1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4   * No bombay mix was harmed in the writing of this file.
5   *
6   * Copyright (C) 2020 Google LLC
7   * Author: Will Deacon <will@kernel.org>
8   */
9  
10  #include <linux/bitfield.h>
11  #include <asm/kvm_pgtable.h>
12  #include <asm/stage2_pgtable.h>
13  
14  
15  #define KVM_PTE_TYPE			BIT(1)
16  #define KVM_PTE_TYPE_BLOCK		0
17  #define KVM_PTE_TYPE_PAGE		1
18  #define KVM_PTE_TYPE_TABLE		1
19  
20  struct kvm_pgtable_walk_data {
21  	struct kvm_pgtable_walker	*walker;
22  
23  	const u64			start;
24  	u64				addr;
25  	const u64			end;
26  };
27  
kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx * ctx)28  static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
29  {
30  	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
31  }
32  
kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx * ctx)33  static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
34  {
35  	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
36  }
37  
kvm_phys_is_valid(u64 phys)38  static bool kvm_phys_is_valid(u64 phys)
39  {
40  	u64 parange_max = kvm_get_parange_max();
41  	u8 shift = id_aa64mmfr0_parange_to_phys_shift(parange_max);
42  
43  	return phys < BIT(shift);
44  }
45  
kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx * ctx,u64 phys)46  static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
47  {
48  	u64 granule = kvm_granule_size(ctx->level);
49  
50  	if (!kvm_level_supports_block_mapping(ctx->level))
51  		return false;
52  
53  	if (granule > (ctx->end - ctx->addr))
54  		return false;
55  
56  	if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
57  		return false;
58  
59  	return IS_ALIGNED(ctx->addr, granule);
60  }
61  
kvm_pgtable_idx(struct kvm_pgtable_walk_data * data,s8 level)62  static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level)
63  {
64  	u64 shift = kvm_granule_shift(level);
65  	u64 mask = BIT(PAGE_SHIFT - 3) - 1;
66  
67  	return (data->addr >> shift) & mask;
68  }
69  
kvm_pgd_page_idx(struct kvm_pgtable * pgt,u64 addr)70  static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
71  {
72  	u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
73  	u64 mask = BIT(pgt->ia_bits) - 1;
74  
75  	return (addr & mask) >> shift;
76  }
77  
kvm_pgd_pages(u32 ia_bits,s8 start_level)78  static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level)
79  {
80  	struct kvm_pgtable pgt = {
81  		.ia_bits	= ia_bits,
82  		.start_level	= start_level,
83  	};
84  
85  	return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
86  }
87  
kvm_pte_table(kvm_pte_t pte,s8 level)88  static bool kvm_pte_table(kvm_pte_t pte, s8 level)
89  {
90  	if (level == KVM_PGTABLE_LAST_LEVEL)
91  		return false;
92  
93  	if (!kvm_pte_valid(pte))
94  		return false;
95  
96  	return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
97  }
98  
kvm_pte_follow(kvm_pte_t pte,struct kvm_pgtable_mm_ops * mm_ops)99  static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
100  {
101  	return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
102  }
103  
kvm_clear_pte(kvm_pte_t * ptep)104  static void kvm_clear_pte(kvm_pte_t *ptep)
105  {
106  	WRITE_ONCE(*ptep, 0);
107  }
108  
kvm_init_table_pte(kvm_pte_t * childp,struct kvm_pgtable_mm_ops * mm_ops)109  static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
110  {
111  	kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
112  
113  	pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
114  	pte |= KVM_PTE_VALID;
115  	return pte;
116  }
117  
kvm_init_valid_leaf_pte(u64 pa,kvm_pte_t attr,s8 level)118  static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level)
119  {
120  	kvm_pte_t pte = kvm_phys_to_pte(pa);
121  	u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE :
122  						       KVM_PTE_TYPE_BLOCK;
123  
124  	pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
125  	pte |= FIELD_PREP(KVM_PTE_TYPE, type);
126  	pte |= KVM_PTE_VALID;
127  
128  	return pte;
129  }
130  
kvm_init_invalid_leaf_owner(u8 owner_id)131  static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
132  {
133  	return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
134  }
135  
kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data * data,const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)136  static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
137  				  const struct kvm_pgtable_visit_ctx *ctx,
138  				  enum kvm_pgtable_walk_flags visit)
139  {
140  	struct kvm_pgtable_walker *walker = data->walker;
141  
142  	/* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
143  	WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
144  	return walker->cb(ctx, visit);
145  }
146  
kvm_pgtable_walk_continue(const struct kvm_pgtable_walker * walker,int r)147  static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
148  				      int r)
149  {
150  	/*
151  	 * Visitor callbacks return EAGAIN when the conditions that led to a
152  	 * fault are no longer reflected in the page tables due to a race to
153  	 * update a PTE. In the context of a fault handler this is interpreted
154  	 * as a signal to retry guest execution.
155  	 *
156  	 * Ignore the return code altogether for walkers outside a fault handler
157  	 * (e.g. write protecting a range of memory) and chug along with the
158  	 * page table walk.
159  	 */
160  	if (r == -EAGAIN)
161  		return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
162  
163  	return !r;
164  }
165  
166  static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
167  			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level);
168  
__kvm_pgtable_visit(struct kvm_pgtable_walk_data * data,struct kvm_pgtable_mm_ops * mm_ops,kvm_pteref_t pteref,s8 level)169  static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
170  				      struct kvm_pgtable_mm_ops *mm_ops,
171  				      kvm_pteref_t pteref, s8 level)
172  {
173  	enum kvm_pgtable_walk_flags flags = data->walker->flags;
174  	kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
175  	struct kvm_pgtable_visit_ctx ctx = {
176  		.ptep	= ptep,
177  		.old	= READ_ONCE(*ptep),
178  		.arg	= data->walker->arg,
179  		.mm_ops	= mm_ops,
180  		.start	= data->start,
181  		.addr	= data->addr,
182  		.end	= data->end,
183  		.level	= level,
184  		.flags	= flags,
185  	};
186  	int ret = 0;
187  	bool reload = false;
188  	kvm_pteref_t childp;
189  	bool table = kvm_pte_table(ctx.old, level);
190  
191  	if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
192  		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
193  		reload = true;
194  	}
195  
196  	if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
197  		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
198  		reload = true;
199  	}
200  
201  	/*
202  	 * Reload the page table after invoking the walker callback for leaf
203  	 * entries or after pre-order traversal, to allow the walker to descend
204  	 * into a newly installed or replaced table.
205  	 */
206  	if (reload) {
207  		ctx.old = READ_ONCE(*ptep);
208  		table = kvm_pte_table(ctx.old, level);
209  	}
210  
211  	if (!kvm_pgtable_walk_continue(data->walker, ret))
212  		goto out;
213  
214  	if (!table) {
215  		data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
216  		data->addr += kvm_granule_size(level);
217  		goto out;
218  	}
219  
220  	childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
221  	ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
222  	if (!kvm_pgtable_walk_continue(data->walker, ret))
223  		goto out;
224  
225  	if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
226  		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
227  
228  out:
229  	if (kvm_pgtable_walk_continue(data->walker, ret))
230  		return 0;
231  
232  	return ret;
233  }
234  
__kvm_pgtable_walk(struct kvm_pgtable_walk_data * data,struct kvm_pgtable_mm_ops * mm_ops,kvm_pteref_t pgtable,s8 level)235  static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
236  			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level)
237  {
238  	u32 idx;
239  	int ret = 0;
240  
241  	if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL ||
242  			 level > KVM_PGTABLE_LAST_LEVEL))
243  		return -EINVAL;
244  
245  	for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
246  		kvm_pteref_t pteref = &pgtable[idx];
247  
248  		if (data->addr >= data->end)
249  			break;
250  
251  		ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
252  		if (ret)
253  			break;
254  	}
255  
256  	return ret;
257  }
258  
_kvm_pgtable_walk(struct kvm_pgtable * pgt,struct kvm_pgtable_walk_data * data)259  static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
260  {
261  	u32 idx;
262  	int ret = 0;
263  	u64 limit = BIT(pgt->ia_bits);
264  
265  	if (data->addr > limit || data->end > limit)
266  		return -ERANGE;
267  
268  	if (!pgt->pgd)
269  		return -EINVAL;
270  
271  	for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
272  		kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
273  
274  		ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
275  		if (ret)
276  			break;
277  	}
278  
279  	return ret;
280  }
281  
kvm_pgtable_walk(struct kvm_pgtable * pgt,u64 addr,u64 size,struct kvm_pgtable_walker * walker)282  int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
283  		     struct kvm_pgtable_walker *walker)
284  {
285  	struct kvm_pgtable_walk_data walk_data = {
286  		.start	= ALIGN_DOWN(addr, PAGE_SIZE),
287  		.addr	= ALIGN_DOWN(addr, PAGE_SIZE),
288  		.end	= PAGE_ALIGN(walk_data.addr + size),
289  		.walker	= walker,
290  	};
291  	int r;
292  
293  	r = kvm_pgtable_walk_begin(walker);
294  	if (r)
295  		return r;
296  
297  	r = _kvm_pgtable_walk(pgt, &walk_data);
298  	kvm_pgtable_walk_end(walker);
299  
300  	return r;
301  }
302  
303  struct leaf_walk_data {
304  	kvm_pte_t	pte;
305  	s8		level;
306  };
307  
leaf_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)308  static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
309  		       enum kvm_pgtable_walk_flags visit)
310  {
311  	struct leaf_walk_data *data = ctx->arg;
312  
313  	data->pte   = ctx->old;
314  	data->level = ctx->level;
315  
316  	return 0;
317  }
318  
kvm_pgtable_get_leaf(struct kvm_pgtable * pgt,u64 addr,kvm_pte_t * ptep,s8 * level)319  int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
320  			 kvm_pte_t *ptep, s8 *level)
321  {
322  	struct leaf_walk_data data;
323  	struct kvm_pgtable_walker walker = {
324  		.cb	= leaf_walker,
325  		.flags	= KVM_PGTABLE_WALK_LEAF,
326  		.arg	= &data,
327  	};
328  	int ret;
329  
330  	ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
331  			       PAGE_SIZE, &walker);
332  	if (!ret) {
333  		if (ptep)
334  			*ptep  = data.pte;
335  		if (level)
336  			*level = data.level;
337  	}
338  
339  	return ret;
340  }
341  
342  struct hyp_map_data {
343  	const u64			phys;
344  	kvm_pte_t			attr;
345  };
346  
hyp_set_prot_attr(enum kvm_pgtable_prot prot,kvm_pte_t * ptep)347  static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
348  {
349  	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
350  	u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
351  	kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
352  	u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
353  	u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
354  					       KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
355  
356  	if (!(prot & KVM_PGTABLE_PROT_R))
357  		return -EINVAL;
358  
359  	if (prot & KVM_PGTABLE_PROT_X) {
360  		if (prot & KVM_PGTABLE_PROT_W)
361  			return -EINVAL;
362  
363  		if (device)
364  			return -EINVAL;
365  
366  		if (system_supports_bti_kernel())
367  			attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
368  	} else {
369  		attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
370  	}
371  
372  	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
373  	if (!kvm_lpa2_is_enabled())
374  		attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
375  	attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
376  	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
377  	*ptep = attr;
378  
379  	return 0;
380  }
381  
kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)382  enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
383  {
384  	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
385  	u32 ap;
386  
387  	if (!kvm_pte_valid(pte))
388  		return prot;
389  
390  	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
391  		prot |= KVM_PGTABLE_PROT_X;
392  
393  	ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
394  	if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
395  		prot |= KVM_PGTABLE_PROT_R;
396  	else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
397  		prot |= KVM_PGTABLE_PROT_RW;
398  
399  	return prot;
400  }
401  
hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct hyp_map_data * data)402  static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
403  				    struct hyp_map_data *data)
404  {
405  	u64 phys = data->phys + (ctx->addr - ctx->start);
406  	kvm_pte_t new;
407  
408  	if (!kvm_block_mapping_supported(ctx, phys))
409  		return false;
410  
411  	new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
412  	if (ctx->old == new)
413  		return true;
414  	if (!kvm_pte_valid(ctx->old))
415  		ctx->mm_ops->get_page(ctx->ptep);
416  	else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
417  		return false;
418  
419  	smp_store_release(ctx->ptep, new);
420  	return true;
421  }
422  
hyp_map_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)423  static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
424  			  enum kvm_pgtable_walk_flags visit)
425  {
426  	kvm_pte_t *childp, new;
427  	struct hyp_map_data *data = ctx->arg;
428  	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
429  
430  	if (hyp_map_walker_try_leaf(ctx, data))
431  		return 0;
432  
433  	if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
434  		return -EINVAL;
435  
436  	childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
437  	if (!childp)
438  		return -ENOMEM;
439  
440  	new = kvm_init_table_pte(childp, mm_ops);
441  	mm_ops->get_page(ctx->ptep);
442  	smp_store_release(ctx->ptep, new);
443  
444  	return 0;
445  }
446  
kvm_pgtable_hyp_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot)447  int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
448  			enum kvm_pgtable_prot prot)
449  {
450  	int ret;
451  	struct hyp_map_data map_data = {
452  		.phys	= ALIGN_DOWN(phys, PAGE_SIZE),
453  	};
454  	struct kvm_pgtable_walker walker = {
455  		.cb	= hyp_map_walker,
456  		.flags	= KVM_PGTABLE_WALK_LEAF,
457  		.arg	= &map_data,
458  	};
459  
460  	ret = hyp_set_prot_attr(prot, &map_data.attr);
461  	if (ret)
462  		return ret;
463  
464  	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
465  	dsb(ishst);
466  	isb();
467  	return ret;
468  }
469  
hyp_unmap_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)470  static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
471  			    enum kvm_pgtable_walk_flags visit)
472  {
473  	kvm_pte_t *childp = NULL;
474  	u64 granule = kvm_granule_size(ctx->level);
475  	u64 *unmapped = ctx->arg;
476  	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
477  
478  	if (!kvm_pte_valid(ctx->old))
479  		return -EINVAL;
480  
481  	if (kvm_pte_table(ctx->old, ctx->level)) {
482  		childp = kvm_pte_follow(ctx->old, mm_ops);
483  
484  		if (mm_ops->page_count(childp) != 1)
485  			return 0;
486  
487  		kvm_clear_pte(ctx->ptep);
488  		dsb(ishst);
489  		__tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), TLBI_TTL_UNKNOWN);
490  	} else {
491  		if (ctx->end - ctx->addr < granule)
492  			return -EINVAL;
493  
494  		kvm_clear_pte(ctx->ptep);
495  		dsb(ishst);
496  		__tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
497  		*unmapped += granule;
498  	}
499  
500  	dsb(ish);
501  	isb();
502  	mm_ops->put_page(ctx->ptep);
503  
504  	if (childp)
505  		mm_ops->put_page(childp);
506  
507  	return 0;
508  }
509  
kvm_pgtable_hyp_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)510  u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
511  {
512  	u64 unmapped = 0;
513  	struct kvm_pgtable_walker walker = {
514  		.cb	= hyp_unmap_walker,
515  		.arg	= &unmapped,
516  		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
517  	};
518  
519  	if (!pgt->mm_ops->page_count)
520  		return 0;
521  
522  	kvm_pgtable_walk(pgt, addr, size, &walker);
523  	return unmapped;
524  }
525  
kvm_pgtable_hyp_init(struct kvm_pgtable * pgt,u32 va_bits,struct kvm_pgtable_mm_ops * mm_ops)526  int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
527  			 struct kvm_pgtable_mm_ops *mm_ops)
528  {
529  	s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 -
530  			 ARM64_HW_PGTABLE_LEVELS(va_bits);
531  
532  	if (start_level < KVM_PGTABLE_FIRST_LEVEL ||
533  	    start_level > KVM_PGTABLE_LAST_LEVEL)
534  		return -EINVAL;
535  
536  	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
537  	if (!pgt->pgd)
538  		return -ENOMEM;
539  
540  	pgt->ia_bits		= va_bits;
541  	pgt->start_level	= start_level;
542  	pgt->mm_ops		= mm_ops;
543  	pgt->mmu		= NULL;
544  	pgt->force_pte_cb	= NULL;
545  
546  	return 0;
547  }
548  
hyp_free_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)549  static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
550  			   enum kvm_pgtable_walk_flags visit)
551  {
552  	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
553  
554  	if (!kvm_pte_valid(ctx->old))
555  		return 0;
556  
557  	mm_ops->put_page(ctx->ptep);
558  
559  	if (kvm_pte_table(ctx->old, ctx->level))
560  		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
561  
562  	return 0;
563  }
564  
kvm_pgtable_hyp_destroy(struct kvm_pgtable * pgt)565  void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
566  {
567  	struct kvm_pgtable_walker walker = {
568  		.cb	= hyp_free_walker,
569  		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
570  	};
571  
572  	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
573  	pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
574  	pgt->pgd = NULL;
575  }
576  
577  struct stage2_map_data {
578  	const u64			phys;
579  	kvm_pte_t			attr;
580  	u8				owner_id;
581  
582  	kvm_pte_t			*anchor;
583  	kvm_pte_t			*childp;
584  
585  	struct kvm_s2_mmu		*mmu;
586  	void				*memcache;
587  
588  	/* Force mappings to page granularity */
589  	bool				force_pte;
590  };
591  
kvm_get_vtcr(u64 mmfr0,u64 mmfr1,u32 phys_shift)592  u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
593  {
594  	u64 vtcr = VTCR_EL2_FLAGS;
595  	s8 lvls;
596  
597  	vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
598  	vtcr |= VTCR_EL2_T0SZ(phys_shift);
599  	/*
600  	 * Use a minimum 2 level page table to prevent splitting
601  	 * host PMD huge pages at stage2.
602  	 */
603  	lvls = stage2_pgtable_levels(phys_shift);
604  	if (lvls < 2)
605  		lvls = 2;
606  
607  	/*
608  	 * When LPA2 is enabled, the HW supports an extra level of translation
609  	 * (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2
610  	 * to as an addition to SL0 to enable encoding this extra start level.
611  	 * However, since we always use concatenated pages for the first level
612  	 * lookup, we will never need this extra level and therefore do not need
613  	 * to touch SL2.
614  	 */
615  	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
616  
617  #ifdef CONFIG_ARM64_HW_AFDBM
618  	/*
619  	 * Enable the Hardware Access Flag management, unconditionally
620  	 * on all CPUs. In systems that have asymmetric support for the feature
621  	 * this allows KVM to leverage hardware support on the subset of cores
622  	 * that implement the feature.
623  	 *
624  	 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
625  	 * hardware) on implementations that do not advertise support for the
626  	 * feature. As such, setting HA unconditionally is safe, unless you
627  	 * happen to be running on a design that has unadvertised support for
628  	 * HAFDBS. Here be dragons.
629  	 */
630  	if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
631  		vtcr |= VTCR_EL2_HA;
632  #endif /* CONFIG_ARM64_HW_AFDBM */
633  
634  	if (kvm_lpa2_is_enabled())
635  		vtcr |= VTCR_EL2_DS;
636  
637  	/* Set the vmid bits */
638  	vtcr |= (get_vmid_bits(mmfr1) == 16) ?
639  		VTCR_EL2_VS_16BIT :
640  		VTCR_EL2_VS_8BIT;
641  
642  	return vtcr;
643  }
644  
stage2_has_fwb(struct kvm_pgtable * pgt)645  static bool stage2_has_fwb(struct kvm_pgtable *pgt)
646  {
647  	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
648  		return false;
649  
650  	return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
651  }
652  
kvm_tlb_flush_vmid_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,size_t size)653  void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
654  				phys_addr_t addr, size_t size)
655  {
656  	unsigned long pages, inval_pages;
657  
658  	if (!system_supports_tlb_range()) {
659  		kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
660  		return;
661  	}
662  
663  	pages = size >> PAGE_SHIFT;
664  	while (pages > 0) {
665  		inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
666  		kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
667  
668  		addr += inval_pages << PAGE_SHIFT;
669  		pages -= inval_pages;
670  	}
671  }
672  
673  #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
674  
stage2_set_prot_attr(struct kvm_pgtable * pgt,enum kvm_pgtable_prot prot,kvm_pte_t * ptep)675  static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
676  				kvm_pte_t *ptep)
677  {
678  	kvm_pte_t attr;
679  	u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
680  
681  	switch (prot & (KVM_PGTABLE_PROT_DEVICE |
682  			KVM_PGTABLE_PROT_NORMAL_NC)) {
683  	case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC:
684  		return -EINVAL;
685  	case KVM_PGTABLE_PROT_DEVICE:
686  		if (prot & KVM_PGTABLE_PROT_X)
687  			return -EINVAL;
688  		attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE);
689  		break;
690  	case KVM_PGTABLE_PROT_NORMAL_NC:
691  		if (prot & KVM_PGTABLE_PROT_X)
692  			return -EINVAL;
693  		attr = KVM_S2_MEMATTR(pgt, NORMAL_NC);
694  		break;
695  	default:
696  		attr = KVM_S2_MEMATTR(pgt, NORMAL);
697  	}
698  
699  	if (!(prot & KVM_PGTABLE_PROT_X))
700  		attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
701  
702  	if (prot & KVM_PGTABLE_PROT_R)
703  		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
704  
705  	if (prot & KVM_PGTABLE_PROT_W)
706  		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
707  
708  	if (!kvm_lpa2_is_enabled())
709  		attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
710  
711  	attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
712  	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
713  	*ptep = attr;
714  
715  	return 0;
716  }
717  
kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)718  enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
719  {
720  	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
721  
722  	if (!kvm_pte_valid(pte))
723  		return prot;
724  
725  	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
726  		prot |= KVM_PGTABLE_PROT_R;
727  	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
728  		prot |= KVM_PGTABLE_PROT_W;
729  	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
730  		prot |= KVM_PGTABLE_PROT_X;
731  
732  	return prot;
733  }
734  
stage2_pte_needs_update(kvm_pte_t old,kvm_pte_t new)735  static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
736  {
737  	if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
738  		return true;
739  
740  	return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
741  }
742  
stage2_pte_is_counted(kvm_pte_t pte)743  static bool stage2_pte_is_counted(kvm_pte_t pte)
744  {
745  	/*
746  	 * The refcount tracks valid entries as well as invalid entries if they
747  	 * encode ownership of a page to another entity than the page-table
748  	 * owner, whose id is 0.
749  	 */
750  	return !!pte;
751  }
752  
stage2_pte_is_locked(kvm_pte_t pte)753  static bool stage2_pte_is_locked(kvm_pte_t pte)
754  {
755  	return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
756  }
757  
stage2_try_set_pte(const struct kvm_pgtable_visit_ctx * ctx,kvm_pte_t new)758  static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
759  {
760  	if (!kvm_pgtable_walk_shared(ctx)) {
761  		WRITE_ONCE(*ctx->ptep, new);
762  		return true;
763  	}
764  
765  	return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
766  }
767  
768  /**
769   * stage2_try_break_pte() - Invalidates a pte according to the
770   *			    'break-before-make' requirements of the
771   *			    architecture.
772   *
773   * @ctx: context of the visited pte.
774   * @mmu: stage-2 mmu
775   *
776   * Returns: true if the pte was successfully broken.
777   *
778   * If the removed pte was valid, performs the necessary serialization and TLB
779   * invalidation for the old value. For counted ptes, drops the reference count
780   * on the containing table page.
781   */
stage2_try_break_pte(const struct kvm_pgtable_visit_ctx * ctx,struct kvm_s2_mmu * mmu)782  static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
783  				 struct kvm_s2_mmu *mmu)
784  {
785  	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
786  
787  	if (stage2_pte_is_locked(ctx->old)) {
788  		/*
789  		 * Should never occur if this walker has exclusive access to the
790  		 * page tables.
791  		 */
792  		WARN_ON(!kvm_pgtable_walk_shared(ctx));
793  		return false;
794  	}
795  
796  	if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
797  		return false;
798  
799  	if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
800  		/*
801  		 * Perform the appropriate TLB invalidation based on the
802  		 * evicted pte value (if any).
803  		 */
804  		if (kvm_pte_table(ctx->old, ctx->level)) {
805  			u64 size = kvm_granule_size(ctx->level);
806  			u64 addr = ALIGN_DOWN(ctx->addr, size);
807  
808  			kvm_tlb_flush_vmid_range(mmu, addr, size);
809  		} else if (kvm_pte_valid(ctx->old)) {
810  			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
811  				     ctx->addr, ctx->level);
812  		}
813  	}
814  
815  	if (stage2_pte_is_counted(ctx->old))
816  		mm_ops->put_page(ctx->ptep);
817  
818  	return true;
819  }
820  
stage2_make_pte(const struct kvm_pgtable_visit_ctx * ctx,kvm_pte_t new)821  static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
822  {
823  	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
824  
825  	WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
826  
827  	if (stage2_pte_is_counted(new))
828  		mm_ops->get_page(ctx->ptep);
829  
830  	smp_store_release(ctx->ptep, new);
831  }
832  
stage2_unmap_defer_tlb_flush(struct kvm_pgtable * pgt)833  static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
834  {
835  	/*
836  	 * If FEAT_TLBIRANGE is implemented, defer the individual
837  	 * TLB invalidations until the entire walk is finished, and
838  	 * then use the range-based TLBI instructions to do the
839  	 * invalidations. Condition deferred TLB invalidation on the
840  	 * system supporting FWB as the optimization is entirely
841  	 * pointless when the unmap walker needs to perform CMOs.
842  	 */
843  	return system_supports_tlb_range() && stage2_has_fwb(pgt);
844  }
845  
stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx * ctx,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops)846  static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
847  				struct kvm_s2_mmu *mmu,
848  				struct kvm_pgtable_mm_ops *mm_ops)
849  {
850  	struct kvm_pgtable *pgt = ctx->arg;
851  
852  	/*
853  	 * Clear the existing PTE, and perform break-before-make if it was
854  	 * valid. Depending on the system support, defer the TLB maintenance
855  	 * for the same until the entire unmap walk is completed.
856  	 */
857  	if (kvm_pte_valid(ctx->old)) {
858  		kvm_clear_pte(ctx->ptep);
859  
860  		if (kvm_pte_table(ctx->old, ctx->level)) {
861  			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
862  				     TLBI_TTL_UNKNOWN);
863  		} else if (!stage2_unmap_defer_tlb_flush(pgt)) {
864  			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
865  				     ctx->level);
866  		}
867  	}
868  
869  	mm_ops->put_page(ctx->ptep);
870  }
871  
stage2_pte_cacheable(struct kvm_pgtable * pgt,kvm_pte_t pte)872  static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
873  {
874  	u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
875  	return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL);
876  }
877  
stage2_pte_executable(kvm_pte_t pte)878  static bool stage2_pte_executable(kvm_pte_t pte)
879  {
880  	return kvm_pte_valid(pte) && !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
881  }
882  
stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx * ctx,const struct stage2_map_data * data)883  static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
884  				       const struct stage2_map_data *data)
885  {
886  	u64 phys = data->phys;
887  
888  	/*
889  	 * Stage-2 walks to update ownership data are communicated to the map
890  	 * walker using an invalid PA. Avoid offsetting an already invalid PA,
891  	 * which could overflow and make the address valid again.
892  	 */
893  	if (!kvm_phys_is_valid(phys))
894  		return phys;
895  
896  	/*
897  	 * Otherwise, work out the correct PA based on how far the walk has
898  	 * gotten.
899  	 */
900  	return phys + (ctx->addr - ctx->start);
901  }
902  
stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)903  static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
904  					struct stage2_map_data *data)
905  {
906  	u64 phys = stage2_map_walker_phys_addr(ctx, data);
907  
908  	if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL)
909  		return false;
910  
911  	return kvm_block_mapping_supported(ctx, phys);
912  }
913  
stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)914  static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
915  				      struct stage2_map_data *data)
916  {
917  	kvm_pte_t new;
918  	u64 phys = stage2_map_walker_phys_addr(ctx, data);
919  	u64 granule = kvm_granule_size(ctx->level);
920  	struct kvm_pgtable *pgt = data->mmu->pgt;
921  	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
922  
923  	if (!stage2_leaf_mapping_allowed(ctx, data))
924  		return -E2BIG;
925  
926  	if (kvm_phys_is_valid(phys))
927  		new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
928  	else
929  		new = kvm_init_invalid_leaf_owner(data->owner_id);
930  
931  	/*
932  	 * Skip updating the PTE if we are trying to recreate the exact
933  	 * same mapping or only change the access permissions. Instead,
934  	 * the vCPU will exit one more time from guest if still needed
935  	 * and then go through the path of relaxing permissions.
936  	 */
937  	if (!stage2_pte_needs_update(ctx->old, new))
938  		return -EAGAIN;
939  
940  	/* If we're only changing software bits, then store them and go! */
941  	if (!kvm_pgtable_walk_shared(ctx) &&
942  	    !((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) {
943  		bool old_is_counted = stage2_pte_is_counted(ctx->old);
944  
945  		if (old_is_counted != stage2_pte_is_counted(new)) {
946  			if (old_is_counted)
947  				mm_ops->put_page(ctx->ptep);
948  			else
949  				mm_ops->get_page(ctx->ptep);
950  		}
951  		WARN_ON_ONCE(!stage2_try_set_pte(ctx, new));
952  		return 0;
953  	}
954  
955  	if (!stage2_try_break_pte(ctx, data->mmu))
956  		return -EAGAIN;
957  
958  	/* Perform CMOs before installation of the guest stage-2 PTE */
959  	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
960  	    stage2_pte_cacheable(pgt, new))
961  		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
962  					       granule);
963  
964  	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
965  	    stage2_pte_executable(new))
966  		mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
967  
968  	stage2_make_pte(ctx, new);
969  
970  	return 0;
971  }
972  
stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)973  static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
974  				     struct stage2_map_data *data)
975  {
976  	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
977  	kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
978  	int ret;
979  
980  	if (!stage2_leaf_mapping_allowed(ctx, data))
981  		return 0;
982  
983  	ret = stage2_map_walker_try_leaf(ctx, data);
984  	if (ret)
985  		return ret;
986  
987  	mm_ops->free_unlinked_table(childp, ctx->level);
988  	return 0;
989  }
990  
stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)991  static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
992  				struct stage2_map_data *data)
993  {
994  	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
995  	kvm_pte_t *childp, new;
996  	int ret;
997  
998  	ret = stage2_map_walker_try_leaf(ctx, data);
999  	if (ret != -E2BIG)
1000  		return ret;
1001  
1002  	if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
1003  		return -EINVAL;
1004  
1005  	if (!data->memcache)
1006  		return -ENOMEM;
1007  
1008  	childp = mm_ops->zalloc_page(data->memcache);
1009  	if (!childp)
1010  		return -ENOMEM;
1011  
1012  	if (!stage2_try_break_pte(ctx, data->mmu)) {
1013  		mm_ops->put_page(childp);
1014  		return -EAGAIN;
1015  	}
1016  
1017  	/*
1018  	 * If we've run into an existing block mapping then replace it with
1019  	 * a table. Accesses beyond 'end' that fall within the new table
1020  	 * will be mapped lazily.
1021  	 */
1022  	new = kvm_init_table_pte(childp, mm_ops);
1023  	stage2_make_pte(ctx, new);
1024  
1025  	return 0;
1026  }
1027  
1028  /*
1029   * The TABLE_PRE callback runs for table entries on the way down, looking
1030   * for table entries which we could conceivably replace with a block entry
1031   * for this mapping. If it finds one it replaces the entry and calls
1032   * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
1033   *
1034   * Otherwise, the LEAF callback performs the mapping at the existing leaves
1035   * instead.
1036   */
stage2_map_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1037  static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
1038  			     enum kvm_pgtable_walk_flags visit)
1039  {
1040  	struct stage2_map_data *data = ctx->arg;
1041  
1042  	switch (visit) {
1043  	case KVM_PGTABLE_WALK_TABLE_PRE:
1044  		return stage2_map_walk_table_pre(ctx, data);
1045  	case KVM_PGTABLE_WALK_LEAF:
1046  		return stage2_map_walk_leaf(ctx, data);
1047  	default:
1048  		return -EINVAL;
1049  	}
1050  }
1051  
kvm_pgtable_stage2_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot,void * mc,enum kvm_pgtable_walk_flags flags)1052  int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
1053  			   u64 phys, enum kvm_pgtable_prot prot,
1054  			   void *mc, enum kvm_pgtable_walk_flags flags)
1055  {
1056  	int ret;
1057  	struct stage2_map_data map_data = {
1058  		.phys		= ALIGN_DOWN(phys, PAGE_SIZE),
1059  		.mmu		= pgt->mmu,
1060  		.memcache	= mc,
1061  		.force_pte	= pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
1062  	};
1063  	struct kvm_pgtable_walker walker = {
1064  		.cb		= stage2_map_walker,
1065  		.flags		= flags |
1066  				  KVM_PGTABLE_WALK_TABLE_PRE |
1067  				  KVM_PGTABLE_WALK_LEAF,
1068  		.arg		= &map_data,
1069  	};
1070  
1071  	if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
1072  		return -EINVAL;
1073  
1074  	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1075  	if (ret)
1076  		return ret;
1077  
1078  	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1079  	dsb(ishst);
1080  	return ret;
1081  }
1082  
kvm_pgtable_stage2_set_owner(struct kvm_pgtable * pgt,u64 addr,u64 size,void * mc,u8 owner_id)1083  int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
1084  				 void *mc, u8 owner_id)
1085  {
1086  	int ret;
1087  	struct stage2_map_data map_data = {
1088  		.phys		= KVM_PHYS_INVALID,
1089  		.mmu		= pgt->mmu,
1090  		.memcache	= mc,
1091  		.owner_id	= owner_id,
1092  		.force_pte	= true,
1093  	};
1094  	struct kvm_pgtable_walker walker = {
1095  		.cb		= stage2_map_walker,
1096  		.flags		= KVM_PGTABLE_WALK_TABLE_PRE |
1097  				  KVM_PGTABLE_WALK_LEAF,
1098  		.arg		= &map_data,
1099  	};
1100  
1101  	if (owner_id > KVM_MAX_OWNER_ID)
1102  		return -EINVAL;
1103  
1104  	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1105  	return ret;
1106  }
1107  
stage2_unmap_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1108  static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1109  			       enum kvm_pgtable_walk_flags visit)
1110  {
1111  	struct kvm_pgtable *pgt = ctx->arg;
1112  	struct kvm_s2_mmu *mmu = pgt->mmu;
1113  	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1114  	kvm_pte_t *childp = NULL;
1115  	bool need_flush = false;
1116  
1117  	if (!kvm_pte_valid(ctx->old)) {
1118  		if (stage2_pte_is_counted(ctx->old)) {
1119  			kvm_clear_pte(ctx->ptep);
1120  			mm_ops->put_page(ctx->ptep);
1121  		}
1122  		return 0;
1123  	}
1124  
1125  	if (kvm_pte_table(ctx->old, ctx->level)) {
1126  		childp = kvm_pte_follow(ctx->old, mm_ops);
1127  
1128  		if (mm_ops->page_count(childp) != 1)
1129  			return 0;
1130  	} else if (stage2_pte_cacheable(pgt, ctx->old)) {
1131  		need_flush = !stage2_has_fwb(pgt);
1132  	}
1133  
1134  	/*
1135  	 * This is similar to the map() path in that we unmap the entire
1136  	 * block entry and rely on the remaining portions being faulted
1137  	 * back lazily.
1138  	 */
1139  	stage2_unmap_put_pte(ctx, mmu, mm_ops);
1140  
1141  	if (need_flush && mm_ops->dcache_clean_inval_poc)
1142  		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1143  					       kvm_granule_size(ctx->level));
1144  
1145  	if (childp)
1146  		mm_ops->put_page(childp);
1147  
1148  	return 0;
1149  }
1150  
kvm_pgtable_stage2_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)1151  int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1152  {
1153  	int ret;
1154  	struct kvm_pgtable_walker walker = {
1155  		.cb	= stage2_unmap_walker,
1156  		.arg	= pgt,
1157  		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1158  	};
1159  
1160  	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1161  	if (stage2_unmap_defer_tlb_flush(pgt))
1162  		/* Perform the deferred TLB invalidations */
1163  		kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
1164  
1165  	return ret;
1166  }
1167  
1168  struct stage2_attr_data {
1169  	kvm_pte_t			attr_set;
1170  	kvm_pte_t			attr_clr;
1171  	kvm_pte_t			pte;
1172  	s8				level;
1173  };
1174  
stage2_attr_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1175  static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1176  			      enum kvm_pgtable_walk_flags visit)
1177  {
1178  	kvm_pte_t pte = ctx->old;
1179  	struct stage2_attr_data *data = ctx->arg;
1180  	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1181  
1182  	if (!kvm_pte_valid(ctx->old))
1183  		return -EAGAIN;
1184  
1185  	data->level = ctx->level;
1186  	data->pte = pte;
1187  	pte &= ~data->attr_clr;
1188  	pte |= data->attr_set;
1189  
1190  	/*
1191  	 * We may race with the CPU trying to set the access flag here,
1192  	 * but worst-case the access flag update gets lost and will be
1193  	 * set on the next access instead.
1194  	 */
1195  	if (data->pte != pte) {
1196  		/*
1197  		 * Invalidate instruction cache before updating the guest
1198  		 * stage-2 PTE if we are going to add executable permission.
1199  		 */
1200  		if (mm_ops->icache_inval_pou &&
1201  		    stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1202  			mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1203  						  kvm_granule_size(ctx->level));
1204  
1205  		if (!stage2_try_set_pte(ctx, pte))
1206  			return -EAGAIN;
1207  	}
1208  
1209  	return 0;
1210  }
1211  
stage2_update_leaf_attrs(struct kvm_pgtable * pgt,u64 addr,u64 size,kvm_pte_t attr_set,kvm_pte_t attr_clr,kvm_pte_t * orig_pte,s8 * level,enum kvm_pgtable_walk_flags flags)1212  static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1213  				    u64 size, kvm_pte_t attr_set,
1214  				    kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1215  				    s8 *level, enum kvm_pgtable_walk_flags flags)
1216  {
1217  	int ret;
1218  	kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1219  	struct stage2_attr_data data = {
1220  		.attr_set	= attr_set & attr_mask,
1221  		.attr_clr	= attr_clr & attr_mask,
1222  	};
1223  	struct kvm_pgtable_walker walker = {
1224  		.cb		= stage2_attr_walker,
1225  		.arg		= &data,
1226  		.flags		= flags | KVM_PGTABLE_WALK_LEAF,
1227  	};
1228  
1229  	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1230  	if (ret)
1231  		return ret;
1232  
1233  	if (orig_pte)
1234  		*orig_pte = data.pte;
1235  
1236  	if (level)
1237  		*level = data.level;
1238  	return 0;
1239  }
1240  
kvm_pgtable_stage2_wrprotect(struct kvm_pgtable * pgt,u64 addr,u64 size)1241  int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1242  {
1243  	return stage2_update_leaf_attrs(pgt, addr, size, 0,
1244  					KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1245  					NULL, NULL, 0);
1246  }
1247  
kvm_pgtable_stage2_mkyoung(struct kvm_pgtable * pgt,u64 addr)1248  kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1249  {
1250  	kvm_pte_t pte = 0;
1251  	int ret;
1252  
1253  	ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1254  				       &pte, NULL,
1255  				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1256  				       KVM_PGTABLE_WALK_SHARED);
1257  	if (!ret)
1258  		dsb(ishst);
1259  
1260  	return pte;
1261  }
1262  
1263  struct stage2_age_data {
1264  	bool	mkold;
1265  	bool	young;
1266  };
1267  
stage2_age_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1268  static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
1269  			     enum kvm_pgtable_walk_flags visit)
1270  {
1271  	kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
1272  	struct stage2_age_data *data = ctx->arg;
1273  
1274  	if (!kvm_pte_valid(ctx->old) || new == ctx->old)
1275  		return 0;
1276  
1277  	data->young = true;
1278  
1279  	/*
1280  	 * stage2_age_walker() is always called while holding the MMU lock for
1281  	 * write, so this will always succeed. Nonetheless, this deliberately
1282  	 * follows the race detection pattern of the other stage-2 walkers in
1283  	 * case the locking mechanics of the MMU notifiers is ever changed.
1284  	 */
1285  	if (data->mkold && !stage2_try_set_pte(ctx, new))
1286  		return -EAGAIN;
1287  
1288  	/*
1289  	 * "But where's the TLBI?!", you scream.
1290  	 * "Over in the core code", I sigh.
1291  	 *
1292  	 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1293  	 */
1294  	return 0;
1295  }
1296  
kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable * pgt,u64 addr,u64 size,bool mkold)1297  bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
1298  					 u64 size, bool mkold)
1299  {
1300  	struct stage2_age_data data = {
1301  		.mkold		= mkold,
1302  	};
1303  	struct kvm_pgtable_walker walker = {
1304  		.cb		= stage2_age_walker,
1305  		.arg		= &data,
1306  		.flags		= KVM_PGTABLE_WALK_LEAF,
1307  	};
1308  
1309  	WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1310  	return data.young;
1311  }
1312  
kvm_pgtable_stage2_relax_perms(struct kvm_pgtable * pgt,u64 addr,enum kvm_pgtable_prot prot)1313  int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1314  				   enum kvm_pgtable_prot prot)
1315  {
1316  	int ret;
1317  	s8 level;
1318  	kvm_pte_t set = 0, clr = 0;
1319  
1320  	if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1321  		return -EINVAL;
1322  
1323  	if (prot & KVM_PGTABLE_PROT_R)
1324  		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1325  
1326  	if (prot & KVM_PGTABLE_PROT_W)
1327  		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1328  
1329  	if (prot & KVM_PGTABLE_PROT_X)
1330  		clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1331  
1332  	ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
1333  				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1334  				       KVM_PGTABLE_WALK_SHARED);
1335  	if (!ret || ret == -EAGAIN)
1336  		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
1337  	return ret;
1338  }
1339  
stage2_flush_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1340  static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1341  			       enum kvm_pgtable_walk_flags visit)
1342  {
1343  	struct kvm_pgtable *pgt = ctx->arg;
1344  	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1345  
1346  	if (!stage2_pte_cacheable(pgt, ctx->old))
1347  		return 0;
1348  
1349  	if (mm_ops->dcache_clean_inval_poc)
1350  		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1351  					       kvm_granule_size(ctx->level));
1352  	return 0;
1353  }
1354  
kvm_pgtable_stage2_flush(struct kvm_pgtable * pgt,u64 addr,u64 size)1355  int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1356  {
1357  	struct kvm_pgtable_walker walker = {
1358  		.cb	= stage2_flush_walker,
1359  		.flags	= KVM_PGTABLE_WALK_LEAF,
1360  		.arg	= pgt,
1361  	};
1362  
1363  	if (stage2_has_fwb(pgt))
1364  		return 0;
1365  
1366  	return kvm_pgtable_walk(pgt, addr, size, &walker);
1367  }
1368  
kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable * pgt,u64 phys,s8 level,enum kvm_pgtable_prot prot,void * mc,bool force_pte)1369  kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
1370  					      u64 phys, s8 level,
1371  					      enum kvm_pgtable_prot prot,
1372  					      void *mc, bool force_pte)
1373  {
1374  	struct stage2_map_data map_data = {
1375  		.phys		= phys,
1376  		.mmu		= pgt->mmu,
1377  		.memcache	= mc,
1378  		.force_pte	= force_pte,
1379  	};
1380  	struct kvm_pgtable_walker walker = {
1381  		.cb		= stage2_map_walker,
1382  		.flags		= KVM_PGTABLE_WALK_LEAF |
1383  				  KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
1384  				  KVM_PGTABLE_WALK_SKIP_CMO,
1385  		.arg		= &map_data,
1386  	};
1387  	/*
1388  	 * The input address (.addr) is irrelevant for walking an
1389  	 * unlinked table. Construct an ambiguous IA range to map
1390  	 * kvm_granule_size(level) worth of memory.
1391  	 */
1392  	struct kvm_pgtable_walk_data data = {
1393  		.walker	= &walker,
1394  		.addr	= 0,
1395  		.end	= kvm_granule_size(level),
1396  	};
1397  	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1398  	kvm_pte_t *pgtable;
1399  	int ret;
1400  
1401  	if (!IS_ALIGNED(phys, kvm_granule_size(level)))
1402  		return ERR_PTR(-EINVAL);
1403  
1404  	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1405  	if (ret)
1406  		return ERR_PTR(ret);
1407  
1408  	pgtable = mm_ops->zalloc_page(mc);
1409  	if (!pgtable)
1410  		return ERR_PTR(-ENOMEM);
1411  
1412  	ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
1413  				 level + 1);
1414  	if (ret) {
1415  		kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
1416  		return ERR_PTR(ret);
1417  	}
1418  
1419  	return pgtable;
1420  }
1421  
1422  /*
1423   * Get the number of page-tables needed to replace a block with a
1424   * fully populated tree up to the PTE entries. Note that @level is
1425   * interpreted as in "level @level entry".
1426   */
stage2_block_get_nr_page_tables(s8 level)1427  static int stage2_block_get_nr_page_tables(s8 level)
1428  {
1429  	switch (level) {
1430  	case 1:
1431  		return PTRS_PER_PTE + 1;
1432  	case 2:
1433  		return 1;
1434  	case 3:
1435  		return 0;
1436  	default:
1437  		WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
1438  			     level > KVM_PGTABLE_LAST_LEVEL);
1439  		return -EINVAL;
1440  	};
1441  }
1442  
stage2_split_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1443  static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
1444  			       enum kvm_pgtable_walk_flags visit)
1445  {
1446  	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1447  	struct kvm_mmu_memory_cache *mc = ctx->arg;
1448  	struct kvm_s2_mmu *mmu;
1449  	kvm_pte_t pte = ctx->old, new, *childp;
1450  	enum kvm_pgtable_prot prot;
1451  	s8 level = ctx->level;
1452  	bool force_pte;
1453  	int nr_pages;
1454  	u64 phys;
1455  
1456  	/* No huge-pages exist at the last level */
1457  	if (level == KVM_PGTABLE_LAST_LEVEL)
1458  		return 0;
1459  
1460  	/* We only split valid block mappings */
1461  	if (!kvm_pte_valid(pte))
1462  		return 0;
1463  
1464  	nr_pages = stage2_block_get_nr_page_tables(level);
1465  	if (nr_pages < 0)
1466  		return nr_pages;
1467  
1468  	if (mc->nobjs >= nr_pages) {
1469  		/* Build a tree mapped down to the PTE granularity. */
1470  		force_pte = true;
1471  	} else {
1472  		/*
1473  		 * Don't force PTEs, so create_unlinked() below does
1474  		 * not populate the tree up to the PTE level. The
1475  		 * consequence is that the call will require a single
1476  		 * page of level 2 entries at level 1, or a single
1477  		 * page of PTEs at level 2. If we are at level 1, the
1478  		 * PTEs will be created recursively.
1479  		 */
1480  		force_pte = false;
1481  		nr_pages = 1;
1482  	}
1483  
1484  	if (mc->nobjs < nr_pages)
1485  		return -ENOMEM;
1486  
1487  	mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
1488  	phys = kvm_pte_to_phys(pte);
1489  	prot = kvm_pgtable_stage2_pte_prot(pte);
1490  
1491  	childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
1492  						    level, prot, mc, force_pte);
1493  	if (IS_ERR(childp))
1494  		return PTR_ERR(childp);
1495  
1496  	if (!stage2_try_break_pte(ctx, mmu)) {
1497  		kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
1498  		return -EAGAIN;
1499  	}
1500  
1501  	/*
1502  	 * Note, the contents of the page table are guaranteed to be made
1503  	 * visible before the new PTE is assigned because stage2_make_pte()
1504  	 * writes the PTE using smp_store_release().
1505  	 */
1506  	new = kvm_init_table_pte(childp, mm_ops);
1507  	stage2_make_pte(ctx, new);
1508  	return 0;
1509  }
1510  
kvm_pgtable_stage2_split(struct kvm_pgtable * pgt,u64 addr,u64 size,struct kvm_mmu_memory_cache * mc)1511  int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
1512  			     struct kvm_mmu_memory_cache *mc)
1513  {
1514  	struct kvm_pgtable_walker walker = {
1515  		.cb	= stage2_split_walker,
1516  		.flags	= KVM_PGTABLE_WALK_LEAF,
1517  		.arg	= mc,
1518  	};
1519  	int ret;
1520  
1521  	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1522  	dsb(ishst);
1523  	return ret;
1524  }
1525  
__kvm_pgtable_stage2_init(struct kvm_pgtable * pgt,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops,enum kvm_pgtable_stage2_flags flags,kvm_pgtable_force_pte_cb_t force_pte_cb)1526  int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1527  			      struct kvm_pgtable_mm_ops *mm_ops,
1528  			      enum kvm_pgtable_stage2_flags flags,
1529  			      kvm_pgtable_force_pte_cb_t force_pte_cb)
1530  {
1531  	size_t pgd_sz;
1532  	u64 vtcr = mmu->vtcr;
1533  	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1534  	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1535  	s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1536  
1537  	pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1538  	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1539  	if (!pgt->pgd)
1540  		return -ENOMEM;
1541  
1542  	pgt->ia_bits		= ia_bits;
1543  	pgt->start_level	= start_level;
1544  	pgt->mm_ops		= mm_ops;
1545  	pgt->mmu		= mmu;
1546  	pgt->flags		= flags;
1547  	pgt->force_pte_cb	= force_pte_cb;
1548  
1549  	/* Ensure zeroed PGD pages are visible to the hardware walker */
1550  	dsb(ishst);
1551  	return 0;
1552  }
1553  
kvm_pgtable_stage2_pgd_size(u64 vtcr)1554  size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1555  {
1556  	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1557  	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1558  	s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1559  
1560  	return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1561  }
1562  
stage2_free_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1563  static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1564  			      enum kvm_pgtable_walk_flags visit)
1565  {
1566  	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1567  
1568  	if (!stage2_pte_is_counted(ctx->old))
1569  		return 0;
1570  
1571  	mm_ops->put_page(ctx->ptep);
1572  
1573  	if (kvm_pte_table(ctx->old, ctx->level))
1574  		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
1575  
1576  	return 0;
1577  }
1578  
kvm_pgtable_stage2_destroy(struct kvm_pgtable * pgt)1579  void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1580  {
1581  	size_t pgd_sz;
1582  	struct kvm_pgtable_walker walker = {
1583  		.cb	= stage2_free_walker,
1584  		.flags	= KVM_PGTABLE_WALK_LEAF |
1585  			  KVM_PGTABLE_WALK_TABLE_POST,
1586  	};
1587  
1588  	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1589  	pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1590  	pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
1591  	pgt->pgd = NULL;
1592  }
1593  
kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops * mm_ops,void * pgtable,s8 level)1594  void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level)
1595  {
1596  	kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1597  	struct kvm_pgtable_walker walker = {
1598  		.cb	= stage2_free_walker,
1599  		.flags	= KVM_PGTABLE_WALK_LEAF |
1600  			  KVM_PGTABLE_WALK_TABLE_POST,
1601  	};
1602  	struct kvm_pgtable_walk_data data = {
1603  		.walker	= &walker,
1604  
1605  		/*
1606  		 * At this point the IPA really doesn't matter, as the page
1607  		 * table being traversed has already been removed from the stage
1608  		 * 2. Set an appropriate range to cover the entire page table.
1609  		 */
1610  		.addr	= 0,
1611  		.end	= kvm_granule_size(level),
1612  	};
1613  
1614  	WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1615  
1616  	WARN_ON(mm_ops->page_count(pgtable) != 1);
1617  	mm_ops->put_page(pgtable);
1618  }
1619