1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4   * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5   */
6  
7  #include <linux/mman.h>
8  #include <linux/kvm_host.h>
9  #include <linux/io.h>
10  #include <linux/hugetlb.h>
11  #include <linux/sched/signal.h>
12  #include <trace/events/kvm.h>
13  #include <asm/pgalloc.h>
14  #include <asm/cacheflush.h>
15  #include <asm/kvm_arm.h>
16  #include <asm/kvm_mmu.h>
17  #include <asm/kvm_pgtable.h>
18  #include <asm/kvm_ras.h>
19  #include <asm/kvm_asm.h>
20  #include <asm/kvm_emulate.h>
21  #include <asm/virt.h>
22  
23  #include "trace.h"
24  
25  static struct kvm_pgtable *hyp_pgtable;
26  static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27  
28  static unsigned long __ro_after_init hyp_idmap_start;
29  static unsigned long __ro_after_init hyp_idmap_end;
30  static phys_addr_t __ro_after_init hyp_idmap_vector;
31  
32  static unsigned long __ro_after_init io_map_base;
33  
__stage2_range_addr_end(phys_addr_t addr,phys_addr_t end,phys_addr_t size)34  static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
35  					   phys_addr_t size)
36  {
37  	phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
38  
39  	return (boundary - 1 < end - 1) ? boundary : end;
40  }
41  
stage2_range_addr_end(phys_addr_t addr,phys_addr_t end)42  static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
43  {
44  	phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
45  
46  	return __stage2_range_addr_end(addr, end, size);
47  }
48  
49  /*
50   * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
51   * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
52   * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
53   * long will also starve other vCPUs. We have to also make sure that the page
54   * tables are not freed while we released the lock.
55   */
stage2_apply_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end,int (* fn)(struct kvm_pgtable *,u64,u64),bool resched)56  static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
57  			      phys_addr_t end,
58  			      int (*fn)(struct kvm_pgtable *, u64, u64),
59  			      bool resched)
60  {
61  	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
62  	int ret;
63  	u64 next;
64  
65  	do {
66  		struct kvm_pgtable *pgt = mmu->pgt;
67  		if (!pgt)
68  			return -EINVAL;
69  
70  		next = stage2_range_addr_end(addr, end);
71  		ret = fn(pgt, addr, next - addr);
72  		if (ret)
73  			break;
74  
75  		if (resched && next != end)
76  			cond_resched_rwlock_write(&kvm->mmu_lock);
77  	} while (addr = next, addr != end);
78  
79  	return ret;
80  }
81  
82  #define stage2_apply_range_resched(mmu, addr, end, fn)			\
83  	stage2_apply_range(mmu, addr, end, fn, true)
84  
85  /*
86   * Get the maximum number of page-tables pages needed to split a range
87   * of blocks into PAGE_SIZE PTEs. It assumes the range is already
88   * mapped at level 2, or at level 1 if allowed.
89   */
kvm_mmu_split_nr_page_tables(u64 range)90  static int kvm_mmu_split_nr_page_tables(u64 range)
91  {
92  	int n = 0;
93  
94  	if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
95  		n += DIV_ROUND_UP(range, PUD_SIZE);
96  	n += DIV_ROUND_UP(range, PMD_SIZE);
97  	return n;
98  }
99  
need_split_memcache_topup_or_resched(struct kvm * kvm)100  static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
101  {
102  	struct kvm_mmu_memory_cache *cache;
103  	u64 chunk_size, min;
104  
105  	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
106  		return true;
107  
108  	chunk_size = kvm->arch.mmu.split_page_chunk_size;
109  	min = kvm_mmu_split_nr_page_tables(chunk_size);
110  	cache = &kvm->arch.mmu.split_page_cache;
111  	return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
112  }
113  
kvm_mmu_split_huge_pages(struct kvm * kvm,phys_addr_t addr,phys_addr_t end)114  static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
115  				    phys_addr_t end)
116  {
117  	struct kvm_mmu_memory_cache *cache;
118  	struct kvm_pgtable *pgt;
119  	int ret, cache_capacity;
120  	u64 next, chunk_size;
121  
122  	lockdep_assert_held_write(&kvm->mmu_lock);
123  
124  	chunk_size = kvm->arch.mmu.split_page_chunk_size;
125  	cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
126  
127  	if (chunk_size == 0)
128  		return 0;
129  
130  	cache = &kvm->arch.mmu.split_page_cache;
131  
132  	do {
133  		if (need_split_memcache_topup_or_resched(kvm)) {
134  			write_unlock(&kvm->mmu_lock);
135  			cond_resched();
136  			/* Eager page splitting is best-effort. */
137  			ret = __kvm_mmu_topup_memory_cache(cache,
138  							   cache_capacity,
139  							   cache_capacity);
140  			write_lock(&kvm->mmu_lock);
141  			if (ret)
142  				break;
143  		}
144  
145  		pgt = kvm->arch.mmu.pgt;
146  		if (!pgt)
147  			return -EINVAL;
148  
149  		next = __stage2_range_addr_end(addr, end, chunk_size);
150  		ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache);
151  		if (ret)
152  			break;
153  	} while (addr = next, addr != end);
154  
155  	return ret;
156  }
157  
memslot_is_logging(struct kvm_memory_slot * memslot)158  static bool memslot_is_logging(struct kvm_memory_slot *memslot)
159  {
160  	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
161  }
162  
163  /**
164   * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
165   * @kvm:	pointer to kvm structure.
166   *
167   * Interface to HYP function to flush all VM TLB entries
168   */
kvm_arch_flush_remote_tlbs(struct kvm * kvm)169  int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
170  {
171  	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
172  	return 0;
173  }
174  
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)175  int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
176  				      gfn_t gfn, u64 nr_pages)
177  {
178  	kvm_tlb_flush_vmid_range(&kvm->arch.mmu,
179  				gfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
180  	return 0;
181  }
182  
kvm_is_device_pfn(unsigned long pfn)183  static bool kvm_is_device_pfn(unsigned long pfn)
184  {
185  	return !pfn_is_map_memory(pfn);
186  }
187  
stage2_memcache_zalloc_page(void * arg)188  static void *stage2_memcache_zalloc_page(void *arg)
189  {
190  	struct kvm_mmu_memory_cache *mc = arg;
191  	void *virt;
192  
193  	/* Allocated with __GFP_ZERO, so no need to zero */
194  	virt = kvm_mmu_memory_cache_alloc(mc);
195  	if (virt)
196  		kvm_account_pgtable_pages(virt, 1);
197  	return virt;
198  }
199  
kvm_host_zalloc_pages_exact(size_t size)200  static void *kvm_host_zalloc_pages_exact(size_t size)
201  {
202  	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
203  }
204  
kvm_s2_zalloc_pages_exact(size_t size)205  static void *kvm_s2_zalloc_pages_exact(size_t size)
206  {
207  	void *virt = kvm_host_zalloc_pages_exact(size);
208  
209  	if (virt)
210  		kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
211  	return virt;
212  }
213  
kvm_s2_free_pages_exact(void * virt,size_t size)214  static void kvm_s2_free_pages_exact(void *virt, size_t size)
215  {
216  	kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
217  	free_pages_exact(virt, size);
218  }
219  
220  static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
221  
stage2_free_unlinked_table_rcu_cb(struct rcu_head * head)222  static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
223  {
224  	struct page *page = container_of(head, struct page, rcu_head);
225  	void *pgtable = page_to_virt(page);
226  	s8 level = page_private(page);
227  
228  	kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, pgtable, level);
229  }
230  
stage2_free_unlinked_table(void * addr,s8 level)231  static void stage2_free_unlinked_table(void *addr, s8 level)
232  {
233  	struct page *page = virt_to_page(addr);
234  
235  	set_page_private(page, (unsigned long)level);
236  	call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
237  }
238  
kvm_host_get_page(void * addr)239  static void kvm_host_get_page(void *addr)
240  {
241  	get_page(virt_to_page(addr));
242  }
243  
kvm_host_put_page(void * addr)244  static void kvm_host_put_page(void *addr)
245  {
246  	put_page(virt_to_page(addr));
247  }
248  
kvm_s2_put_page(void * addr)249  static void kvm_s2_put_page(void *addr)
250  {
251  	struct page *p = virt_to_page(addr);
252  	/* Dropping last refcount, the page will be freed */
253  	if (page_count(p) == 1)
254  		kvm_account_pgtable_pages(addr, -1);
255  	put_page(p);
256  }
257  
kvm_host_page_count(void * addr)258  static int kvm_host_page_count(void *addr)
259  {
260  	return page_count(virt_to_page(addr));
261  }
262  
kvm_host_pa(void * addr)263  static phys_addr_t kvm_host_pa(void *addr)
264  {
265  	return __pa(addr);
266  }
267  
kvm_host_va(phys_addr_t phys)268  static void *kvm_host_va(phys_addr_t phys)
269  {
270  	return __va(phys);
271  }
272  
clean_dcache_guest_page(void * va,size_t size)273  static void clean_dcache_guest_page(void *va, size_t size)
274  {
275  	__clean_dcache_guest_page(va, size);
276  }
277  
invalidate_icache_guest_page(void * va,size_t size)278  static void invalidate_icache_guest_page(void *va, size_t size)
279  {
280  	__invalidate_icache_guest_page(va, size);
281  }
282  
283  /*
284   * Unmapping vs dcache management:
285   *
286   * If a guest maps certain memory pages as uncached, all writes will
287   * bypass the data cache and go directly to RAM.  However, the CPUs
288   * can still speculate reads (not writes) and fill cache lines with
289   * data.
290   *
291   * Those cache lines will be *clean* cache lines though, so a
292   * clean+invalidate operation is equivalent to an invalidate
293   * operation, because no cache lines are marked dirty.
294   *
295   * Those clean cache lines could be filled prior to an uncached write
296   * by the guest, and the cache coherent IO subsystem would therefore
297   * end up writing old data to disk.
298   *
299   * This is why right after unmapping a page/section and invalidating
300   * the corresponding TLBs, we flush to make sure the IO subsystem will
301   * never hit in the cache.
302   *
303   * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
304   * we then fully enforce cacheability of RAM, no matter what the guest
305   * does.
306   */
307  /**
308   * __unmap_stage2_range -- Clear stage2 page table entries to unmap a range
309   * @mmu:   The KVM stage-2 MMU pointer
310   * @start: The intermediate physical base address of the range to unmap
311   * @size:  The size of the area to unmap
312   * @may_block: Whether or not we are permitted to block
313   *
314   * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
315   * be called while holding mmu_lock (unless for freeing the stage2 pgd before
316   * destroying the VM), otherwise another faulting VCPU may come in and mess
317   * with things behind our backs.
318   */
__unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)319  static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
320  				 bool may_block)
321  {
322  	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
323  	phys_addr_t end = start + size;
324  
325  	lockdep_assert_held_write(&kvm->mmu_lock);
326  	WARN_ON(size & ~PAGE_MASK);
327  	WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap,
328  				   may_block));
329  }
330  
kvm_stage2_unmap_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)331  void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start,
332  			    u64 size, bool may_block)
333  {
334  	__unmap_stage2_range(mmu, start, size, may_block);
335  }
336  
kvm_stage2_flush_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)337  void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
338  {
339  	stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_flush);
340  }
341  
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)342  static void stage2_flush_memslot(struct kvm *kvm,
343  				 struct kvm_memory_slot *memslot)
344  {
345  	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
346  	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
347  
348  	kvm_stage2_flush_range(&kvm->arch.mmu, addr, end);
349  }
350  
351  /**
352   * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
353   * @kvm: The struct kvm pointer
354   *
355   * Go through the stage 2 page tables and invalidate any cache lines
356   * backing memory already mapped to the VM.
357   */
stage2_flush_vm(struct kvm * kvm)358  static void stage2_flush_vm(struct kvm *kvm)
359  {
360  	struct kvm_memslots *slots;
361  	struct kvm_memory_slot *memslot;
362  	int idx, bkt;
363  
364  	idx = srcu_read_lock(&kvm->srcu);
365  	write_lock(&kvm->mmu_lock);
366  
367  	slots = kvm_memslots(kvm);
368  	kvm_for_each_memslot(memslot, bkt, slots)
369  		stage2_flush_memslot(kvm, memslot);
370  
371  	kvm_nested_s2_flush(kvm);
372  
373  	write_unlock(&kvm->mmu_lock);
374  	srcu_read_unlock(&kvm->srcu, idx);
375  }
376  
377  /**
378   * free_hyp_pgds - free Hyp-mode page tables
379   */
free_hyp_pgds(void)380  void __init free_hyp_pgds(void)
381  {
382  	mutex_lock(&kvm_hyp_pgd_mutex);
383  	if (hyp_pgtable) {
384  		kvm_pgtable_hyp_destroy(hyp_pgtable);
385  		kfree(hyp_pgtable);
386  		hyp_pgtable = NULL;
387  	}
388  	mutex_unlock(&kvm_hyp_pgd_mutex);
389  }
390  
kvm_host_owns_hyp_mappings(void)391  static bool kvm_host_owns_hyp_mappings(void)
392  {
393  	if (is_kernel_in_hyp_mode())
394  		return false;
395  
396  	if (static_branch_likely(&kvm_protected_mode_initialized))
397  		return false;
398  
399  	/*
400  	 * This can happen at boot time when __create_hyp_mappings() is called
401  	 * after the hyp protection has been enabled, but the static key has
402  	 * not been flipped yet.
403  	 */
404  	if (!hyp_pgtable && is_protected_kvm_enabled())
405  		return false;
406  
407  	WARN_ON(!hyp_pgtable);
408  
409  	return true;
410  }
411  
__create_hyp_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)412  int __create_hyp_mappings(unsigned long start, unsigned long size,
413  			  unsigned long phys, enum kvm_pgtable_prot prot)
414  {
415  	int err;
416  
417  	if (WARN_ON(!kvm_host_owns_hyp_mappings()))
418  		return -EINVAL;
419  
420  	mutex_lock(&kvm_hyp_pgd_mutex);
421  	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
422  	mutex_unlock(&kvm_hyp_pgd_mutex);
423  
424  	return err;
425  }
426  
kvm_kaddr_to_phys(void * kaddr)427  static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
428  {
429  	if (!is_vmalloc_addr(kaddr)) {
430  		BUG_ON(!virt_addr_valid(kaddr));
431  		return __pa(kaddr);
432  	} else {
433  		return page_to_phys(vmalloc_to_page(kaddr)) +
434  		       offset_in_page(kaddr);
435  	}
436  }
437  
438  struct hyp_shared_pfn {
439  	u64 pfn;
440  	int count;
441  	struct rb_node node;
442  };
443  
444  static DEFINE_MUTEX(hyp_shared_pfns_lock);
445  static struct rb_root hyp_shared_pfns = RB_ROOT;
446  
find_shared_pfn(u64 pfn,struct rb_node *** node,struct rb_node ** parent)447  static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
448  					      struct rb_node **parent)
449  {
450  	struct hyp_shared_pfn *this;
451  
452  	*node = &hyp_shared_pfns.rb_node;
453  	*parent = NULL;
454  	while (**node) {
455  		this = container_of(**node, struct hyp_shared_pfn, node);
456  		*parent = **node;
457  		if (this->pfn < pfn)
458  			*node = &((**node)->rb_left);
459  		else if (this->pfn > pfn)
460  			*node = &((**node)->rb_right);
461  		else
462  			return this;
463  	}
464  
465  	return NULL;
466  }
467  
share_pfn_hyp(u64 pfn)468  static int share_pfn_hyp(u64 pfn)
469  {
470  	struct rb_node **node, *parent;
471  	struct hyp_shared_pfn *this;
472  	int ret = 0;
473  
474  	mutex_lock(&hyp_shared_pfns_lock);
475  	this = find_shared_pfn(pfn, &node, &parent);
476  	if (this) {
477  		this->count++;
478  		goto unlock;
479  	}
480  
481  	this = kzalloc(sizeof(*this), GFP_KERNEL);
482  	if (!this) {
483  		ret = -ENOMEM;
484  		goto unlock;
485  	}
486  
487  	this->pfn = pfn;
488  	this->count = 1;
489  	rb_link_node(&this->node, parent, node);
490  	rb_insert_color(&this->node, &hyp_shared_pfns);
491  	ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
492  unlock:
493  	mutex_unlock(&hyp_shared_pfns_lock);
494  
495  	return ret;
496  }
497  
unshare_pfn_hyp(u64 pfn)498  static int unshare_pfn_hyp(u64 pfn)
499  {
500  	struct rb_node **node, *parent;
501  	struct hyp_shared_pfn *this;
502  	int ret = 0;
503  
504  	mutex_lock(&hyp_shared_pfns_lock);
505  	this = find_shared_pfn(pfn, &node, &parent);
506  	if (WARN_ON(!this)) {
507  		ret = -ENOENT;
508  		goto unlock;
509  	}
510  
511  	this->count--;
512  	if (this->count)
513  		goto unlock;
514  
515  	rb_erase(&this->node, &hyp_shared_pfns);
516  	kfree(this);
517  	ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
518  unlock:
519  	mutex_unlock(&hyp_shared_pfns_lock);
520  
521  	return ret;
522  }
523  
kvm_share_hyp(void * from,void * to)524  int kvm_share_hyp(void *from, void *to)
525  {
526  	phys_addr_t start, end, cur;
527  	u64 pfn;
528  	int ret;
529  
530  	if (is_kernel_in_hyp_mode())
531  		return 0;
532  
533  	/*
534  	 * The share hcall maps things in the 'fixed-offset' region of the hyp
535  	 * VA space, so we can only share physically contiguous data-structures
536  	 * for now.
537  	 */
538  	if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
539  		return -EINVAL;
540  
541  	if (kvm_host_owns_hyp_mappings())
542  		return create_hyp_mappings(from, to, PAGE_HYP);
543  
544  	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
545  	end = PAGE_ALIGN(__pa(to));
546  	for (cur = start; cur < end; cur += PAGE_SIZE) {
547  		pfn = __phys_to_pfn(cur);
548  		ret = share_pfn_hyp(pfn);
549  		if (ret)
550  			return ret;
551  	}
552  
553  	return 0;
554  }
555  
kvm_unshare_hyp(void * from,void * to)556  void kvm_unshare_hyp(void *from, void *to)
557  {
558  	phys_addr_t start, end, cur;
559  	u64 pfn;
560  
561  	if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
562  		return;
563  
564  	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
565  	end = PAGE_ALIGN(__pa(to));
566  	for (cur = start; cur < end; cur += PAGE_SIZE) {
567  		pfn = __phys_to_pfn(cur);
568  		WARN_ON(unshare_pfn_hyp(pfn));
569  	}
570  }
571  
572  /**
573   * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
574   * @from:	The virtual kernel start address of the range
575   * @to:		The virtual kernel end address of the range (exclusive)
576   * @prot:	The protection to be applied to this range
577   *
578   * The same virtual address as the kernel virtual address is also used
579   * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
580   * physical pages.
581   */
create_hyp_mappings(void * from,void * to,enum kvm_pgtable_prot prot)582  int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
583  {
584  	phys_addr_t phys_addr;
585  	unsigned long virt_addr;
586  	unsigned long start = kern_hyp_va((unsigned long)from);
587  	unsigned long end = kern_hyp_va((unsigned long)to);
588  
589  	if (is_kernel_in_hyp_mode())
590  		return 0;
591  
592  	if (!kvm_host_owns_hyp_mappings())
593  		return -EPERM;
594  
595  	start = start & PAGE_MASK;
596  	end = PAGE_ALIGN(end);
597  
598  	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
599  		int err;
600  
601  		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
602  		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
603  					    prot);
604  		if (err)
605  			return err;
606  	}
607  
608  	return 0;
609  }
610  
__hyp_alloc_private_va_range(unsigned long base)611  static int __hyp_alloc_private_va_range(unsigned long base)
612  {
613  	lockdep_assert_held(&kvm_hyp_pgd_mutex);
614  
615  	if (!PAGE_ALIGNED(base))
616  		return -EINVAL;
617  
618  	/*
619  	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
620  	 * allocating the new area, as it would indicate we've
621  	 * overflowed the idmap/IO address range.
622  	 */
623  	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
624  		return -ENOMEM;
625  
626  	io_map_base = base;
627  
628  	return 0;
629  }
630  
631  /**
632   * hyp_alloc_private_va_range - Allocates a private VA range.
633   * @size:	The size of the VA range to reserve.
634   * @haddr:	The hypervisor virtual start address of the allocation.
635   *
636   * The private virtual address (VA) range is allocated below io_map_base
637   * and aligned based on the order of @size.
638   *
639   * Return: 0 on success or negative error code on failure.
640   */
hyp_alloc_private_va_range(size_t size,unsigned long * haddr)641  int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
642  {
643  	unsigned long base;
644  	int ret = 0;
645  
646  	mutex_lock(&kvm_hyp_pgd_mutex);
647  
648  	/*
649  	 * This assumes that we have enough space below the idmap
650  	 * page to allocate our VAs. If not, the check in
651  	 * __hyp_alloc_private_va_range() will kick. A potential
652  	 * alternative would be to detect that overflow and switch
653  	 * to an allocation above the idmap.
654  	 *
655  	 * The allocated size is always a multiple of PAGE_SIZE.
656  	 */
657  	size = PAGE_ALIGN(size);
658  	base = io_map_base - size;
659  	ret = __hyp_alloc_private_va_range(base);
660  
661  	mutex_unlock(&kvm_hyp_pgd_mutex);
662  
663  	if (!ret)
664  		*haddr = base;
665  
666  	return ret;
667  }
668  
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,enum kvm_pgtable_prot prot)669  static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
670  					unsigned long *haddr,
671  					enum kvm_pgtable_prot prot)
672  {
673  	unsigned long addr;
674  	int ret = 0;
675  
676  	if (!kvm_host_owns_hyp_mappings()) {
677  		addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
678  					 phys_addr, size, prot);
679  		if (IS_ERR_VALUE(addr))
680  			return addr;
681  		*haddr = addr;
682  
683  		return 0;
684  	}
685  
686  	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
687  	ret = hyp_alloc_private_va_range(size, &addr);
688  	if (ret)
689  		return ret;
690  
691  	ret = __create_hyp_mappings(addr, size, phys_addr, prot);
692  	if (ret)
693  		return ret;
694  
695  	*haddr = addr + offset_in_page(phys_addr);
696  	return ret;
697  }
698  
create_hyp_stack(phys_addr_t phys_addr,unsigned long * haddr)699  int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
700  {
701  	unsigned long base;
702  	size_t size;
703  	int ret;
704  
705  	mutex_lock(&kvm_hyp_pgd_mutex);
706  	/*
707  	 * Efficient stack verification using the PAGE_SHIFT bit implies
708  	 * an alignment of our allocation on the order of the size.
709  	 */
710  	size = PAGE_SIZE * 2;
711  	base = ALIGN_DOWN(io_map_base - size, size);
712  
713  	ret = __hyp_alloc_private_va_range(base);
714  
715  	mutex_unlock(&kvm_hyp_pgd_mutex);
716  
717  	if (ret) {
718  		kvm_err("Cannot allocate hyp stack guard page\n");
719  		return ret;
720  	}
721  
722  	/*
723  	 * Since the stack grows downwards, map the stack to the page
724  	 * at the higher address and leave the lower guard page
725  	 * unbacked.
726  	 *
727  	 * Any valid stack address now has the PAGE_SHIFT bit as 1
728  	 * and addresses corresponding to the guard page have the
729  	 * PAGE_SHIFT bit as 0 - this is used for overflow detection.
730  	 */
731  	ret = __create_hyp_mappings(base + PAGE_SIZE, PAGE_SIZE, phys_addr,
732  				    PAGE_HYP);
733  	if (ret)
734  		kvm_err("Cannot map hyp stack\n");
735  
736  	*haddr = base + size;
737  
738  	return ret;
739  }
740  
741  /**
742   * create_hyp_io_mappings - Map IO into both kernel and HYP
743   * @phys_addr:	The physical start address which gets mapped
744   * @size:	Size of the region being mapped
745   * @kaddr:	Kernel VA for this mapping
746   * @haddr:	HYP VA for this mapping
747   */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)748  int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
749  			   void __iomem **kaddr,
750  			   void __iomem **haddr)
751  {
752  	unsigned long addr;
753  	int ret;
754  
755  	if (is_protected_kvm_enabled())
756  		return -EPERM;
757  
758  	*kaddr = ioremap(phys_addr, size);
759  	if (!*kaddr)
760  		return -ENOMEM;
761  
762  	if (is_kernel_in_hyp_mode()) {
763  		*haddr = *kaddr;
764  		return 0;
765  	}
766  
767  	ret = __create_hyp_private_mapping(phys_addr, size,
768  					   &addr, PAGE_HYP_DEVICE);
769  	if (ret) {
770  		iounmap(*kaddr);
771  		*kaddr = NULL;
772  		*haddr = NULL;
773  		return ret;
774  	}
775  
776  	*haddr = (void __iomem *)addr;
777  	return 0;
778  }
779  
780  /**
781   * create_hyp_exec_mappings - Map an executable range into HYP
782   * @phys_addr:	The physical start address which gets mapped
783   * @size:	Size of the region being mapped
784   * @haddr:	HYP VA for this mapping
785   */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)786  int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
787  			     void **haddr)
788  {
789  	unsigned long addr;
790  	int ret;
791  
792  	BUG_ON(is_kernel_in_hyp_mode());
793  
794  	ret = __create_hyp_private_mapping(phys_addr, size,
795  					   &addr, PAGE_HYP_EXEC);
796  	if (ret) {
797  		*haddr = NULL;
798  		return ret;
799  	}
800  
801  	*haddr = (void *)addr;
802  	return 0;
803  }
804  
805  static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
806  	/* We shouldn't need any other callback to walk the PT */
807  	.phys_to_virt		= kvm_host_va,
808  };
809  
get_user_mapping_size(struct kvm * kvm,u64 addr)810  static int get_user_mapping_size(struct kvm *kvm, u64 addr)
811  {
812  	struct kvm_pgtable pgt = {
813  		.pgd		= (kvm_pteref_t)kvm->mm->pgd,
814  		.ia_bits	= vabits_actual,
815  		.start_level	= (KVM_PGTABLE_LAST_LEVEL -
816  				   ARM64_HW_PGTABLE_LEVELS(pgt.ia_bits) + 1),
817  		.mm_ops		= &kvm_user_mm_ops,
818  	};
819  	unsigned long flags;
820  	kvm_pte_t pte = 0;	/* Keep GCC quiet... */
821  	s8 level = S8_MAX;
822  	int ret;
823  
824  	/*
825  	 * Disable IRQs so that we hazard against a concurrent
826  	 * teardown of the userspace page tables (which relies on
827  	 * IPI-ing threads).
828  	 */
829  	local_irq_save(flags);
830  	ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
831  	local_irq_restore(flags);
832  
833  	if (ret)
834  		return ret;
835  
836  	/*
837  	 * Not seeing an error, but not updating level? Something went
838  	 * deeply wrong...
839  	 */
840  	if (WARN_ON(level > KVM_PGTABLE_LAST_LEVEL))
841  		return -EFAULT;
842  	if (WARN_ON(level < KVM_PGTABLE_FIRST_LEVEL))
843  		return -EFAULT;
844  
845  	/* Oops, the userspace PTs are gone... Replay the fault */
846  	if (!kvm_pte_valid(pte))
847  		return -EAGAIN;
848  
849  	return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
850  }
851  
852  static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
853  	.zalloc_page		= stage2_memcache_zalloc_page,
854  	.zalloc_pages_exact	= kvm_s2_zalloc_pages_exact,
855  	.free_pages_exact	= kvm_s2_free_pages_exact,
856  	.free_unlinked_table	= stage2_free_unlinked_table,
857  	.get_page		= kvm_host_get_page,
858  	.put_page		= kvm_s2_put_page,
859  	.page_count		= kvm_host_page_count,
860  	.phys_to_virt		= kvm_host_va,
861  	.virt_to_phys		= kvm_host_pa,
862  	.dcache_clean_inval_poc	= clean_dcache_guest_page,
863  	.icache_inval_pou	= invalidate_icache_guest_page,
864  };
865  
kvm_init_ipa_range(struct kvm_s2_mmu * mmu,unsigned long type)866  static int kvm_init_ipa_range(struct kvm_s2_mmu *mmu, unsigned long type)
867  {
868  	u32 kvm_ipa_limit = get_kvm_ipa_limit();
869  	u64 mmfr0, mmfr1;
870  	u32 phys_shift;
871  
872  	if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
873  		return -EINVAL;
874  
875  	phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
876  	if (is_protected_kvm_enabled()) {
877  		phys_shift = kvm_ipa_limit;
878  	} else if (phys_shift) {
879  		if (phys_shift > kvm_ipa_limit ||
880  		    phys_shift < ARM64_MIN_PARANGE_BITS)
881  			return -EINVAL;
882  	} else {
883  		phys_shift = KVM_PHYS_SHIFT;
884  		if (phys_shift > kvm_ipa_limit) {
885  			pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
886  				     current->comm);
887  			return -EINVAL;
888  		}
889  	}
890  
891  	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
892  	mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
893  	mmu->vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
894  
895  	return 0;
896  }
897  
898  /**
899   * kvm_init_stage2_mmu - Initialise a S2 MMU structure
900   * @kvm:	The pointer to the KVM structure
901   * @mmu:	The pointer to the s2 MMU structure
902   * @type:	The machine type of the virtual machine
903   *
904   * Allocates only the stage-2 HW PGD level table(s).
905   * Note we don't need locking here as this is only called in two cases:
906   *
907   * - when the VM is created, which can't race against anything
908   *
909   * - when secondary kvm_s2_mmu structures are initialised for NV
910   *   guests, and the caller must hold kvm->lock as this is called on a
911   *   per-vcpu basis.
912   */
kvm_init_stage2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu,unsigned long type)913  int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
914  {
915  	int cpu, err;
916  	struct kvm_pgtable *pgt;
917  
918  	/*
919  	 * If we already have our page tables in place, and that the
920  	 * MMU context is the canonical one, we have a bug somewhere,
921  	 * as this is only supposed to ever happen once per VM.
922  	 *
923  	 * Otherwise, we're building nested page tables, and that's
924  	 * probably because userspace called KVM_ARM_VCPU_INIT more
925  	 * than once on the same vcpu. Since that's actually legal,
926  	 * don't kick a fuss and leave gracefully.
927  	 */
928  	if (mmu->pgt != NULL) {
929  		if (kvm_is_nested_s2_mmu(kvm, mmu))
930  			return 0;
931  
932  		kvm_err("kvm_arch already initialized?\n");
933  		return -EINVAL;
934  	}
935  
936  	err = kvm_init_ipa_range(mmu, type);
937  	if (err)
938  		return err;
939  
940  	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
941  	if (!pgt)
942  		return -ENOMEM;
943  
944  	mmu->arch = &kvm->arch;
945  	err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
946  	if (err)
947  		goto out_free_pgtable;
948  
949  	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
950  	if (!mmu->last_vcpu_ran) {
951  		err = -ENOMEM;
952  		goto out_destroy_pgtable;
953  	}
954  
955  	for_each_possible_cpu(cpu)
956  		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
957  
958  	 /* The eager page splitting is disabled by default */
959  	mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
960  	mmu->split_page_cache.gfp_zero = __GFP_ZERO;
961  
962  	mmu->pgt = pgt;
963  	mmu->pgd_phys = __pa(pgt->pgd);
964  
965  	if (kvm_is_nested_s2_mmu(kvm, mmu))
966  		kvm_init_nested_s2_mmu(mmu);
967  
968  	return 0;
969  
970  out_destroy_pgtable:
971  	kvm_pgtable_stage2_destroy(pgt);
972  out_free_pgtable:
973  	kfree(pgt);
974  	return err;
975  }
976  
kvm_uninit_stage2_mmu(struct kvm * kvm)977  void kvm_uninit_stage2_mmu(struct kvm *kvm)
978  {
979  	kvm_free_stage2_pgd(&kvm->arch.mmu);
980  	kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
981  }
982  
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)983  static void stage2_unmap_memslot(struct kvm *kvm,
984  				 struct kvm_memory_slot *memslot)
985  {
986  	hva_t hva = memslot->userspace_addr;
987  	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
988  	phys_addr_t size = PAGE_SIZE * memslot->npages;
989  	hva_t reg_end = hva + size;
990  
991  	/*
992  	 * A memory region could potentially cover multiple VMAs, and any holes
993  	 * between them, so iterate over all of them to find out if we should
994  	 * unmap any of them.
995  	 *
996  	 *     +--------------------------------------------+
997  	 * +---------------+----------------+   +----------------+
998  	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
999  	 * +---------------+----------------+   +----------------+
1000  	 *     |               memory region                |
1001  	 *     +--------------------------------------------+
1002  	 */
1003  	do {
1004  		struct vm_area_struct *vma;
1005  		hva_t vm_start, vm_end;
1006  
1007  		vma = find_vma_intersection(current->mm, hva, reg_end);
1008  		if (!vma)
1009  			break;
1010  
1011  		/*
1012  		 * Take the intersection of this VMA with the memory region
1013  		 */
1014  		vm_start = max(hva, vma->vm_start);
1015  		vm_end = min(reg_end, vma->vm_end);
1016  
1017  		if (!(vma->vm_flags & VM_PFNMAP)) {
1018  			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
1019  			kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, vm_end - vm_start, true);
1020  		}
1021  		hva = vm_end;
1022  	} while (hva < reg_end);
1023  }
1024  
1025  /**
1026   * stage2_unmap_vm - Unmap Stage-2 RAM mappings
1027   * @kvm: The struct kvm pointer
1028   *
1029   * Go through the memregions and unmap any regular RAM
1030   * backing memory already mapped to the VM.
1031   */
stage2_unmap_vm(struct kvm * kvm)1032  void stage2_unmap_vm(struct kvm *kvm)
1033  {
1034  	struct kvm_memslots *slots;
1035  	struct kvm_memory_slot *memslot;
1036  	int idx, bkt;
1037  
1038  	idx = srcu_read_lock(&kvm->srcu);
1039  	mmap_read_lock(current->mm);
1040  	write_lock(&kvm->mmu_lock);
1041  
1042  	slots = kvm_memslots(kvm);
1043  	kvm_for_each_memslot(memslot, bkt, slots)
1044  		stage2_unmap_memslot(kvm, memslot);
1045  
1046  	kvm_nested_s2_unmap(kvm, true);
1047  
1048  	write_unlock(&kvm->mmu_lock);
1049  	mmap_read_unlock(current->mm);
1050  	srcu_read_unlock(&kvm->srcu, idx);
1051  }
1052  
kvm_free_stage2_pgd(struct kvm_s2_mmu * mmu)1053  void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1054  {
1055  	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
1056  	struct kvm_pgtable *pgt = NULL;
1057  
1058  	write_lock(&kvm->mmu_lock);
1059  	pgt = mmu->pgt;
1060  	if (pgt) {
1061  		mmu->pgd_phys = 0;
1062  		mmu->pgt = NULL;
1063  		free_percpu(mmu->last_vcpu_ran);
1064  	}
1065  	write_unlock(&kvm->mmu_lock);
1066  
1067  	if (pgt) {
1068  		kvm_pgtable_stage2_destroy(pgt);
1069  		kfree(pgt);
1070  	}
1071  }
1072  
hyp_mc_free_fn(void * addr,void * unused)1073  static void hyp_mc_free_fn(void *addr, void *unused)
1074  {
1075  	free_page((unsigned long)addr);
1076  }
1077  
hyp_mc_alloc_fn(void * unused)1078  static void *hyp_mc_alloc_fn(void *unused)
1079  {
1080  	return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1081  }
1082  
free_hyp_memcache(struct kvm_hyp_memcache * mc)1083  void free_hyp_memcache(struct kvm_hyp_memcache *mc)
1084  {
1085  	if (is_protected_kvm_enabled())
1086  		__free_hyp_memcache(mc, hyp_mc_free_fn,
1087  				    kvm_host_va, NULL);
1088  }
1089  
topup_hyp_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages)1090  int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
1091  {
1092  	if (!is_protected_kvm_enabled())
1093  		return 0;
1094  
1095  	return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
1096  				    kvm_host_pa, NULL);
1097  }
1098  
1099  /**
1100   * kvm_phys_addr_ioremap - map a device range to guest IPA
1101   *
1102   * @kvm:	The KVM pointer
1103   * @guest_ipa:	The IPA at which to insert the mapping
1104   * @pa:		The physical address of the device
1105   * @size:	The size of the mapping
1106   * @writable:   Whether or not to create a writable mapping
1107   */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)1108  int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1109  			  phys_addr_t pa, unsigned long size, bool writable)
1110  {
1111  	phys_addr_t addr;
1112  	int ret = 0;
1113  	struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
1114  	struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
1115  	struct kvm_pgtable *pgt = mmu->pgt;
1116  	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
1117  				     KVM_PGTABLE_PROT_R |
1118  				     (writable ? KVM_PGTABLE_PROT_W : 0);
1119  
1120  	if (is_protected_kvm_enabled())
1121  		return -EPERM;
1122  
1123  	size += offset_in_page(guest_ipa);
1124  	guest_ipa &= PAGE_MASK;
1125  
1126  	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
1127  		ret = kvm_mmu_topup_memory_cache(&cache,
1128  						 kvm_mmu_cache_min_pages(mmu));
1129  		if (ret)
1130  			break;
1131  
1132  		write_lock(&kvm->mmu_lock);
1133  		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
1134  					     &cache, 0);
1135  		write_unlock(&kvm->mmu_lock);
1136  		if (ret)
1137  			break;
1138  
1139  		pa += PAGE_SIZE;
1140  	}
1141  
1142  	kvm_mmu_free_memory_cache(&cache);
1143  	return ret;
1144  }
1145  
1146  /**
1147   * kvm_stage2_wp_range() - write protect stage2 memory region range
1148   * @mmu:        The KVM stage-2 MMU pointer
1149   * @addr:	Start address of range
1150   * @end:	End address of range
1151   */
kvm_stage2_wp_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)1152  void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1153  {
1154  	stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect);
1155  }
1156  
1157  /**
1158   * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1159   * @kvm:	The KVM pointer
1160   * @slot:	The memory slot to write protect
1161   *
1162   * Called to start logging dirty pages after memory region
1163   * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1164   * all present PUD, PMD and PTEs are write protected in the memory region.
1165   * Afterwards read of dirty page log can be called.
1166   *
1167   * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1168   * serializing operations for VM memory regions.
1169   */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)1170  static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1171  {
1172  	struct kvm_memslots *slots = kvm_memslots(kvm);
1173  	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1174  	phys_addr_t start, end;
1175  
1176  	if (WARN_ON_ONCE(!memslot))
1177  		return;
1178  
1179  	start = memslot->base_gfn << PAGE_SHIFT;
1180  	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1181  
1182  	write_lock(&kvm->mmu_lock);
1183  	kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1184  	kvm_nested_s2_wp(kvm);
1185  	write_unlock(&kvm->mmu_lock);
1186  	kvm_flush_remote_tlbs_memslot(kvm, memslot);
1187  }
1188  
1189  /**
1190   * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
1191   *				   pages for memory slot
1192   * @kvm:	The KVM pointer
1193   * @slot:	The memory slot to split
1194   *
1195   * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
1196   * serializing operations for VM memory regions.
1197   */
kvm_mmu_split_memory_region(struct kvm * kvm,int slot)1198  static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
1199  {
1200  	struct kvm_memslots *slots;
1201  	struct kvm_memory_slot *memslot;
1202  	phys_addr_t start, end;
1203  
1204  	lockdep_assert_held(&kvm->slots_lock);
1205  
1206  	slots = kvm_memslots(kvm);
1207  	memslot = id_to_memslot(slots, slot);
1208  
1209  	start = memslot->base_gfn << PAGE_SHIFT;
1210  	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1211  
1212  	write_lock(&kvm->mmu_lock);
1213  	kvm_mmu_split_huge_pages(kvm, start, end);
1214  	write_unlock(&kvm->mmu_lock);
1215  }
1216  
1217  /*
1218   * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
1219   * @kvm:	The KVM pointer
1220   * @slot:	The memory slot associated with mask
1221   * @gfn_offset:	The gfn offset in memory slot
1222   * @mask:	The mask of pages at offset 'gfn_offset' in this memory
1223   *		slot to enable dirty logging on
1224   *
1225   * Writes protect selected pages to enable dirty logging, and then
1226   * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
1227   */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1228  void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1229  		struct kvm_memory_slot *slot,
1230  		gfn_t gfn_offset, unsigned long mask)
1231  {
1232  	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1233  	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1234  	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1235  
1236  	lockdep_assert_held_write(&kvm->mmu_lock);
1237  
1238  	kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1239  
1240  	/*
1241  	 * Eager-splitting is done when manual-protect is set.  We
1242  	 * also check for initially-all-set because we can avoid
1243  	 * eager-splitting if initially-all-set is false.
1244  	 * Initially-all-set equal false implies that huge-pages were
1245  	 * already split when enabling dirty logging: no need to do it
1246  	 * again.
1247  	 */
1248  	if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1249  		kvm_mmu_split_huge_pages(kvm, start, end);
1250  
1251  	kvm_nested_s2_wp(kvm);
1252  }
1253  
kvm_send_hwpoison_signal(unsigned long address,short lsb)1254  static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1255  {
1256  	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1257  }
1258  
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)1259  static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1260  					       unsigned long hva,
1261  					       unsigned long map_size)
1262  {
1263  	gpa_t gpa_start;
1264  	hva_t uaddr_start, uaddr_end;
1265  	size_t size;
1266  
1267  	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1268  	if (map_size == PAGE_SIZE)
1269  		return true;
1270  
1271  	size = memslot->npages * PAGE_SIZE;
1272  
1273  	gpa_start = memslot->base_gfn << PAGE_SHIFT;
1274  
1275  	uaddr_start = memslot->userspace_addr;
1276  	uaddr_end = uaddr_start + size;
1277  
1278  	/*
1279  	 * Pages belonging to memslots that don't have the same alignment
1280  	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1281  	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1282  	 *
1283  	 * Consider a layout like the following:
1284  	 *
1285  	 *    memslot->userspace_addr:
1286  	 *    +-----+--------------------+--------------------+---+
1287  	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1288  	 *    +-----+--------------------+--------------------+---+
1289  	 *
1290  	 *    memslot->base_gfn << PAGE_SHIFT:
1291  	 *      +---+--------------------+--------------------+-----+
1292  	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1293  	 *      +---+--------------------+--------------------+-----+
1294  	 *
1295  	 * If we create those stage-2 blocks, we'll end up with this incorrect
1296  	 * mapping:
1297  	 *   d -> f
1298  	 *   e -> g
1299  	 *   f -> h
1300  	 */
1301  	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1302  		return false;
1303  
1304  	/*
1305  	 * Next, let's make sure we're not trying to map anything not covered
1306  	 * by the memslot. This means we have to prohibit block size mappings
1307  	 * for the beginning and end of a non-block aligned and non-block sized
1308  	 * memory slot (illustrated by the head and tail parts of the
1309  	 * userspace view above containing pages 'abcde' and 'xyz',
1310  	 * respectively).
1311  	 *
1312  	 * Note that it doesn't matter if we do the check using the
1313  	 * userspace_addr or the base_gfn, as both are equally aligned (per
1314  	 * the check above) and equally sized.
1315  	 */
1316  	return (hva & ~(map_size - 1)) >= uaddr_start &&
1317  	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1318  }
1319  
1320  /*
1321   * Check if the given hva is backed by a transparent huge page (THP) and
1322   * whether it can be mapped using block mapping in stage2. If so, adjust
1323   * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1324   * supported. This will need to be updated to support other THP sizes.
1325   *
1326   * Returns the size of the mapping.
1327   */
1328  static long
transparent_hugepage_adjust(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long hva,kvm_pfn_t * pfnp,phys_addr_t * ipap)1329  transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1330  			    unsigned long hva, kvm_pfn_t *pfnp,
1331  			    phys_addr_t *ipap)
1332  {
1333  	kvm_pfn_t pfn = *pfnp;
1334  
1335  	/*
1336  	 * Make sure the adjustment is done only for THP pages. Also make
1337  	 * sure that the HVA and IPA are sufficiently aligned and that the
1338  	 * block map is contained within the memslot.
1339  	 */
1340  	if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1341  		int sz = get_user_mapping_size(kvm, hva);
1342  
1343  		if (sz < 0)
1344  			return sz;
1345  
1346  		if (sz < PMD_SIZE)
1347  			return PAGE_SIZE;
1348  
1349  		*ipap &= PMD_MASK;
1350  		pfn &= ~(PTRS_PER_PMD - 1);
1351  		*pfnp = pfn;
1352  
1353  		return PMD_SIZE;
1354  	}
1355  
1356  	/* Use page mapping if we cannot use block mapping. */
1357  	return PAGE_SIZE;
1358  }
1359  
get_vma_page_shift(struct vm_area_struct * vma,unsigned long hva)1360  static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1361  {
1362  	unsigned long pa;
1363  
1364  	if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1365  		return huge_page_shift(hstate_vma(vma));
1366  
1367  	if (!(vma->vm_flags & VM_PFNMAP))
1368  		return PAGE_SHIFT;
1369  
1370  	VM_BUG_ON(is_vm_hugetlb_page(vma));
1371  
1372  	pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1373  
1374  #ifndef __PAGETABLE_PMD_FOLDED
1375  	if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1376  	    ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1377  	    ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1378  		return PUD_SHIFT;
1379  #endif
1380  
1381  	if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1382  	    ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1383  	    ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1384  		return PMD_SHIFT;
1385  
1386  	return PAGE_SHIFT;
1387  }
1388  
1389  /*
1390   * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1391   * able to see the page's tags and therefore they must be initialised first. If
1392   * PG_mte_tagged is set, tags have already been initialised.
1393   *
1394   * The race in the test/set of the PG_mte_tagged flag is handled by:
1395   * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1396   *   racing to santise the same page
1397   * - mmap_lock protects between a VM faulting a page in and the VMM performing
1398   *   an mprotect() to add VM_MTE
1399   */
sanitise_mte_tags(struct kvm * kvm,kvm_pfn_t pfn,unsigned long size)1400  static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1401  			      unsigned long size)
1402  {
1403  	unsigned long i, nr_pages = size >> PAGE_SHIFT;
1404  	struct page *page = pfn_to_page(pfn);
1405  
1406  	if (!kvm_has_mte(kvm))
1407  		return;
1408  
1409  	for (i = 0; i < nr_pages; i++, page++) {
1410  		if (try_page_mte_tagging(page)) {
1411  			mte_clear_page_tags(page_address(page));
1412  			set_page_mte_tagged(page);
1413  		}
1414  	}
1415  }
1416  
kvm_vma_mte_allowed(struct vm_area_struct * vma)1417  static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1418  {
1419  	return vma->vm_flags & VM_MTE_ALLOWED;
1420  }
1421  
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_s2_trans * nested,struct kvm_memory_slot * memslot,unsigned long hva,bool fault_is_perm)1422  static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1423  			  struct kvm_s2_trans *nested,
1424  			  struct kvm_memory_slot *memslot, unsigned long hva,
1425  			  bool fault_is_perm)
1426  {
1427  	int ret = 0;
1428  	bool write_fault, writable, force_pte = false;
1429  	bool exec_fault, mte_allowed;
1430  	bool device = false, vfio_allow_any_uc = false;
1431  	unsigned long mmu_seq;
1432  	phys_addr_t ipa = fault_ipa;
1433  	struct kvm *kvm = vcpu->kvm;
1434  	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1435  	struct vm_area_struct *vma;
1436  	short vma_shift;
1437  	gfn_t gfn;
1438  	kvm_pfn_t pfn;
1439  	bool logging_active = memslot_is_logging(memslot);
1440  	long vma_pagesize, fault_granule;
1441  	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1442  	struct kvm_pgtable *pgt;
1443  
1444  	if (fault_is_perm)
1445  		fault_granule = kvm_vcpu_trap_get_perm_fault_granule(vcpu);
1446  	write_fault = kvm_is_write_fault(vcpu);
1447  	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1448  	VM_BUG_ON(write_fault && exec_fault);
1449  
1450  	if (fault_is_perm && !write_fault && !exec_fault) {
1451  		kvm_err("Unexpected L2 read permission error\n");
1452  		return -EFAULT;
1453  	}
1454  
1455  	/*
1456  	 * Permission faults just need to update the existing leaf entry,
1457  	 * and so normally don't require allocations from the memcache. The
1458  	 * only exception to this is when dirty logging is enabled at runtime
1459  	 * and a write fault needs to collapse a block entry into a table.
1460  	 */
1461  	if (!fault_is_perm || (logging_active && write_fault)) {
1462  		ret = kvm_mmu_topup_memory_cache(memcache,
1463  						 kvm_mmu_cache_min_pages(vcpu->arch.hw_mmu));
1464  		if (ret)
1465  			return ret;
1466  	}
1467  
1468  	/*
1469  	 * Let's check if we will get back a huge page backed by hugetlbfs, or
1470  	 * get block mapping for device MMIO region.
1471  	 */
1472  	mmap_read_lock(current->mm);
1473  	vma = vma_lookup(current->mm, hva);
1474  	if (unlikely(!vma)) {
1475  		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1476  		mmap_read_unlock(current->mm);
1477  		return -EFAULT;
1478  	}
1479  
1480  	/*
1481  	 * logging_active is guaranteed to never be true for VM_PFNMAP
1482  	 * memslots.
1483  	 */
1484  	if (logging_active) {
1485  		force_pte = true;
1486  		vma_shift = PAGE_SHIFT;
1487  	} else {
1488  		vma_shift = get_vma_page_shift(vma, hva);
1489  	}
1490  
1491  	switch (vma_shift) {
1492  #ifndef __PAGETABLE_PMD_FOLDED
1493  	case PUD_SHIFT:
1494  		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1495  			break;
1496  		fallthrough;
1497  #endif
1498  	case CONT_PMD_SHIFT:
1499  		vma_shift = PMD_SHIFT;
1500  		fallthrough;
1501  	case PMD_SHIFT:
1502  		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1503  			break;
1504  		fallthrough;
1505  	case CONT_PTE_SHIFT:
1506  		vma_shift = PAGE_SHIFT;
1507  		force_pte = true;
1508  		fallthrough;
1509  	case PAGE_SHIFT:
1510  		break;
1511  	default:
1512  		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1513  	}
1514  
1515  	vma_pagesize = 1UL << vma_shift;
1516  
1517  	if (nested) {
1518  		unsigned long max_map_size;
1519  
1520  		max_map_size = force_pte ? PAGE_SIZE : PUD_SIZE;
1521  
1522  		ipa = kvm_s2_trans_output(nested);
1523  
1524  		/*
1525  		 * If we're about to create a shadow stage 2 entry, then we
1526  		 * can only create a block mapping if the guest stage 2 page
1527  		 * table uses at least as big a mapping.
1528  		 */
1529  		max_map_size = min(kvm_s2_trans_size(nested), max_map_size);
1530  
1531  		/*
1532  		 * Be careful that if the mapping size falls between
1533  		 * two host sizes, take the smallest of the two.
1534  		 */
1535  		if (max_map_size >= PMD_SIZE && max_map_size < PUD_SIZE)
1536  			max_map_size = PMD_SIZE;
1537  		else if (max_map_size >= PAGE_SIZE && max_map_size < PMD_SIZE)
1538  			max_map_size = PAGE_SIZE;
1539  
1540  		force_pte = (max_map_size == PAGE_SIZE);
1541  		vma_pagesize = min(vma_pagesize, (long)max_map_size);
1542  	}
1543  
1544  	/*
1545  	 * Both the canonical IPA and fault IPA must be hugepage-aligned to
1546  	 * ensure we find the right PFN and lay down the mapping in the right
1547  	 * place.
1548  	 */
1549  	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) {
1550  		fault_ipa &= ~(vma_pagesize - 1);
1551  		ipa &= ~(vma_pagesize - 1);
1552  	}
1553  
1554  	gfn = ipa >> PAGE_SHIFT;
1555  	mte_allowed = kvm_vma_mte_allowed(vma);
1556  
1557  	vfio_allow_any_uc = vma->vm_flags & VM_ALLOW_ANY_UNCACHED;
1558  
1559  	/* Don't use the VMA after the unlock -- it may have vanished */
1560  	vma = NULL;
1561  
1562  	/*
1563  	 * Read mmu_invalidate_seq so that KVM can detect if the results of
1564  	 * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to
1565  	 * acquiring kvm->mmu_lock.
1566  	 *
1567  	 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1568  	 * with the smp_wmb() in kvm_mmu_invalidate_end().
1569  	 */
1570  	mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1571  	mmap_read_unlock(current->mm);
1572  
1573  	pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
1574  				   write_fault, &writable, NULL);
1575  	if (pfn == KVM_PFN_ERR_HWPOISON) {
1576  		kvm_send_hwpoison_signal(hva, vma_shift);
1577  		return 0;
1578  	}
1579  	if (is_error_noslot_pfn(pfn))
1580  		return -EFAULT;
1581  
1582  	if (kvm_is_device_pfn(pfn)) {
1583  		/*
1584  		 * If the page was identified as device early by looking at
1585  		 * the VMA flags, vma_pagesize is already representing the
1586  		 * largest quantity we can map.  If instead it was mapped
1587  		 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1588  		 * and must not be upgraded.
1589  		 *
1590  		 * In both cases, we don't let transparent_hugepage_adjust()
1591  		 * change things at the last minute.
1592  		 */
1593  		device = true;
1594  	} else if (logging_active && !write_fault) {
1595  		/*
1596  		 * Only actually map the page as writable if this was a write
1597  		 * fault.
1598  		 */
1599  		writable = false;
1600  	}
1601  
1602  	if (exec_fault && device)
1603  		return -ENOEXEC;
1604  
1605  	/*
1606  	 * Potentially reduce shadow S2 permissions to match the guest's own
1607  	 * S2. For exec faults, we'd only reach this point if the guest
1608  	 * actually allowed it (see kvm_s2_handle_perm_fault).
1609  	 *
1610  	 * Also encode the level of the original translation in the SW bits
1611  	 * of the leaf entry as a proxy for the span of that translation.
1612  	 * This will be retrieved on TLB invalidation from the guest and
1613  	 * used to limit the invalidation scope if a TTL hint or a range
1614  	 * isn't provided.
1615  	 */
1616  	if (nested) {
1617  		writable &= kvm_s2_trans_writable(nested);
1618  		if (!kvm_s2_trans_readable(nested))
1619  			prot &= ~KVM_PGTABLE_PROT_R;
1620  
1621  		prot |= kvm_encode_nested_level(nested);
1622  	}
1623  
1624  	read_lock(&kvm->mmu_lock);
1625  	pgt = vcpu->arch.hw_mmu->pgt;
1626  	if (mmu_invalidate_retry(kvm, mmu_seq)) {
1627  		ret = -EAGAIN;
1628  		goto out_unlock;
1629  	}
1630  
1631  	/*
1632  	 * If we are not forced to use page mapping, check if we are
1633  	 * backed by a THP and thus use block mapping if possible.
1634  	 */
1635  	if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1636  		if (fault_is_perm && fault_granule > PAGE_SIZE)
1637  			vma_pagesize = fault_granule;
1638  		else
1639  			vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1640  								   hva, &pfn,
1641  								   &fault_ipa);
1642  
1643  		if (vma_pagesize < 0) {
1644  			ret = vma_pagesize;
1645  			goto out_unlock;
1646  		}
1647  	}
1648  
1649  	if (!fault_is_perm && !device && kvm_has_mte(kvm)) {
1650  		/* Check the VMM hasn't introduced a new disallowed VMA */
1651  		if (mte_allowed) {
1652  			sanitise_mte_tags(kvm, pfn, vma_pagesize);
1653  		} else {
1654  			ret = -EFAULT;
1655  			goto out_unlock;
1656  		}
1657  	}
1658  
1659  	if (writable)
1660  		prot |= KVM_PGTABLE_PROT_W;
1661  
1662  	if (exec_fault)
1663  		prot |= KVM_PGTABLE_PROT_X;
1664  
1665  	if (device) {
1666  		if (vfio_allow_any_uc)
1667  			prot |= KVM_PGTABLE_PROT_NORMAL_NC;
1668  		else
1669  			prot |= KVM_PGTABLE_PROT_DEVICE;
1670  	} else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC) &&
1671  		   (!nested || kvm_s2_trans_executable(nested))) {
1672  		prot |= KVM_PGTABLE_PROT_X;
1673  	}
1674  
1675  	/*
1676  	 * Under the premise of getting a FSC_PERM fault, we just need to relax
1677  	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1678  	 * kvm_pgtable_stage2_map() should be called to change block size.
1679  	 */
1680  	if (fault_is_perm && vma_pagesize == fault_granule) {
1681  		/*
1682  		 * Drop the SW bits in favour of those stored in the
1683  		 * PTE, which will be preserved.
1684  		 */
1685  		prot &= ~KVM_NV_GUEST_MAP_SZ;
1686  		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1687  	} else {
1688  		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1689  					     __pfn_to_phys(pfn), prot,
1690  					     memcache,
1691  					     KVM_PGTABLE_WALK_HANDLE_FAULT |
1692  					     KVM_PGTABLE_WALK_SHARED);
1693  	}
1694  
1695  out_unlock:
1696  	read_unlock(&kvm->mmu_lock);
1697  
1698  	/* Mark the page dirty only if the fault is handled successfully */
1699  	if (writable && !ret) {
1700  		kvm_set_pfn_dirty(pfn);
1701  		mark_page_dirty_in_slot(kvm, memslot, gfn);
1702  	}
1703  
1704  	kvm_release_pfn_clean(pfn);
1705  	return ret != -EAGAIN ? ret : 0;
1706  }
1707  
1708  /* Resolve the access fault by making the page young again. */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1709  static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1710  {
1711  	kvm_pte_t pte;
1712  	struct kvm_s2_mmu *mmu;
1713  
1714  	trace_kvm_access_fault(fault_ipa);
1715  
1716  	read_lock(&vcpu->kvm->mmu_lock);
1717  	mmu = vcpu->arch.hw_mmu;
1718  	pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1719  	read_unlock(&vcpu->kvm->mmu_lock);
1720  
1721  	if (kvm_pte_valid(pte))
1722  		kvm_set_pfn_accessed(kvm_pte_to_pfn(pte));
1723  }
1724  
1725  /**
1726   * kvm_handle_guest_abort - handles all 2nd stage aborts
1727   * @vcpu:	the VCPU pointer
1728   *
1729   * Any abort that gets to the host is almost guaranteed to be caused by a
1730   * missing second stage translation table entry, which can mean that either the
1731   * guest simply needs more memory and we must allocate an appropriate page or it
1732   * can mean that the guest tried to access I/O memory, which is emulated by user
1733   * space. The distinction is based on the IPA causing the fault and whether this
1734   * memory region has been registered as standard RAM by user space.
1735   */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu)1736  int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1737  {
1738  	struct kvm_s2_trans nested_trans, *nested = NULL;
1739  	unsigned long esr;
1740  	phys_addr_t fault_ipa; /* The address we faulted on */
1741  	phys_addr_t ipa; /* Always the IPA in the L1 guest phys space */
1742  	struct kvm_memory_slot *memslot;
1743  	unsigned long hva;
1744  	bool is_iabt, write_fault, writable;
1745  	gfn_t gfn;
1746  	int ret, idx;
1747  
1748  	esr = kvm_vcpu_get_esr(vcpu);
1749  
1750  	ipa = fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1751  	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1752  
1753  	if (esr_fsc_is_translation_fault(esr)) {
1754  		/* Beyond sanitised PARange (which is the IPA limit) */
1755  		if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1756  			kvm_inject_size_fault(vcpu);
1757  			return 1;
1758  		}
1759  
1760  		/* Falls between the IPA range and the PARange? */
1761  		if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1762  			fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1763  
1764  			if (is_iabt)
1765  				kvm_inject_pabt(vcpu, fault_ipa);
1766  			else
1767  				kvm_inject_dabt(vcpu, fault_ipa);
1768  			return 1;
1769  		}
1770  	}
1771  
1772  	/* Synchronous External Abort? */
1773  	if (kvm_vcpu_abt_issea(vcpu)) {
1774  		/*
1775  		 * For RAS the host kernel may handle this abort.
1776  		 * There is no need to pass the error into the guest.
1777  		 */
1778  		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1779  			kvm_inject_vabt(vcpu);
1780  
1781  		return 1;
1782  	}
1783  
1784  	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1785  			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1786  
1787  	/* Check the stage-2 fault is trans. fault or write fault */
1788  	if (!esr_fsc_is_translation_fault(esr) &&
1789  	    !esr_fsc_is_permission_fault(esr) &&
1790  	    !esr_fsc_is_access_flag_fault(esr)) {
1791  		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1792  			kvm_vcpu_trap_get_class(vcpu),
1793  			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1794  			(unsigned long)kvm_vcpu_get_esr(vcpu));
1795  		return -EFAULT;
1796  	}
1797  
1798  	idx = srcu_read_lock(&vcpu->kvm->srcu);
1799  
1800  	/*
1801  	 * We may have faulted on a shadow stage 2 page table if we are
1802  	 * running a nested guest.  In this case, we have to resolve the L2
1803  	 * IPA to the L1 IPA first, before knowing what kind of memory should
1804  	 * back the L1 IPA.
1805  	 *
1806  	 * If the shadow stage 2 page table walk faults, then we simply inject
1807  	 * this to the guest and carry on.
1808  	 *
1809  	 * If there are no shadow S2 PTs because S2 is disabled, there is
1810  	 * nothing to walk and we treat it as a 1:1 before going through the
1811  	 * canonical translation.
1812  	 */
1813  	if (kvm_is_nested_s2_mmu(vcpu->kvm,vcpu->arch.hw_mmu) &&
1814  	    vcpu->arch.hw_mmu->nested_stage2_enabled) {
1815  		u32 esr;
1816  
1817  		ret = kvm_walk_nested_s2(vcpu, fault_ipa, &nested_trans);
1818  		if (ret) {
1819  			esr = kvm_s2_trans_esr(&nested_trans);
1820  			kvm_inject_s2_fault(vcpu, esr);
1821  			goto out_unlock;
1822  		}
1823  
1824  		ret = kvm_s2_handle_perm_fault(vcpu, &nested_trans);
1825  		if (ret) {
1826  			esr = kvm_s2_trans_esr(&nested_trans);
1827  			kvm_inject_s2_fault(vcpu, esr);
1828  			goto out_unlock;
1829  		}
1830  
1831  		ipa = kvm_s2_trans_output(&nested_trans);
1832  		nested = &nested_trans;
1833  	}
1834  
1835  	gfn = ipa >> PAGE_SHIFT;
1836  	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1837  	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1838  	write_fault = kvm_is_write_fault(vcpu);
1839  	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1840  		/*
1841  		 * The guest has put either its instructions or its page-tables
1842  		 * somewhere it shouldn't have. Userspace won't be able to do
1843  		 * anything about this (there's no syndrome for a start), so
1844  		 * re-inject the abort back into the guest.
1845  		 */
1846  		if (is_iabt) {
1847  			ret = -ENOEXEC;
1848  			goto out;
1849  		}
1850  
1851  		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1852  			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1853  			ret = 1;
1854  			goto out_unlock;
1855  		}
1856  
1857  		/*
1858  		 * Check for a cache maintenance operation. Since we
1859  		 * ended-up here, we know it is outside of any memory
1860  		 * slot. But we can't find out if that is for a device,
1861  		 * or if the guest is just being stupid. The only thing
1862  		 * we know for sure is that this range cannot be cached.
1863  		 *
1864  		 * So let's assume that the guest is just being
1865  		 * cautious, and skip the instruction.
1866  		 */
1867  		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1868  			kvm_incr_pc(vcpu);
1869  			ret = 1;
1870  			goto out_unlock;
1871  		}
1872  
1873  		/*
1874  		 * The IPA is reported as [MAX:12], so we need to
1875  		 * complement it with the bottom 12 bits from the
1876  		 * faulting VA. This is always 12 bits, irrespective
1877  		 * of the page size.
1878  		 */
1879  		ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1880  		ret = io_mem_abort(vcpu, ipa);
1881  		goto out_unlock;
1882  	}
1883  
1884  	/* Userspace should not be able to register out-of-bounds IPAs */
1885  	VM_BUG_ON(ipa >= kvm_phys_size(vcpu->arch.hw_mmu));
1886  
1887  	if (esr_fsc_is_access_flag_fault(esr)) {
1888  		handle_access_fault(vcpu, fault_ipa);
1889  		ret = 1;
1890  		goto out_unlock;
1891  	}
1892  
1893  	ret = user_mem_abort(vcpu, fault_ipa, nested, memslot, hva,
1894  			     esr_fsc_is_permission_fault(esr));
1895  	if (ret == 0)
1896  		ret = 1;
1897  out:
1898  	if (ret == -ENOEXEC) {
1899  		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1900  		ret = 1;
1901  	}
1902  out_unlock:
1903  	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1904  	return ret;
1905  }
1906  
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1907  bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1908  {
1909  	if (!kvm->arch.mmu.pgt)
1910  		return false;
1911  
1912  	__unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1913  			     (range->end - range->start) << PAGE_SHIFT,
1914  			     range->may_block);
1915  
1916  	kvm_nested_s2_unmap(kvm, range->may_block);
1917  	return false;
1918  }
1919  
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1920  bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1921  {
1922  	u64 size = (range->end - range->start) << PAGE_SHIFT;
1923  
1924  	if (!kvm->arch.mmu.pgt)
1925  		return false;
1926  
1927  	return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1928  						   range->start << PAGE_SHIFT,
1929  						   size, true);
1930  	/*
1931  	 * TODO: Handle nested_mmu structures here using the reverse mapping in
1932  	 * a later version of patch series.
1933  	 */
1934  }
1935  
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1936  bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1937  {
1938  	u64 size = (range->end - range->start) << PAGE_SHIFT;
1939  
1940  	if (!kvm->arch.mmu.pgt)
1941  		return false;
1942  
1943  	return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1944  						   range->start << PAGE_SHIFT,
1945  						   size, false);
1946  }
1947  
kvm_mmu_get_httbr(void)1948  phys_addr_t kvm_mmu_get_httbr(void)
1949  {
1950  	return __pa(hyp_pgtable->pgd);
1951  }
1952  
kvm_get_idmap_vector(void)1953  phys_addr_t kvm_get_idmap_vector(void)
1954  {
1955  	return hyp_idmap_vector;
1956  }
1957  
kvm_map_idmap_text(void)1958  static int kvm_map_idmap_text(void)
1959  {
1960  	unsigned long size = hyp_idmap_end - hyp_idmap_start;
1961  	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1962  					PAGE_HYP_EXEC);
1963  	if (err)
1964  		kvm_err("Failed to idmap %lx-%lx\n",
1965  			hyp_idmap_start, hyp_idmap_end);
1966  
1967  	return err;
1968  }
1969  
kvm_hyp_zalloc_page(void * arg)1970  static void *kvm_hyp_zalloc_page(void *arg)
1971  {
1972  	return (void *)get_zeroed_page(GFP_KERNEL);
1973  }
1974  
1975  static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1976  	.zalloc_page		= kvm_hyp_zalloc_page,
1977  	.get_page		= kvm_host_get_page,
1978  	.put_page		= kvm_host_put_page,
1979  	.phys_to_virt		= kvm_host_va,
1980  	.virt_to_phys		= kvm_host_pa,
1981  };
1982  
kvm_mmu_init(u32 * hyp_va_bits)1983  int __init kvm_mmu_init(u32 *hyp_va_bits)
1984  {
1985  	int err;
1986  	u32 idmap_bits;
1987  	u32 kernel_bits;
1988  
1989  	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1990  	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1991  	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1992  	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1993  	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1994  
1995  	/*
1996  	 * We rely on the linker script to ensure at build time that the HYP
1997  	 * init code does not cross a page boundary.
1998  	 */
1999  	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2000  
2001  	/*
2002  	 * The ID map is always configured for 48 bits of translation, which
2003  	 * may be fewer than the number of VA bits used by the regular kernel
2004  	 * stage 1, when VA_BITS=52.
2005  	 *
2006  	 * At EL2, there is only one TTBR register, and we can't switch between
2007  	 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
2008  	 * line: we need to use the extended range with *both* our translation
2009  	 * tables.
2010  	 *
2011  	 * So use the maximum of the idmap VA bits and the regular kernel stage
2012  	 * 1 VA bits to assure that the hypervisor can both ID map its code page
2013  	 * and map any kernel memory.
2014  	 */
2015  	idmap_bits = IDMAP_VA_BITS;
2016  	kernel_bits = vabits_actual;
2017  	*hyp_va_bits = max(idmap_bits, kernel_bits);
2018  
2019  	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
2020  	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2021  	kvm_debug("HYP VA range: %lx:%lx\n",
2022  		  kern_hyp_va(PAGE_OFFSET),
2023  		  kern_hyp_va((unsigned long)high_memory - 1));
2024  
2025  	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2026  	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2027  	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2028  		/*
2029  		 * The idmap page is intersecting with the VA space,
2030  		 * it is not safe to continue further.
2031  		 */
2032  		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2033  		err = -EINVAL;
2034  		goto out;
2035  	}
2036  
2037  	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
2038  	if (!hyp_pgtable) {
2039  		kvm_err("Hyp mode page-table not allocated\n");
2040  		err = -ENOMEM;
2041  		goto out;
2042  	}
2043  
2044  	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
2045  	if (err)
2046  		goto out_free_pgtable;
2047  
2048  	err = kvm_map_idmap_text();
2049  	if (err)
2050  		goto out_destroy_pgtable;
2051  
2052  	io_map_base = hyp_idmap_start;
2053  	return 0;
2054  
2055  out_destroy_pgtable:
2056  	kvm_pgtable_hyp_destroy(hyp_pgtable);
2057  out_free_pgtable:
2058  	kfree(hyp_pgtable);
2059  	hyp_pgtable = NULL;
2060  out:
2061  	return err;
2062  }
2063  
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)2064  void kvm_arch_commit_memory_region(struct kvm *kvm,
2065  				   struct kvm_memory_slot *old,
2066  				   const struct kvm_memory_slot *new,
2067  				   enum kvm_mr_change change)
2068  {
2069  	bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
2070  
2071  	/*
2072  	 * At this point memslot has been committed and there is an
2073  	 * allocated dirty_bitmap[], dirty pages will be tracked while the
2074  	 * memory slot is write protected.
2075  	 */
2076  	if (log_dirty_pages) {
2077  
2078  		if (change == KVM_MR_DELETE)
2079  			return;
2080  
2081  		/*
2082  		 * Huge and normal pages are write-protected and split
2083  		 * on either of these two cases:
2084  		 *
2085  		 * 1. with initial-all-set: gradually with CLEAR ioctls,
2086  		 */
2087  		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
2088  			return;
2089  		/*
2090  		 * or
2091  		 * 2. without initial-all-set: all in one shot when
2092  		 *    enabling dirty logging.
2093  		 */
2094  		kvm_mmu_wp_memory_region(kvm, new->id);
2095  		kvm_mmu_split_memory_region(kvm, new->id);
2096  	} else {
2097  		/*
2098  		 * Free any leftovers from the eager page splitting cache. Do
2099  		 * this when deleting, moving, disabling dirty logging, or
2100  		 * creating the memslot (a nop). Doing it for deletes makes
2101  		 * sure we don't leak memory, and there's no need to keep the
2102  		 * cache around for any of the other cases.
2103  		 */
2104  		kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
2105  	}
2106  }
2107  
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)2108  int kvm_arch_prepare_memory_region(struct kvm *kvm,
2109  				   const struct kvm_memory_slot *old,
2110  				   struct kvm_memory_slot *new,
2111  				   enum kvm_mr_change change)
2112  {
2113  	hva_t hva, reg_end;
2114  	int ret = 0;
2115  
2116  	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2117  			change != KVM_MR_FLAGS_ONLY)
2118  		return 0;
2119  
2120  	/*
2121  	 * Prevent userspace from creating a memory region outside of the IPA
2122  	 * space addressable by the KVM guest IPA space.
2123  	 */
2124  	if ((new->base_gfn + new->npages) > (kvm_phys_size(&kvm->arch.mmu) >> PAGE_SHIFT))
2125  		return -EFAULT;
2126  
2127  	hva = new->userspace_addr;
2128  	reg_end = hva + (new->npages << PAGE_SHIFT);
2129  
2130  	mmap_read_lock(current->mm);
2131  	/*
2132  	 * A memory region could potentially cover multiple VMAs, and any holes
2133  	 * between them, so iterate over all of them.
2134  	 *
2135  	 *     +--------------------------------------------+
2136  	 * +---------------+----------------+   +----------------+
2137  	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2138  	 * +---------------+----------------+   +----------------+
2139  	 *     |               memory region                |
2140  	 *     +--------------------------------------------+
2141  	 */
2142  	do {
2143  		struct vm_area_struct *vma;
2144  
2145  		vma = find_vma_intersection(current->mm, hva, reg_end);
2146  		if (!vma)
2147  			break;
2148  
2149  		if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
2150  			ret = -EINVAL;
2151  			break;
2152  		}
2153  
2154  		if (vma->vm_flags & VM_PFNMAP) {
2155  			/* IO region dirty page logging not allowed */
2156  			if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2157  				ret = -EINVAL;
2158  				break;
2159  			}
2160  		}
2161  		hva = min(reg_end, vma->vm_end);
2162  	} while (hva < reg_end);
2163  
2164  	mmap_read_unlock(current->mm);
2165  	return ret;
2166  }
2167  
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2168  void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2169  {
2170  }
2171  
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)2172  void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2173  {
2174  }
2175  
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2176  void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2177  				   struct kvm_memory_slot *slot)
2178  {
2179  	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2180  	phys_addr_t size = slot->npages << PAGE_SHIFT;
2181  
2182  	write_lock(&kvm->mmu_lock);
2183  	kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, size, true);
2184  	kvm_nested_s2_unmap(kvm, true);
2185  	write_unlock(&kvm->mmu_lock);
2186  }
2187  
2188  /*
2189   * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2190   *
2191   * Main problems:
2192   * - S/W ops are local to a CPU (not broadcast)
2193   * - We have line migration behind our back (speculation)
2194   * - System caches don't support S/W at all (damn!)
2195   *
2196   * In the face of the above, the best we can do is to try and convert
2197   * S/W ops to VA ops. Because the guest is not allowed to infer the
2198   * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2199   * which is a rather good thing for us.
2200   *
2201   * Also, it is only used when turning caches on/off ("The expected
2202   * usage of the cache maintenance instructions that operate by set/way
2203   * is associated with the cache maintenance instructions associated
2204   * with the powerdown and powerup of caches, if this is required by
2205   * the implementation.").
2206   *
2207   * We use the following policy:
2208   *
2209   * - If we trap a S/W operation, we enable VM trapping to detect
2210   *   caches being turned on/off, and do a full clean.
2211   *
2212   * - We flush the caches on both caches being turned on and off.
2213   *
2214   * - Once the caches are enabled, we stop trapping VM ops.
2215   */
kvm_set_way_flush(struct kvm_vcpu * vcpu)2216  void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2217  {
2218  	unsigned long hcr = *vcpu_hcr(vcpu);
2219  
2220  	/*
2221  	 * If this is the first time we do a S/W operation
2222  	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2223  	 * VM trapping.
2224  	 *
2225  	 * Otherwise, rely on the VM trapping to wait for the MMU +
2226  	 * Caches to be turned off. At that point, we'll be able to
2227  	 * clean the caches again.
2228  	 */
2229  	if (!(hcr & HCR_TVM)) {
2230  		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2231  					vcpu_has_cache_enabled(vcpu));
2232  		stage2_flush_vm(vcpu->kvm);
2233  		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2234  	}
2235  }
2236  
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)2237  void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2238  {
2239  	bool now_enabled = vcpu_has_cache_enabled(vcpu);
2240  
2241  	/*
2242  	 * If switching the MMU+caches on, need to invalidate the caches.
2243  	 * If switching it off, need to clean the caches.
2244  	 * Clean + invalidate does the trick always.
2245  	 */
2246  	if (now_enabled != was_enabled)
2247  		stage2_flush_vm(vcpu->kvm);
2248  
2249  	/* Caches are now on, stop trapping VM ops (until a S/W op) */
2250  	if (now_enabled)
2251  		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2252  
2253  	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2254  }
2255