1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (C) 2017 - Columbia University and Linaro Ltd.
4   * Author: Jintack Lim <jintack.lim@linaro.org>
5   */
6  
7  #include <linux/bitfield.h>
8  #include <linux/kvm.h>
9  #include <linux/kvm_host.h>
10  
11  #include <asm/kvm_arm.h>
12  #include <asm/kvm_emulate.h>
13  #include <asm/kvm_mmu.h>
14  #include <asm/kvm_nested.h>
15  #include <asm/sysreg.h>
16  
17  #include "sys_regs.h"
18  
19  /* Protection against the sysreg repainting madness... */
20  #define NV_FTR(r, f)		ID_AA64##r##_EL1_##f
21  
22  /*
23   * Ratio of live shadow S2 MMU per vcpu. This is a trade-off between
24   * memory usage and potential number of different sets of S2 PTs in
25   * the guests. Running out of S2 MMUs only affects performance (we
26   * will invalidate them more often).
27   */
28  #define S2_MMU_PER_VCPU		2
29  
kvm_init_nested(struct kvm * kvm)30  void kvm_init_nested(struct kvm *kvm)
31  {
32  	kvm->arch.nested_mmus = NULL;
33  	kvm->arch.nested_mmus_size = 0;
34  }
35  
init_nested_s2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu)36  static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
37  {
38  	/*
39  	 * We only initialise the IPA range on the canonical MMU, which
40  	 * defines the contract between KVM and userspace on where the
41  	 * "hardware" is in the IPA space. This affects the validity of MMIO
42  	 * exits forwarded to userspace, for example.
43  	 *
44  	 * For nested S2s, we use the PARange as exposed to the guest, as it
45  	 * is allowed to use it at will to expose whatever memory map it
46  	 * wants to its own guests as it would be on real HW.
47  	 */
48  	return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm));
49  }
50  
kvm_vcpu_init_nested(struct kvm_vcpu * vcpu)51  int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu)
52  {
53  	struct kvm *kvm = vcpu->kvm;
54  	struct kvm_s2_mmu *tmp;
55  	int num_mmus, ret = 0;
56  
57  	/*
58  	 * Let's treat memory allocation failures as benign: If we fail to
59  	 * allocate anything, return an error and keep the allocated array
60  	 * alive. Userspace may try to recover by intializing the vcpu
61  	 * again, and there is no reason to affect the whole VM for this.
62  	 */
63  	num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU;
64  	tmp = kvrealloc(kvm->arch.nested_mmus,
65  			size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus),
66  			GFP_KERNEL_ACCOUNT | __GFP_ZERO);
67  	if (!tmp)
68  		return -ENOMEM;
69  
70  	/*
71  	 * If we went through a realocation, adjust the MMU back-pointers in
72  	 * the previously initialised kvm_pgtable structures.
73  	 */
74  	if (kvm->arch.nested_mmus != tmp)
75  		for (int i = 0; i < kvm->arch.nested_mmus_size; i++)
76  			tmp[i].pgt->mmu = &tmp[i];
77  
78  	for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++)
79  		ret = init_nested_s2_mmu(kvm, &tmp[i]);
80  
81  	if (ret) {
82  		for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++)
83  			kvm_free_stage2_pgd(&tmp[i]);
84  
85  		return ret;
86  	}
87  
88  	kvm->arch.nested_mmus_size = num_mmus;
89  	kvm->arch.nested_mmus = tmp;
90  
91  	return 0;
92  }
93  
94  struct s2_walk_info {
95  	int	     (*read_desc)(phys_addr_t pa, u64 *desc, void *data);
96  	void	     *data;
97  	u64	     baddr;
98  	unsigned int max_oa_bits;
99  	unsigned int pgshift;
100  	unsigned int sl;
101  	unsigned int t0sz;
102  	bool	     be;
103  };
104  
compute_fsc(int level,u32 fsc)105  static u32 compute_fsc(int level, u32 fsc)
106  {
107  	return fsc | (level & 0x3);
108  }
109  
esr_s2_fault(struct kvm_vcpu * vcpu,int level,u32 fsc)110  static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc)
111  {
112  	u32 esr;
113  
114  	esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC;
115  	esr |= compute_fsc(level, fsc);
116  	return esr;
117  }
118  
get_ia_size(struct s2_walk_info * wi)119  static int get_ia_size(struct s2_walk_info *wi)
120  {
121  	return 64 - wi->t0sz;
122  }
123  
check_base_s2_limits(struct s2_walk_info * wi,int level,int input_size,int stride)124  static int check_base_s2_limits(struct s2_walk_info *wi,
125  				int level, int input_size, int stride)
126  {
127  	int start_size, ia_size;
128  
129  	ia_size = get_ia_size(wi);
130  
131  	/* Check translation limits */
132  	switch (BIT(wi->pgshift)) {
133  	case SZ_64K:
134  		if (level == 0 || (level == 1 && ia_size <= 42))
135  			return -EFAULT;
136  		break;
137  	case SZ_16K:
138  		if (level == 0 || (level == 1 && ia_size <= 40))
139  			return -EFAULT;
140  		break;
141  	case SZ_4K:
142  		if (level < 0 || (level == 0 && ia_size <= 42))
143  			return -EFAULT;
144  		break;
145  	}
146  
147  	/* Check input size limits */
148  	if (input_size > ia_size)
149  		return -EFAULT;
150  
151  	/* Check number of entries in starting level table */
152  	start_size = input_size - ((3 - level) * stride + wi->pgshift);
153  	if (start_size < 1 || start_size > stride + 4)
154  		return -EFAULT;
155  
156  	return 0;
157  }
158  
159  /* Check if output is within boundaries */
check_output_size(struct s2_walk_info * wi,phys_addr_t output)160  static int check_output_size(struct s2_walk_info *wi, phys_addr_t output)
161  {
162  	unsigned int output_size = wi->max_oa_bits;
163  
164  	if (output_size != 48 && (output & GENMASK_ULL(47, output_size)))
165  		return -1;
166  
167  	return 0;
168  }
169  
170  /*
171   * This is essentially a C-version of the pseudo code from the ARM ARM
172   * AArch64.TranslationTableWalk  function.  I strongly recommend looking at
173   * that pseudocode in trying to understand this.
174   *
175   * Must be called with the kvm->srcu read lock held
176   */
walk_nested_s2_pgd(phys_addr_t ipa,struct s2_walk_info * wi,struct kvm_s2_trans * out)177  static int walk_nested_s2_pgd(phys_addr_t ipa,
178  			      struct s2_walk_info *wi, struct kvm_s2_trans *out)
179  {
180  	int first_block_level, level, stride, input_size, base_lower_bound;
181  	phys_addr_t base_addr;
182  	unsigned int addr_top, addr_bottom;
183  	u64 desc;  /* page table entry */
184  	int ret;
185  	phys_addr_t paddr;
186  
187  	switch (BIT(wi->pgshift)) {
188  	default:
189  	case SZ_64K:
190  	case SZ_16K:
191  		level = 3 - wi->sl;
192  		first_block_level = 2;
193  		break;
194  	case SZ_4K:
195  		level = 2 - wi->sl;
196  		first_block_level = 1;
197  		break;
198  	}
199  
200  	stride = wi->pgshift - 3;
201  	input_size = get_ia_size(wi);
202  	if (input_size > 48 || input_size < 25)
203  		return -EFAULT;
204  
205  	ret = check_base_s2_limits(wi, level, input_size, stride);
206  	if (WARN_ON(ret))
207  		return ret;
208  
209  	base_lower_bound = 3 + input_size - ((3 - level) * stride +
210  			   wi->pgshift);
211  	base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound);
212  
213  	if (check_output_size(wi, base_addr)) {
214  		out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
215  		return 1;
216  	}
217  
218  	addr_top = input_size - 1;
219  
220  	while (1) {
221  		phys_addr_t index;
222  
223  		addr_bottom = (3 - level) * stride + wi->pgshift;
224  		index = (ipa & GENMASK_ULL(addr_top, addr_bottom))
225  			>> (addr_bottom - 3);
226  
227  		paddr = base_addr | index;
228  		ret = wi->read_desc(paddr, &desc, wi->data);
229  		if (ret < 0)
230  			return ret;
231  
232  		/*
233  		 * Handle reversedescriptors if endianness differs between the
234  		 * host and the guest hypervisor.
235  		 */
236  		if (wi->be)
237  			desc = be64_to_cpu((__force __be64)desc);
238  		else
239  			desc = le64_to_cpu((__force __le64)desc);
240  
241  		/* Check for valid descriptor at this point */
242  		if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) {
243  			out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
244  			out->desc = desc;
245  			return 1;
246  		}
247  
248  		/* We're at the final level or block translation level */
249  		if ((desc & 3) == 1 || level == 3)
250  			break;
251  
252  		if (check_output_size(wi, desc)) {
253  			out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
254  			out->desc = desc;
255  			return 1;
256  		}
257  
258  		base_addr = desc & GENMASK_ULL(47, wi->pgshift);
259  
260  		level += 1;
261  		addr_top = addr_bottom - 1;
262  	}
263  
264  	if (level < first_block_level) {
265  		out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
266  		out->desc = desc;
267  		return 1;
268  	}
269  
270  	if (check_output_size(wi, desc)) {
271  		out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
272  		out->desc = desc;
273  		return 1;
274  	}
275  
276  	if (!(desc & BIT(10))) {
277  		out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS);
278  		out->desc = desc;
279  		return 1;
280  	}
281  
282  	addr_bottom += contiguous_bit_shift(desc, wi, level);
283  
284  	/* Calculate and return the result */
285  	paddr = (desc & GENMASK_ULL(47, addr_bottom)) |
286  		(ipa & GENMASK_ULL(addr_bottom - 1, 0));
287  	out->output = paddr;
288  	out->block_size = 1UL << ((3 - level) * stride + wi->pgshift);
289  	out->readable = desc & (0b01 << 6);
290  	out->writable = desc & (0b10 << 6);
291  	out->level = level;
292  	out->desc = desc;
293  	return 0;
294  }
295  
read_guest_s2_desc(phys_addr_t pa,u64 * desc,void * data)296  static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data)
297  {
298  	struct kvm_vcpu *vcpu = data;
299  
300  	return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc));
301  }
302  
vtcr_to_walk_info(u64 vtcr,struct s2_walk_info * wi)303  static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi)
304  {
305  	wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK;
306  
307  	switch (vtcr & VTCR_EL2_TG0_MASK) {
308  	case VTCR_EL2_TG0_4K:
309  		wi->pgshift = 12;	 break;
310  	case VTCR_EL2_TG0_16K:
311  		wi->pgshift = 14;	 break;
312  	case VTCR_EL2_TG0_64K:
313  	default:	    /* IMPDEF: treat any other value as 64k */
314  		wi->pgshift = 16;	 break;
315  	}
316  
317  	wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
318  	/* Global limit for now, should eventually be per-VM */
319  	wi->max_oa_bits = min(get_kvm_ipa_limit(),
320  			      ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr)));
321  }
322  
kvm_walk_nested_s2(struct kvm_vcpu * vcpu,phys_addr_t gipa,struct kvm_s2_trans * result)323  int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
324  		       struct kvm_s2_trans *result)
325  {
326  	u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
327  	struct s2_walk_info wi;
328  	int ret;
329  
330  	result->esr = 0;
331  
332  	if (!vcpu_has_nv(vcpu))
333  		return 0;
334  
335  	wi.read_desc = read_guest_s2_desc;
336  	wi.data = vcpu;
337  	wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
338  
339  	vtcr_to_walk_info(vtcr, &wi);
340  
341  	wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE;
342  
343  	ret = walk_nested_s2_pgd(gipa, &wi, result);
344  	if (ret)
345  		result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC);
346  
347  	return ret;
348  }
349  
ttl_to_size(u8 ttl)350  static unsigned int ttl_to_size(u8 ttl)
351  {
352  	int level = ttl & 3;
353  	int gran = (ttl >> 2) & 3;
354  	unsigned int max_size = 0;
355  
356  	switch (gran) {
357  	case TLBI_TTL_TG_4K:
358  		switch (level) {
359  		case 0:
360  			break;
361  		case 1:
362  			max_size = SZ_1G;
363  			break;
364  		case 2:
365  			max_size = SZ_2M;
366  			break;
367  		case 3:
368  			max_size = SZ_4K;
369  			break;
370  		}
371  		break;
372  	case TLBI_TTL_TG_16K:
373  		switch (level) {
374  		case 0:
375  		case 1:
376  			break;
377  		case 2:
378  			max_size = SZ_32M;
379  			break;
380  		case 3:
381  			max_size = SZ_16K;
382  			break;
383  		}
384  		break;
385  	case TLBI_TTL_TG_64K:
386  		switch (level) {
387  		case 0:
388  		case 1:
389  			/* No 52bit IPA support */
390  			break;
391  		case 2:
392  			max_size = SZ_512M;
393  			break;
394  		case 3:
395  			max_size = SZ_64K;
396  			break;
397  		}
398  		break;
399  	default:			/* No size information */
400  		break;
401  	}
402  
403  	return max_size;
404  }
405  
406  /*
407   * Compute the equivalent of the TTL field by parsing the shadow PT.  The
408   * granule size is extracted from the cached VTCR_EL2.TG0 while the level is
409   * retrieved from first entry carrying the level as a tag.
410   */
get_guest_mapping_ttl(struct kvm_s2_mmu * mmu,u64 addr)411  static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr)
412  {
413  	u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr;
414  	kvm_pte_t pte;
415  	u8 ttl, level;
416  
417  	lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock);
418  
419  	switch (vtcr & VTCR_EL2_TG0_MASK) {
420  	case VTCR_EL2_TG0_4K:
421  		ttl = (TLBI_TTL_TG_4K << 2);
422  		break;
423  	case VTCR_EL2_TG0_16K:
424  		ttl = (TLBI_TTL_TG_16K << 2);
425  		break;
426  	case VTCR_EL2_TG0_64K:
427  	default:	    /* IMPDEF: treat any other value as 64k */
428  		ttl = (TLBI_TTL_TG_64K << 2);
429  		break;
430  	}
431  
432  	tmp = addr;
433  
434  again:
435  	/* Iteratively compute the block sizes for a particular granule size */
436  	switch (vtcr & VTCR_EL2_TG0_MASK) {
437  	case VTCR_EL2_TG0_4K:
438  		if	(sz < SZ_4K)	sz = SZ_4K;
439  		else if (sz < SZ_2M)	sz = SZ_2M;
440  		else if (sz < SZ_1G)	sz = SZ_1G;
441  		else			sz = 0;
442  		break;
443  	case VTCR_EL2_TG0_16K:
444  		if	(sz < SZ_16K)	sz = SZ_16K;
445  		else if (sz < SZ_32M)	sz = SZ_32M;
446  		else			sz = 0;
447  		break;
448  	case VTCR_EL2_TG0_64K:
449  	default:	    /* IMPDEF: treat any other value as 64k */
450  		if	(sz < SZ_64K)	sz = SZ_64K;
451  		else if (sz < SZ_512M)	sz = SZ_512M;
452  		else			sz = 0;
453  		break;
454  	}
455  
456  	if (sz == 0)
457  		return 0;
458  
459  	tmp &= ~(sz - 1);
460  	if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL))
461  		goto again;
462  	if (!(pte & PTE_VALID))
463  		goto again;
464  	level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte);
465  	if (!level)
466  		goto again;
467  
468  	ttl |= level;
469  
470  	/*
471  	 * We now have found some level information in the shadow S2. Check
472  	 * that the resulting range is actually including the original IPA.
473  	 */
474  	sz = ttl_to_size(ttl);
475  	if (addr < (tmp + sz))
476  		return ttl;
477  
478  	return 0;
479  }
480  
compute_tlb_inval_range(struct kvm_s2_mmu * mmu,u64 val)481  unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val)
482  {
483  	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
484  	unsigned long max_size;
485  	u8 ttl;
486  
487  	ttl = FIELD_GET(TLBI_TTL_MASK, val);
488  
489  	if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) {
490  		/* No TTL, check the shadow S2 for a hint */
491  		u64 addr = (val & GENMASK_ULL(35, 0)) << 12;
492  		ttl = get_guest_mapping_ttl(mmu, addr);
493  	}
494  
495  	max_size = ttl_to_size(ttl);
496  
497  	if (!max_size) {
498  		/* Compute the maximum extent of the invalidation */
499  		switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) {
500  		case VTCR_EL2_TG0_4K:
501  			max_size = SZ_1G;
502  			break;
503  		case VTCR_EL2_TG0_16K:
504  			max_size = SZ_32M;
505  			break;
506  		case VTCR_EL2_TG0_64K:
507  		default:    /* IMPDEF: treat any other value as 64k */
508  			/*
509  			 * No, we do not support 52bit IPA in nested yet. Once
510  			 * we do, this should be 4TB.
511  			 */
512  			max_size = SZ_512M;
513  			break;
514  		}
515  	}
516  
517  	WARN_ON(!max_size);
518  	return max_size;
519  }
520  
521  /*
522   * We can have multiple *different* MMU contexts with the same VMID:
523   *
524   * - S2 being enabled or not, hence differing by the HCR_EL2.VM bit
525   *
526   * - Multiple vcpus using private S2s (huh huh...), hence differing by the
527   *   VBBTR_EL2.BADDR address
528   *
529   * - A combination of the above...
530   *
531   * We can always identify which MMU context to pick at run-time.  However,
532   * TLB invalidation involving a VMID must take action on all the TLBs using
533   * this particular VMID. This translates into applying the same invalidation
534   * operation to all the contexts that are using this VMID. Moar phun!
535   */
kvm_s2_mmu_iterate_by_vmid(struct kvm * kvm,u16 vmid,const union tlbi_info * info,void (* tlbi_callback)(struct kvm_s2_mmu *,const union tlbi_info *))536  void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid,
537  				const union tlbi_info *info,
538  				void (*tlbi_callback)(struct kvm_s2_mmu *,
539  						      const union tlbi_info *))
540  {
541  	write_lock(&kvm->mmu_lock);
542  
543  	for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
544  		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
545  
546  		if (!kvm_s2_mmu_valid(mmu))
547  			continue;
548  
549  		if (vmid == get_vmid(mmu->tlb_vttbr))
550  			tlbi_callback(mmu, info);
551  	}
552  
553  	write_unlock(&kvm->mmu_lock);
554  }
555  
lookup_s2_mmu(struct kvm_vcpu * vcpu)556  struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu)
557  {
558  	struct kvm *kvm = vcpu->kvm;
559  	bool nested_stage2_enabled;
560  	u64 vttbr, vtcr, hcr;
561  
562  	lockdep_assert_held_write(&kvm->mmu_lock);
563  
564  	vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
565  	vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
566  	hcr = vcpu_read_sys_reg(vcpu, HCR_EL2);
567  
568  	nested_stage2_enabled = hcr & HCR_VM;
569  
570  	/* Don't consider the CnP bit for the vttbr match */
571  	vttbr &= ~VTTBR_CNP_BIT;
572  
573  	/*
574  	 * Two possibilities when looking up a S2 MMU context:
575  	 *
576  	 * - either S2 is enabled in the guest, and we need a context that is
577  	 *   S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR,
578  	 *   which makes it safe from a TLB conflict perspective (a broken
579  	 *   guest won't be able to generate them),
580  	 *
581  	 * - or S2 is disabled, and we need a context that is S2-disabled
582  	 *   and matches the VMID only, as all TLBs are tagged by VMID even
583  	 *   if S2 translation is disabled.
584  	 */
585  	for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
586  		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
587  
588  		if (!kvm_s2_mmu_valid(mmu))
589  			continue;
590  
591  		if (nested_stage2_enabled &&
592  		    mmu->nested_stage2_enabled &&
593  		    vttbr == mmu->tlb_vttbr &&
594  		    vtcr == mmu->tlb_vtcr)
595  			return mmu;
596  
597  		if (!nested_stage2_enabled &&
598  		    !mmu->nested_stage2_enabled &&
599  		    get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr))
600  			return mmu;
601  	}
602  	return NULL;
603  }
604  
get_s2_mmu_nested(struct kvm_vcpu * vcpu)605  static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu)
606  {
607  	struct kvm *kvm = vcpu->kvm;
608  	struct kvm_s2_mmu *s2_mmu;
609  	int i;
610  
611  	lockdep_assert_held_write(&vcpu->kvm->mmu_lock);
612  
613  	s2_mmu = lookup_s2_mmu(vcpu);
614  	if (s2_mmu)
615  		goto out;
616  
617  	/*
618  	 * Make sure we don't always search from the same point, or we
619  	 * will always reuse a potentially active context, leaving
620  	 * free contexts unused.
621  	 */
622  	for (i = kvm->arch.nested_mmus_next;
623  	     i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next);
624  	     i++) {
625  		s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size];
626  
627  		if (atomic_read(&s2_mmu->refcnt) == 0)
628  			break;
629  	}
630  	BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */
631  
632  	/* Set the scene for the next search */
633  	kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size;
634  
635  	/* Make sure we don't forget to do the laundry */
636  	if (kvm_s2_mmu_valid(s2_mmu))
637  		s2_mmu->pending_unmap = true;
638  
639  	/*
640  	 * The virtual VMID (modulo CnP) will be used as a key when matching
641  	 * an existing kvm_s2_mmu.
642  	 *
643  	 * We cache VTCR at allocation time, once and for all. It'd be great
644  	 * if the guest didn't screw that one up, as this is not very
645  	 * forgiving...
646  	 */
647  	s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT;
648  	s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
649  	s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM;
650  
651  out:
652  	atomic_inc(&s2_mmu->refcnt);
653  
654  	/*
655  	 * Set the vCPU request to perform an unmap, even if the pending unmap
656  	 * originates from another vCPU. This guarantees that the MMU has been
657  	 * completely unmapped before any vCPU actually uses it, and allows
658  	 * multiple vCPUs to lend a hand with completing the unmap.
659  	 */
660  	if (s2_mmu->pending_unmap)
661  		kvm_make_request(KVM_REQ_NESTED_S2_UNMAP, vcpu);
662  
663  	return s2_mmu;
664  }
665  
kvm_init_nested_s2_mmu(struct kvm_s2_mmu * mmu)666  void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu)
667  {
668  	/* CnP being set denotes an invalid entry */
669  	mmu->tlb_vttbr = VTTBR_CNP_BIT;
670  	mmu->nested_stage2_enabled = false;
671  	atomic_set(&mmu->refcnt, 0);
672  }
673  
kvm_vcpu_load_hw_mmu(struct kvm_vcpu * vcpu)674  void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu)
675  {
676  	/*
677  	 * The vCPU kept its reference on the MMU after the last put, keep
678  	 * rolling with it.
679  	 */
680  	if (vcpu->arch.hw_mmu)
681  		return;
682  
683  	if (is_hyp_ctxt(vcpu)) {
684  		vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
685  	} else {
686  		write_lock(&vcpu->kvm->mmu_lock);
687  		vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu);
688  		write_unlock(&vcpu->kvm->mmu_lock);
689  	}
690  }
691  
kvm_vcpu_put_hw_mmu(struct kvm_vcpu * vcpu)692  void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu)
693  {
694  	/*
695  	 * Keep a reference on the associated stage-2 MMU if the vCPU is
696  	 * scheduling out and not in WFI emulation, suggesting it is likely to
697  	 * reuse the MMU sometime soon.
698  	 */
699  	if (vcpu->scheduled_out && !vcpu_get_flag(vcpu, IN_WFI))
700  		return;
701  
702  	if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu))
703  		atomic_dec(&vcpu->arch.hw_mmu->refcnt);
704  
705  	vcpu->arch.hw_mmu = NULL;
706  }
707  
708  /*
709   * Returns non-zero if permission fault is handled by injecting it to the next
710   * level hypervisor.
711   */
kvm_s2_handle_perm_fault(struct kvm_vcpu * vcpu,struct kvm_s2_trans * trans)712  int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans)
713  {
714  	bool forward_fault = false;
715  
716  	trans->esr = 0;
717  
718  	if (!kvm_vcpu_trap_is_permission_fault(vcpu))
719  		return 0;
720  
721  	if (kvm_vcpu_trap_is_iabt(vcpu)) {
722  		forward_fault = !kvm_s2_trans_executable(trans);
723  	} else {
724  		bool write_fault = kvm_is_write_fault(vcpu);
725  
726  		forward_fault = ((write_fault && !trans->writable) ||
727  				 (!write_fault && !trans->readable));
728  	}
729  
730  	if (forward_fault)
731  		trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM);
732  
733  	return forward_fault;
734  }
735  
kvm_inject_s2_fault(struct kvm_vcpu * vcpu,u64 esr_el2)736  int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2)
737  {
738  	vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2);
739  	vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2);
740  
741  	return kvm_inject_nested_sync(vcpu, esr_el2);
742  }
743  
kvm_nested_s2_wp(struct kvm * kvm)744  void kvm_nested_s2_wp(struct kvm *kvm)
745  {
746  	int i;
747  
748  	lockdep_assert_held_write(&kvm->mmu_lock);
749  
750  	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
751  		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
752  
753  		if (kvm_s2_mmu_valid(mmu))
754  			kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu));
755  	}
756  }
757  
kvm_nested_s2_unmap(struct kvm * kvm,bool may_block)758  void kvm_nested_s2_unmap(struct kvm *kvm, bool may_block)
759  {
760  	int i;
761  
762  	lockdep_assert_held_write(&kvm->mmu_lock);
763  
764  	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
765  		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
766  
767  		if (kvm_s2_mmu_valid(mmu))
768  			kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), may_block);
769  	}
770  }
771  
kvm_nested_s2_flush(struct kvm * kvm)772  void kvm_nested_s2_flush(struct kvm *kvm)
773  {
774  	int i;
775  
776  	lockdep_assert_held_write(&kvm->mmu_lock);
777  
778  	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
779  		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
780  
781  		if (kvm_s2_mmu_valid(mmu))
782  			kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu));
783  	}
784  }
785  
kvm_arch_flush_shadow_all(struct kvm * kvm)786  void kvm_arch_flush_shadow_all(struct kvm *kvm)
787  {
788  	int i;
789  
790  	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
791  		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
792  
793  		if (!WARN_ON(atomic_read(&mmu->refcnt)))
794  			kvm_free_stage2_pgd(mmu);
795  	}
796  	kvfree(kvm->arch.nested_mmus);
797  	kvm->arch.nested_mmus = NULL;
798  	kvm->arch.nested_mmus_size = 0;
799  	kvm_uninit_stage2_mmu(kvm);
800  }
801  
802  /*
803   * Our emulated CPU doesn't support all the possible features. For the
804   * sake of simplicity (and probably mental sanity), wipe out a number
805   * of feature bits we don't intend to support for the time being.
806   * This list should get updated as new features get added to the NV
807   * support, and new extension to the architecture.
808   */
limit_nv_id_regs(struct kvm * kvm)809  static void limit_nv_id_regs(struct kvm *kvm)
810  {
811  	u64 val, tmp;
812  
813  	/* Support everything but TME */
814  	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1);
815  	val &= ~NV_FTR(ISAR0, TME);
816  	kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1, val);
817  
818  	/* Support everything but Spec Invalidation and LS64 */
819  	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1);
820  	val &= ~(NV_FTR(ISAR1, LS64)	|
821  		 NV_FTR(ISAR1, SPECRES));
822  	kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1, val);
823  
824  	/* No AMU, MPAM, S-EL2, or RAS */
825  	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1);
826  	val &= ~(GENMASK_ULL(55, 52)	|
827  		 NV_FTR(PFR0, AMU)	|
828  		 NV_FTR(PFR0, MPAM)	|
829  		 NV_FTR(PFR0, SEL2)	|
830  		 NV_FTR(PFR0, RAS)	|
831  		 NV_FTR(PFR0, EL3)	|
832  		 NV_FTR(PFR0, EL2)	|
833  		 NV_FTR(PFR0, EL1));
834  	/* 64bit EL1/EL2/EL3 only */
835  	val |= FIELD_PREP(NV_FTR(PFR0, EL1), 0b0001);
836  	val |= FIELD_PREP(NV_FTR(PFR0, EL2), 0b0001);
837  	val |= FIELD_PREP(NV_FTR(PFR0, EL3), 0b0001);
838  	kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1, val);
839  
840  	/* Only support BTI, SSBS, CSV2_frac */
841  	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1);
842  	val &= (NV_FTR(PFR1, BT)	|
843  		NV_FTR(PFR1, SSBS)	|
844  		NV_FTR(PFR1, CSV2_frac));
845  	kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1, val);
846  
847  	/* Hide ECV, ExS, Secure Memory */
848  	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1);
849  	val &= ~(NV_FTR(MMFR0, ECV)		|
850  		 NV_FTR(MMFR0, EXS)		|
851  		 NV_FTR(MMFR0, TGRAN4_2)	|
852  		 NV_FTR(MMFR0, TGRAN16_2)	|
853  		 NV_FTR(MMFR0, TGRAN64_2)	|
854  		 NV_FTR(MMFR0, SNSMEM));
855  
856  	/* Disallow unsupported S2 page sizes */
857  	switch (PAGE_SIZE) {
858  	case SZ_64K:
859  		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0001);
860  		fallthrough;
861  	case SZ_16K:
862  		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0001);
863  		fallthrough;
864  	case SZ_4K:
865  		/* Support everything */
866  		break;
867  	}
868  	/*
869  	 * Since we can't support a guest S2 page size smaller than
870  	 * the host's own page size (due to KVM only populating its
871  	 * own S2 using the kernel's page size), advertise the
872  	 * limitation using FEAT_GTG.
873  	 */
874  	switch (PAGE_SIZE) {
875  	case SZ_4K:
876  		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0010);
877  		fallthrough;
878  	case SZ_16K:
879  		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0010);
880  		fallthrough;
881  	case SZ_64K:
882  		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN64_2), 0b0010);
883  		break;
884  	}
885  	/* Cap PARange to 48bits */
886  	tmp = FIELD_GET(NV_FTR(MMFR0, PARANGE), val);
887  	if (tmp > 0b0101) {
888  		val &= ~NV_FTR(MMFR0, PARANGE);
889  		val |= FIELD_PREP(NV_FTR(MMFR0, PARANGE), 0b0101);
890  	}
891  	kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1, val);
892  
893  	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1);
894  	val &= (NV_FTR(MMFR1, HCX)	|
895  		NV_FTR(MMFR1, PAN)	|
896  		NV_FTR(MMFR1, LO)	|
897  		NV_FTR(MMFR1, HPDS)	|
898  		NV_FTR(MMFR1, VH)	|
899  		NV_FTR(MMFR1, VMIDBits));
900  	kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1, val);
901  
902  	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1);
903  	val &= ~(NV_FTR(MMFR2, BBM)	|
904  		 NV_FTR(MMFR2, TTL)	|
905  		 GENMASK_ULL(47, 44)	|
906  		 NV_FTR(MMFR2, ST)	|
907  		 NV_FTR(MMFR2, CCIDX)	|
908  		 NV_FTR(MMFR2, VARange));
909  
910  	/* Force TTL support */
911  	val |= FIELD_PREP(NV_FTR(MMFR2, TTL), 0b0001);
912  	kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1, val);
913  
914  	val = 0;
915  	if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
916  		val |= FIELD_PREP(NV_FTR(MMFR4, E2H0),
917  				  ID_AA64MMFR4_EL1_E2H0_NI_NV1);
918  	kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR4_EL1, val);
919  
920  	/* Only limited support for PMU, Debug, BPs and WPs */
921  	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1);
922  	val &= (NV_FTR(DFR0, PMUVer)	|
923  		NV_FTR(DFR0, WRPs)	|
924  		NV_FTR(DFR0, BRPs)	|
925  		NV_FTR(DFR0, DebugVer));
926  
927  	/* Cap Debug to ARMv8.1 */
928  	tmp = FIELD_GET(NV_FTR(DFR0, DebugVer), val);
929  	if (tmp > 0b0111) {
930  		val &= ~NV_FTR(DFR0, DebugVer);
931  		val |= FIELD_PREP(NV_FTR(DFR0, DebugVer), 0b0111);
932  	}
933  	kvm_set_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1, val);
934  }
935  
kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu * vcpu,enum vcpu_sysreg sr)936  u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *vcpu, enum vcpu_sysreg sr)
937  {
938  	u64 v = ctxt_sys_reg(&vcpu->arch.ctxt, sr);
939  	struct kvm_sysreg_masks *masks;
940  
941  	masks = vcpu->kvm->arch.sysreg_masks;
942  
943  	if (masks) {
944  		sr -= __VNCR_START__;
945  
946  		v &= ~masks->mask[sr].res0;
947  		v |= masks->mask[sr].res1;
948  	}
949  
950  	return v;
951  }
952  
set_sysreg_masks(struct kvm * kvm,int sr,u64 res0,u64 res1)953  static void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1)
954  {
955  	int i = sr - __VNCR_START__;
956  
957  	kvm->arch.sysreg_masks->mask[i].res0 = res0;
958  	kvm->arch.sysreg_masks->mask[i].res1 = res1;
959  }
960  
kvm_init_nv_sysregs(struct kvm * kvm)961  int kvm_init_nv_sysregs(struct kvm *kvm)
962  {
963  	u64 res0, res1;
964  
965  	lockdep_assert_held(&kvm->arch.config_lock);
966  
967  	if (kvm->arch.sysreg_masks)
968  		return 0;
969  
970  	kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)),
971  					 GFP_KERNEL_ACCOUNT);
972  	if (!kvm->arch.sysreg_masks)
973  		return -ENOMEM;
974  
975  	limit_nv_id_regs(kvm);
976  
977  	/* VTTBR_EL2 */
978  	res0 = res1 = 0;
979  	if (!kvm_has_feat_enum(kvm, ID_AA64MMFR1_EL1, VMIDBits, 16))
980  		res0 |= GENMASK(63, 56);
981  	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, CnP, IMP))
982  		res0 |= VTTBR_CNP_BIT;
983  	set_sysreg_masks(kvm, VTTBR_EL2, res0, res1);
984  
985  	/* VTCR_EL2 */
986  	res0 = GENMASK(63, 32) | GENMASK(30, 20);
987  	res1 = BIT(31);
988  	set_sysreg_masks(kvm, VTCR_EL2, res0, res1);
989  
990  	/* VMPIDR_EL2 */
991  	res0 = GENMASK(63, 40) | GENMASK(30, 24);
992  	res1 = BIT(31);
993  	set_sysreg_masks(kvm, VMPIDR_EL2, res0, res1);
994  
995  	/* HCR_EL2 */
996  	res0 = BIT(48);
997  	res1 = HCR_RW;
998  	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, TWED, IMP))
999  		res0 |= GENMASK(63, 59);
1000  	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, MTE, MTE2))
1001  		res0 |= (HCR_TID5 | HCR_DCT | HCR_ATA);
1002  	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, TTLBxS))
1003  		res0 |= (HCR_TTLBIS | HCR_TTLBOS);
1004  	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
1005  	    !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
1006  		res0 |= HCR_ENSCXT;
1007  	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, IMP))
1008  		res0 |= (HCR_TOCU | HCR_TICAB | HCR_TID4);
1009  	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
1010  		res0 |= HCR_AMVOFFEN;
1011  	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, V1P1))
1012  		res0 |= HCR_FIEN;
1013  	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, FWB, IMP))
1014  		res0 |= HCR_FWB;
1015  	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, NV2))
1016  		res0 |= HCR_NV2;
1017  	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, IMP))
1018  		res0 |= (HCR_AT | HCR_NV1 | HCR_NV);
1019  	if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
1020  	      __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
1021  		res0 |= (HCR_API | HCR_APK);
1022  	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TME, IMP))
1023  		res0 |= BIT(39);
1024  	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
1025  		res0 |= (HCR_TEA | HCR_TERR);
1026  	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
1027  		res0 |= HCR_TLOR;
1028  	if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, E2H0, IMP))
1029  		res1 |= HCR_E2H;
1030  	set_sysreg_masks(kvm, HCR_EL2, res0, res1);
1031  
1032  	/* HCRX_EL2 */
1033  	res0 = HCRX_EL2_RES0;
1034  	res1 = HCRX_EL2_RES1;
1035  	if (!kvm_has_feat(kvm, ID_AA64ISAR3_EL1, PACM, TRIVIAL_IMP))
1036  		res0 |= HCRX_EL2_PACMEn;
1037  	if (!kvm_has_feat(kvm, ID_AA64PFR2_EL1, FPMR, IMP))
1038  		res0 |= HCRX_EL2_EnFPM;
1039  	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
1040  		res0 |= HCRX_EL2_GCSEn;
1041  	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, SYSREG_128, IMP))
1042  		res0 |= HCRX_EL2_EnIDCP128;
1043  	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, ADERR, DEV_ASYNC))
1044  		res0 |= (HCRX_EL2_EnSDERR | HCRX_EL2_EnSNERR);
1045  	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, DF2, IMP))
1046  		res0 |= HCRX_EL2_TMEA;
1047  	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, D128, IMP))
1048  		res0 |= HCRX_EL2_D128En;
1049  	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
1050  		res0 |= HCRX_EL2_PTTWI;
1051  	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, SCTLRX, IMP))
1052  		res0 |= HCRX_EL2_SCTLR2En;
1053  	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, TCRX, IMP))
1054  		res0 |= HCRX_EL2_TCR2En;
1055  	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
1056  		res0 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
1057  	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, CMOW, IMP))
1058  		res0 |= HCRX_EL2_CMOW;
1059  	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, NMI, IMP))
1060  		res0 |= (HCRX_EL2_VFNMI | HCRX_EL2_VINMI | HCRX_EL2_TALLINT);
1061  	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP) ||
1062  	    !(read_sysreg_s(SYS_SMIDR_EL1) & SMIDR_EL1_SMPS))
1063  		res0 |= HCRX_EL2_SMPME;
1064  	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
1065  		res0 |= (HCRX_EL2_FGTnXS | HCRX_EL2_FnXS);
1066  	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_V))
1067  		res0 |= HCRX_EL2_EnASR;
1068  	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64))
1069  		res0 |= HCRX_EL2_EnALS;
1070  	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
1071  		res0 |= HCRX_EL2_EnAS0;
1072  	set_sysreg_masks(kvm, HCRX_EL2, res0, res1);
1073  
1074  	/* HFG[RW]TR_EL2 */
1075  	res0 = res1 = 0;
1076  	if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
1077  	      __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
1078  		res0 |= (HFGxTR_EL2_APDAKey | HFGxTR_EL2_APDBKey |
1079  			 HFGxTR_EL2_APGAKey | HFGxTR_EL2_APIAKey |
1080  			 HFGxTR_EL2_APIBKey);
1081  	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
1082  		res0 |= (HFGxTR_EL2_LORC_EL1 | HFGxTR_EL2_LOREA_EL1 |
1083  			 HFGxTR_EL2_LORID_EL1 | HFGxTR_EL2_LORN_EL1 |
1084  			 HFGxTR_EL2_LORSA_EL1);
1085  	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
1086  	    !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
1087  		res0 |= (HFGxTR_EL2_SCXTNUM_EL1 | HFGxTR_EL2_SCXTNUM_EL0);
1088  	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, GIC, IMP))
1089  		res0 |= HFGxTR_EL2_ICC_IGRPENn_EL1;
1090  	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
1091  		res0 |= (HFGxTR_EL2_ERRIDR_EL1 | HFGxTR_EL2_ERRSELR_EL1 |
1092  			 HFGxTR_EL2_ERXFR_EL1 | HFGxTR_EL2_ERXCTLR_EL1 |
1093  			 HFGxTR_EL2_ERXSTATUS_EL1 | HFGxTR_EL2_ERXMISCn_EL1 |
1094  			 HFGxTR_EL2_ERXPFGF_EL1 | HFGxTR_EL2_ERXPFGCTL_EL1 |
1095  			 HFGxTR_EL2_ERXPFGCDN_EL1 | HFGxTR_EL2_ERXADDR_EL1);
1096  	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
1097  		res0 |= HFGxTR_EL2_nACCDATA_EL1;
1098  	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
1099  		res0 |= (HFGxTR_EL2_nGCS_EL0 | HFGxTR_EL2_nGCS_EL1);
1100  	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP))
1101  		res0 |= (HFGxTR_EL2_nSMPRI_EL1 | HFGxTR_EL2_nTPIDR2_EL0);
1102  	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
1103  		res0 |= HFGxTR_EL2_nRCWMASK_EL1;
1104  	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP))
1105  		res0 |= (HFGxTR_EL2_nPIRE0_EL1 | HFGxTR_EL2_nPIR_EL1);
1106  	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1POE, IMP))
1107  		res0 |= (HFGxTR_EL2_nPOR_EL0 | HFGxTR_EL2_nPOR_EL1);
1108  	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S2POE, IMP))
1109  		res0 |= HFGxTR_EL2_nS2POR_EL1;
1110  	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, AIE, IMP))
1111  		res0 |= (HFGxTR_EL2_nMAIR2_EL1 | HFGxTR_EL2_nAMAIR2_EL1);
1112  	set_sysreg_masks(kvm, HFGRTR_EL2, res0 | __HFGRTR_EL2_RES0, res1);
1113  	set_sysreg_masks(kvm, HFGWTR_EL2, res0 | __HFGWTR_EL2_RES0, res1);
1114  
1115  	/* HDFG[RW]TR_EL2 */
1116  	res0 = res1 = 0;
1117  	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DoubleLock, IMP))
1118  		res0 |= HDFGRTR_EL2_OSDLR_EL1;
1119  	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
1120  		res0 |= (HDFGRTR_EL2_PMEVCNTRn_EL0 | HDFGRTR_EL2_PMEVTYPERn_EL0 |
1121  			 HDFGRTR_EL2_PMCCFILTR_EL0 | HDFGRTR_EL2_PMCCNTR_EL0 |
1122  			 HDFGRTR_EL2_PMCNTEN | HDFGRTR_EL2_PMINTEN |
1123  			 HDFGRTR_EL2_PMOVS | HDFGRTR_EL2_PMSELR_EL0 |
1124  			 HDFGRTR_EL2_PMMIR_EL1 | HDFGRTR_EL2_PMUSERENR_EL0 |
1125  			 HDFGRTR_EL2_PMCEIDn_EL0);
1126  	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP))
1127  		res0 |= (HDFGRTR_EL2_PMBLIMITR_EL1 | HDFGRTR_EL2_PMBPTR_EL1 |
1128  			 HDFGRTR_EL2_PMBSR_EL1 | HDFGRTR_EL2_PMSCR_EL1 |
1129  			 HDFGRTR_EL2_PMSEVFR_EL1 | HDFGRTR_EL2_PMSFCR_EL1 |
1130  			 HDFGRTR_EL2_PMSICR_EL1 | HDFGRTR_EL2_PMSIDR_EL1 |
1131  			 HDFGRTR_EL2_PMSIRR_EL1 | HDFGRTR_EL2_PMSLATFR_EL1 |
1132  			 HDFGRTR_EL2_PMBIDR_EL1);
1133  	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
1134  		res0 |= (HDFGRTR_EL2_TRC | HDFGRTR_EL2_TRCAUTHSTATUS |
1135  			 HDFGRTR_EL2_TRCAUXCTLR | HDFGRTR_EL2_TRCCLAIM |
1136  			 HDFGRTR_EL2_TRCCNTVRn | HDFGRTR_EL2_TRCID |
1137  			 HDFGRTR_EL2_TRCIMSPECn | HDFGRTR_EL2_TRCOSLSR |
1138  			 HDFGRTR_EL2_TRCPRGCTLR | HDFGRTR_EL2_TRCSEQSTR |
1139  			 HDFGRTR_EL2_TRCSSCSRn | HDFGRTR_EL2_TRCSTATR |
1140  			 HDFGRTR_EL2_TRCVICTLR);
1141  	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, IMP))
1142  		res0 |= (HDFGRTR_EL2_TRBBASER_EL1 | HDFGRTR_EL2_TRBIDR_EL1 |
1143  			 HDFGRTR_EL2_TRBLIMITR_EL1 | HDFGRTR_EL2_TRBMAR_EL1 |
1144  			 HDFGRTR_EL2_TRBPTR_EL1 | HDFGRTR_EL2_TRBSR_EL1 |
1145  			 HDFGRTR_EL2_TRBTRG_EL1);
1146  	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
1147  		res0 |= (HDFGRTR_EL2_nBRBIDR | HDFGRTR_EL2_nBRBCTL |
1148  			 HDFGRTR_EL2_nBRBDATA);
1149  	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P2))
1150  		res0 |= HDFGRTR_EL2_nPMSNEVFR_EL1;
1151  	set_sysreg_masks(kvm, HDFGRTR_EL2, res0 | HDFGRTR_EL2_RES0, res1);
1152  
1153  	/* Reuse the bits from the read-side and add the write-specific stuff */
1154  	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
1155  		res0 |= (HDFGWTR_EL2_PMCR_EL0 | HDFGWTR_EL2_PMSWINC_EL0);
1156  	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
1157  		res0 |= HDFGWTR_EL2_TRCOSLAR;
1158  	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP))
1159  		res0 |= HDFGWTR_EL2_TRFCR_EL1;
1160  	set_sysreg_masks(kvm, HFGWTR_EL2, res0 | HDFGWTR_EL2_RES0, res1);
1161  
1162  	/* HFGITR_EL2 */
1163  	res0 = HFGITR_EL2_RES0;
1164  	res1 = HFGITR_EL2_RES1;
1165  	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, DPB, DPB2))
1166  		res0 |= HFGITR_EL2_DCCVADP;
1167  	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2))
1168  		res0 |= (HFGITR_EL2_ATS1E1RP | HFGITR_EL2_ATS1E1WP);
1169  	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
1170  		res0 |= (HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
1171  			 HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS |
1172  			 HFGITR_EL2_TLBIVAALE1OS | HFGITR_EL2_TLBIVALE1OS |
1173  			 HFGITR_EL2_TLBIVAAE1OS | HFGITR_EL2_TLBIASIDE1OS |
1174  			 HFGITR_EL2_TLBIVAE1OS | HFGITR_EL2_TLBIVMALLE1OS);
1175  	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
1176  		res0 |= (HFGITR_EL2_TLBIRVAALE1 | HFGITR_EL2_TLBIRVALE1 |
1177  			 HFGITR_EL2_TLBIRVAAE1 | HFGITR_EL2_TLBIRVAE1 |
1178  			 HFGITR_EL2_TLBIRVAALE1IS | HFGITR_EL2_TLBIRVALE1IS |
1179  			 HFGITR_EL2_TLBIRVAAE1IS | HFGITR_EL2_TLBIRVAE1IS |
1180  			 HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
1181  			 HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS);
1182  	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, IMP))
1183  		res0 |= (HFGITR_EL2_CFPRCTX | HFGITR_EL2_DVPRCTX |
1184  			 HFGITR_EL2_CPPRCTX);
1185  	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
1186  		res0 |= (HFGITR_EL2_nBRBINJ | HFGITR_EL2_nBRBIALL);
1187  	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
1188  		res0 |= (HFGITR_EL2_nGCSPUSHM_EL1 | HFGITR_EL2_nGCSSTR_EL1 |
1189  			 HFGITR_EL2_nGCSEPP);
1190  	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, COSP_RCTX))
1191  		res0 |= HFGITR_EL2_COSPRCTX;
1192  	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP))
1193  		res0 |= HFGITR_EL2_ATS1E1A;
1194  	set_sysreg_masks(kvm, HFGITR_EL2, res0, res1);
1195  
1196  	/* HAFGRTR_EL2 - not a lot to see here */
1197  	res0 = HAFGRTR_EL2_RES0;
1198  	res1 = HAFGRTR_EL2_RES1;
1199  	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
1200  		res0 |= ~(res0 | res1);
1201  	set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1);
1202  
1203  	/* SCTLR_EL1 */
1204  	res0 = SCTLR_EL1_RES0;
1205  	res1 = SCTLR_EL1_RES1;
1206  	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN3))
1207  		res0 |= SCTLR_EL1_EPAN;
1208  	set_sysreg_masks(kvm, SCTLR_EL1, res0, res1);
1209  
1210  	return 0;
1211  }
1212  
check_nested_vcpu_requests(struct kvm_vcpu * vcpu)1213  void check_nested_vcpu_requests(struct kvm_vcpu *vcpu)
1214  {
1215  	if (kvm_check_request(KVM_REQ_NESTED_S2_UNMAP, vcpu)) {
1216  		struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu;
1217  
1218  		write_lock(&vcpu->kvm->mmu_lock);
1219  		if (mmu->pending_unmap) {
1220  			kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), true);
1221  			mmu->pending_unmap = false;
1222  		}
1223  		write_unlock(&vcpu->kvm->mmu_lock);
1224  	}
1225  }
1226