1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Kernel-based Virtual Machine driver for Linux
4   *
5   * derived from drivers/kvm/kvm_main.c
6   *
7   * Copyright (C) 2006 Qumranet, Inc.
8   * Copyright (C) 2008 Qumranet, Inc.
9   * Copyright IBM Corporation, 2008
10   * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11   *
12   * Authors:
13   *   Avi Kivity   <avi@qumranet.com>
14   *   Yaniv Kamay  <yaniv@qumranet.com>
15   *   Amit Shah    <amit.shah@qumranet.com>
16   *   Ben-Ami Yassour <benami@il.ibm.com>
17   */
18  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19  
20  #include <linux/kvm_host.h>
21  #include "irq.h"
22  #include "ioapic.h"
23  #include "mmu.h"
24  #include "i8254.h"
25  #include "tss.h"
26  #include "kvm_cache_regs.h"
27  #include "kvm_emulate.h"
28  #include "mmu/page_track.h"
29  #include "x86.h"
30  #include "cpuid.h"
31  #include "pmu.h"
32  #include "hyperv.h"
33  #include "lapic.h"
34  #include "xen.h"
35  #include "smm.h"
36  
37  #include <linux/clocksource.h>
38  #include <linux/interrupt.h>
39  #include <linux/kvm.h>
40  #include <linux/fs.h>
41  #include <linux/vmalloc.h>
42  #include <linux/export.h>
43  #include <linux/moduleparam.h>
44  #include <linux/mman.h>
45  #include <linux/highmem.h>
46  #include <linux/iommu.h>
47  #include <linux/cpufreq.h>
48  #include <linux/user-return-notifier.h>
49  #include <linux/srcu.h>
50  #include <linux/slab.h>
51  #include <linux/perf_event.h>
52  #include <linux/uaccess.h>
53  #include <linux/hash.h>
54  #include <linux/pci.h>
55  #include <linux/timekeeper_internal.h>
56  #include <linux/pvclock_gtod.h>
57  #include <linux/kvm_irqfd.h>
58  #include <linux/irqbypass.h>
59  #include <linux/sched/stat.h>
60  #include <linux/sched/isolation.h>
61  #include <linux/mem_encrypt.h>
62  #include <linux/entry-kvm.h>
63  #include <linux/suspend.h>
64  #include <linux/smp.h>
65  
66  #include <trace/events/ipi.h>
67  #include <trace/events/kvm.h>
68  
69  #include <asm/debugreg.h>
70  #include <asm/msr.h>
71  #include <asm/desc.h>
72  #include <asm/mce.h>
73  #include <asm/pkru.h>
74  #include <linux/kernel_stat.h>
75  #include <asm/fpu/api.h>
76  #include <asm/fpu/xcr.h>
77  #include <asm/fpu/xstate.h>
78  #include <asm/pvclock.h>
79  #include <asm/div64.h>
80  #include <asm/irq_remapping.h>
81  #include <asm/mshyperv.h>
82  #include <asm/hypervisor.h>
83  #include <asm/tlbflush.h>
84  #include <asm/intel_pt.h>
85  #include <asm/emulate_prefix.h>
86  #include <asm/sgx.h>
87  #include <clocksource/hyperv_timer.h>
88  
89  #define CREATE_TRACE_POINTS
90  #include "trace.h"
91  
92  #define MAX_IO_MSRS 256
93  #define KVM_MAX_MCE_BANKS 32
94  
95  /*
96   * Note, kvm_caps fields should *never* have default values, all fields must be
97   * recomputed from scratch during vendor module load, e.g. to account for a
98   * vendor module being reloaded with different module parameters.
99   */
100  struct kvm_caps kvm_caps __read_mostly;
101  EXPORT_SYMBOL_GPL(kvm_caps);
102  
103  struct kvm_host_values kvm_host __read_mostly;
104  EXPORT_SYMBOL_GPL(kvm_host);
105  
106  #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
107  
108  #define emul_to_vcpu(ctxt) \
109  	((struct kvm_vcpu *)(ctxt)->vcpu)
110  
111  /* EFER defaults:
112   * - enable syscall per default because its emulated by KVM
113   * - enable LME and LMA per default on 64 bit KVM
114   */
115  #ifdef CONFIG_X86_64
116  static
117  u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
118  #else
119  static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
120  #endif
121  
122  static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
123  
124  #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
125  
126  #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
127  
128  #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
129                                      KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
130  
131  static void update_cr8_intercept(struct kvm_vcpu *vcpu);
132  static void process_nmi(struct kvm_vcpu *vcpu);
133  static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
134  static void store_regs(struct kvm_vcpu *vcpu);
135  static int sync_regs(struct kvm_vcpu *vcpu);
136  static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
137  
138  static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
139  static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
140  
141  static DEFINE_MUTEX(vendor_module_lock);
142  struct kvm_x86_ops kvm_x86_ops __read_mostly;
143  
144  #define KVM_X86_OP(func)					     \
145  	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
146  				*(((struct kvm_x86_ops *)0)->func));
147  #define KVM_X86_OP_OPTIONAL KVM_X86_OP
148  #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
149  #include <asm/kvm-x86-ops.h>
150  EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
151  EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
152  
153  static bool __read_mostly ignore_msrs = 0;
154  module_param(ignore_msrs, bool, 0644);
155  
156  bool __read_mostly report_ignored_msrs = true;
157  module_param(report_ignored_msrs, bool, 0644);
158  EXPORT_SYMBOL_GPL(report_ignored_msrs);
159  
160  unsigned int min_timer_period_us = 200;
161  module_param(min_timer_period_us, uint, 0644);
162  
163  static bool __read_mostly kvmclock_periodic_sync = true;
164  module_param(kvmclock_periodic_sync, bool, 0444);
165  
166  /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
167  static u32 __read_mostly tsc_tolerance_ppm = 250;
168  module_param(tsc_tolerance_ppm, uint, 0644);
169  
170  static bool __read_mostly vector_hashing = true;
171  module_param(vector_hashing, bool, 0444);
172  
173  bool __read_mostly enable_vmware_backdoor = false;
174  module_param(enable_vmware_backdoor, bool, 0444);
175  EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
176  
177  /*
178   * Flags to manipulate forced emulation behavior (any non-zero value will
179   * enable forced emulation).
180   */
181  #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
182  static int __read_mostly force_emulation_prefix;
183  module_param(force_emulation_prefix, int, 0644);
184  
185  int __read_mostly pi_inject_timer = -1;
186  module_param(pi_inject_timer, bint, 0644);
187  
188  /* Enable/disable PMU virtualization */
189  bool __read_mostly enable_pmu = true;
190  EXPORT_SYMBOL_GPL(enable_pmu);
191  module_param(enable_pmu, bool, 0444);
192  
193  bool __read_mostly eager_page_split = true;
194  module_param(eager_page_split, bool, 0644);
195  
196  /* Enable/disable SMT_RSB bug mitigation */
197  static bool __read_mostly mitigate_smt_rsb;
198  module_param(mitigate_smt_rsb, bool, 0444);
199  
200  /*
201   * Restoring the host value for MSRs that are only consumed when running in
202   * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
203   * returns to userspace, i.e. the kernel can run with the guest's value.
204   */
205  #define KVM_MAX_NR_USER_RETURN_MSRS 16
206  
207  struct kvm_user_return_msrs {
208  	struct user_return_notifier urn;
209  	bool registered;
210  	struct kvm_user_return_msr_values {
211  		u64 host;
212  		u64 curr;
213  	} values[KVM_MAX_NR_USER_RETURN_MSRS];
214  };
215  
216  u32 __read_mostly kvm_nr_uret_msrs;
217  EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
218  static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
219  static struct kvm_user_return_msrs __percpu *user_return_msrs;
220  
221  #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
222  				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
223  				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
224  				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
225  
226  bool __read_mostly allow_smaller_maxphyaddr = 0;
227  EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
228  
229  bool __read_mostly enable_apicv = true;
230  EXPORT_SYMBOL_GPL(enable_apicv);
231  
232  const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
233  	KVM_GENERIC_VM_STATS(),
234  	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
235  	STATS_DESC_COUNTER(VM, mmu_pte_write),
236  	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
237  	STATS_DESC_COUNTER(VM, mmu_flooded),
238  	STATS_DESC_COUNTER(VM, mmu_recycled),
239  	STATS_DESC_COUNTER(VM, mmu_cache_miss),
240  	STATS_DESC_ICOUNTER(VM, mmu_unsync),
241  	STATS_DESC_ICOUNTER(VM, pages_4k),
242  	STATS_DESC_ICOUNTER(VM, pages_2m),
243  	STATS_DESC_ICOUNTER(VM, pages_1g),
244  	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
245  	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
246  	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
247  };
248  
249  const struct kvm_stats_header kvm_vm_stats_header = {
250  	.name_size = KVM_STATS_NAME_SIZE,
251  	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
252  	.id_offset = sizeof(struct kvm_stats_header),
253  	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
254  	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
255  		       sizeof(kvm_vm_stats_desc),
256  };
257  
258  const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
259  	KVM_GENERIC_VCPU_STATS(),
260  	STATS_DESC_COUNTER(VCPU, pf_taken),
261  	STATS_DESC_COUNTER(VCPU, pf_fixed),
262  	STATS_DESC_COUNTER(VCPU, pf_emulate),
263  	STATS_DESC_COUNTER(VCPU, pf_spurious),
264  	STATS_DESC_COUNTER(VCPU, pf_fast),
265  	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
266  	STATS_DESC_COUNTER(VCPU, pf_guest),
267  	STATS_DESC_COUNTER(VCPU, tlb_flush),
268  	STATS_DESC_COUNTER(VCPU, invlpg),
269  	STATS_DESC_COUNTER(VCPU, exits),
270  	STATS_DESC_COUNTER(VCPU, io_exits),
271  	STATS_DESC_COUNTER(VCPU, mmio_exits),
272  	STATS_DESC_COUNTER(VCPU, signal_exits),
273  	STATS_DESC_COUNTER(VCPU, irq_window_exits),
274  	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
275  	STATS_DESC_COUNTER(VCPU, l1d_flush),
276  	STATS_DESC_COUNTER(VCPU, halt_exits),
277  	STATS_DESC_COUNTER(VCPU, request_irq_exits),
278  	STATS_DESC_COUNTER(VCPU, irq_exits),
279  	STATS_DESC_COUNTER(VCPU, host_state_reload),
280  	STATS_DESC_COUNTER(VCPU, fpu_reload),
281  	STATS_DESC_COUNTER(VCPU, insn_emulation),
282  	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
283  	STATS_DESC_COUNTER(VCPU, hypercalls),
284  	STATS_DESC_COUNTER(VCPU, irq_injections),
285  	STATS_DESC_COUNTER(VCPU, nmi_injections),
286  	STATS_DESC_COUNTER(VCPU, req_event),
287  	STATS_DESC_COUNTER(VCPU, nested_run),
288  	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
289  	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
290  	STATS_DESC_COUNTER(VCPU, preemption_reported),
291  	STATS_DESC_COUNTER(VCPU, preemption_other),
292  	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
293  	STATS_DESC_COUNTER(VCPU, notify_window_exits),
294  };
295  
296  const struct kvm_stats_header kvm_vcpu_stats_header = {
297  	.name_size = KVM_STATS_NAME_SIZE,
298  	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
299  	.id_offset = sizeof(struct kvm_stats_header),
300  	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
301  	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
302  		       sizeof(kvm_vcpu_stats_desc),
303  };
304  
305  static struct kmem_cache *x86_emulator_cache;
306  
307  /*
308   * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
309   * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
310   * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
311   * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
312   * MSRs that KVM emulates without strictly requiring host support.
313   * msr_based_features holds MSRs that enumerate features, i.e. are effectively
314   * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
315   * msrs_to_save and emulated_msrs.
316   */
317  
318  static const u32 msrs_to_save_base[] = {
319  	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
320  	MSR_STAR,
321  #ifdef CONFIG_X86_64
322  	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
323  #endif
324  	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
325  	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
326  	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
327  	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
328  	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
329  	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
330  	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
331  	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
332  	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
333  	MSR_IA32_UMWAIT_CONTROL,
334  
335  	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
336  };
337  
338  static const u32 msrs_to_save_pmu[] = {
339  	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
340  	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
341  	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
342  	MSR_CORE_PERF_GLOBAL_CTRL,
343  	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
344  
345  	/* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
346  	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
347  	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
348  	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
349  	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
350  	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
351  	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
352  	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
353  	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
354  
355  	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
356  	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
357  
358  	/* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
359  	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
360  	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
361  	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
362  	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
363  
364  	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
365  	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
366  	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
367  };
368  
369  static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
370  			ARRAY_SIZE(msrs_to_save_pmu)];
371  static unsigned num_msrs_to_save;
372  
373  static const u32 emulated_msrs_all[] = {
374  	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
375  	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
376  
377  #ifdef CONFIG_KVM_HYPERV
378  	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
379  	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
380  	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
381  	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
382  	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
383  	HV_X64_MSR_RESET,
384  	HV_X64_MSR_VP_INDEX,
385  	HV_X64_MSR_VP_RUNTIME,
386  	HV_X64_MSR_SCONTROL,
387  	HV_X64_MSR_STIMER0_CONFIG,
388  	HV_X64_MSR_VP_ASSIST_PAGE,
389  	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
390  	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
391  	HV_X64_MSR_SYNDBG_OPTIONS,
392  	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
393  	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
394  	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
395  #endif
396  
397  	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
398  	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
399  
400  	MSR_IA32_TSC_ADJUST,
401  	MSR_IA32_TSC_DEADLINE,
402  	MSR_IA32_ARCH_CAPABILITIES,
403  	MSR_IA32_PERF_CAPABILITIES,
404  	MSR_IA32_MISC_ENABLE,
405  	MSR_IA32_MCG_STATUS,
406  	MSR_IA32_MCG_CTL,
407  	MSR_IA32_MCG_EXT_CTL,
408  	MSR_IA32_SMBASE,
409  	MSR_SMI_COUNT,
410  	MSR_PLATFORM_INFO,
411  	MSR_MISC_FEATURES_ENABLES,
412  	MSR_AMD64_VIRT_SPEC_CTRL,
413  	MSR_AMD64_TSC_RATIO,
414  	MSR_IA32_POWER_CTL,
415  	MSR_IA32_UCODE_REV,
416  
417  	/*
418  	 * KVM always supports the "true" VMX control MSRs, even if the host
419  	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
420  	 * doesn't strictly require them to exist in the host (ignoring that
421  	 * KVM would refuse to load in the first place if the core set of MSRs
422  	 * aren't supported).
423  	 */
424  	MSR_IA32_VMX_BASIC,
425  	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
426  	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
427  	MSR_IA32_VMX_TRUE_EXIT_CTLS,
428  	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
429  	MSR_IA32_VMX_MISC,
430  	MSR_IA32_VMX_CR0_FIXED0,
431  	MSR_IA32_VMX_CR4_FIXED0,
432  	MSR_IA32_VMX_VMCS_ENUM,
433  	MSR_IA32_VMX_PROCBASED_CTLS2,
434  	MSR_IA32_VMX_EPT_VPID_CAP,
435  	MSR_IA32_VMX_VMFUNC,
436  
437  	MSR_K7_HWCR,
438  	MSR_KVM_POLL_CONTROL,
439  };
440  
441  static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
442  static unsigned num_emulated_msrs;
443  
444  /*
445   * List of MSRs that control the existence of MSR-based features, i.e. MSRs
446   * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
447   * feature MSRs, but are handled separately to allow expedited lookups.
448   */
449  static const u32 msr_based_features_all_except_vmx[] = {
450  	MSR_AMD64_DE_CFG,
451  	MSR_IA32_UCODE_REV,
452  	MSR_IA32_ARCH_CAPABILITIES,
453  	MSR_IA32_PERF_CAPABILITIES,
454  };
455  
456  static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
457  			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
458  static unsigned int num_msr_based_features;
459  
460  /*
461   * All feature MSRs except uCode revID, which tracks the currently loaded uCode
462   * patch, are immutable once the vCPU model is defined.
463   */
kvm_is_immutable_feature_msr(u32 msr)464  static bool kvm_is_immutable_feature_msr(u32 msr)
465  {
466  	int i;
467  
468  	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
469  		return true;
470  
471  	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
472  		if (msr == msr_based_features_all_except_vmx[i])
473  			return msr != MSR_IA32_UCODE_REV;
474  	}
475  
476  	return false;
477  }
478  
kvm_is_advertised_msr(u32 msr_index)479  static bool kvm_is_advertised_msr(u32 msr_index)
480  {
481  	unsigned int i;
482  
483  	for (i = 0; i < num_msrs_to_save; i++) {
484  		if (msrs_to_save[i] == msr_index)
485  			return true;
486  	}
487  
488  	for (i = 0; i < num_emulated_msrs; i++) {
489  		if (emulated_msrs[i] == msr_index)
490  			return true;
491  	}
492  
493  	return false;
494  }
495  
496  typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
497  			    bool host_initiated);
498  
kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)499  static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
500  					     u64 *data, bool host_initiated,
501  					     enum kvm_msr_access rw,
502  					     msr_access_t msr_access_fn)
503  {
504  	const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
505  	int ret;
506  
507  	BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
508  
509  	/*
510  	 * Zero the data on read failures to avoid leaking stack data to the
511  	 * guest and/or userspace, e.g. if the failure is ignored below.
512  	 */
513  	ret = msr_access_fn(vcpu, msr, data, host_initiated);
514  	if (ret && rw == MSR_TYPE_R)
515  		*data = 0;
516  
517  	if (ret != KVM_MSR_RET_UNSUPPORTED)
518  		return ret;
519  
520  	/*
521  	 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
522  	 * advertises to userspace, even if an MSR isn't fully supported.
523  	 * Simply check that @data is '0', which covers both the write '0' case
524  	 * and all reads (in which case @data is zeroed on failure; see above).
525  	 */
526  	if (host_initiated && !*data && kvm_is_advertised_msr(msr))
527  		return 0;
528  
529  	if (!ignore_msrs) {
530  		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
531  				      op, msr, *data);
532  		return ret;
533  	}
534  
535  	if (report_ignored_msrs)
536  		kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
537  
538  	return 0;
539  }
540  
kvm_alloc_emulator_cache(void)541  static struct kmem_cache *kvm_alloc_emulator_cache(void)
542  {
543  	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
544  	unsigned int size = sizeof(struct x86_emulate_ctxt);
545  
546  	return kmem_cache_create_usercopy("x86_emulator", size,
547  					  __alignof__(struct x86_emulate_ctxt),
548  					  SLAB_ACCOUNT, useroffset,
549  					  size - useroffset, NULL);
550  }
551  
552  static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
553  
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)554  static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
555  {
556  	int i;
557  	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
558  		vcpu->arch.apf.gfns[i] = ~0;
559  }
560  
kvm_on_user_return(struct user_return_notifier * urn)561  static void kvm_on_user_return(struct user_return_notifier *urn)
562  {
563  	unsigned slot;
564  	struct kvm_user_return_msrs *msrs
565  		= container_of(urn, struct kvm_user_return_msrs, urn);
566  	struct kvm_user_return_msr_values *values;
567  	unsigned long flags;
568  
569  	/*
570  	 * Disabling irqs at this point since the following code could be
571  	 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
572  	 */
573  	local_irq_save(flags);
574  	if (msrs->registered) {
575  		msrs->registered = false;
576  		user_return_notifier_unregister(urn);
577  	}
578  	local_irq_restore(flags);
579  	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
580  		values = &msrs->values[slot];
581  		if (values->host != values->curr) {
582  			wrmsrl(kvm_uret_msrs_list[slot], values->host);
583  			values->curr = values->host;
584  		}
585  	}
586  }
587  
kvm_probe_user_return_msr(u32 msr)588  static int kvm_probe_user_return_msr(u32 msr)
589  {
590  	u64 val;
591  	int ret;
592  
593  	preempt_disable();
594  	ret = rdmsrl_safe(msr, &val);
595  	if (ret)
596  		goto out;
597  	ret = wrmsrl_safe(msr, val);
598  out:
599  	preempt_enable();
600  	return ret;
601  }
602  
kvm_add_user_return_msr(u32 msr)603  int kvm_add_user_return_msr(u32 msr)
604  {
605  	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
606  
607  	if (kvm_probe_user_return_msr(msr))
608  		return -1;
609  
610  	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
611  	return kvm_nr_uret_msrs++;
612  }
613  EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
614  
kvm_find_user_return_msr(u32 msr)615  int kvm_find_user_return_msr(u32 msr)
616  {
617  	int i;
618  
619  	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
620  		if (kvm_uret_msrs_list[i] == msr)
621  			return i;
622  	}
623  	return -1;
624  }
625  EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
626  
kvm_user_return_msr_cpu_online(void)627  static void kvm_user_return_msr_cpu_online(void)
628  {
629  	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
630  	u64 value;
631  	int i;
632  
633  	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
634  		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
635  		msrs->values[i].host = value;
636  		msrs->values[i].curr = value;
637  	}
638  }
639  
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)640  int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
641  {
642  	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
643  	int err;
644  
645  	value = (value & mask) | (msrs->values[slot].host & ~mask);
646  	if (value == msrs->values[slot].curr)
647  		return 0;
648  	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
649  	if (err)
650  		return 1;
651  
652  	msrs->values[slot].curr = value;
653  	if (!msrs->registered) {
654  		msrs->urn.on_user_return = kvm_on_user_return;
655  		user_return_notifier_register(&msrs->urn);
656  		msrs->registered = true;
657  	}
658  	return 0;
659  }
660  EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
661  
drop_user_return_notifiers(void)662  static void drop_user_return_notifiers(void)
663  {
664  	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
665  
666  	if (msrs->registered)
667  		kvm_on_user_return(&msrs->urn);
668  }
669  
kvm_get_apic_base(struct kvm_vcpu * vcpu)670  u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
671  {
672  	return vcpu->arch.apic_base;
673  }
674  
kvm_get_apic_mode(struct kvm_vcpu * vcpu)675  enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
676  {
677  	return kvm_apic_mode(kvm_get_apic_base(vcpu));
678  }
679  EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
680  
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)681  int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
682  {
683  	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
684  	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
685  	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
686  		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
687  
688  	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
689  		return 1;
690  	if (!msr_info->host_initiated) {
691  		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
692  			return 1;
693  		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
694  			return 1;
695  	}
696  
697  	kvm_lapic_set_base(vcpu, msr_info->data);
698  	kvm_recalculate_apic_map(vcpu->kvm);
699  	return 0;
700  }
701  
702  /*
703   * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
704   *
705   * Hardware virtualization extension instructions may fault if a reboot turns
706   * off virtualization while processes are running.  Usually after catching the
707   * fault we just panic; during reboot instead the instruction is ignored.
708   */
kvm_spurious_fault(void)709  noinstr void kvm_spurious_fault(void)
710  {
711  	/* Fault while not rebooting.  We want the trace. */
712  	BUG_ON(!kvm_rebooting);
713  }
714  EXPORT_SYMBOL_GPL(kvm_spurious_fault);
715  
716  #define EXCPT_BENIGN		0
717  #define EXCPT_CONTRIBUTORY	1
718  #define EXCPT_PF		2
719  
exception_class(int vector)720  static int exception_class(int vector)
721  {
722  	switch (vector) {
723  	case PF_VECTOR:
724  		return EXCPT_PF;
725  	case DE_VECTOR:
726  	case TS_VECTOR:
727  	case NP_VECTOR:
728  	case SS_VECTOR:
729  	case GP_VECTOR:
730  		return EXCPT_CONTRIBUTORY;
731  	default:
732  		break;
733  	}
734  	return EXCPT_BENIGN;
735  }
736  
737  #define EXCPT_FAULT		0
738  #define EXCPT_TRAP		1
739  #define EXCPT_ABORT		2
740  #define EXCPT_INTERRUPT		3
741  #define EXCPT_DB		4
742  
exception_type(int vector)743  static int exception_type(int vector)
744  {
745  	unsigned int mask;
746  
747  	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
748  		return EXCPT_INTERRUPT;
749  
750  	mask = 1 << vector;
751  
752  	/*
753  	 * #DBs can be trap-like or fault-like, the caller must check other CPU
754  	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
755  	 */
756  	if (mask & (1 << DB_VECTOR))
757  		return EXCPT_DB;
758  
759  	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
760  		return EXCPT_TRAP;
761  
762  	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
763  		return EXCPT_ABORT;
764  
765  	/* Reserved exceptions will result in fault */
766  	return EXCPT_FAULT;
767  }
768  
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)769  void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
770  				   struct kvm_queued_exception *ex)
771  {
772  	if (!ex->has_payload)
773  		return;
774  
775  	switch (ex->vector) {
776  	case DB_VECTOR:
777  		/*
778  		 * "Certain debug exceptions may clear bit 0-3.  The
779  		 * remaining contents of the DR6 register are never
780  		 * cleared by the processor".
781  		 */
782  		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
783  		/*
784  		 * In order to reflect the #DB exception payload in guest
785  		 * dr6, three components need to be considered: active low
786  		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
787  		 * DR6_BS and DR6_BT)
788  		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
789  		 * In the target guest dr6:
790  		 * FIXED_1 bits should always be set.
791  		 * Active low bits should be cleared if 1-setting in payload.
792  		 * Active high bits should be set if 1-setting in payload.
793  		 *
794  		 * Note, the payload is compatible with the pending debug
795  		 * exceptions/exit qualification under VMX, that active_low bits
796  		 * are active high in payload.
797  		 * So they need to be flipped for DR6.
798  		 */
799  		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
800  		vcpu->arch.dr6 |= ex->payload;
801  		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
802  
803  		/*
804  		 * The #DB payload is defined as compatible with the 'pending
805  		 * debug exceptions' field under VMX, not DR6. While bit 12 is
806  		 * defined in the 'pending debug exceptions' field (enabled
807  		 * breakpoint), it is reserved and must be zero in DR6.
808  		 */
809  		vcpu->arch.dr6 &= ~BIT(12);
810  		break;
811  	case PF_VECTOR:
812  		vcpu->arch.cr2 = ex->payload;
813  		break;
814  	}
815  
816  	ex->has_payload = false;
817  	ex->payload = 0;
818  }
819  EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
820  
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)821  static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
822  				       bool has_error_code, u32 error_code,
823  				       bool has_payload, unsigned long payload)
824  {
825  	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
826  
827  	ex->vector = vector;
828  	ex->injected = false;
829  	ex->pending = true;
830  	ex->has_error_code = has_error_code;
831  	ex->error_code = error_code;
832  	ex->has_payload = has_payload;
833  	ex->payload = payload;
834  }
835  
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)836  static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
837  		unsigned nr, bool has_error, u32 error_code,
838  	        bool has_payload, unsigned long payload, bool reinject)
839  {
840  	u32 prev_nr;
841  	int class1, class2;
842  
843  	kvm_make_request(KVM_REQ_EVENT, vcpu);
844  
845  	/*
846  	 * If the exception is destined for L2 and isn't being reinjected,
847  	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
848  	 * previously injected exception is not checked because it was checked
849  	 * when it was original queued, and re-checking is incorrect if _L1_
850  	 * injected the exception, in which case it's exempt from interception.
851  	 */
852  	if (!reinject && is_guest_mode(vcpu) &&
853  	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
854  		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
855  					   has_payload, payload);
856  		return;
857  	}
858  
859  	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
860  	queue:
861  		if (reinject) {
862  			/*
863  			 * On VM-Entry, an exception can be pending if and only
864  			 * if event injection was blocked by nested_run_pending.
865  			 * In that case, however, vcpu_enter_guest() requests an
866  			 * immediate exit, and the guest shouldn't proceed far
867  			 * enough to need reinjection.
868  			 */
869  			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
870  			vcpu->arch.exception.injected = true;
871  			if (WARN_ON_ONCE(has_payload)) {
872  				/*
873  				 * A reinjected event has already
874  				 * delivered its payload.
875  				 */
876  				has_payload = false;
877  				payload = 0;
878  			}
879  		} else {
880  			vcpu->arch.exception.pending = true;
881  			vcpu->arch.exception.injected = false;
882  		}
883  		vcpu->arch.exception.has_error_code = has_error;
884  		vcpu->arch.exception.vector = nr;
885  		vcpu->arch.exception.error_code = error_code;
886  		vcpu->arch.exception.has_payload = has_payload;
887  		vcpu->arch.exception.payload = payload;
888  		if (!is_guest_mode(vcpu))
889  			kvm_deliver_exception_payload(vcpu,
890  						      &vcpu->arch.exception);
891  		return;
892  	}
893  
894  	/* to check exception */
895  	prev_nr = vcpu->arch.exception.vector;
896  	if (prev_nr == DF_VECTOR) {
897  		/* triple fault -> shutdown */
898  		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
899  		return;
900  	}
901  	class1 = exception_class(prev_nr);
902  	class2 = exception_class(nr);
903  	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
904  	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
905  		/*
906  		 * Synthesize #DF.  Clear the previously injected or pending
907  		 * exception so as not to incorrectly trigger shutdown.
908  		 */
909  		vcpu->arch.exception.injected = false;
910  		vcpu->arch.exception.pending = false;
911  
912  		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
913  	} else {
914  		/* replace previous exception with a new one in a hope
915  		   that instruction re-execution will regenerate lost
916  		   exception */
917  		goto queue;
918  	}
919  }
920  
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)921  void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
922  {
923  	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
924  }
925  EXPORT_SYMBOL_GPL(kvm_queue_exception);
926  
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)927  void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
928  {
929  	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
930  }
931  EXPORT_SYMBOL_GPL(kvm_requeue_exception);
932  
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)933  void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
934  			   unsigned long payload)
935  {
936  	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
937  }
938  EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
939  
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)940  static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
941  				    u32 error_code, unsigned long payload)
942  {
943  	kvm_multiple_exception(vcpu, nr, true, error_code,
944  			       true, payload, false);
945  }
946  
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)947  int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
948  {
949  	if (err)
950  		kvm_inject_gp(vcpu, 0);
951  	else
952  		return kvm_skip_emulated_instruction(vcpu);
953  
954  	return 1;
955  }
956  EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
957  
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)958  static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
959  {
960  	if (err) {
961  		kvm_inject_gp(vcpu, 0);
962  		return 1;
963  	}
964  
965  	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
966  				       EMULTYPE_COMPLETE_USER_EXIT);
967  }
968  
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)969  void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
970  {
971  	++vcpu->stat.pf_guest;
972  
973  	/*
974  	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
975  	 * whether or not L1 wants to intercept "regular" #PF.
976  	 */
977  	if (is_guest_mode(vcpu) && fault->async_page_fault)
978  		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
979  					   true, fault->error_code,
980  					   true, fault->address);
981  	else
982  		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
983  					fault->address);
984  }
985  
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)986  void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
987  				    struct x86_exception *fault)
988  {
989  	struct kvm_mmu *fault_mmu;
990  	WARN_ON_ONCE(fault->vector != PF_VECTOR);
991  
992  	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
993  					       vcpu->arch.walk_mmu;
994  
995  	/*
996  	 * Invalidate the TLB entry for the faulting address, if it exists,
997  	 * else the access will fault indefinitely (and to emulate hardware).
998  	 */
999  	if ((fault->error_code & PFERR_PRESENT_MASK) &&
1000  	    !(fault->error_code & PFERR_RSVD_MASK))
1001  		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
1002  					KVM_MMU_ROOT_CURRENT);
1003  
1004  	fault_mmu->inject_page_fault(vcpu, fault);
1005  }
1006  EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
1007  
kvm_inject_nmi(struct kvm_vcpu * vcpu)1008  void kvm_inject_nmi(struct kvm_vcpu *vcpu)
1009  {
1010  	atomic_inc(&vcpu->arch.nmi_queued);
1011  	kvm_make_request(KVM_REQ_NMI, vcpu);
1012  }
1013  
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)1014  void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
1015  {
1016  	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
1017  }
1018  EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
1019  
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)1020  void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
1021  {
1022  	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
1023  }
1024  EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
1025  
1026  /*
1027   * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
1028   * a #GP and return false.
1029   */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)1030  bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
1031  {
1032  	if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1033  		return true;
1034  	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1035  	return false;
1036  }
1037  
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1038  bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1039  {
1040  	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1041  		return true;
1042  
1043  	kvm_queue_exception(vcpu, UD_VECTOR);
1044  	return false;
1045  }
1046  EXPORT_SYMBOL_GPL(kvm_require_dr);
1047  
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1048  static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1049  {
1050  	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1051  }
1052  
1053  /*
1054   * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
1055   */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1056  int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1057  {
1058  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1059  	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1060  	gpa_t real_gpa;
1061  	int i;
1062  	int ret;
1063  	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1064  
1065  	/*
1066  	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1067  	 * to an L1 GPA.
1068  	 */
1069  	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1070  				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1071  	if (real_gpa == INVALID_GPA)
1072  		return 0;
1073  
1074  	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1075  	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1076  				       cr3 & GENMASK(11, 5), sizeof(pdpte));
1077  	if (ret < 0)
1078  		return 0;
1079  
1080  	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1081  		if ((pdpte[i] & PT_PRESENT_MASK) &&
1082  		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1083  			return 0;
1084  		}
1085  	}
1086  
1087  	/*
1088  	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1089  	 * Shadow page roots need to be reconstructed instead.
1090  	 */
1091  	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1092  		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1093  
1094  	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1095  	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1096  	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1097  	vcpu->arch.pdptrs_from_userspace = false;
1098  
1099  	return 1;
1100  }
1101  EXPORT_SYMBOL_GPL(load_pdptrs);
1102  
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1103  static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1104  {
1105  #ifdef CONFIG_X86_64
1106  	if (cr0 & 0xffffffff00000000UL)
1107  		return false;
1108  #endif
1109  
1110  	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1111  		return false;
1112  
1113  	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1114  		return false;
1115  
1116  	return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1117  }
1118  
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1119  void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1120  {
1121  	/*
1122  	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1123  	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
1124  	 * as there are no permission bits to emulate.  If TDP is enabled, the
1125  	 * MMU's metadata needs to be updated, e.g. so that emulating guest
1126  	 * translations does the right thing, but there's no need to unload the
1127  	 * root as CR0.WP doesn't affect SPTEs.
1128  	 */
1129  	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1130  		if (!(cr0 & X86_CR0_PG))
1131  			return;
1132  
1133  		if (tdp_enabled) {
1134  			kvm_init_mmu(vcpu);
1135  			return;
1136  		}
1137  	}
1138  
1139  	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1140  		kvm_clear_async_pf_completion_queue(vcpu);
1141  		kvm_async_pf_hash_reset(vcpu);
1142  
1143  		/*
1144  		 * Clearing CR0.PG is defined to flush the TLB from the guest's
1145  		 * perspective.
1146  		 */
1147  		if (!(cr0 & X86_CR0_PG))
1148  			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1149  	}
1150  
1151  	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1152  		kvm_mmu_reset_context(vcpu);
1153  }
1154  EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
1155  
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1156  int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1157  {
1158  	unsigned long old_cr0 = kvm_read_cr0(vcpu);
1159  
1160  	if (!kvm_is_valid_cr0(vcpu, cr0))
1161  		return 1;
1162  
1163  	cr0 |= X86_CR0_ET;
1164  
1165  	/* Write to CR0 reserved bits are ignored, even on Intel. */
1166  	cr0 &= ~CR0_RESERVED_BITS;
1167  
1168  #ifdef CONFIG_X86_64
1169  	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1170  	    (cr0 & X86_CR0_PG)) {
1171  		int cs_db, cs_l;
1172  
1173  		if (!is_pae(vcpu))
1174  			return 1;
1175  		kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1176  		if (cs_l)
1177  			return 1;
1178  	}
1179  #endif
1180  	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1181  	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1182  	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1183  		return 1;
1184  
1185  	if (!(cr0 & X86_CR0_PG) &&
1186  	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1187  		return 1;
1188  
1189  	kvm_x86_call(set_cr0)(vcpu, cr0);
1190  
1191  	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1192  
1193  	return 0;
1194  }
1195  EXPORT_SYMBOL_GPL(kvm_set_cr0);
1196  
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1197  void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1198  {
1199  	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1200  }
1201  EXPORT_SYMBOL_GPL(kvm_lmsw);
1202  
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1203  void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1204  {
1205  	if (vcpu->arch.guest_state_protected)
1206  		return;
1207  
1208  	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1209  
1210  		if (vcpu->arch.xcr0 != kvm_host.xcr0)
1211  			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1212  
1213  		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1214  		    vcpu->arch.ia32_xss != kvm_host.xss)
1215  			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1216  	}
1217  
1218  	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1219  	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1220  	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1221  	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1222  		write_pkru(vcpu->arch.pkru);
1223  }
1224  EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1225  
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1226  void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1227  {
1228  	if (vcpu->arch.guest_state_protected)
1229  		return;
1230  
1231  	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1232  	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1233  	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1234  		vcpu->arch.pkru = rdpkru();
1235  		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1236  			write_pkru(vcpu->arch.host_pkru);
1237  	}
1238  
1239  	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1240  
1241  		if (vcpu->arch.xcr0 != kvm_host.xcr0)
1242  			xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1243  
1244  		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1245  		    vcpu->arch.ia32_xss != kvm_host.xss)
1246  			wrmsrl(MSR_IA32_XSS, kvm_host.xss);
1247  	}
1248  
1249  }
1250  EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1251  
1252  #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1253  static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1254  {
1255  	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1256  }
1257  #endif
1258  
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1259  static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1260  {
1261  	u64 xcr0 = xcr;
1262  	u64 old_xcr0 = vcpu->arch.xcr0;
1263  	u64 valid_bits;
1264  
1265  	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1266  	if (index != XCR_XFEATURE_ENABLED_MASK)
1267  		return 1;
1268  	if (!(xcr0 & XFEATURE_MASK_FP))
1269  		return 1;
1270  	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1271  		return 1;
1272  
1273  	/*
1274  	 * Do not allow the guest to set bits that we do not support
1275  	 * saving.  However, xcr0 bit 0 is always set, even if the
1276  	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1277  	 */
1278  	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1279  	if (xcr0 & ~valid_bits)
1280  		return 1;
1281  
1282  	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1283  	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1284  		return 1;
1285  
1286  	if (xcr0 & XFEATURE_MASK_AVX512) {
1287  		if (!(xcr0 & XFEATURE_MASK_YMM))
1288  			return 1;
1289  		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1290  			return 1;
1291  	}
1292  
1293  	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1294  	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1295  		return 1;
1296  
1297  	vcpu->arch.xcr0 = xcr0;
1298  
1299  	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1300  		kvm_update_cpuid_runtime(vcpu);
1301  	return 0;
1302  }
1303  
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1304  int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1305  {
1306  	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1307  	if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1308  	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1309  		kvm_inject_gp(vcpu, 0);
1310  		return 1;
1311  	}
1312  
1313  	return kvm_skip_emulated_instruction(vcpu);
1314  }
1315  EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1316  
__kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1317  bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1318  {
1319  	if (cr4 & cr4_reserved_bits)
1320  		return false;
1321  
1322  	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1323  		return false;
1324  
1325  	return true;
1326  }
1327  EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1328  
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1329  static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1330  {
1331  	return __kvm_is_valid_cr4(vcpu, cr4) &&
1332  	       kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1333  }
1334  
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1335  void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1336  {
1337  	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1338  		kvm_mmu_reset_context(vcpu);
1339  
1340  	/*
1341  	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1342  	 * according to the SDM; however, stale prev_roots could be reused
1343  	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1344  	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1345  	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1346  	 * so fall through.
1347  	 */
1348  	if (!tdp_enabled &&
1349  	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1350  		kvm_mmu_unload(vcpu);
1351  
1352  	/*
1353  	 * The TLB has to be flushed for all PCIDs if any of the following
1354  	 * (architecturally required) changes happen:
1355  	 * - CR4.PCIDE is changed from 1 to 0
1356  	 * - CR4.PGE is toggled
1357  	 *
1358  	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1359  	 */
1360  	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1361  	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1362  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1363  
1364  	/*
1365  	 * The TLB has to be flushed for the current PCID if any of the
1366  	 * following (architecturally required) changes happen:
1367  	 * - CR4.SMEP is changed from 0 to 1
1368  	 * - CR4.PAE is toggled
1369  	 */
1370  	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1371  		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1372  		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1373  
1374  }
1375  EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1376  
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1377  int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1378  {
1379  	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1380  
1381  	if (!kvm_is_valid_cr4(vcpu, cr4))
1382  		return 1;
1383  
1384  	if (is_long_mode(vcpu)) {
1385  		if (!(cr4 & X86_CR4_PAE))
1386  			return 1;
1387  		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1388  			return 1;
1389  	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1390  		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1391  		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1392  		return 1;
1393  
1394  	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1395  		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1396  		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1397  			return 1;
1398  	}
1399  
1400  	kvm_x86_call(set_cr4)(vcpu, cr4);
1401  
1402  	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1403  
1404  	return 0;
1405  }
1406  EXPORT_SYMBOL_GPL(kvm_set_cr4);
1407  
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1408  static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1409  {
1410  	struct kvm_mmu *mmu = vcpu->arch.mmu;
1411  	unsigned long roots_to_free = 0;
1412  	int i;
1413  
1414  	/*
1415  	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1416  	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1417  	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1418  	 * the invalidation, but the guest's TLB entries need to be flushed as
1419  	 * the CPU may have cached entries in its TLB for the target PCID.
1420  	 */
1421  	if (unlikely(tdp_enabled)) {
1422  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1423  		return;
1424  	}
1425  
1426  	/*
1427  	 * If neither the current CR3 nor any of the prev_roots use the given
1428  	 * PCID, then nothing needs to be done here because a resync will
1429  	 * happen anyway before switching to any other CR3.
1430  	 */
1431  	if (kvm_get_active_pcid(vcpu) == pcid) {
1432  		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1433  		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1434  	}
1435  
1436  	/*
1437  	 * If PCID is disabled, there is no need to free prev_roots even if the
1438  	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1439  	 * with PCIDE=0.
1440  	 */
1441  	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1442  		return;
1443  
1444  	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1445  		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1446  			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1447  
1448  	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1449  }
1450  
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1451  int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1452  {
1453  	bool skip_tlb_flush = false;
1454  	unsigned long pcid = 0;
1455  #ifdef CONFIG_X86_64
1456  	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1457  		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1458  		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1459  		pcid = cr3 & X86_CR3_PCID_MASK;
1460  	}
1461  #endif
1462  
1463  	/* PDPTRs are always reloaded for PAE paging. */
1464  	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1465  		goto handle_tlb_flush;
1466  
1467  	/*
1468  	 * Do not condition the GPA check on long mode, this helper is used to
1469  	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1470  	 * the current vCPU mode is accurate.
1471  	 */
1472  	if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1473  		return 1;
1474  
1475  	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1476  		return 1;
1477  
1478  	if (cr3 != kvm_read_cr3(vcpu))
1479  		kvm_mmu_new_pgd(vcpu, cr3);
1480  
1481  	vcpu->arch.cr3 = cr3;
1482  	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1483  	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1484  
1485  handle_tlb_flush:
1486  	/*
1487  	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1488  	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1489  	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1490  	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1491  	 * i.e. only PCID=0 can be relevant.
1492  	 */
1493  	if (!skip_tlb_flush)
1494  		kvm_invalidate_pcid(vcpu, pcid);
1495  
1496  	return 0;
1497  }
1498  EXPORT_SYMBOL_GPL(kvm_set_cr3);
1499  
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1500  int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1501  {
1502  	if (cr8 & CR8_RESERVED_BITS)
1503  		return 1;
1504  	if (lapic_in_kernel(vcpu))
1505  		kvm_lapic_set_tpr(vcpu, cr8);
1506  	else
1507  		vcpu->arch.cr8 = cr8;
1508  	return 0;
1509  }
1510  EXPORT_SYMBOL_GPL(kvm_set_cr8);
1511  
kvm_get_cr8(struct kvm_vcpu * vcpu)1512  unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1513  {
1514  	if (lapic_in_kernel(vcpu))
1515  		return kvm_lapic_get_cr8(vcpu);
1516  	else
1517  		return vcpu->arch.cr8;
1518  }
1519  EXPORT_SYMBOL_GPL(kvm_get_cr8);
1520  
kvm_update_dr0123(struct kvm_vcpu * vcpu)1521  static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1522  {
1523  	int i;
1524  
1525  	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1526  		for (i = 0; i < KVM_NR_DB_REGS; i++)
1527  			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1528  	}
1529  }
1530  
kvm_update_dr7(struct kvm_vcpu * vcpu)1531  void kvm_update_dr7(struct kvm_vcpu *vcpu)
1532  {
1533  	unsigned long dr7;
1534  
1535  	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1536  		dr7 = vcpu->arch.guest_debug_dr7;
1537  	else
1538  		dr7 = vcpu->arch.dr7;
1539  	kvm_x86_call(set_dr7)(vcpu, dr7);
1540  	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1541  	if (dr7 & DR7_BP_EN_MASK)
1542  		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1543  }
1544  EXPORT_SYMBOL_GPL(kvm_update_dr7);
1545  
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1546  static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1547  {
1548  	u64 fixed = DR6_FIXED_1;
1549  
1550  	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1551  		fixed |= DR6_RTM;
1552  
1553  	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1554  		fixed |= DR6_BUS_LOCK;
1555  	return fixed;
1556  }
1557  
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1558  int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1559  {
1560  	size_t size = ARRAY_SIZE(vcpu->arch.db);
1561  
1562  	switch (dr) {
1563  	case 0 ... 3:
1564  		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1565  		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1566  			vcpu->arch.eff_db[dr] = val;
1567  		break;
1568  	case 4:
1569  	case 6:
1570  		if (!kvm_dr6_valid(val))
1571  			return 1; /* #GP */
1572  		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1573  		break;
1574  	case 5:
1575  	default: /* 7 */
1576  		if (!kvm_dr7_valid(val))
1577  			return 1; /* #GP */
1578  		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1579  		kvm_update_dr7(vcpu);
1580  		break;
1581  	}
1582  
1583  	return 0;
1584  }
1585  EXPORT_SYMBOL_GPL(kvm_set_dr);
1586  
kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1587  unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1588  {
1589  	size_t size = ARRAY_SIZE(vcpu->arch.db);
1590  
1591  	switch (dr) {
1592  	case 0 ... 3:
1593  		return vcpu->arch.db[array_index_nospec(dr, size)];
1594  	case 4:
1595  	case 6:
1596  		return vcpu->arch.dr6;
1597  	case 5:
1598  	default: /* 7 */
1599  		return vcpu->arch.dr7;
1600  	}
1601  }
1602  EXPORT_SYMBOL_GPL(kvm_get_dr);
1603  
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1604  int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1605  {
1606  	u32 ecx = kvm_rcx_read(vcpu);
1607  	u64 data;
1608  
1609  	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1610  		kvm_inject_gp(vcpu, 0);
1611  		return 1;
1612  	}
1613  
1614  	kvm_rax_write(vcpu, (u32)data);
1615  	kvm_rdx_write(vcpu, data >> 32);
1616  	return kvm_skip_emulated_instruction(vcpu);
1617  }
1618  EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1619  
1620  /*
1621   * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1622   * does not yet virtualize. These include:
1623   *   10 - MISC_PACKAGE_CTRLS
1624   *   11 - ENERGY_FILTERING_CTL
1625   *   12 - DOITM
1626   *   18 - FB_CLEAR_CTRL
1627   *   21 - XAPIC_DISABLE_STATUS
1628   *   23 - OVERCLOCKING_STATUS
1629   */
1630  
1631  #define KVM_SUPPORTED_ARCH_CAP \
1632  	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1633  	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1634  	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1635  	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1636  	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1637  	 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1638  
kvm_get_arch_capabilities(void)1639  static u64 kvm_get_arch_capabilities(void)
1640  {
1641  	u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1642  
1643  	/*
1644  	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1645  	 * the nested hypervisor runs with NX huge pages.  If it is not,
1646  	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1647  	 * L1 guests, so it need not worry about its own (L2) guests.
1648  	 */
1649  	data |= ARCH_CAP_PSCHANGE_MC_NO;
1650  
1651  	/*
1652  	 * If we're doing cache flushes (either "always" or "cond")
1653  	 * we will do one whenever the guest does a vmlaunch/vmresume.
1654  	 * If an outer hypervisor is doing the cache flush for us
1655  	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1656  	 * capability to the guest too, and if EPT is disabled we're not
1657  	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1658  	 * require a nested hypervisor to do a flush of its own.
1659  	 */
1660  	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1661  		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1662  
1663  	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1664  		data |= ARCH_CAP_RDCL_NO;
1665  	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1666  		data |= ARCH_CAP_SSB_NO;
1667  	if (!boot_cpu_has_bug(X86_BUG_MDS))
1668  		data |= ARCH_CAP_MDS_NO;
1669  	if (!boot_cpu_has_bug(X86_BUG_RFDS))
1670  		data |= ARCH_CAP_RFDS_NO;
1671  
1672  	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1673  		/*
1674  		 * If RTM=0 because the kernel has disabled TSX, the host might
1675  		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1676  		 * and therefore knows that there cannot be TAA) but keep
1677  		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1678  		 * and we want to allow migrating those guests to tsx=off hosts.
1679  		 */
1680  		data &= ~ARCH_CAP_TAA_NO;
1681  	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1682  		data |= ARCH_CAP_TAA_NO;
1683  	} else {
1684  		/*
1685  		 * Nothing to do here; we emulate TSX_CTRL if present on the
1686  		 * host so the guest can choose between disabling TSX or
1687  		 * using VERW to clear CPU buffers.
1688  		 */
1689  	}
1690  
1691  	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1692  		data |= ARCH_CAP_GDS_NO;
1693  
1694  	return data;
1695  }
1696  
kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1697  static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1698  			       bool host_initiated)
1699  {
1700  	WARN_ON_ONCE(!host_initiated);
1701  
1702  	switch (index) {
1703  	case MSR_IA32_ARCH_CAPABILITIES:
1704  		*data = kvm_get_arch_capabilities();
1705  		break;
1706  	case MSR_IA32_PERF_CAPABILITIES:
1707  		*data = kvm_caps.supported_perf_cap;
1708  		break;
1709  	case MSR_IA32_UCODE_REV:
1710  		rdmsrl_safe(index, data);
1711  		break;
1712  	default:
1713  		return kvm_x86_call(get_feature_msr)(index, data);
1714  	}
1715  	return 0;
1716  }
1717  
do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1718  static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1719  {
1720  	return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1721  				 kvm_get_feature_msr);
1722  }
1723  
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1724  static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1725  {
1726  	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1727  		return false;
1728  
1729  	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1730  		return false;
1731  
1732  	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1733  		return false;
1734  
1735  	if (efer & (EFER_LME | EFER_LMA) &&
1736  	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1737  		return false;
1738  
1739  	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1740  		return false;
1741  
1742  	return true;
1743  
1744  }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1745  bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1746  {
1747  	if (efer & efer_reserved_bits)
1748  		return false;
1749  
1750  	return __kvm_valid_efer(vcpu, efer);
1751  }
1752  EXPORT_SYMBOL_GPL(kvm_valid_efer);
1753  
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1754  static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1755  {
1756  	u64 old_efer = vcpu->arch.efer;
1757  	u64 efer = msr_info->data;
1758  	int r;
1759  
1760  	if (efer & efer_reserved_bits)
1761  		return 1;
1762  
1763  	if (!msr_info->host_initiated) {
1764  		if (!__kvm_valid_efer(vcpu, efer))
1765  			return 1;
1766  
1767  		if (is_paging(vcpu) &&
1768  		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1769  			return 1;
1770  	}
1771  
1772  	efer &= ~EFER_LMA;
1773  	efer |= vcpu->arch.efer & EFER_LMA;
1774  
1775  	r = kvm_x86_call(set_efer)(vcpu, efer);
1776  	if (r) {
1777  		WARN_ON(r > 0);
1778  		return r;
1779  	}
1780  
1781  	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1782  		kvm_mmu_reset_context(vcpu);
1783  
1784  	if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1785  	    (efer & EFER_SVME))
1786  		kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1787  
1788  	return 0;
1789  }
1790  
kvm_enable_efer_bits(u64 mask)1791  void kvm_enable_efer_bits(u64 mask)
1792  {
1793         efer_reserved_bits &= ~mask;
1794  }
1795  EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1796  
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1797  bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1798  {
1799  	struct kvm_x86_msr_filter *msr_filter;
1800  	struct msr_bitmap_range *ranges;
1801  	struct kvm *kvm = vcpu->kvm;
1802  	bool allowed;
1803  	int idx;
1804  	u32 i;
1805  
1806  	/* x2APIC MSRs do not support filtering. */
1807  	if (index >= 0x800 && index <= 0x8ff)
1808  		return true;
1809  
1810  	idx = srcu_read_lock(&kvm->srcu);
1811  
1812  	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1813  	if (!msr_filter) {
1814  		allowed = true;
1815  		goto out;
1816  	}
1817  
1818  	allowed = msr_filter->default_allow;
1819  	ranges = msr_filter->ranges;
1820  
1821  	for (i = 0; i < msr_filter->count; i++) {
1822  		u32 start = ranges[i].base;
1823  		u32 end = start + ranges[i].nmsrs;
1824  		u32 flags = ranges[i].flags;
1825  		unsigned long *bitmap = ranges[i].bitmap;
1826  
1827  		if ((index >= start) && (index < end) && (flags & type)) {
1828  			allowed = test_bit(index - start, bitmap);
1829  			break;
1830  		}
1831  	}
1832  
1833  out:
1834  	srcu_read_unlock(&kvm->srcu, idx);
1835  
1836  	return allowed;
1837  }
1838  EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1839  
1840  /*
1841   * Write @data into the MSR specified by @index.  Select MSR specific fault
1842   * checks are bypassed if @host_initiated is %true.
1843   * Returns 0 on success, non-0 otherwise.
1844   * Assumes vcpu_load() was already called.
1845   */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1846  static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1847  			 bool host_initiated)
1848  {
1849  	struct msr_data msr;
1850  
1851  	switch (index) {
1852  	case MSR_FS_BASE:
1853  	case MSR_GS_BASE:
1854  	case MSR_KERNEL_GS_BASE:
1855  	case MSR_CSTAR:
1856  	case MSR_LSTAR:
1857  		if (is_noncanonical_address(data, vcpu))
1858  			return 1;
1859  		break;
1860  	case MSR_IA32_SYSENTER_EIP:
1861  	case MSR_IA32_SYSENTER_ESP:
1862  		/*
1863  		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1864  		 * non-canonical address is written on Intel but not on
1865  		 * AMD (which ignores the top 32-bits, because it does
1866  		 * not implement 64-bit SYSENTER).
1867  		 *
1868  		 * 64-bit code should hence be able to write a non-canonical
1869  		 * value on AMD.  Making the address canonical ensures that
1870  		 * vmentry does not fail on Intel after writing a non-canonical
1871  		 * value, and that something deterministic happens if the guest
1872  		 * invokes 64-bit SYSENTER.
1873  		 */
1874  		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1875  		break;
1876  	case MSR_TSC_AUX:
1877  		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1878  			return 1;
1879  
1880  		if (!host_initiated &&
1881  		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1882  		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1883  			return 1;
1884  
1885  		/*
1886  		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1887  		 * incomplete and conflicting architectural behavior.  Current
1888  		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1889  		 * reserved and always read as zeros.  Enforce Intel's reserved
1890  		 * bits check if the guest CPU is Intel compatible, otherwise
1891  		 * clear the bits.  This ensures cross-vendor migration will
1892  		 * provide consistent behavior for the guest.
1893  		 */
1894  		if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1895  			return 1;
1896  
1897  		data = (u32)data;
1898  		break;
1899  	}
1900  
1901  	msr.data = data;
1902  	msr.index = index;
1903  	msr.host_initiated = host_initiated;
1904  
1905  	return kvm_x86_call(set_msr)(vcpu, &msr);
1906  }
1907  
_kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1908  static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1909  			bool host_initiated)
1910  {
1911  	return __kvm_set_msr(vcpu, index, *data, host_initiated);
1912  }
1913  
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1914  static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1915  				     u32 index, u64 data, bool host_initiated)
1916  {
1917  	return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1918  				 _kvm_set_msr);
1919  }
1920  
1921  /*
1922   * Read the MSR specified by @index into @data.  Select MSR specific fault
1923   * checks are bypassed if @host_initiated is %true.
1924   * Returns 0 on success, non-0 otherwise.
1925   * Assumes vcpu_load() was already called.
1926   */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1927  int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1928  		  bool host_initiated)
1929  {
1930  	struct msr_data msr;
1931  	int ret;
1932  
1933  	switch (index) {
1934  	case MSR_TSC_AUX:
1935  		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1936  			return 1;
1937  
1938  		if (!host_initiated &&
1939  		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1940  		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1941  			return 1;
1942  		break;
1943  	}
1944  
1945  	msr.index = index;
1946  	msr.host_initiated = host_initiated;
1947  
1948  	ret = kvm_x86_call(get_msr)(vcpu, &msr);
1949  	if (!ret)
1950  		*data = msr.data;
1951  	return ret;
1952  }
1953  
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1954  static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1955  				     u32 index, u64 *data, bool host_initiated)
1956  {
1957  	return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
1958  				 __kvm_get_msr);
1959  }
1960  
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1961  int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1962  {
1963  	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1964  		return KVM_MSR_RET_FILTERED;
1965  	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1966  }
1967  EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter);
1968  
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1969  int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1970  {
1971  	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1972  		return KVM_MSR_RET_FILTERED;
1973  	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1974  }
1975  EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter);
1976  
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1977  int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1978  {
1979  	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1980  }
1981  EXPORT_SYMBOL_GPL(kvm_get_msr);
1982  
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1983  int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1984  {
1985  	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1986  }
1987  EXPORT_SYMBOL_GPL(kvm_set_msr);
1988  
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1989  static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1990  {
1991  	if (!vcpu->run->msr.error) {
1992  		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1993  		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1994  	}
1995  }
1996  
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1997  static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1998  {
1999  	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2000  }
2001  
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)2002  static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2003  {
2004  	complete_userspace_rdmsr(vcpu);
2005  	return complete_emulated_msr_access(vcpu);
2006  }
2007  
complete_fast_msr_access(struct kvm_vcpu * vcpu)2008  static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2009  {
2010  	return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2011  }
2012  
complete_fast_rdmsr(struct kvm_vcpu * vcpu)2013  static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2014  {
2015  	complete_userspace_rdmsr(vcpu);
2016  	return complete_fast_msr_access(vcpu);
2017  }
2018  
kvm_msr_reason(int r)2019  static u64 kvm_msr_reason(int r)
2020  {
2021  	switch (r) {
2022  	case KVM_MSR_RET_UNSUPPORTED:
2023  		return KVM_MSR_EXIT_REASON_UNKNOWN;
2024  	case KVM_MSR_RET_FILTERED:
2025  		return KVM_MSR_EXIT_REASON_FILTER;
2026  	default:
2027  		return KVM_MSR_EXIT_REASON_INVAL;
2028  	}
2029  }
2030  
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)2031  static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2032  			      u32 exit_reason, u64 data,
2033  			      int (*completion)(struct kvm_vcpu *vcpu),
2034  			      int r)
2035  {
2036  	u64 msr_reason = kvm_msr_reason(r);
2037  
2038  	/* Check if the user wanted to know about this MSR fault */
2039  	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2040  		return 0;
2041  
2042  	vcpu->run->exit_reason = exit_reason;
2043  	vcpu->run->msr.error = 0;
2044  	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2045  	vcpu->run->msr.reason = msr_reason;
2046  	vcpu->run->msr.index = index;
2047  	vcpu->run->msr.data = data;
2048  	vcpu->arch.complete_userspace_io = completion;
2049  
2050  	return 1;
2051  }
2052  
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2053  int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2054  {
2055  	u32 ecx = kvm_rcx_read(vcpu);
2056  	u64 data;
2057  	int r;
2058  
2059  	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2060  
2061  	if (!r) {
2062  		trace_kvm_msr_read(ecx, data);
2063  
2064  		kvm_rax_write(vcpu, data & -1u);
2065  		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2066  	} else {
2067  		/* MSR read failed? See if we should ask user space */
2068  		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2069  				       complete_fast_rdmsr, r))
2070  			return 0;
2071  		trace_kvm_msr_read_ex(ecx);
2072  	}
2073  
2074  	return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2075  }
2076  EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2077  
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2078  int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2079  {
2080  	u32 ecx = kvm_rcx_read(vcpu);
2081  	u64 data = kvm_read_edx_eax(vcpu);
2082  	int r;
2083  
2084  	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2085  
2086  	if (!r) {
2087  		trace_kvm_msr_write(ecx, data);
2088  	} else {
2089  		/* MSR write failed? See if we should ask user space */
2090  		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2091  				       complete_fast_msr_access, r))
2092  			return 0;
2093  		/* Signal all other negative errors to userspace */
2094  		if (r < 0)
2095  			return r;
2096  		trace_kvm_msr_write_ex(ecx, data);
2097  	}
2098  
2099  	return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2100  }
2101  EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2102  
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2103  int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2104  {
2105  	return kvm_skip_emulated_instruction(vcpu);
2106  }
2107  
kvm_emulate_invd(struct kvm_vcpu * vcpu)2108  int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2109  {
2110  	/* Treat an INVD instruction as a NOP and just skip it. */
2111  	return kvm_emulate_as_nop(vcpu);
2112  }
2113  EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2114  
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2115  int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2116  {
2117  	kvm_queue_exception(vcpu, UD_VECTOR);
2118  	return 1;
2119  }
2120  EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2121  
2122  
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2123  static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2124  {
2125  	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2126  	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2127  		return kvm_handle_invalid_op(vcpu);
2128  
2129  	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2130  	return kvm_emulate_as_nop(vcpu);
2131  }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2132  int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2133  {
2134  	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2135  }
2136  EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2137  
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2138  int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2139  {
2140  	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2141  }
2142  EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2143  
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2144  static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2145  {
2146  	xfer_to_guest_mode_prepare();
2147  	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2148  		xfer_to_guest_mode_work_pending();
2149  }
2150  
2151  /*
2152   * The fast path for frequent and performance sensitive wrmsr emulation,
2153   * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2154   * the latency of virtual IPI by avoiding the expensive bits of transitioning
2155   * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2156   * other cases which must be called after interrupts are enabled on the host.
2157   */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2158  static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2159  {
2160  	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2161  		return 1;
2162  
2163  	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2164  	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2165  	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2166  	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2167  		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2168  
2169  	return 1;
2170  }
2171  
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2172  static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2173  {
2174  	if (!kvm_can_use_hv_timer(vcpu))
2175  		return 1;
2176  
2177  	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2178  	return 0;
2179  }
2180  
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2181  fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2182  {
2183  	u32 msr = kvm_rcx_read(vcpu);
2184  	u64 data;
2185  	fastpath_t ret;
2186  	bool handled;
2187  
2188  	kvm_vcpu_srcu_read_lock(vcpu);
2189  
2190  	switch (msr) {
2191  	case APIC_BASE_MSR + (APIC_ICR >> 4):
2192  		data = kvm_read_edx_eax(vcpu);
2193  		handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
2194  		break;
2195  	case MSR_IA32_TSC_DEADLINE:
2196  		data = kvm_read_edx_eax(vcpu);
2197  		handled = !handle_fastpath_set_tscdeadline(vcpu, data);
2198  		break;
2199  	default:
2200  		handled = false;
2201  		break;
2202  	}
2203  
2204  	if (handled) {
2205  		if (!kvm_skip_emulated_instruction(vcpu))
2206  			ret = EXIT_FASTPATH_EXIT_USERSPACE;
2207  		else
2208  			ret = EXIT_FASTPATH_REENTER_GUEST;
2209  		trace_kvm_msr_write(msr, data);
2210  	} else {
2211  		ret = EXIT_FASTPATH_NONE;
2212  	}
2213  
2214  	kvm_vcpu_srcu_read_unlock(vcpu);
2215  
2216  	return ret;
2217  }
2218  EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2219  
2220  /*
2221   * Adapt set_msr() to msr_io()'s calling convention
2222   */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2223  static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2224  {
2225  	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2226  }
2227  
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2228  static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2229  {
2230  	u64 val;
2231  
2232  	/*
2233  	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2234  	 * not support modifying the guest vCPU model on the fly, e.g. changing
2235  	 * the nVMX capabilities while L2 is running is nonsensical.  Allow
2236  	 * writes of the same value, e.g. to allow userspace to blindly stuff
2237  	 * all MSRs when emulating RESET.
2238  	 */
2239  	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2240  	    (do_get_msr(vcpu, index, &val) || *data != val))
2241  		return -EINVAL;
2242  
2243  	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2244  }
2245  
2246  #ifdef CONFIG_X86_64
2247  struct pvclock_clock {
2248  	int vclock_mode;
2249  	u64 cycle_last;
2250  	u64 mask;
2251  	u32 mult;
2252  	u32 shift;
2253  	u64 base_cycles;
2254  	u64 offset;
2255  };
2256  
2257  struct pvclock_gtod_data {
2258  	seqcount_t	seq;
2259  
2260  	struct pvclock_clock clock; /* extract of a clocksource struct */
2261  	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2262  
2263  	ktime_t		offs_boot;
2264  	u64		wall_time_sec;
2265  };
2266  
2267  static struct pvclock_gtod_data pvclock_gtod_data;
2268  
update_pvclock_gtod(struct timekeeper * tk)2269  static void update_pvclock_gtod(struct timekeeper *tk)
2270  {
2271  	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2272  
2273  	write_seqcount_begin(&vdata->seq);
2274  
2275  	/* copy pvclock gtod data */
2276  	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2277  	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2278  	vdata->clock.mask		= tk->tkr_mono.mask;
2279  	vdata->clock.mult		= tk->tkr_mono.mult;
2280  	vdata->clock.shift		= tk->tkr_mono.shift;
2281  	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2282  	vdata->clock.offset		= tk->tkr_mono.base;
2283  
2284  	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2285  	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2286  	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2287  	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2288  	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2289  	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2290  	vdata->raw_clock.offset		= tk->tkr_raw.base;
2291  
2292  	vdata->wall_time_sec            = tk->xtime_sec;
2293  
2294  	vdata->offs_boot		= tk->offs_boot;
2295  
2296  	write_seqcount_end(&vdata->seq);
2297  }
2298  
get_kvmclock_base_ns(void)2299  static s64 get_kvmclock_base_ns(void)
2300  {
2301  	/* Count up from boot time, but with the frequency of the raw clock.  */
2302  	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2303  }
2304  #else
get_kvmclock_base_ns(void)2305  static s64 get_kvmclock_base_ns(void)
2306  {
2307  	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2308  	return ktime_get_boottime_ns();
2309  }
2310  #endif
2311  
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2312  static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2313  {
2314  	int version;
2315  	int r;
2316  	struct pvclock_wall_clock wc;
2317  	u32 wc_sec_hi;
2318  	u64 wall_nsec;
2319  
2320  	if (!wall_clock)
2321  		return;
2322  
2323  	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2324  	if (r)
2325  		return;
2326  
2327  	if (version & 1)
2328  		++version;  /* first time write, random junk */
2329  
2330  	++version;
2331  
2332  	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2333  		return;
2334  
2335  	wall_nsec = kvm_get_wall_clock_epoch(kvm);
2336  
2337  	wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2338  	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2339  	wc.version = version;
2340  
2341  	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2342  
2343  	if (sec_hi_ofs) {
2344  		wc_sec_hi = wall_nsec >> 32;
2345  		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2346  				&wc_sec_hi, sizeof(wc_sec_hi));
2347  	}
2348  
2349  	version++;
2350  	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2351  }
2352  
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2353  static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2354  				  bool old_msr, bool host_initiated)
2355  {
2356  	struct kvm_arch *ka = &vcpu->kvm->arch;
2357  
2358  	if (vcpu->vcpu_id == 0 && !host_initiated) {
2359  		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2360  			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2361  
2362  		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2363  	}
2364  
2365  	vcpu->arch.time = system_time;
2366  	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2367  
2368  	/* we verify if the enable bit is set... */
2369  	if (system_time & 1)
2370  		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2371  				 sizeof(struct pvclock_vcpu_time_info));
2372  	else
2373  		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2374  
2375  	return;
2376  }
2377  
div_frac(uint32_t dividend,uint32_t divisor)2378  static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2379  {
2380  	do_shl32_div32(dividend, divisor);
2381  	return dividend;
2382  }
2383  
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2384  static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2385  			       s8 *pshift, u32 *pmultiplier)
2386  {
2387  	uint64_t scaled64;
2388  	int32_t  shift = 0;
2389  	uint64_t tps64;
2390  	uint32_t tps32;
2391  
2392  	tps64 = base_hz;
2393  	scaled64 = scaled_hz;
2394  	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2395  		tps64 >>= 1;
2396  		shift--;
2397  	}
2398  
2399  	tps32 = (uint32_t)tps64;
2400  	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2401  		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2402  			scaled64 >>= 1;
2403  		else
2404  			tps32 <<= 1;
2405  		shift++;
2406  	}
2407  
2408  	*pshift = shift;
2409  	*pmultiplier = div_frac(scaled64, tps32);
2410  }
2411  
2412  #ifdef CONFIG_X86_64
2413  static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2414  #endif
2415  
2416  static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2417  static unsigned long max_tsc_khz;
2418  
adjust_tsc_khz(u32 khz,s32 ppm)2419  static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2420  {
2421  	u64 v = (u64)khz * (1000000 + ppm);
2422  	do_div(v, 1000000);
2423  	return v;
2424  }
2425  
2426  static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2427  
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2428  static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2429  {
2430  	u64 ratio;
2431  
2432  	/* Guest TSC same frequency as host TSC? */
2433  	if (!scale) {
2434  		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2435  		return 0;
2436  	}
2437  
2438  	/* TSC scaling supported? */
2439  	if (!kvm_caps.has_tsc_control) {
2440  		if (user_tsc_khz > tsc_khz) {
2441  			vcpu->arch.tsc_catchup = 1;
2442  			vcpu->arch.tsc_always_catchup = 1;
2443  			return 0;
2444  		} else {
2445  			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2446  			return -1;
2447  		}
2448  	}
2449  
2450  	/* TSC scaling required  - calculate ratio */
2451  	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2452  				user_tsc_khz, tsc_khz);
2453  
2454  	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2455  		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2456  			            user_tsc_khz);
2457  		return -1;
2458  	}
2459  
2460  	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2461  	return 0;
2462  }
2463  
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2464  static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2465  {
2466  	u32 thresh_lo, thresh_hi;
2467  	int use_scaling = 0;
2468  
2469  	/* tsc_khz can be zero if TSC calibration fails */
2470  	if (user_tsc_khz == 0) {
2471  		/* set tsc_scaling_ratio to a safe value */
2472  		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2473  		return -1;
2474  	}
2475  
2476  	/* Compute a scale to convert nanoseconds in TSC cycles */
2477  	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2478  			   &vcpu->arch.virtual_tsc_shift,
2479  			   &vcpu->arch.virtual_tsc_mult);
2480  	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2481  
2482  	/*
2483  	 * Compute the variation in TSC rate which is acceptable
2484  	 * within the range of tolerance and decide if the
2485  	 * rate being applied is within that bounds of the hardware
2486  	 * rate.  If so, no scaling or compensation need be done.
2487  	 */
2488  	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2489  	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2490  	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2491  		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2492  			 user_tsc_khz, thresh_lo, thresh_hi);
2493  		use_scaling = 1;
2494  	}
2495  	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2496  }
2497  
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2498  static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2499  {
2500  	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2501  				      vcpu->arch.virtual_tsc_mult,
2502  				      vcpu->arch.virtual_tsc_shift);
2503  	tsc += vcpu->arch.this_tsc_write;
2504  	return tsc;
2505  }
2506  
2507  #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2508  static inline bool gtod_is_based_on_tsc(int mode)
2509  {
2510  	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2511  }
2512  #endif
2513  
kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2514  static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2515  {
2516  #ifdef CONFIG_X86_64
2517  	struct kvm_arch *ka = &vcpu->kvm->arch;
2518  	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2519  
2520  	/*
2521  	 * To use the masterclock, the host clocksource must be based on TSC
2522  	 * and all vCPUs must have matching TSCs.  Note, the count for matching
2523  	 * vCPUs doesn't include the reference vCPU, hence "+1".
2524  	 */
2525  	bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2526  				 atomic_read(&vcpu->kvm->online_vcpus)) &&
2527  				gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2528  
2529  	/*
2530  	 * Request a masterclock update if the masterclock needs to be toggled
2531  	 * on/off, or when starting a new generation and the masterclock is
2532  	 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2533  	 * taken _after_ the new generation is created).
2534  	 */
2535  	if ((ka->use_master_clock && new_generation) ||
2536  	    (ka->use_master_clock != use_master_clock))
2537  		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2538  
2539  	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2540  			    atomic_read(&vcpu->kvm->online_vcpus),
2541  		            ka->use_master_clock, gtod->clock.vclock_mode);
2542  #endif
2543  }
2544  
2545  /*
2546   * Multiply tsc by a fixed point number represented by ratio.
2547   *
2548   * The most significant 64-N bits (mult) of ratio represent the
2549   * integral part of the fixed point number; the remaining N bits
2550   * (frac) represent the fractional part, ie. ratio represents a fixed
2551   * point number (mult + frac * 2^(-N)).
2552   *
2553   * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2554   */
__scale_tsc(u64 ratio,u64 tsc)2555  static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2556  {
2557  	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2558  }
2559  
kvm_scale_tsc(u64 tsc,u64 ratio)2560  u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2561  {
2562  	u64 _tsc = tsc;
2563  
2564  	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2565  		_tsc = __scale_tsc(ratio, tsc);
2566  
2567  	return _tsc;
2568  }
2569  
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2570  static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2571  {
2572  	u64 tsc;
2573  
2574  	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2575  
2576  	return target_tsc - tsc;
2577  }
2578  
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2579  u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2580  {
2581  	return vcpu->arch.l1_tsc_offset +
2582  		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2583  }
2584  EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2585  
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2586  u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2587  {
2588  	u64 nested_offset;
2589  
2590  	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2591  		nested_offset = l1_offset;
2592  	else
2593  		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2594  						kvm_caps.tsc_scaling_ratio_frac_bits);
2595  
2596  	nested_offset += l2_offset;
2597  	return nested_offset;
2598  }
2599  EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2600  
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2601  u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2602  {
2603  	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2604  		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2605  				       kvm_caps.tsc_scaling_ratio_frac_bits);
2606  
2607  	return l1_multiplier;
2608  }
2609  EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2610  
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2611  static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2612  {
2613  	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2614  				   vcpu->arch.l1_tsc_offset,
2615  				   l1_offset);
2616  
2617  	vcpu->arch.l1_tsc_offset = l1_offset;
2618  
2619  	/*
2620  	 * If we are here because L1 chose not to trap WRMSR to TSC then
2621  	 * according to the spec this should set L1's TSC (as opposed to
2622  	 * setting L1's offset for L2).
2623  	 */
2624  	if (is_guest_mode(vcpu))
2625  		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2626  			l1_offset,
2627  			kvm_x86_call(get_l2_tsc_offset)(vcpu),
2628  			kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2629  	else
2630  		vcpu->arch.tsc_offset = l1_offset;
2631  
2632  	kvm_x86_call(write_tsc_offset)(vcpu);
2633  }
2634  
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2635  static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2636  {
2637  	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2638  
2639  	/* Userspace is changing the multiplier while L2 is active */
2640  	if (is_guest_mode(vcpu))
2641  		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2642  			l1_multiplier,
2643  			kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2644  	else
2645  		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2646  
2647  	if (kvm_caps.has_tsc_control)
2648  		kvm_x86_call(write_tsc_multiplier)(vcpu);
2649  }
2650  
kvm_check_tsc_unstable(void)2651  static inline bool kvm_check_tsc_unstable(void)
2652  {
2653  #ifdef CONFIG_X86_64
2654  	/*
2655  	 * TSC is marked unstable when we're running on Hyper-V,
2656  	 * 'TSC page' clocksource is good.
2657  	 */
2658  	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2659  		return false;
2660  #endif
2661  	return check_tsc_unstable();
2662  }
2663  
2664  /*
2665   * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2666   * offset for the vcpu and tracks the TSC matching generation that the vcpu
2667   * participates in.
2668   */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched)2669  static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2670  				  u64 ns, bool matched)
2671  {
2672  	struct kvm *kvm = vcpu->kvm;
2673  
2674  	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2675  
2676  	/*
2677  	 * We also track th most recent recorded KHZ, write and time to
2678  	 * allow the matching interval to be extended at each write.
2679  	 */
2680  	kvm->arch.last_tsc_nsec = ns;
2681  	kvm->arch.last_tsc_write = tsc;
2682  	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2683  	kvm->arch.last_tsc_offset = offset;
2684  
2685  	vcpu->arch.last_guest_tsc = tsc;
2686  
2687  	kvm_vcpu_write_tsc_offset(vcpu, offset);
2688  
2689  	if (!matched) {
2690  		/*
2691  		 * We split periods of matched TSC writes into generations.
2692  		 * For each generation, we track the original measured
2693  		 * nanosecond time, offset, and write, so if TSCs are in
2694  		 * sync, we can match exact offset, and if not, we can match
2695  		 * exact software computation in compute_guest_tsc()
2696  		 *
2697  		 * These values are tracked in kvm->arch.cur_xxx variables.
2698  		 */
2699  		kvm->arch.cur_tsc_generation++;
2700  		kvm->arch.cur_tsc_nsec = ns;
2701  		kvm->arch.cur_tsc_write = tsc;
2702  		kvm->arch.cur_tsc_offset = offset;
2703  		kvm->arch.nr_vcpus_matched_tsc = 0;
2704  	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2705  		kvm->arch.nr_vcpus_matched_tsc++;
2706  	}
2707  
2708  	/* Keep track of which generation this VCPU has synchronized to */
2709  	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2710  	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2711  	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2712  
2713  	kvm_track_tsc_matching(vcpu, !matched);
2714  }
2715  
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2716  static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2717  {
2718  	u64 data = user_value ? *user_value : 0;
2719  	struct kvm *kvm = vcpu->kvm;
2720  	u64 offset, ns, elapsed;
2721  	unsigned long flags;
2722  	bool matched = false;
2723  	bool synchronizing = false;
2724  
2725  	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2726  	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2727  	ns = get_kvmclock_base_ns();
2728  	elapsed = ns - kvm->arch.last_tsc_nsec;
2729  
2730  	if (vcpu->arch.virtual_tsc_khz) {
2731  		if (data == 0) {
2732  			/*
2733  			 * Force synchronization when creating a vCPU, or when
2734  			 * userspace explicitly writes a zero value.
2735  			 */
2736  			synchronizing = true;
2737  		} else if (kvm->arch.user_set_tsc) {
2738  			u64 tsc_exp = kvm->arch.last_tsc_write +
2739  						nsec_to_cycles(vcpu, elapsed);
2740  			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2741  			/*
2742  			 * Here lies UAPI baggage: when a user-initiated TSC write has
2743  			 * a small delta (1 second) of virtual cycle time against the
2744  			 * previously set vCPU, we assume that they were intended to be
2745  			 * in sync and the delta was only due to the racy nature of the
2746  			 * legacy API.
2747  			 *
2748  			 * This trick falls down when restoring a guest which genuinely
2749  			 * has been running for less time than the 1 second of imprecision
2750  			 * which we allow for in the legacy API. In this case, the first
2751  			 * value written by userspace (on any vCPU) should not be subject
2752  			 * to this 'correction' to make it sync up with values that only
2753  			 * come from the kernel's default vCPU creation. Make the 1-second
2754  			 * slop hack only trigger if the user_set_tsc flag is already set.
2755  			 */
2756  			synchronizing = data < tsc_exp + tsc_hz &&
2757  					data + tsc_hz > tsc_exp;
2758  		}
2759  	}
2760  
2761  	if (user_value)
2762  		kvm->arch.user_set_tsc = true;
2763  
2764  	/*
2765  	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2766  	 * TSC, we add elapsed time in this computation.  We could let the
2767  	 * compensation code attempt to catch up if we fall behind, but
2768  	 * it's better to try to match offsets from the beginning.
2769           */
2770  	if (synchronizing &&
2771  	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2772  		if (!kvm_check_tsc_unstable()) {
2773  			offset = kvm->arch.cur_tsc_offset;
2774  		} else {
2775  			u64 delta = nsec_to_cycles(vcpu, elapsed);
2776  			data += delta;
2777  			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2778  		}
2779  		matched = true;
2780  	}
2781  
2782  	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2783  	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2784  }
2785  
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2786  static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2787  					   s64 adjustment)
2788  {
2789  	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2790  	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2791  }
2792  
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2793  static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2794  {
2795  	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2796  		WARN_ON(adjustment < 0);
2797  	adjustment = kvm_scale_tsc((u64) adjustment,
2798  				   vcpu->arch.l1_tsc_scaling_ratio);
2799  	adjust_tsc_offset_guest(vcpu, adjustment);
2800  }
2801  
2802  #ifdef CONFIG_X86_64
2803  
read_tsc(void)2804  static u64 read_tsc(void)
2805  {
2806  	u64 ret = (u64)rdtsc_ordered();
2807  	u64 last = pvclock_gtod_data.clock.cycle_last;
2808  
2809  	if (likely(ret >= last))
2810  		return ret;
2811  
2812  	/*
2813  	 * GCC likes to generate cmov here, but this branch is extremely
2814  	 * predictable (it's just a function of time and the likely is
2815  	 * very likely) and there's a data dependence, so force GCC
2816  	 * to generate a branch instead.  I don't barrier() because
2817  	 * we don't actually need a barrier, and if this function
2818  	 * ever gets inlined it will generate worse code.
2819  	 */
2820  	asm volatile ("");
2821  	return last;
2822  }
2823  
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2824  static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2825  			  int *mode)
2826  {
2827  	u64 tsc_pg_val;
2828  	long v;
2829  
2830  	switch (clock->vclock_mode) {
2831  	case VDSO_CLOCKMODE_HVCLOCK:
2832  		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2833  					 tsc_timestamp, &tsc_pg_val)) {
2834  			/* TSC page valid */
2835  			*mode = VDSO_CLOCKMODE_HVCLOCK;
2836  			v = (tsc_pg_val - clock->cycle_last) &
2837  				clock->mask;
2838  		} else {
2839  			/* TSC page invalid */
2840  			*mode = VDSO_CLOCKMODE_NONE;
2841  		}
2842  		break;
2843  	case VDSO_CLOCKMODE_TSC:
2844  		*mode = VDSO_CLOCKMODE_TSC;
2845  		*tsc_timestamp = read_tsc();
2846  		v = (*tsc_timestamp - clock->cycle_last) &
2847  			clock->mask;
2848  		break;
2849  	default:
2850  		*mode = VDSO_CLOCKMODE_NONE;
2851  	}
2852  
2853  	if (*mode == VDSO_CLOCKMODE_NONE)
2854  		*tsc_timestamp = v = 0;
2855  
2856  	return v * clock->mult;
2857  }
2858  
2859  /*
2860   * As with get_kvmclock_base_ns(), this counts from boot time, at the
2861   * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2862   */
do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2863  static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2864  {
2865  	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2866  	unsigned long seq;
2867  	int mode;
2868  	u64 ns;
2869  
2870  	do {
2871  		seq = read_seqcount_begin(&gtod->seq);
2872  		ns = gtod->raw_clock.base_cycles;
2873  		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2874  		ns >>= gtod->raw_clock.shift;
2875  		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2876  	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2877  	*t = ns;
2878  
2879  	return mode;
2880  }
2881  
2882  /*
2883   * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2884   * no boot time offset.
2885   */
do_monotonic(s64 * t,u64 * tsc_timestamp)2886  static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2887  {
2888  	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2889  	unsigned long seq;
2890  	int mode;
2891  	u64 ns;
2892  
2893  	do {
2894  		seq = read_seqcount_begin(&gtod->seq);
2895  		ns = gtod->clock.base_cycles;
2896  		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2897  		ns >>= gtod->clock.shift;
2898  		ns += ktime_to_ns(gtod->clock.offset);
2899  	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2900  	*t = ns;
2901  
2902  	return mode;
2903  }
2904  
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2905  static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2906  {
2907  	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2908  	unsigned long seq;
2909  	int mode;
2910  	u64 ns;
2911  
2912  	do {
2913  		seq = read_seqcount_begin(&gtod->seq);
2914  		ts->tv_sec = gtod->wall_time_sec;
2915  		ns = gtod->clock.base_cycles;
2916  		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2917  		ns >>= gtod->clock.shift;
2918  	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2919  
2920  	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2921  	ts->tv_nsec = ns;
2922  
2923  	return mode;
2924  }
2925  
2926  /*
2927   * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2928   * reports the TSC value from which it do so. Returns true if host is
2929   * using TSC based clocksource.
2930   */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2931  static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2932  {
2933  	/* checked again under seqlock below */
2934  	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2935  		return false;
2936  
2937  	return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2938  						     tsc_timestamp));
2939  }
2940  
2941  /*
2942   * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2943   * so. Returns true if host is using TSC based clocksource.
2944   */
kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2945  bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2946  {
2947  	/* checked again under seqlock below */
2948  	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2949  		return false;
2950  
2951  	return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2952  						 tsc_timestamp));
2953  }
2954  
2955  /*
2956   * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2957   * so. Returns true if host is using TSC based clocksource.
2958   *
2959   * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2960   * for that.
2961   */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2962  static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2963  					   u64 *tsc_timestamp)
2964  {
2965  	/* checked again under seqlock below */
2966  	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2967  		return false;
2968  
2969  	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2970  }
2971  #endif
2972  
2973  /*
2974   *
2975   * Assuming a stable TSC across physical CPUS, and a stable TSC
2976   * across virtual CPUs, the following condition is possible.
2977   * Each numbered line represents an event visible to both
2978   * CPUs at the next numbered event.
2979   *
2980   * "timespecX" represents host monotonic time. "tscX" represents
2981   * RDTSC value.
2982   *
2983   * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2984   *
2985   * 1.  read timespec0,tsc0
2986   * 2.					| timespec1 = timespec0 + N
2987   * 					| tsc1 = tsc0 + M
2988   * 3. transition to guest		| transition to guest
2989   * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2990   * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2991   * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2992   *
2993   * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2994   *
2995   * 	- ret0 < ret1
2996   *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2997   *		...
2998   *	- 0 < N - M => M < N
2999   *
3000   * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
3001   * always the case (the difference between two distinct xtime instances
3002   * might be smaller then the difference between corresponding TSC reads,
3003   * when updating guest vcpus pvclock areas).
3004   *
3005   * To avoid that problem, do not allow visibility of distinct
3006   * system_timestamp/tsc_timestamp values simultaneously: use a master
3007   * copy of host monotonic time values. Update that master copy
3008   * in lockstep.
3009   *
3010   * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3011   *
3012   */
3013  
pvclock_update_vm_gtod_copy(struct kvm * kvm)3014  static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3015  {
3016  #ifdef CONFIG_X86_64
3017  	struct kvm_arch *ka = &kvm->arch;
3018  	int vclock_mode;
3019  	bool host_tsc_clocksource, vcpus_matched;
3020  
3021  	lockdep_assert_held(&kvm->arch.tsc_write_lock);
3022  	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3023  			atomic_read(&kvm->online_vcpus));
3024  
3025  	/*
3026  	 * If the host uses TSC clock, then passthrough TSC as stable
3027  	 * to the guest.
3028  	 */
3029  	host_tsc_clocksource = kvm_get_time_and_clockread(
3030  					&ka->master_kernel_ns,
3031  					&ka->master_cycle_now);
3032  
3033  	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3034  				&& !ka->backwards_tsc_observed
3035  				&& !ka->boot_vcpu_runs_old_kvmclock;
3036  
3037  	if (ka->use_master_clock)
3038  		atomic_set(&kvm_guest_has_master_clock, 1);
3039  
3040  	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3041  	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3042  					vcpus_matched);
3043  #endif
3044  }
3045  
kvm_make_mclock_inprogress_request(struct kvm * kvm)3046  static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3047  {
3048  	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3049  }
3050  
__kvm_start_pvclock_update(struct kvm * kvm)3051  static void __kvm_start_pvclock_update(struct kvm *kvm)
3052  {
3053  	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3054  	write_seqcount_begin(&kvm->arch.pvclock_sc);
3055  }
3056  
kvm_start_pvclock_update(struct kvm * kvm)3057  static void kvm_start_pvclock_update(struct kvm *kvm)
3058  {
3059  	kvm_make_mclock_inprogress_request(kvm);
3060  
3061  	/* no guest entries from this point */
3062  	__kvm_start_pvclock_update(kvm);
3063  }
3064  
kvm_end_pvclock_update(struct kvm * kvm)3065  static void kvm_end_pvclock_update(struct kvm *kvm)
3066  {
3067  	struct kvm_arch *ka = &kvm->arch;
3068  	struct kvm_vcpu *vcpu;
3069  	unsigned long i;
3070  
3071  	write_seqcount_end(&ka->pvclock_sc);
3072  	raw_spin_unlock_irq(&ka->tsc_write_lock);
3073  	kvm_for_each_vcpu(i, vcpu, kvm)
3074  		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3075  
3076  	/* guest entries allowed */
3077  	kvm_for_each_vcpu(i, vcpu, kvm)
3078  		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3079  }
3080  
kvm_update_masterclock(struct kvm * kvm)3081  static void kvm_update_masterclock(struct kvm *kvm)
3082  {
3083  	kvm_hv_request_tsc_page_update(kvm);
3084  	kvm_start_pvclock_update(kvm);
3085  	pvclock_update_vm_gtod_copy(kvm);
3086  	kvm_end_pvclock_update(kvm);
3087  }
3088  
3089  /*
3090   * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3091   * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3092   * can change during boot even if the TSC is constant, as it's possible for KVM
3093   * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3094   * notification when calibration completes, but practically speaking calibration
3095   * will complete before userspace is alive enough to create VMs.
3096   */
get_cpu_tsc_khz(void)3097  static unsigned long get_cpu_tsc_khz(void)
3098  {
3099  	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3100  		return tsc_khz;
3101  	else
3102  		return __this_cpu_read(cpu_tsc_khz);
3103  }
3104  
3105  /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3106  static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3107  {
3108  	struct kvm_arch *ka = &kvm->arch;
3109  	struct pvclock_vcpu_time_info hv_clock;
3110  
3111  	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3112  	get_cpu();
3113  
3114  	data->flags = 0;
3115  	if (ka->use_master_clock &&
3116  	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3117  #ifdef CONFIG_X86_64
3118  		struct timespec64 ts;
3119  
3120  		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3121  			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3122  			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3123  		} else
3124  #endif
3125  		data->host_tsc = rdtsc();
3126  
3127  		data->flags |= KVM_CLOCK_TSC_STABLE;
3128  		hv_clock.tsc_timestamp = ka->master_cycle_now;
3129  		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3130  		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3131  				   &hv_clock.tsc_shift,
3132  				   &hv_clock.tsc_to_system_mul);
3133  		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3134  	} else {
3135  		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3136  	}
3137  
3138  	put_cpu();
3139  }
3140  
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3141  static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3142  {
3143  	struct kvm_arch *ka = &kvm->arch;
3144  	unsigned seq;
3145  
3146  	do {
3147  		seq = read_seqcount_begin(&ka->pvclock_sc);
3148  		__get_kvmclock(kvm, data);
3149  	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3150  }
3151  
get_kvmclock_ns(struct kvm * kvm)3152  u64 get_kvmclock_ns(struct kvm *kvm)
3153  {
3154  	struct kvm_clock_data data;
3155  
3156  	get_kvmclock(kvm, &data);
3157  	return data.clock;
3158  }
3159  
kvm_setup_guest_pvclock(struct kvm_vcpu * v,struct gfn_to_pfn_cache * gpc,unsigned int offset,bool force_tsc_unstable)3160  static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3161  				    struct gfn_to_pfn_cache *gpc,
3162  				    unsigned int offset,
3163  				    bool force_tsc_unstable)
3164  {
3165  	struct kvm_vcpu_arch *vcpu = &v->arch;
3166  	struct pvclock_vcpu_time_info *guest_hv_clock;
3167  	unsigned long flags;
3168  
3169  	read_lock_irqsave(&gpc->lock, flags);
3170  	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3171  		read_unlock_irqrestore(&gpc->lock, flags);
3172  
3173  		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3174  			return;
3175  
3176  		read_lock_irqsave(&gpc->lock, flags);
3177  	}
3178  
3179  	guest_hv_clock = (void *)(gpc->khva + offset);
3180  
3181  	/*
3182  	 * This VCPU is paused, but it's legal for a guest to read another
3183  	 * VCPU's kvmclock, so we really have to follow the specification where
3184  	 * it says that version is odd if data is being modified, and even after
3185  	 * it is consistent.
3186  	 */
3187  
3188  	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3189  	smp_wmb();
3190  
3191  	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3192  	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3193  
3194  	if (vcpu->pvclock_set_guest_stopped_request) {
3195  		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3196  		vcpu->pvclock_set_guest_stopped_request = false;
3197  	}
3198  
3199  	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3200  
3201  	if (force_tsc_unstable)
3202  		guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3203  
3204  	smp_wmb();
3205  
3206  	guest_hv_clock->version = ++vcpu->hv_clock.version;
3207  
3208  	kvm_gpc_mark_dirty_in_slot(gpc);
3209  	read_unlock_irqrestore(&gpc->lock, flags);
3210  
3211  	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3212  }
3213  
kvm_guest_time_update(struct kvm_vcpu * v)3214  static int kvm_guest_time_update(struct kvm_vcpu *v)
3215  {
3216  	unsigned long flags, tgt_tsc_khz;
3217  	unsigned seq;
3218  	struct kvm_vcpu_arch *vcpu = &v->arch;
3219  	struct kvm_arch *ka = &v->kvm->arch;
3220  	s64 kernel_ns;
3221  	u64 tsc_timestamp, host_tsc;
3222  	u8 pvclock_flags;
3223  	bool use_master_clock;
3224  #ifdef CONFIG_KVM_XEN
3225  	/*
3226  	 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3227  	 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3228  	 * This default behaviour led to bugs in some guest kernels which cause
3229  	 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3230  	 */
3231  	bool xen_pvclock_tsc_unstable =
3232  		ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3233  #endif
3234  
3235  	kernel_ns = 0;
3236  	host_tsc = 0;
3237  
3238  	/*
3239  	 * If the host uses TSC clock, then passthrough TSC as stable
3240  	 * to the guest.
3241  	 */
3242  	do {
3243  		seq = read_seqcount_begin(&ka->pvclock_sc);
3244  		use_master_clock = ka->use_master_clock;
3245  		if (use_master_clock) {
3246  			host_tsc = ka->master_cycle_now;
3247  			kernel_ns = ka->master_kernel_ns;
3248  		}
3249  	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3250  
3251  	/* Keep irq disabled to prevent changes to the clock */
3252  	local_irq_save(flags);
3253  	tgt_tsc_khz = get_cpu_tsc_khz();
3254  	if (unlikely(tgt_tsc_khz == 0)) {
3255  		local_irq_restore(flags);
3256  		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3257  		return 1;
3258  	}
3259  	if (!use_master_clock) {
3260  		host_tsc = rdtsc();
3261  		kernel_ns = get_kvmclock_base_ns();
3262  	}
3263  
3264  	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3265  
3266  	/*
3267  	 * We may have to catch up the TSC to match elapsed wall clock
3268  	 * time for two reasons, even if kvmclock is used.
3269  	 *   1) CPU could have been running below the maximum TSC rate
3270  	 *   2) Broken TSC compensation resets the base at each VCPU
3271  	 *      entry to avoid unknown leaps of TSC even when running
3272  	 *      again on the same CPU.  This may cause apparent elapsed
3273  	 *      time to disappear, and the guest to stand still or run
3274  	 *	very slowly.
3275  	 */
3276  	if (vcpu->tsc_catchup) {
3277  		u64 tsc = compute_guest_tsc(v, kernel_ns);
3278  		if (tsc > tsc_timestamp) {
3279  			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3280  			tsc_timestamp = tsc;
3281  		}
3282  	}
3283  
3284  	local_irq_restore(flags);
3285  
3286  	/* With all the info we got, fill in the values */
3287  
3288  	if (kvm_caps.has_tsc_control)
3289  		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3290  					    v->arch.l1_tsc_scaling_ratio);
3291  
3292  	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3293  		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3294  				   &vcpu->hv_clock.tsc_shift,
3295  				   &vcpu->hv_clock.tsc_to_system_mul);
3296  		vcpu->hw_tsc_khz = tgt_tsc_khz;
3297  		kvm_xen_update_tsc_info(v);
3298  	}
3299  
3300  	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3301  	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3302  	vcpu->last_guest_tsc = tsc_timestamp;
3303  
3304  	/* If the host uses TSC clocksource, then it is stable */
3305  	pvclock_flags = 0;
3306  	if (use_master_clock)
3307  		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3308  
3309  	vcpu->hv_clock.flags = pvclock_flags;
3310  
3311  	if (vcpu->pv_time.active)
3312  		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3313  #ifdef CONFIG_KVM_XEN
3314  	if (vcpu->xen.vcpu_info_cache.active)
3315  		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3316  					offsetof(struct compat_vcpu_info, time),
3317  					xen_pvclock_tsc_unstable);
3318  	if (vcpu->xen.vcpu_time_info_cache.active)
3319  		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3320  					xen_pvclock_tsc_unstable);
3321  #endif
3322  	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3323  	return 0;
3324  }
3325  
3326  /*
3327   * The pvclock_wall_clock ABI tells the guest the wall clock time at
3328   * which it started (i.e. its epoch, when its kvmclock was zero).
3329   *
3330   * In fact those clocks are subtly different; wall clock frequency is
3331   * adjusted by NTP and has leap seconds, while the kvmclock is a
3332   * simple function of the TSC without any such adjustment.
3333   *
3334   * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3335   * that and kvmclock, but even that would be subject to change over
3336   * time.
3337   *
3338   * Attempt to calculate the epoch at a given moment using the *same*
3339   * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3340   * wallclock and kvmclock times, and subtracting one from the other.
3341   *
3342   * Fall back to using their values at slightly different moments by
3343   * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3344   */
kvm_get_wall_clock_epoch(struct kvm * kvm)3345  uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3346  {
3347  #ifdef CONFIG_X86_64
3348  	struct pvclock_vcpu_time_info hv_clock;
3349  	struct kvm_arch *ka = &kvm->arch;
3350  	unsigned long seq, local_tsc_khz;
3351  	struct timespec64 ts;
3352  	uint64_t host_tsc;
3353  
3354  	do {
3355  		seq = read_seqcount_begin(&ka->pvclock_sc);
3356  
3357  		local_tsc_khz = 0;
3358  		if (!ka->use_master_clock)
3359  			break;
3360  
3361  		/*
3362  		 * The TSC read and the call to get_cpu_tsc_khz() must happen
3363  		 * on the same CPU.
3364  		 */
3365  		get_cpu();
3366  
3367  		local_tsc_khz = get_cpu_tsc_khz();
3368  
3369  		if (local_tsc_khz &&
3370  		    !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3371  			local_tsc_khz = 0; /* Fall back to old method */
3372  
3373  		put_cpu();
3374  
3375  		/*
3376  		 * These values must be snapshotted within the seqcount loop.
3377  		 * After that, it's just mathematics which can happen on any
3378  		 * CPU at any time.
3379  		 */
3380  		hv_clock.tsc_timestamp = ka->master_cycle_now;
3381  		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3382  
3383  	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3384  
3385  	/*
3386  	 * If the conditions were right, and obtaining the wallclock+TSC was
3387  	 * successful, calculate the KVM clock at the corresponding time and
3388  	 * subtract one from the other to get the guest's epoch in nanoseconds
3389  	 * since 1970-01-01.
3390  	 */
3391  	if (local_tsc_khz) {
3392  		kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3393  				   &hv_clock.tsc_shift,
3394  				   &hv_clock.tsc_to_system_mul);
3395  		return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3396  			__pvclock_read_cycles(&hv_clock, host_tsc);
3397  	}
3398  #endif
3399  	return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3400  }
3401  
3402  /*
3403   * kvmclock updates which are isolated to a given vcpu, such as
3404   * vcpu->cpu migration, should not allow system_timestamp from
3405   * the rest of the vcpus to remain static. Otherwise ntp frequency
3406   * correction applies to one vcpu's system_timestamp but not
3407   * the others.
3408   *
3409   * So in those cases, request a kvmclock update for all vcpus.
3410   * We need to rate-limit these requests though, as they can
3411   * considerably slow guests that have a large number of vcpus.
3412   * The time for a remote vcpu to update its kvmclock is bound
3413   * by the delay we use to rate-limit the updates.
3414   */
3415  
3416  #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3417  
kvmclock_update_fn(struct work_struct * work)3418  static void kvmclock_update_fn(struct work_struct *work)
3419  {
3420  	unsigned long i;
3421  	struct delayed_work *dwork = to_delayed_work(work);
3422  	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3423  					   kvmclock_update_work);
3424  	struct kvm *kvm = container_of(ka, struct kvm, arch);
3425  	struct kvm_vcpu *vcpu;
3426  
3427  	kvm_for_each_vcpu(i, vcpu, kvm) {
3428  		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3429  		kvm_vcpu_kick(vcpu);
3430  	}
3431  }
3432  
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3433  static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3434  {
3435  	struct kvm *kvm = v->kvm;
3436  
3437  	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3438  	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3439  					KVMCLOCK_UPDATE_DELAY);
3440  }
3441  
3442  #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3443  
kvmclock_sync_fn(struct work_struct * work)3444  static void kvmclock_sync_fn(struct work_struct *work)
3445  {
3446  	struct delayed_work *dwork = to_delayed_work(work);
3447  	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3448  					   kvmclock_sync_work);
3449  	struct kvm *kvm = container_of(ka, struct kvm, arch);
3450  
3451  	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3452  	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3453  					KVMCLOCK_SYNC_PERIOD);
3454  }
3455  
3456  /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3457  static bool is_mci_control_msr(u32 msr)
3458  {
3459  	return (msr & 3) == 0;
3460  }
is_mci_status_msr(u32 msr)3461  static bool is_mci_status_msr(u32 msr)
3462  {
3463  	return (msr & 3) == 1;
3464  }
3465  
3466  /*
3467   * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3468   */
can_set_mci_status(struct kvm_vcpu * vcpu)3469  static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3470  {
3471  	/* McStatusWrEn enabled? */
3472  	if (guest_cpuid_is_amd_compatible(vcpu))
3473  		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3474  
3475  	return false;
3476  }
3477  
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3478  static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3479  {
3480  	u64 mcg_cap = vcpu->arch.mcg_cap;
3481  	unsigned bank_num = mcg_cap & 0xff;
3482  	u32 msr = msr_info->index;
3483  	u64 data = msr_info->data;
3484  	u32 offset, last_msr;
3485  
3486  	switch (msr) {
3487  	case MSR_IA32_MCG_STATUS:
3488  		vcpu->arch.mcg_status = data;
3489  		break;
3490  	case MSR_IA32_MCG_CTL:
3491  		if (!(mcg_cap & MCG_CTL_P) &&
3492  		    (data || !msr_info->host_initiated))
3493  			return 1;
3494  		if (data != 0 && data != ~(u64)0)
3495  			return 1;
3496  		vcpu->arch.mcg_ctl = data;
3497  		break;
3498  	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3499  		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3500  		if (msr > last_msr)
3501  			return 1;
3502  
3503  		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3504  			return 1;
3505  		/* An attempt to write a 1 to a reserved bit raises #GP */
3506  		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3507  			return 1;
3508  		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3509  					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3510  		vcpu->arch.mci_ctl2_banks[offset] = data;
3511  		break;
3512  	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3513  		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3514  		if (msr > last_msr)
3515  			return 1;
3516  
3517  		/*
3518  		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3519  		 * values are architecturally undefined.  But, some Linux
3520  		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3521  		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3522  		 * other bits in order to avoid an uncaught #GP in the guest.
3523  		 *
3524  		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3525  		 * single-bit ECC data errors.
3526  		 */
3527  		if (is_mci_control_msr(msr) &&
3528  		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3529  			return 1;
3530  
3531  		/*
3532  		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3533  		 * AMD-based CPUs allow non-zero values, but if and only if
3534  		 * HWCR[McStatusWrEn] is set.
3535  		 */
3536  		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3537  		    data != 0 && !can_set_mci_status(vcpu))
3538  			return 1;
3539  
3540  		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3541  					    last_msr + 1 - MSR_IA32_MC0_CTL);
3542  		vcpu->arch.mce_banks[offset] = data;
3543  		break;
3544  	default:
3545  		return 1;
3546  	}
3547  	return 0;
3548  }
3549  
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3550  static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3551  {
3552  	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3553  
3554  	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3555  }
3556  
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3557  static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3558  {
3559  	gpa_t gpa = data & ~0x3f;
3560  
3561  	/* Bits 4:5 are reserved, Should be zero */
3562  	if (data & 0x30)
3563  		return 1;
3564  
3565  	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3566  	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3567  		return 1;
3568  
3569  	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3570  	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3571  		return 1;
3572  
3573  	if (!lapic_in_kernel(vcpu))
3574  		return data ? 1 : 0;
3575  
3576  	vcpu->arch.apf.msr_en_val = data;
3577  
3578  	if (!kvm_pv_async_pf_enabled(vcpu)) {
3579  		kvm_clear_async_pf_completion_queue(vcpu);
3580  		kvm_async_pf_hash_reset(vcpu);
3581  		return 0;
3582  	}
3583  
3584  	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3585  					sizeof(u64)))
3586  		return 1;
3587  
3588  	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3589  	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3590  
3591  	kvm_async_pf_wakeup_all(vcpu);
3592  
3593  	return 0;
3594  }
3595  
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3596  static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3597  {
3598  	/* Bits 8-63 are reserved */
3599  	if (data >> 8)
3600  		return 1;
3601  
3602  	if (!lapic_in_kernel(vcpu))
3603  		return 1;
3604  
3605  	vcpu->arch.apf.msr_int_val = data;
3606  
3607  	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3608  
3609  	return 0;
3610  }
3611  
kvmclock_reset(struct kvm_vcpu * vcpu)3612  static void kvmclock_reset(struct kvm_vcpu *vcpu)
3613  {
3614  	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3615  	vcpu->arch.time = 0;
3616  }
3617  
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3618  static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3619  {
3620  	++vcpu->stat.tlb_flush;
3621  	kvm_x86_call(flush_tlb_all)(vcpu);
3622  
3623  	/* Flushing all ASIDs flushes the current ASID... */
3624  	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3625  }
3626  
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3627  static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3628  {
3629  	++vcpu->stat.tlb_flush;
3630  
3631  	if (!tdp_enabled) {
3632  		/*
3633  		 * A TLB flush on behalf of the guest is equivalent to
3634  		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3635  		 * a forced sync of the shadow page tables.  Ensure all the
3636  		 * roots are synced and the guest TLB in hardware is clean.
3637  		 */
3638  		kvm_mmu_sync_roots(vcpu);
3639  		kvm_mmu_sync_prev_roots(vcpu);
3640  	}
3641  
3642  	kvm_x86_call(flush_tlb_guest)(vcpu);
3643  
3644  	/*
3645  	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3646  	 * grained flushing.
3647  	 */
3648  	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3649  }
3650  
3651  
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3652  static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3653  {
3654  	++vcpu->stat.tlb_flush;
3655  	kvm_x86_call(flush_tlb_current)(vcpu);
3656  }
3657  
3658  /*
3659   * Service "local" TLB flush requests, which are specific to the current MMU
3660   * context.  In addition to the generic event handling in vcpu_enter_guest(),
3661   * TLB flushes that are targeted at an MMU context also need to be serviced
3662   * prior before nested VM-Enter/VM-Exit.
3663   */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3664  void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3665  {
3666  	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3667  		kvm_vcpu_flush_tlb_current(vcpu);
3668  
3669  	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3670  		kvm_vcpu_flush_tlb_guest(vcpu);
3671  }
3672  EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3673  
record_steal_time(struct kvm_vcpu * vcpu)3674  static void record_steal_time(struct kvm_vcpu *vcpu)
3675  {
3676  	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3677  	struct kvm_steal_time __user *st;
3678  	struct kvm_memslots *slots;
3679  	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3680  	u64 steal;
3681  	u32 version;
3682  
3683  	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3684  		kvm_xen_runstate_set_running(vcpu);
3685  		return;
3686  	}
3687  
3688  	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3689  		return;
3690  
3691  	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3692  		return;
3693  
3694  	slots = kvm_memslots(vcpu->kvm);
3695  
3696  	if (unlikely(slots->generation != ghc->generation ||
3697  		     gpa != ghc->gpa ||
3698  		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3699  		/* We rely on the fact that it fits in a single page. */
3700  		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3701  
3702  		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3703  		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3704  			return;
3705  	}
3706  
3707  	st = (struct kvm_steal_time __user *)ghc->hva;
3708  	/*
3709  	 * Doing a TLB flush here, on the guest's behalf, can avoid
3710  	 * expensive IPIs.
3711  	 */
3712  	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3713  		u8 st_preempted = 0;
3714  		int err = -EFAULT;
3715  
3716  		if (!user_access_begin(st, sizeof(*st)))
3717  			return;
3718  
3719  		asm volatile("1: xchgb %0, %2\n"
3720  			     "xor %1, %1\n"
3721  			     "2:\n"
3722  			     _ASM_EXTABLE_UA(1b, 2b)
3723  			     : "+q" (st_preempted),
3724  			       "+&r" (err),
3725  			       "+m" (st->preempted));
3726  		if (err)
3727  			goto out;
3728  
3729  		user_access_end();
3730  
3731  		vcpu->arch.st.preempted = 0;
3732  
3733  		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3734  				       st_preempted & KVM_VCPU_FLUSH_TLB);
3735  		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3736  			kvm_vcpu_flush_tlb_guest(vcpu);
3737  
3738  		if (!user_access_begin(st, sizeof(*st)))
3739  			goto dirty;
3740  	} else {
3741  		if (!user_access_begin(st, sizeof(*st)))
3742  			return;
3743  
3744  		unsafe_put_user(0, &st->preempted, out);
3745  		vcpu->arch.st.preempted = 0;
3746  	}
3747  
3748  	unsafe_get_user(version, &st->version, out);
3749  	if (version & 1)
3750  		version += 1;  /* first time write, random junk */
3751  
3752  	version += 1;
3753  	unsafe_put_user(version, &st->version, out);
3754  
3755  	smp_wmb();
3756  
3757  	unsafe_get_user(steal, &st->steal, out);
3758  	steal += current->sched_info.run_delay -
3759  		vcpu->arch.st.last_steal;
3760  	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3761  	unsafe_put_user(steal, &st->steal, out);
3762  
3763  	version += 1;
3764  	unsafe_put_user(version, &st->version, out);
3765  
3766   out:
3767  	user_access_end();
3768   dirty:
3769  	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3770  }
3771  
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3772  int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3773  {
3774  	u32 msr = msr_info->index;
3775  	u64 data = msr_info->data;
3776  
3777  	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3778  		return kvm_xen_write_hypercall_page(vcpu, data);
3779  
3780  	switch (msr) {
3781  	case MSR_AMD64_NB_CFG:
3782  	case MSR_IA32_UCODE_WRITE:
3783  	case MSR_VM_HSAVE_PA:
3784  	case MSR_AMD64_PATCH_LOADER:
3785  	case MSR_AMD64_BU_CFG2:
3786  	case MSR_AMD64_DC_CFG:
3787  	case MSR_AMD64_TW_CFG:
3788  	case MSR_F15H_EX_CFG:
3789  		break;
3790  
3791  	case MSR_IA32_UCODE_REV:
3792  		if (msr_info->host_initiated)
3793  			vcpu->arch.microcode_version = data;
3794  		break;
3795  	case MSR_IA32_ARCH_CAPABILITIES:
3796  		if (!msr_info->host_initiated)
3797  			return 1;
3798  		vcpu->arch.arch_capabilities = data;
3799  		break;
3800  	case MSR_IA32_PERF_CAPABILITIES:
3801  		if (!msr_info->host_initiated)
3802  			return 1;
3803  		if (data & ~kvm_caps.supported_perf_cap)
3804  			return 1;
3805  
3806  		/*
3807  		 * Note, this is not just a performance optimization!  KVM
3808  		 * disallows changing feature MSRs after the vCPU has run; PMU
3809  		 * refresh will bug the VM if called after the vCPU has run.
3810  		 */
3811  		if (vcpu->arch.perf_capabilities == data)
3812  			break;
3813  
3814  		vcpu->arch.perf_capabilities = data;
3815  		kvm_pmu_refresh(vcpu);
3816  		break;
3817  	case MSR_IA32_PRED_CMD: {
3818  		u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3819  
3820  		if (!msr_info->host_initiated) {
3821  			if ((!guest_has_pred_cmd_msr(vcpu)))
3822  				return 1;
3823  
3824  			if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3825  			    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3826  				reserved_bits |= PRED_CMD_IBPB;
3827  
3828  			if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3829  				reserved_bits |= PRED_CMD_SBPB;
3830  		}
3831  
3832  		if (!boot_cpu_has(X86_FEATURE_IBPB))
3833  			reserved_bits |= PRED_CMD_IBPB;
3834  
3835  		if (!boot_cpu_has(X86_FEATURE_SBPB))
3836  			reserved_bits |= PRED_CMD_SBPB;
3837  
3838  		if (data & reserved_bits)
3839  			return 1;
3840  
3841  		if (!data)
3842  			break;
3843  
3844  		wrmsrl(MSR_IA32_PRED_CMD, data);
3845  		break;
3846  	}
3847  	case MSR_IA32_FLUSH_CMD:
3848  		if (!msr_info->host_initiated &&
3849  		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3850  			return 1;
3851  
3852  		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3853  			return 1;
3854  		if (!data)
3855  			break;
3856  
3857  		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3858  		break;
3859  	case MSR_EFER:
3860  		return set_efer(vcpu, msr_info);
3861  	case MSR_K7_HWCR:
3862  		data &= ~(u64)0x40;	/* ignore flush filter disable */
3863  		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3864  		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3865  
3866  		/*
3867  		 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3868  		 * through at least v6.6 whine if TscFreqSel is clear,
3869  		 * depending on F/M/S.
3870  		 */
3871  		if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3872  			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3873  			return 1;
3874  		}
3875  		vcpu->arch.msr_hwcr = data;
3876  		break;
3877  	case MSR_FAM10H_MMIO_CONF_BASE:
3878  		if (data != 0) {
3879  			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3880  			return 1;
3881  		}
3882  		break;
3883  	case MSR_IA32_CR_PAT:
3884  		if (!kvm_pat_valid(data))
3885  			return 1;
3886  
3887  		vcpu->arch.pat = data;
3888  		break;
3889  	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3890  	case MSR_MTRRdefType:
3891  		return kvm_mtrr_set_msr(vcpu, msr, data);
3892  	case MSR_IA32_APICBASE:
3893  		return kvm_set_apic_base(vcpu, msr_info);
3894  	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3895  		return kvm_x2apic_msr_write(vcpu, msr, data);
3896  	case MSR_IA32_TSC_DEADLINE:
3897  		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3898  		break;
3899  	case MSR_IA32_TSC_ADJUST:
3900  		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3901  			if (!msr_info->host_initiated) {
3902  				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3903  				adjust_tsc_offset_guest(vcpu, adj);
3904  				/* Before back to guest, tsc_timestamp must be adjusted
3905  				 * as well, otherwise guest's percpu pvclock time could jump.
3906  				 */
3907  				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3908  			}
3909  			vcpu->arch.ia32_tsc_adjust_msr = data;
3910  		}
3911  		break;
3912  	case MSR_IA32_MISC_ENABLE: {
3913  		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3914  
3915  		if (!msr_info->host_initiated) {
3916  			/* RO bits */
3917  			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3918  				return 1;
3919  
3920  			/* R bits, i.e. writes are ignored, but don't fault. */
3921  			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3922  			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3923  		}
3924  
3925  		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3926  		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3927  			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3928  				return 1;
3929  			vcpu->arch.ia32_misc_enable_msr = data;
3930  			kvm_update_cpuid_runtime(vcpu);
3931  		} else {
3932  			vcpu->arch.ia32_misc_enable_msr = data;
3933  		}
3934  		break;
3935  	}
3936  	case MSR_IA32_SMBASE:
3937  		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3938  			return 1;
3939  		vcpu->arch.smbase = data;
3940  		break;
3941  	case MSR_IA32_POWER_CTL:
3942  		vcpu->arch.msr_ia32_power_ctl = data;
3943  		break;
3944  	case MSR_IA32_TSC:
3945  		if (msr_info->host_initiated) {
3946  			kvm_synchronize_tsc(vcpu, &data);
3947  		} else {
3948  			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3949  			adjust_tsc_offset_guest(vcpu, adj);
3950  			vcpu->arch.ia32_tsc_adjust_msr += adj;
3951  		}
3952  		break;
3953  	case MSR_IA32_XSS:
3954  		if (!msr_info->host_initiated &&
3955  		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3956  			return 1;
3957  		/*
3958  		 * KVM supports exposing PT to the guest, but does not support
3959  		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3960  		 * XSAVES/XRSTORS to save/restore PT MSRs.
3961  		 */
3962  		if (data & ~kvm_caps.supported_xss)
3963  			return 1;
3964  		vcpu->arch.ia32_xss = data;
3965  		kvm_update_cpuid_runtime(vcpu);
3966  		break;
3967  	case MSR_SMI_COUNT:
3968  		if (!msr_info->host_initiated)
3969  			return 1;
3970  		vcpu->arch.smi_count = data;
3971  		break;
3972  	case MSR_KVM_WALL_CLOCK_NEW:
3973  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3974  			return 1;
3975  
3976  		vcpu->kvm->arch.wall_clock = data;
3977  		kvm_write_wall_clock(vcpu->kvm, data, 0);
3978  		break;
3979  	case MSR_KVM_WALL_CLOCK:
3980  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3981  			return 1;
3982  
3983  		vcpu->kvm->arch.wall_clock = data;
3984  		kvm_write_wall_clock(vcpu->kvm, data, 0);
3985  		break;
3986  	case MSR_KVM_SYSTEM_TIME_NEW:
3987  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3988  			return 1;
3989  
3990  		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3991  		break;
3992  	case MSR_KVM_SYSTEM_TIME:
3993  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3994  			return 1;
3995  
3996  		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3997  		break;
3998  	case MSR_KVM_ASYNC_PF_EN:
3999  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4000  			return 1;
4001  
4002  		if (kvm_pv_enable_async_pf(vcpu, data))
4003  			return 1;
4004  		break;
4005  	case MSR_KVM_ASYNC_PF_INT:
4006  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4007  			return 1;
4008  
4009  		if (kvm_pv_enable_async_pf_int(vcpu, data))
4010  			return 1;
4011  		break;
4012  	case MSR_KVM_ASYNC_PF_ACK:
4013  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4014  			return 1;
4015  		if (data & 0x1) {
4016  			vcpu->arch.apf.pageready_pending = false;
4017  			kvm_check_async_pf_completion(vcpu);
4018  		}
4019  		break;
4020  	case MSR_KVM_STEAL_TIME:
4021  		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4022  			return 1;
4023  
4024  		if (unlikely(!sched_info_on()))
4025  			return 1;
4026  
4027  		if (data & KVM_STEAL_RESERVED_MASK)
4028  			return 1;
4029  
4030  		vcpu->arch.st.msr_val = data;
4031  
4032  		if (!(data & KVM_MSR_ENABLED))
4033  			break;
4034  
4035  		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4036  
4037  		break;
4038  	case MSR_KVM_PV_EOI_EN:
4039  		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4040  			return 1;
4041  
4042  		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4043  			return 1;
4044  		break;
4045  
4046  	case MSR_KVM_POLL_CONTROL:
4047  		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4048  			return 1;
4049  
4050  		/* only enable bit supported */
4051  		if (data & (-1ULL << 1))
4052  			return 1;
4053  
4054  		vcpu->arch.msr_kvm_poll_control = data;
4055  		break;
4056  
4057  	case MSR_IA32_MCG_CTL:
4058  	case MSR_IA32_MCG_STATUS:
4059  	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4060  	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4061  		return set_msr_mce(vcpu, msr_info);
4062  
4063  	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4064  	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4065  	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4066  	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4067  		if (kvm_pmu_is_valid_msr(vcpu, msr))
4068  			return kvm_pmu_set_msr(vcpu, msr_info);
4069  
4070  		if (data)
4071  			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4072  		break;
4073  	case MSR_K7_CLK_CTL:
4074  		/*
4075  		 * Ignore all writes to this no longer documented MSR.
4076  		 * Writes are only relevant for old K7 processors,
4077  		 * all pre-dating SVM, but a recommended workaround from
4078  		 * AMD for these chips. It is possible to specify the
4079  		 * affected processor models on the command line, hence
4080  		 * the need to ignore the workaround.
4081  		 */
4082  		break;
4083  #ifdef CONFIG_KVM_HYPERV
4084  	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4085  	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4086  	case HV_X64_MSR_SYNDBG_OPTIONS:
4087  	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4088  	case HV_X64_MSR_CRASH_CTL:
4089  	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4090  	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4091  	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4092  	case HV_X64_MSR_TSC_EMULATION_STATUS:
4093  	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4094  		return kvm_hv_set_msr_common(vcpu, msr, data,
4095  					     msr_info->host_initiated);
4096  #endif
4097  	case MSR_IA32_BBL_CR_CTL3:
4098  		/* Drop writes to this legacy MSR -- see rdmsr
4099  		 * counterpart for further detail.
4100  		 */
4101  		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4102  		break;
4103  	case MSR_AMD64_OSVW_ID_LENGTH:
4104  		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4105  			return 1;
4106  		vcpu->arch.osvw.length = data;
4107  		break;
4108  	case MSR_AMD64_OSVW_STATUS:
4109  		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4110  			return 1;
4111  		vcpu->arch.osvw.status = data;
4112  		break;
4113  	case MSR_PLATFORM_INFO:
4114  		if (!msr_info->host_initiated ||
4115  		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4116  		     cpuid_fault_enabled(vcpu)))
4117  			return 1;
4118  		vcpu->arch.msr_platform_info = data;
4119  		break;
4120  	case MSR_MISC_FEATURES_ENABLES:
4121  		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4122  		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4123  		     !supports_cpuid_fault(vcpu)))
4124  			return 1;
4125  		vcpu->arch.msr_misc_features_enables = data;
4126  		break;
4127  #ifdef CONFIG_X86_64
4128  	case MSR_IA32_XFD:
4129  		if (!msr_info->host_initiated &&
4130  		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4131  			return 1;
4132  
4133  		if (data & ~kvm_guest_supported_xfd(vcpu))
4134  			return 1;
4135  
4136  		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4137  		break;
4138  	case MSR_IA32_XFD_ERR:
4139  		if (!msr_info->host_initiated &&
4140  		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4141  			return 1;
4142  
4143  		if (data & ~kvm_guest_supported_xfd(vcpu))
4144  			return 1;
4145  
4146  		vcpu->arch.guest_fpu.xfd_err = data;
4147  		break;
4148  #endif
4149  	default:
4150  		if (kvm_pmu_is_valid_msr(vcpu, msr))
4151  			return kvm_pmu_set_msr(vcpu, msr_info);
4152  
4153  		return KVM_MSR_RET_UNSUPPORTED;
4154  	}
4155  	return 0;
4156  }
4157  EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4158  
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4159  static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4160  {
4161  	u64 data;
4162  	u64 mcg_cap = vcpu->arch.mcg_cap;
4163  	unsigned bank_num = mcg_cap & 0xff;
4164  	u32 offset, last_msr;
4165  
4166  	switch (msr) {
4167  	case MSR_IA32_P5_MC_ADDR:
4168  	case MSR_IA32_P5_MC_TYPE:
4169  		data = 0;
4170  		break;
4171  	case MSR_IA32_MCG_CAP:
4172  		data = vcpu->arch.mcg_cap;
4173  		break;
4174  	case MSR_IA32_MCG_CTL:
4175  		if (!(mcg_cap & MCG_CTL_P) && !host)
4176  			return 1;
4177  		data = vcpu->arch.mcg_ctl;
4178  		break;
4179  	case MSR_IA32_MCG_STATUS:
4180  		data = vcpu->arch.mcg_status;
4181  		break;
4182  	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4183  		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4184  		if (msr > last_msr)
4185  			return 1;
4186  
4187  		if (!(mcg_cap & MCG_CMCI_P) && !host)
4188  			return 1;
4189  		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4190  					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4191  		data = vcpu->arch.mci_ctl2_banks[offset];
4192  		break;
4193  	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4194  		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4195  		if (msr > last_msr)
4196  			return 1;
4197  
4198  		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4199  					    last_msr + 1 - MSR_IA32_MC0_CTL);
4200  		data = vcpu->arch.mce_banks[offset];
4201  		break;
4202  	default:
4203  		return 1;
4204  	}
4205  	*pdata = data;
4206  	return 0;
4207  }
4208  
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4209  int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4210  {
4211  	switch (msr_info->index) {
4212  	case MSR_IA32_PLATFORM_ID:
4213  	case MSR_IA32_EBL_CR_POWERON:
4214  	case MSR_IA32_LASTBRANCHFROMIP:
4215  	case MSR_IA32_LASTBRANCHTOIP:
4216  	case MSR_IA32_LASTINTFROMIP:
4217  	case MSR_IA32_LASTINTTOIP:
4218  	case MSR_AMD64_SYSCFG:
4219  	case MSR_K8_TSEG_ADDR:
4220  	case MSR_K8_TSEG_MASK:
4221  	case MSR_VM_HSAVE_PA:
4222  	case MSR_K8_INT_PENDING_MSG:
4223  	case MSR_AMD64_NB_CFG:
4224  	case MSR_FAM10H_MMIO_CONF_BASE:
4225  	case MSR_AMD64_BU_CFG2:
4226  	case MSR_IA32_PERF_CTL:
4227  	case MSR_AMD64_DC_CFG:
4228  	case MSR_AMD64_TW_CFG:
4229  	case MSR_F15H_EX_CFG:
4230  	/*
4231  	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4232  	 * limit) MSRs. Just return 0, as we do not want to expose the host
4233  	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4234  	 * so for existing CPU-specific MSRs.
4235  	 */
4236  	case MSR_RAPL_POWER_UNIT:
4237  	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4238  	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4239  	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4240  	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4241  		msr_info->data = 0;
4242  		break;
4243  	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4244  	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4245  	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4246  	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4247  		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4248  			return kvm_pmu_get_msr(vcpu, msr_info);
4249  		msr_info->data = 0;
4250  		break;
4251  	case MSR_IA32_UCODE_REV:
4252  		msr_info->data = vcpu->arch.microcode_version;
4253  		break;
4254  	case MSR_IA32_ARCH_CAPABILITIES:
4255  		if (!msr_info->host_initiated &&
4256  		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4257  			return 1;
4258  		msr_info->data = vcpu->arch.arch_capabilities;
4259  		break;
4260  	case MSR_IA32_PERF_CAPABILITIES:
4261  		if (!msr_info->host_initiated &&
4262  		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4263  			return 1;
4264  		msr_info->data = vcpu->arch.perf_capabilities;
4265  		break;
4266  	case MSR_IA32_POWER_CTL:
4267  		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4268  		break;
4269  	case MSR_IA32_TSC: {
4270  		/*
4271  		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4272  		 * even when not intercepted. AMD manual doesn't explicitly
4273  		 * state this but appears to behave the same.
4274  		 *
4275  		 * On userspace reads and writes, however, we unconditionally
4276  		 * return L1's TSC value to ensure backwards-compatible
4277  		 * behavior for migration.
4278  		 */
4279  		u64 offset, ratio;
4280  
4281  		if (msr_info->host_initiated) {
4282  			offset = vcpu->arch.l1_tsc_offset;
4283  			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4284  		} else {
4285  			offset = vcpu->arch.tsc_offset;
4286  			ratio = vcpu->arch.tsc_scaling_ratio;
4287  		}
4288  
4289  		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4290  		break;
4291  	}
4292  	case MSR_IA32_CR_PAT:
4293  		msr_info->data = vcpu->arch.pat;
4294  		break;
4295  	case MSR_MTRRcap:
4296  	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4297  	case MSR_MTRRdefType:
4298  		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4299  	case 0xcd: /* fsb frequency */
4300  		msr_info->data = 3;
4301  		break;
4302  		/*
4303  		 * MSR_EBC_FREQUENCY_ID
4304  		 * Conservative value valid for even the basic CPU models.
4305  		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4306  		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4307  		 * and 266MHz for model 3, or 4. Set Core Clock
4308  		 * Frequency to System Bus Frequency Ratio to 1 (bits
4309  		 * 31:24) even though these are only valid for CPU
4310  		 * models > 2, however guests may end up dividing or
4311  		 * multiplying by zero otherwise.
4312  		 */
4313  	case MSR_EBC_FREQUENCY_ID:
4314  		msr_info->data = 1 << 24;
4315  		break;
4316  	case MSR_IA32_APICBASE:
4317  		msr_info->data = kvm_get_apic_base(vcpu);
4318  		break;
4319  	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4320  		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4321  	case MSR_IA32_TSC_DEADLINE:
4322  		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4323  		break;
4324  	case MSR_IA32_TSC_ADJUST:
4325  		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4326  		break;
4327  	case MSR_IA32_MISC_ENABLE:
4328  		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4329  		break;
4330  	case MSR_IA32_SMBASE:
4331  		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4332  			return 1;
4333  		msr_info->data = vcpu->arch.smbase;
4334  		break;
4335  	case MSR_SMI_COUNT:
4336  		msr_info->data = vcpu->arch.smi_count;
4337  		break;
4338  	case MSR_IA32_PERF_STATUS:
4339  		/* TSC increment by tick */
4340  		msr_info->data = 1000ULL;
4341  		/* CPU multiplier */
4342  		msr_info->data |= (((uint64_t)4ULL) << 40);
4343  		break;
4344  	case MSR_EFER:
4345  		msr_info->data = vcpu->arch.efer;
4346  		break;
4347  	case MSR_KVM_WALL_CLOCK:
4348  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4349  			return 1;
4350  
4351  		msr_info->data = vcpu->kvm->arch.wall_clock;
4352  		break;
4353  	case MSR_KVM_WALL_CLOCK_NEW:
4354  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4355  			return 1;
4356  
4357  		msr_info->data = vcpu->kvm->arch.wall_clock;
4358  		break;
4359  	case MSR_KVM_SYSTEM_TIME:
4360  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4361  			return 1;
4362  
4363  		msr_info->data = vcpu->arch.time;
4364  		break;
4365  	case MSR_KVM_SYSTEM_TIME_NEW:
4366  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4367  			return 1;
4368  
4369  		msr_info->data = vcpu->arch.time;
4370  		break;
4371  	case MSR_KVM_ASYNC_PF_EN:
4372  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4373  			return 1;
4374  
4375  		msr_info->data = vcpu->arch.apf.msr_en_val;
4376  		break;
4377  	case MSR_KVM_ASYNC_PF_INT:
4378  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4379  			return 1;
4380  
4381  		msr_info->data = vcpu->arch.apf.msr_int_val;
4382  		break;
4383  	case MSR_KVM_ASYNC_PF_ACK:
4384  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4385  			return 1;
4386  
4387  		msr_info->data = 0;
4388  		break;
4389  	case MSR_KVM_STEAL_TIME:
4390  		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4391  			return 1;
4392  
4393  		msr_info->data = vcpu->arch.st.msr_val;
4394  		break;
4395  	case MSR_KVM_PV_EOI_EN:
4396  		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4397  			return 1;
4398  
4399  		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4400  		break;
4401  	case MSR_KVM_POLL_CONTROL:
4402  		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4403  			return 1;
4404  
4405  		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4406  		break;
4407  	case MSR_IA32_P5_MC_ADDR:
4408  	case MSR_IA32_P5_MC_TYPE:
4409  	case MSR_IA32_MCG_CAP:
4410  	case MSR_IA32_MCG_CTL:
4411  	case MSR_IA32_MCG_STATUS:
4412  	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4413  	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4414  		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4415  				   msr_info->host_initiated);
4416  	case MSR_IA32_XSS:
4417  		if (!msr_info->host_initiated &&
4418  		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4419  			return 1;
4420  		msr_info->data = vcpu->arch.ia32_xss;
4421  		break;
4422  	case MSR_K7_CLK_CTL:
4423  		/*
4424  		 * Provide expected ramp-up count for K7. All other
4425  		 * are set to zero, indicating minimum divisors for
4426  		 * every field.
4427  		 *
4428  		 * This prevents guest kernels on AMD host with CPU
4429  		 * type 6, model 8 and higher from exploding due to
4430  		 * the rdmsr failing.
4431  		 */
4432  		msr_info->data = 0x20000000;
4433  		break;
4434  #ifdef CONFIG_KVM_HYPERV
4435  	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4436  	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4437  	case HV_X64_MSR_SYNDBG_OPTIONS:
4438  	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4439  	case HV_X64_MSR_CRASH_CTL:
4440  	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4441  	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4442  	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4443  	case HV_X64_MSR_TSC_EMULATION_STATUS:
4444  	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4445  		return kvm_hv_get_msr_common(vcpu,
4446  					     msr_info->index, &msr_info->data,
4447  					     msr_info->host_initiated);
4448  #endif
4449  	case MSR_IA32_BBL_CR_CTL3:
4450  		/* This legacy MSR exists but isn't fully documented in current
4451  		 * silicon.  It is however accessed by winxp in very narrow
4452  		 * scenarios where it sets bit #19, itself documented as
4453  		 * a "reserved" bit.  Best effort attempt to source coherent
4454  		 * read data here should the balance of the register be
4455  		 * interpreted by the guest:
4456  		 *
4457  		 * L2 cache control register 3: 64GB range, 256KB size,
4458  		 * enabled, latency 0x1, configured
4459  		 */
4460  		msr_info->data = 0xbe702111;
4461  		break;
4462  	case MSR_AMD64_OSVW_ID_LENGTH:
4463  		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4464  			return 1;
4465  		msr_info->data = vcpu->arch.osvw.length;
4466  		break;
4467  	case MSR_AMD64_OSVW_STATUS:
4468  		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4469  			return 1;
4470  		msr_info->data = vcpu->arch.osvw.status;
4471  		break;
4472  	case MSR_PLATFORM_INFO:
4473  		if (!msr_info->host_initiated &&
4474  		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4475  			return 1;
4476  		msr_info->data = vcpu->arch.msr_platform_info;
4477  		break;
4478  	case MSR_MISC_FEATURES_ENABLES:
4479  		msr_info->data = vcpu->arch.msr_misc_features_enables;
4480  		break;
4481  	case MSR_K7_HWCR:
4482  		msr_info->data = vcpu->arch.msr_hwcr;
4483  		break;
4484  #ifdef CONFIG_X86_64
4485  	case MSR_IA32_XFD:
4486  		if (!msr_info->host_initiated &&
4487  		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4488  			return 1;
4489  
4490  		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4491  		break;
4492  	case MSR_IA32_XFD_ERR:
4493  		if (!msr_info->host_initiated &&
4494  		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4495  			return 1;
4496  
4497  		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4498  		break;
4499  #endif
4500  	default:
4501  		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4502  			return kvm_pmu_get_msr(vcpu, msr_info);
4503  
4504  		return KVM_MSR_RET_UNSUPPORTED;
4505  	}
4506  	return 0;
4507  }
4508  EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4509  
4510  /*
4511   * Read or write a bunch of msrs. All parameters are kernel addresses.
4512   *
4513   * @return number of msrs set successfully.
4514   */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4515  static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4516  		    struct kvm_msr_entry *entries,
4517  		    int (*do_msr)(struct kvm_vcpu *vcpu,
4518  				  unsigned index, u64 *data))
4519  {
4520  	int i;
4521  
4522  	for (i = 0; i < msrs->nmsrs; ++i)
4523  		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4524  			break;
4525  
4526  	return i;
4527  }
4528  
4529  /*
4530   * Read or write a bunch of msrs. Parameters are user addresses.
4531   *
4532   * @return number of msrs set successfully.
4533   */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4534  static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4535  		  int (*do_msr)(struct kvm_vcpu *vcpu,
4536  				unsigned index, u64 *data),
4537  		  int writeback)
4538  {
4539  	struct kvm_msrs msrs;
4540  	struct kvm_msr_entry *entries;
4541  	unsigned size;
4542  	int r;
4543  
4544  	r = -EFAULT;
4545  	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4546  		goto out;
4547  
4548  	r = -E2BIG;
4549  	if (msrs.nmsrs >= MAX_IO_MSRS)
4550  		goto out;
4551  
4552  	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4553  	entries = memdup_user(user_msrs->entries, size);
4554  	if (IS_ERR(entries)) {
4555  		r = PTR_ERR(entries);
4556  		goto out;
4557  	}
4558  
4559  	r = __msr_io(vcpu, &msrs, entries, do_msr);
4560  
4561  	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4562  		r = -EFAULT;
4563  
4564  	kfree(entries);
4565  out:
4566  	return r;
4567  }
4568  
kvm_can_mwait_in_guest(void)4569  static inline bool kvm_can_mwait_in_guest(void)
4570  {
4571  	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4572  		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4573  		boot_cpu_has(X86_FEATURE_ARAT);
4574  }
4575  
4576  #ifdef CONFIG_KVM_HYPERV
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4577  static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4578  					    struct kvm_cpuid2 __user *cpuid_arg)
4579  {
4580  	struct kvm_cpuid2 cpuid;
4581  	int r;
4582  
4583  	r = -EFAULT;
4584  	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4585  		return r;
4586  
4587  	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4588  	if (r)
4589  		return r;
4590  
4591  	r = -EFAULT;
4592  	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4593  		return r;
4594  
4595  	return 0;
4596  }
4597  #endif
4598  
kvm_is_vm_type_supported(unsigned long type)4599  static bool kvm_is_vm_type_supported(unsigned long type)
4600  {
4601  	return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4602  }
4603  
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4604  int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4605  {
4606  	int r = 0;
4607  
4608  	switch (ext) {
4609  	case KVM_CAP_IRQCHIP:
4610  	case KVM_CAP_HLT:
4611  	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4612  	case KVM_CAP_SET_TSS_ADDR:
4613  	case KVM_CAP_EXT_CPUID:
4614  	case KVM_CAP_EXT_EMUL_CPUID:
4615  	case KVM_CAP_CLOCKSOURCE:
4616  	case KVM_CAP_PIT:
4617  	case KVM_CAP_NOP_IO_DELAY:
4618  	case KVM_CAP_MP_STATE:
4619  	case KVM_CAP_SYNC_MMU:
4620  	case KVM_CAP_USER_NMI:
4621  	case KVM_CAP_REINJECT_CONTROL:
4622  	case KVM_CAP_IRQ_INJECT_STATUS:
4623  	case KVM_CAP_IOEVENTFD:
4624  	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4625  	case KVM_CAP_PIT2:
4626  	case KVM_CAP_PIT_STATE2:
4627  	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4628  	case KVM_CAP_VCPU_EVENTS:
4629  #ifdef CONFIG_KVM_HYPERV
4630  	case KVM_CAP_HYPERV:
4631  	case KVM_CAP_HYPERV_VAPIC:
4632  	case KVM_CAP_HYPERV_SPIN:
4633  	case KVM_CAP_HYPERV_TIME:
4634  	case KVM_CAP_HYPERV_SYNIC:
4635  	case KVM_CAP_HYPERV_SYNIC2:
4636  	case KVM_CAP_HYPERV_VP_INDEX:
4637  	case KVM_CAP_HYPERV_EVENTFD:
4638  	case KVM_CAP_HYPERV_TLBFLUSH:
4639  	case KVM_CAP_HYPERV_SEND_IPI:
4640  	case KVM_CAP_HYPERV_CPUID:
4641  	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4642  	case KVM_CAP_SYS_HYPERV_CPUID:
4643  #endif
4644  	case KVM_CAP_PCI_SEGMENT:
4645  	case KVM_CAP_DEBUGREGS:
4646  	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4647  	case KVM_CAP_XSAVE:
4648  	case KVM_CAP_ASYNC_PF:
4649  	case KVM_CAP_ASYNC_PF_INT:
4650  	case KVM_CAP_GET_TSC_KHZ:
4651  	case KVM_CAP_KVMCLOCK_CTRL:
4652  	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4653  	case KVM_CAP_TSC_DEADLINE_TIMER:
4654  	case KVM_CAP_DISABLE_QUIRKS:
4655  	case KVM_CAP_SET_BOOT_CPU_ID:
4656   	case KVM_CAP_SPLIT_IRQCHIP:
4657  	case KVM_CAP_IMMEDIATE_EXIT:
4658  	case KVM_CAP_PMU_EVENT_FILTER:
4659  	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4660  	case KVM_CAP_GET_MSR_FEATURES:
4661  	case KVM_CAP_MSR_PLATFORM_INFO:
4662  	case KVM_CAP_EXCEPTION_PAYLOAD:
4663  	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4664  	case KVM_CAP_SET_GUEST_DEBUG:
4665  	case KVM_CAP_LAST_CPU:
4666  	case KVM_CAP_X86_USER_SPACE_MSR:
4667  	case KVM_CAP_X86_MSR_FILTER:
4668  	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4669  #ifdef CONFIG_X86_SGX_KVM
4670  	case KVM_CAP_SGX_ATTRIBUTE:
4671  #endif
4672  	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4673  	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4674  	case KVM_CAP_SREGS2:
4675  	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4676  	case KVM_CAP_VCPU_ATTRIBUTES:
4677  	case KVM_CAP_SYS_ATTRIBUTES:
4678  	case KVM_CAP_VAPIC:
4679  	case KVM_CAP_ENABLE_CAP:
4680  	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4681  	case KVM_CAP_IRQFD_RESAMPLE:
4682  	case KVM_CAP_MEMORY_FAULT_INFO:
4683  	case KVM_CAP_X86_GUEST_MODE:
4684  		r = 1;
4685  		break;
4686  	case KVM_CAP_PRE_FAULT_MEMORY:
4687  		r = tdp_enabled;
4688  		break;
4689  	case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4690  		r = APIC_BUS_CYCLE_NS_DEFAULT;
4691  		break;
4692  	case KVM_CAP_EXIT_HYPERCALL:
4693  		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4694  		break;
4695  	case KVM_CAP_SET_GUEST_DEBUG2:
4696  		return KVM_GUESTDBG_VALID_MASK;
4697  #ifdef CONFIG_KVM_XEN
4698  	case KVM_CAP_XEN_HVM:
4699  		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4700  		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4701  		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4702  		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4703  		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4704  		    KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4705  		    KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4706  		if (sched_info_on())
4707  			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4708  			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4709  		break;
4710  #endif
4711  	case KVM_CAP_SYNC_REGS:
4712  		r = KVM_SYNC_X86_VALID_FIELDS;
4713  		break;
4714  	case KVM_CAP_ADJUST_CLOCK:
4715  		r = KVM_CLOCK_VALID_FLAGS;
4716  		break;
4717  	case KVM_CAP_X86_DISABLE_EXITS:
4718  		r = KVM_X86_DISABLE_EXITS_PAUSE;
4719  
4720  		if (!mitigate_smt_rsb) {
4721  			r |= KVM_X86_DISABLE_EXITS_HLT |
4722  			     KVM_X86_DISABLE_EXITS_CSTATE;
4723  
4724  			if (kvm_can_mwait_in_guest())
4725  				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4726  		}
4727  		break;
4728  	case KVM_CAP_X86_SMM:
4729  		if (!IS_ENABLED(CONFIG_KVM_SMM))
4730  			break;
4731  
4732  		/* SMBASE is usually relocated above 1M on modern chipsets,
4733  		 * and SMM handlers might indeed rely on 4G segment limits,
4734  		 * so do not report SMM to be available if real mode is
4735  		 * emulated via vm86 mode.  Still, do not go to great lengths
4736  		 * to avoid userspace's usage of the feature, because it is a
4737  		 * fringe case that is not enabled except via specific settings
4738  		 * of the module parameters.
4739  		 */
4740  		r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4741  		break;
4742  	case KVM_CAP_NR_VCPUS:
4743  		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4744  		break;
4745  	case KVM_CAP_MAX_VCPUS:
4746  		r = KVM_MAX_VCPUS;
4747  		break;
4748  	case KVM_CAP_MAX_VCPU_ID:
4749  		r = KVM_MAX_VCPU_IDS;
4750  		break;
4751  	case KVM_CAP_PV_MMU:	/* obsolete */
4752  		r = 0;
4753  		break;
4754  	case KVM_CAP_MCE:
4755  		r = KVM_MAX_MCE_BANKS;
4756  		break;
4757  	case KVM_CAP_XCRS:
4758  		r = boot_cpu_has(X86_FEATURE_XSAVE);
4759  		break;
4760  	case KVM_CAP_TSC_CONTROL:
4761  	case KVM_CAP_VM_TSC_CONTROL:
4762  		r = kvm_caps.has_tsc_control;
4763  		break;
4764  	case KVM_CAP_X2APIC_API:
4765  		r = KVM_X2APIC_API_VALID_FLAGS;
4766  		break;
4767  	case KVM_CAP_NESTED_STATE:
4768  		r = kvm_x86_ops.nested_ops->get_state ?
4769  			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4770  		break;
4771  #ifdef CONFIG_KVM_HYPERV
4772  	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4773  		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4774  		break;
4775  	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4776  		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4777  		break;
4778  #endif
4779  	case KVM_CAP_SMALLER_MAXPHYADDR:
4780  		r = (int) allow_smaller_maxphyaddr;
4781  		break;
4782  	case KVM_CAP_STEAL_TIME:
4783  		r = sched_info_on();
4784  		break;
4785  	case KVM_CAP_X86_BUS_LOCK_EXIT:
4786  		if (kvm_caps.has_bus_lock_exit)
4787  			r = KVM_BUS_LOCK_DETECTION_OFF |
4788  			    KVM_BUS_LOCK_DETECTION_EXIT;
4789  		else
4790  			r = 0;
4791  		break;
4792  	case KVM_CAP_XSAVE2: {
4793  		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4794  		if (r < sizeof(struct kvm_xsave))
4795  			r = sizeof(struct kvm_xsave);
4796  		break;
4797  	}
4798  	case KVM_CAP_PMU_CAPABILITY:
4799  		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4800  		break;
4801  	case KVM_CAP_DISABLE_QUIRKS2:
4802  		r = KVM_X86_VALID_QUIRKS;
4803  		break;
4804  	case KVM_CAP_X86_NOTIFY_VMEXIT:
4805  		r = kvm_caps.has_notify_vmexit;
4806  		break;
4807  	case KVM_CAP_VM_TYPES:
4808  		r = kvm_caps.supported_vm_types;
4809  		break;
4810  	case KVM_CAP_READONLY_MEM:
4811  		r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4812  		break;
4813  	default:
4814  		break;
4815  	}
4816  	return r;
4817  }
4818  
__kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)4819  static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4820  {
4821  	if (attr->group) {
4822  		if (kvm_x86_ops.dev_get_attr)
4823  			return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4824  		return -ENXIO;
4825  	}
4826  
4827  	switch (attr->attr) {
4828  	case KVM_X86_XCOMP_GUEST_SUPP:
4829  		*val = kvm_caps.supported_xcr0;
4830  		return 0;
4831  	default:
4832  		return -ENXIO;
4833  	}
4834  }
4835  
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4836  static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4837  {
4838  	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4839  	int r;
4840  	u64 val;
4841  
4842  	r = __kvm_x86_dev_get_attr(attr, &val);
4843  	if (r < 0)
4844  		return r;
4845  
4846  	if (put_user(val, uaddr))
4847  		return -EFAULT;
4848  
4849  	return 0;
4850  }
4851  
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4852  static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4853  {
4854  	u64 val;
4855  
4856  	return __kvm_x86_dev_get_attr(attr, &val);
4857  }
4858  
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4859  long kvm_arch_dev_ioctl(struct file *filp,
4860  			unsigned int ioctl, unsigned long arg)
4861  {
4862  	void __user *argp = (void __user *)arg;
4863  	long r;
4864  
4865  	switch (ioctl) {
4866  	case KVM_GET_MSR_INDEX_LIST: {
4867  		struct kvm_msr_list __user *user_msr_list = argp;
4868  		struct kvm_msr_list msr_list;
4869  		unsigned n;
4870  
4871  		r = -EFAULT;
4872  		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4873  			goto out;
4874  		n = msr_list.nmsrs;
4875  		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4876  		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4877  			goto out;
4878  		r = -E2BIG;
4879  		if (n < msr_list.nmsrs)
4880  			goto out;
4881  		r = -EFAULT;
4882  		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4883  				 num_msrs_to_save * sizeof(u32)))
4884  			goto out;
4885  		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4886  				 &emulated_msrs,
4887  				 num_emulated_msrs * sizeof(u32)))
4888  			goto out;
4889  		r = 0;
4890  		break;
4891  	}
4892  	case KVM_GET_SUPPORTED_CPUID:
4893  	case KVM_GET_EMULATED_CPUID: {
4894  		struct kvm_cpuid2 __user *cpuid_arg = argp;
4895  		struct kvm_cpuid2 cpuid;
4896  
4897  		r = -EFAULT;
4898  		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4899  			goto out;
4900  
4901  		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4902  					    ioctl);
4903  		if (r)
4904  			goto out;
4905  
4906  		r = -EFAULT;
4907  		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4908  			goto out;
4909  		r = 0;
4910  		break;
4911  	}
4912  	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4913  		r = -EFAULT;
4914  		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4915  				 sizeof(kvm_caps.supported_mce_cap)))
4916  			goto out;
4917  		r = 0;
4918  		break;
4919  	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4920  		struct kvm_msr_list __user *user_msr_list = argp;
4921  		struct kvm_msr_list msr_list;
4922  		unsigned int n;
4923  
4924  		r = -EFAULT;
4925  		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4926  			goto out;
4927  		n = msr_list.nmsrs;
4928  		msr_list.nmsrs = num_msr_based_features;
4929  		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4930  			goto out;
4931  		r = -E2BIG;
4932  		if (n < msr_list.nmsrs)
4933  			goto out;
4934  		r = -EFAULT;
4935  		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4936  				 num_msr_based_features * sizeof(u32)))
4937  			goto out;
4938  		r = 0;
4939  		break;
4940  	}
4941  	case KVM_GET_MSRS:
4942  		r = msr_io(NULL, argp, do_get_feature_msr, 1);
4943  		break;
4944  #ifdef CONFIG_KVM_HYPERV
4945  	case KVM_GET_SUPPORTED_HV_CPUID:
4946  		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4947  		break;
4948  #endif
4949  	case KVM_GET_DEVICE_ATTR: {
4950  		struct kvm_device_attr attr;
4951  		r = -EFAULT;
4952  		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4953  			break;
4954  		r = kvm_x86_dev_get_attr(&attr);
4955  		break;
4956  	}
4957  	case KVM_HAS_DEVICE_ATTR: {
4958  		struct kvm_device_attr attr;
4959  		r = -EFAULT;
4960  		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4961  			break;
4962  		r = kvm_x86_dev_has_attr(&attr);
4963  		break;
4964  	}
4965  	default:
4966  		r = -EINVAL;
4967  		break;
4968  	}
4969  out:
4970  	return r;
4971  }
4972  
wbinvd_ipi(void * garbage)4973  static void wbinvd_ipi(void *garbage)
4974  {
4975  	wbinvd();
4976  }
4977  
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4978  static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4979  {
4980  	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4981  }
4982  
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4983  void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4984  {
4985  	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
4986  
4987  	vcpu->arch.l1tf_flush_l1d = true;
4988  
4989  	if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
4990  		pmu->need_cleanup = true;
4991  		kvm_make_request(KVM_REQ_PMU, vcpu);
4992  	}
4993  
4994  	/* Address WBINVD may be executed by guest */
4995  	if (need_emulate_wbinvd(vcpu)) {
4996  		if (kvm_x86_call(has_wbinvd_exit)())
4997  			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4998  		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4999  			smp_call_function_single(vcpu->cpu,
5000  					wbinvd_ipi, NULL, 1);
5001  	}
5002  
5003  	kvm_x86_call(vcpu_load)(vcpu, cpu);
5004  
5005  	/* Save host pkru register if supported */
5006  	vcpu->arch.host_pkru = read_pkru();
5007  
5008  	/* Apply any externally detected TSC adjustments (due to suspend) */
5009  	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5010  		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5011  		vcpu->arch.tsc_offset_adjustment = 0;
5012  		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5013  	}
5014  
5015  	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5016  		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5017  				rdtsc() - vcpu->arch.last_host_tsc;
5018  		if (tsc_delta < 0)
5019  			mark_tsc_unstable("KVM discovered backwards TSC");
5020  
5021  		if (kvm_check_tsc_unstable()) {
5022  			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5023  						vcpu->arch.last_guest_tsc);
5024  			kvm_vcpu_write_tsc_offset(vcpu, offset);
5025  			vcpu->arch.tsc_catchup = 1;
5026  		}
5027  
5028  		if (kvm_lapic_hv_timer_in_use(vcpu))
5029  			kvm_lapic_restart_hv_timer(vcpu);
5030  
5031  		/*
5032  		 * On a host with synchronized TSC, there is no need to update
5033  		 * kvmclock on vcpu->cpu migration
5034  		 */
5035  		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5036  			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5037  		if (vcpu->cpu != cpu)
5038  			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5039  		vcpu->cpu = cpu;
5040  	}
5041  
5042  	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5043  }
5044  
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5045  static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5046  {
5047  	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5048  	struct kvm_steal_time __user *st;
5049  	struct kvm_memslots *slots;
5050  	static const u8 preempted = KVM_VCPU_PREEMPTED;
5051  	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5052  
5053  	/*
5054  	 * The vCPU can be marked preempted if and only if the VM-Exit was on
5055  	 * an instruction boundary and will not trigger guest emulation of any
5056  	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5057  	 * when this is true, for example allowing the vCPU to be marked
5058  	 * preempted if and only if the VM-Exit was due to a host interrupt.
5059  	 */
5060  	if (!vcpu->arch.at_instruction_boundary) {
5061  		vcpu->stat.preemption_other++;
5062  		return;
5063  	}
5064  
5065  	vcpu->stat.preemption_reported++;
5066  	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5067  		return;
5068  
5069  	if (vcpu->arch.st.preempted)
5070  		return;
5071  
5072  	/* This happens on process exit */
5073  	if (unlikely(current->mm != vcpu->kvm->mm))
5074  		return;
5075  
5076  	slots = kvm_memslots(vcpu->kvm);
5077  
5078  	if (unlikely(slots->generation != ghc->generation ||
5079  		     gpa != ghc->gpa ||
5080  		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5081  		return;
5082  
5083  	st = (struct kvm_steal_time __user *)ghc->hva;
5084  	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5085  
5086  	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5087  		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5088  
5089  	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5090  }
5091  
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5092  void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5093  {
5094  	int idx;
5095  
5096  	if (vcpu->preempted) {
5097  		vcpu->arch.preempted_in_kernel = kvm_arch_vcpu_in_kernel(vcpu);
5098  
5099  		/*
5100  		 * Take the srcu lock as memslots will be accessed to check the gfn
5101  		 * cache generation against the memslots generation.
5102  		 */
5103  		idx = srcu_read_lock(&vcpu->kvm->srcu);
5104  		if (kvm_xen_msr_enabled(vcpu->kvm))
5105  			kvm_xen_runstate_set_preempted(vcpu);
5106  		else
5107  			kvm_steal_time_set_preempted(vcpu);
5108  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5109  	}
5110  
5111  	kvm_x86_call(vcpu_put)(vcpu);
5112  	vcpu->arch.last_host_tsc = rdtsc();
5113  }
5114  
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5115  static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5116  				    struct kvm_lapic_state *s)
5117  {
5118  	kvm_x86_call(sync_pir_to_irr)(vcpu);
5119  
5120  	return kvm_apic_get_state(vcpu, s);
5121  }
5122  
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5123  static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5124  				    struct kvm_lapic_state *s)
5125  {
5126  	int r;
5127  
5128  	r = kvm_apic_set_state(vcpu, s);
5129  	if (r)
5130  		return r;
5131  	update_cr8_intercept(vcpu);
5132  
5133  	return 0;
5134  }
5135  
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5136  static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5137  {
5138  	/*
5139  	 * We can accept userspace's request for interrupt injection
5140  	 * as long as we have a place to store the interrupt number.
5141  	 * The actual injection will happen when the CPU is able to
5142  	 * deliver the interrupt.
5143  	 */
5144  	if (kvm_cpu_has_extint(vcpu))
5145  		return false;
5146  
5147  	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5148  	return (!lapic_in_kernel(vcpu) ||
5149  		kvm_apic_accept_pic_intr(vcpu));
5150  }
5151  
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5152  static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5153  {
5154  	/*
5155  	 * Do not cause an interrupt window exit if an exception
5156  	 * is pending or an event needs reinjection; userspace
5157  	 * might want to inject the interrupt manually using KVM_SET_REGS
5158  	 * or KVM_SET_SREGS.  For that to work, we must be at an
5159  	 * instruction boundary and with no events half-injected.
5160  	 */
5161  	return (kvm_arch_interrupt_allowed(vcpu) &&
5162  		kvm_cpu_accept_dm_intr(vcpu) &&
5163  		!kvm_event_needs_reinjection(vcpu) &&
5164  		!kvm_is_exception_pending(vcpu));
5165  }
5166  
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5167  static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5168  				    struct kvm_interrupt *irq)
5169  {
5170  	if (irq->irq >= KVM_NR_INTERRUPTS)
5171  		return -EINVAL;
5172  
5173  	if (!irqchip_in_kernel(vcpu->kvm)) {
5174  		kvm_queue_interrupt(vcpu, irq->irq, false);
5175  		kvm_make_request(KVM_REQ_EVENT, vcpu);
5176  		return 0;
5177  	}
5178  
5179  	/*
5180  	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5181  	 * fail for in-kernel 8259.
5182  	 */
5183  	if (pic_in_kernel(vcpu->kvm))
5184  		return -ENXIO;
5185  
5186  	if (vcpu->arch.pending_external_vector != -1)
5187  		return -EEXIST;
5188  
5189  	vcpu->arch.pending_external_vector = irq->irq;
5190  	kvm_make_request(KVM_REQ_EVENT, vcpu);
5191  	return 0;
5192  }
5193  
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5194  static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5195  {
5196  	kvm_inject_nmi(vcpu);
5197  
5198  	return 0;
5199  }
5200  
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5201  static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5202  					   struct kvm_tpr_access_ctl *tac)
5203  {
5204  	if (tac->flags)
5205  		return -EINVAL;
5206  	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5207  	return 0;
5208  }
5209  
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5210  static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5211  					u64 mcg_cap)
5212  {
5213  	int r;
5214  	unsigned bank_num = mcg_cap & 0xff, bank;
5215  
5216  	r = -EINVAL;
5217  	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5218  		goto out;
5219  	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5220  		goto out;
5221  	r = 0;
5222  	vcpu->arch.mcg_cap = mcg_cap;
5223  	/* Init IA32_MCG_CTL to all 1s */
5224  	if (mcg_cap & MCG_CTL_P)
5225  		vcpu->arch.mcg_ctl = ~(u64)0;
5226  	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5227  	for (bank = 0; bank < bank_num; bank++) {
5228  		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5229  		if (mcg_cap & MCG_CMCI_P)
5230  			vcpu->arch.mci_ctl2_banks[bank] = 0;
5231  	}
5232  
5233  	kvm_apic_after_set_mcg_cap(vcpu);
5234  
5235  	kvm_x86_call(setup_mce)(vcpu);
5236  out:
5237  	return r;
5238  }
5239  
5240  /*
5241   * Validate this is an UCNA (uncorrectable no action) error by checking the
5242   * MCG_STATUS and MCi_STATUS registers:
5243   * - none of the bits for Machine Check Exceptions are set
5244   * - both the VAL (valid) and UC (uncorrectable) bits are set
5245   * MCI_STATUS_PCC - Processor Context Corrupted
5246   * MCI_STATUS_S - Signaled as a Machine Check Exception
5247   * MCI_STATUS_AR - Software recoverable Action Required
5248   */
is_ucna(struct kvm_x86_mce * mce)5249  static bool is_ucna(struct kvm_x86_mce *mce)
5250  {
5251  	return	!mce->mcg_status &&
5252  		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5253  		(mce->status & MCI_STATUS_VAL) &&
5254  		(mce->status & MCI_STATUS_UC);
5255  }
5256  
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5257  static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5258  {
5259  	u64 mcg_cap = vcpu->arch.mcg_cap;
5260  
5261  	banks[1] = mce->status;
5262  	banks[2] = mce->addr;
5263  	banks[3] = mce->misc;
5264  	vcpu->arch.mcg_status = mce->mcg_status;
5265  
5266  	if (!(mcg_cap & MCG_CMCI_P) ||
5267  	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5268  		return 0;
5269  
5270  	if (lapic_in_kernel(vcpu))
5271  		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5272  
5273  	return 0;
5274  }
5275  
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5276  static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5277  				      struct kvm_x86_mce *mce)
5278  {
5279  	u64 mcg_cap = vcpu->arch.mcg_cap;
5280  	unsigned bank_num = mcg_cap & 0xff;
5281  	u64 *banks = vcpu->arch.mce_banks;
5282  
5283  	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5284  		return -EINVAL;
5285  
5286  	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5287  
5288  	if (is_ucna(mce))
5289  		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5290  
5291  	/*
5292  	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5293  	 * reporting is disabled
5294  	 */
5295  	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5296  	    vcpu->arch.mcg_ctl != ~(u64)0)
5297  		return 0;
5298  	/*
5299  	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5300  	 * reporting is disabled for the bank
5301  	 */
5302  	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5303  		return 0;
5304  	if (mce->status & MCI_STATUS_UC) {
5305  		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5306  		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5307  			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5308  			return 0;
5309  		}
5310  		if (banks[1] & MCI_STATUS_VAL)
5311  			mce->status |= MCI_STATUS_OVER;
5312  		banks[2] = mce->addr;
5313  		banks[3] = mce->misc;
5314  		vcpu->arch.mcg_status = mce->mcg_status;
5315  		banks[1] = mce->status;
5316  		kvm_queue_exception(vcpu, MC_VECTOR);
5317  	} else if (!(banks[1] & MCI_STATUS_VAL)
5318  		   || !(banks[1] & MCI_STATUS_UC)) {
5319  		if (banks[1] & MCI_STATUS_VAL)
5320  			mce->status |= MCI_STATUS_OVER;
5321  		banks[2] = mce->addr;
5322  		banks[3] = mce->misc;
5323  		banks[1] = mce->status;
5324  	} else
5325  		banks[1] |= MCI_STATUS_OVER;
5326  	return 0;
5327  }
5328  
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5329  static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5330  					       struct kvm_vcpu_events *events)
5331  {
5332  	struct kvm_queued_exception *ex;
5333  
5334  	process_nmi(vcpu);
5335  
5336  #ifdef CONFIG_KVM_SMM
5337  	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5338  		process_smi(vcpu);
5339  #endif
5340  
5341  	/*
5342  	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5343  	 * the only time there can be two queued exceptions is if there's a
5344  	 * non-exiting _injected_ exception, and a pending exiting exception.
5345  	 * In that case, ignore the VM-Exiting exception as it's an extension
5346  	 * of the injected exception.
5347  	 */
5348  	if (vcpu->arch.exception_vmexit.pending &&
5349  	    !vcpu->arch.exception.pending &&
5350  	    !vcpu->arch.exception.injected)
5351  		ex = &vcpu->arch.exception_vmexit;
5352  	else
5353  		ex = &vcpu->arch.exception;
5354  
5355  	/*
5356  	 * In guest mode, payload delivery should be deferred if the exception
5357  	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5358  	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5359  	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5360  	 * propagate the payload and so it cannot be safely deferred.  Deliver
5361  	 * the payload if the capability hasn't been requested.
5362  	 */
5363  	if (!vcpu->kvm->arch.exception_payload_enabled &&
5364  	    ex->pending && ex->has_payload)
5365  		kvm_deliver_exception_payload(vcpu, ex);
5366  
5367  	memset(events, 0, sizeof(*events));
5368  
5369  	/*
5370  	 * The API doesn't provide the instruction length for software
5371  	 * exceptions, so don't report them. As long as the guest RIP
5372  	 * isn't advanced, we should expect to encounter the exception
5373  	 * again.
5374  	 */
5375  	if (!kvm_exception_is_soft(ex->vector)) {
5376  		events->exception.injected = ex->injected;
5377  		events->exception.pending = ex->pending;
5378  		/*
5379  		 * For ABI compatibility, deliberately conflate
5380  		 * pending and injected exceptions when
5381  		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5382  		 */
5383  		if (!vcpu->kvm->arch.exception_payload_enabled)
5384  			events->exception.injected |= ex->pending;
5385  	}
5386  	events->exception.nr = ex->vector;
5387  	events->exception.has_error_code = ex->has_error_code;
5388  	events->exception.error_code = ex->error_code;
5389  	events->exception_has_payload = ex->has_payload;
5390  	events->exception_payload = ex->payload;
5391  
5392  	events->interrupt.injected =
5393  		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5394  	events->interrupt.nr = vcpu->arch.interrupt.nr;
5395  	events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5396  
5397  	events->nmi.injected = vcpu->arch.nmi_injected;
5398  	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5399  	events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5400  
5401  	/* events->sipi_vector is never valid when reporting to user space */
5402  
5403  #ifdef CONFIG_KVM_SMM
5404  	events->smi.smm = is_smm(vcpu);
5405  	events->smi.pending = vcpu->arch.smi_pending;
5406  	events->smi.smm_inside_nmi =
5407  		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5408  #endif
5409  	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5410  
5411  	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5412  			 | KVM_VCPUEVENT_VALID_SHADOW
5413  			 | KVM_VCPUEVENT_VALID_SMM);
5414  	if (vcpu->kvm->arch.exception_payload_enabled)
5415  		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5416  	if (vcpu->kvm->arch.triple_fault_event) {
5417  		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5418  		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5419  	}
5420  }
5421  
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5422  static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5423  					      struct kvm_vcpu_events *events)
5424  {
5425  	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5426  			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5427  			      | KVM_VCPUEVENT_VALID_SHADOW
5428  			      | KVM_VCPUEVENT_VALID_SMM
5429  			      | KVM_VCPUEVENT_VALID_PAYLOAD
5430  			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5431  		return -EINVAL;
5432  
5433  	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5434  		if (!vcpu->kvm->arch.exception_payload_enabled)
5435  			return -EINVAL;
5436  		if (events->exception.pending)
5437  			events->exception.injected = 0;
5438  		else
5439  			events->exception_has_payload = 0;
5440  	} else {
5441  		events->exception.pending = 0;
5442  		events->exception_has_payload = 0;
5443  	}
5444  
5445  	if ((events->exception.injected || events->exception.pending) &&
5446  	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5447  		return -EINVAL;
5448  
5449  	/* INITs are latched while in SMM */
5450  	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5451  	    (events->smi.smm || events->smi.pending) &&
5452  	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5453  		return -EINVAL;
5454  
5455  	process_nmi(vcpu);
5456  
5457  	/*
5458  	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5459  	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5460  	 * pending exceptions, already-injected exceptions are not subject to
5461  	 * intercpetion.  Note, userspace that conflates pending and injected
5462  	 * is hosed, and will incorrectly convert an injected exception into a
5463  	 * pending exception, which in turn may cause a spurious VM-Exit.
5464  	 */
5465  	vcpu->arch.exception_from_userspace = events->exception.pending;
5466  
5467  	vcpu->arch.exception_vmexit.pending = false;
5468  
5469  	vcpu->arch.exception.injected = events->exception.injected;
5470  	vcpu->arch.exception.pending = events->exception.pending;
5471  	vcpu->arch.exception.vector = events->exception.nr;
5472  	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5473  	vcpu->arch.exception.error_code = events->exception.error_code;
5474  	vcpu->arch.exception.has_payload = events->exception_has_payload;
5475  	vcpu->arch.exception.payload = events->exception_payload;
5476  
5477  	vcpu->arch.interrupt.injected = events->interrupt.injected;
5478  	vcpu->arch.interrupt.nr = events->interrupt.nr;
5479  	vcpu->arch.interrupt.soft = events->interrupt.soft;
5480  	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5481  		kvm_x86_call(set_interrupt_shadow)(vcpu,
5482  						   events->interrupt.shadow);
5483  
5484  	vcpu->arch.nmi_injected = events->nmi.injected;
5485  	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5486  		vcpu->arch.nmi_pending = 0;
5487  		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5488  		if (events->nmi.pending)
5489  			kvm_make_request(KVM_REQ_NMI, vcpu);
5490  	}
5491  	kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5492  
5493  	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5494  	    lapic_in_kernel(vcpu))
5495  		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5496  
5497  	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5498  #ifdef CONFIG_KVM_SMM
5499  		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5500  			kvm_leave_nested(vcpu);
5501  			kvm_smm_changed(vcpu, events->smi.smm);
5502  		}
5503  
5504  		vcpu->arch.smi_pending = events->smi.pending;
5505  
5506  		if (events->smi.smm) {
5507  			if (events->smi.smm_inside_nmi)
5508  				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5509  			else
5510  				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5511  		}
5512  
5513  #else
5514  		if (events->smi.smm || events->smi.pending ||
5515  		    events->smi.smm_inside_nmi)
5516  			return -EINVAL;
5517  #endif
5518  
5519  		if (lapic_in_kernel(vcpu)) {
5520  			if (events->smi.latched_init)
5521  				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5522  			else
5523  				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5524  		}
5525  	}
5526  
5527  	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5528  		if (!vcpu->kvm->arch.triple_fault_event)
5529  			return -EINVAL;
5530  		if (events->triple_fault.pending)
5531  			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5532  		else
5533  			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5534  	}
5535  
5536  	kvm_make_request(KVM_REQ_EVENT, vcpu);
5537  
5538  	return 0;
5539  }
5540  
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5541  static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5542  					    struct kvm_debugregs *dbgregs)
5543  {
5544  	unsigned int i;
5545  
5546  	if (vcpu->kvm->arch.has_protected_state &&
5547  	    vcpu->arch.guest_state_protected)
5548  		return -EINVAL;
5549  
5550  	memset(dbgregs, 0, sizeof(*dbgregs));
5551  
5552  	BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5553  	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5554  		dbgregs->db[i] = vcpu->arch.db[i];
5555  
5556  	dbgregs->dr6 = vcpu->arch.dr6;
5557  	dbgregs->dr7 = vcpu->arch.dr7;
5558  	return 0;
5559  }
5560  
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5561  static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5562  					    struct kvm_debugregs *dbgregs)
5563  {
5564  	unsigned int i;
5565  
5566  	if (vcpu->kvm->arch.has_protected_state &&
5567  	    vcpu->arch.guest_state_protected)
5568  		return -EINVAL;
5569  
5570  	if (dbgregs->flags)
5571  		return -EINVAL;
5572  
5573  	if (!kvm_dr6_valid(dbgregs->dr6))
5574  		return -EINVAL;
5575  	if (!kvm_dr7_valid(dbgregs->dr7))
5576  		return -EINVAL;
5577  
5578  	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5579  		vcpu->arch.db[i] = dbgregs->db[i];
5580  
5581  	kvm_update_dr0123(vcpu);
5582  	vcpu->arch.dr6 = dbgregs->dr6;
5583  	vcpu->arch.dr7 = dbgregs->dr7;
5584  	kvm_update_dr7(vcpu);
5585  
5586  	return 0;
5587  }
5588  
5589  
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5590  static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5591  					 u8 *state, unsigned int size)
5592  {
5593  	/*
5594  	 * Only copy state for features that are enabled for the guest.  The
5595  	 * state itself isn't problematic, but setting bits in the header for
5596  	 * features that are supported in *this* host but not exposed to the
5597  	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5598  	 * compatible host without the features that are NOT exposed to the
5599  	 * guest.
5600  	 *
5601  	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5602  	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5603  	 * supported by the host.
5604  	 */
5605  	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5606  			     XFEATURE_MASK_FPSSE;
5607  
5608  	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5609  		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5610  
5611  	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5612  				       supported_xcr0, vcpu->arch.pkru);
5613  	return 0;
5614  }
5615  
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5616  static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5617  					struct kvm_xsave *guest_xsave)
5618  {
5619  	return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5620  					     sizeof(guest_xsave->region));
5621  }
5622  
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5623  static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5624  					struct kvm_xsave *guest_xsave)
5625  {
5626  	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5627  		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5628  
5629  	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5630  					      guest_xsave->region,
5631  					      kvm_caps.supported_xcr0,
5632  					      &vcpu->arch.pkru);
5633  }
5634  
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5635  static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5636  				       struct kvm_xcrs *guest_xcrs)
5637  {
5638  	if (vcpu->kvm->arch.has_protected_state &&
5639  	    vcpu->arch.guest_state_protected)
5640  		return -EINVAL;
5641  
5642  	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5643  		guest_xcrs->nr_xcrs = 0;
5644  		return 0;
5645  	}
5646  
5647  	guest_xcrs->nr_xcrs = 1;
5648  	guest_xcrs->flags = 0;
5649  	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5650  	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5651  	return 0;
5652  }
5653  
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5654  static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5655  				       struct kvm_xcrs *guest_xcrs)
5656  {
5657  	int i, r = 0;
5658  
5659  	if (vcpu->kvm->arch.has_protected_state &&
5660  	    vcpu->arch.guest_state_protected)
5661  		return -EINVAL;
5662  
5663  	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5664  		return -EINVAL;
5665  
5666  	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5667  		return -EINVAL;
5668  
5669  	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5670  		/* Only support XCR0 currently */
5671  		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5672  			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5673  				guest_xcrs->xcrs[i].value);
5674  			break;
5675  		}
5676  	if (r)
5677  		r = -EINVAL;
5678  	return r;
5679  }
5680  
5681  /*
5682   * kvm_set_guest_paused() indicates to the guest kernel that it has been
5683   * stopped by the hypervisor.  This function will be called from the host only.
5684   * EINVAL is returned when the host attempts to set the flag for a guest that
5685   * does not support pv clocks.
5686   */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5687  static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5688  {
5689  	if (!vcpu->arch.pv_time.active)
5690  		return -EINVAL;
5691  	vcpu->arch.pvclock_set_guest_stopped_request = true;
5692  	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5693  	return 0;
5694  }
5695  
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5696  static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5697  				 struct kvm_device_attr *attr)
5698  {
5699  	int r;
5700  
5701  	switch (attr->attr) {
5702  	case KVM_VCPU_TSC_OFFSET:
5703  		r = 0;
5704  		break;
5705  	default:
5706  		r = -ENXIO;
5707  	}
5708  
5709  	return r;
5710  }
5711  
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5712  static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5713  				 struct kvm_device_attr *attr)
5714  {
5715  	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5716  	int r;
5717  
5718  	switch (attr->attr) {
5719  	case KVM_VCPU_TSC_OFFSET:
5720  		r = -EFAULT;
5721  		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5722  			break;
5723  		r = 0;
5724  		break;
5725  	default:
5726  		r = -ENXIO;
5727  	}
5728  
5729  	return r;
5730  }
5731  
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5732  static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5733  				 struct kvm_device_attr *attr)
5734  {
5735  	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5736  	struct kvm *kvm = vcpu->kvm;
5737  	int r;
5738  
5739  	switch (attr->attr) {
5740  	case KVM_VCPU_TSC_OFFSET: {
5741  		u64 offset, tsc, ns;
5742  		unsigned long flags;
5743  		bool matched;
5744  
5745  		r = -EFAULT;
5746  		if (get_user(offset, uaddr))
5747  			break;
5748  
5749  		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5750  
5751  		matched = (vcpu->arch.virtual_tsc_khz &&
5752  			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5753  			   kvm->arch.last_tsc_offset == offset);
5754  
5755  		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5756  		ns = get_kvmclock_base_ns();
5757  
5758  		kvm->arch.user_set_tsc = true;
5759  		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5760  		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5761  
5762  		r = 0;
5763  		break;
5764  	}
5765  	default:
5766  		r = -ENXIO;
5767  	}
5768  
5769  	return r;
5770  }
5771  
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5772  static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5773  				      unsigned int ioctl,
5774  				      void __user *argp)
5775  {
5776  	struct kvm_device_attr attr;
5777  	int r;
5778  
5779  	if (copy_from_user(&attr, argp, sizeof(attr)))
5780  		return -EFAULT;
5781  
5782  	if (attr.group != KVM_VCPU_TSC_CTRL)
5783  		return -ENXIO;
5784  
5785  	switch (ioctl) {
5786  	case KVM_HAS_DEVICE_ATTR:
5787  		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5788  		break;
5789  	case KVM_GET_DEVICE_ATTR:
5790  		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5791  		break;
5792  	case KVM_SET_DEVICE_ATTR:
5793  		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5794  		break;
5795  	}
5796  
5797  	return r;
5798  }
5799  
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5800  static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5801  				     struct kvm_enable_cap *cap)
5802  {
5803  	if (cap->flags)
5804  		return -EINVAL;
5805  
5806  	switch (cap->cap) {
5807  #ifdef CONFIG_KVM_HYPERV
5808  	case KVM_CAP_HYPERV_SYNIC2:
5809  		if (cap->args[0])
5810  			return -EINVAL;
5811  		fallthrough;
5812  
5813  	case KVM_CAP_HYPERV_SYNIC:
5814  		if (!irqchip_in_kernel(vcpu->kvm))
5815  			return -EINVAL;
5816  		return kvm_hv_activate_synic(vcpu, cap->cap ==
5817  					     KVM_CAP_HYPERV_SYNIC2);
5818  	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5819  		{
5820  			int r;
5821  			uint16_t vmcs_version;
5822  			void __user *user_ptr;
5823  
5824  			if (!kvm_x86_ops.nested_ops->enable_evmcs)
5825  				return -ENOTTY;
5826  			r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5827  			if (!r) {
5828  				user_ptr = (void __user *)(uintptr_t)cap->args[0];
5829  				if (copy_to_user(user_ptr, &vmcs_version,
5830  						 sizeof(vmcs_version)))
5831  					r = -EFAULT;
5832  			}
5833  			return r;
5834  		}
5835  	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5836  		if (!kvm_x86_ops.enable_l2_tlb_flush)
5837  			return -ENOTTY;
5838  
5839  		return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
5840  
5841  	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5842  		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5843  #endif
5844  
5845  	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5846  		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5847  		if (vcpu->arch.pv_cpuid.enforce)
5848  			kvm_update_pv_runtime(vcpu);
5849  
5850  		return 0;
5851  	default:
5852  		return -EINVAL;
5853  	}
5854  }
5855  
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5856  long kvm_arch_vcpu_ioctl(struct file *filp,
5857  			 unsigned int ioctl, unsigned long arg)
5858  {
5859  	struct kvm_vcpu *vcpu = filp->private_data;
5860  	void __user *argp = (void __user *)arg;
5861  	int r;
5862  	union {
5863  		struct kvm_sregs2 *sregs2;
5864  		struct kvm_lapic_state *lapic;
5865  		struct kvm_xsave *xsave;
5866  		struct kvm_xcrs *xcrs;
5867  		void *buffer;
5868  	} u;
5869  
5870  	vcpu_load(vcpu);
5871  
5872  	u.buffer = NULL;
5873  	switch (ioctl) {
5874  	case KVM_GET_LAPIC: {
5875  		r = -EINVAL;
5876  		if (!lapic_in_kernel(vcpu))
5877  			goto out;
5878  		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
5879  
5880  		r = -ENOMEM;
5881  		if (!u.lapic)
5882  			goto out;
5883  		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5884  		if (r)
5885  			goto out;
5886  		r = -EFAULT;
5887  		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5888  			goto out;
5889  		r = 0;
5890  		break;
5891  	}
5892  	case KVM_SET_LAPIC: {
5893  		r = -EINVAL;
5894  		if (!lapic_in_kernel(vcpu))
5895  			goto out;
5896  		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5897  		if (IS_ERR(u.lapic)) {
5898  			r = PTR_ERR(u.lapic);
5899  			goto out_nofree;
5900  		}
5901  
5902  		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5903  		break;
5904  	}
5905  	case KVM_INTERRUPT: {
5906  		struct kvm_interrupt irq;
5907  
5908  		r = -EFAULT;
5909  		if (copy_from_user(&irq, argp, sizeof(irq)))
5910  			goto out;
5911  		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5912  		break;
5913  	}
5914  	case KVM_NMI: {
5915  		r = kvm_vcpu_ioctl_nmi(vcpu);
5916  		break;
5917  	}
5918  	case KVM_SMI: {
5919  		r = kvm_inject_smi(vcpu);
5920  		break;
5921  	}
5922  	case KVM_SET_CPUID: {
5923  		struct kvm_cpuid __user *cpuid_arg = argp;
5924  		struct kvm_cpuid cpuid;
5925  
5926  		r = -EFAULT;
5927  		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5928  			goto out;
5929  		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5930  		break;
5931  	}
5932  	case KVM_SET_CPUID2: {
5933  		struct kvm_cpuid2 __user *cpuid_arg = argp;
5934  		struct kvm_cpuid2 cpuid;
5935  
5936  		r = -EFAULT;
5937  		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5938  			goto out;
5939  		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5940  					      cpuid_arg->entries);
5941  		break;
5942  	}
5943  	case KVM_GET_CPUID2: {
5944  		struct kvm_cpuid2 __user *cpuid_arg = argp;
5945  		struct kvm_cpuid2 cpuid;
5946  
5947  		r = -EFAULT;
5948  		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5949  			goto out;
5950  		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5951  					      cpuid_arg->entries);
5952  		if (r)
5953  			goto out;
5954  		r = -EFAULT;
5955  		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5956  			goto out;
5957  		r = 0;
5958  		break;
5959  	}
5960  	case KVM_GET_MSRS: {
5961  		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5962  		r = msr_io(vcpu, argp, do_get_msr, 1);
5963  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5964  		break;
5965  	}
5966  	case KVM_SET_MSRS: {
5967  		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5968  		r = msr_io(vcpu, argp, do_set_msr, 0);
5969  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5970  		break;
5971  	}
5972  	case KVM_TPR_ACCESS_REPORTING: {
5973  		struct kvm_tpr_access_ctl tac;
5974  
5975  		r = -EFAULT;
5976  		if (copy_from_user(&tac, argp, sizeof(tac)))
5977  			goto out;
5978  		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5979  		if (r)
5980  			goto out;
5981  		r = -EFAULT;
5982  		if (copy_to_user(argp, &tac, sizeof(tac)))
5983  			goto out;
5984  		r = 0;
5985  		break;
5986  	};
5987  	case KVM_SET_VAPIC_ADDR: {
5988  		struct kvm_vapic_addr va;
5989  		int idx;
5990  
5991  		r = -EINVAL;
5992  		if (!lapic_in_kernel(vcpu))
5993  			goto out;
5994  		r = -EFAULT;
5995  		if (copy_from_user(&va, argp, sizeof(va)))
5996  			goto out;
5997  		idx = srcu_read_lock(&vcpu->kvm->srcu);
5998  		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5999  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6000  		break;
6001  	}
6002  	case KVM_X86_SETUP_MCE: {
6003  		u64 mcg_cap;
6004  
6005  		r = -EFAULT;
6006  		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6007  			goto out;
6008  		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6009  		break;
6010  	}
6011  	case KVM_X86_SET_MCE: {
6012  		struct kvm_x86_mce mce;
6013  
6014  		r = -EFAULT;
6015  		if (copy_from_user(&mce, argp, sizeof(mce)))
6016  			goto out;
6017  		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6018  		break;
6019  	}
6020  	case KVM_GET_VCPU_EVENTS: {
6021  		struct kvm_vcpu_events events;
6022  
6023  		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6024  
6025  		r = -EFAULT;
6026  		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6027  			break;
6028  		r = 0;
6029  		break;
6030  	}
6031  	case KVM_SET_VCPU_EVENTS: {
6032  		struct kvm_vcpu_events events;
6033  
6034  		r = -EFAULT;
6035  		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6036  			break;
6037  
6038  		kvm_vcpu_srcu_read_lock(vcpu);
6039  		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6040  		kvm_vcpu_srcu_read_unlock(vcpu);
6041  		break;
6042  	}
6043  	case KVM_GET_DEBUGREGS: {
6044  		struct kvm_debugregs dbgregs;
6045  
6046  		r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6047  		if (r < 0)
6048  			break;
6049  
6050  		r = -EFAULT;
6051  		if (copy_to_user(argp, &dbgregs,
6052  				 sizeof(struct kvm_debugregs)))
6053  			break;
6054  		r = 0;
6055  		break;
6056  	}
6057  	case KVM_SET_DEBUGREGS: {
6058  		struct kvm_debugregs dbgregs;
6059  
6060  		r = -EFAULT;
6061  		if (copy_from_user(&dbgregs, argp,
6062  				   sizeof(struct kvm_debugregs)))
6063  			break;
6064  
6065  		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6066  		break;
6067  	}
6068  	case KVM_GET_XSAVE: {
6069  		r = -EINVAL;
6070  		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6071  			break;
6072  
6073  		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6074  		r = -ENOMEM;
6075  		if (!u.xsave)
6076  			break;
6077  
6078  		r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6079  		if (r < 0)
6080  			break;
6081  
6082  		r = -EFAULT;
6083  		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6084  			break;
6085  		r = 0;
6086  		break;
6087  	}
6088  	case KVM_SET_XSAVE: {
6089  		int size = vcpu->arch.guest_fpu.uabi_size;
6090  
6091  		u.xsave = memdup_user(argp, size);
6092  		if (IS_ERR(u.xsave)) {
6093  			r = PTR_ERR(u.xsave);
6094  			goto out_nofree;
6095  		}
6096  
6097  		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6098  		break;
6099  	}
6100  
6101  	case KVM_GET_XSAVE2: {
6102  		int size = vcpu->arch.guest_fpu.uabi_size;
6103  
6104  		u.xsave = kzalloc(size, GFP_KERNEL);
6105  		r = -ENOMEM;
6106  		if (!u.xsave)
6107  			break;
6108  
6109  		r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6110  		if (r < 0)
6111  			break;
6112  
6113  		r = -EFAULT;
6114  		if (copy_to_user(argp, u.xsave, size))
6115  			break;
6116  
6117  		r = 0;
6118  		break;
6119  	}
6120  
6121  	case KVM_GET_XCRS: {
6122  		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6123  		r = -ENOMEM;
6124  		if (!u.xcrs)
6125  			break;
6126  
6127  		r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6128  		if (r < 0)
6129  			break;
6130  
6131  		r = -EFAULT;
6132  		if (copy_to_user(argp, u.xcrs,
6133  				 sizeof(struct kvm_xcrs)))
6134  			break;
6135  		r = 0;
6136  		break;
6137  	}
6138  	case KVM_SET_XCRS: {
6139  		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6140  		if (IS_ERR(u.xcrs)) {
6141  			r = PTR_ERR(u.xcrs);
6142  			goto out_nofree;
6143  		}
6144  
6145  		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6146  		break;
6147  	}
6148  	case KVM_SET_TSC_KHZ: {
6149  		u32 user_tsc_khz;
6150  
6151  		r = -EINVAL;
6152  		user_tsc_khz = (u32)arg;
6153  
6154  		if (kvm_caps.has_tsc_control &&
6155  		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6156  			goto out;
6157  
6158  		if (user_tsc_khz == 0)
6159  			user_tsc_khz = tsc_khz;
6160  
6161  		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6162  			r = 0;
6163  
6164  		goto out;
6165  	}
6166  	case KVM_GET_TSC_KHZ: {
6167  		r = vcpu->arch.virtual_tsc_khz;
6168  		goto out;
6169  	}
6170  	case KVM_KVMCLOCK_CTRL: {
6171  		r = kvm_set_guest_paused(vcpu);
6172  		goto out;
6173  	}
6174  	case KVM_ENABLE_CAP: {
6175  		struct kvm_enable_cap cap;
6176  
6177  		r = -EFAULT;
6178  		if (copy_from_user(&cap, argp, sizeof(cap)))
6179  			goto out;
6180  		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6181  		break;
6182  	}
6183  	case KVM_GET_NESTED_STATE: {
6184  		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6185  		u32 user_data_size;
6186  
6187  		r = -EINVAL;
6188  		if (!kvm_x86_ops.nested_ops->get_state)
6189  			break;
6190  
6191  		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6192  		r = -EFAULT;
6193  		if (get_user(user_data_size, &user_kvm_nested_state->size))
6194  			break;
6195  
6196  		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6197  						     user_data_size);
6198  		if (r < 0)
6199  			break;
6200  
6201  		if (r > user_data_size) {
6202  			if (put_user(r, &user_kvm_nested_state->size))
6203  				r = -EFAULT;
6204  			else
6205  				r = -E2BIG;
6206  			break;
6207  		}
6208  
6209  		r = 0;
6210  		break;
6211  	}
6212  	case KVM_SET_NESTED_STATE: {
6213  		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6214  		struct kvm_nested_state kvm_state;
6215  		int idx;
6216  
6217  		r = -EINVAL;
6218  		if (!kvm_x86_ops.nested_ops->set_state)
6219  			break;
6220  
6221  		r = -EFAULT;
6222  		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6223  			break;
6224  
6225  		r = -EINVAL;
6226  		if (kvm_state.size < sizeof(kvm_state))
6227  			break;
6228  
6229  		if (kvm_state.flags &
6230  		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6231  		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6232  		      | KVM_STATE_NESTED_GIF_SET))
6233  			break;
6234  
6235  		/* nested_run_pending implies guest_mode.  */
6236  		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6237  		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6238  			break;
6239  
6240  		idx = srcu_read_lock(&vcpu->kvm->srcu);
6241  		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6242  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6243  		break;
6244  	}
6245  #ifdef CONFIG_KVM_HYPERV
6246  	case KVM_GET_SUPPORTED_HV_CPUID:
6247  		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6248  		break;
6249  #endif
6250  #ifdef CONFIG_KVM_XEN
6251  	case KVM_XEN_VCPU_GET_ATTR: {
6252  		struct kvm_xen_vcpu_attr xva;
6253  
6254  		r = -EFAULT;
6255  		if (copy_from_user(&xva, argp, sizeof(xva)))
6256  			goto out;
6257  		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6258  		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6259  			r = -EFAULT;
6260  		break;
6261  	}
6262  	case KVM_XEN_VCPU_SET_ATTR: {
6263  		struct kvm_xen_vcpu_attr xva;
6264  
6265  		r = -EFAULT;
6266  		if (copy_from_user(&xva, argp, sizeof(xva)))
6267  			goto out;
6268  		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6269  		break;
6270  	}
6271  #endif
6272  	case KVM_GET_SREGS2: {
6273  		r = -EINVAL;
6274  		if (vcpu->kvm->arch.has_protected_state &&
6275  		    vcpu->arch.guest_state_protected)
6276  			goto out;
6277  
6278  		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6279  		r = -ENOMEM;
6280  		if (!u.sregs2)
6281  			goto out;
6282  		__get_sregs2(vcpu, u.sregs2);
6283  		r = -EFAULT;
6284  		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6285  			goto out;
6286  		r = 0;
6287  		break;
6288  	}
6289  	case KVM_SET_SREGS2: {
6290  		r = -EINVAL;
6291  		if (vcpu->kvm->arch.has_protected_state &&
6292  		    vcpu->arch.guest_state_protected)
6293  			goto out;
6294  
6295  		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6296  		if (IS_ERR(u.sregs2)) {
6297  			r = PTR_ERR(u.sregs2);
6298  			u.sregs2 = NULL;
6299  			goto out;
6300  		}
6301  		r = __set_sregs2(vcpu, u.sregs2);
6302  		break;
6303  	}
6304  	case KVM_HAS_DEVICE_ATTR:
6305  	case KVM_GET_DEVICE_ATTR:
6306  	case KVM_SET_DEVICE_ATTR:
6307  		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6308  		break;
6309  	default:
6310  		r = -EINVAL;
6311  	}
6312  out:
6313  	kfree(u.buffer);
6314  out_nofree:
6315  	vcpu_put(vcpu);
6316  	return r;
6317  }
6318  
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6319  vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6320  {
6321  	return VM_FAULT_SIGBUS;
6322  }
6323  
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6324  static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6325  {
6326  	int ret;
6327  
6328  	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6329  		return -EINVAL;
6330  	ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6331  	return ret;
6332  }
6333  
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6334  static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6335  					      u64 ident_addr)
6336  {
6337  	return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6338  }
6339  
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6340  static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6341  					 unsigned long kvm_nr_mmu_pages)
6342  {
6343  	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6344  		return -EINVAL;
6345  
6346  	mutex_lock(&kvm->slots_lock);
6347  
6348  	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6349  	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6350  
6351  	mutex_unlock(&kvm->slots_lock);
6352  	return 0;
6353  }
6354  
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6355  static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6356  {
6357  	struct kvm_pic *pic = kvm->arch.vpic;
6358  	int r;
6359  
6360  	r = 0;
6361  	switch (chip->chip_id) {
6362  	case KVM_IRQCHIP_PIC_MASTER:
6363  		memcpy(&chip->chip.pic, &pic->pics[0],
6364  			sizeof(struct kvm_pic_state));
6365  		break;
6366  	case KVM_IRQCHIP_PIC_SLAVE:
6367  		memcpy(&chip->chip.pic, &pic->pics[1],
6368  			sizeof(struct kvm_pic_state));
6369  		break;
6370  	case KVM_IRQCHIP_IOAPIC:
6371  		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6372  		break;
6373  	default:
6374  		r = -EINVAL;
6375  		break;
6376  	}
6377  	return r;
6378  }
6379  
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6380  static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6381  {
6382  	struct kvm_pic *pic = kvm->arch.vpic;
6383  	int r;
6384  
6385  	r = 0;
6386  	switch (chip->chip_id) {
6387  	case KVM_IRQCHIP_PIC_MASTER:
6388  		spin_lock(&pic->lock);
6389  		memcpy(&pic->pics[0], &chip->chip.pic,
6390  			sizeof(struct kvm_pic_state));
6391  		spin_unlock(&pic->lock);
6392  		break;
6393  	case KVM_IRQCHIP_PIC_SLAVE:
6394  		spin_lock(&pic->lock);
6395  		memcpy(&pic->pics[1], &chip->chip.pic,
6396  			sizeof(struct kvm_pic_state));
6397  		spin_unlock(&pic->lock);
6398  		break;
6399  	case KVM_IRQCHIP_IOAPIC:
6400  		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6401  		break;
6402  	default:
6403  		r = -EINVAL;
6404  		break;
6405  	}
6406  	kvm_pic_update_irq(pic);
6407  	return r;
6408  }
6409  
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6410  static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6411  {
6412  	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6413  
6414  	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6415  
6416  	mutex_lock(&kps->lock);
6417  	memcpy(ps, &kps->channels, sizeof(*ps));
6418  	mutex_unlock(&kps->lock);
6419  	return 0;
6420  }
6421  
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6422  static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6423  {
6424  	int i;
6425  	struct kvm_pit *pit = kvm->arch.vpit;
6426  
6427  	mutex_lock(&pit->pit_state.lock);
6428  	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6429  	for (i = 0; i < 3; i++)
6430  		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6431  	mutex_unlock(&pit->pit_state.lock);
6432  	return 0;
6433  }
6434  
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6435  static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6436  {
6437  	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6438  	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6439  		sizeof(ps->channels));
6440  	ps->flags = kvm->arch.vpit->pit_state.flags;
6441  	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6442  	memset(&ps->reserved, 0, sizeof(ps->reserved));
6443  	return 0;
6444  }
6445  
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6446  static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6447  {
6448  	int start = 0;
6449  	int i;
6450  	u32 prev_legacy, cur_legacy;
6451  	struct kvm_pit *pit = kvm->arch.vpit;
6452  
6453  	mutex_lock(&pit->pit_state.lock);
6454  	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6455  	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6456  	if (!prev_legacy && cur_legacy)
6457  		start = 1;
6458  	memcpy(&pit->pit_state.channels, &ps->channels,
6459  	       sizeof(pit->pit_state.channels));
6460  	pit->pit_state.flags = ps->flags;
6461  	for (i = 0; i < 3; i++)
6462  		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6463  				   start && i == 0);
6464  	mutex_unlock(&pit->pit_state.lock);
6465  	return 0;
6466  }
6467  
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6468  static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6469  				 struct kvm_reinject_control *control)
6470  {
6471  	struct kvm_pit *pit = kvm->arch.vpit;
6472  
6473  	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6474  	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6475  	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6476  	 */
6477  	mutex_lock(&pit->pit_state.lock);
6478  	kvm_pit_set_reinject(pit, control->pit_reinject);
6479  	mutex_unlock(&pit->pit_state.lock);
6480  
6481  	return 0;
6482  }
6483  
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6484  void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6485  {
6486  
6487  	/*
6488  	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6489  	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6490  	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6491  	 * VM-Exit.
6492  	 */
6493  	struct kvm_vcpu *vcpu;
6494  	unsigned long i;
6495  
6496  	if (!kvm_x86_ops.cpu_dirty_log_size)
6497  		return;
6498  
6499  	kvm_for_each_vcpu(i, vcpu, kvm)
6500  		kvm_vcpu_kick(vcpu);
6501  }
6502  
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6503  int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6504  			bool line_status)
6505  {
6506  	if (!irqchip_in_kernel(kvm))
6507  		return -ENXIO;
6508  
6509  	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6510  					irq_event->irq, irq_event->level,
6511  					line_status);
6512  	return 0;
6513  }
6514  
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6515  int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6516  			    struct kvm_enable_cap *cap)
6517  {
6518  	int r;
6519  
6520  	if (cap->flags)
6521  		return -EINVAL;
6522  
6523  	switch (cap->cap) {
6524  	case KVM_CAP_DISABLE_QUIRKS2:
6525  		r = -EINVAL;
6526  		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6527  			break;
6528  		fallthrough;
6529  	case KVM_CAP_DISABLE_QUIRKS:
6530  		kvm->arch.disabled_quirks = cap->args[0];
6531  		r = 0;
6532  		break;
6533  	case KVM_CAP_SPLIT_IRQCHIP: {
6534  		mutex_lock(&kvm->lock);
6535  		r = -EINVAL;
6536  		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6537  			goto split_irqchip_unlock;
6538  		r = -EEXIST;
6539  		if (irqchip_in_kernel(kvm))
6540  			goto split_irqchip_unlock;
6541  		if (kvm->created_vcpus)
6542  			goto split_irqchip_unlock;
6543  		/* Pairs with irqchip_in_kernel. */
6544  		smp_wmb();
6545  		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6546  		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6547  		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6548  		r = 0;
6549  split_irqchip_unlock:
6550  		mutex_unlock(&kvm->lock);
6551  		break;
6552  	}
6553  	case KVM_CAP_X2APIC_API:
6554  		r = -EINVAL;
6555  		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6556  			break;
6557  
6558  		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6559  			kvm->arch.x2apic_format = true;
6560  		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6561  			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6562  
6563  		r = 0;
6564  		break;
6565  	case KVM_CAP_X86_DISABLE_EXITS:
6566  		r = -EINVAL;
6567  		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6568  			break;
6569  
6570  		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6571  			kvm->arch.pause_in_guest = true;
6572  
6573  #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6574  		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6575  
6576  		if (!mitigate_smt_rsb) {
6577  			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6578  			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6579  				pr_warn_once(SMT_RSB_MSG);
6580  
6581  			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6582  			    kvm_can_mwait_in_guest())
6583  				kvm->arch.mwait_in_guest = true;
6584  			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6585  				kvm->arch.hlt_in_guest = true;
6586  			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6587  				kvm->arch.cstate_in_guest = true;
6588  		}
6589  
6590  		r = 0;
6591  		break;
6592  	case KVM_CAP_MSR_PLATFORM_INFO:
6593  		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6594  		r = 0;
6595  		break;
6596  	case KVM_CAP_EXCEPTION_PAYLOAD:
6597  		kvm->arch.exception_payload_enabled = cap->args[0];
6598  		r = 0;
6599  		break;
6600  	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6601  		kvm->arch.triple_fault_event = cap->args[0];
6602  		r = 0;
6603  		break;
6604  	case KVM_CAP_X86_USER_SPACE_MSR:
6605  		r = -EINVAL;
6606  		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6607  			break;
6608  		kvm->arch.user_space_msr_mask = cap->args[0];
6609  		r = 0;
6610  		break;
6611  	case KVM_CAP_X86_BUS_LOCK_EXIT:
6612  		r = -EINVAL;
6613  		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6614  			break;
6615  
6616  		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6617  		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6618  			break;
6619  
6620  		if (kvm_caps.has_bus_lock_exit &&
6621  		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6622  			kvm->arch.bus_lock_detection_enabled = true;
6623  		r = 0;
6624  		break;
6625  #ifdef CONFIG_X86_SGX_KVM
6626  	case KVM_CAP_SGX_ATTRIBUTE: {
6627  		unsigned long allowed_attributes = 0;
6628  
6629  		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6630  		if (r)
6631  			break;
6632  
6633  		/* KVM only supports the PROVISIONKEY privileged attribute. */
6634  		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6635  		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6636  			kvm->arch.sgx_provisioning_allowed = true;
6637  		else
6638  			r = -EINVAL;
6639  		break;
6640  	}
6641  #endif
6642  	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6643  		r = -EINVAL;
6644  		if (!kvm_x86_ops.vm_copy_enc_context_from)
6645  			break;
6646  
6647  		r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6648  		break;
6649  	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6650  		r = -EINVAL;
6651  		if (!kvm_x86_ops.vm_move_enc_context_from)
6652  			break;
6653  
6654  		r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6655  		break;
6656  	case KVM_CAP_EXIT_HYPERCALL:
6657  		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6658  			r = -EINVAL;
6659  			break;
6660  		}
6661  		kvm->arch.hypercall_exit_enabled = cap->args[0];
6662  		r = 0;
6663  		break;
6664  	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6665  		r = -EINVAL;
6666  		if (cap->args[0] & ~1)
6667  			break;
6668  		kvm->arch.exit_on_emulation_error = cap->args[0];
6669  		r = 0;
6670  		break;
6671  	case KVM_CAP_PMU_CAPABILITY:
6672  		r = -EINVAL;
6673  		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6674  			break;
6675  
6676  		mutex_lock(&kvm->lock);
6677  		if (!kvm->created_vcpus) {
6678  			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6679  			r = 0;
6680  		}
6681  		mutex_unlock(&kvm->lock);
6682  		break;
6683  	case KVM_CAP_MAX_VCPU_ID:
6684  		r = -EINVAL;
6685  		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6686  			break;
6687  
6688  		mutex_lock(&kvm->lock);
6689  		if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6690  			;
6691  		} else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6692  			r = 0;
6693  		} else if (!kvm->arch.max_vcpu_ids) {
6694  			kvm->arch.max_vcpu_ids = cap->args[0];
6695  			r = 0;
6696  		}
6697  		mutex_unlock(&kvm->lock);
6698  		break;
6699  	case KVM_CAP_X86_NOTIFY_VMEXIT:
6700  		r = -EINVAL;
6701  		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6702  			break;
6703  		if (!kvm_caps.has_notify_vmexit)
6704  			break;
6705  		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6706  			break;
6707  		mutex_lock(&kvm->lock);
6708  		if (!kvm->created_vcpus) {
6709  			kvm->arch.notify_window = cap->args[0] >> 32;
6710  			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6711  			r = 0;
6712  		}
6713  		mutex_unlock(&kvm->lock);
6714  		break;
6715  	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6716  		r = -EINVAL;
6717  
6718  		/*
6719  		 * Since the risk of disabling NX hugepages is a guest crashing
6720  		 * the system, ensure the userspace process has permission to
6721  		 * reboot the system.
6722  		 *
6723  		 * Note that unlike the reboot() syscall, the process must have
6724  		 * this capability in the root namespace because exposing
6725  		 * /dev/kvm into a container does not limit the scope of the
6726  		 * iTLB multihit bug to that container. In other words,
6727  		 * this must use capable(), not ns_capable().
6728  		 */
6729  		if (!capable(CAP_SYS_BOOT)) {
6730  			r = -EPERM;
6731  			break;
6732  		}
6733  
6734  		if (cap->args[0])
6735  			break;
6736  
6737  		mutex_lock(&kvm->lock);
6738  		if (!kvm->created_vcpus) {
6739  			kvm->arch.disable_nx_huge_pages = true;
6740  			r = 0;
6741  		}
6742  		mutex_unlock(&kvm->lock);
6743  		break;
6744  	case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6745  		u64 bus_cycle_ns = cap->args[0];
6746  		u64 unused;
6747  
6748  		/*
6749  		 * Guard against overflow in tmict_to_ns(). 128 is the highest
6750  		 * divide value that can be programmed in APIC_TDCR.
6751  		 */
6752  		r = -EINVAL;
6753  		if (!bus_cycle_ns ||
6754  		    check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6755  			break;
6756  
6757  		r = 0;
6758  		mutex_lock(&kvm->lock);
6759  		if (!irqchip_in_kernel(kvm))
6760  			r = -ENXIO;
6761  		else if (kvm->created_vcpus)
6762  			r = -EINVAL;
6763  		else
6764  			kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6765  		mutex_unlock(&kvm->lock);
6766  		break;
6767  	}
6768  	default:
6769  		r = -EINVAL;
6770  		break;
6771  	}
6772  	return r;
6773  }
6774  
kvm_alloc_msr_filter(bool default_allow)6775  static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6776  {
6777  	struct kvm_x86_msr_filter *msr_filter;
6778  
6779  	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6780  	if (!msr_filter)
6781  		return NULL;
6782  
6783  	msr_filter->default_allow = default_allow;
6784  	return msr_filter;
6785  }
6786  
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6787  static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6788  {
6789  	u32 i;
6790  
6791  	if (!msr_filter)
6792  		return;
6793  
6794  	for (i = 0; i < msr_filter->count; i++)
6795  		kfree(msr_filter->ranges[i].bitmap);
6796  
6797  	kfree(msr_filter);
6798  }
6799  
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6800  static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6801  			      struct kvm_msr_filter_range *user_range)
6802  {
6803  	unsigned long *bitmap;
6804  	size_t bitmap_size;
6805  
6806  	if (!user_range->nmsrs)
6807  		return 0;
6808  
6809  	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6810  		return -EINVAL;
6811  
6812  	if (!user_range->flags)
6813  		return -EINVAL;
6814  
6815  	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6816  	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6817  		return -EINVAL;
6818  
6819  	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6820  	if (IS_ERR(bitmap))
6821  		return PTR_ERR(bitmap);
6822  
6823  	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6824  		.flags = user_range->flags,
6825  		.base = user_range->base,
6826  		.nmsrs = user_range->nmsrs,
6827  		.bitmap = bitmap,
6828  	};
6829  
6830  	msr_filter->count++;
6831  	return 0;
6832  }
6833  
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6834  static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6835  				       struct kvm_msr_filter *filter)
6836  {
6837  	struct kvm_x86_msr_filter *new_filter, *old_filter;
6838  	bool default_allow;
6839  	bool empty = true;
6840  	int r;
6841  	u32 i;
6842  
6843  	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6844  		return -EINVAL;
6845  
6846  	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6847  		empty &= !filter->ranges[i].nmsrs;
6848  
6849  	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6850  	if (empty && !default_allow)
6851  		return -EINVAL;
6852  
6853  	new_filter = kvm_alloc_msr_filter(default_allow);
6854  	if (!new_filter)
6855  		return -ENOMEM;
6856  
6857  	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6858  		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6859  		if (r) {
6860  			kvm_free_msr_filter(new_filter);
6861  			return r;
6862  		}
6863  	}
6864  
6865  	mutex_lock(&kvm->lock);
6866  	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6867  					 mutex_is_locked(&kvm->lock));
6868  	mutex_unlock(&kvm->lock);
6869  	synchronize_srcu(&kvm->srcu);
6870  
6871  	kvm_free_msr_filter(old_filter);
6872  
6873  	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6874  
6875  	return 0;
6876  }
6877  
6878  #ifdef CONFIG_KVM_COMPAT
6879  /* for KVM_X86_SET_MSR_FILTER */
6880  struct kvm_msr_filter_range_compat {
6881  	__u32 flags;
6882  	__u32 nmsrs;
6883  	__u32 base;
6884  	__u32 bitmap;
6885  };
6886  
6887  struct kvm_msr_filter_compat {
6888  	__u32 flags;
6889  	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6890  };
6891  
6892  #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6893  
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6894  long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6895  			      unsigned long arg)
6896  {
6897  	void __user *argp = (void __user *)arg;
6898  	struct kvm *kvm = filp->private_data;
6899  	long r = -ENOTTY;
6900  
6901  	switch (ioctl) {
6902  	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6903  		struct kvm_msr_filter __user *user_msr_filter = argp;
6904  		struct kvm_msr_filter_compat filter_compat;
6905  		struct kvm_msr_filter filter;
6906  		int i;
6907  
6908  		if (copy_from_user(&filter_compat, user_msr_filter,
6909  				   sizeof(filter_compat)))
6910  			return -EFAULT;
6911  
6912  		filter.flags = filter_compat.flags;
6913  		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6914  			struct kvm_msr_filter_range_compat *cr;
6915  
6916  			cr = &filter_compat.ranges[i];
6917  			filter.ranges[i] = (struct kvm_msr_filter_range) {
6918  				.flags = cr->flags,
6919  				.nmsrs = cr->nmsrs,
6920  				.base = cr->base,
6921  				.bitmap = (__u8 *)(ulong)cr->bitmap,
6922  			};
6923  		}
6924  
6925  		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6926  		break;
6927  	}
6928  	}
6929  
6930  	return r;
6931  }
6932  #endif
6933  
6934  #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6935  static int kvm_arch_suspend_notifier(struct kvm *kvm)
6936  {
6937  	struct kvm_vcpu *vcpu;
6938  	unsigned long i;
6939  	int ret = 0;
6940  
6941  	mutex_lock(&kvm->lock);
6942  	kvm_for_each_vcpu(i, vcpu, kvm) {
6943  		if (!vcpu->arch.pv_time.active)
6944  			continue;
6945  
6946  		ret = kvm_set_guest_paused(vcpu);
6947  		if (ret) {
6948  			kvm_err("Failed to pause guest VCPU%d: %d\n",
6949  				vcpu->vcpu_id, ret);
6950  			break;
6951  		}
6952  	}
6953  	mutex_unlock(&kvm->lock);
6954  
6955  	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6956  }
6957  
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6958  int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6959  {
6960  	switch (state) {
6961  	case PM_HIBERNATION_PREPARE:
6962  	case PM_SUSPEND_PREPARE:
6963  		return kvm_arch_suspend_notifier(kvm);
6964  	}
6965  
6966  	return NOTIFY_DONE;
6967  }
6968  #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6969  
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6970  static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6971  {
6972  	struct kvm_clock_data data = { 0 };
6973  
6974  	get_kvmclock(kvm, &data);
6975  	if (copy_to_user(argp, &data, sizeof(data)))
6976  		return -EFAULT;
6977  
6978  	return 0;
6979  }
6980  
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6981  static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6982  {
6983  	struct kvm_arch *ka = &kvm->arch;
6984  	struct kvm_clock_data data;
6985  	u64 now_raw_ns;
6986  
6987  	if (copy_from_user(&data, argp, sizeof(data)))
6988  		return -EFAULT;
6989  
6990  	/*
6991  	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6992  	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6993  	 */
6994  	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6995  		return -EINVAL;
6996  
6997  	kvm_hv_request_tsc_page_update(kvm);
6998  	kvm_start_pvclock_update(kvm);
6999  	pvclock_update_vm_gtod_copy(kvm);
7000  
7001  	/*
7002  	 * This pairs with kvm_guest_time_update(): when masterclock is
7003  	 * in use, we use master_kernel_ns + kvmclock_offset to set
7004  	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
7005  	 * is slightly ahead) here we risk going negative on unsigned
7006  	 * 'system_time' when 'data.clock' is very small.
7007  	 */
7008  	if (data.flags & KVM_CLOCK_REALTIME) {
7009  		u64 now_real_ns = ktime_get_real_ns();
7010  
7011  		/*
7012  		 * Avoid stepping the kvmclock backwards.
7013  		 */
7014  		if (now_real_ns > data.realtime)
7015  			data.clock += now_real_ns - data.realtime;
7016  	}
7017  
7018  	if (ka->use_master_clock)
7019  		now_raw_ns = ka->master_kernel_ns;
7020  	else
7021  		now_raw_ns = get_kvmclock_base_ns();
7022  	ka->kvmclock_offset = data.clock - now_raw_ns;
7023  	kvm_end_pvclock_update(kvm);
7024  	return 0;
7025  }
7026  
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7027  int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7028  {
7029  	struct kvm *kvm = filp->private_data;
7030  	void __user *argp = (void __user *)arg;
7031  	int r = -ENOTTY;
7032  	/*
7033  	 * This union makes it completely explicit to gcc-3.x
7034  	 * that these two variables' stack usage should be
7035  	 * combined, not added together.
7036  	 */
7037  	union {
7038  		struct kvm_pit_state ps;
7039  		struct kvm_pit_state2 ps2;
7040  		struct kvm_pit_config pit_config;
7041  	} u;
7042  
7043  	switch (ioctl) {
7044  	case KVM_SET_TSS_ADDR:
7045  		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7046  		break;
7047  	case KVM_SET_IDENTITY_MAP_ADDR: {
7048  		u64 ident_addr;
7049  
7050  		mutex_lock(&kvm->lock);
7051  		r = -EINVAL;
7052  		if (kvm->created_vcpus)
7053  			goto set_identity_unlock;
7054  		r = -EFAULT;
7055  		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7056  			goto set_identity_unlock;
7057  		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7058  set_identity_unlock:
7059  		mutex_unlock(&kvm->lock);
7060  		break;
7061  	}
7062  	case KVM_SET_NR_MMU_PAGES:
7063  		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7064  		break;
7065  	case KVM_CREATE_IRQCHIP: {
7066  		mutex_lock(&kvm->lock);
7067  
7068  		r = -EEXIST;
7069  		if (irqchip_in_kernel(kvm))
7070  			goto create_irqchip_unlock;
7071  
7072  		r = -EINVAL;
7073  		if (kvm->created_vcpus)
7074  			goto create_irqchip_unlock;
7075  
7076  		r = kvm_pic_init(kvm);
7077  		if (r)
7078  			goto create_irqchip_unlock;
7079  
7080  		r = kvm_ioapic_init(kvm);
7081  		if (r) {
7082  			kvm_pic_destroy(kvm);
7083  			goto create_irqchip_unlock;
7084  		}
7085  
7086  		r = kvm_setup_default_irq_routing(kvm);
7087  		if (r) {
7088  			kvm_ioapic_destroy(kvm);
7089  			kvm_pic_destroy(kvm);
7090  			goto create_irqchip_unlock;
7091  		}
7092  		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7093  		smp_wmb();
7094  		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7095  		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7096  	create_irqchip_unlock:
7097  		mutex_unlock(&kvm->lock);
7098  		break;
7099  	}
7100  	case KVM_CREATE_PIT:
7101  		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7102  		goto create_pit;
7103  	case KVM_CREATE_PIT2:
7104  		r = -EFAULT;
7105  		if (copy_from_user(&u.pit_config, argp,
7106  				   sizeof(struct kvm_pit_config)))
7107  			goto out;
7108  	create_pit:
7109  		mutex_lock(&kvm->lock);
7110  		r = -EEXIST;
7111  		if (kvm->arch.vpit)
7112  			goto create_pit_unlock;
7113  		r = -ENOENT;
7114  		if (!pic_in_kernel(kvm))
7115  			goto create_pit_unlock;
7116  		r = -ENOMEM;
7117  		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7118  		if (kvm->arch.vpit)
7119  			r = 0;
7120  	create_pit_unlock:
7121  		mutex_unlock(&kvm->lock);
7122  		break;
7123  	case KVM_GET_IRQCHIP: {
7124  		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7125  		struct kvm_irqchip *chip;
7126  
7127  		chip = memdup_user(argp, sizeof(*chip));
7128  		if (IS_ERR(chip)) {
7129  			r = PTR_ERR(chip);
7130  			goto out;
7131  		}
7132  
7133  		r = -ENXIO;
7134  		if (!irqchip_kernel(kvm))
7135  			goto get_irqchip_out;
7136  		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7137  		if (r)
7138  			goto get_irqchip_out;
7139  		r = -EFAULT;
7140  		if (copy_to_user(argp, chip, sizeof(*chip)))
7141  			goto get_irqchip_out;
7142  		r = 0;
7143  	get_irqchip_out:
7144  		kfree(chip);
7145  		break;
7146  	}
7147  	case KVM_SET_IRQCHIP: {
7148  		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7149  		struct kvm_irqchip *chip;
7150  
7151  		chip = memdup_user(argp, sizeof(*chip));
7152  		if (IS_ERR(chip)) {
7153  			r = PTR_ERR(chip);
7154  			goto out;
7155  		}
7156  
7157  		r = -ENXIO;
7158  		if (!irqchip_kernel(kvm))
7159  			goto set_irqchip_out;
7160  		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7161  	set_irqchip_out:
7162  		kfree(chip);
7163  		break;
7164  	}
7165  	case KVM_GET_PIT: {
7166  		r = -EFAULT;
7167  		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7168  			goto out;
7169  		r = -ENXIO;
7170  		if (!kvm->arch.vpit)
7171  			goto out;
7172  		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7173  		if (r)
7174  			goto out;
7175  		r = -EFAULT;
7176  		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7177  			goto out;
7178  		r = 0;
7179  		break;
7180  	}
7181  	case KVM_SET_PIT: {
7182  		r = -EFAULT;
7183  		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7184  			goto out;
7185  		mutex_lock(&kvm->lock);
7186  		r = -ENXIO;
7187  		if (!kvm->arch.vpit)
7188  			goto set_pit_out;
7189  		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7190  set_pit_out:
7191  		mutex_unlock(&kvm->lock);
7192  		break;
7193  	}
7194  	case KVM_GET_PIT2: {
7195  		r = -ENXIO;
7196  		if (!kvm->arch.vpit)
7197  			goto out;
7198  		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7199  		if (r)
7200  			goto out;
7201  		r = -EFAULT;
7202  		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7203  			goto out;
7204  		r = 0;
7205  		break;
7206  	}
7207  	case KVM_SET_PIT2: {
7208  		r = -EFAULT;
7209  		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7210  			goto out;
7211  		mutex_lock(&kvm->lock);
7212  		r = -ENXIO;
7213  		if (!kvm->arch.vpit)
7214  			goto set_pit2_out;
7215  		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7216  set_pit2_out:
7217  		mutex_unlock(&kvm->lock);
7218  		break;
7219  	}
7220  	case KVM_REINJECT_CONTROL: {
7221  		struct kvm_reinject_control control;
7222  		r =  -EFAULT;
7223  		if (copy_from_user(&control, argp, sizeof(control)))
7224  			goto out;
7225  		r = -ENXIO;
7226  		if (!kvm->arch.vpit)
7227  			goto out;
7228  		r = kvm_vm_ioctl_reinject(kvm, &control);
7229  		break;
7230  	}
7231  	case KVM_SET_BOOT_CPU_ID:
7232  		r = 0;
7233  		mutex_lock(&kvm->lock);
7234  		if (kvm->created_vcpus)
7235  			r = -EBUSY;
7236  		else if (arg > KVM_MAX_VCPU_IDS ||
7237  			 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7238  			r = -EINVAL;
7239  		else
7240  			kvm->arch.bsp_vcpu_id = arg;
7241  		mutex_unlock(&kvm->lock);
7242  		break;
7243  #ifdef CONFIG_KVM_XEN
7244  	case KVM_XEN_HVM_CONFIG: {
7245  		struct kvm_xen_hvm_config xhc;
7246  		r = -EFAULT;
7247  		if (copy_from_user(&xhc, argp, sizeof(xhc)))
7248  			goto out;
7249  		r = kvm_xen_hvm_config(kvm, &xhc);
7250  		break;
7251  	}
7252  	case KVM_XEN_HVM_GET_ATTR: {
7253  		struct kvm_xen_hvm_attr xha;
7254  
7255  		r = -EFAULT;
7256  		if (copy_from_user(&xha, argp, sizeof(xha)))
7257  			goto out;
7258  		r = kvm_xen_hvm_get_attr(kvm, &xha);
7259  		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7260  			r = -EFAULT;
7261  		break;
7262  	}
7263  	case KVM_XEN_HVM_SET_ATTR: {
7264  		struct kvm_xen_hvm_attr xha;
7265  
7266  		r = -EFAULT;
7267  		if (copy_from_user(&xha, argp, sizeof(xha)))
7268  			goto out;
7269  		r = kvm_xen_hvm_set_attr(kvm, &xha);
7270  		break;
7271  	}
7272  	case KVM_XEN_HVM_EVTCHN_SEND: {
7273  		struct kvm_irq_routing_xen_evtchn uxe;
7274  
7275  		r = -EFAULT;
7276  		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7277  			goto out;
7278  		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7279  		break;
7280  	}
7281  #endif
7282  	case KVM_SET_CLOCK:
7283  		r = kvm_vm_ioctl_set_clock(kvm, argp);
7284  		break;
7285  	case KVM_GET_CLOCK:
7286  		r = kvm_vm_ioctl_get_clock(kvm, argp);
7287  		break;
7288  	case KVM_SET_TSC_KHZ: {
7289  		u32 user_tsc_khz;
7290  
7291  		r = -EINVAL;
7292  		user_tsc_khz = (u32)arg;
7293  
7294  		if (kvm_caps.has_tsc_control &&
7295  		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7296  			goto out;
7297  
7298  		if (user_tsc_khz == 0)
7299  			user_tsc_khz = tsc_khz;
7300  
7301  		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7302  		r = 0;
7303  
7304  		goto out;
7305  	}
7306  	case KVM_GET_TSC_KHZ: {
7307  		r = READ_ONCE(kvm->arch.default_tsc_khz);
7308  		goto out;
7309  	}
7310  	case KVM_MEMORY_ENCRYPT_OP: {
7311  		r = -ENOTTY;
7312  		if (!kvm_x86_ops.mem_enc_ioctl)
7313  			goto out;
7314  
7315  		r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7316  		break;
7317  	}
7318  	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7319  		struct kvm_enc_region region;
7320  
7321  		r = -EFAULT;
7322  		if (copy_from_user(&region, argp, sizeof(region)))
7323  			goto out;
7324  
7325  		r = -ENOTTY;
7326  		if (!kvm_x86_ops.mem_enc_register_region)
7327  			goto out;
7328  
7329  		r = kvm_x86_call(mem_enc_register_region)(kvm, &region);
7330  		break;
7331  	}
7332  	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7333  		struct kvm_enc_region region;
7334  
7335  		r = -EFAULT;
7336  		if (copy_from_user(&region, argp, sizeof(region)))
7337  			goto out;
7338  
7339  		r = -ENOTTY;
7340  		if (!kvm_x86_ops.mem_enc_unregister_region)
7341  			goto out;
7342  
7343  		r = kvm_x86_call(mem_enc_unregister_region)(kvm, &region);
7344  		break;
7345  	}
7346  #ifdef CONFIG_KVM_HYPERV
7347  	case KVM_HYPERV_EVENTFD: {
7348  		struct kvm_hyperv_eventfd hvevfd;
7349  
7350  		r = -EFAULT;
7351  		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7352  			goto out;
7353  		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7354  		break;
7355  	}
7356  #endif
7357  	case KVM_SET_PMU_EVENT_FILTER:
7358  		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7359  		break;
7360  	case KVM_X86_SET_MSR_FILTER: {
7361  		struct kvm_msr_filter __user *user_msr_filter = argp;
7362  		struct kvm_msr_filter filter;
7363  
7364  		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7365  			return -EFAULT;
7366  
7367  		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7368  		break;
7369  	}
7370  	default:
7371  		r = -ENOTTY;
7372  	}
7373  out:
7374  	return r;
7375  }
7376  
kvm_probe_feature_msr(u32 msr_index)7377  static void kvm_probe_feature_msr(u32 msr_index)
7378  {
7379  	u64 data;
7380  
7381  	if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7382  		return;
7383  
7384  	msr_based_features[num_msr_based_features++] = msr_index;
7385  }
7386  
kvm_probe_msr_to_save(u32 msr_index)7387  static void kvm_probe_msr_to_save(u32 msr_index)
7388  {
7389  	u32 dummy[2];
7390  
7391  	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7392  		return;
7393  
7394  	/*
7395  	 * Even MSRs that are valid in the host may not be exposed to guests in
7396  	 * some cases.
7397  	 */
7398  	switch (msr_index) {
7399  	case MSR_IA32_BNDCFGS:
7400  		if (!kvm_mpx_supported())
7401  			return;
7402  		break;
7403  	case MSR_TSC_AUX:
7404  		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7405  		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7406  			return;
7407  		break;
7408  	case MSR_IA32_UMWAIT_CONTROL:
7409  		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7410  			return;
7411  		break;
7412  	case MSR_IA32_RTIT_CTL:
7413  	case MSR_IA32_RTIT_STATUS:
7414  		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7415  			return;
7416  		break;
7417  	case MSR_IA32_RTIT_CR3_MATCH:
7418  		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7419  		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7420  			return;
7421  		break;
7422  	case MSR_IA32_RTIT_OUTPUT_BASE:
7423  	case MSR_IA32_RTIT_OUTPUT_MASK:
7424  		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7425  		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7426  		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7427  			return;
7428  		break;
7429  	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7430  		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7431  		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7432  		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7433  			return;
7434  		break;
7435  	case MSR_ARCH_PERFMON_PERFCTR0 ...
7436  	     MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7437  		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7438  		    kvm_pmu_cap.num_counters_gp)
7439  			return;
7440  		break;
7441  	case MSR_ARCH_PERFMON_EVENTSEL0 ...
7442  	     MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7443  		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7444  		    kvm_pmu_cap.num_counters_gp)
7445  			return;
7446  		break;
7447  	case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7448  	     MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7449  		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7450  		    kvm_pmu_cap.num_counters_fixed)
7451  			return;
7452  		break;
7453  	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7454  	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7455  	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7456  		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7457  			return;
7458  		break;
7459  	case MSR_IA32_XFD:
7460  	case MSR_IA32_XFD_ERR:
7461  		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7462  			return;
7463  		break;
7464  	case MSR_IA32_TSX_CTRL:
7465  		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7466  			return;
7467  		break;
7468  	default:
7469  		break;
7470  	}
7471  
7472  	msrs_to_save[num_msrs_to_save++] = msr_index;
7473  }
7474  
kvm_init_msr_lists(void)7475  static void kvm_init_msr_lists(void)
7476  {
7477  	unsigned i;
7478  
7479  	BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7480  			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7481  
7482  	num_msrs_to_save = 0;
7483  	num_emulated_msrs = 0;
7484  	num_msr_based_features = 0;
7485  
7486  	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7487  		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7488  
7489  	if (enable_pmu) {
7490  		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7491  			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7492  	}
7493  
7494  	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7495  		if (!kvm_x86_call(has_emulated_msr)(NULL,
7496  						    emulated_msrs_all[i]))
7497  			continue;
7498  
7499  		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7500  	}
7501  
7502  	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7503  		kvm_probe_feature_msr(i);
7504  
7505  	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7506  		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7507  }
7508  
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7509  static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7510  			   const void *v)
7511  {
7512  	int handled = 0;
7513  	int n;
7514  
7515  	do {
7516  		n = min(len, 8);
7517  		if (!(lapic_in_kernel(vcpu) &&
7518  		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7519  		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7520  			break;
7521  		handled += n;
7522  		addr += n;
7523  		len -= n;
7524  		v += n;
7525  	} while (len);
7526  
7527  	return handled;
7528  }
7529  
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7530  static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7531  {
7532  	int handled = 0;
7533  	int n;
7534  
7535  	do {
7536  		n = min(len, 8);
7537  		if (!(lapic_in_kernel(vcpu) &&
7538  		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7539  					 addr, n, v))
7540  		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7541  			break;
7542  		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7543  		handled += n;
7544  		addr += n;
7545  		len -= n;
7546  		v += n;
7547  	} while (len);
7548  
7549  	return handled;
7550  }
7551  
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7552  void kvm_set_segment(struct kvm_vcpu *vcpu,
7553  		     struct kvm_segment *var, int seg)
7554  {
7555  	kvm_x86_call(set_segment)(vcpu, var, seg);
7556  }
7557  
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7558  void kvm_get_segment(struct kvm_vcpu *vcpu,
7559  		     struct kvm_segment *var, int seg)
7560  {
7561  	kvm_x86_call(get_segment)(vcpu, var, seg);
7562  }
7563  
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7564  gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7565  			   struct x86_exception *exception)
7566  {
7567  	struct kvm_mmu *mmu = vcpu->arch.mmu;
7568  	gpa_t t_gpa;
7569  
7570  	BUG_ON(!mmu_is_nested(vcpu));
7571  
7572  	/* NPT walks are always user-walks */
7573  	access |= PFERR_USER_MASK;
7574  	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7575  
7576  	return t_gpa;
7577  }
7578  
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7579  gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7580  			      struct x86_exception *exception)
7581  {
7582  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7583  
7584  	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7585  	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7586  }
7587  EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7588  
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7589  gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7590  			       struct x86_exception *exception)
7591  {
7592  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7593  
7594  	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7595  	access |= PFERR_WRITE_MASK;
7596  	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7597  }
7598  EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7599  
7600  /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7601  gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7602  				struct x86_exception *exception)
7603  {
7604  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7605  
7606  	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7607  }
7608  
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7609  static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7610  				      struct kvm_vcpu *vcpu, u64 access,
7611  				      struct x86_exception *exception)
7612  {
7613  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7614  	void *data = val;
7615  	int r = X86EMUL_CONTINUE;
7616  
7617  	while (bytes) {
7618  		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7619  		unsigned offset = addr & (PAGE_SIZE-1);
7620  		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7621  		int ret;
7622  
7623  		if (gpa == INVALID_GPA)
7624  			return X86EMUL_PROPAGATE_FAULT;
7625  		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7626  					       offset, toread);
7627  		if (ret < 0) {
7628  			r = X86EMUL_IO_NEEDED;
7629  			goto out;
7630  		}
7631  
7632  		bytes -= toread;
7633  		data += toread;
7634  		addr += toread;
7635  	}
7636  out:
7637  	return r;
7638  }
7639  
7640  /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7641  static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7642  				gva_t addr, void *val, unsigned int bytes,
7643  				struct x86_exception *exception)
7644  {
7645  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7646  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7647  	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7648  	unsigned offset;
7649  	int ret;
7650  
7651  	/* Inline kvm_read_guest_virt_helper for speed.  */
7652  	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7653  				    exception);
7654  	if (unlikely(gpa == INVALID_GPA))
7655  		return X86EMUL_PROPAGATE_FAULT;
7656  
7657  	offset = addr & (PAGE_SIZE-1);
7658  	if (WARN_ON(offset + bytes > PAGE_SIZE))
7659  		bytes = (unsigned)PAGE_SIZE - offset;
7660  	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7661  				       offset, bytes);
7662  	if (unlikely(ret < 0))
7663  		return X86EMUL_IO_NEEDED;
7664  
7665  	return X86EMUL_CONTINUE;
7666  }
7667  
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7668  int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7669  			       gva_t addr, void *val, unsigned int bytes,
7670  			       struct x86_exception *exception)
7671  {
7672  	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7673  
7674  	/*
7675  	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7676  	 * is returned, but our callers are not ready for that and they blindly
7677  	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7678  	 * uninitialized kernel stack memory into cr2 and error code.
7679  	 */
7680  	memset(exception, 0, sizeof(*exception));
7681  	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7682  					  exception);
7683  }
7684  EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7685  
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7686  static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7687  			     gva_t addr, void *val, unsigned int bytes,
7688  			     struct x86_exception *exception, bool system)
7689  {
7690  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7691  	u64 access = 0;
7692  
7693  	if (system)
7694  		access |= PFERR_IMPLICIT_ACCESS;
7695  	else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7696  		access |= PFERR_USER_MASK;
7697  
7698  	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7699  }
7700  
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7701  static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7702  				      struct kvm_vcpu *vcpu, u64 access,
7703  				      struct x86_exception *exception)
7704  {
7705  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7706  	void *data = val;
7707  	int r = X86EMUL_CONTINUE;
7708  
7709  	while (bytes) {
7710  		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7711  		unsigned offset = addr & (PAGE_SIZE-1);
7712  		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7713  		int ret;
7714  
7715  		if (gpa == INVALID_GPA)
7716  			return X86EMUL_PROPAGATE_FAULT;
7717  		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7718  		if (ret < 0) {
7719  			r = X86EMUL_IO_NEEDED;
7720  			goto out;
7721  		}
7722  
7723  		bytes -= towrite;
7724  		data += towrite;
7725  		addr += towrite;
7726  	}
7727  out:
7728  	return r;
7729  }
7730  
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7731  static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7732  			      unsigned int bytes, struct x86_exception *exception,
7733  			      bool system)
7734  {
7735  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7736  	u64 access = PFERR_WRITE_MASK;
7737  
7738  	if (system)
7739  		access |= PFERR_IMPLICIT_ACCESS;
7740  	else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7741  		access |= PFERR_USER_MASK;
7742  
7743  	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7744  					   access, exception);
7745  }
7746  
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7747  int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7748  				unsigned int bytes, struct x86_exception *exception)
7749  {
7750  	/* kvm_write_guest_virt_system can pull in tons of pages. */
7751  	vcpu->arch.l1tf_flush_l1d = true;
7752  
7753  	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7754  					   PFERR_WRITE_MASK, exception);
7755  }
7756  EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7757  
kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7758  static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7759  				  void *insn, int insn_len)
7760  {
7761  	return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7762  						       insn, insn_len);
7763  }
7764  
handle_ud(struct kvm_vcpu * vcpu)7765  int handle_ud(struct kvm_vcpu *vcpu)
7766  {
7767  	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7768  	int fep_flags = READ_ONCE(force_emulation_prefix);
7769  	int emul_type = EMULTYPE_TRAP_UD;
7770  	char sig[5]; /* ud2; .ascii "kvm" */
7771  	struct x86_exception e;
7772  	int r;
7773  
7774  	r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7775  	if (r != X86EMUL_CONTINUE)
7776  		return 1;
7777  
7778  	if (fep_flags &&
7779  	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7780  				sig, sizeof(sig), &e) == 0 &&
7781  	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7782  		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7783  			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7784  		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7785  		emul_type = EMULTYPE_TRAP_UD_FORCED;
7786  	}
7787  
7788  	return kvm_emulate_instruction(vcpu, emul_type);
7789  }
7790  EXPORT_SYMBOL_GPL(handle_ud);
7791  
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7792  static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7793  			    gpa_t gpa, bool write)
7794  {
7795  	/* For APIC access vmexit */
7796  	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7797  		return 1;
7798  
7799  	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7800  		trace_vcpu_match_mmio(gva, gpa, write, true);
7801  		return 1;
7802  	}
7803  
7804  	return 0;
7805  }
7806  
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7807  static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7808  				gpa_t *gpa, struct x86_exception *exception,
7809  				bool write)
7810  {
7811  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7812  	u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7813  		     | (write ? PFERR_WRITE_MASK : 0);
7814  
7815  	/*
7816  	 * currently PKRU is only applied to ept enabled guest so
7817  	 * there is no pkey in EPT page table for L1 guest or EPT
7818  	 * shadow page table for L2 guest.
7819  	 */
7820  	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7821  	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7822  			      vcpu->arch.mmio_access, 0, access))) {
7823  		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7824  					(gva & (PAGE_SIZE - 1));
7825  		trace_vcpu_match_mmio(gva, *gpa, write, false);
7826  		return 1;
7827  	}
7828  
7829  	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7830  
7831  	if (*gpa == INVALID_GPA)
7832  		return -1;
7833  
7834  	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7835  }
7836  
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7837  int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7838  			const void *val, int bytes)
7839  {
7840  	int ret;
7841  
7842  	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7843  	if (ret < 0)
7844  		return 0;
7845  	kvm_page_track_write(vcpu, gpa, val, bytes);
7846  	return 1;
7847  }
7848  
7849  struct read_write_emulator_ops {
7850  	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7851  				  int bytes);
7852  	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7853  				  void *val, int bytes);
7854  	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7855  			       int bytes, void *val);
7856  	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7857  				    void *val, int bytes);
7858  	bool write;
7859  };
7860  
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7861  static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7862  {
7863  	if (vcpu->mmio_read_completed) {
7864  		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7865  			       vcpu->mmio_fragments[0].gpa, val);
7866  		vcpu->mmio_read_completed = 0;
7867  		return 1;
7868  	}
7869  
7870  	return 0;
7871  }
7872  
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7873  static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7874  			void *val, int bytes)
7875  {
7876  	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7877  }
7878  
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7879  static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7880  			 void *val, int bytes)
7881  {
7882  	return emulator_write_phys(vcpu, gpa, val, bytes);
7883  }
7884  
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7885  static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7886  {
7887  	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7888  	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7889  }
7890  
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7891  static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7892  			  void *val, int bytes)
7893  {
7894  	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7895  	return X86EMUL_IO_NEEDED;
7896  }
7897  
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7898  static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7899  			   void *val, int bytes)
7900  {
7901  	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7902  
7903  	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7904  	return X86EMUL_CONTINUE;
7905  }
7906  
7907  static const struct read_write_emulator_ops read_emultor = {
7908  	.read_write_prepare = read_prepare,
7909  	.read_write_emulate = read_emulate,
7910  	.read_write_mmio = vcpu_mmio_read,
7911  	.read_write_exit_mmio = read_exit_mmio,
7912  };
7913  
7914  static const struct read_write_emulator_ops write_emultor = {
7915  	.read_write_emulate = write_emulate,
7916  	.read_write_mmio = write_mmio,
7917  	.read_write_exit_mmio = write_exit_mmio,
7918  	.write = true,
7919  };
7920  
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7921  static int emulator_read_write_onepage(unsigned long addr, void *val,
7922  				       unsigned int bytes,
7923  				       struct x86_exception *exception,
7924  				       struct kvm_vcpu *vcpu,
7925  				       const struct read_write_emulator_ops *ops)
7926  {
7927  	gpa_t gpa;
7928  	int handled, ret;
7929  	bool write = ops->write;
7930  	struct kvm_mmio_fragment *frag;
7931  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7932  
7933  	/*
7934  	 * If the exit was due to a NPF we may already have a GPA.
7935  	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7936  	 * Note, this cannot be used on string operations since string
7937  	 * operation using rep will only have the initial GPA from the NPF
7938  	 * occurred.
7939  	 */
7940  	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7941  	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7942  		gpa = ctxt->gpa_val;
7943  		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7944  	} else {
7945  		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7946  		if (ret < 0)
7947  			return X86EMUL_PROPAGATE_FAULT;
7948  	}
7949  
7950  	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7951  		return X86EMUL_CONTINUE;
7952  
7953  	/*
7954  	 * Is this MMIO handled locally?
7955  	 */
7956  	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7957  	if (handled == bytes)
7958  		return X86EMUL_CONTINUE;
7959  
7960  	gpa += handled;
7961  	bytes -= handled;
7962  	val += handled;
7963  
7964  	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7965  	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7966  	frag->gpa = gpa;
7967  	frag->data = val;
7968  	frag->len = bytes;
7969  	return X86EMUL_CONTINUE;
7970  }
7971  
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7972  static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7973  			unsigned long addr,
7974  			void *val, unsigned int bytes,
7975  			struct x86_exception *exception,
7976  			const struct read_write_emulator_ops *ops)
7977  {
7978  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7979  	gpa_t gpa;
7980  	int rc;
7981  
7982  	if (ops->read_write_prepare &&
7983  		  ops->read_write_prepare(vcpu, val, bytes))
7984  		return X86EMUL_CONTINUE;
7985  
7986  	vcpu->mmio_nr_fragments = 0;
7987  
7988  	/* Crossing a page boundary? */
7989  	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7990  		int now;
7991  
7992  		now = -addr & ~PAGE_MASK;
7993  		rc = emulator_read_write_onepage(addr, val, now, exception,
7994  						 vcpu, ops);
7995  
7996  		if (rc != X86EMUL_CONTINUE)
7997  			return rc;
7998  		addr += now;
7999  		if (ctxt->mode != X86EMUL_MODE_PROT64)
8000  			addr = (u32)addr;
8001  		val += now;
8002  		bytes -= now;
8003  	}
8004  
8005  	rc = emulator_read_write_onepage(addr, val, bytes, exception,
8006  					 vcpu, ops);
8007  	if (rc != X86EMUL_CONTINUE)
8008  		return rc;
8009  
8010  	if (!vcpu->mmio_nr_fragments)
8011  		return rc;
8012  
8013  	gpa = vcpu->mmio_fragments[0].gpa;
8014  
8015  	vcpu->mmio_needed = 1;
8016  	vcpu->mmio_cur_fragment = 0;
8017  
8018  	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
8019  	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
8020  	vcpu->run->exit_reason = KVM_EXIT_MMIO;
8021  	vcpu->run->mmio.phys_addr = gpa;
8022  
8023  	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8024  }
8025  
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)8026  static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8027  				  unsigned long addr,
8028  				  void *val,
8029  				  unsigned int bytes,
8030  				  struct x86_exception *exception)
8031  {
8032  	return emulator_read_write(ctxt, addr, val, bytes,
8033  				   exception, &read_emultor);
8034  }
8035  
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8036  static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8037  			    unsigned long addr,
8038  			    const void *val,
8039  			    unsigned int bytes,
8040  			    struct x86_exception *exception)
8041  {
8042  	return emulator_read_write(ctxt, addr, (void *)val, bytes,
8043  				   exception, &write_emultor);
8044  }
8045  
8046  #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8047  	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8048  
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8049  static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8050  				     unsigned long addr,
8051  				     const void *old,
8052  				     const void *new,
8053  				     unsigned int bytes,
8054  				     struct x86_exception *exception)
8055  {
8056  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8057  	u64 page_line_mask;
8058  	unsigned long hva;
8059  	gpa_t gpa;
8060  	int r;
8061  
8062  	/* guests cmpxchg8b have to be emulated atomically */
8063  	if (bytes > 8 || (bytes & (bytes - 1)))
8064  		goto emul_write;
8065  
8066  	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8067  
8068  	if (gpa == INVALID_GPA ||
8069  	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8070  		goto emul_write;
8071  
8072  	/*
8073  	 * Emulate the atomic as a straight write to avoid #AC if SLD is
8074  	 * enabled in the host and the access splits a cache line.
8075  	 */
8076  	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8077  		page_line_mask = ~(cache_line_size() - 1);
8078  	else
8079  		page_line_mask = PAGE_MASK;
8080  
8081  	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8082  		goto emul_write;
8083  
8084  	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8085  	if (kvm_is_error_hva(hva))
8086  		goto emul_write;
8087  
8088  	hva += offset_in_page(gpa);
8089  
8090  	switch (bytes) {
8091  	case 1:
8092  		r = emulator_try_cmpxchg_user(u8, hva, old, new);
8093  		break;
8094  	case 2:
8095  		r = emulator_try_cmpxchg_user(u16, hva, old, new);
8096  		break;
8097  	case 4:
8098  		r = emulator_try_cmpxchg_user(u32, hva, old, new);
8099  		break;
8100  	case 8:
8101  		r = emulator_try_cmpxchg_user(u64, hva, old, new);
8102  		break;
8103  	default:
8104  		BUG();
8105  	}
8106  
8107  	if (r < 0)
8108  		return X86EMUL_UNHANDLEABLE;
8109  
8110  	/*
8111  	 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8112  	 * successful, as the old value is written back on failure.  Note, for
8113  	 * live migration, this is unnecessarily conservative as CMPXCHG writes
8114  	 * back the original value and the access is atomic, but KVM's ABI is
8115  	 * that all writes are dirty logged, regardless of the value written.
8116  	 */
8117  	kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8118  
8119  	if (r)
8120  		return X86EMUL_CMPXCHG_FAILED;
8121  
8122  	kvm_page_track_write(vcpu, gpa, new, bytes);
8123  
8124  	return X86EMUL_CONTINUE;
8125  
8126  emul_write:
8127  	pr_warn_once("emulating exchange as write\n");
8128  
8129  	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8130  }
8131  
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8132  static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8133  			       unsigned short port, void *data,
8134  			       unsigned int count, bool in)
8135  {
8136  	unsigned i;
8137  	int r;
8138  
8139  	WARN_ON_ONCE(vcpu->arch.pio.count);
8140  	for (i = 0; i < count; i++) {
8141  		if (in)
8142  			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8143  		else
8144  			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8145  
8146  		if (r) {
8147  			if (i == 0)
8148  				goto userspace_io;
8149  
8150  			/*
8151  			 * Userspace must have unregistered the device while PIO
8152  			 * was running.  Drop writes / read as 0.
8153  			 */
8154  			if (in)
8155  				memset(data, 0, size * (count - i));
8156  			break;
8157  		}
8158  
8159  		data += size;
8160  	}
8161  	return 1;
8162  
8163  userspace_io:
8164  	vcpu->arch.pio.port = port;
8165  	vcpu->arch.pio.in = in;
8166  	vcpu->arch.pio.count = count;
8167  	vcpu->arch.pio.size = size;
8168  
8169  	if (in)
8170  		memset(vcpu->arch.pio_data, 0, size * count);
8171  	else
8172  		memcpy(vcpu->arch.pio_data, data, size * count);
8173  
8174  	vcpu->run->exit_reason = KVM_EXIT_IO;
8175  	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8176  	vcpu->run->io.size = size;
8177  	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8178  	vcpu->run->io.count = count;
8179  	vcpu->run->io.port = port;
8180  	return 0;
8181  }
8182  
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8183  static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8184        			   unsigned short port, void *val, unsigned int count)
8185  {
8186  	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8187  	if (r)
8188  		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8189  
8190  	return r;
8191  }
8192  
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8193  static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8194  {
8195  	int size = vcpu->arch.pio.size;
8196  	unsigned int count = vcpu->arch.pio.count;
8197  	memcpy(val, vcpu->arch.pio_data, size * count);
8198  	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8199  	vcpu->arch.pio.count = 0;
8200  }
8201  
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8202  static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8203  				    int size, unsigned short port, void *val,
8204  				    unsigned int count)
8205  {
8206  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8207  	if (vcpu->arch.pio.count) {
8208  		/*
8209  		 * Complete a previous iteration that required userspace I/O.
8210  		 * Note, @count isn't guaranteed to match pio.count as userspace
8211  		 * can modify ECX before rerunning the vCPU.  Ignore any such
8212  		 * shenanigans as KVM doesn't support modifying the rep count,
8213  		 * and the emulator ensures @count doesn't overflow the buffer.
8214  		 */
8215  		complete_emulator_pio_in(vcpu, val);
8216  		return 1;
8217  	}
8218  
8219  	return emulator_pio_in(vcpu, size, port, val, count);
8220  }
8221  
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8222  static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8223  			    unsigned short port, const void *val,
8224  			    unsigned int count)
8225  {
8226  	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8227  	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8228  }
8229  
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8230  static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8231  				     int size, unsigned short port,
8232  				     const void *val, unsigned int count)
8233  {
8234  	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8235  }
8236  
get_segment_base(struct kvm_vcpu * vcpu,int seg)8237  static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8238  {
8239  	return kvm_x86_call(get_segment_base)(vcpu, seg);
8240  }
8241  
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8242  static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8243  {
8244  	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8245  }
8246  
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8247  static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8248  {
8249  	if (!need_emulate_wbinvd(vcpu))
8250  		return X86EMUL_CONTINUE;
8251  
8252  	if (kvm_x86_call(has_wbinvd_exit)()) {
8253  		int cpu = get_cpu();
8254  
8255  		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8256  		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8257  				wbinvd_ipi, NULL, 1);
8258  		put_cpu();
8259  		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8260  	} else
8261  		wbinvd();
8262  	return X86EMUL_CONTINUE;
8263  }
8264  
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8265  int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8266  {
8267  	kvm_emulate_wbinvd_noskip(vcpu);
8268  	return kvm_skip_emulated_instruction(vcpu);
8269  }
8270  EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8271  
8272  
8273  
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8274  static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8275  {
8276  	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8277  }
8278  
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8279  static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8280  {
8281  	return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8282  }
8283  
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8284  static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8285  			   unsigned long value)
8286  {
8287  
8288  	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8289  }
8290  
mk_cr_64(u64 curr_cr,u32 new_val)8291  static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8292  {
8293  	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8294  }
8295  
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8296  static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8297  {
8298  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8299  	unsigned long value;
8300  
8301  	switch (cr) {
8302  	case 0:
8303  		value = kvm_read_cr0(vcpu);
8304  		break;
8305  	case 2:
8306  		value = vcpu->arch.cr2;
8307  		break;
8308  	case 3:
8309  		value = kvm_read_cr3(vcpu);
8310  		break;
8311  	case 4:
8312  		value = kvm_read_cr4(vcpu);
8313  		break;
8314  	case 8:
8315  		value = kvm_get_cr8(vcpu);
8316  		break;
8317  	default:
8318  		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8319  		return 0;
8320  	}
8321  
8322  	return value;
8323  }
8324  
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8325  static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8326  {
8327  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8328  	int res = 0;
8329  
8330  	switch (cr) {
8331  	case 0:
8332  		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8333  		break;
8334  	case 2:
8335  		vcpu->arch.cr2 = val;
8336  		break;
8337  	case 3:
8338  		res = kvm_set_cr3(vcpu, val);
8339  		break;
8340  	case 4:
8341  		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8342  		break;
8343  	case 8:
8344  		res = kvm_set_cr8(vcpu, val);
8345  		break;
8346  	default:
8347  		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8348  		res = -1;
8349  	}
8350  
8351  	return res;
8352  }
8353  
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8354  static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8355  {
8356  	return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8357  }
8358  
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8359  static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8360  {
8361  	kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8362  }
8363  
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8364  static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8365  {
8366  	kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8367  }
8368  
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8369  static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8370  {
8371  	kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8372  }
8373  
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8374  static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8375  {
8376  	kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8377  }
8378  
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8379  static unsigned long emulator_get_cached_segment_base(
8380  	struct x86_emulate_ctxt *ctxt, int seg)
8381  {
8382  	return get_segment_base(emul_to_vcpu(ctxt), seg);
8383  }
8384  
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8385  static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8386  				 struct desc_struct *desc, u32 *base3,
8387  				 int seg)
8388  {
8389  	struct kvm_segment var;
8390  
8391  	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8392  	*selector = var.selector;
8393  
8394  	if (var.unusable) {
8395  		memset(desc, 0, sizeof(*desc));
8396  		if (base3)
8397  			*base3 = 0;
8398  		return false;
8399  	}
8400  
8401  	if (var.g)
8402  		var.limit >>= 12;
8403  	set_desc_limit(desc, var.limit);
8404  	set_desc_base(desc, (unsigned long)var.base);
8405  #ifdef CONFIG_X86_64
8406  	if (base3)
8407  		*base3 = var.base >> 32;
8408  #endif
8409  	desc->type = var.type;
8410  	desc->s = var.s;
8411  	desc->dpl = var.dpl;
8412  	desc->p = var.present;
8413  	desc->avl = var.avl;
8414  	desc->l = var.l;
8415  	desc->d = var.db;
8416  	desc->g = var.g;
8417  
8418  	return true;
8419  }
8420  
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8421  static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8422  				 struct desc_struct *desc, u32 base3,
8423  				 int seg)
8424  {
8425  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8426  	struct kvm_segment var;
8427  
8428  	var.selector = selector;
8429  	var.base = get_desc_base(desc);
8430  #ifdef CONFIG_X86_64
8431  	var.base |= ((u64)base3) << 32;
8432  #endif
8433  	var.limit = get_desc_limit(desc);
8434  	if (desc->g)
8435  		var.limit = (var.limit << 12) | 0xfff;
8436  	var.type = desc->type;
8437  	var.dpl = desc->dpl;
8438  	var.db = desc->d;
8439  	var.s = desc->s;
8440  	var.l = desc->l;
8441  	var.g = desc->g;
8442  	var.avl = desc->avl;
8443  	var.present = desc->p;
8444  	var.unusable = !var.present;
8445  	var.padding = 0;
8446  
8447  	kvm_set_segment(vcpu, &var, seg);
8448  	return;
8449  }
8450  
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8451  static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8452  					u32 msr_index, u64 *pdata)
8453  {
8454  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8455  	int r;
8456  
8457  	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8458  	if (r < 0)
8459  		return X86EMUL_UNHANDLEABLE;
8460  
8461  	if (r) {
8462  		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8463  				       complete_emulated_rdmsr, r))
8464  			return X86EMUL_IO_NEEDED;
8465  
8466  		trace_kvm_msr_read_ex(msr_index);
8467  		return X86EMUL_PROPAGATE_FAULT;
8468  	}
8469  
8470  	trace_kvm_msr_read(msr_index, *pdata);
8471  	return X86EMUL_CONTINUE;
8472  }
8473  
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8474  static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8475  					u32 msr_index, u64 data)
8476  {
8477  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8478  	int r;
8479  
8480  	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8481  	if (r < 0)
8482  		return X86EMUL_UNHANDLEABLE;
8483  
8484  	if (r) {
8485  		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8486  				       complete_emulated_msr_access, r))
8487  			return X86EMUL_IO_NEEDED;
8488  
8489  		trace_kvm_msr_write_ex(msr_index, data);
8490  		return X86EMUL_PROPAGATE_FAULT;
8491  	}
8492  
8493  	trace_kvm_msr_write(msr_index, data);
8494  	return X86EMUL_CONTINUE;
8495  }
8496  
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8497  static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8498  			    u32 msr_index, u64 *pdata)
8499  {
8500  	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8501  }
8502  
emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8503  static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8504  {
8505  	return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8506  }
8507  
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8508  static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8509  			     u32 pmc, u64 *pdata)
8510  {
8511  	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8512  }
8513  
emulator_halt(struct x86_emulate_ctxt * ctxt)8514  static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8515  {
8516  	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8517  }
8518  
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8519  static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8520  			      struct x86_instruction_info *info,
8521  			      enum x86_intercept_stage stage)
8522  {
8523  	return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8524  					     &ctxt->exception);
8525  }
8526  
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8527  static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8528  			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8529  			      bool exact_only)
8530  {
8531  	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8532  }
8533  
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8534  static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8535  {
8536  	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8537  }
8538  
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8539  static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8540  {
8541  	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8542  }
8543  
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8544  static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8545  {
8546  	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8547  }
8548  
emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8549  static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8550  {
8551  	return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8552  }
8553  
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8554  static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8555  {
8556  	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8557  }
8558  
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8559  static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8560  {
8561  	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8562  }
8563  
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8564  static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8565  {
8566  	kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8567  }
8568  
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8569  static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8570  {
8571  	return is_smm(emul_to_vcpu(ctxt));
8572  }
8573  
emulator_is_guest_mode(struct x86_emulate_ctxt * ctxt)8574  static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8575  {
8576  	return is_guest_mode(emul_to_vcpu(ctxt));
8577  }
8578  
8579  #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8580  static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8581  {
8582  	WARN_ON_ONCE(1);
8583  	return X86EMUL_UNHANDLEABLE;
8584  }
8585  #endif
8586  
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8587  static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8588  {
8589  	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8590  }
8591  
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8592  static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8593  {
8594  	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8595  }
8596  
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8597  static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8598  {
8599  	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8600  
8601  	if (!kvm->vm_bugged)
8602  		kvm_vm_bugged(kvm);
8603  }
8604  
emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8605  static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8606  					gva_t addr, unsigned int flags)
8607  {
8608  	if (!kvm_x86_ops.get_untagged_addr)
8609  		return addr;
8610  
8611  	return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8612  					       addr, flags);
8613  }
8614  
8615  static const struct x86_emulate_ops emulate_ops = {
8616  	.vm_bugged           = emulator_vm_bugged,
8617  	.read_gpr            = emulator_read_gpr,
8618  	.write_gpr           = emulator_write_gpr,
8619  	.read_std            = emulator_read_std,
8620  	.write_std           = emulator_write_std,
8621  	.fetch               = kvm_fetch_guest_virt,
8622  	.read_emulated       = emulator_read_emulated,
8623  	.write_emulated      = emulator_write_emulated,
8624  	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8625  	.invlpg              = emulator_invlpg,
8626  	.pio_in_emulated     = emulator_pio_in_emulated,
8627  	.pio_out_emulated    = emulator_pio_out_emulated,
8628  	.get_segment         = emulator_get_segment,
8629  	.set_segment         = emulator_set_segment,
8630  	.get_cached_segment_base = emulator_get_cached_segment_base,
8631  	.get_gdt             = emulator_get_gdt,
8632  	.get_idt	     = emulator_get_idt,
8633  	.set_gdt             = emulator_set_gdt,
8634  	.set_idt	     = emulator_set_idt,
8635  	.get_cr              = emulator_get_cr,
8636  	.set_cr              = emulator_set_cr,
8637  	.cpl                 = emulator_get_cpl,
8638  	.get_dr              = emulator_get_dr,
8639  	.set_dr              = emulator_set_dr,
8640  	.set_msr_with_filter = emulator_set_msr_with_filter,
8641  	.get_msr_with_filter = emulator_get_msr_with_filter,
8642  	.get_msr             = emulator_get_msr,
8643  	.check_rdpmc_early   = emulator_check_rdpmc_early,
8644  	.read_pmc            = emulator_read_pmc,
8645  	.halt                = emulator_halt,
8646  	.wbinvd              = emulator_wbinvd,
8647  	.fix_hypercall       = emulator_fix_hypercall,
8648  	.intercept           = emulator_intercept,
8649  	.get_cpuid           = emulator_get_cpuid,
8650  	.guest_has_movbe     = emulator_guest_has_movbe,
8651  	.guest_has_fxsr      = emulator_guest_has_fxsr,
8652  	.guest_has_rdpid     = emulator_guest_has_rdpid,
8653  	.guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8654  	.set_nmi_mask        = emulator_set_nmi_mask,
8655  	.is_smm              = emulator_is_smm,
8656  	.is_guest_mode       = emulator_is_guest_mode,
8657  	.leave_smm           = emulator_leave_smm,
8658  	.triple_fault        = emulator_triple_fault,
8659  	.set_xcr             = emulator_set_xcr,
8660  	.get_untagged_addr   = emulator_get_untagged_addr,
8661  };
8662  
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8663  static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8664  {
8665  	u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8666  	/*
8667  	 * an sti; sti; sequence only disable interrupts for the first
8668  	 * instruction. So, if the last instruction, be it emulated or
8669  	 * not, left the system with the INT_STI flag enabled, it
8670  	 * means that the last instruction is an sti. We should not
8671  	 * leave the flag on in this case. The same goes for mov ss
8672  	 */
8673  	if (int_shadow & mask)
8674  		mask = 0;
8675  	if (unlikely(int_shadow || mask)) {
8676  		kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8677  		if (!mask)
8678  			kvm_make_request(KVM_REQ_EVENT, vcpu);
8679  	}
8680  }
8681  
inject_emulated_exception(struct kvm_vcpu * vcpu)8682  static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8683  {
8684  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8685  
8686  	if (ctxt->exception.vector == PF_VECTOR)
8687  		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8688  	else if (ctxt->exception.error_code_valid)
8689  		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8690  				      ctxt->exception.error_code);
8691  	else
8692  		kvm_queue_exception(vcpu, ctxt->exception.vector);
8693  }
8694  
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8695  static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8696  {
8697  	struct x86_emulate_ctxt *ctxt;
8698  
8699  	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8700  	if (!ctxt) {
8701  		pr_err("failed to allocate vcpu's emulator\n");
8702  		return NULL;
8703  	}
8704  
8705  	ctxt->vcpu = vcpu;
8706  	ctxt->ops = &emulate_ops;
8707  	vcpu->arch.emulate_ctxt = ctxt;
8708  
8709  	return ctxt;
8710  }
8711  
init_emulate_ctxt(struct kvm_vcpu * vcpu)8712  static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8713  {
8714  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8715  	int cs_db, cs_l;
8716  
8717  	kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8718  
8719  	ctxt->gpa_available = false;
8720  	ctxt->eflags = kvm_get_rflags(vcpu);
8721  	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8722  
8723  	ctxt->eip = kvm_rip_read(vcpu);
8724  	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8725  		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8726  		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8727  		     cs_db				? X86EMUL_MODE_PROT32 :
8728  							  X86EMUL_MODE_PROT16;
8729  	ctxt->interruptibility = 0;
8730  	ctxt->have_exception = false;
8731  	ctxt->exception.vector = -1;
8732  	ctxt->perm_ok = false;
8733  
8734  	init_decode_cache(ctxt);
8735  	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8736  }
8737  
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8738  void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8739  {
8740  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8741  	int ret;
8742  
8743  	init_emulate_ctxt(vcpu);
8744  
8745  	ctxt->op_bytes = 2;
8746  	ctxt->ad_bytes = 2;
8747  	ctxt->_eip = ctxt->eip + inc_eip;
8748  	ret = emulate_int_real(ctxt, irq);
8749  
8750  	if (ret != X86EMUL_CONTINUE) {
8751  		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8752  	} else {
8753  		ctxt->eip = ctxt->_eip;
8754  		kvm_rip_write(vcpu, ctxt->eip);
8755  		kvm_set_rflags(vcpu, ctxt->eflags);
8756  	}
8757  }
8758  EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8759  
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8760  static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8761  					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8762  {
8763  	struct kvm_run *run = vcpu->run;
8764  	u64 info[5];
8765  	u8 info_start;
8766  
8767  	/*
8768  	 * Zero the whole array used to retrieve the exit info, as casting to
8769  	 * u32 for select entries will leave some chunks uninitialized.
8770  	 */
8771  	memset(&info, 0, sizeof(info));
8772  
8773  	kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
8774  				    (u32 *)&info[3], (u32 *)&info[4]);
8775  
8776  	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8777  	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8778  
8779  	/*
8780  	 * There's currently space for 13 entries, but 5 are used for the exit
8781  	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8782  	 * when expanding kvm_run.emulation_failure in the future.
8783  	 */
8784  	if (WARN_ON_ONCE(ndata > 4))
8785  		ndata = 4;
8786  
8787  	/* Always include the flags as a 'data' entry. */
8788  	info_start = 1;
8789  	run->emulation_failure.flags = 0;
8790  
8791  	if (insn_size) {
8792  		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8793  			      sizeof(run->emulation_failure.insn_bytes) != 16));
8794  		info_start += 2;
8795  		run->emulation_failure.flags |=
8796  			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8797  		run->emulation_failure.insn_size = insn_size;
8798  		memset(run->emulation_failure.insn_bytes, 0x90,
8799  		       sizeof(run->emulation_failure.insn_bytes));
8800  		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8801  	}
8802  
8803  	memcpy(&run->internal.data[info_start], info, sizeof(info));
8804  	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8805  	       ndata * sizeof(data[0]));
8806  
8807  	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8808  }
8809  
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8810  static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8811  {
8812  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8813  
8814  	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8815  				       ctxt->fetch.end - ctxt->fetch.data);
8816  }
8817  
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8818  void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8819  					  u8 ndata)
8820  {
8821  	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8822  }
8823  EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8824  
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8825  void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8826  {
8827  	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8828  }
8829  EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8830  
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8831  static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8832  {
8833  	struct kvm *kvm = vcpu->kvm;
8834  
8835  	++vcpu->stat.insn_emulation_fail;
8836  	trace_kvm_emulate_insn_failed(vcpu);
8837  
8838  	if (emulation_type & EMULTYPE_VMWARE_GP) {
8839  		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8840  		return 1;
8841  	}
8842  
8843  	if (kvm->arch.exit_on_emulation_error ||
8844  	    (emulation_type & EMULTYPE_SKIP)) {
8845  		prepare_emulation_ctxt_failure_exit(vcpu);
8846  		return 0;
8847  	}
8848  
8849  	kvm_queue_exception(vcpu, UD_VECTOR);
8850  
8851  	if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
8852  		prepare_emulation_ctxt_failure_exit(vcpu);
8853  		return 0;
8854  	}
8855  
8856  	return 1;
8857  }
8858  
kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8859  static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
8860  					       gpa_t cr2_or_gpa,
8861  					       int emulation_type)
8862  {
8863  	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8864  		return false;
8865  
8866  	/*
8867  	 * If the failed instruction faulted on an access to page tables that
8868  	 * are used to translate any part of the instruction, KVM can't resolve
8869  	 * the issue by unprotecting the gfn, as zapping the shadow page will
8870  	 * result in the instruction taking a !PRESENT page fault and thus put
8871  	 * the vCPU into an infinite loop of page faults.  E.g. KVM will create
8872  	 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8873  	 * then zap the SPTE to unprotect the gfn, and then do it all over
8874  	 * again.  Report the error to userspace.
8875  	 */
8876  	if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
8877  		return false;
8878  
8879  	/*
8880  	 * If emulation may have been triggered by a write to a shadowed page
8881  	 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8882  	 * guest to let the CPU re-execute the instruction in the hope that the
8883  	 * CPU can cleanly execute the instruction that KVM failed to emulate.
8884  	 */
8885  	__kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
8886  
8887  	/*
8888  	 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
8889  	 * all SPTEs were already zapped by a different task.  The alternative
8890  	 * is to report the error to userspace and likely terminate the guest,
8891  	 * and the last_retry_{eip,addr} checks will prevent retrying the page
8892  	 * fault indefinitely, i.e. there's nothing to lose by retrying.
8893  	 */
8894  	return true;
8895  }
8896  
8897  static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8898  static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8899  
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8900  static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8901  				unsigned long *db)
8902  {
8903  	u32 dr6 = 0;
8904  	int i;
8905  	u32 enable, rwlen;
8906  
8907  	enable = dr7;
8908  	rwlen = dr7 >> 16;
8909  	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8910  		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8911  			dr6 |= (1 << i);
8912  	return dr6;
8913  }
8914  
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8915  static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8916  {
8917  	struct kvm_run *kvm_run = vcpu->run;
8918  
8919  	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8920  		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8921  		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8922  		kvm_run->debug.arch.exception = DB_VECTOR;
8923  		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8924  		return 0;
8925  	}
8926  	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8927  	return 1;
8928  }
8929  
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8930  int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8931  {
8932  	unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
8933  	int r;
8934  
8935  	r = kvm_x86_call(skip_emulated_instruction)(vcpu);
8936  	if (unlikely(!r))
8937  		return 0;
8938  
8939  	kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8940  
8941  	/*
8942  	 * rflags is the old, "raw" value of the flags.  The new value has
8943  	 * not been saved yet.
8944  	 *
8945  	 * This is correct even for TF set by the guest, because "the
8946  	 * processor will not generate this exception after the instruction
8947  	 * that sets the TF flag".
8948  	 */
8949  	if (unlikely(rflags & X86_EFLAGS_TF))
8950  		r = kvm_vcpu_do_singlestep(vcpu);
8951  	return r;
8952  }
8953  EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8954  
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)8955  static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8956  {
8957  	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8958  		return true;
8959  
8960  	/*
8961  	 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
8962  	 * active, but AMD compatible CPUs do not.
8963  	 */
8964  	if (!guest_cpuid_is_intel_compatible(vcpu))
8965  		return false;
8966  
8967  	return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
8968  }
8969  
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)8970  static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8971  					   int emulation_type, int *r)
8972  {
8973  	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8974  
8975  	/*
8976  	 * Do not check for code breakpoints if hardware has already done the
8977  	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8978  	 * the instruction has passed all exception checks, and all intercepted
8979  	 * exceptions that trigger emulation have lower priority than code
8980  	 * breakpoints, i.e. the fact that the intercepted exception occurred
8981  	 * means any code breakpoints have already been serviced.
8982  	 *
8983  	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8984  	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8985  	 * the instruction being emulated.  The intent of forced emulation is
8986  	 * to behave as if KVM intercepted the instruction without an exception
8987  	 * and without a prefix.
8988  	 */
8989  	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8990  			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8991  		return false;
8992  
8993  	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8994  	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8995  		struct kvm_run *kvm_run = vcpu->run;
8996  		unsigned long eip = kvm_get_linear_rip(vcpu);
8997  		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8998  					   vcpu->arch.guest_debug_dr7,
8999  					   vcpu->arch.eff_db);
9000  
9001  		if (dr6 != 0) {
9002  			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9003  			kvm_run->debug.arch.pc = eip;
9004  			kvm_run->debug.arch.exception = DB_VECTOR;
9005  			kvm_run->exit_reason = KVM_EXIT_DEBUG;
9006  			*r = 0;
9007  			return true;
9008  		}
9009  	}
9010  
9011  	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9012  	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
9013  		unsigned long eip = kvm_get_linear_rip(vcpu);
9014  		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9015  					   vcpu->arch.dr7,
9016  					   vcpu->arch.db);
9017  
9018  		if (dr6 != 0) {
9019  			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9020  			*r = 1;
9021  			return true;
9022  		}
9023  	}
9024  
9025  	return false;
9026  }
9027  
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9028  static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9029  {
9030  	switch (ctxt->opcode_len) {
9031  	case 1:
9032  		switch (ctxt->b) {
9033  		case 0xe4:	/* IN */
9034  		case 0xe5:
9035  		case 0xec:
9036  		case 0xed:
9037  		case 0xe6:	/* OUT */
9038  		case 0xe7:
9039  		case 0xee:
9040  		case 0xef:
9041  		case 0x6c:	/* INS */
9042  		case 0x6d:
9043  		case 0x6e:	/* OUTS */
9044  		case 0x6f:
9045  			return true;
9046  		}
9047  		break;
9048  	case 2:
9049  		switch (ctxt->b) {
9050  		case 0x33:	/* RDPMC */
9051  			return true;
9052  		}
9053  		break;
9054  	}
9055  
9056  	return false;
9057  }
9058  
9059  /*
9060   * Decode an instruction for emulation.  The caller is responsible for handling
9061   * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9062   * (and wrong) when emulating on an intercepted fault-like exception[*], as
9063   * code breakpoints have higher priority and thus have already been done by
9064   * hardware.
9065   *
9066   * [*] Except #MC, which is higher priority, but KVM should never emulate in
9067   *     response to a machine check.
9068   */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9069  int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9070  				    void *insn, int insn_len)
9071  {
9072  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9073  	int r;
9074  
9075  	init_emulate_ctxt(vcpu);
9076  
9077  	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9078  
9079  	trace_kvm_emulate_insn_start(vcpu);
9080  	++vcpu->stat.insn_emulation;
9081  
9082  	return r;
9083  }
9084  EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9085  
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9086  int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9087  			    int emulation_type, void *insn, int insn_len)
9088  {
9089  	int r;
9090  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9091  	bool writeback = true;
9092  
9093  	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9094  	    (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9095  	     WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9096  		emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9097  
9098  	r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9099  	if (r != X86EMUL_CONTINUE) {
9100  		if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9101  			return 1;
9102  
9103  		WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9104  		return handle_emulation_failure(vcpu, emulation_type);
9105  	}
9106  
9107  	vcpu->arch.l1tf_flush_l1d = true;
9108  
9109  	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9110  		kvm_clear_exception_queue(vcpu);
9111  
9112  		/*
9113  		 * Return immediately if RIP hits a code breakpoint, such #DBs
9114  		 * are fault-like and are higher priority than any faults on
9115  		 * the code fetch itself.
9116  		 */
9117  		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9118  			return r;
9119  
9120  		r = x86_decode_emulated_instruction(vcpu, emulation_type,
9121  						    insn, insn_len);
9122  		if (r != EMULATION_OK)  {
9123  			if ((emulation_type & EMULTYPE_TRAP_UD) ||
9124  			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9125  				kvm_queue_exception(vcpu, UD_VECTOR);
9126  				return 1;
9127  			}
9128  			if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9129  							       emulation_type))
9130  				return 1;
9131  
9132  			if (ctxt->have_exception &&
9133  			    !(emulation_type & EMULTYPE_SKIP)) {
9134  				/*
9135  				 * #UD should result in just EMULATION_FAILED, and trap-like
9136  				 * exception should not be encountered during decode.
9137  				 */
9138  				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9139  					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9140  				inject_emulated_exception(vcpu);
9141  				return 1;
9142  			}
9143  			return handle_emulation_failure(vcpu, emulation_type);
9144  		}
9145  	}
9146  
9147  	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9148  	    !is_vmware_backdoor_opcode(ctxt)) {
9149  		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9150  		return 1;
9151  	}
9152  
9153  	/*
9154  	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9155  	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9156  	 * The caller is responsible for updating interruptibility state and
9157  	 * injecting single-step #DBs.
9158  	 */
9159  	if (emulation_type & EMULTYPE_SKIP) {
9160  		if (ctxt->mode != X86EMUL_MODE_PROT64)
9161  			ctxt->eip = (u32)ctxt->_eip;
9162  		else
9163  			ctxt->eip = ctxt->_eip;
9164  
9165  		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9166  			r = 1;
9167  			goto writeback;
9168  		}
9169  
9170  		kvm_rip_write(vcpu, ctxt->eip);
9171  		if (ctxt->eflags & X86_EFLAGS_RF)
9172  			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9173  		return 1;
9174  	}
9175  
9176  	/*
9177  	 * If emulation was caused by a write-protection #PF on a non-page_table
9178  	 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9179  	 * and retry the instruction, as the vCPU is likely no longer using the
9180  	 * gfn as a page table.
9181  	 */
9182  	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9183  	    !x86_page_table_writing_insn(ctxt) &&
9184  	    kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9185  		return 1;
9186  
9187  	/* this is needed for vmware backdoor interface to work since it
9188  	   changes registers values  during IO operation */
9189  	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9190  		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9191  		emulator_invalidate_register_cache(ctxt);
9192  	}
9193  
9194  restart:
9195  	if (emulation_type & EMULTYPE_PF) {
9196  		/* Save the faulting GPA (cr2) in the address field */
9197  		ctxt->exception.address = cr2_or_gpa;
9198  
9199  		/* With shadow page tables, cr2 contains a GVA or nGPA. */
9200  		if (vcpu->arch.mmu->root_role.direct) {
9201  			ctxt->gpa_available = true;
9202  			ctxt->gpa_val = cr2_or_gpa;
9203  		}
9204  	} else {
9205  		/* Sanitize the address out of an abundance of paranoia. */
9206  		ctxt->exception.address = 0;
9207  	}
9208  
9209  	r = x86_emulate_insn(ctxt);
9210  
9211  	if (r == EMULATION_INTERCEPTED)
9212  		return 1;
9213  
9214  	if (r == EMULATION_FAILED) {
9215  		if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9216  						       emulation_type))
9217  			return 1;
9218  
9219  		return handle_emulation_failure(vcpu, emulation_type);
9220  	}
9221  
9222  	if (ctxt->have_exception) {
9223  		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9224  		vcpu->mmio_needed = false;
9225  		r = 1;
9226  		inject_emulated_exception(vcpu);
9227  	} else if (vcpu->arch.pio.count) {
9228  		if (!vcpu->arch.pio.in) {
9229  			/* FIXME: return into emulator if single-stepping.  */
9230  			vcpu->arch.pio.count = 0;
9231  		} else {
9232  			writeback = false;
9233  			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9234  		}
9235  		r = 0;
9236  	} else if (vcpu->mmio_needed) {
9237  		++vcpu->stat.mmio_exits;
9238  
9239  		if (!vcpu->mmio_is_write)
9240  			writeback = false;
9241  		r = 0;
9242  		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9243  	} else if (vcpu->arch.complete_userspace_io) {
9244  		writeback = false;
9245  		r = 0;
9246  	} else if (r == EMULATION_RESTART)
9247  		goto restart;
9248  	else
9249  		r = 1;
9250  
9251  writeback:
9252  	if (writeback) {
9253  		unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9254  		toggle_interruptibility(vcpu, ctxt->interruptibility);
9255  		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9256  
9257  		/*
9258  		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9259  		 * only supports code breakpoints and general detect #DB, both
9260  		 * of which are fault-like.
9261  		 */
9262  		if (!ctxt->have_exception ||
9263  		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9264  			kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9265  			if (ctxt->is_branch)
9266  				kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9267  			kvm_rip_write(vcpu, ctxt->eip);
9268  			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9269  				r = kvm_vcpu_do_singlestep(vcpu);
9270  			kvm_x86_call(update_emulated_instruction)(vcpu);
9271  			__kvm_set_rflags(vcpu, ctxt->eflags);
9272  		}
9273  
9274  		/*
9275  		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9276  		 * do nothing, and it will be requested again as soon as
9277  		 * the shadow expires.  But we still need to check here,
9278  		 * because POPF has no interrupt shadow.
9279  		 */
9280  		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9281  			kvm_make_request(KVM_REQ_EVENT, vcpu);
9282  	} else
9283  		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9284  
9285  	return r;
9286  }
9287  
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9288  int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9289  {
9290  	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9291  }
9292  EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9293  
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9294  int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9295  					void *insn, int insn_len)
9296  {
9297  	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9298  }
9299  EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9300  
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9301  static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9302  {
9303  	vcpu->arch.pio.count = 0;
9304  	return 1;
9305  }
9306  
complete_fast_pio_out(struct kvm_vcpu * vcpu)9307  static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9308  {
9309  	vcpu->arch.pio.count = 0;
9310  
9311  	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9312  		return 1;
9313  
9314  	return kvm_skip_emulated_instruction(vcpu);
9315  }
9316  
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9317  static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9318  			    unsigned short port)
9319  {
9320  	unsigned long val = kvm_rax_read(vcpu);
9321  	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9322  
9323  	if (ret)
9324  		return ret;
9325  
9326  	/*
9327  	 * Workaround userspace that relies on old KVM behavior of %rip being
9328  	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9329  	 */
9330  	if (port == 0x7e &&
9331  	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9332  		vcpu->arch.complete_userspace_io =
9333  			complete_fast_pio_out_port_0x7e;
9334  		kvm_skip_emulated_instruction(vcpu);
9335  	} else {
9336  		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9337  		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9338  	}
9339  	return 0;
9340  }
9341  
complete_fast_pio_in(struct kvm_vcpu * vcpu)9342  static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9343  {
9344  	unsigned long val;
9345  
9346  	/* We should only ever be called with arch.pio.count equal to 1 */
9347  	BUG_ON(vcpu->arch.pio.count != 1);
9348  
9349  	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9350  		vcpu->arch.pio.count = 0;
9351  		return 1;
9352  	}
9353  
9354  	/* For size less than 4 we merge, else we zero extend */
9355  	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9356  
9357  	complete_emulator_pio_in(vcpu, &val);
9358  	kvm_rax_write(vcpu, val);
9359  
9360  	return kvm_skip_emulated_instruction(vcpu);
9361  }
9362  
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9363  static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9364  			   unsigned short port)
9365  {
9366  	unsigned long val;
9367  	int ret;
9368  
9369  	/* For size less than 4 we merge, else we zero extend */
9370  	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9371  
9372  	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9373  	if (ret) {
9374  		kvm_rax_write(vcpu, val);
9375  		return ret;
9376  	}
9377  
9378  	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9379  	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9380  
9381  	return 0;
9382  }
9383  
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9384  int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9385  {
9386  	int ret;
9387  
9388  	if (in)
9389  		ret = kvm_fast_pio_in(vcpu, size, port);
9390  	else
9391  		ret = kvm_fast_pio_out(vcpu, size, port);
9392  	return ret && kvm_skip_emulated_instruction(vcpu);
9393  }
9394  EXPORT_SYMBOL_GPL(kvm_fast_pio);
9395  
kvmclock_cpu_down_prep(unsigned int cpu)9396  static int kvmclock_cpu_down_prep(unsigned int cpu)
9397  {
9398  	__this_cpu_write(cpu_tsc_khz, 0);
9399  	return 0;
9400  }
9401  
tsc_khz_changed(void * data)9402  static void tsc_khz_changed(void *data)
9403  {
9404  	struct cpufreq_freqs *freq = data;
9405  	unsigned long khz;
9406  
9407  	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9408  
9409  	if (data)
9410  		khz = freq->new;
9411  	else
9412  		khz = cpufreq_quick_get(raw_smp_processor_id());
9413  	if (!khz)
9414  		khz = tsc_khz;
9415  	__this_cpu_write(cpu_tsc_khz, khz);
9416  }
9417  
9418  #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9419  static void kvm_hyperv_tsc_notifier(void)
9420  {
9421  	struct kvm *kvm;
9422  	int cpu;
9423  
9424  	mutex_lock(&kvm_lock);
9425  	list_for_each_entry(kvm, &vm_list, vm_list)
9426  		kvm_make_mclock_inprogress_request(kvm);
9427  
9428  	/* no guest entries from this point */
9429  	hyperv_stop_tsc_emulation();
9430  
9431  	/* TSC frequency always matches when on Hyper-V */
9432  	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9433  		for_each_present_cpu(cpu)
9434  			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9435  	}
9436  	kvm_caps.max_guest_tsc_khz = tsc_khz;
9437  
9438  	list_for_each_entry(kvm, &vm_list, vm_list) {
9439  		__kvm_start_pvclock_update(kvm);
9440  		pvclock_update_vm_gtod_copy(kvm);
9441  		kvm_end_pvclock_update(kvm);
9442  	}
9443  
9444  	mutex_unlock(&kvm_lock);
9445  }
9446  #endif
9447  
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9448  static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9449  {
9450  	struct kvm *kvm;
9451  	struct kvm_vcpu *vcpu;
9452  	int send_ipi = 0;
9453  	unsigned long i;
9454  
9455  	/*
9456  	 * We allow guests to temporarily run on slowing clocks,
9457  	 * provided we notify them after, or to run on accelerating
9458  	 * clocks, provided we notify them before.  Thus time never
9459  	 * goes backwards.
9460  	 *
9461  	 * However, we have a problem.  We can't atomically update
9462  	 * the frequency of a given CPU from this function; it is
9463  	 * merely a notifier, which can be called from any CPU.
9464  	 * Changing the TSC frequency at arbitrary points in time
9465  	 * requires a recomputation of local variables related to
9466  	 * the TSC for each VCPU.  We must flag these local variables
9467  	 * to be updated and be sure the update takes place with the
9468  	 * new frequency before any guests proceed.
9469  	 *
9470  	 * Unfortunately, the combination of hotplug CPU and frequency
9471  	 * change creates an intractable locking scenario; the order
9472  	 * of when these callouts happen is undefined with respect to
9473  	 * CPU hotplug, and they can race with each other.  As such,
9474  	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9475  	 * undefined; you can actually have a CPU frequency change take
9476  	 * place in between the computation of X and the setting of the
9477  	 * variable.  To protect against this problem, all updates of
9478  	 * the per_cpu tsc_khz variable are done in an interrupt
9479  	 * protected IPI, and all callers wishing to update the value
9480  	 * must wait for a synchronous IPI to complete (which is trivial
9481  	 * if the caller is on the CPU already).  This establishes the
9482  	 * necessary total order on variable updates.
9483  	 *
9484  	 * Note that because a guest time update may take place
9485  	 * anytime after the setting of the VCPU's request bit, the
9486  	 * correct TSC value must be set before the request.  However,
9487  	 * to ensure the update actually makes it to any guest which
9488  	 * starts running in hardware virtualization between the set
9489  	 * and the acquisition of the spinlock, we must also ping the
9490  	 * CPU after setting the request bit.
9491  	 *
9492  	 */
9493  
9494  	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9495  
9496  	mutex_lock(&kvm_lock);
9497  	list_for_each_entry(kvm, &vm_list, vm_list) {
9498  		kvm_for_each_vcpu(i, vcpu, kvm) {
9499  			if (vcpu->cpu != cpu)
9500  				continue;
9501  			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9502  			if (vcpu->cpu != raw_smp_processor_id())
9503  				send_ipi = 1;
9504  		}
9505  	}
9506  	mutex_unlock(&kvm_lock);
9507  
9508  	if (freq->old < freq->new && send_ipi) {
9509  		/*
9510  		 * We upscale the frequency.  Must make the guest
9511  		 * doesn't see old kvmclock values while running with
9512  		 * the new frequency, otherwise we risk the guest sees
9513  		 * time go backwards.
9514  		 *
9515  		 * In case we update the frequency for another cpu
9516  		 * (which might be in guest context) send an interrupt
9517  		 * to kick the cpu out of guest context.  Next time
9518  		 * guest context is entered kvmclock will be updated,
9519  		 * so the guest will not see stale values.
9520  		 */
9521  		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9522  	}
9523  }
9524  
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9525  static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9526  				     void *data)
9527  {
9528  	struct cpufreq_freqs *freq = data;
9529  	int cpu;
9530  
9531  	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9532  		return 0;
9533  	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9534  		return 0;
9535  
9536  	for_each_cpu(cpu, freq->policy->cpus)
9537  		__kvmclock_cpufreq_notifier(freq, cpu);
9538  
9539  	return 0;
9540  }
9541  
9542  static struct notifier_block kvmclock_cpufreq_notifier_block = {
9543  	.notifier_call  = kvmclock_cpufreq_notifier
9544  };
9545  
kvmclock_cpu_online(unsigned int cpu)9546  static int kvmclock_cpu_online(unsigned int cpu)
9547  {
9548  	tsc_khz_changed(NULL);
9549  	return 0;
9550  }
9551  
kvm_timer_init(void)9552  static void kvm_timer_init(void)
9553  {
9554  	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9555  		max_tsc_khz = tsc_khz;
9556  
9557  		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9558  			struct cpufreq_policy *policy;
9559  			int cpu;
9560  
9561  			cpu = get_cpu();
9562  			policy = cpufreq_cpu_get(cpu);
9563  			if (policy) {
9564  				if (policy->cpuinfo.max_freq)
9565  					max_tsc_khz = policy->cpuinfo.max_freq;
9566  				cpufreq_cpu_put(policy);
9567  			}
9568  			put_cpu();
9569  		}
9570  		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9571  					  CPUFREQ_TRANSITION_NOTIFIER);
9572  
9573  		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9574  				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9575  	}
9576  }
9577  
9578  #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9579  static void pvclock_gtod_update_fn(struct work_struct *work)
9580  {
9581  	struct kvm *kvm;
9582  	struct kvm_vcpu *vcpu;
9583  	unsigned long i;
9584  
9585  	mutex_lock(&kvm_lock);
9586  	list_for_each_entry(kvm, &vm_list, vm_list)
9587  		kvm_for_each_vcpu(i, vcpu, kvm)
9588  			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9589  	atomic_set(&kvm_guest_has_master_clock, 0);
9590  	mutex_unlock(&kvm_lock);
9591  }
9592  
9593  static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9594  
9595  /*
9596   * Indirection to move queue_work() out of the tk_core.seq write held
9597   * region to prevent possible deadlocks against time accessors which
9598   * are invoked with work related locks held.
9599   */
pvclock_irq_work_fn(struct irq_work * w)9600  static void pvclock_irq_work_fn(struct irq_work *w)
9601  {
9602  	queue_work(system_long_wq, &pvclock_gtod_work);
9603  }
9604  
9605  static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9606  
9607  /*
9608   * Notification about pvclock gtod data update.
9609   */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9610  static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9611  			       void *priv)
9612  {
9613  	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9614  	struct timekeeper *tk = priv;
9615  
9616  	update_pvclock_gtod(tk);
9617  
9618  	/*
9619  	 * Disable master clock if host does not trust, or does not use,
9620  	 * TSC based clocksource. Delegate queue_work() to irq_work as
9621  	 * this is invoked with tk_core.seq write held.
9622  	 */
9623  	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9624  	    atomic_read(&kvm_guest_has_master_clock) != 0)
9625  		irq_work_queue(&pvclock_irq_work);
9626  	return 0;
9627  }
9628  
9629  static struct notifier_block pvclock_gtod_notifier = {
9630  	.notifier_call = pvclock_gtod_notify,
9631  };
9632  #endif
9633  
kvm_ops_update(struct kvm_x86_init_ops * ops)9634  static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9635  {
9636  	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9637  
9638  #define __KVM_X86_OP(func) \
9639  	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9640  #define KVM_X86_OP(func) \
9641  	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9642  #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9643  #define KVM_X86_OP_OPTIONAL_RET0(func) \
9644  	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9645  					   (void *)__static_call_return0);
9646  #include <asm/kvm-x86-ops.h>
9647  #undef __KVM_X86_OP
9648  
9649  	kvm_pmu_ops_update(ops->pmu_ops);
9650  }
9651  
kvm_x86_check_processor_compatibility(void)9652  static int kvm_x86_check_processor_compatibility(void)
9653  {
9654  	int cpu = smp_processor_id();
9655  	struct cpuinfo_x86 *c = &cpu_data(cpu);
9656  
9657  	/*
9658  	 * Compatibility checks are done when loading KVM and when enabling
9659  	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9660  	 * compatible, i.e. KVM should never perform a compatibility check on
9661  	 * an offline CPU.
9662  	 */
9663  	WARN_ON(!cpu_online(cpu));
9664  
9665  	if (__cr4_reserved_bits(cpu_has, c) !=
9666  	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9667  		return -EIO;
9668  
9669  	return kvm_x86_call(check_processor_compatibility)();
9670  }
9671  
kvm_x86_check_cpu_compat(void * ret)9672  static void kvm_x86_check_cpu_compat(void *ret)
9673  {
9674  	*(int *)ret = kvm_x86_check_processor_compatibility();
9675  }
9676  
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9677  int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9678  {
9679  	u64 host_pat;
9680  	int r, cpu;
9681  
9682  	guard(mutex)(&vendor_module_lock);
9683  
9684  	if (kvm_x86_ops.enable_virtualization_cpu) {
9685  		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9686  		return -EEXIST;
9687  	}
9688  
9689  	/*
9690  	 * KVM explicitly assumes that the guest has an FPU and
9691  	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9692  	 * vCPU's FPU state as a fxregs_state struct.
9693  	 */
9694  	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9695  		pr_err("inadequate fpu\n");
9696  		return -EOPNOTSUPP;
9697  	}
9698  
9699  	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9700  		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9701  		return -EOPNOTSUPP;
9702  	}
9703  
9704  	/*
9705  	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9706  	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9707  	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9708  	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9709  	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9710  	 */
9711  	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9712  	    (host_pat & GENMASK(2, 0)) != 6) {
9713  		pr_err("host PAT[0] is not WB\n");
9714  		return -EIO;
9715  	}
9716  
9717  	memset(&kvm_caps, 0, sizeof(kvm_caps));
9718  
9719  	x86_emulator_cache = kvm_alloc_emulator_cache();
9720  	if (!x86_emulator_cache) {
9721  		pr_err("failed to allocate cache for x86 emulator\n");
9722  		return -ENOMEM;
9723  	}
9724  
9725  	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9726  	if (!user_return_msrs) {
9727  		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9728  		r = -ENOMEM;
9729  		goto out_free_x86_emulator_cache;
9730  	}
9731  	kvm_nr_uret_msrs = 0;
9732  
9733  	r = kvm_mmu_vendor_module_init();
9734  	if (r)
9735  		goto out_free_percpu;
9736  
9737  	kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9738  	kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9739  
9740  	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9741  		kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9742  		kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
9743  	}
9744  
9745  	rdmsrl_safe(MSR_EFER, &kvm_host.efer);
9746  
9747  	if (boot_cpu_has(X86_FEATURE_XSAVES))
9748  		rdmsrl(MSR_IA32_XSS, kvm_host.xss);
9749  
9750  	kvm_init_pmu_capability(ops->pmu_ops);
9751  
9752  	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9753  		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
9754  
9755  	r = ops->hardware_setup();
9756  	if (r != 0)
9757  		goto out_mmu_exit;
9758  
9759  	kvm_ops_update(ops);
9760  
9761  	for_each_online_cpu(cpu) {
9762  		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9763  		if (r < 0)
9764  			goto out_unwind_ops;
9765  	}
9766  
9767  	/*
9768  	 * Point of no return!  DO NOT add error paths below this point unless
9769  	 * absolutely necessary, as most operations from this point forward
9770  	 * require unwinding.
9771  	 */
9772  	kvm_timer_init();
9773  
9774  	if (pi_inject_timer == -1)
9775  		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9776  #ifdef CONFIG_X86_64
9777  	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9778  
9779  	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9780  		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9781  #endif
9782  
9783  	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9784  
9785  	if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9786  		kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9787  
9788  	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9789  		kvm_caps.supported_xss = 0;
9790  
9791  #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9792  	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9793  #undef __kvm_cpu_cap_has
9794  
9795  	if (kvm_caps.has_tsc_control) {
9796  		/*
9797  		 * Make sure the user can only configure tsc_khz values that
9798  		 * fit into a signed integer.
9799  		 * A min value is not calculated because it will always
9800  		 * be 1 on all machines.
9801  		 */
9802  		u64 max = min(0x7fffffffULL,
9803  			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9804  		kvm_caps.max_guest_tsc_khz = max;
9805  	}
9806  	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9807  	kvm_init_msr_lists();
9808  	return 0;
9809  
9810  out_unwind_ops:
9811  	kvm_x86_ops.enable_virtualization_cpu = NULL;
9812  	kvm_x86_call(hardware_unsetup)();
9813  out_mmu_exit:
9814  	kvm_mmu_vendor_module_exit();
9815  out_free_percpu:
9816  	free_percpu(user_return_msrs);
9817  out_free_x86_emulator_cache:
9818  	kmem_cache_destroy(x86_emulator_cache);
9819  	return r;
9820  }
9821  EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9822  
kvm_x86_vendor_exit(void)9823  void kvm_x86_vendor_exit(void)
9824  {
9825  	kvm_unregister_perf_callbacks();
9826  
9827  #ifdef CONFIG_X86_64
9828  	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9829  		clear_hv_tscchange_cb();
9830  #endif
9831  	kvm_lapic_exit();
9832  
9833  	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9834  		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9835  					    CPUFREQ_TRANSITION_NOTIFIER);
9836  		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9837  	}
9838  #ifdef CONFIG_X86_64
9839  	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9840  	irq_work_sync(&pvclock_irq_work);
9841  	cancel_work_sync(&pvclock_gtod_work);
9842  #endif
9843  	kvm_x86_call(hardware_unsetup)();
9844  	kvm_mmu_vendor_module_exit();
9845  	free_percpu(user_return_msrs);
9846  	kmem_cache_destroy(x86_emulator_cache);
9847  #ifdef CONFIG_KVM_XEN
9848  	static_key_deferred_flush(&kvm_xen_enabled);
9849  	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9850  #endif
9851  	mutex_lock(&vendor_module_lock);
9852  	kvm_x86_ops.enable_virtualization_cpu = NULL;
9853  	mutex_unlock(&vendor_module_lock);
9854  }
9855  EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9856  
9857  #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9858  static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9859  			        unsigned long clock_type)
9860  {
9861  	struct kvm_clock_pairing clock_pairing;
9862  	struct timespec64 ts;
9863  	u64 cycle;
9864  	int ret;
9865  
9866  	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9867  		return -KVM_EOPNOTSUPP;
9868  
9869  	/*
9870  	 * When tsc is in permanent catchup mode guests won't be able to use
9871  	 * pvclock_read_retry loop to get consistent view of pvclock
9872  	 */
9873  	if (vcpu->arch.tsc_always_catchup)
9874  		return -KVM_EOPNOTSUPP;
9875  
9876  	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9877  		return -KVM_EOPNOTSUPP;
9878  
9879  	clock_pairing.sec = ts.tv_sec;
9880  	clock_pairing.nsec = ts.tv_nsec;
9881  	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9882  	clock_pairing.flags = 0;
9883  	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9884  
9885  	ret = 0;
9886  	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9887  			    sizeof(struct kvm_clock_pairing)))
9888  		ret = -KVM_EFAULT;
9889  
9890  	return ret;
9891  }
9892  #endif
9893  
9894  /*
9895   * kvm_pv_kick_cpu_op:  Kick a vcpu.
9896   *
9897   * @apicid - apicid of vcpu to be kicked.
9898   */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9899  static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9900  {
9901  	/*
9902  	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9903  	 * common code, e.g. for tracing. Defer initialization to the compiler.
9904  	 */
9905  	struct kvm_lapic_irq lapic_irq = {
9906  		.delivery_mode = APIC_DM_REMRD,
9907  		.dest_mode = APIC_DEST_PHYSICAL,
9908  		.shorthand = APIC_DEST_NOSHORT,
9909  		.dest_id = apicid,
9910  	};
9911  
9912  	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9913  }
9914  
kvm_apicv_activated(struct kvm * kvm)9915  bool kvm_apicv_activated(struct kvm *kvm)
9916  {
9917  	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9918  }
9919  EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9920  
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9921  bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9922  {
9923  	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9924  	ulong vcpu_reasons =
9925  			kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
9926  
9927  	return (vm_reasons | vcpu_reasons) == 0;
9928  }
9929  EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9930  
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9931  static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9932  				       enum kvm_apicv_inhibit reason, bool set)
9933  {
9934  	const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
9935  
9936  	BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
9937  
9938  	if (set)
9939  		__set_bit(reason, inhibits);
9940  	else
9941  		__clear_bit(reason, inhibits);
9942  
9943  	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9944  }
9945  
kvm_apicv_init(struct kvm * kvm)9946  static void kvm_apicv_init(struct kvm *kvm)
9947  {
9948  	enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
9949  						       APICV_INHIBIT_REASON_DISABLED;
9950  
9951  	set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
9952  
9953  	init_rwsem(&kvm->arch.apicv_update_lock);
9954  }
9955  
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9956  static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9957  {
9958  	struct kvm_vcpu *target = NULL;
9959  	struct kvm_apic_map *map;
9960  
9961  	vcpu->stat.directed_yield_attempted++;
9962  
9963  	if (single_task_running())
9964  		goto no_yield;
9965  
9966  	rcu_read_lock();
9967  	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9968  
9969  	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9970  		target = map->phys_map[dest_id]->vcpu;
9971  
9972  	rcu_read_unlock();
9973  
9974  	if (!target || !READ_ONCE(target->ready))
9975  		goto no_yield;
9976  
9977  	/* Ignore requests to yield to self */
9978  	if (vcpu == target)
9979  		goto no_yield;
9980  
9981  	if (kvm_vcpu_yield_to(target) <= 0)
9982  		goto no_yield;
9983  
9984  	vcpu->stat.directed_yield_successful++;
9985  
9986  no_yield:
9987  	return;
9988  }
9989  
complete_hypercall_exit(struct kvm_vcpu * vcpu)9990  static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9991  {
9992  	u64 ret = vcpu->run->hypercall.ret;
9993  
9994  	if (!is_64_bit_mode(vcpu))
9995  		ret = (u32)ret;
9996  	kvm_rax_write(vcpu, ret);
9997  	++vcpu->stat.hypercalls;
9998  	return kvm_skip_emulated_instruction(vcpu);
9999  }
10000  
__kvm_emulate_hypercall(struct kvm_vcpu * vcpu,unsigned long nr,unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,int op_64_bit,int cpl)10001  unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
10002  				      unsigned long a0, unsigned long a1,
10003  				      unsigned long a2, unsigned long a3,
10004  				      int op_64_bit, int cpl)
10005  {
10006  	unsigned long ret;
10007  
10008  	trace_kvm_hypercall(nr, a0, a1, a2, a3);
10009  
10010  	if (!op_64_bit) {
10011  		nr &= 0xFFFFFFFF;
10012  		a0 &= 0xFFFFFFFF;
10013  		a1 &= 0xFFFFFFFF;
10014  		a2 &= 0xFFFFFFFF;
10015  		a3 &= 0xFFFFFFFF;
10016  	}
10017  
10018  	if (cpl) {
10019  		ret = -KVM_EPERM;
10020  		goto out;
10021  	}
10022  
10023  	ret = -KVM_ENOSYS;
10024  
10025  	switch (nr) {
10026  	case KVM_HC_VAPIC_POLL_IRQ:
10027  		ret = 0;
10028  		break;
10029  	case KVM_HC_KICK_CPU:
10030  		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10031  			break;
10032  
10033  		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10034  		kvm_sched_yield(vcpu, a1);
10035  		ret = 0;
10036  		break;
10037  #ifdef CONFIG_X86_64
10038  	case KVM_HC_CLOCK_PAIRING:
10039  		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10040  		break;
10041  #endif
10042  	case KVM_HC_SEND_IPI:
10043  		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10044  			break;
10045  
10046  		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10047  		break;
10048  	case KVM_HC_SCHED_YIELD:
10049  		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10050  			break;
10051  
10052  		kvm_sched_yield(vcpu, a0);
10053  		ret = 0;
10054  		break;
10055  	case KVM_HC_MAP_GPA_RANGE: {
10056  		u64 gpa = a0, npages = a1, attrs = a2;
10057  
10058  		ret = -KVM_ENOSYS;
10059  		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10060  			break;
10061  
10062  		if (!PAGE_ALIGNED(gpa) || !npages ||
10063  		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10064  			ret = -KVM_EINVAL;
10065  			break;
10066  		}
10067  
10068  		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10069  		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10070  		vcpu->run->hypercall.args[0]  = gpa;
10071  		vcpu->run->hypercall.args[1]  = npages;
10072  		vcpu->run->hypercall.args[2]  = attrs;
10073  		vcpu->run->hypercall.flags    = 0;
10074  		if (op_64_bit)
10075  			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10076  
10077  		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10078  		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10079  		/* stat is incremented on completion. */
10080  		return 0;
10081  	}
10082  	default:
10083  		ret = -KVM_ENOSYS;
10084  		break;
10085  	}
10086  
10087  out:
10088  	++vcpu->stat.hypercalls;
10089  	return ret;
10090  }
10091  EXPORT_SYMBOL_GPL(__kvm_emulate_hypercall);
10092  
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10093  int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10094  {
10095  	unsigned long nr, a0, a1, a2, a3, ret;
10096  	int op_64_bit;
10097  	int cpl;
10098  
10099  	if (kvm_xen_hypercall_enabled(vcpu->kvm))
10100  		return kvm_xen_hypercall(vcpu);
10101  
10102  	if (kvm_hv_hypercall_enabled(vcpu))
10103  		return kvm_hv_hypercall(vcpu);
10104  
10105  	nr = kvm_rax_read(vcpu);
10106  	a0 = kvm_rbx_read(vcpu);
10107  	a1 = kvm_rcx_read(vcpu);
10108  	a2 = kvm_rdx_read(vcpu);
10109  	a3 = kvm_rsi_read(vcpu);
10110  	op_64_bit = is_64_bit_hypercall(vcpu);
10111  	cpl = kvm_x86_call(get_cpl)(vcpu);
10112  
10113  	ret = __kvm_emulate_hypercall(vcpu, nr, a0, a1, a2, a3, op_64_bit, cpl);
10114  	if (nr == KVM_HC_MAP_GPA_RANGE && !ret)
10115  		/* MAP_GPA tosses the request to the user space. */
10116  		return 0;
10117  
10118  	if (!op_64_bit)
10119  		ret = (u32)ret;
10120  	kvm_rax_write(vcpu, ret);
10121  
10122  	return kvm_skip_emulated_instruction(vcpu);
10123  }
10124  EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10125  
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10126  static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10127  {
10128  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10129  	char instruction[3];
10130  	unsigned long rip = kvm_rip_read(vcpu);
10131  
10132  	/*
10133  	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10134  	 * the pieces.
10135  	 */
10136  	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10137  		ctxt->exception.error_code_valid = false;
10138  		ctxt->exception.vector = UD_VECTOR;
10139  		ctxt->have_exception = true;
10140  		return X86EMUL_PROPAGATE_FAULT;
10141  	}
10142  
10143  	kvm_x86_call(patch_hypercall)(vcpu, instruction);
10144  
10145  	return emulator_write_emulated(ctxt, rip, instruction, 3,
10146  		&ctxt->exception);
10147  }
10148  
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10149  static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10150  {
10151  	return vcpu->run->request_interrupt_window &&
10152  		likely(!pic_in_kernel(vcpu->kvm));
10153  }
10154  
10155  /* Called within kvm->srcu read side.  */
post_kvm_run_save(struct kvm_vcpu * vcpu)10156  static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10157  {
10158  	struct kvm_run *kvm_run = vcpu->run;
10159  
10160  	kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10161  	kvm_run->cr8 = kvm_get_cr8(vcpu);
10162  	kvm_run->apic_base = kvm_get_apic_base(vcpu);
10163  
10164  	kvm_run->ready_for_interrupt_injection =
10165  		pic_in_kernel(vcpu->kvm) ||
10166  		kvm_vcpu_ready_for_interrupt_injection(vcpu);
10167  
10168  	if (is_smm(vcpu))
10169  		kvm_run->flags |= KVM_RUN_X86_SMM;
10170  	if (is_guest_mode(vcpu))
10171  		kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10172  }
10173  
update_cr8_intercept(struct kvm_vcpu * vcpu)10174  static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10175  {
10176  	int max_irr, tpr;
10177  
10178  	if (!kvm_x86_ops.update_cr8_intercept)
10179  		return;
10180  
10181  	if (!lapic_in_kernel(vcpu))
10182  		return;
10183  
10184  	if (vcpu->arch.apic->apicv_active)
10185  		return;
10186  
10187  	if (!vcpu->arch.apic->vapic_addr)
10188  		max_irr = kvm_lapic_find_highest_irr(vcpu);
10189  	else
10190  		max_irr = -1;
10191  
10192  	if (max_irr != -1)
10193  		max_irr >>= 4;
10194  
10195  	tpr = kvm_lapic_get_cr8(vcpu);
10196  
10197  	kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10198  }
10199  
10200  
kvm_check_nested_events(struct kvm_vcpu * vcpu)10201  int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10202  {
10203  	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10204  		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10205  		return 1;
10206  	}
10207  
10208  	return kvm_x86_ops.nested_ops->check_events(vcpu);
10209  }
10210  
kvm_inject_exception(struct kvm_vcpu * vcpu)10211  static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10212  {
10213  	/*
10214  	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10215  	 * exceptions don't report error codes.  The presence of an error code
10216  	 * is carried with the exception and only stripped when the exception
10217  	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10218  	 * report an error code despite the CPU being in Real Mode.
10219  	 */
10220  	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10221  
10222  	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10223  				vcpu->arch.exception.has_error_code,
10224  				vcpu->arch.exception.error_code,
10225  				vcpu->arch.exception.injected);
10226  
10227  	kvm_x86_call(inject_exception)(vcpu);
10228  }
10229  
10230  /*
10231   * Check for any event (interrupt or exception) that is ready to be injected,
10232   * and if there is at least one event, inject the event with the highest
10233   * priority.  This handles both "pending" events, i.e. events that have never
10234   * been injected into the guest, and "injected" events, i.e. events that were
10235   * injected as part of a previous VM-Enter, but weren't successfully delivered
10236   * and need to be re-injected.
10237   *
10238   * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10239   * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10240   * be able to inject exceptions in the "middle" of an instruction, and so must
10241   * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10242   * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10243   * boundaries is necessary and correct.
10244   *
10245   * For simplicity, KVM uses a single path to inject all events (except events
10246   * that are injected directly from L1 to L2) and doesn't explicitly track
10247   * instruction boundaries for asynchronous events.  However, because VM-Exits
10248   * that can occur during instruction execution typically result in KVM skipping
10249   * the instruction or injecting an exception, e.g. instruction and exception
10250   * intercepts, and because pending exceptions have higher priority than pending
10251   * interrupts, KVM still honors instruction boundaries in most scenarios.
10252   *
10253   * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10254   * the instruction or inject an exception, then KVM can incorrecty inject a new
10255   * asynchronous event if the event became pending after the CPU fetched the
10256   * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10257   * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10258   * injected on the restarted instruction instead of being deferred until the
10259   * instruction completes.
10260   *
10261   * In practice, this virtualization hole is unlikely to be observed by the
10262   * guest, and even less likely to cause functional problems.  To detect the
10263   * hole, the guest would have to trigger an event on a side effect of an early
10264   * phase of instruction execution, e.g. on the instruction fetch from memory.
10265   * And for it to be a functional problem, the guest would need to depend on the
10266   * ordering between that side effect, the instruction completing, _and_ the
10267   * delivery of the asynchronous event.
10268   */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10269  static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10270  				       bool *req_immediate_exit)
10271  {
10272  	bool can_inject;
10273  	int r;
10274  
10275  	/*
10276  	 * Process nested events first, as nested VM-Exit supersedes event
10277  	 * re-injection.  If there's an event queued for re-injection, it will
10278  	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10279  	 */
10280  	if (is_guest_mode(vcpu))
10281  		r = kvm_check_nested_events(vcpu);
10282  	else
10283  		r = 0;
10284  
10285  	/*
10286  	 * Re-inject exceptions and events *especially* if immediate entry+exit
10287  	 * to/from L2 is needed, as any event that has already been injected
10288  	 * into L2 needs to complete its lifecycle before injecting a new event.
10289  	 *
10290  	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10291  	 * This collision arises if an exception occurred while vectoring the
10292  	 * injected event, KVM intercepted said exception, and KVM ultimately
10293  	 * determined the fault belongs to the guest and queues the exception
10294  	 * for injection back into the guest.
10295  	 *
10296  	 * "Injected" interrupts can also collide with pending exceptions if
10297  	 * userspace ignores the "ready for injection" flag and blindly queues
10298  	 * an interrupt.  In that case, prioritizing the exception is correct,
10299  	 * as the exception "occurred" before the exit to userspace.  Trap-like
10300  	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10301  	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10302  	 * priority, they're only generated (pended) during instruction
10303  	 * execution, and interrupts are recognized at instruction boundaries.
10304  	 * Thus a pending fault-like exception means the fault occurred on the
10305  	 * *previous* instruction and must be serviced prior to recognizing any
10306  	 * new events in order to fully complete the previous instruction.
10307  	 */
10308  	if (vcpu->arch.exception.injected)
10309  		kvm_inject_exception(vcpu);
10310  	else if (kvm_is_exception_pending(vcpu))
10311  		; /* see above */
10312  	else if (vcpu->arch.nmi_injected)
10313  		kvm_x86_call(inject_nmi)(vcpu);
10314  	else if (vcpu->arch.interrupt.injected)
10315  		kvm_x86_call(inject_irq)(vcpu, true);
10316  
10317  	/*
10318  	 * Exceptions that morph to VM-Exits are handled above, and pending
10319  	 * exceptions on top of injected exceptions that do not VM-Exit should
10320  	 * either morph to #DF or, sadly, override the injected exception.
10321  	 */
10322  	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10323  		     vcpu->arch.exception.pending);
10324  
10325  	/*
10326  	 * Bail if immediate entry+exit to/from the guest is needed to complete
10327  	 * nested VM-Enter or event re-injection so that a different pending
10328  	 * event can be serviced (or if KVM needs to exit to userspace).
10329  	 *
10330  	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10331  	 * VM-Exit will have cleared exceptions that were meant for L2, but
10332  	 * there may now be events that can be injected into L1.
10333  	 */
10334  	if (r < 0)
10335  		goto out;
10336  
10337  	/*
10338  	 * A pending exception VM-Exit should either result in nested VM-Exit
10339  	 * or force an immediate re-entry and exit to/from L2, and exception
10340  	 * VM-Exits cannot be injected (flag should _never_ be set).
10341  	 */
10342  	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10343  		     vcpu->arch.exception_vmexit.pending);
10344  
10345  	/*
10346  	 * New events, other than exceptions, cannot be injected if KVM needs
10347  	 * to re-inject a previous event.  See above comments on re-injecting
10348  	 * for why pending exceptions get priority.
10349  	 */
10350  	can_inject = !kvm_event_needs_reinjection(vcpu);
10351  
10352  	if (vcpu->arch.exception.pending) {
10353  		/*
10354  		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10355  		 * value pushed on the stack.  Trap-like exception and all #DBs
10356  		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10357  		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10358  		 *
10359  		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10360  		 * describe the behavior of General Detect #DBs, which are
10361  		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10362  		 */
10363  		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10364  			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10365  					     X86_EFLAGS_RF);
10366  
10367  		if (vcpu->arch.exception.vector == DB_VECTOR) {
10368  			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10369  			if (vcpu->arch.dr7 & DR7_GD) {
10370  				vcpu->arch.dr7 &= ~DR7_GD;
10371  				kvm_update_dr7(vcpu);
10372  			}
10373  		}
10374  
10375  		kvm_inject_exception(vcpu);
10376  
10377  		vcpu->arch.exception.pending = false;
10378  		vcpu->arch.exception.injected = true;
10379  
10380  		can_inject = false;
10381  	}
10382  
10383  	/* Don't inject interrupts if the user asked to avoid doing so */
10384  	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10385  		return 0;
10386  
10387  	/*
10388  	 * Finally, inject interrupt events.  If an event cannot be injected
10389  	 * due to architectural conditions (e.g. IF=0) a window-open exit
10390  	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10391  	 * and can architecturally be injected, but we cannot do it right now:
10392  	 * an interrupt could have arrived just now and we have to inject it
10393  	 * as a vmexit, or there could already an event in the queue, which is
10394  	 * indicated by can_inject.  In that case we request an immediate exit
10395  	 * in order to make progress and get back here for another iteration.
10396  	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10397  	 */
10398  #ifdef CONFIG_KVM_SMM
10399  	if (vcpu->arch.smi_pending) {
10400  		r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10401  				 -EBUSY;
10402  		if (r < 0)
10403  			goto out;
10404  		if (r) {
10405  			vcpu->arch.smi_pending = false;
10406  			++vcpu->arch.smi_count;
10407  			enter_smm(vcpu);
10408  			can_inject = false;
10409  		} else
10410  			kvm_x86_call(enable_smi_window)(vcpu);
10411  	}
10412  #endif
10413  
10414  	if (vcpu->arch.nmi_pending) {
10415  		r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10416  				 -EBUSY;
10417  		if (r < 0)
10418  			goto out;
10419  		if (r) {
10420  			--vcpu->arch.nmi_pending;
10421  			vcpu->arch.nmi_injected = true;
10422  			kvm_x86_call(inject_nmi)(vcpu);
10423  			can_inject = false;
10424  			WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10425  		}
10426  		if (vcpu->arch.nmi_pending)
10427  			kvm_x86_call(enable_nmi_window)(vcpu);
10428  	}
10429  
10430  	if (kvm_cpu_has_injectable_intr(vcpu)) {
10431  		r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10432  				 -EBUSY;
10433  		if (r < 0)
10434  			goto out;
10435  		if (r) {
10436  			int irq = kvm_cpu_get_interrupt(vcpu);
10437  
10438  			if (!WARN_ON_ONCE(irq == -1)) {
10439  				kvm_queue_interrupt(vcpu, irq, false);
10440  				kvm_x86_call(inject_irq)(vcpu, false);
10441  				WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10442  			}
10443  		}
10444  		if (kvm_cpu_has_injectable_intr(vcpu))
10445  			kvm_x86_call(enable_irq_window)(vcpu);
10446  	}
10447  
10448  	if (is_guest_mode(vcpu) &&
10449  	    kvm_x86_ops.nested_ops->has_events &&
10450  	    kvm_x86_ops.nested_ops->has_events(vcpu, true))
10451  		*req_immediate_exit = true;
10452  
10453  	/*
10454  	 * KVM must never queue a new exception while injecting an event; KVM
10455  	 * is done emulating and should only propagate the to-be-injected event
10456  	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10457  	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10458  	 * exception and start the cycle all over.
10459  	 *
10460  	 * Exempt triple faults as they have special handling and won't put the
10461  	 * vCPU into an infinite loop.  Triple fault can be queued when running
10462  	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10463  	 * Mode events (see kvm_inject_realmode_interrupt()).
10464  	 */
10465  	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10466  		     vcpu->arch.exception_vmexit.pending);
10467  	return 0;
10468  
10469  out:
10470  	if (r == -EBUSY) {
10471  		*req_immediate_exit = true;
10472  		r = 0;
10473  	}
10474  	return r;
10475  }
10476  
process_nmi(struct kvm_vcpu * vcpu)10477  static void process_nmi(struct kvm_vcpu *vcpu)
10478  {
10479  	unsigned int limit;
10480  
10481  	/*
10482  	 * x86 is limited to one NMI pending, but because KVM can't react to
10483  	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10484  	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10485  	 * up at the same time.  To handle this scenario, allow two NMIs to be
10486  	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10487  	 * waiting for a previous NMI injection to complete (which effectively
10488  	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10489  	 * will request an NMI window to handle the second NMI.
10490  	 */
10491  	if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10492  		limit = 1;
10493  	else
10494  		limit = 2;
10495  
10496  	/*
10497  	 * Adjust the limit to account for pending virtual NMIs, which aren't
10498  	 * tracked in vcpu->arch.nmi_pending.
10499  	 */
10500  	if (kvm_x86_call(is_vnmi_pending)(vcpu))
10501  		limit--;
10502  
10503  	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10504  	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10505  
10506  	if (vcpu->arch.nmi_pending &&
10507  	    (kvm_x86_call(set_vnmi_pending)(vcpu)))
10508  		vcpu->arch.nmi_pending--;
10509  
10510  	if (vcpu->arch.nmi_pending)
10511  		kvm_make_request(KVM_REQ_EVENT, vcpu);
10512  }
10513  
10514  /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10515  int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10516  {
10517  	return vcpu->arch.nmi_pending +
10518  	       kvm_x86_call(is_vnmi_pending)(vcpu);
10519  }
10520  
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10521  void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10522  				       unsigned long *vcpu_bitmap)
10523  {
10524  	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10525  }
10526  
kvm_make_scan_ioapic_request(struct kvm * kvm)10527  void kvm_make_scan_ioapic_request(struct kvm *kvm)
10528  {
10529  	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10530  }
10531  
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10532  void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10533  {
10534  	struct kvm_lapic *apic = vcpu->arch.apic;
10535  	bool activate;
10536  
10537  	if (!lapic_in_kernel(vcpu))
10538  		return;
10539  
10540  	down_read(&vcpu->kvm->arch.apicv_update_lock);
10541  	preempt_disable();
10542  
10543  	/* Do not activate APICV when APIC is disabled */
10544  	activate = kvm_vcpu_apicv_activated(vcpu) &&
10545  		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10546  
10547  	if (apic->apicv_active == activate)
10548  		goto out;
10549  
10550  	apic->apicv_active = activate;
10551  	kvm_apic_update_apicv(vcpu);
10552  	kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10553  
10554  	/*
10555  	 * When APICv gets disabled, we may still have injected interrupts
10556  	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10557  	 * still active when the interrupt got accepted. Make sure
10558  	 * kvm_check_and_inject_events() is called to check for that.
10559  	 */
10560  	if (!apic->apicv_active)
10561  		kvm_make_request(KVM_REQ_EVENT, vcpu);
10562  
10563  out:
10564  	preempt_enable();
10565  	up_read(&vcpu->kvm->arch.apicv_update_lock);
10566  }
10567  EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10568  
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10569  static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10570  {
10571  	if (!lapic_in_kernel(vcpu))
10572  		return;
10573  
10574  	/*
10575  	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10576  	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10577  	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10578  	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10579  	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10580  	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10581  	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10582  	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10583  	 * access page is sticky.
10584  	 */
10585  	if (apic_x2apic_mode(vcpu->arch.apic) &&
10586  	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10587  		kvm_inhibit_apic_access_page(vcpu);
10588  
10589  	__kvm_vcpu_update_apicv(vcpu);
10590  }
10591  
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10592  void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10593  				      enum kvm_apicv_inhibit reason, bool set)
10594  {
10595  	unsigned long old, new;
10596  
10597  	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10598  
10599  	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10600  		return;
10601  
10602  	old = new = kvm->arch.apicv_inhibit_reasons;
10603  
10604  	set_or_clear_apicv_inhibit(&new, reason, set);
10605  
10606  	if (!!old != !!new) {
10607  		/*
10608  		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10609  		 * false positives in the sanity check WARN in svm_vcpu_run().
10610  		 * This task will wait for all vCPUs to ack the kick IRQ before
10611  		 * updating apicv_inhibit_reasons, and all other vCPUs will
10612  		 * block on acquiring apicv_update_lock so that vCPUs can't
10613  		 * redo svm_vcpu_run() without seeing the new inhibit state.
10614  		 *
10615  		 * Note, holding apicv_update_lock and taking it in the read
10616  		 * side (handling the request) also prevents other vCPUs from
10617  		 * servicing the request with a stale apicv_inhibit_reasons.
10618  		 */
10619  		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10620  		kvm->arch.apicv_inhibit_reasons = new;
10621  		if (new) {
10622  			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10623  			int idx = srcu_read_lock(&kvm->srcu);
10624  
10625  			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10626  			srcu_read_unlock(&kvm->srcu, idx);
10627  		}
10628  	} else {
10629  		kvm->arch.apicv_inhibit_reasons = new;
10630  	}
10631  }
10632  
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10633  void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10634  				    enum kvm_apicv_inhibit reason, bool set)
10635  {
10636  	if (!enable_apicv)
10637  		return;
10638  
10639  	down_write(&kvm->arch.apicv_update_lock);
10640  	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10641  	up_write(&kvm->arch.apicv_update_lock);
10642  }
10643  EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10644  
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10645  static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10646  {
10647  	if (!kvm_apic_present(vcpu))
10648  		return;
10649  
10650  	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10651  
10652  	kvm_x86_call(sync_pir_to_irr)(vcpu);
10653  
10654  	if (irqchip_split(vcpu->kvm))
10655  		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10656  	else if (ioapic_in_kernel(vcpu->kvm))
10657  		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10658  
10659  	if (is_guest_mode(vcpu))
10660  		vcpu->arch.load_eoi_exitmap_pending = true;
10661  	else
10662  		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10663  }
10664  
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10665  static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10666  {
10667  	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10668  		return;
10669  
10670  #ifdef CONFIG_KVM_HYPERV
10671  	if (to_hv_vcpu(vcpu)) {
10672  		u64 eoi_exit_bitmap[4];
10673  
10674  		bitmap_or((ulong *)eoi_exit_bitmap,
10675  			  vcpu->arch.ioapic_handled_vectors,
10676  			  to_hv_synic(vcpu)->vec_bitmap, 256);
10677  		kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10678  		return;
10679  	}
10680  #endif
10681  	kvm_x86_call(load_eoi_exitmap)(
10682  		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10683  }
10684  
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10685  void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10686  {
10687  	kvm_x86_call(guest_memory_reclaimed)(kvm);
10688  }
10689  
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10690  static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10691  {
10692  	if (!lapic_in_kernel(vcpu))
10693  		return;
10694  
10695  	kvm_x86_call(set_apic_access_page_addr)(vcpu);
10696  }
10697  
10698  /*
10699   * Called within kvm->srcu read side.
10700   * Returns 1 to let vcpu_run() continue the guest execution loop without
10701   * exiting to the userspace.  Otherwise, the value will be returned to the
10702   * userspace.
10703   */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10704  static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10705  {
10706  	int r;
10707  	bool req_int_win =
10708  		dm_request_for_irq_injection(vcpu) &&
10709  		kvm_cpu_accept_dm_intr(vcpu);
10710  	fastpath_t exit_fastpath;
10711  
10712  	bool req_immediate_exit = false;
10713  
10714  	if (kvm_request_pending(vcpu)) {
10715  		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10716  			r = -EIO;
10717  			goto out;
10718  		}
10719  
10720  		if (kvm_dirty_ring_check_request(vcpu)) {
10721  			r = 0;
10722  			goto out;
10723  		}
10724  
10725  		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10726  			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10727  				r = 0;
10728  				goto out;
10729  			}
10730  		}
10731  		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10732  			kvm_mmu_free_obsolete_roots(vcpu);
10733  		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10734  			__kvm_migrate_timers(vcpu);
10735  		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10736  			kvm_update_masterclock(vcpu->kvm);
10737  		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10738  			kvm_gen_kvmclock_update(vcpu);
10739  		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10740  			r = kvm_guest_time_update(vcpu);
10741  			if (unlikely(r))
10742  				goto out;
10743  		}
10744  		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10745  			kvm_mmu_sync_roots(vcpu);
10746  		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10747  			kvm_mmu_load_pgd(vcpu);
10748  
10749  		/*
10750  		 * Note, the order matters here, as flushing "all" TLB entries
10751  		 * also flushes the "current" TLB entries, i.e. servicing the
10752  		 * flush "all" will clear any request to flush "current".
10753  		 */
10754  		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10755  			kvm_vcpu_flush_tlb_all(vcpu);
10756  
10757  		kvm_service_local_tlb_flush_requests(vcpu);
10758  
10759  		/*
10760  		 * Fall back to a "full" guest flush if Hyper-V's precise
10761  		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10762  		 * the flushes are considered "remote" and not "local" because
10763  		 * the requests can be initiated from other vCPUs.
10764  		 */
10765  #ifdef CONFIG_KVM_HYPERV
10766  		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10767  		    kvm_hv_vcpu_flush_tlb(vcpu))
10768  			kvm_vcpu_flush_tlb_guest(vcpu);
10769  #endif
10770  
10771  		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10772  			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10773  			r = 0;
10774  			goto out;
10775  		}
10776  		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10777  			if (is_guest_mode(vcpu))
10778  				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10779  
10780  			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10781  				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10782  				vcpu->mmio_needed = 0;
10783  				r = 0;
10784  				goto out;
10785  			}
10786  		}
10787  		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10788  			/* Page is swapped out. Do synthetic halt */
10789  			vcpu->arch.apf.halted = true;
10790  			r = 1;
10791  			goto out;
10792  		}
10793  		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10794  			record_steal_time(vcpu);
10795  		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10796  			kvm_pmu_handle_event(vcpu);
10797  		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10798  			kvm_pmu_deliver_pmi(vcpu);
10799  #ifdef CONFIG_KVM_SMM
10800  		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10801  			process_smi(vcpu);
10802  #endif
10803  		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10804  			process_nmi(vcpu);
10805  		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10806  			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10807  			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10808  				     vcpu->arch.ioapic_handled_vectors)) {
10809  				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10810  				vcpu->run->eoi.vector =
10811  						vcpu->arch.pending_ioapic_eoi;
10812  				r = 0;
10813  				goto out;
10814  			}
10815  		}
10816  		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10817  			vcpu_scan_ioapic(vcpu);
10818  		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10819  			vcpu_load_eoi_exitmap(vcpu);
10820  		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10821  			kvm_vcpu_reload_apic_access_page(vcpu);
10822  #ifdef CONFIG_KVM_HYPERV
10823  		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10824  			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10825  			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10826  			vcpu->run->system_event.ndata = 0;
10827  			r = 0;
10828  			goto out;
10829  		}
10830  		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10831  			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10832  			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10833  			vcpu->run->system_event.ndata = 0;
10834  			r = 0;
10835  			goto out;
10836  		}
10837  		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10838  			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10839  
10840  			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10841  			vcpu->run->hyperv = hv_vcpu->exit;
10842  			r = 0;
10843  			goto out;
10844  		}
10845  
10846  		/*
10847  		 * KVM_REQ_HV_STIMER has to be processed after
10848  		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10849  		 * depend on the guest clock being up-to-date
10850  		 */
10851  		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10852  			kvm_hv_process_stimers(vcpu);
10853  #endif
10854  		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10855  			kvm_vcpu_update_apicv(vcpu);
10856  		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10857  			kvm_check_async_pf_completion(vcpu);
10858  		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10859  			kvm_x86_call(msr_filter_changed)(vcpu);
10860  
10861  		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10862  			kvm_x86_call(update_cpu_dirty_logging)(vcpu);
10863  
10864  		if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
10865  			kvm_vcpu_reset(vcpu, true);
10866  			if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
10867  				r = 1;
10868  				goto out;
10869  			}
10870  		}
10871  	}
10872  
10873  	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10874  	    kvm_xen_has_interrupt(vcpu)) {
10875  		++vcpu->stat.req_event;
10876  		r = kvm_apic_accept_events(vcpu);
10877  		if (r < 0) {
10878  			r = 0;
10879  			goto out;
10880  		}
10881  		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10882  			r = 1;
10883  			goto out;
10884  		}
10885  
10886  		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10887  		if (r < 0) {
10888  			r = 0;
10889  			goto out;
10890  		}
10891  		if (req_int_win)
10892  			kvm_x86_call(enable_irq_window)(vcpu);
10893  
10894  		if (kvm_lapic_enabled(vcpu)) {
10895  			update_cr8_intercept(vcpu);
10896  			kvm_lapic_sync_to_vapic(vcpu);
10897  		}
10898  	}
10899  
10900  	r = kvm_mmu_reload(vcpu);
10901  	if (unlikely(r)) {
10902  		goto cancel_injection;
10903  	}
10904  
10905  	preempt_disable();
10906  
10907  	kvm_x86_call(prepare_switch_to_guest)(vcpu);
10908  
10909  	/*
10910  	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10911  	 * IPI are then delayed after guest entry, which ensures that they
10912  	 * result in virtual interrupt delivery.
10913  	 */
10914  	local_irq_disable();
10915  
10916  	/* Store vcpu->apicv_active before vcpu->mode.  */
10917  	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10918  
10919  	kvm_vcpu_srcu_read_unlock(vcpu);
10920  
10921  	/*
10922  	 * 1) We should set ->mode before checking ->requests.  Please see
10923  	 * the comment in kvm_vcpu_exiting_guest_mode().
10924  	 *
10925  	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10926  	 * pairs with the memory barrier implicit in pi_test_and_set_on
10927  	 * (see vmx_deliver_posted_interrupt).
10928  	 *
10929  	 * 3) This also orders the write to mode from any reads to the page
10930  	 * tables done while the VCPU is running.  Please see the comment
10931  	 * in kvm_flush_remote_tlbs.
10932  	 */
10933  	smp_mb__after_srcu_read_unlock();
10934  
10935  	/*
10936  	 * Process pending posted interrupts to handle the case where the
10937  	 * notification IRQ arrived in the host, or was never sent (because the
10938  	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10939  	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10940  	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10941  	 */
10942  	if (kvm_lapic_enabled(vcpu))
10943  		kvm_x86_call(sync_pir_to_irr)(vcpu);
10944  
10945  	if (kvm_vcpu_exit_request(vcpu)) {
10946  		vcpu->mode = OUTSIDE_GUEST_MODE;
10947  		smp_wmb();
10948  		local_irq_enable();
10949  		preempt_enable();
10950  		kvm_vcpu_srcu_read_lock(vcpu);
10951  		r = 1;
10952  		goto cancel_injection;
10953  	}
10954  
10955  	if (req_immediate_exit)
10956  		kvm_make_request(KVM_REQ_EVENT, vcpu);
10957  
10958  	fpregs_assert_state_consistent();
10959  	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10960  		switch_fpu_return();
10961  
10962  	if (vcpu->arch.guest_fpu.xfd_err)
10963  		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10964  
10965  	if (unlikely(vcpu->arch.switch_db_regs)) {
10966  		set_debugreg(0, 7);
10967  		set_debugreg(vcpu->arch.eff_db[0], 0);
10968  		set_debugreg(vcpu->arch.eff_db[1], 1);
10969  		set_debugreg(vcpu->arch.eff_db[2], 2);
10970  		set_debugreg(vcpu->arch.eff_db[3], 3);
10971  	} else if (unlikely(hw_breakpoint_active())) {
10972  		set_debugreg(0, 7);
10973  	}
10974  
10975  	guest_timing_enter_irqoff();
10976  
10977  	for (;;) {
10978  		/*
10979  		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10980  		 * update must kick and wait for all vCPUs before toggling the
10981  		 * per-VM state, and responding vCPUs must wait for the update
10982  		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10983  		 */
10984  		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10985  			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10986  
10987  		exit_fastpath = kvm_x86_call(vcpu_run)(vcpu,
10988  						       req_immediate_exit);
10989  		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10990  			break;
10991  
10992  		if (kvm_lapic_enabled(vcpu))
10993  			kvm_x86_call(sync_pir_to_irr)(vcpu);
10994  
10995  		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10996  			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10997  			break;
10998  		}
10999  
11000  		/* Note, VM-Exits that go down the "slow" path are accounted below. */
11001  		++vcpu->stat.exits;
11002  	}
11003  
11004  	/*
11005  	 * Do this here before restoring debug registers on the host.  And
11006  	 * since we do this before handling the vmexit, a DR access vmexit
11007  	 * can (a) read the correct value of the debug registers, (b) set
11008  	 * KVM_DEBUGREG_WONT_EXIT again.
11009  	 */
11010  	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11011  		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11012  		kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11013  		kvm_update_dr0123(vcpu);
11014  		kvm_update_dr7(vcpu);
11015  	}
11016  
11017  	/*
11018  	 * If the guest has used debug registers, at least dr7
11019  	 * will be disabled while returning to the host.
11020  	 * If we don't have active breakpoints in the host, we don't
11021  	 * care about the messed up debug address registers. But if
11022  	 * we have some of them active, restore the old state.
11023  	 */
11024  	if (hw_breakpoint_active())
11025  		hw_breakpoint_restore();
11026  
11027  	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11028  	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11029  
11030  	vcpu->mode = OUTSIDE_GUEST_MODE;
11031  	smp_wmb();
11032  
11033  	/*
11034  	 * Sync xfd before calling handle_exit_irqoff() which may
11035  	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11036  	 * in #NM irqoff handler).
11037  	 */
11038  	if (vcpu->arch.xfd_no_write_intercept)
11039  		fpu_sync_guest_vmexit_xfd_state();
11040  
11041  	kvm_x86_call(handle_exit_irqoff)(vcpu);
11042  
11043  	if (vcpu->arch.guest_fpu.xfd_err)
11044  		wrmsrl(MSR_IA32_XFD_ERR, 0);
11045  
11046  	/*
11047  	 * Consume any pending interrupts, including the possible source of
11048  	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11049  	 * An instruction is required after local_irq_enable() to fully unblock
11050  	 * interrupts on processors that implement an interrupt shadow, the
11051  	 * stat.exits increment will do nicely.
11052  	 */
11053  	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11054  	local_irq_enable();
11055  	++vcpu->stat.exits;
11056  	local_irq_disable();
11057  	kvm_after_interrupt(vcpu);
11058  
11059  	/*
11060  	 * Wait until after servicing IRQs to account guest time so that any
11061  	 * ticks that occurred while running the guest are properly accounted
11062  	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11063  	 * of accounting via context tracking, but the loss of accuracy is
11064  	 * acceptable for all known use cases.
11065  	 */
11066  	guest_timing_exit_irqoff();
11067  
11068  	local_irq_enable();
11069  	preempt_enable();
11070  
11071  	kvm_vcpu_srcu_read_lock(vcpu);
11072  
11073  	/*
11074  	 * Call this to ensure WC buffers in guest are evicted after each VM
11075  	 * Exit, so that the evicted WC writes can be snooped across all cpus
11076  	 */
11077  	smp_mb__after_srcu_read_lock();
11078  
11079  	/*
11080  	 * Profile KVM exit RIPs:
11081  	 */
11082  	if (unlikely(prof_on == KVM_PROFILING)) {
11083  		unsigned long rip = kvm_rip_read(vcpu);
11084  		profile_hit(KVM_PROFILING, (void *)rip);
11085  	}
11086  
11087  	if (unlikely(vcpu->arch.tsc_always_catchup))
11088  		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11089  
11090  	if (vcpu->arch.apic_attention)
11091  		kvm_lapic_sync_from_vapic(vcpu);
11092  
11093  	if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11094  		return 0;
11095  
11096  	r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11097  	return r;
11098  
11099  cancel_injection:
11100  	if (req_immediate_exit)
11101  		kvm_make_request(KVM_REQ_EVENT, vcpu);
11102  	kvm_x86_call(cancel_injection)(vcpu);
11103  	if (unlikely(vcpu->arch.apic_attention))
11104  		kvm_lapic_sync_from_vapic(vcpu);
11105  out:
11106  	return r;
11107  }
11108  
kvm_vcpu_running(struct kvm_vcpu * vcpu)11109  static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11110  {
11111  	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11112  		!vcpu->arch.apf.halted);
11113  }
11114  
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11115  static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11116  {
11117  	if (!list_empty_careful(&vcpu->async_pf.done))
11118  		return true;
11119  
11120  	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11121  	    kvm_apic_init_sipi_allowed(vcpu))
11122  		return true;
11123  
11124  	if (vcpu->arch.pv.pv_unhalted)
11125  		return true;
11126  
11127  	if (kvm_is_exception_pending(vcpu))
11128  		return true;
11129  
11130  	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11131  	    (vcpu->arch.nmi_pending &&
11132  	     kvm_x86_call(nmi_allowed)(vcpu, false)))
11133  		return true;
11134  
11135  #ifdef CONFIG_KVM_SMM
11136  	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11137  	    (vcpu->arch.smi_pending &&
11138  	     kvm_x86_call(smi_allowed)(vcpu, false)))
11139  		return true;
11140  #endif
11141  
11142  	if (kvm_test_request(KVM_REQ_PMI, vcpu))
11143  		return true;
11144  
11145  	if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11146  		return true;
11147  
11148  	if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11149  		return true;
11150  
11151  	if (kvm_hv_has_stimer_pending(vcpu))
11152  		return true;
11153  
11154  	if (is_guest_mode(vcpu) &&
11155  	    kvm_x86_ops.nested_ops->has_events &&
11156  	    kvm_x86_ops.nested_ops->has_events(vcpu, false))
11157  		return true;
11158  
11159  	if (kvm_xen_has_pending_events(vcpu))
11160  		return true;
11161  
11162  	return false;
11163  }
11164  
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11165  int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11166  {
11167  	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11168  }
11169  
11170  /* Called within kvm->srcu read side.  */
vcpu_block(struct kvm_vcpu * vcpu)11171  static inline int vcpu_block(struct kvm_vcpu *vcpu)
11172  {
11173  	bool hv_timer;
11174  
11175  	if (!kvm_arch_vcpu_runnable(vcpu)) {
11176  		/*
11177  		 * Switch to the software timer before halt-polling/blocking as
11178  		 * the guest's timer may be a break event for the vCPU, and the
11179  		 * hypervisor timer runs only when the CPU is in guest mode.
11180  		 * Switch before halt-polling so that KVM recognizes an expired
11181  		 * timer before blocking.
11182  		 */
11183  		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11184  		if (hv_timer)
11185  			kvm_lapic_switch_to_sw_timer(vcpu);
11186  
11187  		kvm_vcpu_srcu_read_unlock(vcpu);
11188  		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11189  			kvm_vcpu_halt(vcpu);
11190  		else
11191  			kvm_vcpu_block(vcpu);
11192  		kvm_vcpu_srcu_read_lock(vcpu);
11193  
11194  		if (hv_timer)
11195  			kvm_lapic_switch_to_hv_timer(vcpu);
11196  
11197  		/*
11198  		 * If the vCPU is not runnable, a signal or another host event
11199  		 * of some kind is pending; service it without changing the
11200  		 * vCPU's activity state.
11201  		 */
11202  		if (!kvm_arch_vcpu_runnable(vcpu))
11203  			return 1;
11204  	}
11205  
11206  	/*
11207  	 * Evaluate nested events before exiting the halted state.  This allows
11208  	 * the halt state to be recorded properly in the VMCS12's activity
11209  	 * state field (AMD does not have a similar field and a VM-Exit always
11210  	 * causes a spurious wakeup from HLT).
11211  	 */
11212  	if (is_guest_mode(vcpu)) {
11213  		int r = kvm_check_nested_events(vcpu);
11214  
11215  		WARN_ON_ONCE(r == -EBUSY);
11216  		if (r < 0)
11217  			return 0;
11218  	}
11219  
11220  	if (kvm_apic_accept_events(vcpu) < 0)
11221  		return 0;
11222  	switch(vcpu->arch.mp_state) {
11223  	case KVM_MP_STATE_HALTED:
11224  	case KVM_MP_STATE_AP_RESET_HOLD:
11225  		vcpu->arch.pv.pv_unhalted = false;
11226  		vcpu->arch.mp_state =
11227  			KVM_MP_STATE_RUNNABLE;
11228  		fallthrough;
11229  	case KVM_MP_STATE_RUNNABLE:
11230  		vcpu->arch.apf.halted = false;
11231  		break;
11232  	case KVM_MP_STATE_INIT_RECEIVED:
11233  		break;
11234  	default:
11235  		WARN_ON_ONCE(1);
11236  		break;
11237  	}
11238  	return 1;
11239  }
11240  
11241  /* Called within kvm->srcu read side.  */
vcpu_run(struct kvm_vcpu * vcpu)11242  static int vcpu_run(struct kvm_vcpu *vcpu)
11243  {
11244  	int r;
11245  
11246  	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11247  
11248  	for (;;) {
11249  		/*
11250  		 * If another guest vCPU requests a PV TLB flush in the middle
11251  		 * of instruction emulation, the rest of the emulation could
11252  		 * use a stale page translation. Assume that any code after
11253  		 * this point can start executing an instruction.
11254  		 */
11255  		vcpu->arch.at_instruction_boundary = false;
11256  		if (kvm_vcpu_running(vcpu)) {
11257  			r = vcpu_enter_guest(vcpu);
11258  		} else {
11259  			r = vcpu_block(vcpu);
11260  		}
11261  
11262  		if (r <= 0)
11263  			break;
11264  
11265  		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11266  		if (kvm_xen_has_pending_events(vcpu))
11267  			kvm_xen_inject_pending_events(vcpu);
11268  
11269  		if (kvm_cpu_has_pending_timer(vcpu))
11270  			kvm_inject_pending_timer_irqs(vcpu);
11271  
11272  		if (dm_request_for_irq_injection(vcpu) &&
11273  			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11274  			r = 0;
11275  			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11276  			++vcpu->stat.request_irq_exits;
11277  			break;
11278  		}
11279  
11280  		if (__xfer_to_guest_mode_work_pending()) {
11281  			kvm_vcpu_srcu_read_unlock(vcpu);
11282  			r = xfer_to_guest_mode_handle_work(vcpu);
11283  			kvm_vcpu_srcu_read_lock(vcpu);
11284  			if (r)
11285  				return r;
11286  		}
11287  	}
11288  
11289  	return r;
11290  }
11291  
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11292  static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11293  {
11294  	/*
11295  	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
11296  	 * local APIC is in-kernel, the run loop will detect the non-runnable
11297  	 * state and halt the vCPU.  Exit to userspace if the local APIC is
11298  	 * managed by userspace, in which case userspace is responsible for
11299  	 * handling wake events.
11300  	 */
11301  	++vcpu->stat.halt_exits;
11302  	if (lapic_in_kernel(vcpu)) {
11303  		if (kvm_vcpu_has_events(vcpu))
11304  			vcpu->arch.pv.pv_unhalted = false;
11305  		else
11306  			vcpu->arch.mp_state = state;
11307  		return 1;
11308  	} else {
11309  		vcpu->run->exit_reason = reason;
11310  		return 0;
11311  	}
11312  }
11313  
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11314  int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11315  {
11316  	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11317  }
11318  EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
11319  
kvm_emulate_halt(struct kvm_vcpu * vcpu)11320  int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11321  {
11322  	int ret = kvm_skip_emulated_instruction(vcpu);
11323  	/*
11324  	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11325  	 * KVM_EXIT_DEBUG here.
11326  	 */
11327  	return kvm_emulate_halt_noskip(vcpu) && ret;
11328  }
11329  EXPORT_SYMBOL_GPL(kvm_emulate_halt);
11330  
handle_fastpath_hlt(struct kvm_vcpu * vcpu)11331  fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11332  {
11333  	int ret;
11334  
11335  	kvm_vcpu_srcu_read_lock(vcpu);
11336  	ret = kvm_emulate_halt(vcpu);
11337  	kvm_vcpu_srcu_read_unlock(vcpu);
11338  
11339  	if (!ret)
11340  		return EXIT_FASTPATH_EXIT_USERSPACE;
11341  
11342  	if (kvm_vcpu_running(vcpu))
11343  		return EXIT_FASTPATH_REENTER_GUEST;
11344  
11345  	return EXIT_FASTPATH_EXIT_HANDLED;
11346  }
11347  EXPORT_SYMBOL_GPL(handle_fastpath_hlt);
11348  
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11349  int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11350  {
11351  	int ret = kvm_skip_emulated_instruction(vcpu);
11352  
11353  	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11354  					KVM_EXIT_AP_RESET_HOLD) && ret;
11355  }
11356  EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
11357  
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11358  bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11359  {
11360  	return kvm_vcpu_apicv_active(vcpu) &&
11361  	       kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11362  }
11363  
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11364  bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11365  {
11366  	return vcpu->arch.preempted_in_kernel;
11367  }
11368  
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11369  bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11370  {
11371  	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11372  		return true;
11373  
11374  	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11375  #ifdef CONFIG_KVM_SMM
11376  		kvm_test_request(KVM_REQ_SMI, vcpu) ||
11377  #endif
11378  		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11379  		return true;
11380  
11381  	return kvm_arch_dy_has_pending_interrupt(vcpu);
11382  }
11383  
complete_emulated_io(struct kvm_vcpu * vcpu)11384  static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11385  {
11386  	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11387  }
11388  
complete_emulated_pio(struct kvm_vcpu * vcpu)11389  static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11390  {
11391  	BUG_ON(!vcpu->arch.pio.count);
11392  
11393  	return complete_emulated_io(vcpu);
11394  }
11395  
11396  /*
11397   * Implements the following, as a state machine:
11398   *
11399   * read:
11400   *   for each fragment
11401   *     for each mmio piece in the fragment
11402   *       write gpa, len
11403   *       exit
11404   *       copy data
11405   *   execute insn
11406   *
11407   * write:
11408   *   for each fragment
11409   *     for each mmio piece in the fragment
11410   *       write gpa, len
11411   *       copy data
11412   *       exit
11413   */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11414  static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11415  {
11416  	struct kvm_run *run = vcpu->run;
11417  	struct kvm_mmio_fragment *frag;
11418  	unsigned len;
11419  
11420  	BUG_ON(!vcpu->mmio_needed);
11421  
11422  	/* Complete previous fragment */
11423  	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11424  	len = min(8u, frag->len);
11425  	if (!vcpu->mmio_is_write)
11426  		memcpy(frag->data, run->mmio.data, len);
11427  
11428  	if (frag->len <= 8) {
11429  		/* Switch to the next fragment. */
11430  		frag++;
11431  		vcpu->mmio_cur_fragment++;
11432  	} else {
11433  		/* Go forward to the next mmio piece. */
11434  		frag->data += len;
11435  		frag->gpa += len;
11436  		frag->len -= len;
11437  	}
11438  
11439  	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11440  		vcpu->mmio_needed = 0;
11441  
11442  		/* FIXME: return into emulator if single-stepping.  */
11443  		if (vcpu->mmio_is_write)
11444  			return 1;
11445  		vcpu->mmio_read_completed = 1;
11446  		return complete_emulated_io(vcpu);
11447  	}
11448  
11449  	run->exit_reason = KVM_EXIT_MMIO;
11450  	run->mmio.phys_addr = frag->gpa;
11451  	if (vcpu->mmio_is_write)
11452  		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11453  	run->mmio.len = min(8u, frag->len);
11454  	run->mmio.is_write = vcpu->mmio_is_write;
11455  	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11456  	return 0;
11457  }
11458  
11459  /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11460  static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11461  {
11462  	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11463  	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11464  	trace_kvm_fpu(1);
11465  }
11466  
11467  /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11468  static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11469  {
11470  	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11471  	++vcpu->stat.fpu_reload;
11472  	trace_kvm_fpu(0);
11473  }
11474  
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11475  int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11476  {
11477  	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11478  	struct kvm_run *kvm_run = vcpu->run;
11479  	int r;
11480  
11481  	vcpu_load(vcpu);
11482  	kvm_sigset_activate(vcpu);
11483  	kvm_run->flags = 0;
11484  	kvm_load_guest_fpu(vcpu);
11485  
11486  	kvm_vcpu_srcu_read_lock(vcpu);
11487  	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11488  		if (!vcpu->wants_to_run) {
11489  			r = -EINTR;
11490  			goto out;
11491  		}
11492  
11493  		/*
11494  		 * Don't bother switching APIC timer emulation from the
11495  		 * hypervisor timer to the software timer, the only way for the
11496  		 * APIC timer to be active is if userspace stuffed vCPU state,
11497  		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11498  		 * will transition the vCPU out of UNINITIALIZED (without more
11499  		 * state stuffing from userspace), which will reset the local
11500  		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11501  		 * already expired).
11502  		 */
11503  		kvm_vcpu_srcu_read_unlock(vcpu);
11504  		kvm_vcpu_block(vcpu);
11505  		kvm_vcpu_srcu_read_lock(vcpu);
11506  
11507  		if (kvm_apic_accept_events(vcpu) < 0) {
11508  			r = 0;
11509  			goto out;
11510  		}
11511  		r = -EAGAIN;
11512  		if (signal_pending(current)) {
11513  			r = -EINTR;
11514  			kvm_run->exit_reason = KVM_EXIT_INTR;
11515  			++vcpu->stat.signal_exits;
11516  		}
11517  		goto out;
11518  	}
11519  
11520  	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11521  	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11522  		r = -EINVAL;
11523  		goto out;
11524  	}
11525  
11526  	if (kvm_run->kvm_dirty_regs) {
11527  		r = sync_regs(vcpu);
11528  		if (r != 0)
11529  			goto out;
11530  	}
11531  
11532  	/* re-sync apic's tpr */
11533  	if (!lapic_in_kernel(vcpu)) {
11534  		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11535  			r = -EINVAL;
11536  			goto out;
11537  		}
11538  	}
11539  
11540  	/*
11541  	 * If userspace set a pending exception and L2 is active, convert it to
11542  	 * a pending VM-Exit if L1 wants to intercept the exception.
11543  	 */
11544  	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11545  	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11546  							ex->error_code)) {
11547  		kvm_queue_exception_vmexit(vcpu, ex->vector,
11548  					   ex->has_error_code, ex->error_code,
11549  					   ex->has_payload, ex->payload);
11550  		ex->injected = false;
11551  		ex->pending = false;
11552  	}
11553  	vcpu->arch.exception_from_userspace = false;
11554  
11555  	if (unlikely(vcpu->arch.complete_userspace_io)) {
11556  		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11557  		vcpu->arch.complete_userspace_io = NULL;
11558  		r = cui(vcpu);
11559  		if (r <= 0)
11560  			goto out;
11561  	} else {
11562  		WARN_ON_ONCE(vcpu->arch.pio.count);
11563  		WARN_ON_ONCE(vcpu->mmio_needed);
11564  	}
11565  
11566  	if (!vcpu->wants_to_run) {
11567  		r = -EINTR;
11568  		goto out;
11569  	}
11570  
11571  	r = kvm_x86_call(vcpu_pre_run)(vcpu);
11572  	if (r <= 0)
11573  		goto out;
11574  
11575  	r = vcpu_run(vcpu);
11576  
11577  out:
11578  	kvm_put_guest_fpu(vcpu);
11579  	if (kvm_run->kvm_valid_regs)
11580  		store_regs(vcpu);
11581  	post_kvm_run_save(vcpu);
11582  	kvm_vcpu_srcu_read_unlock(vcpu);
11583  
11584  	kvm_sigset_deactivate(vcpu);
11585  	vcpu_put(vcpu);
11586  	return r;
11587  }
11588  
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11589  static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11590  {
11591  	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11592  		/*
11593  		 * We are here if userspace calls get_regs() in the middle of
11594  		 * instruction emulation. Registers state needs to be copied
11595  		 * back from emulation context to vcpu. Userspace shouldn't do
11596  		 * that usually, but some bad designed PV devices (vmware
11597  		 * backdoor interface) need this to work
11598  		 */
11599  		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11600  		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11601  	}
11602  	regs->rax = kvm_rax_read(vcpu);
11603  	regs->rbx = kvm_rbx_read(vcpu);
11604  	regs->rcx = kvm_rcx_read(vcpu);
11605  	regs->rdx = kvm_rdx_read(vcpu);
11606  	regs->rsi = kvm_rsi_read(vcpu);
11607  	regs->rdi = kvm_rdi_read(vcpu);
11608  	regs->rsp = kvm_rsp_read(vcpu);
11609  	regs->rbp = kvm_rbp_read(vcpu);
11610  #ifdef CONFIG_X86_64
11611  	regs->r8 = kvm_r8_read(vcpu);
11612  	regs->r9 = kvm_r9_read(vcpu);
11613  	regs->r10 = kvm_r10_read(vcpu);
11614  	regs->r11 = kvm_r11_read(vcpu);
11615  	regs->r12 = kvm_r12_read(vcpu);
11616  	regs->r13 = kvm_r13_read(vcpu);
11617  	regs->r14 = kvm_r14_read(vcpu);
11618  	regs->r15 = kvm_r15_read(vcpu);
11619  #endif
11620  
11621  	regs->rip = kvm_rip_read(vcpu);
11622  	regs->rflags = kvm_get_rflags(vcpu);
11623  }
11624  
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11625  int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11626  {
11627  	if (vcpu->kvm->arch.has_protected_state &&
11628  	    vcpu->arch.guest_state_protected)
11629  		return -EINVAL;
11630  
11631  	vcpu_load(vcpu);
11632  	__get_regs(vcpu, regs);
11633  	vcpu_put(vcpu);
11634  	return 0;
11635  }
11636  
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11637  static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11638  {
11639  	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11640  	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11641  
11642  	kvm_rax_write(vcpu, regs->rax);
11643  	kvm_rbx_write(vcpu, regs->rbx);
11644  	kvm_rcx_write(vcpu, regs->rcx);
11645  	kvm_rdx_write(vcpu, regs->rdx);
11646  	kvm_rsi_write(vcpu, regs->rsi);
11647  	kvm_rdi_write(vcpu, regs->rdi);
11648  	kvm_rsp_write(vcpu, regs->rsp);
11649  	kvm_rbp_write(vcpu, regs->rbp);
11650  #ifdef CONFIG_X86_64
11651  	kvm_r8_write(vcpu, regs->r8);
11652  	kvm_r9_write(vcpu, regs->r9);
11653  	kvm_r10_write(vcpu, regs->r10);
11654  	kvm_r11_write(vcpu, regs->r11);
11655  	kvm_r12_write(vcpu, regs->r12);
11656  	kvm_r13_write(vcpu, regs->r13);
11657  	kvm_r14_write(vcpu, regs->r14);
11658  	kvm_r15_write(vcpu, regs->r15);
11659  #endif
11660  
11661  	kvm_rip_write(vcpu, regs->rip);
11662  	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11663  
11664  	vcpu->arch.exception.pending = false;
11665  	vcpu->arch.exception_vmexit.pending = false;
11666  
11667  	kvm_make_request(KVM_REQ_EVENT, vcpu);
11668  }
11669  
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11670  int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11671  {
11672  	if (vcpu->kvm->arch.has_protected_state &&
11673  	    vcpu->arch.guest_state_protected)
11674  		return -EINVAL;
11675  
11676  	vcpu_load(vcpu);
11677  	__set_regs(vcpu, regs);
11678  	vcpu_put(vcpu);
11679  	return 0;
11680  }
11681  
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11682  static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11683  {
11684  	struct desc_ptr dt;
11685  
11686  	if (vcpu->arch.guest_state_protected)
11687  		goto skip_protected_regs;
11688  
11689  	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11690  	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11691  	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11692  	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11693  	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11694  	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11695  
11696  	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11697  	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11698  
11699  	kvm_x86_call(get_idt)(vcpu, &dt);
11700  	sregs->idt.limit = dt.size;
11701  	sregs->idt.base = dt.address;
11702  	kvm_x86_call(get_gdt)(vcpu, &dt);
11703  	sregs->gdt.limit = dt.size;
11704  	sregs->gdt.base = dt.address;
11705  
11706  	sregs->cr2 = vcpu->arch.cr2;
11707  	sregs->cr3 = kvm_read_cr3(vcpu);
11708  
11709  skip_protected_regs:
11710  	sregs->cr0 = kvm_read_cr0(vcpu);
11711  	sregs->cr4 = kvm_read_cr4(vcpu);
11712  	sregs->cr8 = kvm_get_cr8(vcpu);
11713  	sregs->efer = vcpu->arch.efer;
11714  	sregs->apic_base = kvm_get_apic_base(vcpu);
11715  }
11716  
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11717  static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11718  {
11719  	__get_sregs_common(vcpu, sregs);
11720  
11721  	if (vcpu->arch.guest_state_protected)
11722  		return;
11723  
11724  	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11725  		set_bit(vcpu->arch.interrupt.nr,
11726  			(unsigned long *)sregs->interrupt_bitmap);
11727  }
11728  
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11729  static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11730  {
11731  	int i;
11732  
11733  	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11734  
11735  	if (vcpu->arch.guest_state_protected)
11736  		return;
11737  
11738  	if (is_pae_paging(vcpu)) {
11739  		for (i = 0 ; i < 4 ; i++)
11740  			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11741  		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11742  	}
11743  }
11744  
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11745  int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11746  				  struct kvm_sregs *sregs)
11747  {
11748  	if (vcpu->kvm->arch.has_protected_state &&
11749  	    vcpu->arch.guest_state_protected)
11750  		return -EINVAL;
11751  
11752  	vcpu_load(vcpu);
11753  	__get_sregs(vcpu, sregs);
11754  	vcpu_put(vcpu);
11755  	return 0;
11756  }
11757  
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11758  int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11759  				    struct kvm_mp_state *mp_state)
11760  {
11761  	int r;
11762  
11763  	vcpu_load(vcpu);
11764  	if (kvm_mpx_supported())
11765  		kvm_load_guest_fpu(vcpu);
11766  
11767  	r = kvm_apic_accept_events(vcpu);
11768  	if (r < 0)
11769  		goto out;
11770  	r = 0;
11771  
11772  	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11773  	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11774  	    vcpu->arch.pv.pv_unhalted)
11775  		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11776  	else
11777  		mp_state->mp_state = vcpu->arch.mp_state;
11778  
11779  out:
11780  	if (kvm_mpx_supported())
11781  		kvm_put_guest_fpu(vcpu);
11782  	vcpu_put(vcpu);
11783  	return r;
11784  }
11785  
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11786  int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11787  				    struct kvm_mp_state *mp_state)
11788  {
11789  	int ret = -EINVAL;
11790  
11791  	vcpu_load(vcpu);
11792  
11793  	switch (mp_state->mp_state) {
11794  	case KVM_MP_STATE_UNINITIALIZED:
11795  	case KVM_MP_STATE_HALTED:
11796  	case KVM_MP_STATE_AP_RESET_HOLD:
11797  	case KVM_MP_STATE_INIT_RECEIVED:
11798  	case KVM_MP_STATE_SIPI_RECEIVED:
11799  		if (!lapic_in_kernel(vcpu))
11800  			goto out;
11801  		break;
11802  
11803  	case KVM_MP_STATE_RUNNABLE:
11804  		break;
11805  
11806  	default:
11807  		goto out;
11808  	}
11809  
11810  	/*
11811  	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11812  	 * forcing the guest into INIT/SIPI if those events are supposed to be
11813  	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11814  	 * if an SMI is pending as well.
11815  	 */
11816  	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11817  	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11818  	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11819  		goto out;
11820  
11821  	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11822  		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11823  		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11824  	} else
11825  		vcpu->arch.mp_state = mp_state->mp_state;
11826  	kvm_make_request(KVM_REQ_EVENT, vcpu);
11827  
11828  	ret = 0;
11829  out:
11830  	vcpu_put(vcpu);
11831  	return ret;
11832  }
11833  
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11834  int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11835  		    int reason, bool has_error_code, u32 error_code)
11836  {
11837  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11838  	int ret;
11839  
11840  	init_emulate_ctxt(vcpu);
11841  
11842  	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11843  				   has_error_code, error_code);
11844  
11845  	/*
11846  	 * Report an error userspace if MMIO is needed, as KVM doesn't support
11847  	 * MMIO during a task switch (or any other complex operation).
11848  	 */
11849  	if (ret || vcpu->mmio_needed) {
11850  		vcpu->mmio_needed = false;
11851  		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11852  		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11853  		vcpu->run->internal.ndata = 0;
11854  		return 0;
11855  	}
11856  
11857  	kvm_rip_write(vcpu, ctxt->eip);
11858  	kvm_set_rflags(vcpu, ctxt->eflags);
11859  	return 1;
11860  }
11861  EXPORT_SYMBOL_GPL(kvm_task_switch);
11862  
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11863  static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11864  {
11865  	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11866  		/*
11867  		 * When EFER.LME and CR0.PG are set, the processor is in
11868  		 * 64-bit mode (though maybe in a 32-bit code segment).
11869  		 * CR4.PAE and EFER.LMA must be set.
11870  		 */
11871  		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11872  			return false;
11873  		if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11874  			return false;
11875  	} else {
11876  		/*
11877  		 * Not in 64-bit mode: EFER.LMA is clear and the code
11878  		 * segment cannot be 64-bit.
11879  		 */
11880  		if (sregs->efer & EFER_LMA || sregs->cs.l)
11881  			return false;
11882  	}
11883  
11884  	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11885  	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11886  }
11887  
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11888  static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11889  		int *mmu_reset_needed, bool update_pdptrs)
11890  {
11891  	struct msr_data apic_base_msr;
11892  	int idx;
11893  	struct desc_ptr dt;
11894  
11895  	if (!kvm_is_valid_sregs(vcpu, sregs))
11896  		return -EINVAL;
11897  
11898  	apic_base_msr.data = sregs->apic_base;
11899  	apic_base_msr.host_initiated = true;
11900  	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11901  		return -EINVAL;
11902  
11903  	if (vcpu->arch.guest_state_protected)
11904  		return 0;
11905  
11906  	dt.size = sregs->idt.limit;
11907  	dt.address = sregs->idt.base;
11908  	kvm_x86_call(set_idt)(vcpu, &dt);
11909  	dt.size = sregs->gdt.limit;
11910  	dt.address = sregs->gdt.base;
11911  	kvm_x86_call(set_gdt)(vcpu, &dt);
11912  
11913  	vcpu->arch.cr2 = sregs->cr2;
11914  	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11915  	vcpu->arch.cr3 = sregs->cr3;
11916  	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11917  	kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
11918  
11919  	kvm_set_cr8(vcpu, sregs->cr8);
11920  
11921  	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11922  	kvm_x86_call(set_efer)(vcpu, sregs->efer);
11923  
11924  	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11925  	kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
11926  
11927  	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11928  	kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
11929  
11930  	if (update_pdptrs) {
11931  		idx = srcu_read_lock(&vcpu->kvm->srcu);
11932  		if (is_pae_paging(vcpu)) {
11933  			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11934  			*mmu_reset_needed = 1;
11935  		}
11936  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11937  	}
11938  
11939  	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11940  	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11941  	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11942  	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11943  	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11944  	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11945  
11946  	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11947  	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11948  
11949  	update_cr8_intercept(vcpu);
11950  
11951  	/* Older userspace won't unhalt the vcpu on reset. */
11952  	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11953  	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11954  	    !is_protmode(vcpu))
11955  		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11956  
11957  	return 0;
11958  }
11959  
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11960  static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11961  {
11962  	int pending_vec, max_bits;
11963  	int mmu_reset_needed = 0;
11964  	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11965  
11966  	if (ret)
11967  		return ret;
11968  
11969  	if (mmu_reset_needed) {
11970  		kvm_mmu_reset_context(vcpu);
11971  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11972  	}
11973  
11974  	max_bits = KVM_NR_INTERRUPTS;
11975  	pending_vec = find_first_bit(
11976  		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11977  
11978  	if (pending_vec < max_bits) {
11979  		kvm_queue_interrupt(vcpu, pending_vec, false);
11980  		pr_debug("Set back pending irq %d\n", pending_vec);
11981  		kvm_make_request(KVM_REQ_EVENT, vcpu);
11982  	}
11983  	return 0;
11984  }
11985  
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11986  static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11987  {
11988  	int mmu_reset_needed = 0;
11989  	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11990  	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11991  		!(sregs2->efer & EFER_LMA);
11992  	int i, ret;
11993  
11994  	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11995  		return -EINVAL;
11996  
11997  	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11998  		return -EINVAL;
11999  
12000  	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12001  				 &mmu_reset_needed, !valid_pdptrs);
12002  	if (ret)
12003  		return ret;
12004  
12005  	if (valid_pdptrs) {
12006  		for (i = 0; i < 4 ; i++)
12007  			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12008  
12009  		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12010  		mmu_reset_needed = 1;
12011  		vcpu->arch.pdptrs_from_userspace = true;
12012  	}
12013  	if (mmu_reset_needed) {
12014  		kvm_mmu_reset_context(vcpu);
12015  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12016  	}
12017  	return 0;
12018  }
12019  
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12020  int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12021  				  struct kvm_sregs *sregs)
12022  {
12023  	int ret;
12024  
12025  	if (vcpu->kvm->arch.has_protected_state &&
12026  	    vcpu->arch.guest_state_protected)
12027  		return -EINVAL;
12028  
12029  	vcpu_load(vcpu);
12030  	ret = __set_sregs(vcpu, sregs);
12031  	vcpu_put(vcpu);
12032  	return ret;
12033  }
12034  
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12035  static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12036  {
12037  	bool set = false;
12038  	struct kvm_vcpu *vcpu;
12039  	unsigned long i;
12040  
12041  	if (!enable_apicv)
12042  		return;
12043  
12044  	down_write(&kvm->arch.apicv_update_lock);
12045  
12046  	kvm_for_each_vcpu(i, vcpu, kvm) {
12047  		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12048  			set = true;
12049  			break;
12050  		}
12051  	}
12052  	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12053  	up_write(&kvm->arch.apicv_update_lock);
12054  }
12055  
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12056  int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12057  					struct kvm_guest_debug *dbg)
12058  {
12059  	unsigned long rflags;
12060  	int i, r;
12061  
12062  	if (vcpu->arch.guest_state_protected)
12063  		return -EINVAL;
12064  
12065  	vcpu_load(vcpu);
12066  
12067  	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12068  		r = -EBUSY;
12069  		if (kvm_is_exception_pending(vcpu))
12070  			goto out;
12071  		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12072  			kvm_queue_exception(vcpu, DB_VECTOR);
12073  		else
12074  			kvm_queue_exception(vcpu, BP_VECTOR);
12075  	}
12076  
12077  	/*
12078  	 * Read rflags as long as potentially injected trace flags are still
12079  	 * filtered out.
12080  	 */
12081  	rflags = kvm_get_rflags(vcpu);
12082  
12083  	vcpu->guest_debug = dbg->control;
12084  	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12085  		vcpu->guest_debug = 0;
12086  
12087  	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12088  		for (i = 0; i < KVM_NR_DB_REGS; ++i)
12089  			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12090  		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12091  	} else {
12092  		for (i = 0; i < KVM_NR_DB_REGS; i++)
12093  			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12094  	}
12095  	kvm_update_dr7(vcpu);
12096  
12097  	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12098  		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12099  
12100  	/*
12101  	 * Trigger an rflags update that will inject or remove the trace
12102  	 * flags.
12103  	 */
12104  	kvm_set_rflags(vcpu, rflags);
12105  
12106  	kvm_x86_call(update_exception_bitmap)(vcpu);
12107  
12108  	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12109  
12110  	r = 0;
12111  
12112  out:
12113  	vcpu_put(vcpu);
12114  	return r;
12115  }
12116  
12117  /*
12118   * Translate a guest virtual address to a guest physical address.
12119   */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12120  int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12121  				    struct kvm_translation *tr)
12122  {
12123  	unsigned long vaddr = tr->linear_address;
12124  	gpa_t gpa;
12125  	int idx;
12126  
12127  	vcpu_load(vcpu);
12128  
12129  	idx = srcu_read_lock(&vcpu->kvm->srcu);
12130  	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12131  	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12132  	tr->physical_address = gpa;
12133  	tr->valid = gpa != INVALID_GPA;
12134  	tr->writeable = 1;
12135  	tr->usermode = 0;
12136  
12137  	vcpu_put(vcpu);
12138  	return 0;
12139  }
12140  
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12141  int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12142  {
12143  	struct fxregs_state *fxsave;
12144  
12145  	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12146  		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12147  
12148  	vcpu_load(vcpu);
12149  
12150  	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12151  	memcpy(fpu->fpr, fxsave->st_space, 128);
12152  	fpu->fcw = fxsave->cwd;
12153  	fpu->fsw = fxsave->swd;
12154  	fpu->ftwx = fxsave->twd;
12155  	fpu->last_opcode = fxsave->fop;
12156  	fpu->last_ip = fxsave->rip;
12157  	fpu->last_dp = fxsave->rdp;
12158  	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12159  
12160  	vcpu_put(vcpu);
12161  	return 0;
12162  }
12163  
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12164  int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12165  {
12166  	struct fxregs_state *fxsave;
12167  
12168  	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12169  		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12170  
12171  	vcpu_load(vcpu);
12172  
12173  	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12174  
12175  	memcpy(fxsave->st_space, fpu->fpr, 128);
12176  	fxsave->cwd = fpu->fcw;
12177  	fxsave->swd = fpu->fsw;
12178  	fxsave->twd = fpu->ftwx;
12179  	fxsave->fop = fpu->last_opcode;
12180  	fxsave->rip = fpu->last_ip;
12181  	fxsave->rdp = fpu->last_dp;
12182  	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12183  
12184  	vcpu_put(vcpu);
12185  	return 0;
12186  }
12187  
store_regs(struct kvm_vcpu * vcpu)12188  static void store_regs(struct kvm_vcpu *vcpu)
12189  {
12190  	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12191  
12192  	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12193  		__get_regs(vcpu, &vcpu->run->s.regs.regs);
12194  
12195  	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12196  		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12197  
12198  	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12199  		kvm_vcpu_ioctl_x86_get_vcpu_events(
12200  				vcpu, &vcpu->run->s.regs.events);
12201  }
12202  
sync_regs(struct kvm_vcpu * vcpu)12203  static int sync_regs(struct kvm_vcpu *vcpu)
12204  {
12205  	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12206  		__set_regs(vcpu, &vcpu->run->s.regs.regs);
12207  		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12208  	}
12209  
12210  	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12211  		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12212  
12213  		if (__set_sregs(vcpu, &sregs))
12214  			return -EINVAL;
12215  
12216  		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12217  	}
12218  
12219  	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12220  		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12221  
12222  		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12223  			return -EINVAL;
12224  
12225  		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12226  	}
12227  
12228  	return 0;
12229  }
12230  
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12231  int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12232  {
12233  	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12234  		pr_warn_once("SMP vm created on host with unstable TSC; "
12235  			     "guest TSC will not be reliable\n");
12236  
12237  	if (!kvm->arch.max_vcpu_ids)
12238  		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12239  
12240  	if (id >= kvm->arch.max_vcpu_ids)
12241  		return -EINVAL;
12242  
12243  	return kvm_x86_call(vcpu_precreate)(kvm);
12244  }
12245  
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12246  int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12247  {
12248  	struct page *page;
12249  	int r;
12250  
12251  	vcpu->arch.last_vmentry_cpu = -1;
12252  	vcpu->arch.regs_avail = ~0;
12253  	vcpu->arch.regs_dirty = ~0;
12254  
12255  	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12256  
12257  	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12258  		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12259  	else
12260  		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12261  
12262  	r = kvm_mmu_create(vcpu);
12263  	if (r < 0)
12264  		return r;
12265  
12266  	r = kvm_create_lapic(vcpu);
12267  	if (r < 0)
12268  		goto fail_mmu_destroy;
12269  
12270  	r = -ENOMEM;
12271  
12272  	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12273  	if (!page)
12274  		goto fail_free_lapic;
12275  	vcpu->arch.pio_data = page_address(page);
12276  
12277  	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12278  				       GFP_KERNEL_ACCOUNT);
12279  	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12280  					    GFP_KERNEL_ACCOUNT);
12281  	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12282  		goto fail_free_mce_banks;
12283  	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12284  
12285  	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12286  				GFP_KERNEL_ACCOUNT))
12287  		goto fail_free_mce_banks;
12288  
12289  	if (!alloc_emulate_ctxt(vcpu))
12290  		goto free_wbinvd_dirty_mask;
12291  
12292  	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12293  		pr_err("failed to allocate vcpu's fpu\n");
12294  		goto free_emulate_ctxt;
12295  	}
12296  
12297  	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12298  	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12299  
12300  	kvm_async_pf_hash_reset(vcpu);
12301  
12302  	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12303  	kvm_pmu_init(vcpu);
12304  
12305  	vcpu->arch.pending_external_vector = -1;
12306  	vcpu->arch.preempted_in_kernel = false;
12307  
12308  #if IS_ENABLED(CONFIG_HYPERV)
12309  	vcpu->arch.hv_root_tdp = INVALID_PAGE;
12310  #endif
12311  
12312  	r = kvm_x86_call(vcpu_create)(vcpu);
12313  	if (r)
12314  		goto free_guest_fpu;
12315  
12316  	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12317  	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12318  	kvm_xen_init_vcpu(vcpu);
12319  	vcpu_load(vcpu);
12320  	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12321  	kvm_vcpu_reset(vcpu, false);
12322  	kvm_init_mmu(vcpu);
12323  	vcpu_put(vcpu);
12324  	return 0;
12325  
12326  free_guest_fpu:
12327  	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12328  free_emulate_ctxt:
12329  	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12330  free_wbinvd_dirty_mask:
12331  	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12332  fail_free_mce_banks:
12333  	kfree(vcpu->arch.mce_banks);
12334  	kfree(vcpu->arch.mci_ctl2_banks);
12335  	free_page((unsigned long)vcpu->arch.pio_data);
12336  fail_free_lapic:
12337  	kvm_free_lapic(vcpu);
12338  fail_mmu_destroy:
12339  	kvm_mmu_destroy(vcpu);
12340  	return r;
12341  }
12342  
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12343  void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12344  {
12345  	struct kvm *kvm = vcpu->kvm;
12346  
12347  	if (mutex_lock_killable(&vcpu->mutex))
12348  		return;
12349  	vcpu_load(vcpu);
12350  	kvm_synchronize_tsc(vcpu, NULL);
12351  	vcpu_put(vcpu);
12352  
12353  	/* poll control enabled by default */
12354  	vcpu->arch.msr_kvm_poll_control = 1;
12355  
12356  	mutex_unlock(&vcpu->mutex);
12357  
12358  	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12359  		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12360  						KVMCLOCK_SYNC_PERIOD);
12361  }
12362  
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12363  void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12364  {
12365  	int idx;
12366  
12367  	kvmclock_reset(vcpu);
12368  
12369  	kvm_x86_call(vcpu_free)(vcpu);
12370  
12371  	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12372  	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12373  	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12374  
12375  	kvm_xen_destroy_vcpu(vcpu);
12376  	kvm_hv_vcpu_uninit(vcpu);
12377  	kvm_pmu_destroy(vcpu);
12378  	kfree(vcpu->arch.mce_banks);
12379  	kfree(vcpu->arch.mci_ctl2_banks);
12380  	kvm_free_lapic(vcpu);
12381  	idx = srcu_read_lock(&vcpu->kvm->srcu);
12382  	kvm_mmu_destroy(vcpu);
12383  	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12384  	free_page((unsigned long)vcpu->arch.pio_data);
12385  	kvfree(vcpu->arch.cpuid_entries);
12386  }
12387  
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12388  void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12389  {
12390  	struct kvm_cpuid_entry2 *cpuid_0x1;
12391  	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12392  	unsigned long new_cr0;
12393  
12394  	/*
12395  	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12396  	 * to handle side effects.  RESET emulation hits those flows and relies
12397  	 * on emulated/virtualized registers, including those that are loaded
12398  	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12399  	 * to detect improper or missing initialization.
12400  	 */
12401  	WARN_ON_ONCE(!init_event &&
12402  		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12403  
12404  	/*
12405  	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12406  	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12407  	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12408  	 * bits), i.e. virtualization is disabled.
12409  	 */
12410  	if (is_guest_mode(vcpu))
12411  		kvm_leave_nested(vcpu);
12412  
12413  	kvm_lapic_reset(vcpu, init_event);
12414  
12415  	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12416  	vcpu->arch.hflags = 0;
12417  
12418  	vcpu->arch.smi_pending = 0;
12419  	vcpu->arch.smi_count = 0;
12420  	atomic_set(&vcpu->arch.nmi_queued, 0);
12421  	vcpu->arch.nmi_pending = 0;
12422  	vcpu->arch.nmi_injected = false;
12423  	kvm_clear_interrupt_queue(vcpu);
12424  	kvm_clear_exception_queue(vcpu);
12425  
12426  	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12427  	kvm_update_dr0123(vcpu);
12428  	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12429  	vcpu->arch.dr7 = DR7_FIXED_1;
12430  	kvm_update_dr7(vcpu);
12431  
12432  	vcpu->arch.cr2 = 0;
12433  
12434  	kvm_make_request(KVM_REQ_EVENT, vcpu);
12435  	vcpu->arch.apf.msr_en_val = 0;
12436  	vcpu->arch.apf.msr_int_val = 0;
12437  	vcpu->arch.st.msr_val = 0;
12438  
12439  	kvmclock_reset(vcpu);
12440  
12441  	kvm_clear_async_pf_completion_queue(vcpu);
12442  	kvm_async_pf_hash_reset(vcpu);
12443  	vcpu->arch.apf.halted = false;
12444  
12445  	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12446  		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12447  
12448  		/*
12449  		 * All paths that lead to INIT are required to load the guest's
12450  		 * FPU state (because most paths are buried in KVM_RUN).
12451  		 */
12452  		if (init_event)
12453  			kvm_put_guest_fpu(vcpu);
12454  
12455  		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12456  		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12457  
12458  		if (init_event)
12459  			kvm_load_guest_fpu(vcpu);
12460  	}
12461  
12462  	if (!init_event) {
12463  		vcpu->arch.smbase = 0x30000;
12464  
12465  		vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12466  
12467  		vcpu->arch.msr_misc_features_enables = 0;
12468  		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12469  						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12470  
12471  		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12472  		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12473  	}
12474  
12475  	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12476  	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12477  	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12478  
12479  	/*
12480  	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12481  	 * if no CPUID match is found.  Note, it's impossible to get a match at
12482  	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12483  	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12484  	 * on RESET.  But, go through the motions in case that's ever remedied.
12485  	 */
12486  	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12487  	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12488  
12489  	kvm_x86_call(vcpu_reset)(vcpu, init_event);
12490  
12491  	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12492  	kvm_rip_write(vcpu, 0xfff0);
12493  
12494  	vcpu->arch.cr3 = 0;
12495  	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12496  
12497  	/*
12498  	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12499  	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12500  	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12501  	 */
12502  	new_cr0 = X86_CR0_ET;
12503  	if (init_event)
12504  		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12505  	else
12506  		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12507  
12508  	kvm_x86_call(set_cr0)(vcpu, new_cr0);
12509  	kvm_x86_call(set_cr4)(vcpu, 0);
12510  	kvm_x86_call(set_efer)(vcpu, 0);
12511  	kvm_x86_call(update_exception_bitmap)(vcpu);
12512  
12513  	/*
12514  	 * On the standard CR0/CR4/EFER modification paths, there are several
12515  	 * complex conditions determining whether the MMU has to be reset and/or
12516  	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12517  	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12518  	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12519  	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12520  	 */
12521  	if (old_cr0 & X86_CR0_PG) {
12522  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12523  		kvm_mmu_reset_context(vcpu);
12524  	}
12525  
12526  	/*
12527  	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12528  	 * APM states the TLBs are untouched by INIT, but it also states that
12529  	 * the TLBs are flushed on "External initialization of the processor."
12530  	 * Flush the guest TLB regardless of vendor, there is no meaningful
12531  	 * benefit in relying on the guest to flush the TLB immediately after
12532  	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12533  	 * performance perspective.
12534  	 */
12535  	if (init_event)
12536  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12537  }
12538  EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12539  
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12540  void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12541  {
12542  	struct kvm_segment cs;
12543  
12544  	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12545  	cs.selector = vector << 8;
12546  	cs.base = vector << 12;
12547  	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12548  	kvm_rip_write(vcpu, 0);
12549  }
12550  EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12551  
kvm_arch_enable_virtualization(void)12552  void kvm_arch_enable_virtualization(void)
12553  {
12554  	cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12555  }
12556  
kvm_arch_disable_virtualization(void)12557  void kvm_arch_disable_virtualization(void)
12558  {
12559  	cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12560  }
12561  
kvm_arch_enable_virtualization_cpu(void)12562  int kvm_arch_enable_virtualization_cpu(void)
12563  {
12564  	struct kvm *kvm;
12565  	struct kvm_vcpu *vcpu;
12566  	unsigned long i;
12567  	int ret;
12568  	u64 local_tsc;
12569  	u64 max_tsc = 0;
12570  	bool stable, backwards_tsc = false;
12571  
12572  	kvm_user_return_msr_cpu_online();
12573  
12574  	ret = kvm_x86_check_processor_compatibility();
12575  	if (ret)
12576  		return ret;
12577  
12578  	ret = kvm_x86_call(enable_virtualization_cpu)();
12579  	if (ret != 0)
12580  		return ret;
12581  
12582  	local_tsc = rdtsc();
12583  	stable = !kvm_check_tsc_unstable();
12584  	list_for_each_entry(kvm, &vm_list, vm_list) {
12585  		kvm_for_each_vcpu(i, vcpu, kvm) {
12586  			if (!stable && vcpu->cpu == smp_processor_id())
12587  				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12588  			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12589  				backwards_tsc = true;
12590  				if (vcpu->arch.last_host_tsc > max_tsc)
12591  					max_tsc = vcpu->arch.last_host_tsc;
12592  			}
12593  		}
12594  	}
12595  
12596  	/*
12597  	 * Sometimes, even reliable TSCs go backwards.  This happens on
12598  	 * platforms that reset TSC during suspend or hibernate actions, but
12599  	 * maintain synchronization.  We must compensate.  Fortunately, we can
12600  	 * detect that condition here, which happens early in CPU bringup,
12601  	 * before any KVM threads can be running.  Unfortunately, we can't
12602  	 * bring the TSCs fully up to date with real time, as we aren't yet far
12603  	 * enough into CPU bringup that we know how much real time has actually
12604  	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12605  	 * variables that haven't been updated yet.
12606  	 *
12607  	 * So we simply find the maximum observed TSC above, then record the
12608  	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12609  	 * the adjustment will be applied.  Note that we accumulate
12610  	 * adjustments, in case multiple suspend cycles happen before some VCPU
12611  	 * gets a chance to run again.  In the event that no KVM threads get a
12612  	 * chance to run, we will miss the entire elapsed period, as we'll have
12613  	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12614  	 * loose cycle time.  This isn't too big a deal, since the loss will be
12615  	 * uniform across all VCPUs (not to mention the scenario is extremely
12616  	 * unlikely). It is possible that a second hibernate recovery happens
12617  	 * much faster than a first, causing the observed TSC here to be
12618  	 * smaller; this would require additional padding adjustment, which is
12619  	 * why we set last_host_tsc to the local tsc observed here.
12620  	 *
12621  	 * N.B. - this code below runs only on platforms with reliable TSC,
12622  	 * as that is the only way backwards_tsc is set above.  Also note
12623  	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12624  	 * have the same delta_cyc adjustment applied if backwards_tsc
12625  	 * is detected.  Note further, this adjustment is only done once,
12626  	 * as we reset last_host_tsc on all VCPUs to stop this from being
12627  	 * called multiple times (one for each physical CPU bringup).
12628  	 *
12629  	 * Platforms with unreliable TSCs don't have to deal with this, they
12630  	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12631  	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12632  	 * guarantee that they stay in perfect synchronization.
12633  	 */
12634  	if (backwards_tsc) {
12635  		u64 delta_cyc = max_tsc - local_tsc;
12636  		list_for_each_entry(kvm, &vm_list, vm_list) {
12637  			kvm->arch.backwards_tsc_observed = true;
12638  			kvm_for_each_vcpu(i, vcpu, kvm) {
12639  				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12640  				vcpu->arch.last_host_tsc = local_tsc;
12641  				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12642  			}
12643  
12644  			/*
12645  			 * We have to disable TSC offset matching.. if you were
12646  			 * booting a VM while issuing an S4 host suspend....
12647  			 * you may have some problem.  Solving this issue is
12648  			 * left as an exercise to the reader.
12649  			 */
12650  			kvm->arch.last_tsc_nsec = 0;
12651  			kvm->arch.last_tsc_write = 0;
12652  		}
12653  
12654  	}
12655  	return 0;
12656  }
12657  
kvm_arch_disable_virtualization_cpu(void)12658  void kvm_arch_disable_virtualization_cpu(void)
12659  {
12660  	kvm_x86_call(disable_virtualization_cpu)();
12661  	drop_user_return_notifiers();
12662  }
12663  
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12664  bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12665  {
12666  	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12667  }
12668  
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12669  bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12670  {
12671  	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12672  }
12673  
kvm_arch_free_vm(struct kvm * kvm)12674  void kvm_arch_free_vm(struct kvm *kvm)
12675  {
12676  #if IS_ENABLED(CONFIG_HYPERV)
12677  	kfree(kvm->arch.hv_pa_pg);
12678  #endif
12679  	__kvm_arch_free_vm(kvm);
12680  }
12681  
12682  
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12683  int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12684  {
12685  	int ret;
12686  	unsigned long flags;
12687  
12688  	if (!kvm_is_vm_type_supported(type))
12689  		return -EINVAL;
12690  
12691  	kvm->arch.vm_type = type;
12692  	kvm->arch.has_private_mem =
12693  		(type == KVM_X86_SW_PROTECTED_VM);
12694  	/* Decided by the vendor code for other VM types.  */
12695  	kvm->arch.pre_fault_allowed =
12696  		type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
12697  
12698  	ret = kvm_page_track_init(kvm);
12699  	if (ret)
12700  		goto out;
12701  
12702  	kvm_mmu_init_vm(kvm);
12703  
12704  	ret = kvm_x86_call(vm_init)(kvm);
12705  	if (ret)
12706  		goto out_uninit_mmu;
12707  
12708  	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12709  	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12710  
12711  	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12712  	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12713  	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12714  	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12715  		&kvm->arch.irq_sources_bitmap);
12716  
12717  	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12718  	mutex_init(&kvm->arch.apic_map_lock);
12719  	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12720  	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12721  
12722  	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12723  	pvclock_update_vm_gtod_copy(kvm);
12724  	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12725  
12726  	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12727  	kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
12728  	kvm->arch.guest_can_read_msr_platform_info = true;
12729  	kvm->arch.enable_pmu = enable_pmu;
12730  
12731  #if IS_ENABLED(CONFIG_HYPERV)
12732  	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12733  	kvm->arch.hv_root_tdp = INVALID_PAGE;
12734  #endif
12735  
12736  	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12737  	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12738  
12739  	kvm_apicv_init(kvm);
12740  	kvm_hv_init_vm(kvm);
12741  	kvm_xen_init_vm(kvm);
12742  
12743  	return 0;
12744  
12745  out_uninit_mmu:
12746  	kvm_mmu_uninit_vm(kvm);
12747  	kvm_page_track_cleanup(kvm);
12748  out:
12749  	return ret;
12750  }
12751  
kvm_arch_post_init_vm(struct kvm * kvm)12752  int kvm_arch_post_init_vm(struct kvm *kvm)
12753  {
12754  	return kvm_mmu_post_init_vm(kvm);
12755  }
12756  
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)12757  static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12758  {
12759  	vcpu_load(vcpu);
12760  	kvm_mmu_unload(vcpu);
12761  	vcpu_put(vcpu);
12762  }
12763  
kvm_unload_vcpu_mmus(struct kvm * kvm)12764  static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12765  {
12766  	unsigned long i;
12767  	struct kvm_vcpu *vcpu;
12768  
12769  	kvm_for_each_vcpu(i, vcpu, kvm) {
12770  		kvm_clear_async_pf_completion_queue(vcpu);
12771  		kvm_unload_vcpu_mmu(vcpu);
12772  	}
12773  }
12774  
kvm_arch_sync_events(struct kvm * kvm)12775  void kvm_arch_sync_events(struct kvm *kvm)
12776  {
12777  	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12778  	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12779  	kvm_free_pit(kvm);
12780  }
12781  
12782  /**
12783   * __x86_set_memory_region: Setup KVM internal memory slot
12784   *
12785   * @kvm: the kvm pointer to the VM.
12786   * @id: the slot ID to setup.
12787   * @gpa: the GPA to install the slot (unused when @size == 0).
12788   * @size: the size of the slot. Set to zero to uninstall a slot.
12789   *
12790   * This function helps to setup a KVM internal memory slot.  Specify
12791   * @size > 0 to install a new slot, while @size == 0 to uninstall a
12792   * slot.  The return code can be one of the following:
12793   *
12794   *   HVA:           on success (uninstall will return a bogus HVA)
12795   *   -errno:        on error
12796   *
12797   * The caller should always use IS_ERR() to check the return value
12798   * before use.  Note, the KVM internal memory slots are guaranteed to
12799   * remain valid and unchanged until the VM is destroyed, i.e., the
12800   * GPA->HVA translation will not change.  However, the HVA is a user
12801   * address, i.e. its accessibility is not guaranteed, and must be
12802   * accessed via __copy_{to,from}_user().
12803   */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12804  void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12805  				      u32 size)
12806  {
12807  	int i, r;
12808  	unsigned long hva, old_npages;
12809  	struct kvm_memslots *slots = kvm_memslots(kvm);
12810  	struct kvm_memory_slot *slot;
12811  
12812  	/* Called with kvm->slots_lock held.  */
12813  	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12814  		return ERR_PTR_USR(-EINVAL);
12815  
12816  	slot = id_to_memslot(slots, id);
12817  	if (size) {
12818  		if (slot && slot->npages)
12819  			return ERR_PTR_USR(-EEXIST);
12820  
12821  		/*
12822  		 * MAP_SHARED to prevent internal slot pages from being moved
12823  		 * by fork()/COW.
12824  		 */
12825  		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12826  			      MAP_SHARED | MAP_ANONYMOUS, 0);
12827  		if (IS_ERR_VALUE(hva))
12828  			return (void __user *)hva;
12829  	} else {
12830  		if (!slot || !slot->npages)
12831  			return NULL;
12832  
12833  		old_npages = slot->npages;
12834  		hva = slot->userspace_addr;
12835  	}
12836  
12837  	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12838  		struct kvm_userspace_memory_region2 m;
12839  
12840  		m.slot = id | (i << 16);
12841  		m.flags = 0;
12842  		m.guest_phys_addr = gpa;
12843  		m.userspace_addr = hva;
12844  		m.memory_size = size;
12845  		r = __kvm_set_memory_region(kvm, &m);
12846  		if (r < 0)
12847  			return ERR_PTR_USR(r);
12848  	}
12849  
12850  	if (!size)
12851  		vm_munmap(hva, old_npages * PAGE_SIZE);
12852  
12853  	return (void __user *)hva;
12854  }
12855  EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12856  
kvm_arch_pre_destroy_vm(struct kvm * kvm)12857  void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12858  {
12859  	kvm_mmu_pre_destroy_vm(kvm);
12860  }
12861  
kvm_arch_destroy_vm(struct kvm * kvm)12862  void kvm_arch_destroy_vm(struct kvm *kvm)
12863  {
12864  	if (current->mm == kvm->mm) {
12865  		/*
12866  		 * Free memory regions allocated on behalf of userspace,
12867  		 * unless the memory map has changed due to process exit
12868  		 * or fd copying.
12869  		 */
12870  		mutex_lock(&kvm->slots_lock);
12871  		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12872  					0, 0);
12873  		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12874  					0, 0);
12875  		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12876  		mutex_unlock(&kvm->slots_lock);
12877  	}
12878  	kvm_unload_vcpu_mmus(kvm);
12879  	kvm_x86_call(vm_destroy)(kvm);
12880  	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12881  	kvm_pic_destroy(kvm);
12882  	kvm_ioapic_destroy(kvm);
12883  	kvm_destroy_vcpus(kvm);
12884  	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12885  	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12886  	kvm_mmu_uninit_vm(kvm);
12887  	kvm_page_track_cleanup(kvm);
12888  	kvm_xen_destroy_vm(kvm);
12889  	kvm_hv_destroy_vm(kvm);
12890  }
12891  
memslot_rmap_free(struct kvm_memory_slot * slot)12892  static void memslot_rmap_free(struct kvm_memory_slot *slot)
12893  {
12894  	int i;
12895  
12896  	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12897  		vfree(slot->arch.rmap[i]);
12898  		slot->arch.rmap[i] = NULL;
12899  	}
12900  }
12901  
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12902  void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12903  {
12904  	int i;
12905  
12906  	memslot_rmap_free(slot);
12907  
12908  	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12909  		vfree(slot->arch.lpage_info[i - 1]);
12910  		slot->arch.lpage_info[i - 1] = NULL;
12911  	}
12912  
12913  	kvm_page_track_free_memslot(slot);
12914  }
12915  
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12916  int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12917  {
12918  	const int sz = sizeof(*slot->arch.rmap[0]);
12919  	int i;
12920  
12921  	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12922  		int level = i + 1;
12923  		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12924  
12925  		if (slot->arch.rmap[i])
12926  			continue;
12927  
12928  		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12929  		if (!slot->arch.rmap[i]) {
12930  			memslot_rmap_free(slot);
12931  			return -ENOMEM;
12932  		}
12933  	}
12934  
12935  	return 0;
12936  }
12937  
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12938  static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12939  				      struct kvm_memory_slot *slot)
12940  {
12941  	unsigned long npages = slot->npages;
12942  	int i, r;
12943  
12944  	/*
12945  	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12946  	 * old arrays will be freed by __kvm_set_memory_region() if installing
12947  	 * the new memslot is successful.
12948  	 */
12949  	memset(&slot->arch, 0, sizeof(slot->arch));
12950  
12951  	if (kvm_memslots_have_rmaps(kvm)) {
12952  		r = memslot_rmap_alloc(slot, npages);
12953  		if (r)
12954  			return r;
12955  	}
12956  
12957  	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12958  		struct kvm_lpage_info *linfo;
12959  		unsigned long ugfn;
12960  		int lpages;
12961  		int level = i + 1;
12962  
12963  		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12964  
12965  		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12966  		if (!linfo)
12967  			goto out_free;
12968  
12969  		slot->arch.lpage_info[i - 1] = linfo;
12970  
12971  		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12972  			linfo[0].disallow_lpage = 1;
12973  		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12974  			linfo[lpages - 1].disallow_lpage = 1;
12975  		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12976  		/*
12977  		 * If the gfn and userspace address are not aligned wrt each
12978  		 * other, disable large page support for this slot.
12979  		 */
12980  		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12981  			unsigned long j;
12982  
12983  			for (j = 0; j < lpages; ++j)
12984  				linfo[j].disallow_lpage = 1;
12985  		}
12986  	}
12987  
12988  #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12989  	kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12990  #endif
12991  
12992  	if (kvm_page_track_create_memslot(kvm, slot, npages))
12993  		goto out_free;
12994  
12995  	return 0;
12996  
12997  out_free:
12998  	memslot_rmap_free(slot);
12999  
13000  	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13001  		vfree(slot->arch.lpage_info[i - 1]);
13002  		slot->arch.lpage_info[i - 1] = NULL;
13003  	}
13004  	return -ENOMEM;
13005  }
13006  
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)13007  void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13008  {
13009  	struct kvm_vcpu *vcpu;
13010  	unsigned long i;
13011  
13012  	/*
13013  	 * memslots->generation has been incremented.
13014  	 * mmio generation may have reached its maximum value.
13015  	 */
13016  	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13017  
13018  	/* Force re-initialization of steal_time cache */
13019  	kvm_for_each_vcpu(i, vcpu, kvm)
13020  		kvm_vcpu_kick(vcpu);
13021  }
13022  
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13023  int kvm_arch_prepare_memory_region(struct kvm *kvm,
13024  				   const struct kvm_memory_slot *old,
13025  				   struct kvm_memory_slot *new,
13026  				   enum kvm_mr_change change)
13027  {
13028  	/*
13029  	 * KVM doesn't support moving memslots when there are external page
13030  	 * trackers attached to the VM, i.e. if KVMGT is in use.
13031  	 */
13032  	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13033  		return -EINVAL;
13034  
13035  	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13036  		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13037  			return -EINVAL;
13038  
13039  		return kvm_alloc_memslot_metadata(kvm, new);
13040  	}
13041  
13042  	if (change == KVM_MR_FLAGS_ONLY)
13043  		memcpy(&new->arch, &old->arch, sizeof(old->arch));
13044  	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13045  		return -EIO;
13046  
13047  	return 0;
13048  }
13049  
13050  
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13051  static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13052  {
13053  	int nr_slots;
13054  
13055  	if (!kvm_x86_ops.cpu_dirty_log_size)
13056  		return;
13057  
13058  	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13059  	if ((enable && nr_slots == 1) || !nr_slots)
13060  		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13061  }
13062  
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13063  static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13064  				     struct kvm_memory_slot *old,
13065  				     const struct kvm_memory_slot *new,
13066  				     enum kvm_mr_change change)
13067  {
13068  	u32 old_flags = old ? old->flags : 0;
13069  	u32 new_flags = new ? new->flags : 0;
13070  	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13071  
13072  	/*
13073  	 * Update CPU dirty logging if dirty logging is being toggled.  This
13074  	 * applies to all operations.
13075  	 */
13076  	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13077  		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13078  
13079  	/*
13080  	 * Nothing more to do for RO slots (which can't be dirtied and can't be
13081  	 * made writable) or CREATE/MOVE/DELETE of a slot.
13082  	 *
13083  	 * For a memslot with dirty logging disabled:
13084  	 * CREATE:      No dirty mappings will already exist.
13085  	 * MOVE/DELETE: The old mappings will already have been cleaned up by
13086  	 *		kvm_arch_flush_shadow_memslot()
13087  	 *
13088  	 * For a memslot with dirty logging enabled:
13089  	 * CREATE:      No shadow pages exist, thus nothing to write-protect
13090  	 *		and no dirty bits to clear.
13091  	 * MOVE/DELETE: The old mappings will already have been cleaned up by
13092  	 *		kvm_arch_flush_shadow_memslot().
13093  	 */
13094  	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13095  		return;
13096  
13097  	/*
13098  	 * READONLY and non-flags changes were filtered out above, and the only
13099  	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13100  	 * logging isn't being toggled on or off.
13101  	 */
13102  	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13103  		return;
13104  
13105  	if (!log_dirty_pages) {
13106  		/*
13107  		 * Dirty logging tracks sptes in 4k granularity, meaning that
13108  		 * large sptes have to be split.  If live migration succeeds,
13109  		 * the guest in the source machine will be destroyed and large
13110  		 * sptes will be created in the destination.  However, if the
13111  		 * guest continues to run in the source machine (for example if
13112  		 * live migration fails), small sptes will remain around and
13113  		 * cause bad performance.
13114  		 *
13115  		 * Scan sptes if dirty logging has been stopped, dropping those
13116  		 * which can be collapsed into a single large-page spte.  Later
13117  		 * page faults will create the large-page sptes.
13118  		 */
13119  		kvm_mmu_zap_collapsible_sptes(kvm, new);
13120  	} else {
13121  		/*
13122  		 * Initially-all-set does not require write protecting any page,
13123  		 * because they're all assumed to be dirty.
13124  		 */
13125  		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13126  			return;
13127  
13128  		if (READ_ONCE(eager_page_split))
13129  			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13130  
13131  		if (kvm_x86_ops.cpu_dirty_log_size) {
13132  			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13133  			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13134  		} else {
13135  			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13136  		}
13137  
13138  		/*
13139  		 * Unconditionally flush the TLBs after enabling dirty logging.
13140  		 * A flush is almost always going to be necessary (see below),
13141  		 * and unconditionally flushing allows the helpers to omit
13142  		 * the subtly complex checks when removing write access.
13143  		 *
13144  		 * Do the flush outside of mmu_lock to reduce the amount of
13145  		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
13146  		 * safe as KVM only needs to guarantee the slot is fully
13147  		 * write-protected before returning to userspace, i.e. before
13148  		 * userspace can consume the dirty status.
13149  		 *
13150  		 * Flushing outside of mmu_lock requires KVM to be careful when
13151  		 * making decisions based on writable status of an SPTE, e.g. a
13152  		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13153  		 *
13154  		 * Specifically, KVM also write-protects guest page tables to
13155  		 * monitor changes when using shadow paging, and must guarantee
13156  		 * no CPUs can write to those page before mmu_lock is dropped.
13157  		 * Because CPUs may have stale TLB entries at this point, a
13158  		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13159  		 *
13160  		 * KVM also allows making SPTES writable outside of mmu_lock,
13161  		 * e.g. to allow dirty logging without taking mmu_lock.
13162  		 *
13163  		 * To handle these scenarios, KVM uses a separate software-only
13164  		 * bit (MMU-writable) to track if a SPTE is !writable due to
13165  		 * a guest page table being write-protected (KVM clears the
13166  		 * MMU-writable flag when write-protecting for shadow paging).
13167  		 *
13168  		 * The use of MMU-writable is also the primary motivation for
13169  		 * the unconditional flush.  Because KVM must guarantee that a
13170  		 * CPU doesn't contain stale, writable TLB entries for a
13171  		 * !MMU-writable SPTE, KVM must flush if it encounters any
13172  		 * MMU-writable SPTE regardless of whether the actual hardware
13173  		 * writable bit was set.  I.e. KVM is almost guaranteed to need
13174  		 * to flush, while unconditionally flushing allows the "remove
13175  		 * write access" helpers to ignore MMU-writable entirely.
13176  		 *
13177  		 * See is_writable_pte() for more details (the case involving
13178  		 * access-tracked SPTEs is particularly relevant).
13179  		 */
13180  		kvm_flush_remote_tlbs_memslot(kvm, new);
13181  	}
13182  }
13183  
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13184  void kvm_arch_commit_memory_region(struct kvm *kvm,
13185  				struct kvm_memory_slot *old,
13186  				const struct kvm_memory_slot *new,
13187  				enum kvm_mr_change change)
13188  {
13189  	if (change == KVM_MR_DELETE)
13190  		kvm_page_track_delete_slot(kvm, old);
13191  
13192  	if (!kvm->arch.n_requested_mmu_pages &&
13193  	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13194  		unsigned long nr_mmu_pages;
13195  
13196  		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13197  		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13198  		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13199  	}
13200  
13201  	kvm_mmu_slot_apply_flags(kvm, old, new, change);
13202  
13203  	/* Free the arrays associated with the old memslot. */
13204  	if (change == KVM_MR_MOVE)
13205  		kvm_arch_free_memslot(kvm, old);
13206  }
13207  
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13208  bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13209  {
13210  	if (vcpu->arch.guest_state_protected)
13211  		return true;
13212  
13213  	return kvm_x86_call(get_cpl)(vcpu) == 0;
13214  }
13215  
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13216  unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13217  {
13218  	return kvm_rip_read(vcpu);
13219  }
13220  
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13221  int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13222  {
13223  	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13224  }
13225  
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13226  int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13227  {
13228  	return kvm_x86_call(interrupt_allowed)(vcpu, false);
13229  }
13230  
kvm_get_linear_rip(struct kvm_vcpu * vcpu)13231  unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13232  {
13233  	/* Can't read the RIP when guest state is protected, just return 0 */
13234  	if (vcpu->arch.guest_state_protected)
13235  		return 0;
13236  
13237  	if (is_64_bit_mode(vcpu))
13238  		return kvm_rip_read(vcpu);
13239  	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13240  		     kvm_rip_read(vcpu));
13241  }
13242  EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13243  
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13244  bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13245  {
13246  	return kvm_get_linear_rip(vcpu) == linear_rip;
13247  }
13248  EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13249  
kvm_get_rflags(struct kvm_vcpu * vcpu)13250  unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13251  {
13252  	unsigned long rflags;
13253  
13254  	rflags = kvm_x86_call(get_rflags)(vcpu);
13255  	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13256  		rflags &= ~X86_EFLAGS_TF;
13257  	return rflags;
13258  }
13259  EXPORT_SYMBOL_GPL(kvm_get_rflags);
13260  
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13261  static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13262  {
13263  	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13264  	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13265  		rflags |= X86_EFLAGS_TF;
13266  	kvm_x86_call(set_rflags)(vcpu, rflags);
13267  }
13268  
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13269  void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13270  {
13271  	__kvm_set_rflags(vcpu, rflags);
13272  	kvm_make_request(KVM_REQ_EVENT, vcpu);
13273  }
13274  EXPORT_SYMBOL_GPL(kvm_set_rflags);
13275  
kvm_async_pf_hash_fn(gfn_t gfn)13276  static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13277  {
13278  	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13279  
13280  	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13281  }
13282  
kvm_async_pf_next_probe(u32 key)13283  static inline u32 kvm_async_pf_next_probe(u32 key)
13284  {
13285  	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13286  }
13287  
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13288  static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13289  {
13290  	u32 key = kvm_async_pf_hash_fn(gfn);
13291  
13292  	while (vcpu->arch.apf.gfns[key] != ~0)
13293  		key = kvm_async_pf_next_probe(key);
13294  
13295  	vcpu->arch.apf.gfns[key] = gfn;
13296  }
13297  
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13298  static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13299  {
13300  	int i;
13301  	u32 key = kvm_async_pf_hash_fn(gfn);
13302  
13303  	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13304  		     (vcpu->arch.apf.gfns[key] != gfn &&
13305  		      vcpu->arch.apf.gfns[key] != ~0); i++)
13306  		key = kvm_async_pf_next_probe(key);
13307  
13308  	return key;
13309  }
13310  
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13311  bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13312  {
13313  	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13314  }
13315  
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13316  static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13317  {
13318  	u32 i, j, k;
13319  
13320  	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13321  
13322  	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13323  		return;
13324  
13325  	while (true) {
13326  		vcpu->arch.apf.gfns[i] = ~0;
13327  		do {
13328  			j = kvm_async_pf_next_probe(j);
13329  			if (vcpu->arch.apf.gfns[j] == ~0)
13330  				return;
13331  			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13332  			/*
13333  			 * k lies cyclically in ]i,j]
13334  			 * |    i.k.j |
13335  			 * |....j i.k.| or  |.k..j i...|
13336  			 */
13337  		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13338  		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13339  		i = j;
13340  	}
13341  }
13342  
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13343  static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13344  {
13345  	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13346  
13347  	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13348  				      sizeof(reason));
13349  }
13350  
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13351  static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13352  {
13353  	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13354  
13355  	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13356  					     &token, offset, sizeof(token));
13357  }
13358  
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13359  static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13360  {
13361  	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13362  	u32 val;
13363  
13364  	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13365  					 &val, offset, sizeof(val)))
13366  		return false;
13367  
13368  	return !val;
13369  }
13370  
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13371  static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13372  {
13373  
13374  	if (!kvm_pv_async_pf_enabled(vcpu))
13375  		return false;
13376  
13377  	if (vcpu->arch.apf.send_user_only &&
13378  	    kvm_x86_call(get_cpl)(vcpu) == 0)
13379  		return false;
13380  
13381  	if (is_guest_mode(vcpu)) {
13382  		/*
13383  		 * L1 needs to opt into the special #PF vmexits that are
13384  		 * used to deliver async page faults.
13385  		 */
13386  		return vcpu->arch.apf.delivery_as_pf_vmexit;
13387  	} else {
13388  		/*
13389  		 * Play it safe in case the guest temporarily disables paging.
13390  		 * The real mode IDT in particular is unlikely to have a #PF
13391  		 * exception setup.
13392  		 */
13393  		return is_paging(vcpu);
13394  	}
13395  }
13396  
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13397  bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13398  {
13399  	if (unlikely(!lapic_in_kernel(vcpu) ||
13400  		     kvm_event_needs_reinjection(vcpu) ||
13401  		     kvm_is_exception_pending(vcpu)))
13402  		return false;
13403  
13404  	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13405  		return false;
13406  
13407  	/*
13408  	 * If interrupts are off we cannot even use an artificial
13409  	 * halt state.
13410  	 */
13411  	return kvm_arch_interrupt_allowed(vcpu);
13412  }
13413  
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13414  bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13415  				     struct kvm_async_pf *work)
13416  {
13417  	struct x86_exception fault;
13418  
13419  	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13420  	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13421  
13422  	if (kvm_can_deliver_async_pf(vcpu) &&
13423  	    !apf_put_user_notpresent(vcpu)) {
13424  		fault.vector = PF_VECTOR;
13425  		fault.error_code_valid = true;
13426  		fault.error_code = 0;
13427  		fault.nested_page_fault = false;
13428  		fault.address = work->arch.token;
13429  		fault.async_page_fault = true;
13430  		kvm_inject_page_fault(vcpu, &fault);
13431  		return true;
13432  	} else {
13433  		/*
13434  		 * It is not possible to deliver a paravirtualized asynchronous
13435  		 * page fault, but putting the guest in an artificial halt state
13436  		 * can be beneficial nevertheless: if an interrupt arrives, we
13437  		 * can deliver it timely and perhaps the guest will schedule
13438  		 * another process.  When the instruction that triggered a page
13439  		 * fault is retried, hopefully the page will be ready in the host.
13440  		 */
13441  		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13442  		return false;
13443  	}
13444  }
13445  
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13446  void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13447  				 struct kvm_async_pf *work)
13448  {
13449  	struct kvm_lapic_irq irq = {
13450  		.delivery_mode = APIC_DM_FIXED,
13451  		.vector = vcpu->arch.apf.vec
13452  	};
13453  
13454  	if (work->wakeup_all)
13455  		work->arch.token = ~0; /* broadcast wakeup */
13456  	else
13457  		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13458  	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13459  
13460  	if ((work->wakeup_all || work->notpresent_injected) &&
13461  	    kvm_pv_async_pf_enabled(vcpu) &&
13462  	    !apf_put_user_ready(vcpu, work->arch.token)) {
13463  		vcpu->arch.apf.pageready_pending = true;
13464  		kvm_apic_set_irq(vcpu, &irq, NULL);
13465  	}
13466  
13467  	vcpu->arch.apf.halted = false;
13468  	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13469  }
13470  
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13471  void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13472  {
13473  	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13474  	if (!vcpu->arch.apf.pageready_pending)
13475  		kvm_vcpu_kick(vcpu);
13476  }
13477  
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13478  bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13479  {
13480  	if (!kvm_pv_async_pf_enabled(vcpu))
13481  		return true;
13482  	else
13483  		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13484  }
13485  
kvm_arch_start_assignment(struct kvm * kvm)13486  void kvm_arch_start_assignment(struct kvm *kvm)
13487  {
13488  	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13489  		kvm_x86_call(pi_start_assignment)(kvm);
13490  }
13491  EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13492  
kvm_arch_end_assignment(struct kvm * kvm)13493  void kvm_arch_end_assignment(struct kvm *kvm)
13494  {
13495  	atomic_dec(&kvm->arch.assigned_device_count);
13496  }
13497  EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13498  
kvm_arch_has_assigned_device(struct kvm * kvm)13499  bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13500  {
13501  	return raw_atomic_read(&kvm->arch.assigned_device_count);
13502  }
13503  EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13504  
kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13505  static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13506  {
13507  	/*
13508  	 * Non-coherent DMA assignment and de-assignment may affect whether or
13509  	 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13510  	 * due to toggling the "ignore PAT" bit.  Zap all SPTEs when the first
13511  	 * (or last) non-coherent device is (un)registered to so that new SPTEs
13512  	 * with the correct "ignore guest PAT" setting are created.
13513  	 */
13514  	if (kvm_mmu_may_ignore_guest_pat())
13515  		kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13516  }
13517  
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13518  void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13519  {
13520  	if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13521  		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13522  }
13523  EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13524  
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13525  void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13526  {
13527  	if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13528  		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13529  }
13530  EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13531  
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13532  bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13533  {
13534  	return atomic_read(&kvm->arch.noncoherent_dma_count);
13535  }
13536  EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13537  
kvm_arch_has_irq_bypass(void)13538  bool kvm_arch_has_irq_bypass(void)
13539  {
13540  	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13541  }
13542  
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13543  int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13544  				      struct irq_bypass_producer *prod)
13545  {
13546  	struct kvm_kernel_irqfd *irqfd =
13547  		container_of(cons, struct kvm_kernel_irqfd, consumer);
13548  	int ret;
13549  
13550  	irqfd->producer = prod;
13551  	kvm_arch_start_assignment(irqfd->kvm);
13552  	ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13553  					   prod->irq, irqfd->gsi, 1);
13554  	if (ret)
13555  		kvm_arch_end_assignment(irqfd->kvm);
13556  
13557  	return ret;
13558  }
13559  
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13560  void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13561  				      struct irq_bypass_producer *prod)
13562  {
13563  	int ret;
13564  	struct kvm_kernel_irqfd *irqfd =
13565  		container_of(cons, struct kvm_kernel_irqfd, consumer);
13566  
13567  	WARN_ON(irqfd->producer != prod);
13568  	irqfd->producer = NULL;
13569  
13570  	/*
13571  	 * When producer of consumer is unregistered, we change back to
13572  	 * remapped mode, so we can re-use the current implementation
13573  	 * when the irq is masked/disabled or the consumer side (KVM
13574  	 * int this case doesn't want to receive the interrupts.
13575  	*/
13576  	ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13577  					   prod->irq, irqfd->gsi, 0);
13578  	if (ret)
13579  		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13580  		       " fails: %d\n", irqfd->consumer.token, ret);
13581  
13582  	kvm_arch_end_assignment(irqfd->kvm);
13583  }
13584  
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13585  int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13586  				   uint32_t guest_irq, bool set)
13587  {
13588  	return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set);
13589  }
13590  
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13591  bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13592  				  struct kvm_kernel_irq_routing_entry *new)
13593  {
13594  	if (new->type != KVM_IRQ_ROUTING_MSI)
13595  		return true;
13596  
13597  	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13598  }
13599  
kvm_vector_hashing_enabled(void)13600  bool kvm_vector_hashing_enabled(void)
13601  {
13602  	return vector_hashing;
13603  }
13604  
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13605  bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13606  {
13607  	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13608  }
13609  EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13610  
13611  #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)13612  int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13613  {
13614  	return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13615  }
13616  #endif
13617  
13618  #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)13619  void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13620  {
13621  	kvm_x86_call(gmem_invalidate)(start, end);
13622  }
13623  #endif
13624  
kvm_spec_ctrl_test_value(u64 value)13625  int kvm_spec_ctrl_test_value(u64 value)
13626  {
13627  	/*
13628  	 * test that setting IA32_SPEC_CTRL to given value
13629  	 * is allowed by the host processor
13630  	 */
13631  
13632  	u64 saved_value;
13633  	unsigned long flags;
13634  	int ret = 0;
13635  
13636  	local_irq_save(flags);
13637  
13638  	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13639  		ret = 1;
13640  	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13641  		ret = 1;
13642  	else
13643  		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13644  
13645  	local_irq_restore(flags);
13646  
13647  	return ret;
13648  }
13649  EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13650  
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13651  void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13652  {
13653  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13654  	struct x86_exception fault;
13655  	u64 access = error_code &
13656  		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13657  
13658  	if (!(error_code & PFERR_PRESENT_MASK) ||
13659  	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13660  		/*
13661  		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13662  		 * tables probably do not match the TLB.  Just proceed
13663  		 * with the error code that the processor gave.
13664  		 */
13665  		fault.vector = PF_VECTOR;
13666  		fault.error_code_valid = true;
13667  		fault.error_code = error_code;
13668  		fault.nested_page_fault = false;
13669  		fault.address = gva;
13670  		fault.async_page_fault = false;
13671  	}
13672  	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13673  }
13674  EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13675  
13676  /*
13677   * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13678   * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13679   * indicates whether exit to userspace is needed.
13680   */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13681  int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13682  			      struct x86_exception *e)
13683  {
13684  	if (r == X86EMUL_PROPAGATE_FAULT) {
13685  		if (KVM_BUG_ON(!e, vcpu->kvm))
13686  			return -EIO;
13687  
13688  		kvm_inject_emulated_page_fault(vcpu, e);
13689  		return 1;
13690  	}
13691  
13692  	/*
13693  	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13694  	 * while handling a VMX instruction KVM could've handled the request
13695  	 * correctly by exiting to userspace and performing I/O but there
13696  	 * doesn't seem to be a real use-case behind such requests, just return
13697  	 * KVM_EXIT_INTERNAL_ERROR for now.
13698  	 */
13699  	kvm_prepare_emulation_failure_exit(vcpu);
13700  
13701  	return 0;
13702  }
13703  EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13704  
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13705  int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13706  {
13707  	bool pcid_enabled;
13708  	struct x86_exception e;
13709  	struct {
13710  		u64 pcid;
13711  		u64 gla;
13712  	} operand;
13713  	int r;
13714  
13715  	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13716  	if (r != X86EMUL_CONTINUE)
13717  		return kvm_handle_memory_failure(vcpu, r, &e);
13718  
13719  	if (operand.pcid >> 12 != 0) {
13720  		kvm_inject_gp(vcpu, 0);
13721  		return 1;
13722  	}
13723  
13724  	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13725  
13726  	switch (type) {
13727  	case INVPCID_TYPE_INDIV_ADDR:
13728  		/*
13729  		 * LAM doesn't apply to addresses that are inputs to TLB
13730  		 * invalidation.
13731  		 */
13732  		if ((!pcid_enabled && (operand.pcid != 0)) ||
13733  		    is_noncanonical_address(operand.gla, vcpu)) {
13734  			kvm_inject_gp(vcpu, 0);
13735  			return 1;
13736  		}
13737  		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13738  		return kvm_skip_emulated_instruction(vcpu);
13739  
13740  	case INVPCID_TYPE_SINGLE_CTXT:
13741  		if (!pcid_enabled && (operand.pcid != 0)) {
13742  			kvm_inject_gp(vcpu, 0);
13743  			return 1;
13744  		}
13745  
13746  		kvm_invalidate_pcid(vcpu, operand.pcid);
13747  		return kvm_skip_emulated_instruction(vcpu);
13748  
13749  	case INVPCID_TYPE_ALL_NON_GLOBAL:
13750  		/*
13751  		 * Currently, KVM doesn't mark global entries in the shadow
13752  		 * page tables, so a non-global flush just degenerates to a
13753  		 * global flush. If needed, we could optimize this later by
13754  		 * keeping track of global entries in shadow page tables.
13755  		 */
13756  
13757  		fallthrough;
13758  	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13759  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13760  		return kvm_skip_emulated_instruction(vcpu);
13761  
13762  	default:
13763  		kvm_inject_gp(vcpu, 0);
13764  		return 1;
13765  	}
13766  }
13767  EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13768  
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13769  static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13770  {
13771  	struct kvm_run *run = vcpu->run;
13772  	struct kvm_mmio_fragment *frag;
13773  	unsigned int len;
13774  
13775  	BUG_ON(!vcpu->mmio_needed);
13776  
13777  	/* Complete previous fragment */
13778  	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13779  	len = min(8u, frag->len);
13780  	if (!vcpu->mmio_is_write)
13781  		memcpy(frag->data, run->mmio.data, len);
13782  
13783  	if (frag->len <= 8) {
13784  		/* Switch to the next fragment. */
13785  		frag++;
13786  		vcpu->mmio_cur_fragment++;
13787  	} else {
13788  		/* Go forward to the next mmio piece. */
13789  		frag->data += len;
13790  		frag->gpa += len;
13791  		frag->len -= len;
13792  	}
13793  
13794  	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13795  		vcpu->mmio_needed = 0;
13796  
13797  		// VMG change, at this point, we're always done
13798  		// RIP has already been advanced
13799  		return 1;
13800  	}
13801  
13802  	// More MMIO is needed
13803  	run->mmio.phys_addr = frag->gpa;
13804  	run->mmio.len = min(8u, frag->len);
13805  	run->mmio.is_write = vcpu->mmio_is_write;
13806  	if (run->mmio.is_write)
13807  		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13808  	run->exit_reason = KVM_EXIT_MMIO;
13809  
13810  	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13811  
13812  	return 0;
13813  }
13814  
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13815  int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13816  			  void *data)
13817  {
13818  	int handled;
13819  	struct kvm_mmio_fragment *frag;
13820  
13821  	if (!data)
13822  		return -EINVAL;
13823  
13824  	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13825  	if (handled == bytes)
13826  		return 1;
13827  
13828  	bytes -= handled;
13829  	gpa += handled;
13830  	data += handled;
13831  
13832  	/*TODO: Check if need to increment number of frags */
13833  	frag = vcpu->mmio_fragments;
13834  	vcpu->mmio_nr_fragments = 1;
13835  	frag->len = bytes;
13836  	frag->gpa = gpa;
13837  	frag->data = data;
13838  
13839  	vcpu->mmio_needed = 1;
13840  	vcpu->mmio_cur_fragment = 0;
13841  
13842  	vcpu->run->mmio.phys_addr = gpa;
13843  	vcpu->run->mmio.len = min(8u, frag->len);
13844  	vcpu->run->mmio.is_write = 1;
13845  	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13846  	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13847  
13848  	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13849  
13850  	return 0;
13851  }
13852  EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13853  
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13854  int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13855  			 void *data)
13856  {
13857  	int handled;
13858  	struct kvm_mmio_fragment *frag;
13859  
13860  	if (!data)
13861  		return -EINVAL;
13862  
13863  	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13864  	if (handled == bytes)
13865  		return 1;
13866  
13867  	bytes -= handled;
13868  	gpa += handled;
13869  	data += handled;
13870  
13871  	/*TODO: Check if need to increment number of frags */
13872  	frag = vcpu->mmio_fragments;
13873  	vcpu->mmio_nr_fragments = 1;
13874  	frag->len = bytes;
13875  	frag->gpa = gpa;
13876  	frag->data = data;
13877  
13878  	vcpu->mmio_needed = 1;
13879  	vcpu->mmio_cur_fragment = 0;
13880  
13881  	vcpu->run->mmio.phys_addr = gpa;
13882  	vcpu->run->mmio.len = min(8u, frag->len);
13883  	vcpu->run->mmio.is_write = 0;
13884  	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13885  
13886  	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13887  
13888  	return 0;
13889  }
13890  EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13891  
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13892  static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13893  {
13894  	vcpu->arch.sev_pio_count -= count;
13895  	vcpu->arch.sev_pio_data += count * size;
13896  }
13897  
13898  static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13899  			   unsigned int port);
13900  
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13901  static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13902  {
13903  	int size = vcpu->arch.pio.size;
13904  	int port = vcpu->arch.pio.port;
13905  
13906  	vcpu->arch.pio.count = 0;
13907  	if (vcpu->arch.sev_pio_count)
13908  		return kvm_sev_es_outs(vcpu, size, port);
13909  	return 1;
13910  }
13911  
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13912  static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13913  			   unsigned int port)
13914  {
13915  	for (;;) {
13916  		unsigned int count =
13917  			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13918  		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13919  
13920  		/* memcpy done already by emulator_pio_out.  */
13921  		advance_sev_es_emulated_pio(vcpu, count, size);
13922  		if (!ret)
13923  			break;
13924  
13925  		/* Emulation done by the kernel.  */
13926  		if (!vcpu->arch.sev_pio_count)
13927  			return 1;
13928  	}
13929  
13930  	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13931  	return 0;
13932  }
13933  
13934  static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13935  			  unsigned int port);
13936  
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13937  static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13938  {
13939  	unsigned count = vcpu->arch.pio.count;
13940  	int size = vcpu->arch.pio.size;
13941  	int port = vcpu->arch.pio.port;
13942  
13943  	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13944  	advance_sev_es_emulated_pio(vcpu, count, size);
13945  	if (vcpu->arch.sev_pio_count)
13946  		return kvm_sev_es_ins(vcpu, size, port);
13947  	return 1;
13948  }
13949  
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13950  static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13951  			  unsigned int port)
13952  {
13953  	for (;;) {
13954  		unsigned int count =
13955  			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13956  		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13957  			break;
13958  
13959  		/* Emulation done by the kernel.  */
13960  		advance_sev_es_emulated_pio(vcpu, count, size);
13961  		if (!vcpu->arch.sev_pio_count)
13962  			return 1;
13963  	}
13964  
13965  	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13966  	return 0;
13967  }
13968  
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)13969  int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13970  			 unsigned int port, void *data,  unsigned int count,
13971  			 int in)
13972  {
13973  	vcpu->arch.sev_pio_data = data;
13974  	vcpu->arch.sev_pio_count = count;
13975  	return in ? kvm_sev_es_ins(vcpu, size, port)
13976  		  : kvm_sev_es_outs(vcpu, size, port);
13977  }
13978  EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13979  
13980  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13981  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13982  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13983  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13984  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13985  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13986  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13987  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13988  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13989  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13990  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13991  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13992  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13993  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13994  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13995  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13996  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13997  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13998  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13999  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14000  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14001  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14002  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14003  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14004  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14005  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14006  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14007  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14008  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14009  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14010  
kvm_x86_init(void)14011  static int __init kvm_x86_init(void)
14012  {
14013  	kvm_mmu_x86_module_init();
14014  	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14015  	return 0;
14016  }
14017  module_init(kvm_x86_init);
14018  
kvm_x86_exit(void)14019  static void __exit kvm_x86_exit(void)
14020  {
14021  	WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14022  }
14023  module_exit(kvm_x86_exit);
14024