1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/mm/nommu.c
4   *
5   *  Replacement code for mm functions to support CPU's that don't
6   *  have any form of memory management unit (thus no virtual memory).
7   *
8   *  See Documentation/admin-guide/mm/nommu-mmap.rst
9   *
10   *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11   *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12   *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13   *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14   *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15   */
16  
17  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18  
19  #include <linux/export.h>
20  #include <linux/mm.h>
21  #include <linux/sched/mm.h>
22  #include <linux/mman.h>
23  #include <linux/swap.h>
24  #include <linux/file.h>
25  #include <linux/highmem.h>
26  #include <linux/pagemap.h>
27  #include <linux/slab.h>
28  #include <linux/vmalloc.h>
29  #include <linux/backing-dev.h>
30  #include <linux/compiler.h>
31  #include <linux/mount.h>
32  #include <linux/personality.h>
33  #include <linux/security.h>
34  #include <linux/syscalls.h>
35  #include <linux/audit.h>
36  #include <linux/printk.h>
37  
38  #include <linux/uaccess.h>
39  #include <linux/uio.h>
40  #include <asm/tlb.h>
41  #include <asm/tlbflush.h>
42  #include <asm/mmu_context.h>
43  #include "internal.h"
44  
45  void *high_memory;
46  EXPORT_SYMBOL(high_memory);
47  struct page *mem_map;
48  unsigned long max_mapnr;
49  EXPORT_SYMBOL(max_mapnr);
50  unsigned long highest_memmap_pfn;
51  int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52  int heap_stack_gap = 0;
53  
54  atomic_long_t mmap_pages_allocated;
55  
56  EXPORT_SYMBOL(mem_map);
57  
58  /* list of mapped, potentially shareable regions */
59  static struct kmem_cache *vm_region_jar;
60  struct rb_root nommu_region_tree = RB_ROOT;
61  DECLARE_RWSEM(nommu_region_sem);
62  
63  const struct vm_operations_struct generic_file_vm_ops = {
64  };
65  
66  /*
67   * Return the total memory allocated for this pointer, not
68   * just what the caller asked for.
69   *
70   * Doesn't have to be accurate, i.e. may have races.
71   */
kobjsize(const void * objp)72  unsigned int kobjsize(const void *objp)
73  {
74  	struct page *page;
75  
76  	/*
77  	 * If the object we have should not have ksize performed on it,
78  	 * return size of 0
79  	 */
80  	if (!objp || !virt_addr_valid(objp))
81  		return 0;
82  
83  	page = virt_to_head_page(objp);
84  
85  	/*
86  	 * If the allocator sets PageSlab, we know the pointer came from
87  	 * kmalloc().
88  	 */
89  	if (PageSlab(page))
90  		return ksize(objp);
91  
92  	/*
93  	 * If it's not a compound page, see if we have a matching VMA
94  	 * region. This test is intentionally done in reverse order,
95  	 * so if there's no VMA, we still fall through and hand back
96  	 * PAGE_SIZE for 0-order pages.
97  	 */
98  	if (!PageCompound(page)) {
99  		struct vm_area_struct *vma;
100  
101  		vma = find_vma(current->mm, (unsigned long)objp);
102  		if (vma)
103  			return vma->vm_end - vma->vm_start;
104  	}
105  
106  	/*
107  	 * The ksize() function is only guaranteed to work for pointers
108  	 * returned by kmalloc(). So handle arbitrary pointers here.
109  	 */
110  	return page_size(page);
111  }
112  
vfree(const void * addr)113  void vfree(const void *addr)
114  {
115  	kfree(addr);
116  }
117  EXPORT_SYMBOL(vfree);
118  
__vmalloc_noprof(unsigned long size,gfp_t gfp_mask)119  void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
120  {
121  	/*
122  	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
123  	 * returns only a logical address.
124  	 */
125  	return kmalloc_noprof(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
126  }
127  EXPORT_SYMBOL(__vmalloc_noprof);
128  
vrealloc_noprof(const void * p,size_t size,gfp_t flags)129  void *vrealloc_noprof(const void *p, size_t size, gfp_t flags)
130  {
131  	return krealloc_noprof(p, size, (flags | __GFP_COMP) & ~__GFP_HIGHMEM);
132  }
133  
__vmalloc_node_range_noprof(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)134  void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
135  		unsigned long start, unsigned long end, gfp_t gfp_mask,
136  		pgprot_t prot, unsigned long vm_flags, int node,
137  		const void *caller)
138  {
139  	return __vmalloc_noprof(size, gfp_mask);
140  }
141  
__vmalloc_node_noprof(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)142  void *__vmalloc_node_noprof(unsigned long size, unsigned long align, gfp_t gfp_mask,
143  		int node, const void *caller)
144  {
145  	return __vmalloc_noprof(size, gfp_mask);
146  }
147  
__vmalloc_user_flags(unsigned long size,gfp_t flags)148  static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
149  {
150  	void *ret;
151  
152  	ret = __vmalloc(size, flags);
153  	if (ret) {
154  		struct vm_area_struct *vma;
155  
156  		mmap_write_lock(current->mm);
157  		vma = find_vma(current->mm, (unsigned long)ret);
158  		if (vma)
159  			vm_flags_set(vma, VM_USERMAP);
160  		mmap_write_unlock(current->mm);
161  	}
162  
163  	return ret;
164  }
165  
vmalloc_user_noprof(unsigned long size)166  void *vmalloc_user_noprof(unsigned long size)
167  {
168  	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
169  }
170  EXPORT_SYMBOL(vmalloc_user_noprof);
171  
vmalloc_to_page(const void * addr)172  struct page *vmalloc_to_page(const void *addr)
173  {
174  	return virt_to_page(addr);
175  }
176  EXPORT_SYMBOL(vmalloc_to_page);
177  
vmalloc_to_pfn(const void * addr)178  unsigned long vmalloc_to_pfn(const void *addr)
179  {
180  	return page_to_pfn(virt_to_page(addr));
181  }
182  EXPORT_SYMBOL(vmalloc_to_pfn);
183  
vread_iter(struct iov_iter * iter,const char * addr,size_t count)184  long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
185  {
186  	/* Don't allow overflow */
187  	if ((unsigned long) addr + count < count)
188  		count = -(unsigned long) addr;
189  
190  	return copy_to_iter(addr, count, iter);
191  }
192  
193  /*
194   *	vmalloc  -  allocate virtually contiguous memory
195   *
196   *	@size:		allocation size
197   *
198   *	Allocate enough pages to cover @size from the page level
199   *	allocator and map them into contiguous kernel virtual space.
200   *
201   *	For tight control over page level allocator and protection flags
202   *	use __vmalloc() instead.
203   */
vmalloc_noprof(unsigned long size)204  void *vmalloc_noprof(unsigned long size)
205  {
206  	return __vmalloc_noprof(size, GFP_KERNEL);
207  }
208  EXPORT_SYMBOL(vmalloc_noprof);
209  
210  void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc_noprof);
211  
212  /*
213   *	vzalloc - allocate virtually contiguous memory with zero fill
214   *
215   *	@size:		allocation size
216   *
217   *	Allocate enough pages to cover @size from the page level
218   *	allocator and map them into contiguous kernel virtual space.
219   *	The memory allocated is set to zero.
220   *
221   *	For tight control over page level allocator and protection flags
222   *	use __vmalloc() instead.
223   */
vzalloc_noprof(unsigned long size)224  void *vzalloc_noprof(unsigned long size)
225  {
226  	return __vmalloc_noprof(size, GFP_KERNEL | __GFP_ZERO);
227  }
228  EXPORT_SYMBOL(vzalloc_noprof);
229  
230  /**
231   * vmalloc_node - allocate memory on a specific node
232   * @size:	allocation size
233   * @node:	numa node
234   *
235   * Allocate enough pages to cover @size from the page level
236   * allocator and map them into contiguous kernel virtual space.
237   *
238   * For tight control over page level allocator and protection flags
239   * use __vmalloc() instead.
240   */
vmalloc_node_noprof(unsigned long size,int node)241  void *vmalloc_node_noprof(unsigned long size, int node)
242  {
243  	return vmalloc_noprof(size);
244  }
245  EXPORT_SYMBOL(vmalloc_node_noprof);
246  
247  /**
248   * vzalloc_node - allocate memory on a specific node with zero fill
249   * @size:	allocation size
250   * @node:	numa node
251   *
252   * Allocate enough pages to cover @size from the page level
253   * allocator and map them into contiguous kernel virtual space.
254   * The memory allocated is set to zero.
255   *
256   * For tight control over page level allocator and protection flags
257   * use __vmalloc() instead.
258   */
vzalloc_node_noprof(unsigned long size,int node)259  void *vzalloc_node_noprof(unsigned long size, int node)
260  {
261  	return vzalloc_noprof(size);
262  }
263  EXPORT_SYMBOL(vzalloc_node_noprof);
264  
265  /**
266   * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
267   *	@size:		allocation size
268   *
269   *	Allocate enough 32bit PA addressable pages to cover @size from the
270   *	page level allocator and map them into contiguous kernel virtual space.
271   */
vmalloc_32_noprof(unsigned long size)272  void *vmalloc_32_noprof(unsigned long size)
273  {
274  	return __vmalloc_noprof(size, GFP_KERNEL);
275  }
276  EXPORT_SYMBOL(vmalloc_32_noprof);
277  
278  /**
279   * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
280   *	@size:		allocation size
281   *
282   * The resulting memory area is 32bit addressable and zeroed so it can be
283   * mapped to userspace without leaking data.
284   *
285   * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
286   * remap_vmalloc_range() are permissible.
287   */
vmalloc_32_user_noprof(unsigned long size)288  void *vmalloc_32_user_noprof(unsigned long size)
289  {
290  	/*
291  	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
292  	 * but for now this can simply use vmalloc_user() directly.
293  	 */
294  	return vmalloc_user_noprof(size);
295  }
296  EXPORT_SYMBOL(vmalloc_32_user_noprof);
297  
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)298  void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
299  {
300  	BUG();
301  	return NULL;
302  }
303  EXPORT_SYMBOL(vmap);
304  
vunmap(const void * addr)305  void vunmap(const void *addr)
306  {
307  	BUG();
308  }
309  EXPORT_SYMBOL(vunmap);
310  
vm_map_ram(struct page ** pages,unsigned int count,int node)311  void *vm_map_ram(struct page **pages, unsigned int count, int node)
312  {
313  	BUG();
314  	return NULL;
315  }
316  EXPORT_SYMBOL(vm_map_ram);
317  
vm_unmap_ram(const void * mem,unsigned int count)318  void vm_unmap_ram(const void *mem, unsigned int count)
319  {
320  	BUG();
321  }
322  EXPORT_SYMBOL(vm_unmap_ram);
323  
vm_unmap_aliases(void)324  void vm_unmap_aliases(void)
325  {
326  }
327  EXPORT_SYMBOL_GPL(vm_unmap_aliases);
328  
free_vm_area(struct vm_struct * area)329  void free_vm_area(struct vm_struct *area)
330  {
331  	BUG();
332  }
333  EXPORT_SYMBOL_GPL(free_vm_area);
334  
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)335  int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
336  		   struct page *page)
337  {
338  	return -EINVAL;
339  }
340  EXPORT_SYMBOL(vm_insert_page);
341  
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)342  int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
343  			struct page **pages, unsigned long *num)
344  {
345  	return -EINVAL;
346  }
347  EXPORT_SYMBOL(vm_insert_pages);
348  
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)349  int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
350  			unsigned long num)
351  {
352  	return -EINVAL;
353  }
354  EXPORT_SYMBOL(vm_map_pages);
355  
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)356  int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
357  				unsigned long num)
358  {
359  	return -EINVAL;
360  }
361  EXPORT_SYMBOL(vm_map_pages_zero);
362  
363  /*
364   *  sys_brk() for the most part doesn't need the global kernel
365   *  lock, except when an application is doing something nasty
366   *  like trying to un-brk an area that has already been mapped
367   *  to a regular file.  in this case, the unmapping will need
368   *  to invoke file system routines that need the global lock.
369   */
SYSCALL_DEFINE1(brk,unsigned long,brk)370  SYSCALL_DEFINE1(brk, unsigned long, brk)
371  {
372  	struct mm_struct *mm = current->mm;
373  
374  	if (brk < mm->start_brk || brk > mm->context.end_brk)
375  		return mm->brk;
376  
377  	if (mm->brk == brk)
378  		return mm->brk;
379  
380  	/*
381  	 * Always allow shrinking brk
382  	 */
383  	if (brk <= mm->brk) {
384  		mm->brk = brk;
385  		return brk;
386  	}
387  
388  	/*
389  	 * Ok, looks good - let it rip.
390  	 */
391  	flush_icache_user_range(mm->brk, brk);
392  	return mm->brk = brk;
393  }
394  
395  /*
396   * initialise the percpu counter for VM and region record slabs
397   */
mmap_init(void)398  void __init mmap_init(void)
399  {
400  	int ret;
401  
402  	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
403  	VM_BUG_ON(ret);
404  	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
405  }
406  
407  /*
408   * validate the region tree
409   * - the caller must hold the region lock
410   */
411  #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)412  static noinline void validate_nommu_regions(void)
413  {
414  	struct vm_region *region, *last;
415  	struct rb_node *p, *lastp;
416  
417  	lastp = rb_first(&nommu_region_tree);
418  	if (!lastp)
419  		return;
420  
421  	last = rb_entry(lastp, struct vm_region, vm_rb);
422  	BUG_ON(last->vm_end <= last->vm_start);
423  	BUG_ON(last->vm_top < last->vm_end);
424  
425  	while ((p = rb_next(lastp))) {
426  		region = rb_entry(p, struct vm_region, vm_rb);
427  		last = rb_entry(lastp, struct vm_region, vm_rb);
428  
429  		BUG_ON(region->vm_end <= region->vm_start);
430  		BUG_ON(region->vm_top < region->vm_end);
431  		BUG_ON(region->vm_start < last->vm_top);
432  
433  		lastp = p;
434  	}
435  }
436  #else
validate_nommu_regions(void)437  static void validate_nommu_regions(void)
438  {
439  }
440  #endif
441  
442  /*
443   * add a region into the global tree
444   */
add_nommu_region(struct vm_region * region)445  static void add_nommu_region(struct vm_region *region)
446  {
447  	struct vm_region *pregion;
448  	struct rb_node **p, *parent;
449  
450  	validate_nommu_regions();
451  
452  	parent = NULL;
453  	p = &nommu_region_tree.rb_node;
454  	while (*p) {
455  		parent = *p;
456  		pregion = rb_entry(parent, struct vm_region, vm_rb);
457  		if (region->vm_start < pregion->vm_start)
458  			p = &(*p)->rb_left;
459  		else if (region->vm_start > pregion->vm_start)
460  			p = &(*p)->rb_right;
461  		else if (pregion == region)
462  			return;
463  		else
464  			BUG();
465  	}
466  
467  	rb_link_node(&region->vm_rb, parent, p);
468  	rb_insert_color(&region->vm_rb, &nommu_region_tree);
469  
470  	validate_nommu_regions();
471  }
472  
473  /*
474   * delete a region from the global tree
475   */
delete_nommu_region(struct vm_region * region)476  static void delete_nommu_region(struct vm_region *region)
477  {
478  	BUG_ON(!nommu_region_tree.rb_node);
479  
480  	validate_nommu_regions();
481  	rb_erase(&region->vm_rb, &nommu_region_tree);
482  	validate_nommu_regions();
483  }
484  
485  /*
486   * free a contiguous series of pages
487   */
free_page_series(unsigned long from,unsigned long to)488  static void free_page_series(unsigned long from, unsigned long to)
489  {
490  	for (; from < to; from += PAGE_SIZE) {
491  		struct page *page = virt_to_page((void *)from);
492  
493  		atomic_long_dec(&mmap_pages_allocated);
494  		put_page(page);
495  	}
496  }
497  
498  /*
499   * release a reference to a region
500   * - the caller must hold the region semaphore for writing, which this releases
501   * - the region may not have been added to the tree yet, in which case vm_top
502   *   will equal vm_start
503   */
__put_nommu_region(struct vm_region * region)504  static void __put_nommu_region(struct vm_region *region)
505  	__releases(nommu_region_sem)
506  {
507  	BUG_ON(!nommu_region_tree.rb_node);
508  
509  	if (--region->vm_usage == 0) {
510  		if (region->vm_top > region->vm_start)
511  			delete_nommu_region(region);
512  		up_write(&nommu_region_sem);
513  
514  		if (region->vm_file)
515  			fput(region->vm_file);
516  
517  		/* IO memory and memory shared directly out of the pagecache
518  		 * from ramfs/tmpfs mustn't be released here */
519  		if (region->vm_flags & VM_MAPPED_COPY)
520  			free_page_series(region->vm_start, region->vm_top);
521  		kmem_cache_free(vm_region_jar, region);
522  	} else {
523  		up_write(&nommu_region_sem);
524  	}
525  }
526  
527  /*
528   * release a reference to a region
529   */
put_nommu_region(struct vm_region * region)530  static void put_nommu_region(struct vm_region *region)
531  {
532  	down_write(&nommu_region_sem);
533  	__put_nommu_region(region);
534  }
535  
setup_vma_to_mm(struct vm_area_struct * vma,struct mm_struct * mm)536  static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
537  {
538  	vma->vm_mm = mm;
539  
540  	/* add the VMA to the mapping */
541  	if (vma->vm_file) {
542  		struct address_space *mapping = vma->vm_file->f_mapping;
543  
544  		i_mmap_lock_write(mapping);
545  		flush_dcache_mmap_lock(mapping);
546  		vma_interval_tree_insert(vma, &mapping->i_mmap);
547  		flush_dcache_mmap_unlock(mapping);
548  		i_mmap_unlock_write(mapping);
549  	}
550  }
551  
cleanup_vma_from_mm(struct vm_area_struct * vma)552  static void cleanup_vma_from_mm(struct vm_area_struct *vma)
553  {
554  	vma->vm_mm->map_count--;
555  	/* remove the VMA from the mapping */
556  	if (vma->vm_file) {
557  		struct address_space *mapping;
558  		mapping = vma->vm_file->f_mapping;
559  
560  		i_mmap_lock_write(mapping);
561  		flush_dcache_mmap_lock(mapping);
562  		vma_interval_tree_remove(vma, &mapping->i_mmap);
563  		flush_dcache_mmap_unlock(mapping);
564  		i_mmap_unlock_write(mapping);
565  	}
566  }
567  
568  /*
569   * delete a VMA from its owning mm_struct and address space
570   */
delete_vma_from_mm(struct vm_area_struct * vma)571  static int delete_vma_from_mm(struct vm_area_struct *vma)
572  {
573  	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
574  
575  	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
576  	if (vma_iter_prealloc(&vmi, NULL)) {
577  		pr_warn("Allocation of vma tree for process %d failed\n",
578  		       current->pid);
579  		return -ENOMEM;
580  	}
581  	cleanup_vma_from_mm(vma);
582  
583  	/* remove from the MM's tree and list */
584  	vma_iter_clear(&vmi);
585  	return 0;
586  }
587  /*
588   * destroy a VMA record
589   */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)590  static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
591  {
592  	vma_close(vma);
593  	if (vma->vm_file)
594  		fput(vma->vm_file);
595  	put_nommu_region(vma->vm_region);
596  	vm_area_free(vma);
597  }
598  
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)599  struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
600  					     unsigned long start_addr,
601  					     unsigned long end_addr)
602  {
603  	unsigned long index = start_addr;
604  
605  	mmap_assert_locked(mm);
606  	return mt_find(&mm->mm_mt, &index, end_addr - 1);
607  }
608  EXPORT_SYMBOL(find_vma_intersection);
609  
610  /*
611   * look up the first VMA in which addr resides, NULL if none
612   * - should be called with mm->mmap_lock at least held readlocked
613   */
find_vma(struct mm_struct * mm,unsigned long addr)614  struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
615  {
616  	VMA_ITERATOR(vmi, mm, addr);
617  
618  	return vma_iter_load(&vmi);
619  }
620  EXPORT_SYMBOL(find_vma);
621  
622  /*
623   * At least xtensa ends up having protection faults even with no
624   * MMU.. No stack expansion, at least.
625   */
lock_mm_and_find_vma(struct mm_struct * mm,unsigned long addr,struct pt_regs * regs)626  struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
627  			unsigned long addr, struct pt_regs *regs)
628  {
629  	struct vm_area_struct *vma;
630  
631  	mmap_read_lock(mm);
632  	vma = vma_lookup(mm, addr);
633  	if (!vma)
634  		mmap_read_unlock(mm);
635  	return vma;
636  }
637  
638  /*
639   * expand a stack to a given address
640   * - not supported under NOMMU conditions
641   */
expand_stack_locked(struct vm_area_struct * vma,unsigned long addr)642  int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
643  {
644  	return -ENOMEM;
645  }
646  
expand_stack(struct mm_struct * mm,unsigned long addr)647  struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
648  {
649  	mmap_read_unlock(mm);
650  	return NULL;
651  }
652  
653  /*
654   * look up the first VMA exactly that exactly matches addr
655   * - should be called with mm->mmap_lock at least held readlocked
656   */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)657  static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
658  					     unsigned long addr,
659  					     unsigned long len)
660  {
661  	struct vm_area_struct *vma;
662  	unsigned long end = addr + len;
663  	VMA_ITERATOR(vmi, mm, addr);
664  
665  	vma = vma_iter_load(&vmi);
666  	if (!vma)
667  		return NULL;
668  	if (vma->vm_start != addr)
669  		return NULL;
670  	if (vma->vm_end != end)
671  		return NULL;
672  
673  	return vma;
674  }
675  
676  /*
677   * determine whether a mapping should be permitted and, if so, what sort of
678   * mapping we're capable of supporting
679   */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)680  static int validate_mmap_request(struct file *file,
681  				 unsigned long addr,
682  				 unsigned long len,
683  				 unsigned long prot,
684  				 unsigned long flags,
685  				 unsigned long pgoff,
686  				 unsigned long *_capabilities)
687  {
688  	unsigned long capabilities, rlen;
689  	int ret;
690  
691  	/* do the simple checks first */
692  	if (flags & MAP_FIXED)
693  		return -EINVAL;
694  
695  	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
696  	    (flags & MAP_TYPE) != MAP_SHARED)
697  		return -EINVAL;
698  
699  	if (!len)
700  		return -EINVAL;
701  
702  	/* Careful about overflows.. */
703  	rlen = PAGE_ALIGN(len);
704  	if (!rlen || rlen > TASK_SIZE)
705  		return -ENOMEM;
706  
707  	/* offset overflow? */
708  	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
709  		return -EOVERFLOW;
710  
711  	if (file) {
712  		/* files must support mmap */
713  		if (!file->f_op->mmap)
714  			return -ENODEV;
715  
716  		/* work out if what we've got could possibly be shared
717  		 * - we support chardevs that provide their own "memory"
718  		 * - we support files/blockdevs that are memory backed
719  		 */
720  		if (file->f_op->mmap_capabilities) {
721  			capabilities = file->f_op->mmap_capabilities(file);
722  		} else {
723  			/* no explicit capabilities set, so assume some
724  			 * defaults */
725  			switch (file_inode(file)->i_mode & S_IFMT) {
726  			case S_IFREG:
727  			case S_IFBLK:
728  				capabilities = NOMMU_MAP_COPY;
729  				break;
730  
731  			case S_IFCHR:
732  				capabilities =
733  					NOMMU_MAP_DIRECT |
734  					NOMMU_MAP_READ |
735  					NOMMU_MAP_WRITE;
736  				break;
737  
738  			default:
739  				return -EINVAL;
740  			}
741  		}
742  
743  		/* eliminate any capabilities that we can't support on this
744  		 * device */
745  		if (!file->f_op->get_unmapped_area)
746  			capabilities &= ~NOMMU_MAP_DIRECT;
747  		if (!(file->f_mode & FMODE_CAN_READ))
748  			capabilities &= ~NOMMU_MAP_COPY;
749  
750  		/* The file shall have been opened with read permission. */
751  		if (!(file->f_mode & FMODE_READ))
752  			return -EACCES;
753  
754  		if (flags & MAP_SHARED) {
755  			/* do checks for writing, appending and locking */
756  			if ((prot & PROT_WRITE) &&
757  			    !(file->f_mode & FMODE_WRITE))
758  				return -EACCES;
759  
760  			if (IS_APPEND(file_inode(file)) &&
761  			    (file->f_mode & FMODE_WRITE))
762  				return -EACCES;
763  
764  			if (!(capabilities & NOMMU_MAP_DIRECT))
765  				return -ENODEV;
766  
767  			/* we mustn't privatise shared mappings */
768  			capabilities &= ~NOMMU_MAP_COPY;
769  		} else {
770  			/* we're going to read the file into private memory we
771  			 * allocate */
772  			if (!(capabilities & NOMMU_MAP_COPY))
773  				return -ENODEV;
774  
775  			/* we don't permit a private writable mapping to be
776  			 * shared with the backing device */
777  			if (prot & PROT_WRITE)
778  				capabilities &= ~NOMMU_MAP_DIRECT;
779  		}
780  
781  		if (capabilities & NOMMU_MAP_DIRECT) {
782  			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
783  			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
784  			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
785  			    ) {
786  				capabilities &= ~NOMMU_MAP_DIRECT;
787  				if (flags & MAP_SHARED) {
788  					pr_warn("MAP_SHARED not completely supported on !MMU\n");
789  					return -EINVAL;
790  				}
791  			}
792  		}
793  
794  		/* handle executable mappings and implied executable
795  		 * mappings */
796  		if (path_noexec(&file->f_path)) {
797  			if (prot & PROT_EXEC)
798  				return -EPERM;
799  		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
800  			/* handle implication of PROT_EXEC by PROT_READ */
801  			if (current->personality & READ_IMPLIES_EXEC) {
802  				if (capabilities & NOMMU_MAP_EXEC)
803  					prot |= PROT_EXEC;
804  			}
805  		} else if ((prot & PROT_READ) &&
806  			 (prot & PROT_EXEC) &&
807  			 !(capabilities & NOMMU_MAP_EXEC)
808  			 ) {
809  			/* backing file is not executable, try to copy */
810  			capabilities &= ~NOMMU_MAP_DIRECT;
811  		}
812  	} else {
813  		/* anonymous mappings are always memory backed and can be
814  		 * privately mapped
815  		 */
816  		capabilities = NOMMU_MAP_COPY;
817  
818  		/* handle PROT_EXEC implication by PROT_READ */
819  		if ((prot & PROT_READ) &&
820  		    (current->personality & READ_IMPLIES_EXEC))
821  			prot |= PROT_EXEC;
822  	}
823  
824  	/* allow the security API to have its say */
825  	ret = security_mmap_addr(addr);
826  	if (ret < 0)
827  		return ret;
828  
829  	/* looks okay */
830  	*_capabilities = capabilities;
831  	return 0;
832  }
833  
834  /*
835   * we've determined that we can make the mapping, now translate what we
836   * now know into VMA flags
837   */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)838  static unsigned long determine_vm_flags(struct file *file,
839  					unsigned long prot,
840  					unsigned long flags,
841  					unsigned long capabilities)
842  {
843  	unsigned long vm_flags;
844  
845  	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(file, flags);
846  
847  	if (!file) {
848  		/*
849  		 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
850  		 * there is no fork().
851  		 */
852  		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
853  	} else if (flags & MAP_PRIVATE) {
854  		/* MAP_PRIVATE file mapping */
855  		if (capabilities & NOMMU_MAP_DIRECT)
856  			vm_flags |= (capabilities & NOMMU_VMFLAGS);
857  		else
858  			vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
859  
860  		if (!(prot & PROT_WRITE) && !current->ptrace)
861  			/*
862  			 * R/O private file mapping which cannot be used to
863  			 * modify memory, especially also not via active ptrace
864  			 * (e.g., set breakpoints) or later by upgrading
865  			 * permissions (no mprotect()). We can try overlaying
866  			 * the file mapping, which will work e.g., on chardevs,
867  			 * ramfs/tmpfs/shmfs and romfs/cramf.
868  			 */
869  			vm_flags |= VM_MAYOVERLAY;
870  	} else {
871  		/* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
872  		vm_flags |= VM_SHARED | VM_MAYSHARE |
873  			    (capabilities & NOMMU_VMFLAGS);
874  	}
875  
876  	return vm_flags;
877  }
878  
879  /*
880   * set up a shared mapping on a file (the driver or filesystem provides and
881   * pins the storage)
882   */
do_mmap_shared_file(struct vm_area_struct * vma)883  static int do_mmap_shared_file(struct vm_area_struct *vma)
884  {
885  	int ret;
886  
887  	ret = mmap_file(vma->vm_file, vma);
888  	if (ret == 0) {
889  		vma->vm_region->vm_top = vma->vm_region->vm_end;
890  		return 0;
891  	}
892  	if (ret != -ENOSYS)
893  		return ret;
894  
895  	/* getting -ENOSYS indicates that direct mmap isn't possible (as
896  	 * opposed to tried but failed) so we can only give a suitable error as
897  	 * it's not possible to make a private copy if MAP_SHARED was given */
898  	return -ENODEV;
899  }
900  
901  /*
902   * set up a private mapping or an anonymous shared mapping
903   */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)904  static int do_mmap_private(struct vm_area_struct *vma,
905  			   struct vm_region *region,
906  			   unsigned long len,
907  			   unsigned long capabilities)
908  {
909  	unsigned long total, point;
910  	void *base;
911  	int ret, order;
912  
913  	/*
914  	 * Invoke the file's mapping function so that it can keep track of
915  	 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
916  	 * it may attempt to share, which will make is_nommu_shared_mapping()
917  	 * happy.
918  	 */
919  	if (capabilities & NOMMU_MAP_DIRECT) {
920  		ret = mmap_file(vma->vm_file, vma);
921  		/* shouldn't return success if we're not sharing */
922  		if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
923  			ret = -ENOSYS;
924  		if (ret == 0) {
925  			vma->vm_region->vm_top = vma->vm_region->vm_end;
926  			return 0;
927  		}
928  		if (ret != -ENOSYS)
929  			return ret;
930  
931  		/* getting an ENOSYS error indicates that direct mmap isn't
932  		 * possible (as opposed to tried but failed) so we'll try to
933  		 * make a private copy of the data and map that instead */
934  	}
935  
936  
937  	/* allocate some memory to hold the mapping
938  	 * - note that this may not return a page-aligned address if the object
939  	 *   we're allocating is smaller than a page
940  	 */
941  	order = get_order(len);
942  	total = 1 << order;
943  	point = len >> PAGE_SHIFT;
944  
945  	/* we don't want to allocate a power-of-2 sized page set */
946  	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
947  		total = point;
948  
949  	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
950  	if (!base)
951  		goto enomem;
952  
953  	atomic_long_add(total, &mmap_pages_allocated);
954  
955  	vm_flags_set(vma, VM_MAPPED_COPY);
956  	region->vm_flags = vma->vm_flags;
957  	region->vm_start = (unsigned long) base;
958  	region->vm_end   = region->vm_start + len;
959  	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
960  
961  	vma->vm_start = region->vm_start;
962  	vma->vm_end   = region->vm_start + len;
963  
964  	if (vma->vm_file) {
965  		/* read the contents of a file into the copy */
966  		loff_t fpos;
967  
968  		fpos = vma->vm_pgoff;
969  		fpos <<= PAGE_SHIFT;
970  
971  		ret = kernel_read(vma->vm_file, base, len, &fpos);
972  		if (ret < 0)
973  			goto error_free;
974  
975  		/* clear the last little bit */
976  		if (ret < len)
977  			memset(base + ret, 0, len - ret);
978  
979  	} else {
980  		vma_set_anonymous(vma);
981  	}
982  
983  	return 0;
984  
985  error_free:
986  	free_page_series(region->vm_start, region->vm_top);
987  	region->vm_start = vma->vm_start = 0;
988  	region->vm_end   = vma->vm_end = 0;
989  	region->vm_top   = 0;
990  	return ret;
991  
992  enomem:
993  	pr_err("Allocation of length %lu from process %d (%s) failed\n",
994  	       len, current->pid, current->comm);
995  	show_mem();
996  	return -ENOMEM;
997  }
998  
999  /*
1000   * handle mapping creation for uClinux
1001   */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1002  unsigned long do_mmap(struct file *file,
1003  			unsigned long addr,
1004  			unsigned long len,
1005  			unsigned long prot,
1006  			unsigned long flags,
1007  			vm_flags_t vm_flags,
1008  			unsigned long pgoff,
1009  			unsigned long *populate,
1010  			struct list_head *uf)
1011  {
1012  	struct vm_area_struct *vma;
1013  	struct vm_region *region;
1014  	struct rb_node *rb;
1015  	unsigned long capabilities, result;
1016  	int ret;
1017  	VMA_ITERATOR(vmi, current->mm, 0);
1018  
1019  	*populate = 0;
1020  
1021  	/* decide whether we should attempt the mapping, and if so what sort of
1022  	 * mapping */
1023  	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1024  				    &capabilities);
1025  	if (ret < 0)
1026  		return ret;
1027  
1028  	/* we ignore the address hint */
1029  	addr = 0;
1030  	len = PAGE_ALIGN(len);
1031  
1032  	/* we've determined that we can make the mapping, now translate what we
1033  	 * now know into VMA flags */
1034  	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1035  
1036  
1037  	/* we're going to need to record the mapping */
1038  	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1039  	if (!region)
1040  		goto error_getting_region;
1041  
1042  	vma = vm_area_alloc(current->mm);
1043  	if (!vma)
1044  		goto error_getting_vma;
1045  
1046  	region->vm_usage = 1;
1047  	region->vm_flags = vm_flags;
1048  	region->vm_pgoff = pgoff;
1049  
1050  	vm_flags_init(vma, vm_flags);
1051  	vma->vm_pgoff = pgoff;
1052  
1053  	if (file) {
1054  		region->vm_file = get_file(file);
1055  		vma->vm_file = get_file(file);
1056  	}
1057  
1058  	down_write(&nommu_region_sem);
1059  
1060  	/* if we want to share, we need to check for regions created by other
1061  	 * mmap() calls that overlap with our proposed mapping
1062  	 * - we can only share with a superset match on most regular files
1063  	 * - shared mappings on character devices and memory backed files are
1064  	 *   permitted to overlap inexactly as far as we are concerned for in
1065  	 *   these cases, sharing is handled in the driver or filesystem rather
1066  	 *   than here
1067  	 */
1068  	if (is_nommu_shared_mapping(vm_flags)) {
1069  		struct vm_region *pregion;
1070  		unsigned long pglen, rpglen, pgend, rpgend, start;
1071  
1072  		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1073  		pgend = pgoff + pglen;
1074  
1075  		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1076  			pregion = rb_entry(rb, struct vm_region, vm_rb);
1077  
1078  			if (!is_nommu_shared_mapping(pregion->vm_flags))
1079  				continue;
1080  
1081  			/* search for overlapping mappings on the same file */
1082  			if (file_inode(pregion->vm_file) !=
1083  			    file_inode(file))
1084  				continue;
1085  
1086  			if (pregion->vm_pgoff >= pgend)
1087  				continue;
1088  
1089  			rpglen = pregion->vm_end - pregion->vm_start;
1090  			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1091  			rpgend = pregion->vm_pgoff + rpglen;
1092  			if (pgoff >= rpgend)
1093  				continue;
1094  
1095  			/* handle inexactly overlapping matches between
1096  			 * mappings */
1097  			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1098  			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1099  				/* new mapping is not a subset of the region */
1100  				if (!(capabilities & NOMMU_MAP_DIRECT))
1101  					goto sharing_violation;
1102  				continue;
1103  			}
1104  
1105  			/* we've found a region we can share */
1106  			pregion->vm_usage++;
1107  			vma->vm_region = pregion;
1108  			start = pregion->vm_start;
1109  			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1110  			vma->vm_start = start;
1111  			vma->vm_end = start + len;
1112  
1113  			if (pregion->vm_flags & VM_MAPPED_COPY)
1114  				vm_flags_set(vma, VM_MAPPED_COPY);
1115  			else {
1116  				ret = do_mmap_shared_file(vma);
1117  				if (ret < 0) {
1118  					vma->vm_region = NULL;
1119  					vma->vm_start = 0;
1120  					vma->vm_end = 0;
1121  					pregion->vm_usage--;
1122  					pregion = NULL;
1123  					goto error_just_free;
1124  				}
1125  			}
1126  			fput(region->vm_file);
1127  			kmem_cache_free(vm_region_jar, region);
1128  			region = pregion;
1129  			result = start;
1130  			goto share;
1131  		}
1132  
1133  		/* obtain the address at which to make a shared mapping
1134  		 * - this is the hook for quasi-memory character devices to
1135  		 *   tell us the location of a shared mapping
1136  		 */
1137  		if (capabilities & NOMMU_MAP_DIRECT) {
1138  			addr = file->f_op->get_unmapped_area(file, addr, len,
1139  							     pgoff, flags);
1140  			if (IS_ERR_VALUE(addr)) {
1141  				ret = addr;
1142  				if (ret != -ENOSYS)
1143  					goto error_just_free;
1144  
1145  				/* the driver refused to tell us where to site
1146  				 * the mapping so we'll have to attempt to copy
1147  				 * it */
1148  				ret = -ENODEV;
1149  				if (!(capabilities & NOMMU_MAP_COPY))
1150  					goto error_just_free;
1151  
1152  				capabilities &= ~NOMMU_MAP_DIRECT;
1153  			} else {
1154  				vma->vm_start = region->vm_start = addr;
1155  				vma->vm_end = region->vm_end = addr + len;
1156  			}
1157  		}
1158  	}
1159  
1160  	vma->vm_region = region;
1161  
1162  	/* set up the mapping
1163  	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1164  	 */
1165  	if (file && vma->vm_flags & VM_SHARED)
1166  		ret = do_mmap_shared_file(vma);
1167  	else
1168  		ret = do_mmap_private(vma, region, len, capabilities);
1169  	if (ret < 0)
1170  		goto error_just_free;
1171  	add_nommu_region(region);
1172  
1173  	/* clear anonymous mappings that don't ask for uninitialized data */
1174  	if (!vma->vm_file &&
1175  	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1176  	     !(flags & MAP_UNINITIALIZED)))
1177  		memset((void *)region->vm_start, 0,
1178  		       region->vm_end - region->vm_start);
1179  
1180  	/* okay... we have a mapping; now we have to register it */
1181  	result = vma->vm_start;
1182  
1183  	current->mm->total_vm += len >> PAGE_SHIFT;
1184  
1185  share:
1186  	BUG_ON(!vma->vm_region);
1187  	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1188  	if (vma_iter_prealloc(&vmi, vma))
1189  		goto error_just_free;
1190  
1191  	setup_vma_to_mm(vma, current->mm);
1192  	current->mm->map_count++;
1193  	/* add the VMA to the tree */
1194  	vma_iter_store(&vmi, vma);
1195  
1196  	/* we flush the region from the icache only when the first executable
1197  	 * mapping of it is made  */
1198  	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1199  		flush_icache_user_range(region->vm_start, region->vm_end);
1200  		region->vm_icache_flushed = true;
1201  	}
1202  
1203  	up_write(&nommu_region_sem);
1204  
1205  	return result;
1206  
1207  error_just_free:
1208  	up_write(&nommu_region_sem);
1209  error:
1210  	vma_iter_free(&vmi);
1211  	if (region->vm_file)
1212  		fput(region->vm_file);
1213  	kmem_cache_free(vm_region_jar, region);
1214  	if (vma->vm_file)
1215  		fput(vma->vm_file);
1216  	vm_area_free(vma);
1217  	return ret;
1218  
1219  sharing_violation:
1220  	up_write(&nommu_region_sem);
1221  	pr_warn("Attempt to share mismatched mappings\n");
1222  	ret = -EINVAL;
1223  	goto error;
1224  
1225  error_getting_vma:
1226  	kmem_cache_free(vm_region_jar, region);
1227  	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1228  			len, current->pid);
1229  	show_mem();
1230  	return -ENOMEM;
1231  
1232  error_getting_region:
1233  	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1234  			len, current->pid);
1235  	show_mem();
1236  	return -ENOMEM;
1237  }
1238  
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1239  unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1240  			      unsigned long prot, unsigned long flags,
1241  			      unsigned long fd, unsigned long pgoff)
1242  {
1243  	struct file *file = NULL;
1244  	unsigned long retval = -EBADF;
1245  
1246  	audit_mmap_fd(fd, flags);
1247  	if (!(flags & MAP_ANONYMOUS)) {
1248  		file = fget(fd);
1249  		if (!file)
1250  			goto out;
1251  	}
1252  
1253  	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1254  
1255  	if (file)
1256  		fput(file);
1257  out:
1258  	return retval;
1259  }
1260  
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1261  SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1262  		unsigned long, prot, unsigned long, flags,
1263  		unsigned long, fd, unsigned long, pgoff)
1264  {
1265  	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1266  }
1267  
1268  #ifdef __ARCH_WANT_SYS_OLD_MMAP
1269  struct mmap_arg_struct {
1270  	unsigned long addr;
1271  	unsigned long len;
1272  	unsigned long prot;
1273  	unsigned long flags;
1274  	unsigned long fd;
1275  	unsigned long offset;
1276  };
1277  
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1278  SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1279  {
1280  	struct mmap_arg_struct a;
1281  
1282  	if (copy_from_user(&a, arg, sizeof(a)))
1283  		return -EFAULT;
1284  	if (offset_in_page(a.offset))
1285  		return -EINVAL;
1286  
1287  	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1288  			       a.offset >> PAGE_SHIFT);
1289  }
1290  #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1291  
1292  /*
1293   * split a vma into two pieces at address 'addr', a new vma is allocated either
1294   * for the first part or the tail.
1295   */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)1296  static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1297  		     unsigned long addr, int new_below)
1298  {
1299  	struct vm_area_struct *new;
1300  	struct vm_region *region;
1301  	unsigned long npages;
1302  	struct mm_struct *mm;
1303  
1304  	/* we're only permitted to split anonymous regions (these should have
1305  	 * only a single usage on the region) */
1306  	if (vma->vm_file)
1307  		return -ENOMEM;
1308  
1309  	mm = vma->vm_mm;
1310  	if (mm->map_count >= sysctl_max_map_count)
1311  		return -ENOMEM;
1312  
1313  	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1314  	if (!region)
1315  		return -ENOMEM;
1316  
1317  	new = vm_area_dup(vma);
1318  	if (!new)
1319  		goto err_vma_dup;
1320  
1321  	/* most fields are the same, copy all, and then fixup */
1322  	*region = *vma->vm_region;
1323  	new->vm_region = region;
1324  
1325  	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1326  
1327  	if (new_below) {
1328  		region->vm_top = region->vm_end = new->vm_end = addr;
1329  	} else {
1330  		region->vm_start = new->vm_start = addr;
1331  		region->vm_pgoff = new->vm_pgoff += npages;
1332  	}
1333  
1334  	vma_iter_config(vmi, new->vm_start, new->vm_end);
1335  	if (vma_iter_prealloc(vmi, vma)) {
1336  		pr_warn("Allocation of vma tree for process %d failed\n",
1337  			current->pid);
1338  		goto err_vmi_preallocate;
1339  	}
1340  
1341  	if (new->vm_ops && new->vm_ops->open)
1342  		new->vm_ops->open(new);
1343  
1344  	down_write(&nommu_region_sem);
1345  	delete_nommu_region(vma->vm_region);
1346  	if (new_below) {
1347  		vma->vm_region->vm_start = vma->vm_start = addr;
1348  		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1349  	} else {
1350  		vma->vm_region->vm_end = vma->vm_end = addr;
1351  		vma->vm_region->vm_top = addr;
1352  	}
1353  	add_nommu_region(vma->vm_region);
1354  	add_nommu_region(new->vm_region);
1355  	up_write(&nommu_region_sem);
1356  
1357  	setup_vma_to_mm(vma, mm);
1358  	setup_vma_to_mm(new, mm);
1359  	vma_iter_store(vmi, new);
1360  	mm->map_count++;
1361  	return 0;
1362  
1363  err_vmi_preallocate:
1364  	vm_area_free(new);
1365  err_vma_dup:
1366  	kmem_cache_free(vm_region_jar, region);
1367  	return -ENOMEM;
1368  }
1369  
1370  /*
1371   * shrink a VMA by removing the specified chunk from either the beginning or
1372   * the end
1373   */
vmi_shrink_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long from,unsigned long to)1374  static int vmi_shrink_vma(struct vma_iterator *vmi,
1375  		      struct vm_area_struct *vma,
1376  		      unsigned long from, unsigned long to)
1377  {
1378  	struct vm_region *region;
1379  
1380  	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1381  	 * and list */
1382  	if (from > vma->vm_start) {
1383  		if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1384  			return -ENOMEM;
1385  		vma->vm_end = from;
1386  	} else {
1387  		if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1388  			return -ENOMEM;
1389  		vma->vm_start = to;
1390  	}
1391  
1392  	/* cut the backing region down to size */
1393  	region = vma->vm_region;
1394  	BUG_ON(region->vm_usage != 1);
1395  
1396  	down_write(&nommu_region_sem);
1397  	delete_nommu_region(region);
1398  	if (from > region->vm_start) {
1399  		to = region->vm_top;
1400  		region->vm_top = region->vm_end = from;
1401  	} else {
1402  		region->vm_start = to;
1403  	}
1404  	add_nommu_region(region);
1405  	up_write(&nommu_region_sem);
1406  
1407  	free_page_series(from, to);
1408  	return 0;
1409  }
1410  
1411  /*
1412   * release a mapping
1413   * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1414   *   VMA, though it need not cover the whole VMA
1415   */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1416  int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1417  {
1418  	VMA_ITERATOR(vmi, mm, start);
1419  	struct vm_area_struct *vma;
1420  	unsigned long end;
1421  	int ret = 0;
1422  
1423  	len = PAGE_ALIGN(len);
1424  	if (len == 0)
1425  		return -EINVAL;
1426  
1427  	end = start + len;
1428  
1429  	/* find the first potentially overlapping VMA */
1430  	vma = vma_find(&vmi, end);
1431  	if (!vma) {
1432  		static int limit;
1433  		if (limit < 5) {
1434  			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1435  					current->pid, current->comm,
1436  					start, start + len - 1);
1437  			limit++;
1438  		}
1439  		return -EINVAL;
1440  	}
1441  
1442  	/* we're allowed to split an anonymous VMA but not a file-backed one */
1443  	if (vma->vm_file) {
1444  		do {
1445  			if (start > vma->vm_start)
1446  				return -EINVAL;
1447  			if (end == vma->vm_end)
1448  				goto erase_whole_vma;
1449  			vma = vma_find(&vmi, end);
1450  		} while (vma);
1451  		return -EINVAL;
1452  	} else {
1453  		/* the chunk must be a subset of the VMA found */
1454  		if (start == vma->vm_start && end == vma->vm_end)
1455  			goto erase_whole_vma;
1456  		if (start < vma->vm_start || end > vma->vm_end)
1457  			return -EINVAL;
1458  		if (offset_in_page(start))
1459  			return -EINVAL;
1460  		if (end != vma->vm_end && offset_in_page(end))
1461  			return -EINVAL;
1462  		if (start != vma->vm_start && end != vma->vm_end) {
1463  			ret = split_vma(&vmi, vma, start, 1);
1464  			if (ret < 0)
1465  				return ret;
1466  		}
1467  		return vmi_shrink_vma(&vmi, vma, start, end);
1468  	}
1469  
1470  erase_whole_vma:
1471  	if (delete_vma_from_mm(vma))
1472  		ret = -ENOMEM;
1473  	else
1474  		delete_vma(mm, vma);
1475  	return ret;
1476  }
1477  
vm_munmap(unsigned long addr,size_t len)1478  int vm_munmap(unsigned long addr, size_t len)
1479  {
1480  	struct mm_struct *mm = current->mm;
1481  	int ret;
1482  
1483  	mmap_write_lock(mm);
1484  	ret = do_munmap(mm, addr, len, NULL);
1485  	mmap_write_unlock(mm);
1486  	return ret;
1487  }
1488  EXPORT_SYMBOL(vm_munmap);
1489  
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1490  SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1491  {
1492  	return vm_munmap(addr, len);
1493  }
1494  
1495  /*
1496   * release all the mappings made in a process's VM space
1497   */
exit_mmap(struct mm_struct * mm)1498  void exit_mmap(struct mm_struct *mm)
1499  {
1500  	VMA_ITERATOR(vmi, mm, 0);
1501  	struct vm_area_struct *vma;
1502  
1503  	if (!mm)
1504  		return;
1505  
1506  	mm->total_vm = 0;
1507  
1508  	/*
1509  	 * Lock the mm to avoid assert complaining even though this is the only
1510  	 * user of the mm
1511  	 */
1512  	mmap_write_lock(mm);
1513  	for_each_vma(vmi, vma) {
1514  		cleanup_vma_from_mm(vma);
1515  		delete_vma(mm, vma);
1516  		cond_resched();
1517  	}
1518  	__mt_destroy(&mm->mm_mt);
1519  	mmap_write_unlock(mm);
1520  }
1521  
1522  /*
1523   * expand (or shrink) an existing mapping, potentially moving it at the same
1524   * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1525   *
1526   * under NOMMU conditions, we only permit changing a mapping's size, and only
1527   * as long as it stays within the region allocated by do_mmap_private() and the
1528   * block is not shareable
1529   *
1530   * MREMAP_FIXED is not supported under NOMMU conditions
1531   */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1532  static unsigned long do_mremap(unsigned long addr,
1533  			unsigned long old_len, unsigned long new_len,
1534  			unsigned long flags, unsigned long new_addr)
1535  {
1536  	struct vm_area_struct *vma;
1537  
1538  	/* insanity checks first */
1539  	old_len = PAGE_ALIGN(old_len);
1540  	new_len = PAGE_ALIGN(new_len);
1541  	if (old_len == 0 || new_len == 0)
1542  		return (unsigned long) -EINVAL;
1543  
1544  	if (offset_in_page(addr))
1545  		return -EINVAL;
1546  
1547  	if (flags & MREMAP_FIXED && new_addr != addr)
1548  		return (unsigned long) -EINVAL;
1549  
1550  	vma = find_vma_exact(current->mm, addr, old_len);
1551  	if (!vma)
1552  		return (unsigned long) -EINVAL;
1553  
1554  	if (vma->vm_end != vma->vm_start + old_len)
1555  		return (unsigned long) -EFAULT;
1556  
1557  	if (is_nommu_shared_mapping(vma->vm_flags))
1558  		return (unsigned long) -EPERM;
1559  
1560  	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1561  		return (unsigned long) -ENOMEM;
1562  
1563  	/* all checks complete - do it */
1564  	vma->vm_end = vma->vm_start + new_len;
1565  	return vma->vm_start;
1566  }
1567  
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1568  SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1569  		unsigned long, new_len, unsigned long, flags,
1570  		unsigned long, new_addr)
1571  {
1572  	unsigned long ret;
1573  
1574  	mmap_write_lock(current->mm);
1575  	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1576  	mmap_write_unlock(current->mm);
1577  	return ret;
1578  }
1579  
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1580  int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1581  		unsigned long pfn, unsigned long size, pgprot_t prot)
1582  {
1583  	if (addr != (pfn << PAGE_SHIFT))
1584  		return -EINVAL;
1585  
1586  	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1587  	return 0;
1588  }
1589  EXPORT_SYMBOL(remap_pfn_range);
1590  
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1591  int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1592  {
1593  	unsigned long pfn = start >> PAGE_SHIFT;
1594  	unsigned long vm_len = vma->vm_end - vma->vm_start;
1595  
1596  	pfn += vma->vm_pgoff;
1597  	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1598  }
1599  EXPORT_SYMBOL(vm_iomap_memory);
1600  
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1601  int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1602  			unsigned long pgoff)
1603  {
1604  	unsigned int size = vma->vm_end - vma->vm_start;
1605  
1606  	if (!(vma->vm_flags & VM_USERMAP))
1607  		return -EINVAL;
1608  
1609  	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1610  	vma->vm_end = vma->vm_start + size;
1611  
1612  	return 0;
1613  }
1614  EXPORT_SYMBOL(remap_vmalloc_range);
1615  
filemap_fault(struct vm_fault * vmf)1616  vm_fault_t filemap_fault(struct vm_fault *vmf)
1617  {
1618  	BUG();
1619  	return 0;
1620  }
1621  EXPORT_SYMBOL(filemap_fault);
1622  
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1623  vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1624  		pgoff_t start_pgoff, pgoff_t end_pgoff)
1625  {
1626  	BUG();
1627  	return 0;
1628  }
1629  EXPORT_SYMBOL(filemap_map_pages);
1630  
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1631  static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1632  			      void *buf, int len, unsigned int gup_flags)
1633  {
1634  	struct vm_area_struct *vma;
1635  	int write = gup_flags & FOLL_WRITE;
1636  
1637  	if (mmap_read_lock_killable(mm))
1638  		return 0;
1639  
1640  	/* the access must start within one of the target process's mappings */
1641  	vma = find_vma(mm, addr);
1642  	if (vma) {
1643  		/* don't overrun this mapping */
1644  		if (addr + len >= vma->vm_end)
1645  			len = vma->vm_end - addr;
1646  
1647  		/* only read or write mappings where it is permitted */
1648  		if (write && vma->vm_flags & VM_MAYWRITE)
1649  			copy_to_user_page(vma, NULL, addr,
1650  					 (void *) addr, buf, len);
1651  		else if (!write && vma->vm_flags & VM_MAYREAD)
1652  			copy_from_user_page(vma, NULL, addr,
1653  					    buf, (void *) addr, len);
1654  		else
1655  			len = 0;
1656  	} else {
1657  		len = 0;
1658  	}
1659  
1660  	mmap_read_unlock(mm);
1661  
1662  	return len;
1663  }
1664  
1665  /**
1666   * access_remote_vm - access another process' address space
1667   * @mm:		the mm_struct of the target address space
1668   * @addr:	start address to access
1669   * @buf:	source or destination buffer
1670   * @len:	number of bytes to transfer
1671   * @gup_flags:	flags modifying lookup behaviour
1672   *
1673   * The caller must hold a reference on @mm.
1674   */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1675  int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1676  		void *buf, int len, unsigned int gup_flags)
1677  {
1678  	return __access_remote_vm(mm, addr, buf, len, gup_flags);
1679  }
1680  
1681  /*
1682   * Access another process' address space.
1683   * - source/target buffer must be kernel space
1684   */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1685  int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1686  		unsigned int gup_flags)
1687  {
1688  	struct mm_struct *mm;
1689  
1690  	if (addr + len < addr)
1691  		return 0;
1692  
1693  	mm = get_task_mm(tsk);
1694  	if (!mm)
1695  		return 0;
1696  
1697  	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1698  
1699  	mmput(mm);
1700  	return len;
1701  }
1702  EXPORT_SYMBOL_GPL(access_process_vm);
1703  
1704  /**
1705   * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1706   * @inode: The inode to check
1707   * @size: The current filesize of the inode
1708   * @newsize: The proposed filesize of the inode
1709   *
1710   * Check the shared mappings on an inode on behalf of a shrinking truncate to
1711   * make sure that any outstanding VMAs aren't broken and then shrink the
1712   * vm_regions that extend beyond so that do_mmap() doesn't
1713   * automatically grant mappings that are too large.
1714   */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)1715  int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1716  				size_t newsize)
1717  {
1718  	struct vm_area_struct *vma;
1719  	struct vm_region *region;
1720  	pgoff_t low, high;
1721  	size_t r_size, r_top;
1722  
1723  	low = newsize >> PAGE_SHIFT;
1724  	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1725  
1726  	down_write(&nommu_region_sem);
1727  	i_mmap_lock_read(inode->i_mapping);
1728  
1729  	/* search for VMAs that fall within the dead zone */
1730  	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1731  		/* found one - only interested if it's shared out of the page
1732  		 * cache */
1733  		if (vma->vm_flags & VM_SHARED) {
1734  			i_mmap_unlock_read(inode->i_mapping);
1735  			up_write(&nommu_region_sem);
1736  			return -ETXTBSY; /* not quite true, but near enough */
1737  		}
1738  	}
1739  
1740  	/* reduce any regions that overlap the dead zone - if in existence,
1741  	 * these will be pointed to by VMAs that don't overlap the dead zone
1742  	 *
1743  	 * we don't check for any regions that start beyond the EOF as there
1744  	 * shouldn't be any
1745  	 */
1746  	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1747  		if (!(vma->vm_flags & VM_SHARED))
1748  			continue;
1749  
1750  		region = vma->vm_region;
1751  		r_size = region->vm_top - region->vm_start;
1752  		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1753  
1754  		if (r_top > newsize) {
1755  			region->vm_top -= r_top - newsize;
1756  			if (region->vm_end > region->vm_top)
1757  				region->vm_end = region->vm_top;
1758  		}
1759  	}
1760  
1761  	i_mmap_unlock_read(inode->i_mapping);
1762  	up_write(&nommu_region_sem);
1763  	return 0;
1764  }
1765  
1766  /*
1767   * Initialise sysctl_user_reserve_kbytes.
1768   *
1769   * This is intended to prevent a user from starting a single memory hogging
1770   * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1771   * mode.
1772   *
1773   * The default value is min(3% of free memory, 128MB)
1774   * 128MB is enough to recover with sshd/login, bash, and top/kill.
1775   */
init_user_reserve(void)1776  static int __meminit init_user_reserve(void)
1777  {
1778  	unsigned long free_kbytes;
1779  
1780  	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1781  
1782  	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1783  	return 0;
1784  }
1785  subsys_initcall(init_user_reserve);
1786  
1787  /*
1788   * Initialise sysctl_admin_reserve_kbytes.
1789   *
1790   * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1791   * to log in and kill a memory hogging process.
1792   *
1793   * Systems with more than 256MB will reserve 8MB, enough to recover
1794   * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1795   * only reserve 3% of free pages by default.
1796   */
init_admin_reserve(void)1797  static int __meminit init_admin_reserve(void)
1798  {
1799  	unsigned long free_kbytes;
1800  
1801  	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1802  
1803  	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1804  	return 0;
1805  }
1806  subsys_initcall(init_admin_reserve);
1807