1  // SPDX-License-Identifier: GPL-2.0
2  /* Support for MMIO probes.
3   * Benefit many code from kprobes
4   * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
5   *     2007 Alexander Eichner
6   *     2008 Pekka Paalanen <pq@iki.fi>
7   */
8  
9  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10  
11  #include <linux/list.h>
12  #include <linux/rculist.h>
13  #include <linux/spinlock.h>
14  #include <linux/hash.h>
15  #include <linux/export.h>
16  #include <linux/kernel.h>
17  #include <linux/uaccess.h>
18  #include <linux/ptrace.h>
19  #include <linux/preempt.h>
20  #include <linux/percpu.h>
21  #include <linux/kdebug.h>
22  #include <linux/mutex.h>
23  #include <linux/io.h>
24  #include <linux/slab.h>
25  #include <asm/cacheflush.h>
26  #include <asm/tlbflush.h>
27  #include <linux/errno.h>
28  #include <asm/debugreg.h>
29  #include <linux/mmiotrace.h>
30  
31  #define KMMIO_PAGE_HASH_BITS 4
32  #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
33  
34  struct kmmio_fault_page {
35  	struct list_head list;
36  	struct kmmio_fault_page *release_next;
37  	unsigned long addr; /* the requested address */
38  	pteval_t old_presence; /* page presence prior to arming */
39  	bool armed;
40  
41  	/*
42  	 * Number of times this page has been registered as a part
43  	 * of a probe. If zero, page is disarmed and this may be freed.
44  	 * Used only by writers (RCU) and post_kmmio_handler().
45  	 * Protected by kmmio_lock, when linked into kmmio_page_table.
46  	 */
47  	int count;
48  
49  	bool scheduled_for_release;
50  };
51  
52  struct kmmio_delayed_release {
53  	struct rcu_head rcu;
54  	struct kmmio_fault_page *release_list;
55  };
56  
57  struct kmmio_context {
58  	struct kmmio_fault_page *fpage;
59  	struct kmmio_probe *probe;
60  	unsigned long saved_flags;
61  	unsigned long addr;
62  	int active;
63  };
64  
65  /*
66   * The kmmio_lock is taken in int3 context, which is treated as NMI context.
67   * This causes lockdep to complain about it bein in both NMI and normal
68   * context. Hide it from lockdep, as it should not have any other locks
69   * taken under it, and this is only enabled for debugging mmio anyway.
70   */
71  static arch_spinlock_t kmmio_lock = __ARCH_SPIN_LOCK_UNLOCKED;
72  
73  /* Protected by kmmio_lock */
74  unsigned int kmmio_count;
75  
76  /* Read-protected by RCU, write-protected by kmmio_lock. */
77  static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
78  static LIST_HEAD(kmmio_probes);
79  
kmmio_page_list(unsigned long addr)80  static struct list_head *kmmio_page_list(unsigned long addr)
81  {
82  	unsigned int l;
83  	pte_t *pte = lookup_address(addr, &l);
84  
85  	if (!pte)
86  		return NULL;
87  	addr &= page_level_mask(l);
88  
89  	return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)];
90  }
91  
92  /* Accessed per-cpu */
93  static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
94  
95  /*
96   * this is basically a dynamic stabbing problem:
97   * Could use the existing prio tree code or
98   * Possible better implementations:
99   * The Interval Skip List: A Data Structure for Finding All Intervals That
100   * Overlap a Point (might be simple)
101   * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
102   */
103  /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
get_kmmio_probe(unsigned long addr)104  static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
105  {
106  	struct kmmio_probe *p;
107  	list_for_each_entry_rcu(p, &kmmio_probes, list) {
108  		if (addr >= p->addr && addr < (p->addr + p->len))
109  			return p;
110  	}
111  	return NULL;
112  }
113  
114  /* You must be holding RCU read lock. */
get_kmmio_fault_page(unsigned long addr)115  static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr)
116  {
117  	struct list_head *head;
118  	struct kmmio_fault_page *f;
119  	unsigned int l;
120  	pte_t *pte = lookup_address(addr, &l);
121  
122  	if (!pte)
123  		return NULL;
124  	addr &= page_level_mask(l);
125  	head = kmmio_page_list(addr);
126  	list_for_each_entry_rcu(f, head, list) {
127  		if (f->addr == addr)
128  			return f;
129  	}
130  	return NULL;
131  }
132  
clear_pmd_presence(pmd_t * pmd,bool clear,pmdval_t * old)133  static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
134  {
135  	pmd_t new_pmd;
136  	pmdval_t v = pmd_val(*pmd);
137  	if (clear) {
138  		*old = v;
139  		new_pmd = pmd_mkinvalid(*pmd);
140  	} else {
141  		/* Presume this has been called with clear==true previously */
142  		new_pmd = __pmd(*old);
143  	}
144  	set_pmd(pmd, new_pmd);
145  }
146  
clear_pte_presence(pte_t * pte,bool clear,pteval_t * old)147  static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
148  {
149  	pteval_t v = pte_val(*pte);
150  	if (clear) {
151  		*old = v;
152  		/* Nothing should care about address */
153  		pte_clear(&init_mm, 0, pte);
154  	} else {
155  		/* Presume this has been called with clear==true previously */
156  		set_pte_atomic(pte, __pte(*old));
157  	}
158  }
159  
clear_page_presence(struct kmmio_fault_page * f,bool clear)160  static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
161  {
162  	unsigned int level;
163  	pte_t *pte = lookup_address(f->addr, &level);
164  
165  	if (!pte) {
166  		pr_err("no pte for addr 0x%08lx\n", f->addr);
167  		return -1;
168  	}
169  
170  	switch (level) {
171  	case PG_LEVEL_2M:
172  		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
173  		break;
174  	case PG_LEVEL_4K:
175  		clear_pte_presence(pte, clear, &f->old_presence);
176  		break;
177  	default:
178  		pr_err("unexpected page level 0x%x.\n", level);
179  		return -1;
180  	}
181  
182  	flush_tlb_one_kernel(f->addr);
183  	return 0;
184  }
185  
186  /*
187   * Mark the given page as not present. Access to it will trigger a fault.
188   *
189   * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
190   * protection is ignored here. RCU read lock is assumed held, so the struct
191   * will not disappear unexpectedly. Furthermore, the caller must guarantee,
192   * that double arming the same virtual address (page) cannot occur.
193   *
194   * Double disarming on the other hand is allowed, and may occur when a fault
195   * and mmiotrace shutdown happen simultaneously.
196   */
arm_kmmio_fault_page(struct kmmio_fault_page * f)197  static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
198  {
199  	int ret;
200  	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
201  	if (f->armed) {
202  		pr_warn("double-arm: addr 0x%08lx, ref %d, old %d\n",
203  			f->addr, f->count, !!f->old_presence);
204  	}
205  	ret = clear_page_presence(f, true);
206  	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"),
207  		  f->addr);
208  	f->armed = true;
209  	return ret;
210  }
211  
212  /** Restore the given page to saved presence state. */
disarm_kmmio_fault_page(struct kmmio_fault_page * f)213  static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
214  {
215  	int ret = clear_page_presence(f, false);
216  	WARN_ONCE(ret < 0,
217  			KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr);
218  	f->armed = false;
219  }
220  
221  /*
222   * This is being called from do_page_fault().
223   *
224   * We may be in an interrupt or a critical section. Also prefecthing may
225   * trigger a page fault. We may be in the middle of process switch.
226   * We cannot take any locks, because we could be executing especially
227   * within a kmmio critical section.
228   *
229   * Local interrupts are disabled, so preemption cannot happen.
230   * Do not enable interrupts, do not sleep, and watch out for other CPUs.
231   */
232  /*
233   * Interrupts are disabled on entry as trap3 is an interrupt gate
234   * and they remain disabled throughout this function.
235   */
kmmio_handler(struct pt_regs * regs,unsigned long addr)236  int kmmio_handler(struct pt_regs *regs, unsigned long addr)
237  {
238  	struct kmmio_context *ctx;
239  	struct kmmio_fault_page *faultpage;
240  	int ret = 0; /* default to fault not handled */
241  	unsigned long page_base = addr;
242  	unsigned int l;
243  	pte_t *pte = lookup_address(addr, &l);
244  	if (!pte)
245  		return -EINVAL;
246  	page_base &= page_level_mask(l);
247  
248  	/*
249  	 * Hold the RCU read lock over single stepping to avoid looking
250  	 * up the probe and kmmio_fault_page again. The rcu_read_lock_sched()
251  	 * also disables preemption and prevents process switch during
252  	 * the single stepping. We can only handle one active kmmio trace
253  	 * per cpu, so ensure that we finish it before something else
254  	 * gets to run.
255  	 */
256  	rcu_read_lock_sched_notrace();
257  
258  	faultpage = get_kmmio_fault_page(page_base);
259  	if (!faultpage) {
260  		/*
261  		 * Either this page fault is not caused by kmmio, or
262  		 * another CPU just pulled the kmmio probe from under
263  		 * our feet. The latter case should not be possible.
264  		 */
265  		goto no_kmmio;
266  	}
267  
268  	ctx = this_cpu_ptr(&kmmio_ctx);
269  	if (ctx->active) {
270  		if (page_base == ctx->addr) {
271  			/*
272  			 * A second fault on the same page means some other
273  			 * condition needs handling by do_page_fault(), the
274  			 * page really not being present is the most common.
275  			 */
276  			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
277  				 addr, smp_processor_id());
278  
279  			if (!faultpage->old_presence)
280  				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
281  					addr, smp_processor_id());
282  		} else {
283  			/*
284  			 * Prevent overwriting already in-flight context.
285  			 * This should not happen, let's hope disarming at
286  			 * least prevents a panic.
287  			 */
288  			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
289  				 smp_processor_id(), addr);
290  			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
291  			disarm_kmmio_fault_page(faultpage);
292  		}
293  		goto no_kmmio;
294  	}
295  	ctx->active++;
296  
297  	ctx->fpage = faultpage;
298  	ctx->probe = get_kmmio_probe(page_base);
299  	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
300  	ctx->addr = page_base;
301  
302  	if (ctx->probe && ctx->probe->pre_handler)
303  		ctx->probe->pre_handler(ctx->probe, regs, addr);
304  
305  	/*
306  	 * Enable single-stepping and disable interrupts for the faulting
307  	 * context. Local interrupts must not get enabled during stepping.
308  	 */
309  	regs->flags |= X86_EFLAGS_TF;
310  	regs->flags &= ~X86_EFLAGS_IF;
311  
312  	/* Now we set present bit in PTE and single step. */
313  	disarm_kmmio_fault_page(ctx->fpage);
314  
315  	/*
316  	 * If another cpu accesses the same page while we are stepping,
317  	 * the access will not be caught. It will simply succeed and the
318  	 * only downside is we lose the event. If this becomes a problem,
319  	 * the user should drop to single cpu before tracing.
320  	 */
321  
322  	return 1; /* fault handled */
323  
324  no_kmmio:
325  	rcu_read_unlock_sched_notrace();
326  	return ret;
327  }
328  
329  /*
330   * Interrupts are disabled on entry as trap1 is an interrupt gate
331   * and they remain disabled throughout this function.
332   * This must always get called as the pair to kmmio_handler().
333   */
post_kmmio_handler(unsigned long condition,struct pt_regs * regs)334  static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
335  {
336  	int ret = 0;
337  	struct kmmio_context *ctx = this_cpu_ptr(&kmmio_ctx);
338  
339  	if (!ctx->active) {
340  		/*
341  		 * debug traps without an active context are due to either
342  		 * something external causing them (f.e. using a debugger while
343  		 * mmio tracing enabled), or erroneous behaviour
344  		 */
345  		pr_warn("unexpected debug trap on CPU %d.\n", smp_processor_id());
346  		goto out;
347  	}
348  
349  	if (ctx->probe && ctx->probe->post_handler)
350  		ctx->probe->post_handler(ctx->probe, condition, regs);
351  
352  	/* Prevent racing against release_kmmio_fault_page(). */
353  	arch_spin_lock(&kmmio_lock);
354  	if (ctx->fpage->count)
355  		arm_kmmio_fault_page(ctx->fpage);
356  	arch_spin_unlock(&kmmio_lock);
357  
358  	regs->flags &= ~X86_EFLAGS_TF;
359  	regs->flags |= ctx->saved_flags;
360  
361  	/* These were acquired in kmmio_handler(). */
362  	ctx->active--;
363  	BUG_ON(ctx->active);
364  	rcu_read_unlock_sched_notrace();
365  
366  	/*
367  	 * if somebody else is singlestepping across a probe point, flags
368  	 * will have TF set, in which case, continue the remaining processing
369  	 * of do_debug, as if this is not a probe hit.
370  	 */
371  	if (!(regs->flags & X86_EFLAGS_TF))
372  		ret = 1;
373  out:
374  	return ret;
375  }
376  
377  /* You must be holding kmmio_lock. */
add_kmmio_fault_page(unsigned long addr)378  static int add_kmmio_fault_page(unsigned long addr)
379  {
380  	struct kmmio_fault_page *f;
381  
382  	f = get_kmmio_fault_page(addr);
383  	if (f) {
384  		if (!f->count)
385  			arm_kmmio_fault_page(f);
386  		f->count++;
387  		return 0;
388  	}
389  
390  	f = kzalloc(sizeof(*f), GFP_ATOMIC);
391  	if (!f)
392  		return -1;
393  
394  	f->count = 1;
395  	f->addr = addr;
396  
397  	if (arm_kmmio_fault_page(f)) {
398  		kfree(f);
399  		return -1;
400  	}
401  
402  	list_add_rcu(&f->list, kmmio_page_list(f->addr));
403  
404  	return 0;
405  }
406  
407  /* You must be holding kmmio_lock. */
release_kmmio_fault_page(unsigned long addr,struct kmmio_fault_page ** release_list)408  static void release_kmmio_fault_page(unsigned long addr,
409  				struct kmmio_fault_page **release_list)
410  {
411  	struct kmmio_fault_page *f;
412  
413  	f = get_kmmio_fault_page(addr);
414  	if (!f)
415  		return;
416  
417  	f->count--;
418  	BUG_ON(f->count < 0);
419  	if (!f->count) {
420  		disarm_kmmio_fault_page(f);
421  		if (!f->scheduled_for_release) {
422  			f->release_next = *release_list;
423  			*release_list = f;
424  			f->scheduled_for_release = true;
425  		}
426  	}
427  }
428  
429  /*
430   * With page-unaligned ioremaps, one or two armed pages may contain
431   * addresses from outside the intended mapping. Events for these addresses
432   * are currently silently dropped. The events may result only from programming
433   * mistakes by accessing addresses before the beginning or past the end of a
434   * mapping.
435   */
register_kmmio_probe(struct kmmio_probe * p)436  int register_kmmio_probe(struct kmmio_probe *p)
437  {
438  	unsigned long flags;
439  	int ret = 0;
440  	unsigned long size = 0;
441  	unsigned long addr = p->addr & PAGE_MASK;
442  	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
443  	unsigned int l;
444  	pte_t *pte;
445  
446  	local_irq_save(flags);
447  	arch_spin_lock(&kmmio_lock);
448  	if (get_kmmio_probe(addr)) {
449  		ret = -EEXIST;
450  		goto out;
451  	}
452  
453  	pte = lookup_address(addr, &l);
454  	if (!pte) {
455  		ret = -EINVAL;
456  		goto out;
457  	}
458  
459  	kmmio_count++;
460  	list_add_rcu(&p->list, &kmmio_probes);
461  	while (size < size_lim) {
462  		if (add_kmmio_fault_page(addr + size))
463  			pr_err("Unable to set page fault.\n");
464  		size += page_level_size(l);
465  	}
466  out:
467  	arch_spin_unlock(&kmmio_lock);
468  	local_irq_restore(flags);
469  
470  	/*
471  	 * XXX: What should I do here?
472  	 * Here was a call to global_flush_tlb(), but it does not exist
473  	 * anymore. It seems it's not needed after all.
474  	 */
475  	return ret;
476  }
477  EXPORT_SYMBOL(register_kmmio_probe);
478  
rcu_free_kmmio_fault_pages(struct rcu_head * head)479  static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
480  {
481  	struct kmmio_delayed_release *dr = container_of(
482  						head,
483  						struct kmmio_delayed_release,
484  						rcu);
485  	struct kmmio_fault_page *f = dr->release_list;
486  	while (f) {
487  		struct kmmio_fault_page *next = f->release_next;
488  		BUG_ON(f->count);
489  		kfree(f);
490  		f = next;
491  	}
492  	kfree(dr);
493  }
494  
remove_kmmio_fault_pages(struct rcu_head * head)495  static void remove_kmmio_fault_pages(struct rcu_head *head)
496  {
497  	struct kmmio_delayed_release *dr =
498  		container_of(head, struct kmmio_delayed_release, rcu);
499  	struct kmmio_fault_page *f = dr->release_list;
500  	struct kmmio_fault_page **prevp = &dr->release_list;
501  	unsigned long flags;
502  
503  	local_irq_save(flags);
504  	arch_spin_lock(&kmmio_lock);
505  	while (f) {
506  		if (!f->count) {
507  			list_del_rcu(&f->list);
508  			prevp = &f->release_next;
509  		} else {
510  			*prevp = f->release_next;
511  			f->release_next = NULL;
512  			f->scheduled_for_release = false;
513  		}
514  		f = *prevp;
515  	}
516  	arch_spin_unlock(&kmmio_lock);
517  	local_irq_restore(flags);
518  
519  	/* This is the real RCU destroy call. */
520  	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
521  }
522  
523  /*
524   * Remove a kmmio probe. You have to synchronize_rcu() before you can be
525   * sure that the callbacks will not be called anymore. Only after that
526   * you may actually release your struct kmmio_probe.
527   *
528   * Unregistering a kmmio fault page has three steps:
529   * 1. release_kmmio_fault_page()
530   *    Disarm the page, wait a grace period to let all faults finish.
531   * 2. remove_kmmio_fault_pages()
532   *    Remove the pages from kmmio_page_table.
533   * 3. rcu_free_kmmio_fault_pages()
534   *    Actually free the kmmio_fault_page structs as with RCU.
535   */
unregister_kmmio_probe(struct kmmio_probe * p)536  void unregister_kmmio_probe(struct kmmio_probe *p)
537  {
538  	unsigned long flags;
539  	unsigned long size = 0;
540  	unsigned long addr = p->addr & PAGE_MASK;
541  	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
542  	struct kmmio_fault_page *release_list = NULL;
543  	struct kmmio_delayed_release *drelease;
544  	unsigned int l;
545  	pte_t *pte;
546  
547  	pte = lookup_address(addr, &l);
548  	if (!pte)
549  		return;
550  
551  	local_irq_save(flags);
552  	arch_spin_lock(&kmmio_lock);
553  	while (size < size_lim) {
554  		release_kmmio_fault_page(addr + size, &release_list);
555  		size += page_level_size(l);
556  	}
557  	list_del_rcu(&p->list);
558  	kmmio_count--;
559  	arch_spin_unlock(&kmmio_lock);
560  	local_irq_restore(flags);
561  
562  	if (!release_list)
563  		return;
564  
565  	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
566  	if (!drelease) {
567  		pr_crit("leaking kmmio_fault_page objects.\n");
568  		return;
569  	}
570  	drelease->release_list = release_list;
571  
572  	/*
573  	 * This is not really RCU here. We have just disarmed a set of
574  	 * pages so that they cannot trigger page faults anymore. However,
575  	 * we cannot remove the pages from kmmio_page_table,
576  	 * because a probe hit might be in flight on another CPU. The
577  	 * pages are collected into a list, and they will be removed from
578  	 * kmmio_page_table when it is certain that no probe hit related to
579  	 * these pages can be in flight. RCU grace period sounds like a
580  	 * good choice.
581  	 *
582  	 * If we removed the pages too early, kmmio page fault handler might
583  	 * not find the respective kmmio_fault_page and determine it's not
584  	 * a kmmio fault, when it actually is. This would lead to madness.
585  	 */
586  	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
587  }
588  EXPORT_SYMBOL(unregister_kmmio_probe);
589  
590  static int
kmmio_die_notifier(struct notifier_block * nb,unsigned long val,void * args)591  kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
592  {
593  	struct die_args *arg = args;
594  	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
595  
596  	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
597  		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
598  			/*
599  			 * Reset the BS bit in dr6 (pointed by args->err) to
600  			 * denote completion of processing
601  			 */
602  			*dr6_p &= ~DR_STEP;
603  			return NOTIFY_STOP;
604  		}
605  
606  	return NOTIFY_DONE;
607  }
608  
609  static struct notifier_block nb_die = {
610  	.notifier_call = kmmio_die_notifier
611  };
612  
kmmio_init(void)613  int kmmio_init(void)
614  {
615  	int i;
616  
617  	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
618  		INIT_LIST_HEAD(&kmmio_page_table[i]);
619  
620  	return register_die_notifier(&nb_die);
621  }
622  
kmmio_cleanup(void)623  void kmmio_cleanup(void)
624  {
625  	int i;
626  
627  	unregister_die_notifier(&nb_die);
628  	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
629  		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
630  			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
631  	}
632  }
633