1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4   * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
5   *
6   * This file contains the interrupt descriptor management code. Detailed
7   * information is available in Documentation/core-api/genericirq.rst
8   *
9   */
10  #include <linux/irq.h>
11  #include <linux/slab.h>
12  #include <linux/export.h>
13  #include <linux/interrupt.h>
14  #include <linux/kernel_stat.h>
15  #include <linux/maple_tree.h>
16  #include <linux/irqdomain.h>
17  #include <linux/sysfs.h>
18  
19  #include "internals.h"
20  
21  /*
22   * lockdep: we want to handle all irq_desc locks as a single lock-class:
23   */
24  static struct lock_class_key irq_desc_lock_class;
25  
26  #if defined(CONFIG_SMP)
irq_affinity_setup(char * str)27  static int __init irq_affinity_setup(char *str)
28  {
29  	alloc_bootmem_cpumask_var(&irq_default_affinity);
30  	cpulist_parse(str, irq_default_affinity);
31  	/*
32  	 * Set at least the boot cpu. We don't want to end up with
33  	 * bugreports caused by random commandline masks
34  	 */
35  	cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
36  	return 1;
37  }
38  __setup("irqaffinity=", irq_affinity_setup);
39  
init_irq_default_affinity(void)40  static void __init init_irq_default_affinity(void)
41  {
42  	if (!cpumask_available(irq_default_affinity))
43  		zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
44  	if (cpumask_empty(irq_default_affinity))
45  		cpumask_setall(irq_default_affinity);
46  }
47  #else
init_irq_default_affinity(void)48  static void __init init_irq_default_affinity(void)
49  {
50  }
51  #endif
52  
53  #ifdef CONFIG_SMP
alloc_masks(struct irq_desc * desc,int node)54  static int alloc_masks(struct irq_desc *desc, int node)
55  {
56  	if (!zalloc_cpumask_var_node(&desc->irq_common_data.affinity,
57  				     GFP_KERNEL, node))
58  		return -ENOMEM;
59  
60  #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
61  	if (!zalloc_cpumask_var_node(&desc->irq_common_data.effective_affinity,
62  				     GFP_KERNEL, node)) {
63  		free_cpumask_var(desc->irq_common_data.affinity);
64  		return -ENOMEM;
65  	}
66  #endif
67  
68  #ifdef CONFIG_GENERIC_PENDING_IRQ
69  	if (!zalloc_cpumask_var_node(&desc->pending_mask, GFP_KERNEL, node)) {
70  #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
71  		free_cpumask_var(desc->irq_common_data.effective_affinity);
72  #endif
73  		free_cpumask_var(desc->irq_common_data.affinity);
74  		return -ENOMEM;
75  	}
76  #endif
77  	return 0;
78  }
79  
desc_smp_init(struct irq_desc * desc,int node,const struct cpumask * affinity)80  static void desc_smp_init(struct irq_desc *desc, int node,
81  			  const struct cpumask *affinity)
82  {
83  	if (!affinity)
84  		affinity = irq_default_affinity;
85  	cpumask_copy(desc->irq_common_data.affinity, affinity);
86  
87  #ifdef CONFIG_GENERIC_PENDING_IRQ
88  	cpumask_clear(desc->pending_mask);
89  #endif
90  #ifdef CONFIG_NUMA
91  	desc->irq_common_data.node = node;
92  #endif
93  }
94  
free_masks(struct irq_desc * desc)95  static void free_masks(struct irq_desc *desc)
96  {
97  #ifdef CONFIG_GENERIC_PENDING_IRQ
98  	free_cpumask_var(desc->pending_mask);
99  #endif
100  	free_cpumask_var(desc->irq_common_data.affinity);
101  #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
102  	free_cpumask_var(desc->irq_common_data.effective_affinity);
103  #endif
104  }
105  
106  #else
107  static inline int
alloc_masks(struct irq_desc * desc,int node)108  alloc_masks(struct irq_desc *desc, int node) { return 0; }
109  static inline void
desc_smp_init(struct irq_desc * desc,int node,const struct cpumask * affinity)110  desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) { }
free_masks(struct irq_desc * desc)111  static inline void free_masks(struct irq_desc *desc) { }
112  #endif
113  
desc_set_defaults(unsigned int irq,struct irq_desc * desc,int node,const struct cpumask * affinity,struct module * owner)114  static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
115  			      const struct cpumask *affinity, struct module *owner)
116  {
117  	int cpu;
118  
119  	desc->irq_common_data.handler_data = NULL;
120  	desc->irq_common_data.msi_desc = NULL;
121  
122  	desc->irq_data.common = &desc->irq_common_data;
123  	desc->irq_data.irq = irq;
124  	desc->irq_data.chip = &no_irq_chip;
125  	desc->irq_data.chip_data = NULL;
126  	irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS);
127  	irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED);
128  	irqd_set(&desc->irq_data, IRQD_IRQ_MASKED);
129  	desc->handle_irq = handle_bad_irq;
130  	desc->depth = 1;
131  	desc->irq_count = 0;
132  	desc->irqs_unhandled = 0;
133  	desc->tot_count = 0;
134  	desc->name = NULL;
135  	desc->owner = owner;
136  	for_each_possible_cpu(cpu)
137  		*per_cpu_ptr(desc->kstat_irqs, cpu) = (struct irqstat) { };
138  	desc_smp_init(desc, node, affinity);
139  }
140  
141  int nr_irqs = NR_IRQS;
142  EXPORT_SYMBOL_GPL(nr_irqs);
143  
144  static DEFINE_MUTEX(sparse_irq_lock);
145  static struct maple_tree sparse_irqs = MTREE_INIT_EXT(sparse_irqs,
146  					MT_FLAGS_ALLOC_RANGE |
147  					MT_FLAGS_LOCK_EXTERN |
148  					MT_FLAGS_USE_RCU,
149  					sparse_irq_lock);
150  
irq_find_free_area(unsigned int from,unsigned int cnt)151  static int irq_find_free_area(unsigned int from, unsigned int cnt)
152  {
153  	MA_STATE(mas, &sparse_irqs, 0, 0);
154  
155  	if (mas_empty_area(&mas, from, MAX_SPARSE_IRQS, cnt))
156  		return -ENOSPC;
157  	return mas.index;
158  }
159  
irq_find_at_or_after(unsigned int offset)160  static unsigned int irq_find_at_or_after(unsigned int offset)
161  {
162  	unsigned long index = offset;
163  	struct irq_desc *desc;
164  
165  	guard(rcu)();
166  	desc = mt_find(&sparse_irqs, &index, nr_irqs);
167  
168  	return desc ? irq_desc_get_irq(desc) : nr_irqs;
169  }
170  
irq_insert_desc(unsigned int irq,struct irq_desc * desc)171  static void irq_insert_desc(unsigned int irq, struct irq_desc *desc)
172  {
173  	MA_STATE(mas, &sparse_irqs, irq, irq);
174  	WARN_ON(mas_store_gfp(&mas, desc, GFP_KERNEL) != 0);
175  }
176  
delete_irq_desc(unsigned int irq)177  static void delete_irq_desc(unsigned int irq)
178  {
179  	MA_STATE(mas, &sparse_irqs, irq, irq);
180  	mas_erase(&mas);
181  }
182  
183  #ifdef CONFIG_SPARSE_IRQ
184  static const struct kobj_type irq_kobj_type;
185  #endif
186  
init_desc(struct irq_desc * desc,int irq,int node,unsigned int flags,const struct cpumask * affinity,struct module * owner)187  static int init_desc(struct irq_desc *desc, int irq, int node,
188  		     unsigned int flags,
189  		     const struct cpumask *affinity,
190  		     struct module *owner)
191  {
192  	desc->kstat_irqs = alloc_percpu(struct irqstat);
193  	if (!desc->kstat_irqs)
194  		return -ENOMEM;
195  
196  	if (alloc_masks(desc, node)) {
197  		free_percpu(desc->kstat_irqs);
198  		return -ENOMEM;
199  	}
200  
201  	raw_spin_lock_init(&desc->lock);
202  	lockdep_set_class(&desc->lock, &irq_desc_lock_class);
203  	mutex_init(&desc->request_mutex);
204  	init_waitqueue_head(&desc->wait_for_threads);
205  	desc_set_defaults(irq, desc, node, affinity, owner);
206  	irqd_set(&desc->irq_data, flags);
207  	irq_resend_init(desc);
208  #ifdef CONFIG_SPARSE_IRQ
209  	kobject_init(&desc->kobj, &irq_kobj_type);
210  	init_rcu_head(&desc->rcu);
211  #endif
212  
213  	return 0;
214  }
215  
216  #ifdef CONFIG_SPARSE_IRQ
217  
218  static void irq_kobj_release(struct kobject *kobj);
219  
220  #ifdef CONFIG_SYSFS
221  static struct kobject *irq_kobj_base;
222  
223  #define IRQ_ATTR_RO(_name) \
224  static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
225  
per_cpu_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)226  static ssize_t per_cpu_count_show(struct kobject *kobj,
227  				  struct kobj_attribute *attr, char *buf)
228  {
229  	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
230  	ssize_t ret = 0;
231  	char *p = "";
232  	int cpu;
233  
234  	for_each_possible_cpu(cpu) {
235  		unsigned int c = irq_desc_kstat_cpu(desc, cpu);
236  
237  		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%u", p, c);
238  		p = ",";
239  	}
240  
241  	ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
242  	return ret;
243  }
244  IRQ_ATTR_RO(per_cpu_count);
245  
chip_name_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)246  static ssize_t chip_name_show(struct kobject *kobj,
247  			      struct kobj_attribute *attr, char *buf)
248  {
249  	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
250  	ssize_t ret = 0;
251  
252  	raw_spin_lock_irq(&desc->lock);
253  	if (desc->irq_data.chip && desc->irq_data.chip->name) {
254  		ret = scnprintf(buf, PAGE_SIZE, "%s\n",
255  				desc->irq_data.chip->name);
256  	}
257  	raw_spin_unlock_irq(&desc->lock);
258  
259  	return ret;
260  }
261  IRQ_ATTR_RO(chip_name);
262  
hwirq_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)263  static ssize_t hwirq_show(struct kobject *kobj,
264  			  struct kobj_attribute *attr, char *buf)
265  {
266  	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
267  	ssize_t ret = 0;
268  
269  	raw_spin_lock_irq(&desc->lock);
270  	if (desc->irq_data.domain)
271  		ret = sprintf(buf, "%lu\n", desc->irq_data.hwirq);
272  	raw_spin_unlock_irq(&desc->lock);
273  
274  	return ret;
275  }
276  IRQ_ATTR_RO(hwirq);
277  
type_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)278  static ssize_t type_show(struct kobject *kobj,
279  			 struct kobj_attribute *attr, char *buf)
280  {
281  	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
282  	ssize_t ret = 0;
283  
284  	raw_spin_lock_irq(&desc->lock);
285  	ret = sprintf(buf, "%s\n",
286  		      irqd_is_level_type(&desc->irq_data) ? "level" : "edge");
287  	raw_spin_unlock_irq(&desc->lock);
288  
289  	return ret;
290  
291  }
292  IRQ_ATTR_RO(type);
293  
wakeup_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)294  static ssize_t wakeup_show(struct kobject *kobj,
295  			   struct kobj_attribute *attr, char *buf)
296  {
297  	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
298  	ssize_t ret = 0;
299  
300  	raw_spin_lock_irq(&desc->lock);
301  	ret = sprintf(buf, "%s\n",
302  		      irqd_is_wakeup_set(&desc->irq_data) ? "enabled" : "disabled");
303  	raw_spin_unlock_irq(&desc->lock);
304  
305  	return ret;
306  
307  }
308  IRQ_ATTR_RO(wakeup);
309  
name_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)310  static ssize_t name_show(struct kobject *kobj,
311  			 struct kobj_attribute *attr, char *buf)
312  {
313  	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
314  	ssize_t ret = 0;
315  
316  	raw_spin_lock_irq(&desc->lock);
317  	if (desc->name)
318  		ret = scnprintf(buf, PAGE_SIZE, "%s\n", desc->name);
319  	raw_spin_unlock_irq(&desc->lock);
320  
321  	return ret;
322  }
323  IRQ_ATTR_RO(name);
324  
actions_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)325  static ssize_t actions_show(struct kobject *kobj,
326  			    struct kobj_attribute *attr, char *buf)
327  {
328  	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
329  	struct irqaction *action;
330  	ssize_t ret = 0;
331  	char *p = "";
332  
333  	raw_spin_lock_irq(&desc->lock);
334  	for_each_action_of_desc(desc, action) {
335  		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%s",
336  				 p, action->name);
337  		p = ",";
338  	}
339  	raw_spin_unlock_irq(&desc->lock);
340  
341  	if (ret)
342  		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
343  
344  	return ret;
345  }
346  IRQ_ATTR_RO(actions);
347  
348  static struct attribute *irq_attrs[] = {
349  	&per_cpu_count_attr.attr,
350  	&chip_name_attr.attr,
351  	&hwirq_attr.attr,
352  	&type_attr.attr,
353  	&wakeup_attr.attr,
354  	&name_attr.attr,
355  	&actions_attr.attr,
356  	NULL
357  };
358  ATTRIBUTE_GROUPS(irq);
359  
360  static const struct kobj_type irq_kobj_type = {
361  	.release	= irq_kobj_release,
362  	.sysfs_ops	= &kobj_sysfs_ops,
363  	.default_groups = irq_groups,
364  };
365  
irq_sysfs_add(int irq,struct irq_desc * desc)366  static void irq_sysfs_add(int irq, struct irq_desc *desc)
367  {
368  	if (irq_kobj_base) {
369  		/*
370  		 * Continue even in case of failure as this is nothing
371  		 * crucial and failures in the late irq_sysfs_init()
372  		 * cannot be rolled back.
373  		 */
374  		if (kobject_add(&desc->kobj, irq_kobj_base, "%d", irq))
375  			pr_warn("Failed to add kobject for irq %d\n", irq);
376  		else
377  			desc->istate |= IRQS_SYSFS;
378  	}
379  }
380  
irq_sysfs_del(struct irq_desc * desc)381  static void irq_sysfs_del(struct irq_desc *desc)
382  {
383  	/*
384  	 * Only invoke kobject_del() when kobject_add() was successfully
385  	 * invoked for the descriptor. This covers both early boot, where
386  	 * sysfs is not initialized yet, and the case of a failed
387  	 * kobject_add() invocation.
388  	 */
389  	if (desc->istate & IRQS_SYSFS)
390  		kobject_del(&desc->kobj);
391  }
392  
irq_sysfs_init(void)393  static int __init irq_sysfs_init(void)
394  {
395  	struct irq_desc *desc;
396  	int irq;
397  
398  	/* Prevent concurrent irq alloc/free */
399  	irq_lock_sparse();
400  
401  	irq_kobj_base = kobject_create_and_add("irq", kernel_kobj);
402  	if (!irq_kobj_base) {
403  		irq_unlock_sparse();
404  		return -ENOMEM;
405  	}
406  
407  	/* Add the already allocated interrupts */
408  	for_each_irq_desc(irq, desc)
409  		irq_sysfs_add(irq, desc);
410  	irq_unlock_sparse();
411  
412  	return 0;
413  }
414  postcore_initcall(irq_sysfs_init);
415  
416  #else /* !CONFIG_SYSFS */
417  
418  static const struct kobj_type irq_kobj_type = {
419  	.release	= irq_kobj_release,
420  };
421  
irq_sysfs_add(int irq,struct irq_desc * desc)422  static void irq_sysfs_add(int irq, struct irq_desc *desc) {}
irq_sysfs_del(struct irq_desc * desc)423  static void irq_sysfs_del(struct irq_desc *desc) {}
424  
425  #endif /* CONFIG_SYSFS */
426  
irq_to_desc(unsigned int irq)427  struct irq_desc *irq_to_desc(unsigned int irq)
428  {
429  	return mtree_load(&sparse_irqs, irq);
430  }
431  #ifdef CONFIG_KVM_BOOK3S_64_HV_MODULE
432  EXPORT_SYMBOL_GPL(irq_to_desc);
433  #endif
434  
irq_lock_sparse(void)435  void irq_lock_sparse(void)
436  {
437  	mutex_lock(&sparse_irq_lock);
438  }
439  
irq_unlock_sparse(void)440  void irq_unlock_sparse(void)
441  {
442  	mutex_unlock(&sparse_irq_lock);
443  }
444  
alloc_desc(int irq,int node,unsigned int flags,const struct cpumask * affinity,struct module * owner)445  static struct irq_desc *alloc_desc(int irq, int node, unsigned int flags,
446  				   const struct cpumask *affinity,
447  				   struct module *owner)
448  {
449  	struct irq_desc *desc;
450  	int ret;
451  
452  	desc = kzalloc_node(sizeof(*desc), GFP_KERNEL, node);
453  	if (!desc)
454  		return NULL;
455  
456  	ret = init_desc(desc, irq, node, flags, affinity, owner);
457  	if (unlikely(ret)) {
458  		kfree(desc);
459  		return NULL;
460  	}
461  
462  	return desc;
463  }
464  
irq_kobj_release(struct kobject * kobj)465  static void irq_kobj_release(struct kobject *kobj)
466  {
467  	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
468  
469  	free_masks(desc);
470  	free_percpu(desc->kstat_irqs);
471  	kfree(desc);
472  }
473  
delayed_free_desc(struct rcu_head * rhp)474  static void delayed_free_desc(struct rcu_head *rhp)
475  {
476  	struct irq_desc *desc = container_of(rhp, struct irq_desc, rcu);
477  
478  	kobject_put(&desc->kobj);
479  }
480  
free_desc(unsigned int irq)481  static void free_desc(unsigned int irq)
482  {
483  	struct irq_desc *desc = irq_to_desc(irq);
484  
485  	irq_remove_debugfs_entry(desc);
486  	unregister_irq_proc(irq, desc);
487  
488  	/*
489  	 * sparse_irq_lock protects also show_interrupts() and
490  	 * kstat_irq_usr(). Once we deleted the descriptor from the
491  	 * sparse tree we can free it. Access in proc will fail to
492  	 * lookup the descriptor.
493  	 *
494  	 * The sysfs entry must be serialized against a concurrent
495  	 * irq_sysfs_init() as well.
496  	 */
497  	irq_sysfs_del(desc);
498  	delete_irq_desc(irq);
499  
500  	/*
501  	 * We free the descriptor, masks and stat fields via RCU. That
502  	 * allows demultiplex interrupts to do rcu based management of
503  	 * the child interrupts.
504  	 * This also allows us to use rcu in kstat_irqs_usr().
505  	 */
506  	call_rcu(&desc->rcu, delayed_free_desc);
507  }
508  
alloc_descs(unsigned int start,unsigned int cnt,int node,const struct irq_affinity_desc * affinity,struct module * owner)509  static int alloc_descs(unsigned int start, unsigned int cnt, int node,
510  		       const struct irq_affinity_desc *affinity,
511  		       struct module *owner)
512  {
513  	struct irq_desc *desc;
514  	int i;
515  
516  	/* Validate affinity mask(s) */
517  	if (affinity) {
518  		for (i = 0; i < cnt; i++) {
519  			if (cpumask_empty(&affinity[i].mask))
520  				return -EINVAL;
521  		}
522  	}
523  
524  	for (i = 0; i < cnt; i++) {
525  		const struct cpumask *mask = NULL;
526  		unsigned int flags = 0;
527  
528  		if (affinity) {
529  			if (affinity->is_managed) {
530  				flags = IRQD_AFFINITY_MANAGED |
531  					IRQD_MANAGED_SHUTDOWN;
532  			}
533  			flags |= IRQD_AFFINITY_SET;
534  			mask = &affinity->mask;
535  			node = cpu_to_node(cpumask_first(mask));
536  			affinity++;
537  		}
538  
539  		desc = alloc_desc(start + i, node, flags, mask, owner);
540  		if (!desc)
541  			goto err;
542  		irq_insert_desc(start + i, desc);
543  		irq_sysfs_add(start + i, desc);
544  		irq_add_debugfs_entry(start + i, desc);
545  	}
546  	return start;
547  
548  err:
549  	for (i--; i >= 0; i--)
550  		free_desc(start + i);
551  	return -ENOMEM;
552  }
553  
irq_expand_nr_irqs(unsigned int nr)554  static int irq_expand_nr_irqs(unsigned int nr)
555  {
556  	if (nr > MAX_SPARSE_IRQS)
557  		return -ENOMEM;
558  	nr_irqs = nr;
559  	return 0;
560  }
561  
early_irq_init(void)562  int __init early_irq_init(void)
563  {
564  	int i, initcnt, node = first_online_node;
565  	struct irq_desc *desc;
566  
567  	init_irq_default_affinity();
568  
569  	/* Let arch update nr_irqs and return the nr of preallocated irqs */
570  	initcnt = arch_probe_nr_irqs();
571  	printk(KERN_INFO "NR_IRQS: %d, nr_irqs: %d, preallocated irqs: %d\n",
572  	       NR_IRQS, nr_irqs, initcnt);
573  
574  	if (WARN_ON(nr_irqs > MAX_SPARSE_IRQS))
575  		nr_irqs = MAX_SPARSE_IRQS;
576  
577  	if (WARN_ON(initcnt > MAX_SPARSE_IRQS))
578  		initcnt = MAX_SPARSE_IRQS;
579  
580  	if (initcnt > nr_irqs)
581  		nr_irqs = initcnt;
582  
583  	for (i = 0; i < initcnt; i++) {
584  		desc = alloc_desc(i, node, 0, NULL, NULL);
585  		irq_insert_desc(i, desc);
586  	}
587  	return arch_early_irq_init();
588  }
589  
590  #else /* !CONFIG_SPARSE_IRQ */
591  
592  struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
593  	[0 ... NR_IRQS-1] = {
594  		.handle_irq	= handle_bad_irq,
595  		.depth		= 1,
596  		.lock		= __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
597  	}
598  };
599  
early_irq_init(void)600  int __init early_irq_init(void)
601  {
602  	int count, i, node = first_online_node;
603  	int ret;
604  
605  	init_irq_default_affinity();
606  
607  	printk(KERN_INFO "NR_IRQS: %d\n", NR_IRQS);
608  
609  	count = ARRAY_SIZE(irq_desc);
610  
611  	for (i = 0; i < count; i++) {
612  		ret = init_desc(irq_desc + i, i, node, 0, NULL, NULL);
613  		if (unlikely(ret))
614  			goto __free_desc_res;
615  	}
616  
617  	return arch_early_irq_init();
618  
619  __free_desc_res:
620  	while (--i >= 0) {
621  		free_masks(irq_desc + i);
622  		free_percpu(irq_desc[i].kstat_irqs);
623  	}
624  
625  	return ret;
626  }
627  
irq_to_desc(unsigned int irq)628  struct irq_desc *irq_to_desc(unsigned int irq)
629  {
630  	return (irq < NR_IRQS) ? irq_desc + irq : NULL;
631  }
632  EXPORT_SYMBOL(irq_to_desc);
633  
free_desc(unsigned int irq)634  static void free_desc(unsigned int irq)
635  {
636  	struct irq_desc *desc = irq_to_desc(irq);
637  	unsigned long flags;
638  
639  	raw_spin_lock_irqsave(&desc->lock, flags);
640  	desc_set_defaults(irq, desc, irq_desc_get_node(desc), NULL, NULL);
641  	raw_spin_unlock_irqrestore(&desc->lock, flags);
642  	delete_irq_desc(irq);
643  }
644  
alloc_descs(unsigned int start,unsigned int cnt,int node,const struct irq_affinity_desc * affinity,struct module * owner)645  static inline int alloc_descs(unsigned int start, unsigned int cnt, int node,
646  			      const struct irq_affinity_desc *affinity,
647  			      struct module *owner)
648  {
649  	u32 i;
650  
651  	for (i = 0; i < cnt; i++) {
652  		struct irq_desc *desc = irq_to_desc(start + i);
653  
654  		desc->owner = owner;
655  		irq_insert_desc(start + i, desc);
656  	}
657  	return start;
658  }
659  
irq_expand_nr_irqs(unsigned int nr)660  static int irq_expand_nr_irqs(unsigned int nr)
661  {
662  	return -ENOMEM;
663  }
664  
irq_mark_irq(unsigned int irq)665  void irq_mark_irq(unsigned int irq)
666  {
667  	mutex_lock(&sparse_irq_lock);
668  	irq_insert_desc(irq, irq_desc + irq);
669  	mutex_unlock(&sparse_irq_lock);
670  }
671  
672  #ifdef CONFIG_GENERIC_IRQ_LEGACY
irq_init_desc(unsigned int irq)673  void irq_init_desc(unsigned int irq)
674  {
675  	free_desc(irq);
676  }
677  #endif
678  
679  #endif /* !CONFIG_SPARSE_IRQ */
680  
handle_irq_desc(struct irq_desc * desc)681  int handle_irq_desc(struct irq_desc *desc)
682  {
683  	struct irq_data *data;
684  
685  	if (!desc)
686  		return -EINVAL;
687  
688  	data = irq_desc_get_irq_data(desc);
689  	if (WARN_ON_ONCE(!in_hardirq() && handle_enforce_irqctx(data)))
690  		return -EPERM;
691  
692  	generic_handle_irq_desc(desc);
693  	return 0;
694  }
695  
696  /**
697   * generic_handle_irq - Invoke the handler for a particular irq
698   * @irq:	The irq number to handle
699   *
700   * Returns:	0 on success, or -EINVAL if conversion has failed
701   *
702   * 		This function must be called from an IRQ context with irq regs
703   * 		initialized.
704    */
generic_handle_irq(unsigned int irq)705  int generic_handle_irq(unsigned int irq)
706  {
707  	return handle_irq_desc(irq_to_desc(irq));
708  }
709  EXPORT_SYMBOL_GPL(generic_handle_irq);
710  
711  /**
712   * generic_handle_irq_safe - Invoke the handler for a particular irq from any
713   *			     context.
714   * @irq:	The irq number to handle
715   *
716   * Returns:	0 on success, a negative value on error.
717   *
718   * This function can be called from any context (IRQ or process context). It
719   * will report an error if not invoked from IRQ context and the irq has been
720   * marked to enforce IRQ-context only.
721   */
generic_handle_irq_safe(unsigned int irq)722  int generic_handle_irq_safe(unsigned int irq)
723  {
724  	unsigned long flags;
725  	int ret;
726  
727  	local_irq_save(flags);
728  	ret = handle_irq_desc(irq_to_desc(irq));
729  	local_irq_restore(flags);
730  	return ret;
731  }
732  EXPORT_SYMBOL_GPL(generic_handle_irq_safe);
733  
734  #ifdef CONFIG_IRQ_DOMAIN
735  /**
736   * generic_handle_domain_irq - Invoke the handler for a HW irq belonging
737   *                             to a domain.
738   * @domain:	The domain where to perform the lookup
739   * @hwirq:	The HW irq number to convert to a logical one
740   *
741   * Returns:	0 on success, or -EINVAL if conversion has failed
742   *
743   * 		This function must be called from an IRQ context with irq regs
744   * 		initialized.
745   */
generic_handle_domain_irq(struct irq_domain * domain,unsigned int hwirq)746  int generic_handle_domain_irq(struct irq_domain *domain, unsigned int hwirq)
747  {
748  	return handle_irq_desc(irq_resolve_mapping(domain, hwirq));
749  }
750  EXPORT_SYMBOL_GPL(generic_handle_domain_irq);
751  
752   /**
753   * generic_handle_irq_safe - Invoke the handler for a HW irq belonging
754   *			     to a domain from any context.
755   * @domain:	The domain where to perform the lookup
756   * @hwirq:	The HW irq number to convert to a logical one
757   *
758   * Returns:	0 on success, a negative value on error.
759   *
760   * This function can be called from any context (IRQ or process
761   * context). If the interrupt is marked as 'enforce IRQ-context only' then
762   * the function must be invoked from hard interrupt context.
763   */
generic_handle_domain_irq_safe(struct irq_domain * domain,unsigned int hwirq)764  int generic_handle_domain_irq_safe(struct irq_domain *domain, unsigned int hwirq)
765  {
766  	unsigned long flags;
767  	int ret;
768  
769  	local_irq_save(flags);
770  	ret = handle_irq_desc(irq_resolve_mapping(domain, hwirq));
771  	local_irq_restore(flags);
772  	return ret;
773  }
774  EXPORT_SYMBOL_GPL(generic_handle_domain_irq_safe);
775  
776  /**
777   * generic_handle_domain_nmi - Invoke the handler for a HW nmi belonging
778   *                             to a domain.
779   * @domain:	The domain where to perform the lookup
780   * @hwirq:	The HW irq number to convert to a logical one
781   *
782   * Returns:	0 on success, or -EINVAL if conversion has failed
783   *
784   * 		This function must be called from an NMI context with irq regs
785   * 		initialized.
786   **/
generic_handle_domain_nmi(struct irq_domain * domain,unsigned int hwirq)787  int generic_handle_domain_nmi(struct irq_domain *domain, unsigned int hwirq)
788  {
789  	WARN_ON_ONCE(!in_nmi());
790  	return handle_irq_desc(irq_resolve_mapping(domain, hwirq));
791  }
792  #endif
793  
794  /* Dynamic interrupt handling */
795  
796  /**
797   * irq_free_descs - free irq descriptors
798   * @from:	Start of descriptor range
799   * @cnt:	Number of consecutive irqs to free
800   */
irq_free_descs(unsigned int from,unsigned int cnt)801  void irq_free_descs(unsigned int from, unsigned int cnt)
802  {
803  	int i;
804  
805  	if (from >= nr_irqs || (from + cnt) > nr_irqs)
806  		return;
807  
808  	mutex_lock(&sparse_irq_lock);
809  	for (i = 0; i < cnt; i++)
810  		free_desc(from + i);
811  
812  	mutex_unlock(&sparse_irq_lock);
813  }
814  EXPORT_SYMBOL_GPL(irq_free_descs);
815  
816  /**
817   * __irq_alloc_descs - allocate and initialize a range of irq descriptors
818   * @irq:	Allocate for specific irq number if irq >= 0
819   * @from:	Start the search from this irq number
820   * @cnt:	Number of consecutive irqs to allocate.
821   * @node:	Preferred node on which the irq descriptor should be allocated
822   * @owner:	Owning module (can be NULL)
823   * @affinity:	Optional pointer to an affinity mask array of size @cnt which
824   *		hints where the irq descriptors should be allocated and which
825   *		default affinities to use
826   *
827   * Returns the first irq number or error code
828   */
829  int __ref
__irq_alloc_descs(int irq,unsigned int from,unsigned int cnt,int node,struct module * owner,const struct irq_affinity_desc * affinity)830  __irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node,
831  		  struct module *owner, const struct irq_affinity_desc *affinity)
832  {
833  	int start, ret;
834  
835  	if (!cnt)
836  		return -EINVAL;
837  
838  	if (irq >= 0) {
839  		if (from > irq)
840  			return -EINVAL;
841  		from = irq;
842  	} else {
843  		/*
844  		 * For interrupts which are freely allocated the
845  		 * architecture can force a lower bound to the @from
846  		 * argument. x86 uses this to exclude the GSI space.
847  		 */
848  		from = arch_dynirq_lower_bound(from);
849  	}
850  
851  	mutex_lock(&sparse_irq_lock);
852  
853  	start = irq_find_free_area(from, cnt);
854  	ret = -EEXIST;
855  	if (irq >=0 && start != irq)
856  		goto unlock;
857  
858  	if (start + cnt > nr_irqs) {
859  		ret = irq_expand_nr_irqs(start + cnt);
860  		if (ret)
861  			goto unlock;
862  	}
863  	ret = alloc_descs(start, cnt, node, affinity, owner);
864  unlock:
865  	mutex_unlock(&sparse_irq_lock);
866  	return ret;
867  }
868  EXPORT_SYMBOL_GPL(__irq_alloc_descs);
869  
870  /**
871   * irq_get_next_irq - get next allocated irq number
872   * @offset:	where to start the search
873   *
874   * Returns next irq number after offset or nr_irqs if none is found.
875   */
irq_get_next_irq(unsigned int offset)876  unsigned int irq_get_next_irq(unsigned int offset)
877  {
878  	return irq_find_at_or_after(offset);
879  }
880  
881  struct irq_desc *
__irq_get_desc_lock(unsigned int irq,unsigned long * flags,bool bus,unsigned int check)882  __irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus,
883  		    unsigned int check)
884  {
885  	struct irq_desc *desc = irq_to_desc(irq);
886  
887  	if (desc) {
888  		if (check & _IRQ_DESC_CHECK) {
889  			if ((check & _IRQ_DESC_PERCPU) &&
890  			    !irq_settings_is_per_cpu_devid(desc))
891  				return NULL;
892  
893  			if (!(check & _IRQ_DESC_PERCPU) &&
894  			    irq_settings_is_per_cpu_devid(desc))
895  				return NULL;
896  		}
897  
898  		if (bus)
899  			chip_bus_lock(desc);
900  		raw_spin_lock_irqsave(&desc->lock, *flags);
901  	}
902  	return desc;
903  }
904  
__irq_put_desc_unlock(struct irq_desc * desc,unsigned long flags,bool bus)905  void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus)
906  	__releases(&desc->lock)
907  {
908  	raw_spin_unlock_irqrestore(&desc->lock, flags);
909  	if (bus)
910  		chip_bus_sync_unlock(desc);
911  }
912  
irq_set_percpu_devid_partition(unsigned int irq,const struct cpumask * affinity)913  int irq_set_percpu_devid_partition(unsigned int irq,
914  				   const struct cpumask *affinity)
915  {
916  	struct irq_desc *desc = irq_to_desc(irq);
917  
918  	if (!desc || desc->percpu_enabled)
919  		return -EINVAL;
920  
921  	desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL);
922  
923  	if (!desc->percpu_enabled)
924  		return -ENOMEM;
925  
926  	desc->percpu_affinity = affinity ? : cpu_possible_mask;
927  
928  	irq_set_percpu_devid_flags(irq);
929  	return 0;
930  }
931  
irq_set_percpu_devid(unsigned int irq)932  int irq_set_percpu_devid(unsigned int irq)
933  {
934  	return irq_set_percpu_devid_partition(irq, NULL);
935  }
936  
irq_get_percpu_devid_partition(unsigned int irq,struct cpumask * affinity)937  int irq_get_percpu_devid_partition(unsigned int irq, struct cpumask *affinity)
938  {
939  	struct irq_desc *desc = irq_to_desc(irq);
940  
941  	if (!desc || !desc->percpu_enabled)
942  		return -EINVAL;
943  
944  	if (affinity)
945  		cpumask_copy(affinity, desc->percpu_affinity);
946  
947  	return 0;
948  }
949  EXPORT_SYMBOL_GPL(irq_get_percpu_devid_partition);
950  
kstat_incr_irq_this_cpu(unsigned int irq)951  void kstat_incr_irq_this_cpu(unsigned int irq)
952  {
953  	kstat_incr_irqs_this_cpu(irq_to_desc(irq));
954  }
955  
956  /**
957   * kstat_irqs_cpu - Get the statistics for an interrupt on a cpu
958   * @irq:	The interrupt number
959   * @cpu:	The cpu number
960   *
961   * Returns the sum of interrupt counts on @cpu since boot for
962   * @irq. The caller must ensure that the interrupt is not removed
963   * concurrently.
964   */
kstat_irqs_cpu(unsigned int irq,int cpu)965  unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
966  {
967  	struct irq_desc *desc = irq_to_desc(irq);
968  
969  	return desc && desc->kstat_irqs ? per_cpu(desc->kstat_irqs->cnt, cpu) : 0;
970  }
971  
kstat_irqs_desc(struct irq_desc * desc,const struct cpumask * cpumask)972  unsigned int kstat_irqs_desc(struct irq_desc *desc, const struct cpumask *cpumask)
973  {
974  	unsigned int sum = 0;
975  	int cpu;
976  
977  	if (!irq_settings_is_per_cpu_devid(desc) &&
978  	    !irq_settings_is_per_cpu(desc) &&
979  	    !irq_is_nmi(desc))
980  		return data_race(desc->tot_count);
981  
982  	for_each_cpu(cpu, cpumask)
983  		sum += data_race(per_cpu(desc->kstat_irqs->cnt, cpu));
984  	return sum;
985  }
986  
kstat_irqs(unsigned int irq)987  static unsigned int kstat_irqs(unsigned int irq)
988  {
989  	struct irq_desc *desc = irq_to_desc(irq);
990  
991  	if (!desc || !desc->kstat_irqs)
992  		return 0;
993  	return kstat_irqs_desc(desc, cpu_possible_mask);
994  }
995  
996  #ifdef CONFIG_GENERIC_IRQ_STAT_SNAPSHOT
997  
kstat_snapshot_irqs(void)998  void kstat_snapshot_irqs(void)
999  {
1000  	struct irq_desc *desc;
1001  	unsigned int irq;
1002  
1003  	for_each_irq_desc(irq, desc) {
1004  		if (!desc->kstat_irqs)
1005  			continue;
1006  		this_cpu_write(desc->kstat_irqs->ref, this_cpu_read(desc->kstat_irqs->cnt));
1007  	}
1008  }
1009  
kstat_get_irq_since_snapshot(unsigned int irq)1010  unsigned int kstat_get_irq_since_snapshot(unsigned int irq)
1011  {
1012  	struct irq_desc *desc = irq_to_desc(irq);
1013  
1014  	if (!desc || !desc->kstat_irqs)
1015  		return 0;
1016  	return this_cpu_read(desc->kstat_irqs->cnt) - this_cpu_read(desc->kstat_irqs->ref);
1017  }
1018  
1019  #endif
1020  
1021  /**
1022   * kstat_irqs_usr - Get the statistics for an interrupt from thread context
1023   * @irq:	The interrupt number
1024   *
1025   * Returns the sum of interrupt counts on all cpus since boot for @irq.
1026   *
1027   * It uses rcu to protect the access since a concurrent removal of an
1028   * interrupt descriptor is observing an rcu grace period before
1029   * delayed_free_desc()/irq_kobj_release().
1030   */
kstat_irqs_usr(unsigned int irq)1031  unsigned int kstat_irqs_usr(unsigned int irq)
1032  {
1033  	unsigned int sum;
1034  
1035  	rcu_read_lock();
1036  	sum = kstat_irqs(irq);
1037  	rcu_read_unlock();
1038  	return sum;
1039  }
1040  
1041  #ifdef CONFIG_LOCKDEP
__irq_set_lockdep_class(unsigned int irq,struct lock_class_key * lock_class,struct lock_class_key * request_class)1042  void __irq_set_lockdep_class(unsigned int irq, struct lock_class_key *lock_class,
1043  			     struct lock_class_key *request_class)
1044  {
1045  	struct irq_desc *desc = irq_to_desc(irq);
1046  
1047  	if (desc) {
1048  		lockdep_set_class(&desc->lock, lock_class);
1049  		lockdep_set_class(&desc->request_mutex, request_class);
1050  	}
1051  }
1052  EXPORT_SYMBOL_GPL(__irq_set_lockdep_class);
1053  #endif
1054