1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Kernel-based Virtual Machine driver for Linux
4   * cpuid support routines
5   *
6   * derived from arch/x86/kvm/x86.c
7   *
8   * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9   * Copyright IBM Corporation, 2008
10   */
11  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12  
13  #include <linux/kvm_host.h>
14  #include "linux/lockdep.h"
15  #include <linux/export.h>
16  #include <linux/vmalloc.h>
17  #include <linux/uaccess.h>
18  #include <linux/sched/stat.h>
19  
20  #include <asm/processor.h>
21  #include <asm/user.h>
22  #include <asm/fpu/xstate.h>
23  #include <asm/sgx.h>
24  #include <asm/cpuid.h>
25  #include "cpuid.h"
26  #include "lapic.h"
27  #include "mmu.h"
28  #include "trace.h"
29  #include "pmu.h"
30  #include "xen.h"
31  
32  /*
33   * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34   * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35   */
36  u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37  EXPORT_SYMBOL_GPL(kvm_cpu_caps);
38  
xstate_required_size(u64 xstate_bv,bool compacted)39  u32 xstate_required_size(u64 xstate_bv, bool compacted)
40  {
41  	int feature_bit = 0;
42  	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
43  
44  	xstate_bv &= XFEATURE_MASK_EXTEND;
45  	while (xstate_bv) {
46  		if (xstate_bv & 0x1) {
47  		        u32 eax, ebx, ecx, edx, offset;
48  		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
49  			/* ECX[1]: 64B alignment in compacted form */
50  			if (compacted)
51  				offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
52  			else
53  				offset = ebx;
54  			ret = max(ret, offset + eax);
55  		}
56  
57  		xstate_bv >>= 1;
58  		feature_bit++;
59  	}
60  
61  	return ret;
62  }
63  
64  #define F feature_bit
65  
66  /* Scattered Flag - For features that are scattered by cpufeatures.h. */
67  #define SF(name)						\
68  ({								\
69  	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
70  	(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);	\
71  })
72  
73  /*
74   * Magic value used by KVM when querying userspace-provided CPUID entries and
75   * doesn't care about the CPIUD index because the index of the function in
76   * question is not significant.  Note, this magic value must have at least one
77   * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
78   * to avoid false positives when processing guest CPUID input.
79   */
80  #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
81  
cpuid_entry2_find(struct kvm_cpuid_entry2 * entries,int nent,u32 function,u64 index)82  static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
83  	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
84  {
85  	struct kvm_cpuid_entry2 *e;
86  	int i;
87  
88  	/*
89  	 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
90  	 * with IRQs disabled is disallowed.  The CPUID model can legitimately
91  	 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
92  	 * typically disabled in KVM only when KVM is in a performance critical
93  	 * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
94  	 * if this rule is violated, this assertion is purely to flag potential
95  	 * performance issues.  If this fires, consider moving the lookup out
96  	 * of the hotpath, e.g. by caching information during CPUID updates.
97  	 */
98  	lockdep_assert_irqs_enabled();
99  
100  	for (i = 0; i < nent; i++) {
101  		e = &entries[i];
102  
103  		if (e->function != function)
104  			continue;
105  
106  		/*
107  		 * If the index isn't significant, use the first entry with a
108  		 * matching function.  It's userspace's responsibility to not
109  		 * provide "duplicate" entries in all cases.
110  		 */
111  		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
112  			return e;
113  
114  
115  		/*
116  		 * Similarly, use the first matching entry if KVM is doing a
117  		 * lookup (as opposed to emulating CPUID) for a function that's
118  		 * architecturally defined as not having a significant index.
119  		 */
120  		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
121  			/*
122  			 * Direct lookups from KVM should not diverge from what
123  			 * KVM defines internally (the architectural behavior).
124  			 */
125  			WARN_ON_ONCE(cpuid_function_is_indexed(function));
126  			return e;
127  		}
128  	}
129  
130  	return NULL;
131  }
132  
kvm_check_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * entries,int nent)133  static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
134  			   struct kvm_cpuid_entry2 *entries,
135  			   int nent)
136  {
137  	struct kvm_cpuid_entry2 *best;
138  	u64 xfeatures;
139  
140  	/*
141  	 * The existing code assumes virtual address is 48-bit or 57-bit in the
142  	 * canonical address checks; exit if it is ever changed.
143  	 */
144  	best = cpuid_entry2_find(entries, nent, 0x80000008,
145  				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
146  	if (best) {
147  		int vaddr_bits = (best->eax & 0xff00) >> 8;
148  
149  		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150  			return -EINVAL;
151  	}
152  
153  	/*
154  	 * Exposing dynamic xfeatures to the guest requires additional
155  	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
156  	 */
157  	best = cpuid_entry2_find(entries, nent, 0xd, 0);
158  	if (!best)
159  		return 0;
160  
161  	xfeatures = best->eax | ((u64)best->edx << 32);
162  	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163  	if (!xfeatures)
164  		return 0;
165  
166  	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167  }
168  
169  /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
kvm_cpuid_check_equal(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * e2,int nent)170  static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
171  				 int nent)
172  {
173  	struct kvm_cpuid_entry2 *orig;
174  	int i;
175  
176  	if (nent != vcpu->arch.cpuid_nent)
177  		return -EINVAL;
178  
179  	for (i = 0; i < nent; i++) {
180  		orig = &vcpu->arch.cpuid_entries[i];
181  		if (e2[i].function != orig->function ||
182  		    e2[i].index != orig->index ||
183  		    e2[i].flags != orig->flags ||
184  		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
185  		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
186  			return -EINVAL;
187  	}
188  
189  	return 0;
190  }
191  
__kvm_get_hypervisor_cpuid(struct kvm_cpuid_entry2 * entries,int nent,const char * sig)192  static struct kvm_hypervisor_cpuid __kvm_get_hypervisor_cpuid(struct kvm_cpuid_entry2 *entries,
193  							      int nent, const char *sig)
194  {
195  	struct kvm_hypervisor_cpuid cpuid = {};
196  	struct kvm_cpuid_entry2 *entry;
197  	u32 base;
198  
199  	for_each_possible_hypervisor_cpuid_base(base) {
200  		entry = cpuid_entry2_find(entries, nent, base, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
201  
202  		if (entry) {
203  			u32 signature[3];
204  
205  			signature[0] = entry->ebx;
206  			signature[1] = entry->ecx;
207  			signature[2] = entry->edx;
208  
209  			if (!memcmp(signature, sig, sizeof(signature))) {
210  				cpuid.base = base;
211  				cpuid.limit = entry->eax;
212  				break;
213  			}
214  		}
215  	}
216  
217  	return cpuid;
218  }
219  
kvm_get_hypervisor_cpuid(struct kvm_vcpu * vcpu,const char * sig)220  static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
221  							    const char *sig)
222  {
223  	return __kvm_get_hypervisor_cpuid(vcpu->arch.cpuid_entries,
224  					  vcpu->arch.cpuid_nent, sig);
225  }
226  
__kvm_find_kvm_cpuid_features(struct kvm_cpuid_entry2 * entries,int nent,u32 kvm_cpuid_base)227  static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_cpuid_entry2 *entries,
228  							      int nent, u32 kvm_cpuid_base)
229  {
230  	return cpuid_entry2_find(entries, nent, kvm_cpuid_base | KVM_CPUID_FEATURES,
231  				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
232  }
233  
kvm_find_kvm_cpuid_features(struct kvm_vcpu * vcpu)234  static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
235  {
236  	u32 base = vcpu->arch.kvm_cpuid.base;
237  
238  	if (!base)
239  		return NULL;
240  
241  	return __kvm_find_kvm_cpuid_features(vcpu->arch.cpuid_entries,
242  					     vcpu->arch.cpuid_nent, base);
243  }
244  
kvm_update_pv_runtime(struct kvm_vcpu * vcpu)245  void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
246  {
247  	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
248  
249  	/*
250  	 * save the feature bitmap to avoid cpuid lookup for every PV
251  	 * operation
252  	 */
253  	if (best)
254  		vcpu->arch.pv_cpuid.features = best->eax;
255  }
256  
257  /*
258   * Calculate guest's supported XCR0 taking into account guest CPUID data and
259   * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
260   */
cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 * entries,int nent)261  static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
262  {
263  	struct kvm_cpuid_entry2 *best;
264  
265  	best = cpuid_entry2_find(entries, nent, 0xd, 0);
266  	if (!best)
267  		return 0;
268  
269  	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
270  }
271  
__kvm_update_cpuid_runtime(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * entries,int nent)272  static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
273  				       int nent)
274  {
275  	struct kvm_cpuid_entry2 *best;
276  	struct kvm_hypervisor_cpuid kvm_cpuid;
277  
278  	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
279  	if (best) {
280  		/* Update OSXSAVE bit */
281  		if (boot_cpu_has(X86_FEATURE_XSAVE))
282  			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
283  					   kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
284  
285  		cpuid_entry_change(best, X86_FEATURE_APIC,
286  			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
287  	}
288  
289  	best = cpuid_entry2_find(entries, nent, 7, 0);
290  	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
291  		cpuid_entry_change(best, X86_FEATURE_OSPKE,
292  				   kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
293  
294  	best = cpuid_entry2_find(entries, nent, 0xD, 0);
295  	if (best)
296  		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
297  
298  	best = cpuid_entry2_find(entries, nent, 0xD, 1);
299  	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
300  		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
301  		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
302  
303  	kvm_cpuid = __kvm_get_hypervisor_cpuid(entries, nent, KVM_SIGNATURE);
304  	if (kvm_cpuid.base) {
305  		best = __kvm_find_kvm_cpuid_features(entries, nent, kvm_cpuid.base);
306  		if (kvm_hlt_in_guest(vcpu->kvm) && best)
307  			best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
308  	}
309  
310  	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
311  		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
312  		if (best)
313  			cpuid_entry_change(best, X86_FEATURE_MWAIT,
314  					   vcpu->arch.ia32_misc_enable_msr &
315  					   MSR_IA32_MISC_ENABLE_MWAIT);
316  	}
317  }
318  
kvm_update_cpuid_runtime(struct kvm_vcpu * vcpu)319  void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
320  {
321  	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
322  }
323  EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
324  
kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 * entries,int nent)325  static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
326  {
327  #ifdef CONFIG_KVM_HYPERV
328  	struct kvm_cpuid_entry2 *entry;
329  
330  	entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
331  				  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
332  	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
333  #else
334  	return false;
335  #endif
336  }
337  
guest_cpuid_is_amd_or_hygon(struct kvm_vcpu * vcpu)338  static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
339  {
340  	struct kvm_cpuid_entry2 *entry;
341  
342  	entry = kvm_find_cpuid_entry(vcpu, 0);
343  	if (!entry)
344  		return false;
345  
346  	return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) ||
347  	       is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx);
348  }
349  
kvm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)350  static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
351  {
352  	struct kvm_lapic *apic = vcpu->arch.apic;
353  	struct kvm_cpuid_entry2 *best;
354  	bool allow_gbpages;
355  
356  	BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
357  	bitmap_zero(vcpu->arch.governed_features.enabled,
358  		    KVM_MAX_NR_GOVERNED_FEATURES);
359  
360  	/*
361  	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
362  	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
363  	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
364  	 * walk for performance and complexity reasons.  Not to mention KVM
365  	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
366  	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
367  	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
368  	 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
369  	 * and can install smaller shadow pages if the host lacks 1GiB support.
370  	 */
371  	allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
372  				      guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
373  	if (allow_gbpages)
374  		kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
375  
376  	best = kvm_find_cpuid_entry(vcpu, 1);
377  	if (best && apic) {
378  		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
379  			apic->lapic_timer.timer_mode_mask = 3 << 17;
380  		else
381  			apic->lapic_timer.timer_mode_mask = 1 << 17;
382  
383  		kvm_apic_set_version(vcpu);
384  	}
385  
386  	vcpu->arch.guest_supported_xcr0 =
387  		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
388  
389  	kvm_update_pv_runtime(vcpu);
390  
391  	vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
392  	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
393  	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
394  
395  	kvm_pmu_refresh(vcpu);
396  	vcpu->arch.cr4_guest_rsvd_bits =
397  	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
398  
399  	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
400  						    vcpu->arch.cpuid_nent));
401  
402  	/* Invoke the vendor callback only after the above state is updated. */
403  	kvm_x86_call(vcpu_after_set_cpuid)(vcpu);
404  
405  	/*
406  	 * Except for the MMU, which needs to do its thing any vendor specific
407  	 * adjustments to the reserved GPA bits.
408  	 */
409  	kvm_mmu_after_set_cpuid(vcpu);
410  }
411  
cpuid_query_maxphyaddr(struct kvm_vcpu * vcpu)412  int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
413  {
414  	struct kvm_cpuid_entry2 *best;
415  
416  	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
417  	if (!best || best->eax < 0x80000008)
418  		goto not_found;
419  	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
420  	if (best)
421  		return best->eax & 0xff;
422  not_found:
423  	return 36;
424  }
425  
426  /*
427   * This "raw" version returns the reserved GPA bits without any adjustments for
428   * encryption technologies that usurp bits.  The raw mask should be used if and
429   * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
430   */
kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu * vcpu)431  u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
432  {
433  	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
434  }
435  
kvm_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * e2,int nent)436  static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
437                          int nent)
438  {
439  	int r;
440  
441  	__kvm_update_cpuid_runtime(vcpu, e2, nent);
442  
443  	/*
444  	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
445  	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
446  	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
447  	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
448  	 * the core vCPU model on the fly. It would've been better to forbid any
449  	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
450  	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
451  	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
452  	 * whether the supplied CPUID data is equal to what's already set.
453  	 */
454  	if (kvm_vcpu_has_run(vcpu)) {
455  		r = kvm_cpuid_check_equal(vcpu, e2, nent);
456  		if (r)
457  			return r;
458  
459  		kvfree(e2);
460  		return 0;
461  	}
462  
463  #ifdef CONFIG_KVM_HYPERV
464  	if (kvm_cpuid_has_hyperv(e2, nent)) {
465  		r = kvm_hv_vcpu_init(vcpu);
466  		if (r)
467  			return r;
468  	}
469  #endif
470  
471  	r = kvm_check_cpuid(vcpu, e2, nent);
472  	if (r)
473  		return r;
474  
475  	kvfree(vcpu->arch.cpuid_entries);
476  	vcpu->arch.cpuid_entries = e2;
477  	vcpu->arch.cpuid_nent = nent;
478  
479  	vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
480  #ifdef CONFIG_KVM_XEN
481  	vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
482  #endif
483  	kvm_vcpu_after_set_cpuid(vcpu);
484  
485  	return 0;
486  }
487  
488  /* when an old userspace process fills a new kernel module */
kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid * cpuid,struct kvm_cpuid_entry __user * entries)489  int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
490  			     struct kvm_cpuid *cpuid,
491  			     struct kvm_cpuid_entry __user *entries)
492  {
493  	int r, i;
494  	struct kvm_cpuid_entry *e = NULL;
495  	struct kvm_cpuid_entry2 *e2 = NULL;
496  
497  	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
498  		return -E2BIG;
499  
500  	if (cpuid->nent) {
501  		e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
502  		if (IS_ERR(e))
503  			return PTR_ERR(e);
504  
505  		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
506  		if (!e2) {
507  			r = -ENOMEM;
508  			goto out_free_cpuid;
509  		}
510  	}
511  	for (i = 0; i < cpuid->nent; i++) {
512  		e2[i].function = e[i].function;
513  		e2[i].eax = e[i].eax;
514  		e2[i].ebx = e[i].ebx;
515  		e2[i].ecx = e[i].ecx;
516  		e2[i].edx = e[i].edx;
517  		e2[i].index = 0;
518  		e2[i].flags = 0;
519  		e2[i].padding[0] = 0;
520  		e2[i].padding[1] = 0;
521  		e2[i].padding[2] = 0;
522  	}
523  
524  	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
525  	if (r)
526  		kvfree(e2);
527  
528  out_free_cpuid:
529  	kvfree(e);
530  
531  	return r;
532  }
533  
kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)534  int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
535  			      struct kvm_cpuid2 *cpuid,
536  			      struct kvm_cpuid_entry2 __user *entries)
537  {
538  	struct kvm_cpuid_entry2 *e2 = NULL;
539  	int r;
540  
541  	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
542  		return -E2BIG;
543  
544  	if (cpuid->nent) {
545  		e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
546  		if (IS_ERR(e2))
547  			return PTR_ERR(e2);
548  	}
549  
550  	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
551  	if (r)
552  		kvfree(e2);
553  
554  	return r;
555  }
556  
kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)557  int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
558  			      struct kvm_cpuid2 *cpuid,
559  			      struct kvm_cpuid_entry2 __user *entries)
560  {
561  	if (cpuid->nent < vcpu->arch.cpuid_nent)
562  		return -E2BIG;
563  
564  	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
565  			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
566  		return -EFAULT;
567  
568  	cpuid->nent = vcpu->arch.cpuid_nent;
569  	return 0;
570  }
571  
572  /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
__kvm_cpu_cap_mask(unsigned int leaf)573  static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
574  {
575  	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
576  	struct kvm_cpuid_entry2 entry;
577  
578  	reverse_cpuid_check(leaf);
579  
580  	cpuid_count(cpuid.function, cpuid.index,
581  		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
582  
583  	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
584  }
585  
586  static __always_inline
kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf,u32 mask)587  void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
588  {
589  	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
590  	BUILD_BUG_ON(leaf < NCAPINTS);
591  
592  	kvm_cpu_caps[leaf] = mask;
593  
594  	__kvm_cpu_cap_mask(leaf);
595  }
596  
kvm_cpu_cap_mask(enum cpuid_leafs leaf,u32 mask)597  static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
598  {
599  	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
600  	BUILD_BUG_ON(leaf >= NCAPINTS);
601  
602  	kvm_cpu_caps[leaf] &= mask;
603  
604  	__kvm_cpu_cap_mask(leaf);
605  }
606  
kvm_set_cpu_caps(void)607  void kvm_set_cpu_caps(void)
608  {
609  #ifdef CONFIG_X86_64
610  	unsigned int f_gbpages = F(GBPAGES);
611  	unsigned int f_lm = F(LM);
612  	unsigned int f_xfd = F(XFD);
613  #else
614  	unsigned int f_gbpages = 0;
615  	unsigned int f_lm = 0;
616  	unsigned int f_xfd = 0;
617  #endif
618  	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
619  
620  	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
621  		     sizeof(boot_cpu_data.x86_capability));
622  
623  	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
624  	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
625  
626  	kvm_cpu_cap_mask(CPUID_1_ECX,
627  		/*
628  		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
629  		 * advertised to guests via CPUID!
630  		 */
631  		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
632  		0 /* DS-CPL, VMX, SMX, EST */ |
633  		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
634  		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
635  		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
636  		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
637  		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
638  		F(F16C) | F(RDRAND)
639  	);
640  	/* KVM emulates x2apic in software irrespective of host support. */
641  	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
642  
643  	kvm_cpu_cap_mask(CPUID_1_EDX,
644  		F(FPU) | F(VME) | F(DE) | F(PSE) |
645  		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
646  		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
647  		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
648  		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
649  		0 /* Reserved, DS, ACPI */ | F(MMX) |
650  		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
651  		0 /* HTT, TM, Reserved, PBE */
652  	);
653  
654  	kvm_cpu_cap_mask(CPUID_7_0_EBX,
655  		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
656  		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
657  		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
658  		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
659  		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
660  		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
661  		F(AVX512VL));
662  
663  	kvm_cpu_cap_mask(CPUID_7_ECX,
664  		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
665  		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
666  		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
667  		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
668  		F(SGX_LC) | F(BUS_LOCK_DETECT)
669  	);
670  	/* Set LA57 based on hardware capability. */
671  	if (cpuid_ecx(7) & F(LA57))
672  		kvm_cpu_cap_set(X86_FEATURE_LA57);
673  
674  	/*
675  	 * PKU not yet implemented for shadow paging and requires OSPKE
676  	 * to be set on the host. Clear it if that is not the case
677  	 */
678  	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
679  		kvm_cpu_cap_clear(X86_FEATURE_PKU);
680  
681  	kvm_cpu_cap_mask(CPUID_7_EDX,
682  		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
683  		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
684  		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
685  		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
686  		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
687  	);
688  
689  	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
690  	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
691  	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
692  
693  	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
694  		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
695  	if (boot_cpu_has(X86_FEATURE_STIBP))
696  		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
697  	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
698  		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
699  
700  	kvm_cpu_cap_mask(CPUID_7_1_EAX,
701  		F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
702  		F(FZRM) | F(FSRS) | F(FSRC) |
703  		F(AMX_FP16) | F(AVX_IFMA) | F(LAM)
704  	);
705  
706  	kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
707  		F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
708  		F(AMX_COMPLEX) | F(AVX10)
709  	);
710  
711  	kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
712  		F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
713  		F(BHI_CTRL) | F(MCDT_NO)
714  	);
715  
716  	kvm_cpu_cap_mask(CPUID_D_1_EAX,
717  		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
718  	);
719  
720  	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
721  		SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
722  	);
723  
724  	kvm_cpu_cap_init_kvm_defined(CPUID_24_0_EBX,
725  		F(AVX10_128) | F(AVX10_256) | F(AVX10_512)
726  	);
727  
728  	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
729  		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
730  		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
731  		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
732  		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
733  		F(TOPOEXT) | 0 /* PERFCTR_CORE */
734  	);
735  
736  	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
737  		F(FPU) | F(VME) | F(DE) | F(PSE) |
738  		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
739  		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
740  		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
741  		F(PAT) | F(PSE36) | 0 /* Reserved */ |
742  		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
743  		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
744  		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
745  	);
746  
747  	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
748  		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
749  
750  	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
751  		SF(CONSTANT_TSC)
752  	);
753  
754  	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
755  		F(CLZERO) | F(XSAVEERPTR) |
756  		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
757  		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
758  		F(AMD_PSFD)
759  	);
760  
761  	/*
762  	 * AMD has separate bits for each SPEC_CTRL bit.
763  	 * arch/x86/kernel/cpu/bugs.c is kind enough to
764  	 * record that in cpufeatures so use them.
765  	 */
766  	if (boot_cpu_has(X86_FEATURE_IBPB))
767  		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
768  	if (boot_cpu_has(X86_FEATURE_IBRS))
769  		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
770  	if (boot_cpu_has(X86_FEATURE_STIBP))
771  		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
772  	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
773  		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
774  	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
775  		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
776  	/*
777  	 * The preference is to use SPEC CTRL MSR instead of the
778  	 * VIRT_SPEC MSR.
779  	 */
780  	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
781  	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
782  		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
783  
784  	/*
785  	 * Hide all SVM features by default, SVM will set the cap bits for
786  	 * features it emulates and/or exposes for L1.
787  	 */
788  	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
789  
790  	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
791  		0 /* SME */ | 0 /* SEV */ | 0 /* VM_PAGE_FLUSH */ | 0 /* SEV_ES */ |
792  		F(SME_COHERENT));
793  
794  	kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
795  		F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
796  		F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
797  		F(WRMSR_XX_BASE_NS)
798  	);
799  
800  	kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
801  	kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
802  	kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
803  
804  	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
805  		F(PERFMON_V2)
806  	);
807  
808  	/*
809  	 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
810  	 * KVM's supported CPUID if the feature is reported as supported by the
811  	 * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
812  	 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
813  	 * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
814  	 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
815  	 * the mask with the raw host CPUID, and reporting support in AMD's
816  	 * leaf can make it easier for userspace to detect the feature.
817  	 */
818  	if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
819  		kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
820  	if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
821  		kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
822  	kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
823  
824  	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
825  		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
826  		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
827  		F(PMM) | F(PMM_EN)
828  	);
829  
830  	/*
831  	 * Hide RDTSCP and RDPID if either feature is reported as supported but
832  	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
833  	 * should never happen, but the guest will likely crash if RDTSCP or
834  	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
835  	 * the past.  For example, the sanity check may fire if this instance of
836  	 * KVM is running as L1 on top of an older, broken KVM.
837  	 */
838  	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
839  		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
840  		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
841  		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
842  		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
843  	}
844  }
845  EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
846  
847  struct kvm_cpuid_array {
848  	struct kvm_cpuid_entry2 *entries;
849  	int maxnent;
850  	int nent;
851  };
852  
get_next_cpuid(struct kvm_cpuid_array * array)853  static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
854  {
855  	if (array->nent >= array->maxnent)
856  		return NULL;
857  
858  	return &array->entries[array->nent++];
859  }
860  
do_host_cpuid(struct kvm_cpuid_array * array,u32 function,u32 index)861  static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
862  					      u32 function, u32 index)
863  {
864  	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
865  
866  	if (!entry)
867  		return NULL;
868  
869  	memset(entry, 0, sizeof(*entry));
870  	entry->function = function;
871  	entry->index = index;
872  	switch (function & 0xC0000000) {
873  	case 0x40000000:
874  		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
875  		return entry;
876  
877  	case 0x80000000:
878  		/*
879  		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
880  		 * would result in out-of-bounds calls to do_host_cpuid.
881  		 */
882  		{
883  			static int max_cpuid_80000000;
884  			if (!READ_ONCE(max_cpuid_80000000))
885  				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
886  			if (function > READ_ONCE(max_cpuid_80000000))
887  				return entry;
888  		}
889  		break;
890  
891  	default:
892  		break;
893  	}
894  
895  	cpuid_count(entry->function, entry->index,
896  		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
897  
898  	if (cpuid_function_is_indexed(function))
899  		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
900  
901  	return entry;
902  }
903  
__do_cpuid_func_emulated(struct kvm_cpuid_array * array,u32 func)904  static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
905  {
906  	struct kvm_cpuid_entry2 *entry;
907  
908  	if (array->nent >= array->maxnent)
909  		return -E2BIG;
910  
911  	entry = &array->entries[array->nent];
912  	entry->function = func;
913  	entry->index = 0;
914  	entry->flags = 0;
915  
916  	switch (func) {
917  	case 0:
918  		entry->eax = 7;
919  		++array->nent;
920  		break;
921  	case 1:
922  		entry->ecx = F(MOVBE);
923  		++array->nent;
924  		break;
925  	case 7:
926  		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
927  		entry->eax = 0;
928  		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
929  			entry->ecx = F(RDPID);
930  		++array->nent;
931  		break;
932  	default:
933  		break;
934  	}
935  
936  	return 0;
937  }
938  
__do_cpuid_func(struct kvm_cpuid_array * array,u32 function)939  static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
940  {
941  	struct kvm_cpuid_entry2 *entry;
942  	int r, i, max_idx;
943  
944  	/* all calls to cpuid_count() should be made on the same cpu */
945  	get_cpu();
946  
947  	r = -E2BIG;
948  
949  	entry = do_host_cpuid(array, function, 0);
950  	if (!entry)
951  		goto out;
952  
953  	switch (function) {
954  	case 0:
955  		/* Limited to the highest leaf implemented in KVM. */
956  		entry->eax = min(entry->eax, 0x24U);
957  		break;
958  	case 1:
959  		cpuid_entry_override(entry, CPUID_1_EDX);
960  		cpuid_entry_override(entry, CPUID_1_ECX);
961  		break;
962  	case 2:
963  		/*
964  		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
965  		 * CPUID(function=2, index=0) may return different results each
966  		 * time, with the least-significant byte in EAX enumerating the
967  		 * number of times software should do CPUID(2, 0).
968  		 *
969  		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
970  		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
971  		 * return 01H. Software should ignore this value and not
972  		 * interpret it as an informational descriptor", while AMD's
973  		 * APM states that CPUID(2) is reserved.
974  		 *
975  		 * WARN if a frankenstein CPU that supports virtualization and
976  		 * a stateful CPUID.0x2 is encountered.
977  		 */
978  		WARN_ON_ONCE((entry->eax & 0xff) > 1);
979  		break;
980  	/* functions 4 and 0x8000001d have additional index. */
981  	case 4:
982  	case 0x8000001d:
983  		/*
984  		 * Read entries until the cache type in the previous entry is
985  		 * zero, i.e. indicates an invalid entry.
986  		 */
987  		for (i = 1; entry->eax & 0x1f; ++i) {
988  			entry = do_host_cpuid(array, function, i);
989  			if (!entry)
990  				goto out;
991  		}
992  		break;
993  	case 6: /* Thermal management */
994  		entry->eax = 0x4; /* allow ARAT */
995  		entry->ebx = 0;
996  		entry->ecx = 0;
997  		entry->edx = 0;
998  		break;
999  	/* function 7 has additional index. */
1000  	case 7:
1001  		max_idx = entry->eax = min(entry->eax, 2u);
1002  		cpuid_entry_override(entry, CPUID_7_0_EBX);
1003  		cpuid_entry_override(entry, CPUID_7_ECX);
1004  		cpuid_entry_override(entry, CPUID_7_EDX);
1005  
1006  		/* KVM only supports up to 0x7.2, capped above via min(). */
1007  		if (max_idx >= 1) {
1008  			entry = do_host_cpuid(array, function, 1);
1009  			if (!entry)
1010  				goto out;
1011  
1012  			cpuid_entry_override(entry, CPUID_7_1_EAX);
1013  			cpuid_entry_override(entry, CPUID_7_1_EDX);
1014  			entry->ebx = 0;
1015  			entry->ecx = 0;
1016  		}
1017  		if (max_idx >= 2) {
1018  			entry = do_host_cpuid(array, function, 2);
1019  			if (!entry)
1020  				goto out;
1021  
1022  			cpuid_entry_override(entry, CPUID_7_2_EDX);
1023  			entry->ecx = 0;
1024  			entry->ebx = 0;
1025  			entry->eax = 0;
1026  		}
1027  		break;
1028  	case 0xa: { /* Architectural Performance Monitoring */
1029  		union cpuid10_eax eax;
1030  		union cpuid10_edx edx;
1031  
1032  		if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1033  			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1034  			break;
1035  		}
1036  
1037  		eax.split.version_id = kvm_pmu_cap.version;
1038  		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1039  		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1040  		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1041  		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1042  		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1043  
1044  		if (kvm_pmu_cap.version)
1045  			edx.split.anythread_deprecated = 1;
1046  		edx.split.reserved1 = 0;
1047  		edx.split.reserved2 = 0;
1048  
1049  		entry->eax = eax.full;
1050  		entry->ebx = kvm_pmu_cap.events_mask;
1051  		entry->ecx = 0;
1052  		entry->edx = edx.full;
1053  		break;
1054  	}
1055  	case 0x1f:
1056  	case 0xb:
1057  		/*
1058  		 * No topology; a valid topology is indicated by the presence
1059  		 * of subleaf 1.
1060  		 */
1061  		entry->eax = entry->ebx = entry->ecx = 0;
1062  		break;
1063  	case 0xd: {
1064  		u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1065  		u64 permitted_xss = kvm_caps.supported_xss;
1066  
1067  		entry->eax &= permitted_xcr0;
1068  		entry->ebx = xstate_required_size(permitted_xcr0, false);
1069  		entry->ecx = entry->ebx;
1070  		entry->edx &= permitted_xcr0 >> 32;
1071  		if (!permitted_xcr0)
1072  			break;
1073  
1074  		entry = do_host_cpuid(array, function, 1);
1075  		if (!entry)
1076  			goto out;
1077  
1078  		cpuid_entry_override(entry, CPUID_D_1_EAX);
1079  		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1080  			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1081  							  true);
1082  		else {
1083  			WARN_ON_ONCE(permitted_xss != 0);
1084  			entry->ebx = 0;
1085  		}
1086  		entry->ecx &= permitted_xss;
1087  		entry->edx &= permitted_xss >> 32;
1088  
1089  		for (i = 2; i < 64; ++i) {
1090  			bool s_state;
1091  			if (permitted_xcr0 & BIT_ULL(i))
1092  				s_state = false;
1093  			else if (permitted_xss & BIT_ULL(i))
1094  				s_state = true;
1095  			else
1096  				continue;
1097  
1098  			entry = do_host_cpuid(array, function, i);
1099  			if (!entry)
1100  				goto out;
1101  
1102  			/*
1103  			 * The supported check above should have filtered out
1104  			 * invalid sub-leafs.  Only valid sub-leafs should
1105  			 * reach this point, and they should have a non-zero
1106  			 * save state size.  Furthermore, check whether the
1107  			 * processor agrees with permitted_xcr0/permitted_xss
1108  			 * on whether this is an XCR0- or IA32_XSS-managed area.
1109  			 */
1110  			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1111  				--array->nent;
1112  				continue;
1113  			}
1114  
1115  			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1116  				entry->ecx &= ~BIT_ULL(2);
1117  			entry->edx = 0;
1118  		}
1119  		break;
1120  	}
1121  	case 0x12:
1122  		/* Intel SGX */
1123  		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1124  			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1125  			break;
1126  		}
1127  
1128  		/*
1129  		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1130  		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1131  		 * are restricted by kernel and KVM capabilities (like most
1132  		 * feature flags), while enclave size is unrestricted.
1133  		 */
1134  		cpuid_entry_override(entry, CPUID_12_EAX);
1135  		entry->ebx &= SGX_MISC_EXINFO;
1136  
1137  		entry = do_host_cpuid(array, function, 1);
1138  		if (!entry)
1139  			goto out;
1140  
1141  		/*
1142  		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1143  		 * feature flags.  Advertise all supported flags, including
1144  		 * privileged attributes that require explicit opt-in from
1145  		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1146  		 * expected to derive it from supported XCR0.
1147  		 */
1148  		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1149  		entry->ebx &= 0;
1150  		break;
1151  	/* Intel PT */
1152  	case 0x14:
1153  		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1154  			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1155  			break;
1156  		}
1157  
1158  		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1159  			if (!do_host_cpuid(array, function, i))
1160  				goto out;
1161  		}
1162  		break;
1163  	/* Intel AMX TILE */
1164  	case 0x1d:
1165  		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1166  			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1167  			break;
1168  		}
1169  
1170  		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1171  			if (!do_host_cpuid(array, function, i))
1172  				goto out;
1173  		}
1174  		break;
1175  	case 0x1e: /* TMUL information */
1176  		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1177  			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1178  			break;
1179  		}
1180  		break;
1181  	case 0x24: {
1182  		u8 avx10_version;
1183  
1184  		if (!kvm_cpu_cap_has(X86_FEATURE_AVX10)) {
1185  			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1186  			break;
1187  		}
1188  
1189  		/*
1190  		 * The AVX10 version is encoded in EBX[7:0].  Note, the version
1191  		 * is guaranteed to be >=1 if AVX10 is supported.  Note #2, the
1192  		 * version needs to be captured before overriding EBX features!
1193  		 */
1194  		avx10_version = min_t(u8, entry->ebx & 0xff, 1);
1195  		cpuid_entry_override(entry, CPUID_24_0_EBX);
1196  		entry->ebx |= avx10_version;
1197  
1198  		entry->eax = 0;
1199  		entry->ecx = 0;
1200  		entry->edx = 0;
1201  		break;
1202  	}
1203  	case KVM_CPUID_SIGNATURE: {
1204  		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1205  		entry->eax = KVM_CPUID_FEATURES;
1206  		entry->ebx = sigptr[0];
1207  		entry->ecx = sigptr[1];
1208  		entry->edx = sigptr[2];
1209  		break;
1210  	}
1211  	case KVM_CPUID_FEATURES:
1212  		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1213  			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1214  			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1215  			     (1 << KVM_FEATURE_ASYNC_PF) |
1216  			     (1 << KVM_FEATURE_PV_EOI) |
1217  			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1218  			     (1 << KVM_FEATURE_PV_UNHALT) |
1219  			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1220  			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1221  			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1222  			     (1 << KVM_FEATURE_POLL_CONTROL) |
1223  			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1224  			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1225  
1226  		if (sched_info_on())
1227  			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1228  
1229  		entry->ebx = 0;
1230  		entry->ecx = 0;
1231  		entry->edx = 0;
1232  		break;
1233  	case 0x80000000:
1234  		entry->eax = min(entry->eax, 0x80000022);
1235  		/*
1236  		 * Serializing LFENCE is reported in a multitude of ways, and
1237  		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1238  		 * userspace by providing the CPUID leaf ourselves.
1239  		 *
1240  		 * However, only do it if the host has CPUID leaf 0x8000001d.
1241  		 * QEMU thinks that it can query the host blindly for that
1242  		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1243  		 * above.  The processor merrily returns values from the
1244  		 * highest Intel leaf which QEMU tries to use as the guest's
1245  		 * 0x8000001d.  Even worse, this can result in an infinite
1246  		 * loop if said highest leaf has no subleaves indexed by ECX.
1247  		 */
1248  		if (entry->eax >= 0x8000001d &&
1249  		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1250  		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1251  			entry->eax = max(entry->eax, 0x80000021);
1252  		break;
1253  	case 0x80000001:
1254  		entry->ebx &= ~GENMASK(27, 16);
1255  		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1256  		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1257  		break;
1258  	case 0x80000005:
1259  		/*  Pass host L1 cache and TLB info. */
1260  		break;
1261  	case 0x80000006:
1262  		/* Drop reserved bits, pass host L2 cache and TLB info. */
1263  		entry->edx &= ~GENMASK(17, 16);
1264  		break;
1265  	case 0x80000007: /* Advanced power management */
1266  		cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1267  
1268  		/* mask against host */
1269  		entry->edx &= boot_cpu_data.x86_power;
1270  		entry->eax = entry->ebx = entry->ecx = 0;
1271  		break;
1272  	case 0x80000008: {
1273  		/*
1274  		 * GuestPhysAddrSize (EAX[23:16]) is intended for software
1275  		 * use.
1276  		 *
1277  		 * KVM's ABI is to report the effective MAXPHYADDR for the
1278  		 * guest in PhysAddrSize (phys_as), and the maximum
1279  		 * *addressable* GPA in GuestPhysAddrSize (g_phys_as).
1280  		 *
1281  		 * GuestPhysAddrSize is valid if and only if TDP is enabled,
1282  		 * in which case the max GPA that can be addressed by KVM may
1283  		 * be less than the max GPA that can be legally generated by
1284  		 * the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't
1285  		 * support 5-level TDP.
1286  		 */
1287  		unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
1288  		unsigned int phys_as, g_phys_as;
1289  
1290  		/*
1291  		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1292  		 * the guest operates in the same PA space as the host, i.e.
1293  		 * reductions in MAXPHYADDR for memory encryption affect shadow
1294  		 * paging, too.
1295  		 *
1296  		 * If TDP is enabled, use the raw bare metal MAXPHYADDR as
1297  		 * reductions to the HPAs do not affect GPAs.  The max
1298  		 * addressable GPA is the same as the max effective GPA, except
1299  		 * that it's capped at 48 bits if 5-level TDP isn't supported
1300  		 * (hardware processes bits 51:48 only when walking the fifth
1301  		 * level page table).
1302  		 */
1303  		if (!tdp_enabled) {
1304  			phys_as = boot_cpu_data.x86_phys_bits;
1305  			g_phys_as = 0;
1306  		} else {
1307  			phys_as = entry->eax & 0xff;
1308  			g_phys_as = phys_as;
1309  			if (kvm_mmu_get_max_tdp_level() < 5)
1310  				g_phys_as = min(g_phys_as, 48);
1311  		}
1312  
1313  		entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16);
1314  		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1315  		entry->edx = 0;
1316  		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1317  		break;
1318  	}
1319  	case 0x8000000A:
1320  		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1321  			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1322  			break;
1323  		}
1324  		entry->eax = 1; /* SVM revision 1 */
1325  		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1326  				   ASID emulation to nested SVM */
1327  		entry->ecx = 0; /* Reserved */
1328  		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1329  		break;
1330  	case 0x80000019:
1331  		entry->ecx = entry->edx = 0;
1332  		break;
1333  	case 0x8000001a:
1334  		entry->eax &= GENMASK(2, 0);
1335  		entry->ebx = entry->ecx = entry->edx = 0;
1336  		break;
1337  	case 0x8000001e:
1338  		/* Do not return host topology information.  */
1339  		entry->eax = entry->ebx = entry->ecx = 0;
1340  		entry->edx = 0; /* reserved */
1341  		break;
1342  	case 0x8000001F:
1343  		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1344  			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1345  		} else {
1346  			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1347  			/* Clear NumVMPL since KVM does not support VMPL.  */
1348  			entry->ebx &= ~GENMASK(31, 12);
1349  			/*
1350  			 * Enumerate '0' for "PA bits reduction", the adjusted
1351  			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1352  			 */
1353  			entry->ebx &= ~GENMASK(11, 6);
1354  		}
1355  		break;
1356  	case 0x80000020:
1357  		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1358  		break;
1359  	case 0x80000021:
1360  		entry->ebx = entry->ecx = entry->edx = 0;
1361  		cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1362  		break;
1363  	/* AMD Extended Performance Monitoring and Debug */
1364  	case 0x80000022: {
1365  		union cpuid_0x80000022_ebx ebx;
1366  
1367  		entry->ecx = entry->edx = 0;
1368  		if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1369  			entry->eax = entry->ebx;
1370  			break;
1371  		}
1372  
1373  		cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1374  
1375  		if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1376  			ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1377  		else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1378  			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1379  		else
1380  			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1381  
1382  		entry->ebx = ebx.full;
1383  		break;
1384  	}
1385  	/*Add support for Centaur's CPUID instruction*/
1386  	case 0xC0000000:
1387  		/*Just support up to 0xC0000004 now*/
1388  		entry->eax = min(entry->eax, 0xC0000004);
1389  		break;
1390  	case 0xC0000001:
1391  		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1392  		break;
1393  	case 3: /* Processor serial number */
1394  	case 5: /* MONITOR/MWAIT */
1395  	case 0xC0000002:
1396  	case 0xC0000003:
1397  	case 0xC0000004:
1398  	default:
1399  		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1400  		break;
1401  	}
1402  
1403  	r = 0;
1404  
1405  out:
1406  	put_cpu();
1407  
1408  	return r;
1409  }
1410  
do_cpuid_func(struct kvm_cpuid_array * array,u32 func,unsigned int type)1411  static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1412  			 unsigned int type)
1413  {
1414  	if (type == KVM_GET_EMULATED_CPUID)
1415  		return __do_cpuid_func_emulated(array, func);
1416  
1417  	return __do_cpuid_func(array, func);
1418  }
1419  
1420  #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1421  
get_cpuid_func(struct kvm_cpuid_array * array,u32 func,unsigned int type)1422  static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1423  			  unsigned int type)
1424  {
1425  	u32 limit;
1426  	int r;
1427  
1428  	if (func == CENTAUR_CPUID_SIGNATURE &&
1429  	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1430  		return 0;
1431  
1432  	r = do_cpuid_func(array, func, type);
1433  	if (r)
1434  		return r;
1435  
1436  	limit = array->entries[array->nent - 1].eax;
1437  	for (func = func + 1; func <= limit; ++func) {
1438  		r = do_cpuid_func(array, func, type);
1439  		if (r)
1440  			break;
1441  	}
1442  
1443  	return r;
1444  }
1445  
sanity_check_entries(struct kvm_cpuid_entry2 __user * entries,__u32 num_entries,unsigned int ioctl_type)1446  static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1447  				 __u32 num_entries, unsigned int ioctl_type)
1448  {
1449  	int i;
1450  	__u32 pad[3];
1451  
1452  	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1453  		return false;
1454  
1455  	/*
1456  	 * We want to make sure that ->padding is being passed clean from
1457  	 * userspace in case we want to use it for something in the future.
1458  	 *
1459  	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1460  	 * have to give ourselves satisfied only with the emulated side. /me
1461  	 * sheds a tear.
1462  	 */
1463  	for (i = 0; i < num_entries; i++) {
1464  		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1465  			return true;
1466  
1467  		if (pad[0] || pad[1] || pad[2])
1468  			return true;
1469  	}
1470  	return false;
1471  }
1472  
kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries,unsigned int type)1473  int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1474  			    struct kvm_cpuid_entry2 __user *entries,
1475  			    unsigned int type)
1476  {
1477  	static const u32 funcs[] = {
1478  		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1479  	};
1480  
1481  	struct kvm_cpuid_array array = {
1482  		.nent = 0,
1483  	};
1484  	int r, i;
1485  
1486  	if (cpuid->nent < 1)
1487  		return -E2BIG;
1488  	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1489  		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1490  
1491  	if (sanity_check_entries(entries, cpuid->nent, type))
1492  		return -EINVAL;
1493  
1494  	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1495  	if (!array.entries)
1496  		return -ENOMEM;
1497  
1498  	array.maxnent = cpuid->nent;
1499  
1500  	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1501  		r = get_cpuid_func(&array, funcs[i], type);
1502  		if (r)
1503  			goto out_free;
1504  	}
1505  	cpuid->nent = array.nent;
1506  
1507  	if (copy_to_user(entries, array.entries,
1508  			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1509  		r = -EFAULT;
1510  
1511  out_free:
1512  	kvfree(array.entries);
1513  	return r;
1514  }
1515  
kvm_find_cpuid_entry_index(struct kvm_vcpu * vcpu,u32 function,u32 index)1516  struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1517  						    u32 function, u32 index)
1518  {
1519  	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1520  				 function, index);
1521  }
1522  EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1523  
kvm_find_cpuid_entry(struct kvm_vcpu * vcpu,u32 function)1524  struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1525  					      u32 function)
1526  {
1527  	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1528  				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1529  }
1530  EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1531  
1532  /*
1533   * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1534   * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1535   * returns all zeroes for any undefined leaf, whether or not the leaf is in
1536   * range.  Centaur/VIA follows Intel semantics.
1537   *
1538   * A leaf is considered out-of-range if its function is higher than the maximum
1539   * supported leaf of its associated class or if its associated class does not
1540   * exist.
1541   *
1542   * There are three primary classes to be considered, with their respective
1543   * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1544   * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1545   * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1546   *
1547   *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1548   *  - Hypervisor: 0x40000000 - 0x4fffffff
1549   *  - Extended:   0x80000000 - 0xbfffffff
1550   *  - Centaur:    0xc0000000 - 0xcfffffff
1551   *
1552   * The Hypervisor class is further subdivided into sub-classes that each act as
1553   * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1554   * is advertising support for both HyperV and KVM, the resulting Hypervisor
1555   * CPUID sub-classes are:
1556   *
1557   *  - HyperV:     0x40000000 - 0x400000ff
1558   *  - KVM:        0x40000100 - 0x400001ff
1559   */
1560  static struct kvm_cpuid_entry2 *
get_out_of_range_cpuid_entry(struct kvm_vcpu * vcpu,u32 * fn_ptr,u32 index)1561  get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1562  {
1563  	struct kvm_cpuid_entry2 *basic, *class;
1564  	u32 function = *fn_ptr;
1565  
1566  	basic = kvm_find_cpuid_entry(vcpu, 0);
1567  	if (!basic)
1568  		return NULL;
1569  
1570  	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1571  	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1572  		return NULL;
1573  
1574  	if (function >= 0x40000000 && function <= 0x4fffffff)
1575  		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1576  	else if (function >= 0xc0000000)
1577  		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1578  	else
1579  		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1580  
1581  	if (class && function <= class->eax)
1582  		return NULL;
1583  
1584  	/*
1585  	 * Leaf specific adjustments are also applied when redirecting to the
1586  	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1587  	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1588  	 * needs to be pulled from CPUID.0xb.1.
1589  	 */
1590  	*fn_ptr = basic->eax;
1591  
1592  	/*
1593  	 * The class does not exist or the requested function is out of range;
1594  	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1595  	 * the original requested leaf is observed!
1596  	 */
1597  	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1598  }
1599  
kvm_cpuid(struct kvm_vcpu * vcpu,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)1600  bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1601  	       u32 *ecx, u32 *edx, bool exact_only)
1602  {
1603  	u32 orig_function = *eax, function = *eax, index = *ecx;
1604  	struct kvm_cpuid_entry2 *entry;
1605  	bool exact, used_max_basic = false;
1606  
1607  	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1608  	exact = !!entry;
1609  
1610  	if (!entry && !exact_only) {
1611  		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1612  		used_max_basic = !!entry;
1613  	}
1614  
1615  	if (entry) {
1616  		*eax = entry->eax;
1617  		*ebx = entry->ebx;
1618  		*ecx = entry->ecx;
1619  		*edx = entry->edx;
1620  		if (function == 7 && index == 0) {
1621  			u64 data;
1622  		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1623  			    (data & TSX_CTRL_CPUID_CLEAR))
1624  				*ebx &= ~(F(RTM) | F(HLE));
1625  		} else if (function == 0x80000007) {
1626  			if (kvm_hv_invtsc_suppressed(vcpu))
1627  				*edx &= ~SF(CONSTANT_TSC);
1628  		}
1629  	} else {
1630  		*eax = *ebx = *ecx = *edx = 0;
1631  		/*
1632  		 * When leaf 0BH or 1FH is defined, CL is pass-through
1633  		 * and EDX is always the x2APIC ID, even for undefined
1634  		 * subleaves. Index 1 will exist iff the leaf is
1635  		 * implemented, so we pass through CL iff leaf 1
1636  		 * exists. EDX can be copied from any existing index.
1637  		 */
1638  		if (function == 0xb || function == 0x1f) {
1639  			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1640  			if (entry) {
1641  				*ecx = index & 0xff;
1642  				*edx = entry->edx;
1643  			}
1644  		}
1645  	}
1646  	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1647  			used_max_basic);
1648  	return exact;
1649  }
1650  EXPORT_SYMBOL_GPL(kvm_cpuid);
1651  
kvm_emulate_cpuid(struct kvm_vcpu * vcpu)1652  int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1653  {
1654  	u32 eax, ebx, ecx, edx;
1655  
1656  	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1657  		return 1;
1658  
1659  	eax = kvm_rax_read(vcpu);
1660  	ecx = kvm_rcx_read(vcpu);
1661  	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1662  	kvm_rax_write(vcpu, eax);
1663  	kvm_rbx_write(vcpu, ebx);
1664  	kvm_rcx_write(vcpu, ecx);
1665  	kvm_rdx_write(vcpu, edx);
1666  	return kvm_skip_emulated_instruction(vcpu);
1667  }
1668  EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1669