1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
9 
10 #include <hyp/adjust_pc.h>
11 #include <hyp/fault.h>
12 
13 #include <linux/arm-smccc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <uapi/linux/psci.h>
18 
19 #include <kvm/arm_psci.h>
20 
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/extable.h>
24 #include <asm/kprobes.h>
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_nested.h>
30 #include <asm/fpsimd.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/processor.h>
33 #include <asm/traps.h>
34 
35 struct kvm_exception_table_entry {
36 	int insn, fixup;
37 };
38 
39 extern struct kvm_exception_table_entry __start___kvm_ex_table;
40 extern struct kvm_exception_table_entry __stop___kvm_ex_table;
41 
42 /* Save the 32-bit only FPSIMD system register state */
__fpsimd_save_fpexc32(struct kvm_vcpu * vcpu)43 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
44 {
45 	if (!vcpu_el1_is_32bit(vcpu))
46 		return;
47 
48 	__vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
49 }
50 
__activate_traps_fpsimd32(struct kvm_vcpu * vcpu)51 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
52 {
53 	/*
54 	 * We are about to set CPTR_EL2.TFP to trap all floating point
55 	 * register accesses to EL2, however, the ARM ARM clearly states that
56 	 * traps are only taken to EL2 if the operation would not otherwise
57 	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
58 	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
59 	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
60 	 * it will cause an exception.
61 	 */
62 	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
63 		write_sysreg(1 << 30, fpexc32_el2);
64 		isb();
65 	}
66 }
67 
68 #define compute_clr_set(vcpu, reg, clr, set)				\
69 	do {								\
70 		u64 hfg;						\
71 		hfg = __vcpu_sys_reg(vcpu, reg) & ~__ ## reg ## _RES0;	\
72 		set |= hfg & __ ## reg ## _MASK; 			\
73 		clr |= ~hfg & __ ## reg ## _nMASK; 			\
74 	} while(0)
75 
76 #define reg_to_fgt_group_id(reg)					\
77 	({								\
78 		enum fgt_group_id id;					\
79 		switch(reg) {						\
80 		case HFGRTR_EL2:					\
81 		case HFGWTR_EL2:					\
82 			id = HFGxTR_GROUP;				\
83 			break;						\
84 		case HFGITR_EL2:					\
85 			id = HFGITR_GROUP;				\
86 			break;						\
87 		case HDFGRTR_EL2:					\
88 		case HDFGWTR_EL2:					\
89 			id = HDFGRTR_GROUP;				\
90 			break;						\
91 		case HAFGRTR_EL2:					\
92 			id = HAFGRTR_GROUP;				\
93 			break;						\
94 		default:						\
95 			BUILD_BUG_ON(1);				\
96 		}							\
97 									\
98 		id;							\
99 	})
100 
101 #define compute_undef_clr_set(vcpu, kvm, reg, clr, set)			\
102 	do {								\
103 		u64 hfg = kvm->arch.fgu[reg_to_fgt_group_id(reg)];	\
104 		set |= hfg & __ ## reg ## _MASK;			\
105 		clr |= hfg & __ ## reg ## _nMASK; 			\
106 	} while(0)
107 
108 #define update_fgt_traps_cs(hctxt, vcpu, kvm, reg, clr, set)		\
109 	do {								\
110 		u64 c = 0, s = 0;					\
111 									\
112 		ctxt_sys_reg(hctxt, reg) = read_sysreg_s(SYS_ ## reg);	\
113 		if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))		\
114 			compute_clr_set(vcpu, reg, c, s);		\
115 									\
116 		compute_undef_clr_set(vcpu, kvm, reg, c, s);		\
117 									\
118 		s |= set;						\
119 		c |= clr;						\
120 		if (c || s) {						\
121 			u64 val = __ ## reg ## _nMASK;			\
122 			val |= s;					\
123 			val &= ~c;					\
124 			write_sysreg_s(val, SYS_ ## reg);		\
125 		}							\
126 	} while(0)
127 
128 #define update_fgt_traps(hctxt, vcpu, kvm, reg)		\
129 	update_fgt_traps_cs(hctxt, vcpu, kvm, reg, 0, 0)
130 
131 /*
132  * Validate the fine grain trap masks.
133  * Check that the masks do not overlap and that all bits are accounted for.
134  */
135 #define CHECK_FGT_MASKS(reg)							\
136 	do {									\
137 		BUILD_BUG_ON((__ ## reg ## _MASK) & (__ ## reg ## _nMASK));	\
138 		BUILD_BUG_ON(~((__ ## reg ## _RES0) ^ (__ ## reg ## _MASK) ^	\
139 			       (__ ## reg ## _nMASK)));				\
140 	} while(0)
141 
cpu_has_amu(void)142 static inline bool cpu_has_amu(void)
143 {
144        u64 pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
145 
146        return cpuid_feature_extract_unsigned_field(pfr0,
147                ID_AA64PFR0_EL1_AMU_SHIFT);
148 }
149 
__activate_traps_hfgxtr(struct kvm_vcpu * vcpu)150 static inline void __activate_traps_hfgxtr(struct kvm_vcpu *vcpu)
151 {
152 	struct kvm_cpu_context *hctxt = host_data_ptr(host_ctxt);
153 	struct kvm *kvm = kern_hyp_va(vcpu->kvm);
154 
155 	CHECK_FGT_MASKS(HFGRTR_EL2);
156 	CHECK_FGT_MASKS(HFGWTR_EL2);
157 	CHECK_FGT_MASKS(HFGITR_EL2);
158 	CHECK_FGT_MASKS(HDFGRTR_EL2);
159 	CHECK_FGT_MASKS(HDFGWTR_EL2);
160 	CHECK_FGT_MASKS(HAFGRTR_EL2);
161 	CHECK_FGT_MASKS(HCRX_EL2);
162 
163 	if (!cpus_have_final_cap(ARM64_HAS_FGT))
164 		return;
165 
166 	update_fgt_traps(hctxt, vcpu, kvm, HFGRTR_EL2);
167 	update_fgt_traps_cs(hctxt, vcpu, kvm, HFGWTR_EL2, 0,
168 			    cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) ?
169 			    HFGxTR_EL2_TCR_EL1_MASK : 0);
170 	update_fgt_traps(hctxt, vcpu, kvm, HFGITR_EL2);
171 	update_fgt_traps(hctxt, vcpu, kvm, HDFGRTR_EL2);
172 	update_fgt_traps(hctxt, vcpu, kvm, HDFGWTR_EL2);
173 
174 	if (cpu_has_amu())
175 		update_fgt_traps(hctxt, vcpu, kvm, HAFGRTR_EL2);
176 }
177 
178 #define __deactivate_fgt(htcxt, vcpu, kvm, reg)				\
179 	do {								\
180 		if ((vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) ||	\
181 		    kvm->arch.fgu[reg_to_fgt_group_id(reg)])		\
182 			write_sysreg_s(ctxt_sys_reg(hctxt, reg),	\
183 				       SYS_ ## reg);			\
184 	} while(0)
185 
__deactivate_traps_hfgxtr(struct kvm_vcpu * vcpu)186 static inline void __deactivate_traps_hfgxtr(struct kvm_vcpu *vcpu)
187 {
188 	struct kvm_cpu_context *hctxt = host_data_ptr(host_ctxt);
189 	struct kvm *kvm = kern_hyp_va(vcpu->kvm);
190 
191 	if (!cpus_have_final_cap(ARM64_HAS_FGT))
192 		return;
193 
194 	__deactivate_fgt(hctxt, vcpu, kvm, HFGRTR_EL2);
195 	if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
196 		write_sysreg_s(ctxt_sys_reg(hctxt, HFGWTR_EL2), SYS_HFGWTR_EL2);
197 	else
198 		__deactivate_fgt(hctxt, vcpu, kvm, HFGWTR_EL2);
199 	__deactivate_fgt(hctxt, vcpu, kvm, HFGITR_EL2);
200 	__deactivate_fgt(hctxt, vcpu, kvm, HDFGRTR_EL2);
201 	__deactivate_fgt(hctxt, vcpu, kvm, HDFGWTR_EL2);
202 
203 	if (cpu_has_amu())
204 		__deactivate_fgt(hctxt, vcpu, kvm, HAFGRTR_EL2);
205 }
206 
__activate_traps_common(struct kvm_vcpu * vcpu)207 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
208 {
209 	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
210 	write_sysreg(1 << 15, hstr_el2);
211 
212 	/*
213 	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
214 	 * PMSELR_EL0 to make sure it never contains the cycle
215 	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
216 	 * EL1 instead of being trapped to EL2.
217 	 */
218 	if (kvm_arm_support_pmu_v3()) {
219 		struct kvm_cpu_context *hctxt;
220 
221 		write_sysreg(0, pmselr_el0);
222 
223 		hctxt = host_data_ptr(host_ctxt);
224 		ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0);
225 		write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
226 		vcpu_set_flag(vcpu, PMUSERENR_ON_CPU);
227 	}
228 
229 	*host_data_ptr(host_debug_state.mdcr_el2) = read_sysreg(mdcr_el2);
230 	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
231 
232 	if (cpus_have_final_cap(ARM64_HAS_HCX)) {
233 		u64 hcrx = vcpu->arch.hcrx_el2;
234 		if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
235 			u64 clr = 0, set = 0;
236 
237 			compute_clr_set(vcpu, HCRX_EL2, clr, set);
238 
239 			hcrx |= set;
240 			hcrx &= ~clr;
241 		}
242 
243 		write_sysreg_s(hcrx, SYS_HCRX_EL2);
244 	}
245 
246 	__activate_traps_hfgxtr(vcpu);
247 }
248 
__deactivate_traps_common(struct kvm_vcpu * vcpu)249 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
250 {
251 	write_sysreg(*host_data_ptr(host_debug_state.mdcr_el2), mdcr_el2);
252 
253 	write_sysreg(0, hstr_el2);
254 	if (kvm_arm_support_pmu_v3()) {
255 		struct kvm_cpu_context *hctxt;
256 
257 		hctxt = host_data_ptr(host_ctxt);
258 		write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0);
259 		vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU);
260 	}
261 
262 	if (cpus_have_final_cap(ARM64_HAS_HCX))
263 		write_sysreg_s(HCRX_HOST_FLAGS, SYS_HCRX_EL2);
264 
265 	__deactivate_traps_hfgxtr(vcpu);
266 }
267 
___activate_traps(struct kvm_vcpu * vcpu,u64 hcr)268 static inline void ___activate_traps(struct kvm_vcpu *vcpu, u64 hcr)
269 {
270 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
271 		hcr |= HCR_TVM;
272 
273 	write_sysreg(hcr, hcr_el2);
274 
275 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
276 		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
277 }
278 
___deactivate_traps(struct kvm_vcpu * vcpu)279 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
280 {
281 	/*
282 	 * If we pended a virtual abort, preserve it until it gets
283 	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
284 	 * the crucial bit is "On taking a vSError interrupt,
285 	 * HCR_EL2.VSE is cleared to 0."
286 	 */
287 	if (vcpu->arch.hcr_el2 & HCR_VSE) {
288 		vcpu->arch.hcr_el2 &= ~HCR_VSE;
289 		vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
290 	}
291 }
292 
__populate_fault_info(struct kvm_vcpu * vcpu)293 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
294 {
295 	return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
296 }
297 
kvm_hyp_handle_mops(struct kvm_vcpu * vcpu,u64 * exit_code)298 static bool kvm_hyp_handle_mops(struct kvm_vcpu *vcpu, u64 *exit_code)
299 {
300 	*vcpu_pc(vcpu) = read_sysreg_el2(SYS_ELR);
301 	arm64_mops_reset_regs(vcpu_gp_regs(vcpu), vcpu->arch.fault.esr_el2);
302 	write_sysreg_el2(*vcpu_pc(vcpu), SYS_ELR);
303 
304 	/*
305 	 * Finish potential single step before executing the prologue
306 	 * instruction.
307 	 */
308 	*vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
309 	write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
310 
311 	return true;
312 }
313 
__hyp_sve_restore_guest(struct kvm_vcpu * vcpu)314 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
315 {
316 	/*
317 	 * The vCPU's saved SVE state layout always matches the max VL of the
318 	 * vCPU. Start off with the max VL so we can load the SVE state.
319 	 */
320 	sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
321 	__sve_restore_state(vcpu_sve_pffr(vcpu),
322 			    &vcpu->arch.ctxt.fp_regs.fpsr,
323 			    true);
324 
325 	/*
326 	 * The effective VL for a VM could differ from the max VL when running a
327 	 * nested guest, as the guest hypervisor could select a smaller VL. Slap
328 	 * that into hardware before wrapping up.
329 	 */
330 	if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))
331 		sve_cond_update_zcr_vq(__vcpu_sys_reg(vcpu, ZCR_EL2), SYS_ZCR_EL2);
332 
333 	write_sysreg_el1(__vcpu_sys_reg(vcpu, vcpu_sve_zcr_elx(vcpu)), SYS_ZCR);
334 }
335 
__hyp_sve_save_host(void)336 static inline void __hyp_sve_save_host(void)
337 {
338 	struct cpu_sve_state *sve_state = *host_data_ptr(sve_state);
339 
340 	sve_state->zcr_el1 = read_sysreg_el1(SYS_ZCR);
341 	write_sysreg_s(sve_vq_from_vl(kvm_host_sve_max_vl) - 1, SYS_ZCR_EL2);
342 	__sve_save_state(sve_state->sve_regs + sve_ffr_offset(kvm_host_sve_max_vl),
343 			 &sve_state->fpsr,
344 			 true);
345 }
346 
347 static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu);
348 
349 /*
350  * We trap the first access to the FP/SIMD to save the host context and
351  * restore the guest context lazily.
352  * If FP/SIMD is not implemented, handle the trap and inject an undefined
353  * instruction exception to the guest. Similarly for trapped SVE accesses.
354  */
kvm_hyp_handle_fpsimd(struct kvm_vcpu * vcpu,u64 * exit_code)355 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
356 {
357 	bool sve_guest;
358 	u8 esr_ec;
359 
360 	if (!system_supports_fpsimd())
361 		return false;
362 
363 	sve_guest = vcpu_has_sve(vcpu);
364 	esr_ec = kvm_vcpu_trap_get_class(vcpu);
365 
366 	/* Only handle traps the vCPU can support here: */
367 	switch (esr_ec) {
368 	case ESR_ELx_EC_FP_ASIMD:
369 		/* Forward traps to the guest hypervisor as required */
370 		if (guest_hyp_fpsimd_traps_enabled(vcpu))
371 			return false;
372 		break;
373 	case ESR_ELx_EC_SYS64:
374 		if (WARN_ON_ONCE(!is_hyp_ctxt(vcpu)))
375 			return false;
376 		fallthrough;
377 	case ESR_ELx_EC_SVE:
378 		if (!sve_guest)
379 			return false;
380 		if (guest_hyp_sve_traps_enabled(vcpu))
381 			return false;
382 		break;
383 	default:
384 		return false;
385 	}
386 
387 	/* Valid trap.  Switch the context: */
388 
389 	/* First disable enough traps to allow us to update the registers */
390 	if (sve_guest || (is_protected_kvm_enabled() && system_supports_sve()))
391 		cpacr_clear_set(0, CPACR_ELx_FPEN | CPACR_ELx_ZEN);
392 	else
393 		cpacr_clear_set(0, CPACR_ELx_FPEN);
394 	isb();
395 
396 	/* Write out the host state if it's in the registers */
397 	if (host_owns_fp_regs())
398 		kvm_hyp_save_fpsimd_host(vcpu);
399 
400 	/* Restore the guest state */
401 	if (sve_guest)
402 		__hyp_sve_restore_guest(vcpu);
403 	else
404 		__fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
405 
406 	if (kvm_has_fpmr(kern_hyp_va(vcpu->kvm)))
407 		write_sysreg_s(__vcpu_sys_reg(vcpu, FPMR), SYS_FPMR);
408 
409 	/* Skip restoring fpexc32 for AArch64 guests */
410 	if (!(read_sysreg(hcr_el2) & HCR_RW))
411 		write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
412 
413 	*host_data_ptr(fp_owner) = FP_STATE_GUEST_OWNED;
414 
415 	return true;
416 }
417 
handle_tx2_tvm(struct kvm_vcpu * vcpu)418 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
419 {
420 	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
421 	int rt = kvm_vcpu_sys_get_rt(vcpu);
422 	u64 val = vcpu_get_reg(vcpu, rt);
423 
424 	/*
425 	 * The normal sysreg handling code expects to see the traps,
426 	 * let's not do anything here.
427 	 */
428 	if (vcpu->arch.hcr_el2 & HCR_TVM)
429 		return false;
430 
431 	switch (sysreg) {
432 	case SYS_SCTLR_EL1:
433 		write_sysreg_el1(val, SYS_SCTLR);
434 		break;
435 	case SYS_TTBR0_EL1:
436 		write_sysreg_el1(val, SYS_TTBR0);
437 		break;
438 	case SYS_TTBR1_EL1:
439 		write_sysreg_el1(val, SYS_TTBR1);
440 		break;
441 	case SYS_TCR_EL1:
442 		write_sysreg_el1(val, SYS_TCR);
443 		break;
444 	case SYS_ESR_EL1:
445 		write_sysreg_el1(val, SYS_ESR);
446 		break;
447 	case SYS_FAR_EL1:
448 		write_sysreg_el1(val, SYS_FAR);
449 		break;
450 	case SYS_AFSR0_EL1:
451 		write_sysreg_el1(val, SYS_AFSR0);
452 		break;
453 	case SYS_AFSR1_EL1:
454 		write_sysreg_el1(val, SYS_AFSR1);
455 		break;
456 	case SYS_MAIR_EL1:
457 		write_sysreg_el1(val, SYS_MAIR);
458 		break;
459 	case SYS_AMAIR_EL1:
460 		write_sysreg_el1(val, SYS_AMAIR);
461 		break;
462 	case SYS_CONTEXTIDR_EL1:
463 		write_sysreg_el1(val, SYS_CONTEXTIDR);
464 		break;
465 	default:
466 		return false;
467 	}
468 
469 	__kvm_skip_instr(vcpu);
470 	return true;
471 }
472 
kvm_hyp_handle_cntpct(struct kvm_vcpu * vcpu)473 static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu)
474 {
475 	struct arch_timer_context *ctxt;
476 	u32 sysreg;
477 	u64 val;
478 
479 	/*
480 	 * We only get here for 64bit guests, 32bit guests will hit
481 	 * the long and winding road all the way to the standard
482 	 * handling. Yes, it sucks to be irrelevant.
483 	 */
484 	sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
485 
486 	switch (sysreg) {
487 	case SYS_CNTPCT_EL0:
488 	case SYS_CNTPCTSS_EL0:
489 		if (vcpu_has_nv(vcpu)) {
490 			if (is_hyp_ctxt(vcpu)) {
491 				ctxt = vcpu_hptimer(vcpu);
492 				break;
493 			}
494 
495 			/* Check for guest hypervisor trapping */
496 			val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
497 			if (!vcpu_el2_e2h_is_set(vcpu))
498 				val = (val & CNTHCTL_EL1PCTEN) << 10;
499 
500 			if (!(val & (CNTHCTL_EL1PCTEN << 10)))
501 				return false;
502 		}
503 
504 		ctxt = vcpu_ptimer(vcpu);
505 		break;
506 	default:
507 		return false;
508 	}
509 
510 	val = arch_timer_read_cntpct_el0();
511 
512 	if (ctxt->offset.vm_offset)
513 		val -= *kern_hyp_va(ctxt->offset.vm_offset);
514 	if (ctxt->offset.vcpu_offset)
515 		val -= *kern_hyp_va(ctxt->offset.vcpu_offset);
516 
517 	vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val);
518 	__kvm_skip_instr(vcpu);
519 	return true;
520 }
521 
handle_ampere1_tcr(struct kvm_vcpu * vcpu)522 static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu)
523 {
524 	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
525 	int rt = kvm_vcpu_sys_get_rt(vcpu);
526 	u64 val = vcpu_get_reg(vcpu, rt);
527 
528 	if (sysreg != SYS_TCR_EL1)
529 		return false;
530 
531 	/*
532 	 * Affected parts do not advertise support for hardware Access Flag /
533 	 * Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying
534 	 * control bits are still functional. The architecture requires these be
535 	 * RES0 on systems that do not implement FEAT_HAFDBS.
536 	 *
537 	 * Uphold the requirements of the architecture by masking guest writes
538 	 * to TCR_EL1.{HA,HD} here.
539 	 */
540 	val &= ~(TCR_HD | TCR_HA);
541 	write_sysreg_el1(val, SYS_TCR);
542 	__kvm_skip_instr(vcpu);
543 	return true;
544 }
545 
kvm_hyp_handle_sysreg(struct kvm_vcpu * vcpu,u64 * exit_code)546 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
547 {
548 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
549 	    handle_tx2_tvm(vcpu))
550 		return true;
551 
552 	if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) &&
553 	    handle_ampere1_tcr(vcpu))
554 		return true;
555 
556 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
557 	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
558 		return true;
559 
560 	if (kvm_hyp_handle_cntpct(vcpu))
561 		return true;
562 
563 	return false;
564 }
565 
kvm_hyp_handle_cp15_32(struct kvm_vcpu * vcpu,u64 * exit_code)566 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
567 {
568 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
569 	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
570 		return true;
571 
572 	return false;
573 }
574 
kvm_hyp_handle_memory_fault(struct kvm_vcpu * vcpu,u64 * exit_code)575 static bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code)
576 {
577 	if (!__populate_fault_info(vcpu))
578 		return true;
579 
580 	return false;
581 }
582 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
583 	__alias(kvm_hyp_handle_memory_fault);
584 static bool kvm_hyp_handle_watchpt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
585 	__alias(kvm_hyp_handle_memory_fault);
586 
kvm_hyp_handle_dabt_low(struct kvm_vcpu * vcpu,u64 * exit_code)587 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
588 {
589 	if (kvm_hyp_handle_memory_fault(vcpu, exit_code))
590 		return true;
591 
592 	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
593 		bool valid;
594 
595 		valid = kvm_vcpu_trap_is_translation_fault(vcpu) &&
596 			kvm_vcpu_dabt_isvalid(vcpu) &&
597 			!kvm_vcpu_abt_issea(vcpu) &&
598 			!kvm_vcpu_abt_iss1tw(vcpu);
599 
600 		if (valid) {
601 			int ret = __vgic_v2_perform_cpuif_access(vcpu);
602 
603 			if (ret == 1)
604 				return true;
605 
606 			/* Promote an illegal access to an SError.*/
607 			if (ret == -1)
608 				*exit_code = ARM_EXCEPTION_EL1_SERROR;
609 		}
610 	}
611 
612 	return false;
613 }
614 
615 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
616 
617 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
618 
619 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
620 
621 /*
622  * Allow the hypervisor to handle the exit with an exit handler if it has one.
623  *
624  * Returns true if the hypervisor handled the exit, and control should go back
625  * to the guest, or false if it hasn't.
626  */
kvm_hyp_handle_exit(struct kvm_vcpu * vcpu,u64 * exit_code)627 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
628 {
629 	const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
630 	exit_handler_fn fn;
631 
632 	fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
633 
634 	if (fn)
635 		return fn(vcpu, exit_code);
636 
637 	return false;
638 }
639 
synchronize_vcpu_pstate(struct kvm_vcpu * vcpu,u64 * exit_code)640 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
641 {
642 	/*
643 	 * Check for the conditions of Cortex-A510's #2077057. When these occur
644 	 * SPSR_EL2 can't be trusted, but isn't needed either as it is
645 	 * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
646 	 * Are we single-stepping the guest, and took a PAC exception from the
647 	 * active-not-pending state?
648 	 */
649 	if (cpus_have_final_cap(ARM64_WORKAROUND_2077057)		&&
650 	    vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP			&&
651 	    *vcpu_cpsr(vcpu) & DBG_SPSR_SS				&&
652 	    ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
653 		write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
654 
655 	vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
656 }
657 
658 /*
659  * Return true when we were able to fixup the guest exit and should return to
660  * the guest, false when we should restore the host state and return to the
661  * main run loop.
662  */
fixup_guest_exit(struct kvm_vcpu * vcpu,u64 * exit_code)663 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
664 {
665 	/*
666 	 * Save PSTATE early so that we can evaluate the vcpu mode
667 	 * early on.
668 	 */
669 	synchronize_vcpu_pstate(vcpu, exit_code);
670 
671 	/*
672 	 * Check whether we want to repaint the state one way or
673 	 * another.
674 	 */
675 	early_exit_filter(vcpu, exit_code);
676 
677 	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
678 		vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
679 
680 	if (ARM_SERROR_PENDING(*exit_code) &&
681 	    ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
682 		u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
683 
684 		/*
685 		 * HVC already have an adjusted PC, which we need to
686 		 * correct in order to return to after having injected
687 		 * the SError.
688 		 *
689 		 * SMC, on the other hand, is *trapped*, meaning its
690 		 * preferred return address is the SMC itself.
691 		 */
692 		if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
693 			write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
694 	}
695 
696 	/*
697 	 * We're using the raw exception code in order to only process
698 	 * the trap if no SError is pending. We will come back to the
699 	 * same PC once the SError has been injected, and replay the
700 	 * trapping instruction.
701 	 */
702 	if (*exit_code != ARM_EXCEPTION_TRAP)
703 		goto exit;
704 
705 	/* Check if there's an exit handler and allow it to handle the exit. */
706 	if (kvm_hyp_handle_exit(vcpu, exit_code))
707 		goto guest;
708 exit:
709 	/* Return to the host kernel and handle the exit */
710 	return false;
711 
712 guest:
713 	/* Re-enter the guest */
714 	asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
715 	return true;
716 }
717 
__kvm_unexpected_el2_exception(void)718 static inline void __kvm_unexpected_el2_exception(void)
719 {
720 	extern char __guest_exit_restore_elr_and_panic[];
721 	unsigned long addr, fixup;
722 	struct kvm_exception_table_entry *entry, *end;
723 	unsigned long elr_el2 = read_sysreg(elr_el2);
724 
725 	entry = &__start___kvm_ex_table;
726 	end = &__stop___kvm_ex_table;
727 
728 	while (entry < end) {
729 		addr = (unsigned long)&entry->insn + entry->insn;
730 		fixup = (unsigned long)&entry->fixup + entry->fixup;
731 
732 		if (addr != elr_el2) {
733 			entry++;
734 			continue;
735 		}
736 
737 		write_sysreg(fixup, elr_el2);
738 		return;
739 	}
740 
741 	/* Trigger a panic after restoring the hyp context. */
742 	this_cpu_ptr(&kvm_hyp_ctxt)->sys_regs[ELR_EL2] = elr_el2;
743 	write_sysreg(__guest_exit_restore_elr_and_panic, elr_el2);
744 }
745 
746 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */
747