1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (C) 2012 ARM Ltd.
4   * Author: Marc Zyngier <marc.zyngier@arm.com>
5   */
6  
7  #include <linux/cpu.h>
8  #include <linux/kvm.h>
9  #include <linux/kvm_host.h>
10  #include <linux/interrupt.h>
11  #include <linux/irq.h>
12  #include <linux/irqdomain.h>
13  #include <linux/uaccess.h>
14  
15  #include <clocksource/arm_arch_timer.h>
16  #include <asm/arch_timer.h>
17  #include <asm/kvm_emulate.h>
18  #include <asm/kvm_hyp.h>
19  #include <asm/kvm_nested.h>
20  
21  #include <kvm/arm_vgic.h>
22  #include <kvm/arm_arch_timer.h>
23  
24  #include "trace.h"
25  
26  static struct timecounter *timecounter;
27  static unsigned int host_vtimer_irq;
28  static unsigned int host_ptimer_irq;
29  static u32 host_vtimer_irq_flags;
30  static u32 host_ptimer_irq_flags;
31  
32  static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
33  
34  static const u8 default_ppi[] = {
35  	[TIMER_PTIMER]  = 30,
36  	[TIMER_VTIMER]  = 27,
37  	[TIMER_HPTIMER] = 26,
38  	[TIMER_HVTIMER] = 28,
39  };
40  
41  static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
42  static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
43  				 struct arch_timer_context *timer_ctx);
44  static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
45  static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
46  				struct arch_timer_context *timer,
47  				enum kvm_arch_timer_regs treg,
48  				u64 val);
49  static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
50  			      struct arch_timer_context *timer,
51  			      enum kvm_arch_timer_regs treg);
52  static bool kvm_arch_timer_get_input_level(int vintid);
53  
54  static struct irq_ops arch_timer_irq_ops = {
55  	.get_input_level = kvm_arch_timer_get_input_level,
56  };
57  
nr_timers(struct kvm_vcpu * vcpu)58  static int nr_timers(struct kvm_vcpu *vcpu)
59  {
60  	if (!vcpu_has_nv(vcpu))
61  		return NR_KVM_EL0_TIMERS;
62  
63  	return NR_KVM_TIMERS;
64  }
65  
timer_get_ctl(struct arch_timer_context * ctxt)66  u32 timer_get_ctl(struct arch_timer_context *ctxt)
67  {
68  	struct kvm_vcpu *vcpu = ctxt->vcpu;
69  
70  	switch(arch_timer_ctx_index(ctxt)) {
71  	case TIMER_VTIMER:
72  		return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
73  	case TIMER_PTIMER:
74  		return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
75  	case TIMER_HVTIMER:
76  		return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
77  	case TIMER_HPTIMER:
78  		return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
79  	default:
80  		WARN_ON(1);
81  		return 0;
82  	}
83  }
84  
timer_get_cval(struct arch_timer_context * ctxt)85  u64 timer_get_cval(struct arch_timer_context *ctxt)
86  {
87  	struct kvm_vcpu *vcpu = ctxt->vcpu;
88  
89  	switch(arch_timer_ctx_index(ctxt)) {
90  	case TIMER_VTIMER:
91  		return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
92  	case TIMER_PTIMER:
93  		return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
94  	case TIMER_HVTIMER:
95  		return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
96  	case TIMER_HPTIMER:
97  		return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
98  	default:
99  		WARN_ON(1);
100  		return 0;
101  	}
102  }
103  
timer_get_offset(struct arch_timer_context * ctxt)104  static u64 timer_get_offset(struct arch_timer_context *ctxt)
105  {
106  	u64 offset = 0;
107  
108  	if (!ctxt)
109  		return 0;
110  
111  	if (ctxt->offset.vm_offset)
112  		offset += *ctxt->offset.vm_offset;
113  	if (ctxt->offset.vcpu_offset)
114  		offset += *ctxt->offset.vcpu_offset;
115  
116  	return offset;
117  }
118  
timer_set_ctl(struct arch_timer_context * ctxt,u32 ctl)119  static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
120  {
121  	struct kvm_vcpu *vcpu = ctxt->vcpu;
122  
123  	switch(arch_timer_ctx_index(ctxt)) {
124  	case TIMER_VTIMER:
125  		__vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
126  		break;
127  	case TIMER_PTIMER:
128  		__vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
129  		break;
130  	case TIMER_HVTIMER:
131  		__vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
132  		break;
133  	case TIMER_HPTIMER:
134  		__vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
135  		break;
136  	default:
137  		WARN_ON(1);
138  	}
139  }
140  
timer_set_cval(struct arch_timer_context * ctxt,u64 cval)141  static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
142  {
143  	struct kvm_vcpu *vcpu = ctxt->vcpu;
144  
145  	switch(arch_timer_ctx_index(ctxt)) {
146  	case TIMER_VTIMER:
147  		__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
148  		break;
149  	case TIMER_PTIMER:
150  		__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
151  		break;
152  	case TIMER_HVTIMER:
153  		__vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
154  		break;
155  	case TIMER_HPTIMER:
156  		__vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
157  		break;
158  	default:
159  		WARN_ON(1);
160  	}
161  }
162  
timer_set_offset(struct arch_timer_context * ctxt,u64 offset)163  static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
164  {
165  	if (!ctxt->offset.vm_offset) {
166  		WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
167  		return;
168  	}
169  
170  	WRITE_ONCE(*ctxt->offset.vm_offset, offset);
171  }
172  
kvm_phys_timer_read(void)173  u64 kvm_phys_timer_read(void)
174  {
175  	return timecounter->cc->read(timecounter->cc);
176  }
177  
get_timer_map(struct kvm_vcpu * vcpu,struct timer_map * map)178  void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
179  {
180  	if (vcpu_has_nv(vcpu)) {
181  		if (is_hyp_ctxt(vcpu)) {
182  			map->direct_vtimer = vcpu_hvtimer(vcpu);
183  			map->direct_ptimer = vcpu_hptimer(vcpu);
184  			map->emul_vtimer = vcpu_vtimer(vcpu);
185  			map->emul_ptimer = vcpu_ptimer(vcpu);
186  		} else {
187  			map->direct_vtimer = vcpu_vtimer(vcpu);
188  			map->direct_ptimer = vcpu_ptimer(vcpu);
189  			map->emul_vtimer = vcpu_hvtimer(vcpu);
190  			map->emul_ptimer = vcpu_hptimer(vcpu);
191  		}
192  	} else if (has_vhe()) {
193  		map->direct_vtimer = vcpu_vtimer(vcpu);
194  		map->direct_ptimer = vcpu_ptimer(vcpu);
195  		map->emul_vtimer = NULL;
196  		map->emul_ptimer = NULL;
197  	} else {
198  		map->direct_vtimer = vcpu_vtimer(vcpu);
199  		map->direct_ptimer = NULL;
200  		map->emul_vtimer = NULL;
201  		map->emul_ptimer = vcpu_ptimer(vcpu);
202  	}
203  
204  	trace_kvm_get_timer_map(vcpu->vcpu_id, map);
205  }
206  
userspace_irqchip(struct kvm * kvm)207  static inline bool userspace_irqchip(struct kvm *kvm)
208  {
209  	return static_branch_unlikely(&userspace_irqchip_in_use) &&
210  		unlikely(!irqchip_in_kernel(kvm));
211  }
212  
soft_timer_start(struct hrtimer * hrt,u64 ns)213  static void soft_timer_start(struct hrtimer *hrt, u64 ns)
214  {
215  	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
216  		      HRTIMER_MODE_ABS_HARD);
217  }
218  
soft_timer_cancel(struct hrtimer * hrt)219  static void soft_timer_cancel(struct hrtimer *hrt)
220  {
221  	hrtimer_cancel(hrt);
222  }
223  
kvm_arch_timer_handler(int irq,void * dev_id)224  static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
225  {
226  	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
227  	struct arch_timer_context *ctx;
228  	struct timer_map map;
229  
230  	/*
231  	 * We may see a timer interrupt after vcpu_put() has been called which
232  	 * sets the CPU's vcpu pointer to NULL, because even though the timer
233  	 * has been disabled in timer_save_state(), the hardware interrupt
234  	 * signal may not have been retired from the interrupt controller yet.
235  	 */
236  	if (!vcpu)
237  		return IRQ_HANDLED;
238  
239  	get_timer_map(vcpu, &map);
240  
241  	if (irq == host_vtimer_irq)
242  		ctx = map.direct_vtimer;
243  	else
244  		ctx = map.direct_ptimer;
245  
246  	if (kvm_timer_should_fire(ctx))
247  		kvm_timer_update_irq(vcpu, true, ctx);
248  
249  	if (userspace_irqchip(vcpu->kvm) &&
250  	    !static_branch_unlikely(&has_gic_active_state))
251  		disable_percpu_irq(host_vtimer_irq);
252  
253  	return IRQ_HANDLED;
254  }
255  
kvm_counter_compute_delta(struct arch_timer_context * timer_ctx,u64 val)256  static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
257  				     u64 val)
258  {
259  	u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
260  
261  	if (now < val) {
262  		u64 ns;
263  
264  		ns = cyclecounter_cyc2ns(timecounter->cc,
265  					 val - now,
266  					 timecounter->mask,
267  					 &timer_ctx->ns_frac);
268  		return ns;
269  	}
270  
271  	return 0;
272  }
273  
kvm_timer_compute_delta(struct arch_timer_context * timer_ctx)274  static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
275  {
276  	return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
277  }
278  
kvm_timer_irq_can_fire(struct arch_timer_context * timer_ctx)279  static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
280  {
281  	WARN_ON(timer_ctx && timer_ctx->loaded);
282  	return timer_ctx &&
283  		((timer_get_ctl(timer_ctx) &
284  		  (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
285  }
286  
vcpu_has_wfit_active(struct kvm_vcpu * vcpu)287  static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
288  {
289  	return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
290  		vcpu_get_flag(vcpu, IN_WFIT));
291  }
292  
wfit_delay_ns(struct kvm_vcpu * vcpu)293  static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
294  {
295  	u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
296  	struct arch_timer_context *ctx;
297  
298  	ctx = is_hyp_ctxt(vcpu) ? vcpu_hvtimer(vcpu) : vcpu_vtimer(vcpu);
299  
300  	return kvm_counter_compute_delta(ctx, val);
301  }
302  
303  /*
304   * Returns the earliest expiration time in ns among guest timers.
305   * Note that it will return 0 if none of timers can fire.
306   */
kvm_timer_earliest_exp(struct kvm_vcpu * vcpu)307  static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
308  {
309  	u64 min_delta = ULLONG_MAX;
310  	int i;
311  
312  	for (i = 0; i < nr_timers(vcpu); i++) {
313  		struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
314  
315  		WARN(ctx->loaded, "timer %d loaded\n", i);
316  		if (kvm_timer_irq_can_fire(ctx))
317  			min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
318  	}
319  
320  	if (vcpu_has_wfit_active(vcpu))
321  		min_delta = min(min_delta, wfit_delay_ns(vcpu));
322  
323  	/* If none of timers can fire, then return 0 */
324  	if (min_delta == ULLONG_MAX)
325  		return 0;
326  
327  	return min_delta;
328  }
329  
kvm_bg_timer_expire(struct hrtimer * hrt)330  static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
331  {
332  	struct arch_timer_cpu *timer;
333  	struct kvm_vcpu *vcpu;
334  	u64 ns;
335  
336  	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
337  	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
338  
339  	/*
340  	 * Check that the timer has really expired from the guest's
341  	 * PoV (NTP on the host may have forced it to expire
342  	 * early). If we should have slept longer, restart it.
343  	 */
344  	ns = kvm_timer_earliest_exp(vcpu);
345  	if (unlikely(ns)) {
346  		hrtimer_forward_now(hrt, ns_to_ktime(ns));
347  		return HRTIMER_RESTART;
348  	}
349  
350  	kvm_vcpu_wake_up(vcpu);
351  	return HRTIMER_NORESTART;
352  }
353  
kvm_hrtimer_expire(struct hrtimer * hrt)354  static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
355  {
356  	struct arch_timer_context *ctx;
357  	struct kvm_vcpu *vcpu;
358  	u64 ns;
359  
360  	ctx = container_of(hrt, struct arch_timer_context, hrtimer);
361  	vcpu = ctx->vcpu;
362  
363  	trace_kvm_timer_hrtimer_expire(ctx);
364  
365  	/*
366  	 * Check that the timer has really expired from the guest's
367  	 * PoV (NTP on the host may have forced it to expire
368  	 * early). If not ready, schedule for a later time.
369  	 */
370  	ns = kvm_timer_compute_delta(ctx);
371  	if (unlikely(ns)) {
372  		hrtimer_forward_now(hrt, ns_to_ktime(ns));
373  		return HRTIMER_RESTART;
374  	}
375  
376  	kvm_timer_update_irq(vcpu, true, ctx);
377  	return HRTIMER_NORESTART;
378  }
379  
kvm_timer_should_fire(struct arch_timer_context * timer_ctx)380  static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
381  {
382  	enum kvm_arch_timers index;
383  	u64 cval, now;
384  
385  	if (!timer_ctx)
386  		return false;
387  
388  	index = arch_timer_ctx_index(timer_ctx);
389  
390  	if (timer_ctx->loaded) {
391  		u32 cnt_ctl = 0;
392  
393  		switch (index) {
394  		case TIMER_VTIMER:
395  		case TIMER_HVTIMER:
396  			cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
397  			break;
398  		case TIMER_PTIMER:
399  		case TIMER_HPTIMER:
400  			cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
401  			break;
402  		case NR_KVM_TIMERS:
403  			/* GCC is braindead */
404  			cnt_ctl = 0;
405  			break;
406  		}
407  
408  		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
409  		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
410  		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
411  	}
412  
413  	if (!kvm_timer_irq_can_fire(timer_ctx))
414  		return false;
415  
416  	cval = timer_get_cval(timer_ctx);
417  	now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
418  
419  	return cval <= now;
420  }
421  
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)422  int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
423  {
424  	return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
425  }
426  
427  /*
428   * Reflect the timer output level into the kvm_run structure
429   */
kvm_timer_update_run(struct kvm_vcpu * vcpu)430  void kvm_timer_update_run(struct kvm_vcpu *vcpu)
431  {
432  	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
433  	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
434  	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
435  
436  	/* Populate the device bitmap with the timer states */
437  	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
438  				    KVM_ARM_DEV_EL1_PTIMER);
439  	if (kvm_timer_should_fire(vtimer))
440  		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
441  	if (kvm_timer_should_fire(ptimer))
442  		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
443  }
444  
kvm_timer_update_irq(struct kvm_vcpu * vcpu,bool new_level,struct arch_timer_context * timer_ctx)445  static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
446  				 struct arch_timer_context *timer_ctx)
447  {
448  	int ret;
449  
450  	timer_ctx->irq.level = new_level;
451  	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
452  				   timer_ctx->irq.level);
453  
454  	if (!userspace_irqchip(vcpu->kvm)) {
455  		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
456  					  timer_irq(timer_ctx),
457  					  timer_ctx->irq.level,
458  					  timer_ctx);
459  		WARN_ON(ret);
460  	}
461  }
462  
463  /* Only called for a fully emulated timer */
timer_emulate(struct arch_timer_context * ctx)464  static void timer_emulate(struct arch_timer_context *ctx)
465  {
466  	bool should_fire = kvm_timer_should_fire(ctx);
467  
468  	trace_kvm_timer_emulate(ctx, should_fire);
469  
470  	if (should_fire != ctx->irq.level) {
471  		kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
472  		return;
473  	}
474  
475  	/*
476  	 * If the timer can fire now, we don't need to have a soft timer
477  	 * scheduled for the future.  If the timer cannot fire at all,
478  	 * then we also don't need a soft timer.
479  	 */
480  	if (should_fire || !kvm_timer_irq_can_fire(ctx))
481  		return;
482  
483  	soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
484  }
485  
set_cntvoff(u64 cntvoff)486  static void set_cntvoff(u64 cntvoff)
487  {
488  	kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
489  }
490  
set_cntpoff(u64 cntpoff)491  static void set_cntpoff(u64 cntpoff)
492  {
493  	if (has_cntpoff())
494  		write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
495  }
496  
timer_save_state(struct arch_timer_context * ctx)497  static void timer_save_state(struct arch_timer_context *ctx)
498  {
499  	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
500  	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
501  	unsigned long flags;
502  
503  	if (!timer->enabled)
504  		return;
505  
506  	local_irq_save(flags);
507  
508  	if (!ctx->loaded)
509  		goto out;
510  
511  	switch (index) {
512  		u64 cval;
513  
514  	case TIMER_VTIMER:
515  	case TIMER_HVTIMER:
516  		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
517  		timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
518  
519  		/* Disable the timer */
520  		write_sysreg_el0(0, SYS_CNTV_CTL);
521  		isb();
522  
523  		/*
524  		 * The kernel may decide to run userspace after
525  		 * calling vcpu_put, so we reset cntvoff to 0 to
526  		 * ensure a consistent read between user accesses to
527  		 * the virtual counter and kernel access to the
528  		 * physical counter of non-VHE case.
529  		 *
530  		 * For VHE, the virtual counter uses a fixed virtual
531  		 * offset of zero, so no need to zero CNTVOFF_EL2
532  		 * register, but this is actually useful when switching
533  		 * between EL1/vEL2 with NV.
534  		 *
535  		 * Do it unconditionally, as this is either unavoidable
536  		 * or dirt cheap.
537  		 */
538  		set_cntvoff(0);
539  		break;
540  	case TIMER_PTIMER:
541  	case TIMER_HPTIMER:
542  		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
543  		cval = read_sysreg_el0(SYS_CNTP_CVAL);
544  
545  		cval -= timer_get_offset(ctx);
546  
547  		timer_set_cval(ctx, cval);
548  
549  		/* Disable the timer */
550  		write_sysreg_el0(0, SYS_CNTP_CTL);
551  		isb();
552  
553  		set_cntpoff(0);
554  		break;
555  	case NR_KVM_TIMERS:
556  		BUG();
557  	}
558  
559  	trace_kvm_timer_save_state(ctx);
560  
561  	ctx->loaded = false;
562  out:
563  	local_irq_restore(flags);
564  }
565  
566  /*
567   * Schedule the background timer before calling kvm_vcpu_halt, so that this
568   * thread is removed from its waitqueue and made runnable when there's a timer
569   * interrupt to handle.
570   */
kvm_timer_blocking(struct kvm_vcpu * vcpu)571  static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
572  {
573  	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
574  	struct timer_map map;
575  
576  	get_timer_map(vcpu, &map);
577  
578  	/*
579  	 * If no timers are capable of raising interrupts (disabled or
580  	 * masked), then there's no more work for us to do.
581  	 */
582  	if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
583  	    !kvm_timer_irq_can_fire(map.direct_ptimer) &&
584  	    !kvm_timer_irq_can_fire(map.emul_vtimer) &&
585  	    !kvm_timer_irq_can_fire(map.emul_ptimer) &&
586  	    !vcpu_has_wfit_active(vcpu))
587  		return;
588  
589  	/*
590  	 * At least one guest time will expire. Schedule a background timer.
591  	 * Set the earliest expiration time among the guest timers.
592  	 */
593  	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
594  }
595  
kvm_timer_unblocking(struct kvm_vcpu * vcpu)596  static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
597  {
598  	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
599  
600  	soft_timer_cancel(&timer->bg_timer);
601  }
602  
timer_restore_state(struct arch_timer_context * ctx)603  static void timer_restore_state(struct arch_timer_context *ctx)
604  {
605  	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
606  	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
607  	unsigned long flags;
608  
609  	if (!timer->enabled)
610  		return;
611  
612  	local_irq_save(flags);
613  
614  	if (ctx->loaded)
615  		goto out;
616  
617  	switch (index) {
618  		u64 cval, offset;
619  
620  	case TIMER_VTIMER:
621  	case TIMER_HVTIMER:
622  		set_cntvoff(timer_get_offset(ctx));
623  		write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
624  		isb();
625  		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
626  		break;
627  	case TIMER_PTIMER:
628  	case TIMER_HPTIMER:
629  		cval = timer_get_cval(ctx);
630  		offset = timer_get_offset(ctx);
631  		set_cntpoff(offset);
632  		cval += offset;
633  		write_sysreg_el0(cval, SYS_CNTP_CVAL);
634  		isb();
635  		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
636  		break;
637  	case NR_KVM_TIMERS:
638  		BUG();
639  	}
640  
641  	trace_kvm_timer_restore_state(ctx);
642  
643  	ctx->loaded = true;
644  out:
645  	local_irq_restore(flags);
646  }
647  
set_timer_irq_phys_active(struct arch_timer_context * ctx,bool active)648  static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
649  {
650  	int r;
651  	r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
652  	WARN_ON(r);
653  }
654  
kvm_timer_vcpu_load_gic(struct arch_timer_context * ctx)655  static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
656  {
657  	struct kvm_vcpu *vcpu = ctx->vcpu;
658  	bool phys_active = false;
659  
660  	/*
661  	 * Update the timer output so that it is likely to match the
662  	 * state we're about to restore. If the timer expires between
663  	 * this point and the register restoration, we'll take the
664  	 * interrupt anyway.
665  	 */
666  	kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
667  
668  	if (irqchip_in_kernel(vcpu->kvm))
669  		phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
670  
671  	phys_active |= ctx->irq.level;
672  
673  	set_timer_irq_phys_active(ctx, phys_active);
674  }
675  
kvm_timer_vcpu_load_nogic(struct kvm_vcpu * vcpu)676  static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
677  {
678  	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
679  
680  	/*
681  	 * Update the timer output so that it is likely to match the
682  	 * state we're about to restore. If the timer expires between
683  	 * this point and the register restoration, we'll take the
684  	 * interrupt anyway.
685  	 */
686  	kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
687  
688  	/*
689  	 * When using a userspace irqchip with the architected timers and a
690  	 * host interrupt controller that doesn't support an active state, we
691  	 * must still prevent continuously exiting from the guest, and
692  	 * therefore mask the physical interrupt by disabling it on the host
693  	 * interrupt controller when the virtual level is high, such that the
694  	 * guest can make forward progress.  Once we detect the output level
695  	 * being de-asserted, we unmask the interrupt again so that we exit
696  	 * from the guest when the timer fires.
697  	 */
698  	if (vtimer->irq.level)
699  		disable_percpu_irq(host_vtimer_irq);
700  	else
701  		enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
702  }
703  
704  /* If _pred is true, set bit in _set, otherwise set it in _clr */
705  #define assign_clear_set_bit(_pred, _bit, _clr, _set)			\
706  	do {								\
707  		if (_pred)						\
708  			(_set) |= (_bit);				\
709  		else							\
710  			(_clr) |= (_bit);				\
711  	} while (0)
712  
kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu * vcpu,struct timer_map * map)713  static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
714  					      struct timer_map *map)
715  {
716  	int hw, ret;
717  
718  	if (!irqchip_in_kernel(vcpu->kvm))
719  		return;
720  
721  	/*
722  	 * We only ever unmap the vtimer irq on a VHE system that runs nested
723  	 * virtualization, in which case we have both a valid emul_vtimer,
724  	 * emul_ptimer, direct_vtimer, and direct_ptimer.
725  	 *
726  	 * Since this is called from kvm_timer_vcpu_load(), a change between
727  	 * vEL2 and vEL1/0 will have just happened, and the timer_map will
728  	 * represent this, and therefore we switch the emul/direct mappings
729  	 * below.
730  	 */
731  	hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer));
732  	if (hw < 0) {
733  		kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer));
734  		kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer));
735  
736  		ret = kvm_vgic_map_phys_irq(vcpu,
737  					    map->direct_vtimer->host_timer_irq,
738  					    timer_irq(map->direct_vtimer),
739  					    &arch_timer_irq_ops);
740  		WARN_ON_ONCE(ret);
741  		ret = kvm_vgic_map_phys_irq(vcpu,
742  					    map->direct_ptimer->host_timer_irq,
743  					    timer_irq(map->direct_ptimer),
744  					    &arch_timer_irq_ops);
745  		WARN_ON_ONCE(ret);
746  
747  		/*
748  		 * The virtual offset behaviour is "interesting", as it
749  		 * always applies when HCR_EL2.E2H==0, but only when
750  		 * accessed from EL1 when HCR_EL2.E2H==1. So make sure we
751  		 * track E2H when putting the HV timer in "direct" mode.
752  		 */
753  		if (map->direct_vtimer == vcpu_hvtimer(vcpu)) {
754  			struct arch_timer_offset *offs = &map->direct_vtimer->offset;
755  
756  			if (vcpu_el2_e2h_is_set(vcpu))
757  				offs->vcpu_offset = NULL;
758  			else
759  				offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
760  		}
761  	}
762  }
763  
timer_set_traps(struct kvm_vcpu * vcpu,struct timer_map * map)764  static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
765  {
766  	bool tpt, tpc;
767  	u64 clr, set;
768  
769  	/*
770  	 * No trapping gets configured here with nVHE. See
771  	 * __timer_enable_traps(), which is where the stuff happens.
772  	 */
773  	if (!has_vhe())
774  		return;
775  
776  	/*
777  	 * Our default policy is not to trap anything. As we progress
778  	 * within this function, reality kicks in and we start adding
779  	 * traps based on emulation requirements.
780  	 */
781  	tpt = tpc = false;
782  
783  	/*
784  	 * We have two possibility to deal with a physical offset:
785  	 *
786  	 * - Either we have CNTPOFF (yay!) or the offset is 0:
787  	 *   we let the guest freely access the HW
788  	 *
789  	 * - or neither of these condition apply:
790  	 *   we trap accesses to the HW, but still use it
791  	 *   after correcting the physical offset
792  	 */
793  	if (!has_cntpoff() && timer_get_offset(map->direct_ptimer))
794  		tpt = tpc = true;
795  
796  	/*
797  	 * Apply the enable bits that the guest hypervisor has requested for
798  	 * its own guest. We can only add traps that wouldn't have been set
799  	 * above.
800  	 */
801  	if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
802  		u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
803  
804  		/* Use the VHE format for mental sanity */
805  		if (!vcpu_el2_e2h_is_set(vcpu))
806  			val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
807  
808  		tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
809  		tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
810  	}
811  
812  	/*
813  	 * Now that we have collected our requirements, compute the
814  	 * trap and enable bits.
815  	 */
816  	set = 0;
817  	clr = 0;
818  
819  	assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
820  	assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
821  
822  	/* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */
823  	sysreg_clear_set(cnthctl_el2, clr, set);
824  }
825  
kvm_timer_vcpu_load(struct kvm_vcpu * vcpu)826  void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
827  {
828  	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
829  	struct timer_map map;
830  
831  	if (unlikely(!timer->enabled))
832  		return;
833  
834  	get_timer_map(vcpu, &map);
835  
836  	if (static_branch_likely(&has_gic_active_state)) {
837  		if (vcpu_has_nv(vcpu))
838  			kvm_timer_vcpu_load_nested_switch(vcpu, &map);
839  
840  		kvm_timer_vcpu_load_gic(map.direct_vtimer);
841  		if (map.direct_ptimer)
842  			kvm_timer_vcpu_load_gic(map.direct_ptimer);
843  	} else {
844  		kvm_timer_vcpu_load_nogic(vcpu);
845  	}
846  
847  	kvm_timer_unblocking(vcpu);
848  
849  	timer_restore_state(map.direct_vtimer);
850  	if (map.direct_ptimer)
851  		timer_restore_state(map.direct_ptimer);
852  	if (map.emul_vtimer)
853  		timer_emulate(map.emul_vtimer);
854  	if (map.emul_ptimer)
855  		timer_emulate(map.emul_ptimer);
856  
857  	timer_set_traps(vcpu, &map);
858  }
859  
kvm_timer_should_notify_user(struct kvm_vcpu * vcpu)860  bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
861  {
862  	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
863  	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
864  	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
865  	bool vlevel, plevel;
866  
867  	if (likely(irqchip_in_kernel(vcpu->kvm)))
868  		return false;
869  
870  	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
871  	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
872  
873  	return kvm_timer_should_fire(vtimer) != vlevel ||
874  	       kvm_timer_should_fire(ptimer) != plevel;
875  }
876  
kvm_timer_vcpu_put(struct kvm_vcpu * vcpu)877  void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
878  {
879  	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
880  	struct timer_map map;
881  
882  	if (unlikely(!timer->enabled))
883  		return;
884  
885  	get_timer_map(vcpu, &map);
886  
887  	timer_save_state(map.direct_vtimer);
888  	if (map.direct_ptimer)
889  		timer_save_state(map.direct_ptimer);
890  
891  	/*
892  	 * Cancel soft timer emulation, because the only case where we
893  	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
894  	 * in that case we already factor in the deadline for the physical
895  	 * timer when scheduling the bg_timer.
896  	 *
897  	 * In any case, we re-schedule the hrtimer for the physical timer when
898  	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
899  	 */
900  	if (map.emul_vtimer)
901  		soft_timer_cancel(&map.emul_vtimer->hrtimer);
902  	if (map.emul_ptimer)
903  		soft_timer_cancel(&map.emul_ptimer->hrtimer);
904  
905  	if (kvm_vcpu_is_blocking(vcpu))
906  		kvm_timer_blocking(vcpu);
907  }
908  
909  /*
910   * With a userspace irqchip we have to check if the guest de-asserted the
911   * timer and if so, unmask the timer irq signal on the host interrupt
912   * controller to ensure that we see future timer signals.
913   */
unmask_vtimer_irq_user(struct kvm_vcpu * vcpu)914  static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
915  {
916  	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
917  
918  	if (!kvm_timer_should_fire(vtimer)) {
919  		kvm_timer_update_irq(vcpu, false, vtimer);
920  		if (static_branch_likely(&has_gic_active_state))
921  			set_timer_irq_phys_active(vtimer, false);
922  		else
923  			enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
924  	}
925  }
926  
kvm_timer_sync_user(struct kvm_vcpu * vcpu)927  void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
928  {
929  	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
930  
931  	if (unlikely(!timer->enabled))
932  		return;
933  
934  	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
935  		unmask_vtimer_irq_user(vcpu);
936  }
937  
kvm_timer_vcpu_reset(struct kvm_vcpu * vcpu)938  void kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
939  {
940  	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
941  	struct timer_map map;
942  
943  	get_timer_map(vcpu, &map);
944  
945  	/*
946  	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
947  	 * and to 0 for ARMv7.  We provide an implementation that always
948  	 * resets the timer to be disabled and unmasked and is compliant with
949  	 * the ARMv7 architecture.
950  	 */
951  	for (int i = 0; i < nr_timers(vcpu); i++)
952  		timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
953  
954  	/*
955  	 * A vcpu running at EL2 is in charge of the offset applied to
956  	 * the virtual timer, so use the physical VM offset, and point
957  	 * the vcpu offset to CNTVOFF_EL2.
958  	 */
959  	if (vcpu_has_nv(vcpu)) {
960  		struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
961  
962  		offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
963  		offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
964  	}
965  
966  	if (timer->enabled) {
967  		for (int i = 0; i < nr_timers(vcpu); i++)
968  			kvm_timer_update_irq(vcpu, false,
969  					     vcpu_get_timer(vcpu, i));
970  
971  		if (irqchip_in_kernel(vcpu->kvm)) {
972  			kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer));
973  			if (map.direct_ptimer)
974  				kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer));
975  		}
976  	}
977  
978  	if (map.emul_vtimer)
979  		soft_timer_cancel(&map.emul_vtimer->hrtimer);
980  	if (map.emul_ptimer)
981  		soft_timer_cancel(&map.emul_ptimer->hrtimer);
982  }
983  
timer_context_init(struct kvm_vcpu * vcpu,int timerid)984  static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
985  {
986  	struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
987  	struct kvm *kvm = vcpu->kvm;
988  
989  	ctxt->vcpu = vcpu;
990  
991  	if (timerid == TIMER_VTIMER)
992  		ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
993  	else
994  		ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
995  
996  	hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
997  	ctxt->hrtimer.function = kvm_hrtimer_expire;
998  
999  	switch (timerid) {
1000  	case TIMER_PTIMER:
1001  	case TIMER_HPTIMER:
1002  		ctxt->host_timer_irq = host_ptimer_irq;
1003  		break;
1004  	case TIMER_VTIMER:
1005  	case TIMER_HVTIMER:
1006  		ctxt->host_timer_irq = host_vtimer_irq;
1007  		break;
1008  	}
1009  }
1010  
kvm_timer_vcpu_init(struct kvm_vcpu * vcpu)1011  void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
1012  {
1013  	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1014  
1015  	for (int i = 0; i < NR_KVM_TIMERS; i++)
1016  		timer_context_init(vcpu, i);
1017  
1018  	/* Synchronize offsets across timers of a VM if not already provided */
1019  	if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
1020  		timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read());
1021  		timer_set_offset(vcpu_ptimer(vcpu), 0);
1022  	}
1023  
1024  	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1025  	timer->bg_timer.function = kvm_bg_timer_expire;
1026  }
1027  
kvm_timer_init_vm(struct kvm * kvm)1028  void kvm_timer_init_vm(struct kvm *kvm)
1029  {
1030  	for (int i = 0; i < NR_KVM_TIMERS; i++)
1031  		kvm->arch.timer_data.ppi[i] = default_ppi[i];
1032  }
1033  
kvm_timer_cpu_up(void)1034  void kvm_timer_cpu_up(void)
1035  {
1036  	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
1037  	if (host_ptimer_irq)
1038  		enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
1039  }
1040  
kvm_timer_cpu_down(void)1041  void kvm_timer_cpu_down(void)
1042  {
1043  	disable_percpu_irq(host_vtimer_irq);
1044  	if (host_ptimer_irq)
1045  		disable_percpu_irq(host_ptimer_irq);
1046  }
1047  
kvm_arm_timer_set_reg(struct kvm_vcpu * vcpu,u64 regid,u64 value)1048  int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
1049  {
1050  	struct arch_timer_context *timer;
1051  
1052  	switch (regid) {
1053  	case KVM_REG_ARM_TIMER_CTL:
1054  		timer = vcpu_vtimer(vcpu);
1055  		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1056  		break;
1057  	case KVM_REG_ARM_TIMER_CNT:
1058  		if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1059  			      &vcpu->kvm->arch.flags)) {
1060  			timer = vcpu_vtimer(vcpu);
1061  			timer_set_offset(timer, kvm_phys_timer_read() - value);
1062  		}
1063  		break;
1064  	case KVM_REG_ARM_TIMER_CVAL:
1065  		timer = vcpu_vtimer(vcpu);
1066  		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1067  		break;
1068  	case KVM_REG_ARM_PTIMER_CTL:
1069  		timer = vcpu_ptimer(vcpu);
1070  		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1071  		break;
1072  	case KVM_REG_ARM_PTIMER_CNT:
1073  		if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1074  			      &vcpu->kvm->arch.flags)) {
1075  			timer = vcpu_ptimer(vcpu);
1076  			timer_set_offset(timer, kvm_phys_timer_read() - value);
1077  		}
1078  		break;
1079  	case KVM_REG_ARM_PTIMER_CVAL:
1080  		timer = vcpu_ptimer(vcpu);
1081  		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1082  		break;
1083  
1084  	default:
1085  		return -1;
1086  	}
1087  
1088  	return 0;
1089  }
1090  
read_timer_ctl(struct arch_timer_context * timer)1091  static u64 read_timer_ctl(struct arch_timer_context *timer)
1092  {
1093  	/*
1094  	 * Set ISTATUS bit if it's expired.
1095  	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
1096  	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
1097  	 * regardless of ENABLE bit for our implementation convenience.
1098  	 */
1099  	u32 ctl = timer_get_ctl(timer);
1100  
1101  	if (!kvm_timer_compute_delta(timer))
1102  		ctl |= ARCH_TIMER_CTRL_IT_STAT;
1103  
1104  	return ctl;
1105  }
1106  
kvm_arm_timer_get_reg(struct kvm_vcpu * vcpu,u64 regid)1107  u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
1108  {
1109  	switch (regid) {
1110  	case KVM_REG_ARM_TIMER_CTL:
1111  		return kvm_arm_timer_read(vcpu,
1112  					  vcpu_vtimer(vcpu), TIMER_REG_CTL);
1113  	case KVM_REG_ARM_TIMER_CNT:
1114  		return kvm_arm_timer_read(vcpu,
1115  					  vcpu_vtimer(vcpu), TIMER_REG_CNT);
1116  	case KVM_REG_ARM_TIMER_CVAL:
1117  		return kvm_arm_timer_read(vcpu,
1118  					  vcpu_vtimer(vcpu), TIMER_REG_CVAL);
1119  	case KVM_REG_ARM_PTIMER_CTL:
1120  		return kvm_arm_timer_read(vcpu,
1121  					  vcpu_ptimer(vcpu), TIMER_REG_CTL);
1122  	case KVM_REG_ARM_PTIMER_CNT:
1123  		return kvm_arm_timer_read(vcpu,
1124  					  vcpu_ptimer(vcpu), TIMER_REG_CNT);
1125  	case KVM_REG_ARM_PTIMER_CVAL:
1126  		return kvm_arm_timer_read(vcpu,
1127  					  vcpu_ptimer(vcpu), TIMER_REG_CVAL);
1128  	}
1129  	return (u64)-1;
1130  }
1131  
kvm_arm_timer_read(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg)1132  static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
1133  			      struct arch_timer_context *timer,
1134  			      enum kvm_arch_timer_regs treg)
1135  {
1136  	u64 val;
1137  
1138  	switch (treg) {
1139  	case TIMER_REG_TVAL:
1140  		val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
1141  		val = lower_32_bits(val);
1142  		break;
1143  
1144  	case TIMER_REG_CTL:
1145  		val = read_timer_ctl(timer);
1146  		break;
1147  
1148  	case TIMER_REG_CVAL:
1149  		val = timer_get_cval(timer);
1150  		break;
1151  
1152  	case TIMER_REG_CNT:
1153  		val = kvm_phys_timer_read() - timer_get_offset(timer);
1154  		break;
1155  
1156  	case TIMER_REG_VOFF:
1157  		val = *timer->offset.vcpu_offset;
1158  		break;
1159  
1160  	default:
1161  		BUG();
1162  	}
1163  
1164  	return val;
1165  }
1166  
kvm_arm_timer_read_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg)1167  u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
1168  			      enum kvm_arch_timers tmr,
1169  			      enum kvm_arch_timer_regs treg)
1170  {
1171  	struct arch_timer_context *timer;
1172  	struct timer_map map;
1173  	u64 val;
1174  
1175  	get_timer_map(vcpu, &map);
1176  	timer = vcpu_get_timer(vcpu, tmr);
1177  
1178  	if (timer == map.emul_vtimer || timer == map.emul_ptimer)
1179  		return kvm_arm_timer_read(vcpu, timer, treg);
1180  
1181  	preempt_disable();
1182  	timer_save_state(timer);
1183  
1184  	val = kvm_arm_timer_read(vcpu, timer, treg);
1185  
1186  	timer_restore_state(timer);
1187  	preempt_enable();
1188  
1189  	return val;
1190  }
1191  
kvm_arm_timer_write(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg,u64 val)1192  static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
1193  				struct arch_timer_context *timer,
1194  				enum kvm_arch_timer_regs treg,
1195  				u64 val)
1196  {
1197  	switch (treg) {
1198  	case TIMER_REG_TVAL:
1199  		timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
1200  		break;
1201  
1202  	case TIMER_REG_CTL:
1203  		timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
1204  		break;
1205  
1206  	case TIMER_REG_CVAL:
1207  		timer_set_cval(timer, val);
1208  		break;
1209  
1210  	case TIMER_REG_VOFF:
1211  		*timer->offset.vcpu_offset = val;
1212  		break;
1213  
1214  	default:
1215  		BUG();
1216  	}
1217  }
1218  
kvm_arm_timer_write_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg,u64 val)1219  void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
1220  				enum kvm_arch_timers tmr,
1221  				enum kvm_arch_timer_regs treg,
1222  				u64 val)
1223  {
1224  	struct arch_timer_context *timer;
1225  	struct timer_map map;
1226  
1227  	get_timer_map(vcpu, &map);
1228  	timer = vcpu_get_timer(vcpu, tmr);
1229  	if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
1230  		soft_timer_cancel(&timer->hrtimer);
1231  		kvm_arm_timer_write(vcpu, timer, treg, val);
1232  		timer_emulate(timer);
1233  	} else {
1234  		preempt_disable();
1235  		timer_save_state(timer);
1236  		kvm_arm_timer_write(vcpu, timer, treg, val);
1237  		timer_restore_state(timer);
1238  		preempt_enable();
1239  	}
1240  }
1241  
timer_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)1242  static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
1243  {
1244  	if (vcpu)
1245  		irqd_set_forwarded_to_vcpu(d);
1246  	else
1247  		irqd_clr_forwarded_to_vcpu(d);
1248  
1249  	return 0;
1250  }
1251  
timer_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)1252  static int timer_irq_set_irqchip_state(struct irq_data *d,
1253  				       enum irqchip_irq_state which, bool val)
1254  {
1255  	if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1256  		return irq_chip_set_parent_state(d, which, val);
1257  
1258  	if (val)
1259  		irq_chip_mask_parent(d);
1260  	else
1261  		irq_chip_unmask_parent(d);
1262  
1263  	return 0;
1264  }
1265  
timer_irq_eoi(struct irq_data * d)1266  static void timer_irq_eoi(struct irq_data *d)
1267  {
1268  	if (!irqd_is_forwarded_to_vcpu(d))
1269  		irq_chip_eoi_parent(d);
1270  }
1271  
timer_irq_ack(struct irq_data * d)1272  static void timer_irq_ack(struct irq_data *d)
1273  {
1274  	d = d->parent_data;
1275  	if (d->chip->irq_ack)
1276  		d->chip->irq_ack(d);
1277  }
1278  
1279  static struct irq_chip timer_chip = {
1280  	.name			= "KVM",
1281  	.irq_ack		= timer_irq_ack,
1282  	.irq_mask		= irq_chip_mask_parent,
1283  	.irq_unmask		= irq_chip_unmask_parent,
1284  	.irq_eoi		= timer_irq_eoi,
1285  	.irq_set_type		= irq_chip_set_type_parent,
1286  	.irq_set_vcpu_affinity	= timer_irq_set_vcpu_affinity,
1287  	.irq_set_irqchip_state	= timer_irq_set_irqchip_state,
1288  };
1289  
timer_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1290  static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1291  				  unsigned int nr_irqs, void *arg)
1292  {
1293  	irq_hw_number_t hwirq = (uintptr_t)arg;
1294  
1295  	return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1296  					     &timer_chip, NULL);
1297  }
1298  
timer_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1299  static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1300  				  unsigned int nr_irqs)
1301  {
1302  }
1303  
1304  static const struct irq_domain_ops timer_domain_ops = {
1305  	.alloc	= timer_irq_domain_alloc,
1306  	.free	= timer_irq_domain_free,
1307  };
1308  
kvm_irq_fixup_flags(unsigned int virq,u32 * flags)1309  static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1310  {
1311  	*flags = irq_get_trigger_type(virq);
1312  	if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1313  		kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1314  			virq);
1315  		*flags = IRQF_TRIGGER_LOW;
1316  	}
1317  }
1318  
kvm_irq_init(struct arch_timer_kvm_info * info)1319  static int kvm_irq_init(struct arch_timer_kvm_info *info)
1320  {
1321  	struct irq_domain *domain = NULL;
1322  
1323  	if (info->virtual_irq <= 0) {
1324  		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1325  			info->virtual_irq);
1326  		return -ENODEV;
1327  	}
1328  
1329  	host_vtimer_irq = info->virtual_irq;
1330  	kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1331  
1332  	if (kvm_vgic_global_state.no_hw_deactivation) {
1333  		struct fwnode_handle *fwnode;
1334  		struct irq_data *data;
1335  
1336  		fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1337  		if (!fwnode)
1338  			return -ENOMEM;
1339  
1340  		/* Assume both vtimer and ptimer in the same parent */
1341  		data = irq_get_irq_data(host_vtimer_irq);
1342  		domain = irq_domain_create_hierarchy(data->domain, 0,
1343  						     NR_KVM_TIMERS, fwnode,
1344  						     &timer_domain_ops, NULL);
1345  		if (!domain) {
1346  			irq_domain_free_fwnode(fwnode);
1347  			return -ENOMEM;
1348  		}
1349  
1350  		arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1351  		WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1352  					    (void *)TIMER_VTIMER));
1353  	}
1354  
1355  	if (info->physical_irq > 0) {
1356  		host_ptimer_irq = info->physical_irq;
1357  		kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1358  
1359  		if (domain)
1360  			WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1361  						    (void *)TIMER_PTIMER));
1362  	}
1363  
1364  	return 0;
1365  }
1366  
kvm_timer_hyp_init(bool has_gic)1367  int __init kvm_timer_hyp_init(bool has_gic)
1368  {
1369  	struct arch_timer_kvm_info *info;
1370  	int err;
1371  
1372  	info = arch_timer_get_kvm_info();
1373  	timecounter = &info->timecounter;
1374  
1375  	if (!timecounter->cc) {
1376  		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1377  		return -ENODEV;
1378  	}
1379  
1380  	err = kvm_irq_init(info);
1381  	if (err)
1382  		return err;
1383  
1384  	/* First, do the virtual EL1 timer irq */
1385  
1386  	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1387  				 "kvm guest vtimer", kvm_get_running_vcpus());
1388  	if (err) {
1389  		kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1390  			host_vtimer_irq, err);
1391  		return err;
1392  	}
1393  
1394  	if (has_gic) {
1395  		err = irq_set_vcpu_affinity(host_vtimer_irq,
1396  					    kvm_get_running_vcpus());
1397  		if (err) {
1398  			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1399  			goto out_free_vtimer_irq;
1400  		}
1401  
1402  		static_branch_enable(&has_gic_active_state);
1403  	}
1404  
1405  	kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1406  
1407  	/* Now let's do the physical EL1 timer irq */
1408  
1409  	if (info->physical_irq > 0) {
1410  		err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1411  					 "kvm guest ptimer", kvm_get_running_vcpus());
1412  		if (err) {
1413  			kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1414  				host_ptimer_irq, err);
1415  			goto out_free_vtimer_irq;
1416  		}
1417  
1418  		if (has_gic) {
1419  			err = irq_set_vcpu_affinity(host_ptimer_irq,
1420  						    kvm_get_running_vcpus());
1421  			if (err) {
1422  				kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1423  				goto out_free_ptimer_irq;
1424  			}
1425  		}
1426  
1427  		kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1428  	} else if (has_vhe()) {
1429  		kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1430  			info->physical_irq);
1431  		err = -ENODEV;
1432  		goto out_free_vtimer_irq;
1433  	}
1434  
1435  	return 0;
1436  
1437  out_free_ptimer_irq:
1438  	if (info->physical_irq > 0)
1439  		free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus());
1440  out_free_vtimer_irq:
1441  	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1442  	return err;
1443  }
1444  
kvm_timer_vcpu_terminate(struct kvm_vcpu * vcpu)1445  void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1446  {
1447  	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1448  
1449  	soft_timer_cancel(&timer->bg_timer);
1450  }
1451  
timer_irqs_are_valid(struct kvm_vcpu * vcpu)1452  static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1453  {
1454  	u32 ppis = 0;
1455  	bool valid;
1456  
1457  	mutex_lock(&vcpu->kvm->arch.config_lock);
1458  
1459  	for (int i = 0; i < nr_timers(vcpu); i++) {
1460  		struct arch_timer_context *ctx;
1461  		int irq;
1462  
1463  		ctx = vcpu_get_timer(vcpu, i);
1464  		irq = timer_irq(ctx);
1465  		if (kvm_vgic_set_owner(vcpu, irq, ctx))
1466  			break;
1467  
1468  		/*
1469  		 * We know by construction that we only have PPIs, so
1470  		 * all values are less than 32.
1471  		 */
1472  		ppis |= BIT(irq);
1473  	}
1474  
1475  	valid = hweight32(ppis) == nr_timers(vcpu);
1476  
1477  	if (valid)
1478  		set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
1479  
1480  	mutex_unlock(&vcpu->kvm->arch.config_lock);
1481  
1482  	return valid;
1483  }
1484  
kvm_arch_timer_get_input_level(int vintid)1485  static bool kvm_arch_timer_get_input_level(int vintid)
1486  {
1487  	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1488  
1489  	if (WARN(!vcpu, "No vcpu context!\n"))
1490  		return false;
1491  
1492  	for (int i = 0; i < nr_timers(vcpu); i++) {
1493  		struct arch_timer_context *ctx;
1494  
1495  		ctx = vcpu_get_timer(vcpu, i);
1496  		if (timer_irq(ctx) == vintid)
1497  			return kvm_timer_should_fire(ctx);
1498  	}
1499  
1500  	/* A timer IRQ has fired, but no matching timer was found? */
1501  	WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
1502  
1503  	return false;
1504  }
1505  
kvm_timer_enable(struct kvm_vcpu * vcpu)1506  int kvm_timer_enable(struct kvm_vcpu *vcpu)
1507  {
1508  	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1509  	struct timer_map map;
1510  	int ret;
1511  
1512  	if (timer->enabled)
1513  		return 0;
1514  
1515  	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
1516  	if (!irqchip_in_kernel(vcpu->kvm))
1517  		goto no_vgic;
1518  
1519  	/*
1520  	 * At this stage, we have the guarantee that the vgic is both
1521  	 * available and initialized.
1522  	 */
1523  	if (!timer_irqs_are_valid(vcpu)) {
1524  		kvm_debug("incorrectly configured timer irqs\n");
1525  		return -EINVAL;
1526  	}
1527  
1528  	get_timer_map(vcpu, &map);
1529  
1530  	ret = kvm_vgic_map_phys_irq(vcpu,
1531  				    map.direct_vtimer->host_timer_irq,
1532  				    timer_irq(map.direct_vtimer),
1533  				    &arch_timer_irq_ops);
1534  	if (ret)
1535  		return ret;
1536  
1537  	if (map.direct_ptimer) {
1538  		ret = kvm_vgic_map_phys_irq(vcpu,
1539  					    map.direct_ptimer->host_timer_irq,
1540  					    timer_irq(map.direct_ptimer),
1541  					    &arch_timer_irq_ops);
1542  	}
1543  
1544  	if (ret)
1545  		return ret;
1546  
1547  no_vgic:
1548  	timer->enabled = 1;
1549  	return 0;
1550  }
1551  
1552  /* If we have CNTPOFF, permanently set ECV to enable it */
kvm_timer_init_vhe(void)1553  void kvm_timer_init_vhe(void)
1554  {
1555  	if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
1556  		sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV);
1557  }
1558  
kvm_arm_timer_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1559  int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1560  {
1561  	int __user *uaddr = (int __user *)(long)attr->addr;
1562  	int irq, idx, ret = 0;
1563  
1564  	if (!irqchip_in_kernel(vcpu->kvm))
1565  		return -EINVAL;
1566  
1567  	if (get_user(irq, uaddr))
1568  		return -EFAULT;
1569  
1570  	if (!(irq_is_ppi(irq)))
1571  		return -EINVAL;
1572  
1573  	mutex_lock(&vcpu->kvm->arch.config_lock);
1574  
1575  	if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
1576  		     &vcpu->kvm->arch.flags)) {
1577  		ret = -EBUSY;
1578  		goto out;
1579  	}
1580  
1581  	switch (attr->attr) {
1582  	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1583  		idx = TIMER_VTIMER;
1584  		break;
1585  	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1586  		idx = TIMER_PTIMER;
1587  		break;
1588  	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1589  		idx = TIMER_HVTIMER;
1590  		break;
1591  	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1592  		idx = TIMER_HPTIMER;
1593  		break;
1594  	default:
1595  		ret = -ENXIO;
1596  		goto out;
1597  	}
1598  
1599  	/*
1600  	 * We cannot validate the IRQ unicity before we run, so take it at
1601  	 * face value. The verdict will be given on first vcpu run, for each
1602  	 * vcpu. Yes this is late. Blame it on the stupid API.
1603  	 */
1604  	vcpu->kvm->arch.timer_data.ppi[idx] = irq;
1605  
1606  out:
1607  	mutex_unlock(&vcpu->kvm->arch.config_lock);
1608  	return ret;
1609  }
1610  
kvm_arm_timer_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1611  int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1612  {
1613  	int __user *uaddr = (int __user *)(long)attr->addr;
1614  	struct arch_timer_context *timer;
1615  	int irq;
1616  
1617  	switch (attr->attr) {
1618  	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1619  		timer = vcpu_vtimer(vcpu);
1620  		break;
1621  	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1622  		timer = vcpu_ptimer(vcpu);
1623  		break;
1624  	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1625  		timer = vcpu_hvtimer(vcpu);
1626  		break;
1627  	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1628  		timer = vcpu_hptimer(vcpu);
1629  		break;
1630  	default:
1631  		return -ENXIO;
1632  	}
1633  
1634  	irq = timer_irq(timer);
1635  	return put_user(irq, uaddr);
1636  }
1637  
kvm_arm_timer_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1638  int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1639  {
1640  	switch (attr->attr) {
1641  	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1642  	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1643  	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1644  	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1645  		return 0;
1646  	}
1647  
1648  	return -ENXIO;
1649  }
1650  
kvm_vm_ioctl_set_counter_offset(struct kvm * kvm,struct kvm_arm_counter_offset * offset)1651  int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1652  				    struct kvm_arm_counter_offset *offset)
1653  {
1654  	int ret = 0;
1655  
1656  	if (offset->reserved)
1657  		return -EINVAL;
1658  
1659  	mutex_lock(&kvm->lock);
1660  
1661  	if (lock_all_vcpus(kvm)) {
1662  		set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
1663  
1664  		/*
1665  		 * If userspace decides to set the offset using this
1666  		 * API rather than merely restoring the counter
1667  		 * values, the offset applies to both the virtual and
1668  		 * physical views.
1669  		 */
1670  		kvm->arch.timer_data.voffset = offset->counter_offset;
1671  		kvm->arch.timer_data.poffset = offset->counter_offset;
1672  
1673  		unlock_all_vcpus(kvm);
1674  	} else {
1675  		ret = -EBUSY;
1676  	}
1677  
1678  	mutex_unlock(&kvm->lock);
1679  
1680  	return ret;
1681  }
1682