high,u32 min,unsigned long icr,int op_64_bit)863 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
864 unsigned long ipi_bitmap_high, u32 min,
865 unsigned long icr, int op_64_bit)
866 {
867 struct kvm_apic_map *map;
868 struct kvm_lapic_irq irq = {0};
869 int cluster_size = op_64_bit ? 64 : 32;
870 int count;
871
872 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
873 return -KVM_EINVAL;
874
875 irq.vector = icr & APIC_VECTOR_MASK;
876 irq.delivery_mode = icr & APIC_MODE_MASK;
877 irq.level = (icr & APIC_INT_ASSERT) != 0;
878 irq.trig_mode = icr & APIC_INT_LEVELTRIG;
879
880 rcu_read_lock();
881 map = rcu_dereference(kvm->arch.apic_map);
882
883 count = -EOPNOTSUPP;
884 if (likely(map)) {
885 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
886 min += cluster_size;
887 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
888 }
889
890 rcu_read_unlock();
891 return count;
892 }
893
pv_eoi_put_user(struct kvm_vcpu * vcpu,u8 val)894 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
895 {
896
897 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
898 sizeof(val));
899 }
900
pv_eoi_get_user(struct kvm_vcpu * vcpu,u8 * val)901 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
902 {
903
904 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
905 sizeof(*val));
906 }
907
pv_eoi_enabled(struct kvm_vcpu * vcpu)908 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
909 {
910 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
911 }
912
pv_eoi_set_pending(struct kvm_vcpu * vcpu)913 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
914 {
915 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
916 return;
917
918 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
919 }
920
pv_eoi_test_and_clr_pending(struct kvm_vcpu * vcpu)921 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
922 {
923 u8 val;
924
925 if (pv_eoi_get_user(vcpu, &val) < 0)
926 return false;
927
928 val &= KVM_PV_EOI_ENABLED;
929
930 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
931 return false;
932
933 /*
934 * Clear pending bit in any case: it will be set again on vmentry.
935 * While this might not be ideal from performance point of view,
936 * this makes sure pv eoi is only enabled when we know it's safe.
937 */
938 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
939
940 return val;
941 }
942
apic_has_interrupt_for_ppr(struct kvm_lapic * apic,u32 ppr)943 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
944 {
945 int highest_irr;
946 if (kvm_x86_ops.sync_pir_to_irr)
947 highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu);
948 else
949 highest_irr = apic_find_highest_irr(apic);
950 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
951 return -1;
952 return highest_irr;
953 }
954
__apic_update_ppr(struct kvm_lapic * apic,u32 * new_ppr)955 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
956 {
957 u32 tpr, isrv, ppr, old_ppr;
958 int isr;
959
960 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
961 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
962 isr = apic_find_highest_isr(apic);
963 isrv = (isr != -1) ? isr : 0;
964
965 if ((tpr & 0xf0) >= (isrv & 0xf0))
966 ppr = tpr & 0xff;
967 else
968 ppr = isrv & 0xf0;
969
970 *new_ppr = ppr;
971 if (old_ppr != ppr)
972 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
973
974 return ppr < old_ppr;
975 }
976
apic_update_ppr(struct kvm_lapic * apic)977 static void apic_update_ppr(struct kvm_lapic *apic)
978 {
979 u32 ppr;
980
981 if (__apic_update_ppr(apic, &ppr) &&
982 apic_has_interrupt_for_ppr(apic, ppr) != -1)
983 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
984 }
985
kvm_apic_update_ppr(struct kvm_vcpu * vcpu)986 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
987 {
988 apic_update_ppr(vcpu->arch.apic);
989 }
990 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
991
apic_set_tpr(struct kvm_lapic * apic,u32 tpr)992 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
993 {
994 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
995 apic_update_ppr(apic);
996 }
997
kvm_apic_broadcast(struct kvm_lapic * apic,u32 mda)998 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
999 {
1000 return mda == (apic_x2apic_mode(apic) ?
1001 X2APIC_BROADCAST : APIC_BROADCAST);
1002 }
1003
kvm_apic_match_physical_addr(struct kvm_lapic * apic,u32 mda)1004 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
1005 {
1006 if (kvm_apic_broadcast(apic, mda))
1007 return true;
1008
1009 /*
1010 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
1011 * were in x2APIC mode if the target APIC ID can't be encoded as an
1012 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which
1013 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
1014 * mode. Match the x2APIC ID if and only if the target APIC ID can't
1015 * be encoded in xAPIC to avoid spurious matches against a vCPU that
1016 * changed its (addressable) xAPIC ID (which is writable).
1017 */
1018 if (apic_x2apic_mode(apic) || mda > 0xff)
1019 return mda == kvm_x2apic_id(apic);
1020
1021 return mda == kvm_xapic_id(apic);
1022 }
1023
kvm_apic_match_logical_addr(struct kvm_lapic * apic,u32 mda)1024 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
1025 {
1026 u32 logical_id;
1027
1028 if (kvm_apic_broadcast(apic, mda))
1029 return true;
1030
1031 logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
1032
1033 if (apic_x2apic_mode(apic))
1034 return ((logical_id >> 16) == (mda >> 16))
1035 && (logical_id & mda & 0xffff) != 0;
1036
1037 logical_id = GET_APIC_LOGICAL_ID(logical_id);
1038
1039 switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
1040 case APIC_DFR_FLAT:
1041 return (logical_id & mda) != 0;
1042 case APIC_DFR_CLUSTER:
1043 return ((logical_id >> 4) == (mda >> 4))
1044 && (logical_id & mda & 0xf) != 0;
1045 default:
1046 return false;
1047 }
1048 }
1049
1050 /* The KVM local APIC implementation has two quirks:
1051 *
1052 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
1053 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
1054 * KVM doesn't do that aliasing.
1055 *
1056 * - in-kernel IOAPIC messages have to be delivered directly to
1057 * x2APIC, because the kernel does not support interrupt remapping.
1058 * In order to support broadcast without interrupt remapping, x2APIC
1059 * rewrites the destination of non-IPI messages from APIC_BROADCAST
1060 * to X2APIC_BROADCAST.
1061 *
1062 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is
1063 * important when userspace wants to use x2APIC-format MSIs, because
1064 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
1065 */
kvm_apic_mda(struct kvm_vcpu * vcpu,unsigned int dest_id,struct kvm_lapic * source,struct kvm_lapic * target)1066 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
1067 struct kvm_lapic *source, struct kvm_lapic *target)
1068 {
1069 bool ipi = source != NULL;
1070
1071 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
1072 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
1073 return X2APIC_BROADCAST;
1074
1075 return dest_id;
1076 }
1077
kvm_apic_match_dest(struct kvm_vcpu * vcpu,struct kvm_lapic * source,int shorthand,unsigned int dest,int dest_mode)1078 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1079 int shorthand, unsigned int dest, int dest_mode)
1080 {
1081 struct kvm_lapic *target = vcpu->arch.apic;
1082 u32 mda = kvm_apic_mda(vcpu, dest, source, target);
1083
1084 ASSERT(target);
1085 switch (shorthand) {
1086 case APIC_DEST_NOSHORT:
1087 if (dest_mode == APIC_DEST_PHYSICAL)
1088 return kvm_apic_match_physical_addr(target, mda);
1089 else
1090 return kvm_apic_match_logical_addr(target, mda);
1091 case APIC_DEST_SELF:
1092 return target == source;
1093 case APIC_DEST_ALLINC:
1094 return true;
1095 case APIC_DEST_ALLBUT:
1096 return target != source;
1097 default:
1098 return false;
1099 }
1100 }
1101 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
1102
kvm_vector_to_index(u32 vector,u32 dest_vcpus,const unsigned long * bitmap,u32 bitmap_size)1103 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
1104 const unsigned long *bitmap, u32 bitmap_size)
1105 {
1106 u32 mod;
1107 int i, idx = -1;
1108
1109 mod = vector % dest_vcpus;
1110
1111 for (i = 0; i <= mod; i++) {
1112 idx = find_next_bit(bitmap, bitmap_size, idx + 1);
1113 BUG_ON(idx == bitmap_size);
1114 }
1115
1116 return idx;
1117 }
1118
kvm_apic_disabled_lapic_found(struct kvm * kvm)1119 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
1120 {
1121 if (!kvm->arch.disabled_lapic_found) {
1122 kvm->arch.disabled_lapic_found = true;
1123 pr_info("Disabled LAPIC found during irq injection\n");
1124 }
1125 }
1126
kvm_apic_is_broadcast_dest(struct kvm * kvm,struct kvm_lapic ** src,struct kvm_lapic_irq * irq,struct kvm_apic_map * map)1127 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
1128 struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
1129 {
1130 if (kvm->arch.x2apic_broadcast_quirk_disabled) {
1131 if ((irq->dest_id == APIC_BROADCAST &&
1132 map->logical_mode != KVM_APIC_MODE_X2APIC))
1133 return true;
1134 if (irq->dest_id == X2APIC_BROADCAST)
1135 return true;
1136 } else {
1137 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
1138 if (irq->dest_id == (x2apic_ipi ?
1139 X2APIC_BROADCAST : APIC_BROADCAST))
1140 return true;
1141 }
1142
1143 return false;
1144 }
1145
1146 /* Return true if the interrupt can be handled by using *bitmap as index mask
1147 * for valid destinations in *dst array.
1148 * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
1149 * Note: we may have zero kvm_lapic destinations when we return true, which
1150 * means that the interrupt should be dropped. In this case, *bitmap would be
1151 * zero and *dst undefined.
1152 */
kvm_apic_map_get_dest_lapic(struct kvm * kvm,struct kvm_lapic ** src,struct kvm_lapic_irq * irq,struct kvm_apic_map * map,struct kvm_lapic *** dst,unsigned long * bitmap)1153 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
1154 struct kvm_lapic **src, struct kvm_lapic_irq *irq,
1155 struct kvm_apic_map *map, struct kvm_lapic ***dst,
1156 unsigned long *bitmap)
1157 {
1158 int i, lowest;
1159
1160 if (irq->shorthand == APIC_DEST_SELF && src) {
1161 *dst = src;
1162 *bitmap = 1;
1163 return true;
1164 } else if (irq->shorthand)
1165 return false;
1166
1167 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
1168 return false;
1169
1170 if (irq->dest_mode == APIC_DEST_PHYSICAL) {
1171 if (irq->dest_id > map->max_apic_id) {
1172 *bitmap = 0;
1173 } else {
1174 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
1175 *dst = &map->phys_map[dest_id];
1176 *bitmap = 1;
1177 }
1178 return true;
1179 }
1180
1181 *bitmap = 0;
1182 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
1183 (u16 *)bitmap))
1184 return false;
1185
1186 if (!kvm_lowest_prio_delivery(irq))
1187 return true;
1188
1189 if (!kvm_vector_hashing_enabled()) {
1190 lowest = -1;
1191 for_each_set_bit(i, bitmap, 16) {
1192 if (!(*dst)[i])
1193 continue;
1194 if (lowest < 0)
1195 lowest = i;
1196 else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
1197 (*dst)[lowest]->vcpu) < 0)
1198 lowest = i;
1199 }
1200 } else {
1201 if (!*bitmap)
1202 return true;
1203
1204 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1205 bitmap, 16);
1206
1207 if (!(*dst)[lowest]) {
1208 kvm_apic_disabled_lapic_found(kvm);
1209 *bitmap = 0;
1210 return true;
1211 }
1212 }
1213
1214 *bitmap = (lowest >= 0) ? 1 << lowest : 0;
1215
1216 return true;
1217 }
1218
kvm_irq_delivery_to_apic_fast(struct kvm * kvm,struct kvm_lapic * src,struct kvm_lapic_irq * irq,int * r,struct dest_map * dest_map)1219 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1220 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1221 {
1222 struct kvm_apic_map *map;
1223 unsigned long bitmap;
1224 struct kvm_lapic **dst = NULL;
1225 int i;
1226 bool ret;
1227
1228 *r = -1;
1229
1230 if (irq->shorthand == APIC_DEST_SELF) {
1231 if (KVM_BUG_ON(!src, kvm)) {
1232 *r = 0;
1233 return true;
1234 }
1235 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1236 return true;
1237 }
1238
1239 rcu_read_lock();
1240 map = rcu_dereference(kvm->arch.apic_map);
1241
1242 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1243 if (ret) {
1244 *r = 0;
1245 for_each_set_bit(i, &bitmap, 16) {
1246 if (!dst[i])
1247 continue;
1248 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1249 }
1250 }
1251
1252 rcu_read_unlock();
1253 return ret;
1254 }
1255
1256 /*
1257 * This routine tries to handle interrupts in posted mode, here is how
1258 * it deals with different cases:
1259 * - For single-destination interrupts, handle it in posted mode
1260 * - Else if vector hashing is enabled and it is a lowest-priority
1261 * interrupt, handle it in posted mode and use the following mechanism
1262 * to find the destination vCPU.
1263 * 1. For lowest-priority interrupts, store all the possible
1264 * destination vCPUs in an array.
1265 * 2. Use "guest vector % max number of destination vCPUs" to find
1266 * the right destination vCPU in the array for the lowest-priority
1267 * interrupt.
1268 * - Otherwise, use remapped mode to inject the interrupt.
1269 */
kvm_intr_is_single_vcpu_fast(struct kvm * kvm,struct kvm_lapic_irq * irq,struct kvm_vcpu ** dest_vcpu)1270 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1271 struct kvm_vcpu **dest_vcpu)
1272 {
1273 struct kvm_apic_map *map;
1274 unsigned long bitmap;
1275 struct kvm_lapic **dst = NULL;
1276 bool ret = false;
1277
1278 if (irq->shorthand)
1279 return false;
1280
1281 rcu_read_lock();
1282 map = rcu_dereference(kvm->arch.apic_map);
1283
1284 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1285 hweight16(bitmap) == 1) {
1286 unsigned long i = find_first_bit(&bitmap, 16);
1287
1288 if (dst[i]) {
1289 *dest_vcpu = dst[i]->vcpu;
1290 ret = true;
1291 }
1292 }
1293
1294 rcu_read_unlock();
1295 return ret;
1296 }
1297
1298 /*
1299 * Add a pending IRQ into lapic.
1300 * Return 1 if successfully added and 0 if discarded.
1301 */
__apic_accept_irq(struct kvm_lapic * apic,int delivery_mode,int vector,int level,int trig_mode,struct dest_map * dest_map)1302 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1303 int vector, int level, int trig_mode,
1304 struct dest_map *dest_map)
1305 {
1306 int result = 0;
1307 struct kvm_vcpu *vcpu = apic->vcpu;
1308
1309 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1310 trig_mode, vector);
1311 switch (delivery_mode) {
1312 case APIC_DM_LOWEST:
1313 vcpu->arch.apic_arb_prio++;
1314 fallthrough;
1315 case APIC_DM_FIXED:
1316 if (unlikely(trig_mode && !level))
1317 break;
1318
1319 /* FIXME add logic for vcpu on reset */
1320 if (unlikely(!apic_enabled(apic)))
1321 break;
1322
1323 result = 1;
1324
1325 if (dest_map) {
1326 __set_bit(vcpu->vcpu_id, dest_map->map);
1327 dest_map->vectors[vcpu->vcpu_id] = vector;
1328 }
1329
1330 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1331 if (trig_mode)
1332 kvm_lapic_set_vector(vector,
1333 apic->regs + APIC_TMR);
1334 else
1335 kvm_lapic_clear_vector(vector,
1336 apic->regs + APIC_TMR);
1337 }
1338
1339 kvm_x86_call(deliver_interrupt)(apic, delivery_mode,
1340 trig_mode, vector);
1341 break;
1342
1343 case APIC_DM_REMRD:
1344 result = 1;
1345 vcpu->arch.pv.pv_unhalted = 1;
1346 kvm_make_request(KVM_REQ_EVENT, vcpu);
1347 kvm_vcpu_kick(vcpu);
1348 break;
1349
1350 case APIC_DM_SMI:
1351 if (!kvm_inject_smi(vcpu)) {
1352 kvm_vcpu_kick(vcpu);
1353 result = 1;
1354 }
1355 break;
1356
1357 case APIC_DM_NMI:
1358 result = 1;
1359 kvm_inject_nmi(vcpu);
1360 kvm_vcpu_kick(vcpu);
1361 break;
1362
1363 case APIC_DM_INIT:
1364 if (!trig_mode || level) {
1365 result = 1;
1366 /* assumes that there are only KVM_APIC_INIT/SIPI */
1367 apic->pending_events = (1UL << KVM_APIC_INIT);
1368 kvm_make_request(KVM_REQ_EVENT, vcpu);
1369 kvm_vcpu_kick(vcpu);
1370 }
1371 break;
1372
1373 case APIC_DM_STARTUP:
1374 result = 1;
1375 apic->sipi_vector = vector;
1376 /* make sure sipi_vector is visible for the receiver */
1377 smp_wmb();
1378 set_bit(KVM_APIC_SIPI, &apic->pending_events);
1379 kvm_make_request(KVM_REQ_EVENT, vcpu);
1380 kvm_vcpu_kick(vcpu);
1381 break;
1382
1383 case APIC_DM_EXTINT:
1384 /*
1385 * Should only be called by kvm_apic_local_deliver() with LVT0,
1386 * before NMI watchdog was enabled. Already handled by
1387 * kvm_apic_accept_pic_intr().
1388 */
1389 break;
1390
1391 default:
1392 printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1393 delivery_mode);
1394 break;
1395 }
1396 return result;
1397 }
1398
1399 /*
1400 * This routine identifies the destination vcpus mask meant to receive the
1401 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1402 * out the destination vcpus array and set the bitmap or it traverses to
1403 * each available vcpu to identify the same.
1404 */
kvm_bitmap_or_dest_vcpus(struct kvm * kvm,struct kvm_lapic_irq * irq,unsigned long * vcpu_bitmap)1405 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1406 unsigned long *vcpu_bitmap)
1407 {
1408 struct kvm_lapic **dest_vcpu = NULL;
1409 struct kvm_lapic *src = NULL;
1410 struct kvm_apic_map *map;
1411 struct kvm_vcpu *vcpu;
1412 unsigned long bitmap, i;
1413 int vcpu_idx;
1414 bool ret;
1415
1416 rcu_read_lock();
1417 map = rcu_dereference(kvm->arch.apic_map);
1418
1419 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1420 &bitmap);
1421 if (ret) {
1422 for_each_set_bit(i, &bitmap, 16) {
1423 if (!dest_vcpu[i])
1424 continue;
1425 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1426 __set_bit(vcpu_idx, vcpu_bitmap);
1427 }
1428 } else {
1429 kvm_for_each_vcpu(i, vcpu, kvm) {
1430 if (!kvm_apic_present(vcpu))
1431 continue;
1432 if (!kvm_apic_match_dest(vcpu, NULL,
1433 irq->shorthand,
1434 irq->dest_id,
1435 irq->dest_mode))
1436 continue;
1437 __set_bit(i, vcpu_bitmap);
1438 }
1439 }
1440 rcu_read_unlock();
1441 }
1442
kvm_apic_compare_prio(struct kvm_vcpu * vcpu1,struct kvm_vcpu * vcpu2)1443 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1444 {
1445 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1446 }
1447
kvm_ioapic_handles_vector(struct kvm_lapic * apic,int vector)1448 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1449 {
1450 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1451 }
1452
kvm_ioapic_send_eoi(struct kvm_lapic * apic,int vector)1453 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1454 {
1455 int trigger_mode;
1456
1457 /* Eoi the ioapic only if the ioapic doesn't own the vector. */
1458 if (!kvm_ioapic_handles_vector(apic, vector))
1459 return;
1460
1461 /* Request a KVM exit to inform the userspace IOAPIC. */
1462 if (irqchip_split(apic->vcpu->kvm)) {
1463 apic->vcpu->arch.pending_ioapic_eoi = vector;
1464 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1465 return;
1466 }
1467
1468 if (apic_test_vector(vector, apic->regs + APIC_TMR))
1469 trigger_mode = IOAPIC_LEVEL_TRIG;
1470 else
1471 trigger_mode = IOAPIC_EDGE_TRIG;
1472
1473 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1474 }
1475
apic_set_eoi(struct kvm_lapic * apic)1476 static int apic_set_eoi(struct kvm_lapic *apic)
1477 {
1478 int vector = apic_find_highest_isr(apic);
1479
1480 trace_kvm_eoi(apic, vector);
1481
1482 /*
1483 * Not every write EOI will has corresponding ISR,
1484 * one example is when Kernel check timer on setup_IO_APIC
1485 */
1486 if (vector == -1)
1487 return vector;
1488
1489 apic_clear_isr(vector, apic);
1490 apic_update_ppr(apic);
1491
1492 if (kvm_hv_synic_has_vector(apic->vcpu, vector))
1493 kvm_hv_synic_send_eoi(apic->vcpu, vector);
1494
1495 kvm_ioapic_send_eoi(apic, vector);
1496 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1497 return vector;
1498 }
1499
1500 /*
1501 * this interface assumes a trap-like exit, which has already finished
1502 * desired side effect including vISR and vPPR update.
1503 */
kvm_apic_set_eoi_accelerated(struct kvm_vcpu * vcpu,int vector)1504 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1505 {
1506 struct kvm_lapic *apic = vcpu->arch.apic;
1507
1508 trace_kvm_eoi(apic, vector);
1509
1510 kvm_ioapic_send_eoi(apic, vector);
1511 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1512 }
1513 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1514
kvm_apic_send_ipi(struct kvm_lapic * apic,u32 icr_low,u32 icr_high)1515 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1516 {
1517 struct kvm_lapic_irq irq;
1518
1519 /* KVM has no delay and should always clear the BUSY/PENDING flag. */
1520 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1521
1522 irq.vector = icr_low & APIC_VECTOR_MASK;
1523 irq.delivery_mode = icr_low & APIC_MODE_MASK;
1524 irq.dest_mode = icr_low & APIC_DEST_MASK;
1525 irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1526 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1527 irq.shorthand = icr_low & APIC_SHORT_MASK;
1528 irq.msi_redir_hint = false;
1529 if (apic_x2apic_mode(apic))
1530 irq.dest_id = icr_high;
1531 else
1532 irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
1533
1534 trace_kvm_apic_ipi(icr_low, irq.dest_id);
1535
1536 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1539
apic_get_tmcct(struct kvm_lapic * apic)1540 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1541 {
1542 ktime_t remaining, now;
1543 s64 ns;
1544
1545 ASSERT(apic != NULL);
1546
1547 /* if initial count is 0, current count should also be 0 */
1548 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1549 apic->lapic_timer.period == 0)
1550 return 0;
1551
1552 now = ktime_get();
1553 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1554 if (ktime_to_ns(remaining) < 0)
1555 remaining = 0;
1556
1557 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1558 return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns *
1559 apic->divide_count));
1560 }
1561
__report_tpr_access(struct kvm_lapic * apic,bool write)1562 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1563 {
1564 struct kvm_vcpu *vcpu = apic->vcpu;
1565 struct kvm_run *run = vcpu->run;
1566
1567 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1568 run->tpr_access.rip = kvm_rip_read(vcpu);
1569 run->tpr_access.is_write = write;
1570 }
1571
report_tpr_access(struct kvm_lapic * apic,bool write)1572 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1573 {
1574 if (apic->vcpu->arch.tpr_access_reporting)
1575 __report_tpr_access(apic, write);
1576 }
1577
__apic_read(struct kvm_lapic * apic,unsigned int offset)1578 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1579 {
1580 u32 val = 0;
1581
1582 if (offset >= LAPIC_MMIO_LENGTH)
1583 return 0;
1584
1585 switch (offset) {
1586 case APIC_ARBPRI:
1587 break;
1588
1589 case APIC_TMCCT: /* Timer CCR */
1590 if (apic_lvtt_tscdeadline(apic))
1591 return 0;
1592
1593 val = apic_get_tmcct(apic);
1594 break;
1595 case APIC_PROCPRI:
1596 apic_update_ppr(apic);
1597 val = kvm_lapic_get_reg(apic, offset);
1598 break;
1599 case APIC_TASKPRI:
1600 report_tpr_access(apic, false);
1601 fallthrough;
1602 default:
1603 val = kvm_lapic_get_reg(apic, offset);
1604 break;
1605 }
1606
1607 return val;
1608 }
1609
to_lapic(struct kvm_io_device * dev)1610 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1611 {
1612 return container_of(dev, struct kvm_lapic, dev);
1613 }
1614
1615 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4))
1616 #define APIC_REGS_MASK(first, count) \
1617 (APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1618
kvm_lapic_readable_reg_mask(struct kvm_lapic * apic)1619 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic)
1620 {
1621 /* Leave bits '0' for reserved and write-only registers. */
1622 u64 valid_reg_mask =
1623 APIC_REG_MASK(APIC_ID) |
1624 APIC_REG_MASK(APIC_LVR) |
1625 APIC_REG_MASK(APIC_TASKPRI) |
1626 APIC_REG_MASK(APIC_PROCPRI) |
1627 APIC_REG_MASK(APIC_LDR) |
1628 APIC_REG_MASK(APIC_SPIV) |
1629 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1630 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1631 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1632 APIC_REG_MASK(APIC_ESR) |
1633 APIC_REG_MASK(APIC_ICR) |
1634 APIC_REG_MASK(APIC_LVTT) |
1635 APIC_REG_MASK(APIC_LVTTHMR) |
1636 APIC_REG_MASK(APIC_LVTPC) |
1637 APIC_REG_MASK(APIC_LVT0) |
1638 APIC_REG_MASK(APIC_LVT1) |
1639 APIC_REG_MASK(APIC_LVTERR) |
1640 APIC_REG_MASK(APIC_TMICT) |
1641 APIC_REG_MASK(APIC_TMCCT) |
1642 APIC_REG_MASK(APIC_TDCR);
1643
1644 if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
1645 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
1646
1647 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
1648 if (!apic_x2apic_mode(apic))
1649 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1650 APIC_REG_MASK(APIC_DFR) |
1651 APIC_REG_MASK(APIC_ICR2);
1652
1653 return valid_reg_mask;
1654 }
1655 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask);
1656
kvm_lapic_reg_read(struct kvm_lapic * apic,u32 offset,int len,void * data)1657 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1658 void *data)
1659 {
1660 unsigned char alignment = offset & 0xf;
1661 u32 result;
1662
1663 /*
1664 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
1665 * x2APIC and needs to be manually handled by the caller.
1666 */
1667 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR);
1668
1669 if (alignment + len > 4)
1670 return 1;
1671
1672 if (offset > 0x3f0 ||
1673 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset)))
1674 return 1;
1675
1676 result = __apic_read(apic, offset & ~0xf);
1677
1678 trace_kvm_apic_read(offset, result);
1679
1680 switch (len) {
1681 case 1:
1682 case 2:
1683 case 4:
1684 memcpy(data, (char *)&result + alignment, len);
1685 break;
1686 default:
1687 printk(KERN_ERR "Local APIC read with len = %x, "
1688 "should be 1,2, or 4 instead\n", len);
1689 break;
1690 }
1691 return 0;
1692 }
1693
apic_mmio_in_range(struct kvm_lapic * apic,gpa_t addr)1694 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1695 {
1696 return addr >= apic->base_address &&
1697 addr < apic->base_address + LAPIC_MMIO_LENGTH;
1698 }
1699
apic_mmio_read(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t address,int len,void * data)1700 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1701 gpa_t address, int len, void *data)
1702 {
1703 struct kvm_lapic *apic = to_lapic(this);
1704 u32 offset = address - apic->base_address;
1705
1706 if (!apic_mmio_in_range(apic, address))
1707 return -EOPNOTSUPP;
1708
1709 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1710 if (!kvm_check_has_quirk(vcpu->kvm,
1711 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1712 return -EOPNOTSUPP;
1713
1714 memset(data, 0xff, len);
1715 return 0;
1716 }
1717
1718 kvm_lapic_reg_read(apic, offset, len, data);
1719
1720 return 0;
1721 }
1722
update_divide_count(struct kvm_lapic * apic)1723 static void update_divide_count(struct kvm_lapic *apic)
1724 {
1725 u32 tmp1, tmp2, tdcr;
1726
1727 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1728 tmp1 = tdcr & 0xf;
1729 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1730 apic->divide_count = 0x1 << (tmp2 & 0x7);
1731 }
1732
limit_periodic_timer_frequency(struct kvm_lapic * apic)1733 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1734 {
1735 /*
1736 * Do not allow the guest to program periodic timers with small
1737 * interval, since the hrtimers are not throttled by the host
1738 * scheduler.
1739 */
1740 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1741 s64 min_period = min_timer_period_us * 1000LL;
1742
1743 if (apic->lapic_timer.period < min_period) {
1744 pr_info_once(
1745 "vcpu %i: requested %lld ns "
1746 "lapic timer period limited to %lld ns\n",
1747 apic->vcpu->vcpu_id,
1748 apic->lapic_timer.period, min_period);
1749 apic->lapic_timer.period = min_period;
1750 }
1751 }
1752 }
1753
1754 static void cancel_hv_timer(struct kvm_lapic *apic);
1755
cancel_apic_timer(struct kvm_lapic * apic)1756 static void cancel_apic_timer(struct kvm_lapic *apic)
1757 {
1758 hrtimer_cancel(&apic->lapic_timer.timer);
1759 preempt_disable();
1760 if (apic->lapic_timer.hv_timer_in_use)
1761 cancel_hv_timer(apic);
1762 preempt_enable();
1763 atomic_set(&apic->lapic_timer.pending, 0);
1764 }
1765
apic_update_lvtt(struct kvm_lapic * apic)1766 static void apic_update_lvtt(struct kvm_lapic *apic)
1767 {
1768 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1769 apic->lapic_timer.timer_mode_mask;
1770
1771 if (apic->lapic_timer.timer_mode != timer_mode) {
1772 if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1773 APIC_LVT_TIMER_TSCDEADLINE)) {
1774 cancel_apic_timer(apic);
1775 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1776 apic->lapic_timer.period = 0;
1777 apic->lapic_timer.tscdeadline = 0;
1778 }
1779 apic->lapic_timer.timer_mode = timer_mode;
1780 limit_periodic_timer_frequency(apic);
1781 }
1782 }
1783
1784 /*
1785 * On APICv, this test will cause a busy wait
1786 * during a higher-priority task.
1787 */
1788
lapic_timer_int_injected(struct kvm_vcpu * vcpu)1789 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1790 {
1791 struct kvm_lapic *apic = vcpu->arch.apic;
1792 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1793
1794 if (kvm_apic_hw_enabled(apic)) {
1795 int vec = reg & APIC_VECTOR_MASK;
1796 void *bitmap = apic->regs + APIC_ISR;
1797
1798 if (apic->apicv_active)
1799 bitmap = apic->regs + APIC_IRR;
1800
1801 if (apic_test_vector(vec, bitmap))
1802 return true;
1803 }
1804 return false;
1805 }
1806
__wait_lapic_expire(struct kvm_vcpu * vcpu,u64 guest_cycles)1807 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1808 {
1809 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1810
1811 /*
1812 * If the guest TSC is running at a different ratio than the host, then
1813 * convert the delay to nanoseconds to achieve an accurate delay. Note
1814 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1815 * always for VMX enabled hardware.
1816 */
1817 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
1818 __delay(min(guest_cycles,
1819 nsec_to_cycles(vcpu, timer_advance_ns)));
1820 } else {
1821 u64 delay_ns = guest_cycles * 1000000ULL;
1822 do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1823 ndelay(min_t(u32, delay_ns, timer_advance_ns));
1824 }
1825 }
1826
adjust_lapic_timer_advance(struct kvm_vcpu * vcpu,s64 advance_expire_delta)1827 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1828 s64 advance_expire_delta)
1829 {
1830 struct kvm_lapic *apic = vcpu->arch.apic;
1831 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1832 u64 ns;
1833
1834 /* Do not adjust for tiny fluctuations or large random spikes. */
1835 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1836 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1837 return;
1838
1839 /* too early */
1840 if (advance_expire_delta < 0) {
1841 ns = -advance_expire_delta * 1000000ULL;
1842 do_div(ns, vcpu->arch.virtual_tsc_khz);
1843 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1844 } else {
1845 /* too late */
1846 ns = advance_expire_delta * 1000000ULL;
1847 do_div(ns, vcpu->arch.virtual_tsc_khz);
1848 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1849 }
1850
1851 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1852 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1853 apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1854 }
1855
__kvm_wait_lapic_expire(struct kvm_vcpu * vcpu)1856 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1857 {
1858 struct kvm_lapic *apic = vcpu->arch.apic;
1859 u64 guest_tsc, tsc_deadline;
1860
1861 tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1862 apic->lapic_timer.expired_tscdeadline = 0;
1863 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1864 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1865
1866 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1867
1868 /*
1869 * If the timer fired early, reread the TSC to account for the overhead
1870 * of the above adjustment to avoid waiting longer than is necessary.
1871 */
1872 if (guest_tsc < tsc_deadline)
1873 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1874
1875 if (guest_tsc < tsc_deadline)
1876 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1877 }
1878
kvm_wait_lapic_expire(struct kvm_vcpu * vcpu)1879 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1880 {
1881 if (lapic_in_kernel(vcpu) &&
1882 vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1883 vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1884 lapic_timer_int_injected(vcpu))
1885 __kvm_wait_lapic_expire(vcpu);
1886 }
1887 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1888
kvm_apic_inject_pending_timer_irqs(struct kvm_lapic * apic)1889 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1890 {
1891 struct kvm_timer *ktimer = &apic->lapic_timer;
1892
1893 kvm_apic_local_deliver(apic, APIC_LVTT);
1894 if (apic_lvtt_tscdeadline(apic)) {
1895 ktimer->tscdeadline = 0;
1896 } else if (apic_lvtt_oneshot(apic)) {
1897 ktimer->tscdeadline = 0;
1898 ktimer->target_expiration = 0;
1899 }
1900 }
1901
apic_timer_expired(struct kvm_lapic * apic,bool from_timer_fn)1902 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1903 {
1904 struct kvm_vcpu *vcpu = apic->vcpu;
1905 struct kvm_timer *ktimer = &apic->lapic_timer;
1906
1907 if (atomic_read(&apic->lapic_timer.pending))
1908 return;
1909
1910 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1911 ktimer->expired_tscdeadline = ktimer->tscdeadline;
1912
1913 if (!from_timer_fn && apic->apicv_active) {
1914 WARN_ON(kvm_get_running_vcpu() != vcpu);
1915 kvm_apic_inject_pending_timer_irqs(apic);
1916 return;
1917 }
1918
1919 if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1920 /*
1921 * Ensure the guest's timer has truly expired before posting an
1922 * interrupt. Open code the relevant checks to avoid querying
1923 * lapic_timer_int_injected(), which will be false since the
1924 * interrupt isn't yet injected. Waiting until after injecting
1925 * is not an option since that won't help a posted interrupt.
1926 */
1927 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1928 vcpu->arch.apic->lapic_timer.timer_advance_ns)
1929 __kvm_wait_lapic_expire(vcpu);
1930 kvm_apic_inject_pending_timer_irqs(apic);
1931 return;
1932 }
1933
1934 atomic_inc(&apic->lapic_timer.pending);
1935 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1936 if (from_timer_fn)
1937 kvm_vcpu_kick(vcpu);
1938 }
1939
start_sw_tscdeadline(struct kvm_lapic * apic)1940 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1941 {
1942 struct kvm_timer *ktimer = &apic->lapic_timer;
1943 u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1944 u64 ns = 0;
1945 ktime_t expire;
1946 struct kvm_vcpu *vcpu = apic->vcpu;
1947 u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1948 unsigned long flags;
1949 ktime_t now;
1950
1951 if (unlikely(!tscdeadline || !this_tsc_khz))
1952 return;
1953
1954 local_irq_save(flags);
1955
1956 now = ktime_get();
1957 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1958
1959 ns = (tscdeadline - guest_tsc) * 1000000ULL;
1960 do_div(ns, this_tsc_khz);
1961
1962 if (likely(tscdeadline > guest_tsc) &&
1963 likely(ns > apic->lapic_timer.timer_advance_ns)) {
1964 expire = ktime_add_ns(now, ns);
1965 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1966 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1967 } else
1968 apic_timer_expired(apic, false);
1969
1970 local_irq_restore(flags);
1971 }
1972
tmict_to_ns(struct kvm_lapic * apic,u32 tmict)1973 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1974 {
1975 return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns *
1976 (u64)apic->divide_count;
1977 }
1978
update_target_expiration(struct kvm_lapic * apic,uint32_t old_divisor)1979 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1980 {
1981 ktime_t now, remaining;
1982 u64 ns_remaining_old, ns_remaining_new;
1983
1984 apic->lapic_timer.period =
1985 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1986 limit_periodic_timer_frequency(apic);
1987
1988 now = ktime_get();
1989 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1990 if (ktime_to_ns(remaining) < 0)
1991 remaining = 0;
1992
1993 ns_remaining_old = ktime_to_ns(remaining);
1994 ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1995 apic->divide_count, old_divisor);
1996
1997 apic->lapic_timer.tscdeadline +=
1998 nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1999 nsec_to_cycles(apic->vcpu, ns_remaining_old);
2000 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
2001 }
2002
set_target_expiration(struct kvm_lapic * apic,u32 count_reg)2003 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
2004 {
2005 ktime_t now;
2006 u64 tscl = rdtsc();
2007 s64 deadline;
2008
2009 now = ktime_get();
2010 apic->lapic_timer.period =
2011 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
2012
2013 if (!apic->lapic_timer.period) {
2014 apic->lapic_timer.tscdeadline = 0;
2015 return false;
2016 }
2017
2018 limit_periodic_timer_frequency(apic);
2019 deadline = apic->lapic_timer.period;
2020
2021 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
2022 if (unlikely(count_reg != APIC_TMICT)) {
2023 deadline = tmict_to_ns(apic,
2024 kvm_lapic_get_reg(apic, count_reg));
2025 if (unlikely(deadline <= 0)) {
2026 if (apic_lvtt_period(apic))
2027 deadline = apic->lapic_timer.period;
2028 else
2029 deadline = 0;
2030 }
2031 else if (unlikely(deadline > apic->lapic_timer.period)) {
2032 pr_info_ratelimited(
2033 "vcpu %i: requested lapic timer restore with "
2034 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
2035 "Using initial count to start timer.\n",
2036 apic->vcpu->vcpu_id,
2037 count_reg,
2038 kvm_lapic_get_reg(apic, count_reg),
2039 deadline, apic->lapic_timer.period);
2040 kvm_lapic_set_reg(apic, count_reg, 0);
2041 deadline = apic->lapic_timer.period;
2042 }
2043 }
2044 }
2045
2046 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2047 nsec_to_cycles(apic->vcpu, deadline);
2048 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
2049
2050 return true;
2051 }
2052
advance_periodic_target_expiration(struct kvm_lapic * apic)2053 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
2054 {
2055 ktime_t now = ktime_get();
2056 u64 tscl = rdtsc();
2057 ktime_t delta;
2058
2059 /*
2060 * Synchronize both deadlines to the same time source or
2061 * differences in the periods (caused by differences in the
2062 * underlying clocks or numerical approximation errors) will
2063 * cause the two to drift apart over time as the errors
2064 * accumulate.
2065 */
2066 apic->lapic_timer.target_expiration =
2067 ktime_add_ns(apic->lapic_timer.target_expiration,
2068 apic->lapic_timer.period);
2069 delta = ktime_sub(apic->lapic_timer.target_expiration, now);
2070 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2071 nsec_to_cycles(apic->vcpu, delta);
2072 }
2073
start_sw_period(struct kvm_lapic * apic)2074 static void start_sw_period(struct kvm_lapic *apic)
2075 {
2076 if (!apic->lapic_timer.period)
2077 return;
2078
2079 if (ktime_after(ktime_get(),
2080 apic->lapic_timer.target_expiration)) {
2081 apic_timer_expired(apic, false);
2082
2083 if (apic_lvtt_oneshot(apic))
2084 return;
2085
2086 advance_periodic_target_expiration(apic);
2087 }
2088
2089 hrtimer_start(&apic->lapic_timer.timer,
2090 apic->lapic_timer.target_expiration,
2091 HRTIMER_MODE_ABS_HARD);
2092 }
2093
kvm_lapic_hv_timer_in_use(struct kvm_vcpu * vcpu)2094 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
2095 {
2096 if (!lapic_in_kernel(vcpu))
2097 return false;
2098
2099 return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
2100 }
2101
cancel_hv_timer(struct kvm_lapic * apic)2102 static void cancel_hv_timer(struct kvm_lapic *apic)
2103 {
2104 WARN_ON(preemptible());
2105 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2106 kvm_x86_call(cancel_hv_timer)(apic->vcpu);
2107 apic->lapic_timer.hv_timer_in_use = false;
2108 }
2109
start_hv_timer(struct kvm_lapic * apic)2110 static bool start_hv_timer(struct kvm_lapic *apic)
2111 {
2112 struct kvm_timer *ktimer = &apic->lapic_timer;
2113 struct kvm_vcpu *vcpu = apic->vcpu;
2114 bool expired;
2115
2116 WARN_ON(preemptible());
2117 if (!kvm_can_use_hv_timer(vcpu))
2118 return false;
2119
2120 if (!ktimer->tscdeadline)
2121 return false;
2122
2123 if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
2124 return false;
2125
2126 ktimer->hv_timer_in_use = true;
2127 hrtimer_cancel(&ktimer->timer);
2128
2129 /*
2130 * To simplify handling the periodic timer, leave the hv timer running
2131 * even if the deadline timer has expired, i.e. rely on the resulting
2132 * VM-Exit to recompute the periodic timer's target expiration.
2133 */
2134 if (!apic_lvtt_period(apic)) {
2135 /*
2136 * Cancel the hv timer if the sw timer fired while the hv timer
2137 * was being programmed, or if the hv timer itself expired.
2138 */
2139 if (atomic_read(&ktimer->pending)) {
2140 cancel_hv_timer(apic);
2141 } else if (expired) {
2142 apic_timer_expired(apic, false);
2143 cancel_hv_timer(apic);
2144 }
2145 }
2146
2147 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
2148
2149 return true;
2150 }
2151
start_sw_timer(struct kvm_lapic * apic)2152 static void start_sw_timer(struct kvm_lapic *apic)
2153 {
2154 struct kvm_timer *ktimer = &apic->lapic_timer;
2155
2156 WARN_ON(preemptible());
2157 if (apic->lapic_timer.hv_timer_in_use)
2158 cancel_hv_timer(apic);
2159 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
2160 return;
2161
2162 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2163 start_sw_period(apic);
2164 else if (apic_lvtt_tscdeadline(apic))
2165 start_sw_tscdeadline(apic);
2166 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
2167 }
2168
restart_apic_timer(struct kvm_lapic * apic)2169 static void restart_apic_timer(struct kvm_lapic *apic)
2170 {
2171 preempt_disable();
2172
2173 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
2174 goto out;
2175
2176 if (!start_hv_timer(apic))
2177 start_sw_timer(apic);
2178 out:
2179 preempt_enable();
2180 }
2181
kvm_lapic_expired_hv_timer(struct kvm_vcpu * vcpu)2182 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
2183 {
2184 struct kvm_lapic *apic = vcpu->arch.apic;
2185
2186 preempt_disable();
2187 /* If the preempt notifier has already run, it also called apic_timer_expired */
2188 if (!apic->lapic_timer.hv_timer_in_use)
2189 goto out;
2190 WARN_ON(kvm_vcpu_is_blocking(vcpu));
2191 apic_timer_expired(apic, false);
2192 cancel_hv_timer(apic);
2193
2194 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
2195 advance_periodic_target_expiration(apic);
2196 restart_apic_timer(apic);
2197 }
2198 out:
2199 preempt_enable();
2200 }
2201 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
2202
kvm_lapic_switch_to_hv_timer(struct kvm_vcpu * vcpu)2203 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
2204 {
2205 restart_apic_timer(vcpu->arch.apic);
2206 }
2207
kvm_lapic_switch_to_sw_timer(struct kvm_vcpu * vcpu)2208 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
2209 {
2210 struct kvm_lapic *apic = vcpu->arch.apic;
2211
2212 preempt_disable();
2213 /* Possibly the TSC deadline timer is not enabled yet */
2214 if (apic->lapic_timer.hv_timer_in_use)
2215 start_sw_timer(apic);
2216 preempt_enable();
2217 }
2218
kvm_lapic_restart_hv_timer(struct kvm_vcpu * vcpu)2219 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2220 {
2221 struct kvm_lapic *apic = vcpu->arch.apic;
2222
2223 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2224 restart_apic_timer(apic);
2225 }
2226
__start_apic_timer(struct kvm_lapic * apic,u32 count_reg)2227 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2228 {
2229 atomic_set(&apic->lapic_timer.pending, 0);
2230
2231 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2232 && !set_target_expiration(apic, count_reg))
2233 return;
2234
2235 restart_apic_timer(apic);
2236 }
2237
start_apic_timer(struct kvm_lapic * apic)2238 static void start_apic_timer(struct kvm_lapic *apic)
2239 {
2240 __start_apic_timer(apic, APIC_TMICT);
2241 }
2242
apic_manage_nmi_watchdog(struct kvm_lapic * apic,u32 lvt0_val)2243 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2244 {
2245 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2246
2247 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2248 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2249 if (lvt0_in_nmi_mode) {
2250 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2251 } else
2252 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2253 }
2254 }
2255
get_lvt_index(u32 reg)2256 static int get_lvt_index(u32 reg)
2257 {
2258 if (reg == APIC_LVTCMCI)
2259 return LVT_CMCI;
2260 if (reg < APIC_LVTT || reg > APIC_LVTERR)
2261 return -1;
2262 return array_index_nospec(
2263 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
2264 }
2265
kvm_lapic_reg_write(struct kvm_lapic * apic,u32 reg,u32 val)2266 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2267 {
2268 int ret = 0;
2269
2270 trace_kvm_apic_write(reg, val);
2271
2272 switch (reg) {
2273 case APIC_ID: /* Local APIC ID */
2274 if (!apic_x2apic_mode(apic)) {
2275 kvm_apic_set_xapic_id(apic, val >> 24);
2276 } else {
2277 ret = 1;
2278 }
2279 break;
2280
2281 case APIC_TASKPRI:
2282 report_tpr_access(apic, true);
2283 apic_set_tpr(apic, val & 0xff);
2284 break;
2285
2286 case APIC_EOI:
2287 apic_set_eoi(apic);
2288 break;
2289
2290 case APIC_LDR:
2291 if (!apic_x2apic_mode(apic))
2292 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2293 else
2294 ret = 1;
2295 break;
2296
2297 case APIC_DFR:
2298 if (!apic_x2apic_mode(apic))
2299 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2300 else
2301 ret = 1;
2302 break;
2303
2304 case APIC_SPIV: {
2305 u32 mask = 0x3ff;
2306 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2307 mask |= APIC_SPIV_DIRECTED_EOI;
2308 apic_set_spiv(apic, val & mask);
2309 if (!(val & APIC_SPIV_APIC_ENABLED)) {
2310 int i;
2311
2312 for (i = 0; i < apic->nr_lvt_entries; i++) {
2313 kvm_lapic_set_reg(apic, APIC_LVTx(i),
2314 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
2315 }
2316 apic_update_lvtt(apic);
2317 atomic_set(&apic->lapic_timer.pending, 0);
2318
2319 }
2320 break;
2321 }
2322 case APIC_ICR:
2323 WARN_ON_ONCE(apic_x2apic_mode(apic));
2324
2325 /* No delay here, so we always clear the pending bit */
2326 val &= ~APIC_ICR_BUSY;
2327 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2328 kvm_lapic_set_reg(apic, APIC_ICR, val);
2329 break;
2330 case APIC_ICR2:
2331 if (apic_x2apic_mode(apic))
2332 ret = 1;
2333 else
2334 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2335 break;
2336
2337 case APIC_LVT0:
2338 apic_manage_nmi_watchdog(apic, val);
2339 fallthrough;
2340 case APIC_LVTTHMR:
2341 case APIC_LVTPC:
2342 case APIC_LVT1:
2343 case APIC_LVTERR:
2344 case APIC_LVTCMCI: {
2345 u32 index = get_lvt_index(reg);
2346 if (!kvm_lapic_lvt_supported(apic, index)) {
2347 ret = 1;
2348 break;
2349 }
2350 if (!kvm_apic_sw_enabled(apic))
2351 val |= APIC_LVT_MASKED;
2352 val &= apic_lvt_mask[index];
2353 kvm_lapic_set_reg(apic, reg, val);
2354 break;
2355 }
2356
2357 case APIC_LVTT:
2358 if (!kvm_apic_sw_enabled(apic))
2359 val |= APIC_LVT_MASKED;
2360 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2361 kvm_lapic_set_reg(apic, APIC_LVTT, val);
2362 apic_update_lvtt(apic);
2363 break;
2364
2365 case APIC_TMICT:
2366 if (apic_lvtt_tscdeadline(apic))
2367 break;
2368
2369 cancel_apic_timer(apic);
2370 kvm_lapic_set_reg(apic, APIC_TMICT, val);
2371 start_apic_timer(apic);
2372 break;
2373
2374 case APIC_TDCR: {
2375 uint32_t old_divisor = apic->divide_count;
2376
2377 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2378 update_divide_count(apic);
2379 if (apic->divide_count != old_divisor &&
2380 apic->lapic_timer.period) {
2381 hrtimer_cancel(&apic->lapic_timer.timer);
2382 update_target_expiration(apic, old_divisor);
2383 restart_apic_timer(apic);
2384 }
2385 break;
2386 }
2387 case APIC_ESR:
2388 if (apic_x2apic_mode(apic) && val != 0)
2389 ret = 1;
2390 break;
2391
2392 case APIC_SELF_IPI:
2393 /*
2394 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold
2395 * the vector, everything else is reserved.
2396 */
2397 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK))
2398 ret = 1;
2399 else
2400 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0);
2401 break;
2402 default:
2403 ret = 1;
2404 break;
2405 }
2406
2407 /*
2408 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2409 * was toggled, the APIC ID changed, etc... The maps are marked dirty
2410 * on relevant changes, i.e. this is a nop for most writes.
2411 */
2412 kvm_recalculate_apic_map(apic->vcpu->kvm);
2413
2414 return ret;
2415 }
2416
apic_mmio_write(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t address,int len,const void * data)2417 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2418 gpa_t address, int len, const void *data)
2419 {
2420 struct kvm_lapic *apic = to_lapic(this);
2421 unsigned int offset = address - apic->base_address;
2422 u32 val;
2423
2424 if (!apic_mmio_in_range(apic, address))
2425 return -EOPNOTSUPP;
2426
2427 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2428 if (!kvm_check_has_quirk(vcpu->kvm,
2429 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2430 return -EOPNOTSUPP;
2431
2432 return 0;
2433 }
2434
2435 /*
2436 * APIC register must be aligned on 128-bits boundary.
2437 * 32/64/128 bits registers must be accessed thru 32 bits.
2438 * Refer SDM 8.4.1
2439 */
2440 if (len != 4 || (offset & 0xf))
2441 return 0;
2442
2443 val = *(u32*)data;
2444
2445 kvm_lapic_reg_write(apic, offset & 0xff0, val);
2446
2447 return 0;
2448 }
2449
kvm_lapic_set_eoi(struct kvm_vcpu * vcpu)2450 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2451 {
2452 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2453 }
2454 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2455
2456 #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13))
2457
kvm_x2apic_icr_write(struct kvm_lapic * apic,u64 data)2458 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
2459 {
2460 if (data & X2APIC_ICR_RESERVED_BITS)
2461 return 1;
2462
2463 /*
2464 * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but
2465 * only AMD requires it to be zero, Intel essentially just ignores the
2466 * bit. And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled,
2467 * the CPU performs the reserved bits checks, i.e. the underlying CPU
2468 * behavior will "win". Arbitrarily clear the BUSY bit, as there is no
2469 * sane way to provide consistent behavior with respect to hardware.
2470 */
2471 data &= ~APIC_ICR_BUSY;
2472
2473 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
2474 if (kvm_x86_ops.x2apic_icr_is_split) {
2475 kvm_lapic_set_reg(apic, APIC_ICR, data);
2476 kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32);
2477 } else {
2478 kvm_lapic_set_reg64(apic, APIC_ICR, data);
2479 }
2480 trace_kvm_apic_write(APIC_ICR, data);
2481 return 0;
2482 }
2483
kvm_x2apic_icr_read(struct kvm_lapic * apic)2484 static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic)
2485 {
2486 if (kvm_x86_ops.x2apic_icr_is_split)
2487 return (u64)kvm_lapic_get_reg(apic, APIC_ICR) |
2488 (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32;
2489
2490 return kvm_lapic_get_reg64(apic, APIC_ICR);
2491 }
2492
2493 /* emulate APIC access in a trap manner */
kvm_apic_write_nodecode(struct kvm_vcpu * vcpu,u32 offset)2494 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2495 {
2496 struct kvm_lapic *apic = vcpu->arch.apic;
2497
2498 /*
2499 * ICR is a single 64-bit register when x2APIC is enabled, all others
2500 * registers hold 32-bit values. For legacy xAPIC, ICR writes need to
2501 * go down the common path to get the upper half from ICR2.
2502 *
2503 * Note, using the write helpers may incur an unnecessary write to the
2504 * virtual APIC state, but KVM needs to conditionally modify the value
2505 * in certain cases, e.g. to clear the ICR busy bit. The cost of extra
2506 * conditional branches is likely a wash relative to the cost of the
2507 * maybe-unecessary write, and both are in the noise anyways.
2508 */
2509 if (apic_x2apic_mode(apic) && offset == APIC_ICR)
2510 WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic)));
2511 else
2512 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
2513 }
2514 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2515
kvm_free_lapic(struct kvm_vcpu * vcpu)2516 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2517 {
2518 struct kvm_lapic *apic = vcpu->arch.apic;
2519
2520 if (!vcpu->arch.apic) {
2521 static_branch_dec(&kvm_has_noapic_vcpu);
2522 return;
2523 }
2524
2525 hrtimer_cancel(&apic->lapic_timer.timer);
2526
2527 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2528 static_branch_slow_dec_deferred(&apic_hw_disabled);
2529
2530 if (!apic->sw_enabled)
2531 static_branch_slow_dec_deferred(&apic_sw_disabled);
2532
2533 if (apic->regs)
2534 free_page((unsigned long)apic->regs);
2535
2536 kfree(apic);
2537 }
2538
2539 /*
2540 *----------------------------------------------------------------------
2541 * LAPIC interface
2542 *----------------------------------------------------------------------
2543 */
kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu * vcpu)2544 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2545 {
2546 struct kvm_lapic *apic = vcpu->arch.apic;
2547
2548 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2549 return 0;
2550
2551 return apic->lapic_timer.tscdeadline;
2552 }
2553
kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu * vcpu,u64 data)2554 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2555 {
2556 struct kvm_lapic *apic = vcpu->arch.apic;
2557
2558 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2559 return;
2560
2561 hrtimer_cancel(&apic->lapic_timer.timer);
2562 apic->lapic_timer.tscdeadline = data;
2563 start_apic_timer(apic);
2564 }
2565
kvm_lapic_set_tpr(struct kvm_vcpu * vcpu,unsigned long cr8)2566 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2567 {
2568 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2569 }
2570
kvm_lapic_get_cr8(struct kvm_vcpu * vcpu)2571 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2572 {
2573 u64 tpr;
2574
2575 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2576
2577 return (tpr & 0xf0) >> 4;
2578 }
2579
kvm_lapic_set_base(struct kvm_vcpu * vcpu,u64 value)2580 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2581 {
2582 u64 old_value = vcpu->arch.apic_base;
2583 struct kvm_lapic *apic = vcpu->arch.apic;
2584
2585 vcpu->arch.apic_base = value;
2586
2587 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2588 kvm_update_cpuid_runtime(vcpu);
2589
2590 if (!apic)
2591 return;
2592
2593 /* update jump label if enable bit changes */
2594 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2595 if (value & MSR_IA32_APICBASE_ENABLE) {
2596 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2597 static_branch_slow_dec_deferred(&apic_hw_disabled);
2598 /* Check if there are APF page ready requests pending */
2599 kvm_make_request(KVM_REQ_APF_READY, vcpu);
2600 } else {
2601 static_branch_inc(&apic_hw_disabled.key);
2602 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2603 }
2604 }
2605
2606 if ((old_value ^ value) & X2APIC_ENABLE) {
2607 if (value & X2APIC_ENABLE)
2608 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2609 else if (value & MSR_IA32_APICBASE_ENABLE)
2610 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2611 }
2612
2613 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
2614 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2615 kvm_x86_call(set_virtual_apic_mode)(vcpu);
2616 }
2617
2618 apic->base_address = apic->vcpu->arch.apic_base &
2619 MSR_IA32_APICBASE_BASE;
2620
2621 if ((value & MSR_IA32_APICBASE_ENABLE) &&
2622 apic->base_address != APIC_DEFAULT_PHYS_BASE) {
2623 kvm_set_apicv_inhibit(apic->vcpu->kvm,
2624 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
2625 }
2626 }
2627
kvm_apic_update_apicv(struct kvm_vcpu * vcpu)2628 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2629 {
2630 struct kvm_lapic *apic = vcpu->arch.apic;
2631
2632 /*
2633 * When APICv is enabled, KVM must always search the IRR for a pending
2634 * IRQ, as other vCPUs and devices can set IRR bits even if the vCPU
2635 * isn't running. If APICv is disabled, KVM _should_ search the IRR
2636 * for a pending IRQ. But KVM currently doesn't ensure *all* hardware,
2637 * e.g. CPUs and IOMMUs, has seen the change in state, i.e. searching
2638 * the IRR at this time could race with IRQ delivery from hardware that
2639 * still sees APICv as being enabled.
2640 *
2641 * FIXME: Ensure other vCPUs and devices observe the change in APICv
2642 * state prior to updating KVM's metadata caches, so that KVM
2643 * can safely search the IRR and set irr_pending accordingly.
2644 */
2645 apic->irr_pending = true;
2646
2647 if (apic->apicv_active)
2648 apic->isr_count = 1;
2649 else
2650 apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2651
2652 apic->highest_isr_cache = -1;
2653 }
2654
kvm_alloc_apic_access_page(struct kvm * kvm)2655 int kvm_alloc_apic_access_page(struct kvm *kvm)
2656 {
2657 struct page *page;
2658 void __user *hva;
2659 int ret = 0;
2660
2661 mutex_lock(&kvm->slots_lock);
2662 if (kvm->arch.apic_access_memslot_enabled ||
2663 kvm->arch.apic_access_memslot_inhibited)
2664 goto out;
2665
2666 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
2667 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
2668 if (IS_ERR(hva)) {
2669 ret = PTR_ERR(hva);
2670 goto out;
2671 }
2672
2673 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
2674 if (is_error_page(page)) {
2675 ret = -EFAULT;
2676 goto out;
2677 }
2678
2679 /*
2680 * Do not pin the page in memory, so that memory hot-unplug
2681 * is able to migrate it.
2682 */
2683 put_page(page);
2684 kvm->arch.apic_access_memslot_enabled = true;
2685 out:
2686 mutex_unlock(&kvm->slots_lock);
2687 return ret;
2688 }
2689 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page);
2690
kvm_inhibit_apic_access_page(struct kvm_vcpu * vcpu)2691 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu)
2692 {
2693 struct kvm *kvm = vcpu->kvm;
2694
2695 if (!kvm->arch.apic_access_memslot_enabled)
2696 return;
2697
2698 kvm_vcpu_srcu_read_unlock(vcpu);
2699
2700 mutex_lock(&kvm->slots_lock);
2701
2702 if (kvm->arch.apic_access_memslot_enabled) {
2703 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
2704 /*
2705 * Clear "enabled" after the memslot is deleted so that a
2706 * different vCPU doesn't get a false negative when checking
2707 * the flag out of slots_lock. No additional memory barrier is
2708 * needed as modifying memslots requires waiting other vCPUs to
2709 * drop SRCU (see above), and false positives are ok as the
2710 * flag is rechecked after acquiring slots_lock.
2711 */
2712 kvm->arch.apic_access_memslot_enabled = false;
2713
2714 /*
2715 * Mark the memslot as inhibited to prevent reallocating the
2716 * memslot during vCPU creation, e.g. if a vCPU is hotplugged.
2717 */
2718 kvm->arch.apic_access_memslot_inhibited = true;
2719 }
2720
2721 mutex_unlock(&kvm->slots_lock);
2722
2723 kvm_vcpu_srcu_read_lock(vcpu);
2724 }
2725
kvm_lapic_reset(struct kvm_vcpu * vcpu,bool init_event)2726 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2727 {
2728 struct kvm_lapic *apic = vcpu->arch.apic;
2729 u64 msr_val;
2730 int i;
2731
2732 kvm_x86_call(apicv_pre_state_restore)(vcpu);
2733
2734 if (!init_event) {
2735 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2736 if (kvm_vcpu_is_reset_bsp(vcpu))
2737 msr_val |= MSR_IA32_APICBASE_BSP;
2738 kvm_lapic_set_base(vcpu, msr_val);
2739 }
2740
2741 if (!apic)
2742 return;
2743
2744 /* Stop the timer in case it's a reset to an active apic */
2745 hrtimer_cancel(&apic->lapic_timer.timer);
2746
2747 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2748 if (!init_event)
2749 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2750 kvm_apic_set_version(apic->vcpu);
2751
2752 for (i = 0; i < apic->nr_lvt_entries; i++)
2753 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
2754 apic_update_lvtt(apic);
2755 if (kvm_vcpu_is_reset_bsp(vcpu) &&
2756 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2757 kvm_lapic_set_reg(apic, APIC_LVT0,
2758 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2759 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2760
2761 kvm_apic_set_dfr(apic, 0xffffffffU);
2762 apic_set_spiv(apic, 0xff);
2763 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2764 if (!apic_x2apic_mode(apic))
2765 kvm_apic_set_ldr(apic, 0);
2766 kvm_lapic_set_reg(apic, APIC_ESR, 0);
2767 if (!apic_x2apic_mode(apic)) {
2768 kvm_lapic_set_reg(apic, APIC_ICR, 0);
2769 kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2770 } else {
2771 kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2772 }
2773 kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2774 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2775 for (i = 0; i < 8; i++) {
2776 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2777 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2778 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2779 }
2780 kvm_apic_update_apicv(vcpu);
2781 update_divide_count(apic);
2782 atomic_set(&apic->lapic_timer.pending, 0);
2783
2784 vcpu->arch.pv_eoi.msr_val = 0;
2785 apic_update_ppr(apic);
2786 if (apic->apicv_active) {
2787 kvm_x86_call(apicv_post_state_restore)(vcpu);
2788 kvm_x86_call(hwapic_irr_update)(vcpu, -1);
2789 kvm_x86_call(hwapic_isr_update)(-1);
2790 }
2791
2792 vcpu->arch.apic_arb_prio = 0;
2793 vcpu->arch.apic_attention = 0;
2794
2795 kvm_recalculate_apic_map(vcpu->kvm);
2796 }
2797
2798 /*
2799 *----------------------------------------------------------------------
2800 * timer interface
2801 *----------------------------------------------------------------------
2802 */
2803
lapic_is_periodic(struct kvm_lapic * apic)2804 static bool lapic_is_periodic(struct kvm_lapic *apic)
2805 {
2806 return apic_lvtt_period(apic);
2807 }
2808
apic_has_pending_timer(struct kvm_vcpu * vcpu)2809 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2810 {
2811 struct kvm_lapic *apic = vcpu->arch.apic;
2812
2813 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2814 return atomic_read(&apic->lapic_timer.pending);
2815
2816 return 0;
2817 }
2818
kvm_apic_local_deliver(struct kvm_lapic * apic,int lvt_type)2819 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2820 {
2821 u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2822 int vector, mode, trig_mode;
2823 int r;
2824
2825 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2826 vector = reg & APIC_VECTOR_MASK;
2827 mode = reg & APIC_MODE_MASK;
2828 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2829
2830 r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL);
2831 if (r && lvt_type == APIC_LVTPC &&
2832 guest_cpuid_is_intel_compatible(apic->vcpu))
2833 kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED);
2834 return r;
2835 }
2836 return 0;
2837 }
2838
kvm_apic_nmi_wd_deliver(struct kvm_vcpu * vcpu)2839 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2840 {
2841 struct kvm_lapic *apic = vcpu->arch.apic;
2842
2843 if (apic)
2844 kvm_apic_local_deliver(apic, APIC_LVT0);
2845 }
2846
2847 static const struct kvm_io_device_ops apic_mmio_ops = {
2848 .read = apic_mmio_read,
2849 .write = apic_mmio_write,
2850 };
2851
apic_timer_fn(struct hrtimer * data)2852 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2853 {
2854 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2855 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2856
2857 apic_timer_expired(apic, true);
2858
2859 if (lapic_is_periodic(apic)) {
2860 advance_periodic_target_expiration(apic);
2861 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2862 return HRTIMER_RESTART;
2863 } else
2864 return HRTIMER_NORESTART;
2865 }
2866
kvm_create_lapic(struct kvm_vcpu * vcpu)2867 int kvm_create_lapic(struct kvm_vcpu *vcpu)
2868 {
2869 struct kvm_lapic *apic;
2870
2871 ASSERT(vcpu != NULL);
2872
2873 if (!irqchip_in_kernel(vcpu->kvm)) {
2874 static_branch_inc(&kvm_has_noapic_vcpu);
2875 return 0;
2876 }
2877
2878 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2879 if (!apic)
2880 goto nomem;
2881
2882 vcpu->arch.apic = apic;
2883
2884 if (kvm_x86_ops.alloc_apic_backing_page)
2885 apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu);
2886 else
2887 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2888 if (!apic->regs) {
2889 printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2890 vcpu->vcpu_id);
2891 goto nomem_free_apic;
2892 }
2893 apic->vcpu = vcpu;
2894
2895 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
2896
2897 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2898 HRTIMER_MODE_ABS_HARD);
2899 apic->lapic_timer.timer.function = apic_timer_fn;
2900 if (lapic_timer_advance)
2901 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2902
2903 /*
2904 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2905 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2906 */
2907 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2908 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2909 kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2910
2911 /*
2912 * Defer evaluating inhibits until the vCPU is first run, as this vCPU
2913 * will not get notified of any changes until this vCPU is visible to
2914 * other vCPUs (marked online and added to the set of vCPUs).
2915 *
2916 * Opportunistically mark APICv active as VMX in particularly is highly
2917 * unlikely to have inhibits. Ignore the current per-VM APICv state so
2918 * that vCPU creation is guaranteed to run with a deterministic value,
2919 * the request will ensure the vCPU gets the correct state before VM-Entry.
2920 */
2921 if (enable_apicv) {
2922 apic->apicv_active = true;
2923 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2924 }
2925
2926 return 0;
2927 nomem_free_apic:
2928 kfree(apic);
2929 vcpu->arch.apic = NULL;
2930 nomem:
2931 return -ENOMEM;
2932 }
2933
kvm_apic_has_interrupt(struct kvm_vcpu * vcpu)2934 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2935 {
2936 struct kvm_lapic *apic = vcpu->arch.apic;
2937 u32 ppr;
2938
2939 if (!kvm_apic_present(vcpu))
2940 return -1;
2941
2942 __apic_update_ppr(apic, &ppr);
2943 return apic_has_interrupt_for_ppr(apic, ppr);
2944 }
2945 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2946
kvm_apic_accept_pic_intr(struct kvm_vcpu * vcpu)2947 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2948 {
2949 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2950
2951 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2952 return 1;
2953 if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2954 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2955 return 1;
2956 return 0;
2957 }
2958
kvm_inject_apic_timer_irqs(struct kvm_vcpu * vcpu)2959 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2960 {
2961 struct kvm_lapic *apic = vcpu->arch.apic;
2962
2963 if (atomic_read(&apic->lapic_timer.pending) > 0) {
2964 kvm_apic_inject_pending_timer_irqs(apic);
2965 atomic_set(&apic->lapic_timer.pending, 0);
2966 }
2967 }
2968
kvm_apic_ack_interrupt(struct kvm_vcpu * vcpu,int vector)2969 void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector)
2970 {
2971 struct kvm_lapic *apic = vcpu->arch.apic;
2972 u32 ppr;
2973
2974 if (WARN_ON_ONCE(vector < 0 || !apic))
2975 return;
2976
2977 /*
2978 * We get here even with APIC virtualization enabled, if doing
2979 * nested virtualization and L1 runs with the "acknowledge interrupt
2980 * on exit" mode. Then we cannot inject the interrupt via RVI,
2981 * because the process would deliver it through the IDT.
2982 */
2983
2984 apic_clear_irr(vector, apic);
2985 if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) {
2986 /*
2987 * For auto-EOI interrupts, there might be another pending
2988 * interrupt above PPR, so check whether to raise another
2989 * KVM_REQ_EVENT.
2990 */
2991 apic_update_ppr(apic);
2992 } else {
2993 /*
2994 * For normal interrupts, PPR has been raised and there cannot
2995 * be a higher-priority pending interrupt---except if there was
2996 * a concurrent interrupt injection, but that would have
2997 * triggered KVM_REQ_EVENT already.
2998 */
2999 apic_set_isr(vector, apic);
3000 __apic_update_ppr(apic, &ppr);
3001 }
3002
3003 }
3004 EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt);
3005
kvm_apic_state_fixup(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s,bool set)3006 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
3007 struct kvm_lapic_state *s, bool set)
3008 {
3009 if (apic_x2apic_mode(vcpu->arch.apic)) {
3010 u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic);
3011 u32 *id = (u32 *)(s->regs + APIC_ID);
3012 u32 *ldr = (u32 *)(s->regs + APIC_LDR);
3013 u64 icr;
3014
3015 if (vcpu->kvm->arch.x2apic_format) {
3016 if (*id != x2apic_id)
3017 return -EINVAL;
3018 } else {
3019 /*
3020 * Ignore the userspace value when setting APIC state.
3021 * KVM's model is that the x2APIC ID is readonly, e.g.
3022 * KVM only supports delivering interrupts to KVM's
3023 * version of the x2APIC ID. However, for backwards
3024 * compatibility, don't reject attempts to set a
3025 * mismatched ID for userspace that hasn't opted into
3026 * x2apic_format.
3027 */
3028 if (set)
3029 *id = x2apic_id;
3030 else
3031 *id = x2apic_id << 24;
3032 }
3033
3034 /*
3035 * In x2APIC mode, the LDR is fixed and based on the id. And
3036 * if the ICR is _not_ split, ICR is internally a single 64-bit
3037 * register, but needs to be split to ICR+ICR2 in userspace for
3038 * backwards compatibility.
3039 */
3040 if (set)
3041 *ldr = kvm_apic_calc_x2apic_ldr(x2apic_id);
3042
3043 if (!kvm_x86_ops.x2apic_icr_is_split) {
3044 if (set) {
3045 icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) |
3046 (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32;
3047 __kvm_lapic_set_reg64(s->regs, APIC_ICR, icr);
3048 } else {
3049 icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR);
3050 __kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32);
3051 }
3052 }
3053 }
3054
3055 return 0;
3056 }
3057
kvm_apic_get_state(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3058 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
3059 {
3060 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
3061
3062 /*
3063 * Get calculated timer current count for remaining timer period (if
3064 * any) and store it in the returned register set.
3065 */
3066 __kvm_lapic_set_reg(s->regs, APIC_TMCCT,
3067 __apic_read(vcpu->arch.apic, APIC_TMCCT));
3068
3069 return kvm_apic_state_fixup(vcpu, s, false);
3070 }
3071
kvm_apic_set_state(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3072 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
3073 {
3074 struct kvm_lapic *apic = vcpu->arch.apic;
3075 int r;
3076
3077 kvm_x86_call(apicv_pre_state_restore)(vcpu);
3078
3079 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
3080 /* set SPIV separately to get count of SW disabled APICs right */
3081 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
3082
3083 r = kvm_apic_state_fixup(vcpu, s, true);
3084 if (r) {
3085 kvm_recalculate_apic_map(vcpu->kvm);
3086 return r;
3087 }
3088 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
3089
3090 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
3091 kvm_recalculate_apic_map(vcpu->kvm);
3092 kvm_apic_set_version(vcpu);
3093
3094 apic_update_ppr(apic);
3095 cancel_apic_timer(apic);
3096 apic->lapic_timer.expired_tscdeadline = 0;
3097 apic_update_lvtt(apic);
3098 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
3099 update_divide_count(apic);
3100 __start_apic_timer(apic, APIC_TMCCT);
3101 kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
3102 kvm_apic_update_apicv(vcpu);
3103 if (apic->apicv_active) {
3104 kvm_x86_call(apicv_post_state_restore)(vcpu);
3105 kvm_x86_call(hwapic_irr_update)(vcpu,
3106 apic_find_highest_irr(apic));
3107 kvm_x86_call(hwapic_isr_update)(apic_find_highest_isr(apic));
3108 }
3109 kvm_make_request(KVM_REQ_EVENT, vcpu);
3110 if (ioapic_in_kernel(vcpu->kvm))
3111 kvm_rtc_eoi_tracking_restore_one(vcpu);
3112
3113 vcpu->arch.apic_arb_prio = 0;
3114
3115 return 0;
3116 }
3117
__kvm_migrate_apic_timer(struct kvm_vcpu * vcpu)3118 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
3119 {
3120 struct hrtimer *timer;
3121
3122 if (!lapic_in_kernel(vcpu) ||
3123 kvm_can_post_timer_interrupt(vcpu))
3124 return;
3125
3126 timer = &vcpu->arch.apic->lapic_timer.timer;
3127 if (hrtimer_cancel(timer))
3128 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
3129 }
3130
3131 /*
3132 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
3133 *
3134 * Detect whether guest triggered PV EOI since the
3135 * last entry. If yes, set EOI on guests's behalf.
3136 * Clear PV EOI in guest memory in any case.
3137 */
apic_sync_pv_eoi_from_guest(struct kvm_vcpu * vcpu,struct kvm_lapic * apic)3138 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
3139 struct kvm_lapic *apic)
3140 {
3141 int vector;
3142 /*
3143 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
3144 * and KVM_PV_EOI_ENABLED in guest memory as follows:
3145 *
3146 * KVM_APIC_PV_EOI_PENDING is unset:
3147 * -> host disabled PV EOI.
3148 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
3149 * -> host enabled PV EOI, guest did not execute EOI yet.
3150 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
3151 * -> host enabled PV EOI, guest executed EOI.
3152 */
3153 BUG_ON(!pv_eoi_enabled(vcpu));
3154
3155 if (pv_eoi_test_and_clr_pending(vcpu))
3156 return;
3157 vector = apic_set_eoi(apic);
3158 trace_kvm_pv_eoi(apic, vector);
3159 }
3160
kvm_lapic_sync_from_vapic(struct kvm_vcpu * vcpu)3161 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
3162 {
3163 u32 data;
3164
3165 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
3166 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
3167
3168 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3169 return;
3170
3171 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3172 sizeof(u32)))
3173 return;
3174
3175 apic_set_tpr(vcpu->arch.apic, data & 0xff);
3176 }
3177
3178 /*
3179 * apic_sync_pv_eoi_to_guest - called before vmentry
3180 *
3181 * Detect whether it's safe to enable PV EOI and
3182 * if yes do so.
3183 */
apic_sync_pv_eoi_to_guest(struct kvm_vcpu * vcpu,struct kvm_lapic * apic)3184 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
3185 struct kvm_lapic *apic)
3186 {
3187 if (!pv_eoi_enabled(vcpu) ||
3188 /* IRR set or many bits in ISR: could be nested. */
3189 apic->irr_pending ||
3190 /* Cache not set: could be safe but we don't bother. */
3191 apic->highest_isr_cache == -1 ||
3192 /* Need EOI to update ioapic. */
3193 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
3194 /*
3195 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
3196 * so we need not do anything here.
3197 */
3198 return;
3199 }
3200
3201 pv_eoi_set_pending(apic->vcpu);
3202 }
3203
kvm_lapic_sync_to_vapic(struct kvm_vcpu * vcpu)3204 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
3205 {
3206 u32 data, tpr;
3207 int max_irr, max_isr;
3208 struct kvm_lapic *apic = vcpu->arch.apic;
3209
3210 apic_sync_pv_eoi_to_guest(vcpu, apic);
3211
3212 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3213 return;
3214
3215 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
3216 max_irr = apic_find_highest_irr(apic);
3217 if (max_irr < 0)
3218 max_irr = 0;
3219 max_isr = apic_find_highest_isr(apic);
3220 if (max_isr < 0)
3221 max_isr = 0;
3222 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
3223
3224 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3225 sizeof(u32));
3226 }
3227
kvm_lapic_set_vapic_addr(struct kvm_vcpu * vcpu,gpa_t vapic_addr)3228 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
3229 {
3230 if (vapic_addr) {
3231 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
3232 &vcpu->arch.apic->vapic_cache,
3233 vapic_addr, sizeof(u32)))
3234 return -EINVAL;
3235 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3236 } else {
3237 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3238 }
3239
3240 vcpu->arch.apic->vapic_addr = vapic_addr;
3241 return 0;
3242 }
3243
kvm_lapic_msr_read(struct kvm_lapic * apic,u32 reg,u64 * data)3244 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
3245 {
3246 u32 low;
3247
3248 if (reg == APIC_ICR) {
3249 *data = kvm_x2apic_icr_read(apic);
3250 return 0;
3251 }
3252
3253 if (kvm_lapic_reg_read(apic, reg, 4, &low))
3254 return 1;
3255
3256 *data = low;
3257
3258 return 0;
3259 }
3260
kvm_lapic_msr_write(struct kvm_lapic * apic,u32 reg,u64 data)3261 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
3262 {
3263 /*
3264 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
3265 * can be written as such, all other registers remain accessible only
3266 * through 32-bit reads/writes.
3267 */
3268 if (reg == APIC_ICR)
3269 return kvm_x2apic_icr_write(apic, data);
3270
3271 /* Bits 63:32 are reserved in all other registers. */
3272 if (data >> 32)
3273 return 1;
3274
3275 return kvm_lapic_reg_write(apic, reg, (u32)data);
3276 }
3277
kvm_x2apic_msr_write(struct kvm_vcpu * vcpu,u32 msr,u64 data)3278 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
3279 {
3280 struct kvm_lapic *apic = vcpu->arch.apic;
3281 u32 reg = (msr - APIC_BASE_MSR) << 4;
3282
3283 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3284 return 1;
3285
3286 return kvm_lapic_msr_write(apic, reg, data);
3287 }
3288
kvm_x2apic_msr_read(struct kvm_vcpu * vcpu,u32 msr,u64 * data)3289 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
3290 {
3291 struct kvm_lapic *apic = vcpu->arch.apic;
3292 u32 reg = (msr - APIC_BASE_MSR) << 4;
3293
3294 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3295 return 1;
3296
3297 return kvm_lapic_msr_read(apic, reg, data);
3298 }
3299
kvm_hv_vapic_msr_write(struct kvm_vcpu * vcpu,u32 reg,u64 data)3300 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
3301 {
3302 if (!lapic_in_kernel(vcpu))
3303 return 1;
3304
3305 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
3306 }
3307
kvm_hv_vapic_msr_read(struct kvm_vcpu * vcpu,u32 reg,u64 * data)3308 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
3309 {
3310 if (!lapic_in_kernel(vcpu))
3311 return 1;
3312
3313 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
3314 }
3315
kvm_lapic_set_pv_eoi(struct kvm_vcpu * vcpu,u64 data,unsigned long len)3316 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
3317 {
3318 u64 addr = data & ~KVM_MSR_ENABLED;
3319 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
3320 unsigned long new_len;
3321 int ret;
3322
3323 if (!IS_ALIGNED(addr, 4))
3324 return 1;
3325
3326 if (data & KVM_MSR_ENABLED) {
3327 if (addr == ghc->gpa && len <= ghc->len)
3328 new_len = ghc->len;
3329 else
3330 new_len = len;
3331
3332 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
3333 if (ret)
3334 return ret;
3335 }
3336
3337 vcpu->arch.pv_eoi.msr_val = data;
3338
3339 return 0;
3340 }
3341
kvm_apic_accept_events(struct kvm_vcpu * vcpu)3342 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
3343 {
3344 struct kvm_lapic *apic = vcpu->arch.apic;
3345 u8 sipi_vector;
3346 int r;
3347
3348 if (!kvm_apic_has_pending_init_or_sipi(vcpu))
3349 return 0;
3350
3351 if (is_guest_mode(vcpu)) {
3352 r = kvm_check_nested_events(vcpu);
3353 if (r < 0)
3354 return r == -EBUSY ? 0 : r;
3355 /*
3356 * Continue processing INIT/SIPI even if a nested VM-Exit
3357 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3358 * are blocked as a result of transitioning to VMX root mode.
3359 */
3360 }
3361
3362 /*
3363 * INITs are blocked while CPU is in specific states (SMM, VMX root
3364 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3365 * wait-for-SIPI (WFS).
3366 */
3367 if (!kvm_apic_init_sipi_allowed(vcpu)) {
3368 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
3369 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3370 return 0;
3371 }
3372
3373 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
3374 kvm_vcpu_reset(vcpu, true);
3375 if (kvm_vcpu_is_bsp(apic->vcpu))
3376 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3377 else
3378 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3379 }
3380 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3381 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3382 /* evaluate pending_events before reading the vector */
3383 smp_rmb();
3384 sipi_vector = apic->sipi_vector;
3385 kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu,
3386 sipi_vector);
3387 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3388 }
3389 }
3390 return 0;
3391 }
3392
kvm_lapic_exit(void)3393 void kvm_lapic_exit(void)
3394 {
3395 static_key_deferred_flush(&apic_hw_disabled);
3396 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3397 static_key_deferred_flush(&apic_sw_disabled);
3398 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3399 }
3400