1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41 
42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);
43 
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46 
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 	"sb_writers",
49 	"sb_pagefaults",
50 	"sb_internal",
51 };
52 
__super_lock(struct super_block * sb,bool excl)53 static inline void __super_lock(struct super_block *sb, bool excl)
54 {
55 	if (excl)
56 		down_write(&sb->s_umount);
57 	else
58 		down_read(&sb->s_umount);
59 }
60 
super_unlock(struct super_block * sb,bool excl)61 static inline void super_unlock(struct super_block *sb, bool excl)
62 {
63 	if (excl)
64 		up_write(&sb->s_umount);
65 	else
66 		up_read(&sb->s_umount);
67 }
68 
__super_lock_excl(struct super_block * sb)69 static inline void __super_lock_excl(struct super_block *sb)
70 {
71 	__super_lock(sb, true);
72 }
73 
super_unlock_excl(struct super_block * sb)74 static inline void super_unlock_excl(struct super_block *sb)
75 {
76 	super_unlock(sb, true);
77 }
78 
super_unlock_shared(struct super_block * sb)79 static inline void super_unlock_shared(struct super_block *sb)
80 {
81 	super_unlock(sb, false);
82 }
83 
super_flags(const struct super_block * sb,unsigned int flags)84 static bool super_flags(const struct super_block *sb, unsigned int flags)
85 {
86 	/*
87 	 * Pairs with smp_store_release() in super_wake() and ensures
88 	 * that we see @flags after we're woken.
89 	 */
90 	return smp_load_acquire(&sb->s_flags) & flags;
91 }
92 
93 /**
94  * super_lock - wait for superblock to become ready and lock it
95  * @sb: superblock to wait for
96  * @excl: whether exclusive access is required
97  *
98  * If the superblock has neither passed through vfs_get_tree() or
99  * generic_shutdown_super() yet wait for it to happen. Either superblock
100  * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
101  * woken and we'll see SB_DYING.
102  *
103  * The caller must have acquired a temporary reference on @sb->s_count.
104  *
105  * Return: The function returns true if SB_BORN was set and with
106  *         s_umount held. The function returns false if SB_DYING was
107  *         set and without s_umount held.
108  */
super_lock(struct super_block * sb,bool excl)109 static __must_check bool super_lock(struct super_block *sb, bool excl)
110 {
111 	lockdep_assert_not_held(&sb->s_umount);
112 
113 	/* wait until the superblock is ready or dying */
114 	wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING));
115 
116 	/* Don't pointlessly acquire s_umount. */
117 	if (super_flags(sb, SB_DYING))
118 		return false;
119 
120 	__super_lock(sb, excl);
121 
122 	/*
123 	 * Has gone through generic_shutdown_super() in the meantime.
124 	 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
125 	 * grab a reference to this. Tell them so.
126 	 */
127 	if (sb->s_flags & SB_DYING) {
128 		super_unlock(sb, excl);
129 		return false;
130 	}
131 
132 	WARN_ON_ONCE(!(sb->s_flags & SB_BORN));
133 	return true;
134 }
135 
136 /* wait and try to acquire read-side of @sb->s_umount */
super_lock_shared(struct super_block * sb)137 static inline bool super_lock_shared(struct super_block *sb)
138 {
139 	return super_lock(sb, false);
140 }
141 
142 /* wait and try to acquire write-side of @sb->s_umount */
super_lock_excl(struct super_block * sb)143 static inline bool super_lock_excl(struct super_block *sb)
144 {
145 	return super_lock(sb, true);
146 }
147 
148 /* wake waiters */
149 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
super_wake(struct super_block * sb,unsigned int flag)150 static void super_wake(struct super_block *sb, unsigned int flag)
151 {
152 	WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
153 	WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
154 
155 	/*
156 	 * Pairs with smp_load_acquire() in super_lock() to make sure
157 	 * all initializations in the superblock are seen by the user
158 	 * seeing SB_BORN sent.
159 	 */
160 	smp_store_release(&sb->s_flags, sb->s_flags | flag);
161 	/*
162 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
163 	 * ___wait_var_event() either sees SB_BORN set or
164 	 * waitqueue_active() check in wake_up_var() sees the waiter.
165 	 */
166 	smp_mb();
167 	wake_up_var(&sb->s_flags);
168 }
169 
170 /*
171  * One thing we have to be careful of with a per-sb shrinker is that we don't
172  * drop the last active reference to the superblock from within the shrinker.
173  * If that happens we could trigger unregistering the shrinker from within the
174  * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
175  * take a passive reference to the superblock to avoid this from occurring.
176  */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)177 static unsigned long super_cache_scan(struct shrinker *shrink,
178 				      struct shrink_control *sc)
179 {
180 	struct super_block *sb;
181 	long	fs_objects = 0;
182 	long	total_objects;
183 	long	freed = 0;
184 	long	dentries;
185 	long	inodes;
186 
187 	sb = shrink->private_data;
188 
189 	/*
190 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
191 	 * to recurse into the FS that called us in clear_inode() and friends..
192 	 */
193 	if (!(sc->gfp_mask & __GFP_FS))
194 		return SHRINK_STOP;
195 
196 	if (!super_trylock_shared(sb))
197 		return SHRINK_STOP;
198 
199 	if (sb->s_op->nr_cached_objects)
200 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
201 
202 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
203 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
204 	total_objects = dentries + inodes + fs_objects + 1;
205 	if (!total_objects)
206 		total_objects = 1;
207 
208 	/* proportion the scan between the caches */
209 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
210 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
211 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
212 
213 	/*
214 	 * prune the dcache first as the icache is pinned by it, then
215 	 * prune the icache, followed by the filesystem specific caches
216 	 *
217 	 * Ensure that we always scan at least one object - memcg kmem
218 	 * accounting uses this to fully empty the caches.
219 	 */
220 	sc->nr_to_scan = dentries + 1;
221 	freed = prune_dcache_sb(sb, sc);
222 	sc->nr_to_scan = inodes + 1;
223 	freed += prune_icache_sb(sb, sc);
224 
225 	if (fs_objects) {
226 		sc->nr_to_scan = fs_objects + 1;
227 		freed += sb->s_op->free_cached_objects(sb, sc);
228 	}
229 
230 	super_unlock_shared(sb);
231 	return freed;
232 }
233 
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)234 static unsigned long super_cache_count(struct shrinker *shrink,
235 				       struct shrink_control *sc)
236 {
237 	struct super_block *sb;
238 	long	total_objects = 0;
239 
240 	sb = shrink->private_data;
241 
242 	/*
243 	 * We don't call super_trylock_shared() here as it is a scalability
244 	 * bottleneck, so we're exposed to partial setup state. The shrinker
245 	 * rwsem does not protect filesystem operations backing
246 	 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
247 	 * change between super_cache_count and super_cache_scan, so we really
248 	 * don't need locks here.
249 	 *
250 	 * However, if we are currently mounting the superblock, the underlying
251 	 * filesystem might be in a state of partial construction and hence it
252 	 * is dangerous to access it.  super_trylock_shared() uses a SB_BORN check
253 	 * to avoid this situation, so do the same here. The memory barrier is
254 	 * matched with the one in mount_fs() as we don't hold locks here.
255 	 */
256 	if (!(sb->s_flags & SB_BORN))
257 		return 0;
258 	smp_rmb();
259 
260 	if (sb->s_op && sb->s_op->nr_cached_objects)
261 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
262 
263 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
264 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
265 
266 	if (!total_objects)
267 		return SHRINK_EMPTY;
268 
269 	total_objects = vfs_pressure_ratio(total_objects);
270 	return total_objects;
271 }
272 
destroy_super_work(struct work_struct * work)273 static void destroy_super_work(struct work_struct *work)
274 {
275 	struct super_block *s = container_of(work, struct super_block,
276 							destroy_work);
277 	fsnotify_sb_free(s);
278 	security_sb_free(s);
279 	put_user_ns(s->s_user_ns);
280 	kfree(s->s_subtype);
281 	for (int i = 0; i < SB_FREEZE_LEVELS; i++)
282 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
283 	kfree(s);
284 }
285 
destroy_super_rcu(struct rcu_head * head)286 static void destroy_super_rcu(struct rcu_head *head)
287 {
288 	struct super_block *s = container_of(head, struct super_block, rcu);
289 	INIT_WORK(&s->destroy_work, destroy_super_work);
290 	schedule_work(&s->destroy_work);
291 }
292 
293 /* Free a superblock that has never been seen by anyone */
destroy_unused_super(struct super_block * s)294 static void destroy_unused_super(struct super_block *s)
295 {
296 	if (!s)
297 		return;
298 	super_unlock_excl(s);
299 	list_lru_destroy(&s->s_dentry_lru);
300 	list_lru_destroy(&s->s_inode_lru);
301 	shrinker_free(s->s_shrink);
302 	/* no delays needed */
303 	destroy_super_work(&s->destroy_work);
304 }
305 
306 /**
307  *	alloc_super	-	create new superblock
308  *	@type:	filesystem type superblock should belong to
309  *	@flags: the mount flags
310  *	@user_ns: User namespace for the super_block
311  *
312  *	Allocates and initializes a new &struct super_block.  alloc_super()
313  *	returns a pointer new superblock or %NULL if allocation had failed.
314  */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)315 static struct super_block *alloc_super(struct file_system_type *type, int flags,
316 				       struct user_namespace *user_ns)
317 {
318 	struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL);
319 	static const struct super_operations default_op;
320 	int i;
321 
322 	if (!s)
323 		return NULL;
324 
325 	INIT_LIST_HEAD(&s->s_mounts);
326 	s->s_user_ns = get_user_ns(user_ns);
327 	init_rwsem(&s->s_umount);
328 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
329 	/*
330 	 * sget() can have s_umount recursion.
331 	 *
332 	 * When it cannot find a suitable sb, it allocates a new
333 	 * one (this one), and tries again to find a suitable old
334 	 * one.
335 	 *
336 	 * In case that succeeds, it will acquire the s_umount
337 	 * lock of the old one. Since these are clearly distrinct
338 	 * locks, and this object isn't exposed yet, there's no
339 	 * risk of deadlocks.
340 	 *
341 	 * Annotate this by putting this lock in a different
342 	 * subclass.
343 	 */
344 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
345 
346 	if (security_sb_alloc(s))
347 		goto fail;
348 
349 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
350 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
351 					sb_writers_name[i],
352 					&type->s_writers_key[i]))
353 			goto fail;
354 	}
355 	s->s_bdi = &noop_backing_dev_info;
356 	s->s_flags = flags;
357 	if (s->s_user_ns != &init_user_ns)
358 		s->s_iflags |= SB_I_NODEV;
359 	INIT_HLIST_NODE(&s->s_instances);
360 	INIT_HLIST_BL_HEAD(&s->s_roots);
361 	mutex_init(&s->s_sync_lock);
362 	INIT_LIST_HEAD(&s->s_inodes);
363 	spin_lock_init(&s->s_inode_list_lock);
364 	INIT_LIST_HEAD(&s->s_inodes_wb);
365 	spin_lock_init(&s->s_inode_wblist_lock);
366 
367 	s->s_count = 1;
368 	atomic_set(&s->s_active, 1);
369 	mutex_init(&s->s_vfs_rename_mutex);
370 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
371 	init_rwsem(&s->s_dquot.dqio_sem);
372 	s->s_maxbytes = MAX_NON_LFS;
373 	s->s_op = &default_op;
374 	s->s_time_gran = 1000000000;
375 	s->s_time_min = TIME64_MIN;
376 	s->s_time_max = TIME64_MAX;
377 
378 	s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
379 				     "sb-%s", type->name);
380 	if (!s->s_shrink)
381 		goto fail;
382 
383 	s->s_shrink->scan_objects = super_cache_scan;
384 	s->s_shrink->count_objects = super_cache_count;
385 	s->s_shrink->batch = 1024;
386 	s->s_shrink->private_data = s;
387 
388 	if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink))
389 		goto fail;
390 	if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink))
391 		goto fail;
392 	return s;
393 
394 fail:
395 	destroy_unused_super(s);
396 	return NULL;
397 }
398 
399 /* Superblock refcounting  */
400 
401 /*
402  * Drop a superblock's refcount.  The caller must hold sb_lock.
403  */
__put_super(struct super_block * s)404 static void __put_super(struct super_block *s)
405 {
406 	if (!--s->s_count) {
407 		list_del_init(&s->s_list);
408 		WARN_ON(s->s_dentry_lru.node);
409 		WARN_ON(s->s_inode_lru.node);
410 		WARN_ON(!list_empty(&s->s_mounts));
411 		call_rcu(&s->rcu, destroy_super_rcu);
412 	}
413 }
414 
415 /**
416  *	put_super	-	drop a temporary reference to superblock
417  *	@sb: superblock in question
418  *
419  *	Drops a temporary reference, frees superblock if there's no
420  *	references left.
421  */
put_super(struct super_block * sb)422 void put_super(struct super_block *sb)
423 {
424 	spin_lock(&sb_lock);
425 	__put_super(sb);
426 	spin_unlock(&sb_lock);
427 }
428 
kill_super_notify(struct super_block * sb)429 static void kill_super_notify(struct super_block *sb)
430 {
431 	lockdep_assert_not_held(&sb->s_umount);
432 
433 	/* already notified earlier */
434 	if (sb->s_flags & SB_DEAD)
435 		return;
436 
437 	/*
438 	 * Remove it from @fs_supers so it isn't found by new
439 	 * sget{_fc}() walkers anymore. Any concurrent mounter still
440 	 * managing to grab a temporary reference is guaranteed to
441 	 * already see SB_DYING and will wait until we notify them about
442 	 * SB_DEAD.
443 	 */
444 	spin_lock(&sb_lock);
445 	hlist_del_init(&sb->s_instances);
446 	spin_unlock(&sb_lock);
447 
448 	/*
449 	 * Let concurrent mounts know that this thing is really dead.
450 	 * We don't need @sb->s_umount here as every concurrent caller
451 	 * will see SB_DYING and either discard the superblock or wait
452 	 * for SB_DEAD.
453 	 */
454 	super_wake(sb, SB_DEAD);
455 }
456 
457 /**
458  *	deactivate_locked_super	-	drop an active reference to superblock
459  *	@s: superblock to deactivate
460  *
461  *	Drops an active reference to superblock, converting it into a temporary
462  *	one if there is no other active references left.  In that case we
463  *	tell fs driver to shut it down and drop the temporary reference we
464  *	had just acquired.
465  *
466  *	Caller holds exclusive lock on superblock; that lock is released.
467  */
deactivate_locked_super(struct super_block * s)468 void deactivate_locked_super(struct super_block *s)
469 {
470 	struct file_system_type *fs = s->s_type;
471 	if (atomic_dec_and_test(&s->s_active)) {
472 		shrinker_free(s->s_shrink);
473 		fs->kill_sb(s);
474 
475 		kill_super_notify(s);
476 
477 		/*
478 		 * Since list_lru_destroy() may sleep, we cannot call it from
479 		 * put_super(), where we hold the sb_lock. Therefore we destroy
480 		 * the lru lists right now.
481 		 */
482 		list_lru_destroy(&s->s_dentry_lru);
483 		list_lru_destroy(&s->s_inode_lru);
484 
485 		put_filesystem(fs);
486 		put_super(s);
487 	} else {
488 		super_unlock_excl(s);
489 	}
490 }
491 
492 EXPORT_SYMBOL(deactivate_locked_super);
493 
494 /**
495  *	deactivate_super	-	drop an active reference to superblock
496  *	@s: superblock to deactivate
497  *
498  *	Variant of deactivate_locked_super(), except that superblock is *not*
499  *	locked by caller.  If we are going to drop the final active reference,
500  *	lock will be acquired prior to that.
501  */
deactivate_super(struct super_block * s)502 void deactivate_super(struct super_block *s)
503 {
504 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
505 		__super_lock_excl(s);
506 		deactivate_locked_super(s);
507 	}
508 }
509 
510 EXPORT_SYMBOL(deactivate_super);
511 
512 /**
513  * grab_super - acquire an active reference to a superblock
514  * @sb: superblock to acquire
515  *
516  * Acquire a temporary reference on a superblock and try to trade it for
517  * an active reference. This is used in sget{_fc}() to wait for a
518  * superblock to either become SB_BORN or for it to pass through
519  * sb->kill() and be marked as SB_DEAD.
520  *
521  * Return: This returns true if an active reference could be acquired,
522  *         false if not.
523  */
grab_super(struct super_block * sb)524 static bool grab_super(struct super_block *sb)
525 {
526 	bool locked;
527 
528 	sb->s_count++;
529 	spin_unlock(&sb_lock);
530 	locked = super_lock_excl(sb);
531 	if (locked) {
532 		if (atomic_inc_not_zero(&sb->s_active)) {
533 			put_super(sb);
534 			return true;
535 		}
536 		super_unlock_excl(sb);
537 	}
538 	wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD));
539 	put_super(sb);
540 	return false;
541 }
542 
543 /*
544  *	super_trylock_shared - try to grab ->s_umount shared
545  *	@sb: reference we are trying to grab
546  *
547  *	Try to prevent fs shutdown.  This is used in places where we
548  *	cannot take an active reference but we need to ensure that the
549  *	filesystem is not shut down while we are working on it. It returns
550  *	false if we cannot acquire s_umount or if we lose the race and
551  *	filesystem already got into shutdown, and returns true with the s_umount
552  *	lock held in read mode in case of success. On successful return,
553  *	the caller must drop the s_umount lock when done.
554  *
555  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
556  *	The reason why it's safe is that we are OK with doing trylock instead
557  *	of down_read().  There's a couple of places that are OK with that, but
558  *	it's very much not a general-purpose interface.
559  */
super_trylock_shared(struct super_block * sb)560 bool super_trylock_shared(struct super_block *sb)
561 {
562 	if (down_read_trylock(&sb->s_umount)) {
563 		if (!(sb->s_flags & SB_DYING) && sb->s_root &&
564 		    (sb->s_flags & SB_BORN))
565 			return true;
566 		super_unlock_shared(sb);
567 	}
568 
569 	return false;
570 }
571 
572 /**
573  *	retire_super	-	prevents superblock from being reused
574  *	@sb: superblock to retire
575  *
576  *	The function marks superblock to be ignored in superblock test, which
577  *	prevents it from being reused for any new mounts.  If the superblock has
578  *	a private bdi, it also unregisters it, but doesn't reduce the refcount
579  *	of the superblock to prevent potential races.  The refcount is reduced
580  *	by generic_shutdown_super().  The function can not be called
581  *	concurrently with generic_shutdown_super().  It is safe to call the
582  *	function multiple times, subsequent calls have no effect.
583  *
584  *	The marker will affect the re-use only for block-device-based
585  *	superblocks.  Other superblocks will still get marked if this function
586  *	is used, but that will not affect their reusability.
587  */
retire_super(struct super_block * sb)588 void retire_super(struct super_block *sb)
589 {
590 	WARN_ON(!sb->s_bdev);
591 	__super_lock_excl(sb);
592 	if (sb->s_iflags & SB_I_PERSB_BDI) {
593 		bdi_unregister(sb->s_bdi);
594 		sb->s_iflags &= ~SB_I_PERSB_BDI;
595 	}
596 	sb->s_iflags |= SB_I_RETIRED;
597 	super_unlock_excl(sb);
598 }
599 EXPORT_SYMBOL(retire_super);
600 
601 /**
602  *	generic_shutdown_super	-	common helper for ->kill_sb()
603  *	@sb: superblock to kill
604  *
605  *	generic_shutdown_super() does all fs-independent work on superblock
606  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
607  *	that need destruction out of superblock, call generic_shutdown_super()
608  *	and release aforementioned objects.  Note: dentries and inodes _are_
609  *	taken care of and do not need specific handling.
610  *
611  *	Upon calling this function, the filesystem may no longer alter or
612  *	rearrange the set of dentries belonging to this super_block, nor may it
613  *	change the attachments of dentries to inodes.
614  */
generic_shutdown_super(struct super_block * sb)615 void generic_shutdown_super(struct super_block *sb)
616 {
617 	const struct super_operations *sop = sb->s_op;
618 
619 	if (sb->s_root) {
620 		shrink_dcache_for_umount(sb);
621 		sync_filesystem(sb);
622 		sb->s_flags &= ~SB_ACTIVE;
623 
624 		cgroup_writeback_umount(sb);
625 
626 		/* Evict all inodes with zero refcount. */
627 		evict_inodes(sb);
628 
629 		/*
630 		 * Clean up and evict any inodes that still have references due
631 		 * to fsnotify or the security policy.
632 		 */
633 		fsnotify_sb_delete(sb);
634 		security_sb_delete(sb);
635 
636 		if (sb->s_dio_done_wq) {
637 			destroy_workqueue(sb->s_dio_done_wq);
638 			sb->s_dio_done_wq = NULL;
639 		}
640 
641 		if (sop->put_super)
642 			sop->put_super(sb);
643 
644 		/*
645 		 * Now that all potentially-encrypted inodes have been evicted,
646 		 * the fscrypt keyring can be destroyed.
647 		 */
648 		fscrypt_destroy_keyring(sb);
649 
650 		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
651 				"VFS: Busy inodes after unmount of %s (%s)",
652 				sb->s_id, sb->s_type->name)) {
653 			/*
654 			 * Adding a proper bailout path here would be hard, but
655 			 * we can at least make it more likely that a later
656 			 * iput_final() or such crashes cleanly.
657 			 */
658 			struct inode *inode;
659 
660 			spin_lock(&sb->s_inode_list_lock);
661 			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
662 				inode->i_op = VFS_PTR_POISON;
663 				inode->i_sb = VFS_PTR_POISON;
664 				inode->i_mapping = VFS_PTR_POISON;
665 			}
666 			spin_unlock(&sb->s_inode_list_lock);
667 		}
668 	}
669 	/*
670 	 * Broadcast to everyone that grabbed a temporary reference to this
671 	 * superblock before we removed it from @fs_supers that the superblock
672 	 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
673 	 * discard this superblock and treat it as dead.
674 	 *
675 	 * We leave the superblock on @fs_supers so it can be found by
676 	 * sget{_fc}() until we passed sb->kill_sb().
677 	 */
678 	super_wake(sb, SB_DYING);
679 	super_unlock_excl(sb);
680 	if (sb->s_bdi != &noop_backing_dev_info) {
681 		if (sb->s_iflags & SB_I_PERSB_BDI)
682 			bdi_unregister(sb->s_bdi);
683 		bdi_put(sb->s_bdi);
684 		sb->s_bdi = &noop_backing_dev_info;
685 	}
686 }
687 
688 EXPORT_SYMBOL(generic_shutdown_super);
689 
mount_capable(struct fs_context * fc)690 bool mount_capable(struct fs_context *fc)
691 {
692 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
693 		return capable(CAP_SYS_ADMIN);
694 	else
695 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
696 }
697 
698 /**
699  * sget_fc - Find or create a superblock
700  * @fc:	Filesystem context.
701  * @test: Comparison callback
702  * @set: Setup callback
703  *
704  * Create a new superblock or find an existing one.
705  *
706  * The @test callback is used to find a matching existing superblock.
707  * Whether or not the requested parameters in @fc are taken into account
708  * is specific to the @test callback that is used. They may even be
709  * completely ignored.
710  *
711  * If an extant superblock is matched, it will be returned unless:
712  *
713  * (1) the namespace the filesystem context @fc and the extant
714  *     superblock's namespace differ
715  *
716  * (2) the filesystem context @fc has requested that reusing an extant
717  *     superblock is not allowed
718  *
719  * In both cases EBUSY will be returned.
720  *
721  * If no match is made, a new superblock will be allocated and basic
722  * initialisation will be performed (s_type, s_fs_info and s_id will be
723  * set and the @set callback will be invoked), the superblock will be
724  * published and it will be returned in a partially constructed state
725  * with SB_BORN and SB_ACTIVE as yet unset.
726  *
727  * Return: On success, an extant or newly created superblock is
728  *         returned. On failure an error pointer is returned.
729  */
sget_fc(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* set)(struct super_block *,struct fs_context *))730 struct super_block *sget_fc(struct fs_context *fc,
731 			    int (*test)(struct super_block *, struct fs_context *),
732 			    int (*set)(struct super_block *, struct fs_context *))
733 {
734 	struct super_block *s = NULL;
735 	struct super_block *old;
736 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
737 	int err;
738 
739 	/*
740 	 * Never allow s_user_ns != &init_user_ns when FS_USERNS_MOUNT is
741 	 * not set, as the filesystem is likely unprepared to handle it.
742 	 * This can happen when fsconfig() is called from init_user_ns with
743 	 * an fs_fd opened in another user namespace.
744 	 */
745 	if (user_ns != &init_user_ns && !(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) {
746 		errorfc(fc, "VFS: Mounting from non-initial user namespace is not allowed");
747 		return ERR_PTR(-EPERM);
748 	}
749 
750 retry:
751 	spin_lock(&sb_lock);
752 	if (test) {
753 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
754 			if (test(old, fc))
755 				goto share_extant_sb;
756 		}
757 	}
758 	if (!s) {
759 		spin_unlock(&sb_lock);
760 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
761 		if (!s)
762 			return ERR_PTR(-ENOMEM);
763 		goto retry;
764 	}
765 
766 	s->s_fs_info = fc->s_fs_info;
767 	err = set(s, fc);
768 	if (err) {
769 		s->s_fs_info = NULL;
770 		spin_unlock(&sb_lock);
771 		destroy_unused_super(s);
772 		return ERR_PTR(err);
773 	}
774 	fc->s_fs_info = NULL;
775 	s->s_type = fc->fs_type;
776 	s->s_iflags |= fc->s_iflags;
777 	strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
778 	/*
779 	 * Make the superblock visible on @super_blocks and @fs_supers.
780 	 * It's in a nascent state and users should wait on SB_BORN or
781 	 * SB_DYING to be set.
782 	 */
783 	list_add_tail(&s->s_list, &super_blocks);
784 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
785 	spin_unlock(&sb_lock);
786 	get_filesystem(s->s_type);
787 	shrinker_register(s->s_shrink);
788 	return s;
789 
790 share_extant_sb:
791 	if (user_ns != old->s_user_ns || fc->exclusive) {
792 		spin_unlock(&sb_lock);
793 		destroy_unused_super(s);
794 		if (fc->exclusive)
795 			warnfc(fc, "reusing existing filesystem not allowed");
796 		else
797 			warnfc(fc, "reusing existing filesystem in another namespace not allowed");
798 		return ERR_PTR(-EBUSY);
799 	}
800 	if (!grab_super(old))
801 		goto retry;
802 	destroy_unused_super(s);
803 	return old;
804 }
805 EXPORT_SYMBOL(sget_fc);
806 
807 /**
808  *	sget	-	find or create a superblock
809  *	@type:	  filesystem type superblock should belong to
810  *	@test:	  comparison callback
811  *	@set:	  setup callback
812  *	@flags:	  mount flags
813  *	@data:	  argument to each of them
814  */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)815 struct super_block *sget(struct file_system_type *type,
816 			int (*test)(struct super_block *,void *),
817 			int (*set)(struct super_block *,void *),
818 			int flags,
819 			void *data)
820 {
821 	struct user_namespace *user_ns = current_user_ns();
822 	struct super_block *s = NULL;
823 	struct super_block *old;
824 	int err;
825 
826 	/* We don't yet pass the user namespace of the parent
827 	 * mount through to here so always use &init_user_ns
828 	 * until that changes.
829 	 */
830 	if (flags & SB_SUBMOUNT)
831 		user_ns = &init_user_ns;
832 
833 retry:
834 	spin_lock(&sb_lock);
835 	if (test) {
836 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
837 			if (!test(old, data))
838 				continue;
839 			if (user_ns != old->s_user_ns) {
840 				spin_unlock(&sb_lock);
841 				destroy_unused_super(s);
842 				return ERR_PTR(-EBUSY);
843 			}
844 			if (!grab_super(old))
845 				goto retry;
846 			destroy_unused_super(s);
847 			return old;
848 		}
849 	}
850 	if (!s) {
851 		spin_unlock(&sb_lock);
852 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
853 		if (!s)
854 			return ERR_PTR(-ENOMEM);
855 		goto retry;
856 	}
857 
858 	err = set(s, data);
859 	if (err) {
860 		spin_unlock(&sb_lock);
861 		destroy_unused_super(s);
862 		return ERR_PTR(err);
863 	}
864 	s->s_type = type;
865 	strscpy(s->s_id, type->name, sizeof(s->s_id));
866 	list_add_tail(&s->s_list, &super_blocks);
867 	hlist_add_head(&s->s_instances, &type->fs_supers);
868 	spin_unlock(&sb_lock);
869 	get_filesystem(type);
870 	shrinker_register(s->s_shrink);
871 	return s;
872 }
873 EXPORT_SYMBOL(sget);
874 
drop_super(struct super_block * sb)875 void drop_super(struct super_block *sb)
876 {
877 	super_unlock_shared(sb);
878 	put_super(sb);
879 }
880 
881 EXPORT_SYMBOL(drop_super);
882 
drop_super_exclusive(struct super_block * sb)883 void drop_super_exclusive(struct super_block *sb)
884 {
885 	super_unlock_excl(sb);
886 	put_super(sb);
887 }
888 EXPORT_SYMBOL(drop_super_exclusive);
889 
__iterate_supers(void (* f)(struct super_block *))890 static void __iterate_supers(void (*f)(struct super_block *))
891 {
892 	struct super_block *sb, *p = NULL;
893 
894 	spin_lock(&sb_lock);
895 	list_for_each_entry(sb, &super_blocks, s_list) {
896 		if (super_flags(sb, SB_DYING))
897 			continue;
898 		sb->s_count++;
899 		spin_unlock(&sb_lock);
900 
901 		f(sb);
902 
903 		spin_lock(&sb_lock);
904 		if (p)
905 			__put_super(p);
906 		p = sb;
907 	}
908 	if (p)
909 		__put_super(p);
910 	spin_unlock(&sb_lock);
911 }
912 /**
913  *	iterate_supers - call function for all active superblocks
914  *	@f: function to call
915  *	@arg: argument to pass to it
916  *
917  *	Scans the superblock list and calls given function, passing it
918  *	locked superblock and given argument.
919  */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)920 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
921 {
922 	struct super_block *sb, *p = NULL;
923 
924 	spin_lock(&sb_lock);
925 	list_for_each_entry(sb, &super_blocks, s_list) {
926 		bool locked;
927 
928 		sb->s_count++;
929 		spin_unlock(&sb_lock);
930 
931 		locked = super_lock_shared(sb);
932 		if (locked) {
933 			if (sb->s_root)
934 				f(sb, arg);
935 			super_unlock_shared(sb);
936 		}
937 
938 		spin_lock(&sb_lock);
939 		if (p)
940 			__put_super(p);
941 		p = sb;
942 	}
943 	if (p)
944 		__put_super(p);
945 	spin_unlock(&sb_lock);
946 }
947 
948 /**
949  *	iterate_supers_type - call function for superblocks of given type
950  *	@type: fs type
951  *	@f: function to call
952  *	@arg: argument to pass to it
953  *
954  *	Scans the superblock list and calls given function, passing it
955  *	locked superblock and given argument.
956  */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)957 void iterate_supers_type(struct file_system_type *type,
958 	void (*f)(struct super_block *, void *), void *arg)
959 {
960 	struct super_block *sb, *p = NULL;
961 
962 	spin_lock(&sb_lock);
963 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
964 		bool locked;
965 
966 		sb->s_count++;
967 		spin_unlock(&sb_lock);
968 
969 		locked = super_lock_shared(sb);
970 		if (locked) {
971 			if (sb->s_root)
972 				f(sb, arg);
973 			super_unlock_shared(sb);
974 		}
975 
976 		spin_lock(&sb_lock);
977 		if (p)
978 			__put_super(p);
979 		p = sb;
980 	}
981 	if (p)
982 		__put_super(p);
983 	spin_unlock(&sb_lock);
984 }
985 
986 EXPORT_SYMBOL(iterate_supers_type);
987 
user_get_super(dev_t dev,bool excl)988 struct super_block *user_get_super(dev_t dev, bool excl)
989 {
990 	struct super_block *sb;
991 
992 	spin_lock(&sb_lock);
993 	list_for_each_entry(sb, &super_blocks, s_list) {
994 		if (sb->s_dev ==  dev) {
995 			bool locked;
996 
997 			sb->s_count++;
998 			spin_unlock(&sb_lock);
999 			/* still alive? */
1000 			locked = super_lock(sb, excl);
1001 			if (locked) {
1002 				if (sb->s_root)
1003 					return sb;
1004 				super_unlock(sb, excl);
1005 			}
1006 			/* nope, got unmounted */
1007 			spin_lock(&sb_lock);
1008 			__put_super(sb);
1009 			break;
1010 		}
1011 	}
1012 	spin_unlock(&sb_lock);
1013 	return NULL;
1014 }
1015 
1016 /**
1017  * reconfigure_super - asks filesystem to change superblock parameters
1018  * @fc: The superblock and configuration
1019  *
1020  * Alters the configuration parameters of a live superblock.
1021  */
reconfigure_super(struct fs_context * fc)1022 int reconfigure_super(struct fs_context *fc)
1023 {
1024 	struct super_block *sb = fc->root->d_sb;
1025 	int retval;
1026 	bool remount_ro = false;
1027 	bool remount_rw = false;
1028 	bool force = fc->sb_flags & SB_FORCE;
1029 
1030 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
1031 		return -EINVAL;
1032 	if (sb->s_writers.frozen != SB_UNFROZEN)
1033 		return -EBUSY;
1034 
1035 	retval = security_sb_remount(sb, fc->security);
1036 	if (retval)
1037 		return retval;
1038 
1039 	if (fc->sb_flags_mask & SB_RDONLY) {
1040 #ifdef CONFIG_BLOCK
1041 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1042 		    bdev_read_only(sb->s_bdev))
1043 			return -EACCES;
1044 #endif
1045 		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1046 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1047 	}
1048 
1049 	if (remount_ro) {
1050 		if (!hlist_empty(&sb->s_pins)) {
1051 			super_unlock_excl(sb);
1052 			group_pin_kill(&sb->s_pins);
1053 			__super_lock_excl(sb);
1054 			if (!sb->s_root)
1055 				return 0;
1056 			if (sb->s_writers.frozen != SB_UNFROZEN)
1057 				return -EBUSY;
1058 			remount_ro = !sb_rdonly(sb);
1059 		}
1060 	}
1061 	shrink_dcache_sb(sb);
1062 
1063 	/* If we are reconfiguring to RDONLY and current sb is read/write,
1064 	 * make sure there are no files open for writing.
1065 	 */
1066 	if (remount_ro) {
1067 		if (force) {
1068 			sb_start_ro_state_change(sb);
1069 		} else {
1070 			retval = sb_prepare_remount_readonly(sb);
1071 			if (retval)
1072 				return retval;
1073 		}
1074 	} else if (remount_rw) {
1075 		/*
1076 		 * Protect filesystem's reconfigure code from writes from
1077 		 * userspace until reconfigure finishes.
1078 		 */
1079 		sb_start_ro_state_change(sb);
1080 	}
1081 
1082 	if (fc->ops->reconfigure) {
1083 		retval = fc->ops->reconfigure(fc);
1084 		if (retval) {
1085 			if (!force)
1086 				goto cancel_readonly;
1087 			/* If forced remount, go ahead despite any errors */
1088 			WARN(1, "forced remount of a %s fs returned %i\n",
1089 			     sb->s_type->name, retval);
1090 		}
1091 	}
1092 
1093 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1094 				 (fc->sb_flags & fc->sb_flags_mask)));
1095 	sb_end_ro_state_change(sb);
1096 
1097 	/*
1098 	 * Some filesystems modify their metadata via some other path than the
1099 	 * bdev buffer cache (eg. use a private mapping, or directories in
1100 	 * pagecache, etc). Also file data modifications go via their own
1101 	 * mappings. So If we try to mount readonly then copy the filesystem
1102 	 * from bdev, we could get stale data, so invalidate it to give a best
1103 	 * effort at coherency.
1104 	 */
1105 	if (remount_ro && sb->s_bdev)
1106 		invalidate_bdev(sb->s_bdev);
1107 	return 0;
1108 
1109 cancel_readonly:
1110 	sb_end_ro_state_change(sb);
1111 	return retval;
1112 }
1113 
do_emergency_remount_callback(struct super_block * sb)1114 static void do_emergency_remount_callback(struct super_block *sb)
1115 {
1116 	bool locked = super_lock_excl(sb);
1117 
1118 	if (locked && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
1119 		struct fs_context *fc;
1120 
1121 		fc = fs_context_for_reconfigure(sb->s_root,
1122 					SB_RDONLY | SB_FORCE, SB_RDONLY);
1123 		if (!IS_ERR(fc)) {
1124 			if (parse_monolithic_mount_data(fc, NULL) == 0)
1125 				(void)reconfigure_super(fc);
1126 			put_fs_context(fc);
1127 		}
1128 	}
1129 	if (locked)
1130 		super_unlock_excl(sb);
1131 }
1132 
do_emergency_remount(struct work_struct * work)1133 static void do_emergency_remount(struct work_struct *work)
1134 {
1135 	__iterate_supers(do_emergency_remount_callback);
1136 	kfree(work);
1137 	printk("Emergency Remount complete\n");
1138 }
1139 
emergency_remount(void)1140 void emergency_remount(void)
1141 {
1142 	struct work_struct *work;
1143 
1144 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1145 	if (work) {
1146 		INIT_WORK(work, do_emergency_remount);
1147 		schedule_work(work);
1148 	}
1149 }
1150 
do_thaw_all_callback(struct super_block * sb)1151 static void do_thaw_all_callback(struct super_block *sb)
1152 {
1153 	bool locked = super_lock_excl(sb);
1154 
1155 	if (locked && sb->s_root) {
1156 		if (IS_ENABLED(CONFIG_BLOCK))
1157 			while (sb->s_bdev && !bdev_thaw(sb->s_bdev))
1158 				pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
1159 		thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
1160 		return;
1161 	}
1162 	if (locked)
1163 		super_unlock_excl(sb);
1164 }
1165 
do_thaw_all(struct work_struct * work)1166 static void do_thaw_all(struct work_struct *work)
1167 {
1168 	__iterate_supers(do_thaw_all_callback);
1169 	kfree(work);
1170 	printk(KERN_WARNING "Emergency Thaw complete\n");
1171 }
1172 
1173 /**
1174  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1175  *
1176  * Used for emergency unfreeze of all filesystems via SysRq
1177  */
emergency_thaw_all(void)1178 void emergency_thaw_all(void)
1179 {
1180 	struct work_struct *work;
1181 
1182 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1183 	if (work) {
1184 		INIT_WORK(work, do_thaw_all);
1185 		schedule_work(work);
1186 	}
1187 }
1188 
1189 static DEFINE_IDA(unnamed_dev_ida);
1190 
1191 /**
1192  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1193  * @p: Pointer to a dev_t.
1194  *
1195  * Filesystems which don't use real block devices can call this function
1196  * to allocate a virtual block device.
1197  *
1198  * Context: Any context.  Frequently called while holding sb_lock.
1199  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1200  * or -ENOMEM if memory allocation failed.
1201  */
get_anon_bdev(dev_t * p)1202 int get_anon_bdev(dev_t *p)
1203 {
1204 	int dev;
1205 
1206 	/*
1207 	 * Many userspace utilities consider an FSID of 0 invalid.
1208 	 * Always return at least 1 from get_anon_bdev.
1209 	 */
1210 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1211 			GFP_ATOMIC);
1212 	if (dev == -ENOSPC)
1213 		dev = -EMFILE;
1214 	if (dev < 0)
1215 		return dev;
1216 
1217 	*p = MKDEV(0, dev);
1218 	return 0;
1219 }
1220 EXPORT_SYMBOL(get_anon_bdev);
1221 
free_anon_bdev(dev_t dev)1222 void free_anon_bdev(dev_t dev)
1223 {
1224 	ida_free(&unnamed_dev_ida, MINOR(dev));
1225 }
1226 EXPORT_SYMBOL(free_anon_bdev);
1227 
set_anon_super(struct super_block * s,void * data)1228 int set_anon_super(struct super_block *s, void *data)
1229 {
1230 	return get_anon_bdev(&s->s_dev);
1231 }
1232 EXPORT_SYMBOL(set_anon_super);
1233 
kill_anon_super(struct super_block * sb)1234 void kill_anon_super(struct super_block *sb)
1235 {
1236 	dev_t dev = sb->s_dev;
1237 	generic_shutdown_super(sb);
1238 	kill_super_notify(sb);
1239 	free_anon_bdev(dev);
1240 }
1241 EXPORT_SYMBOL(kill_anon_super);
1242 
kill_litter_super(struct super_block * sb)1243 void kill_litter_super(struct super_block *sb)
1244 {
1245 	if (sb->s_root)
1246 		d_genocide(sb->s_root);
1247 	kill_anon_super(sb);
1248 }
1249 EXPORT_SYMBOL(kill_litter_super);
1250 
set_anon_super_fc(struct super_block * sb,struct fs_context * fc)1251 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1252 {
1253 	return set_anon_super(sb, NULL);
1254 }
1255 EXPORT_SYMBOL(set_anon_super_fc);
1256 
test_keyed_super(struct super_block * sb,struct fs_context * fc)1257 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1258 {
1259 	return sb->s_fs_info == fc->s_fs_info;
1260 }
1261 
test_single_super(struct super_block * s,struct fs_context * fc)1262 static int test_single_super(struct super_block *s, struct fs_context *fc)
1263 {
1264 	return 1;
1265 }
1266 
vfs_get_super(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* fill_super)(struct super_block * sb,struct fs_context * fc))1267 static int vfs_get_super(struct fs_context *fc,
1268 		int (*test)(struct super_block *, struct fs_context *),
1269 		int (*fill_super)(struct super_block *sb,
1270 				  struct fs_context *fc))
1271 {
1272 	struct super_block *sb;
1273 	int err;
1274 
1275 	sb = sget_fc(fc, test, set_anon_super_fc);
1276 	if (IS_ERR(sb))
1277 		return PTR_ERR(sb);
1278 
1279 	if (!sb->s_root) {
1280 		err = fill_super(sb, fc);
1281 		if (err)
1282 			goto error;
1283 
1284 		sb->s_flags |= SB_ACTIVE;
1285 	}
1286 
1287 	fc->root = dget(sb->s_root);
1288 	return 0;
1289 
1290 error:
1291 	deactivate_locked_super(sb);
1292 	return err;
1293 }
1294 
get_tree_nodev(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1295 int get_tree_nodev(struct fs_context *fc,
1296 		  int (*fill_super)(struct super_block *sb,
1297 				    struct fs_context *fc))
1298 {
1299 	return vfs_get_super(fc, NULL, fill_super);
1300 }
1301 EXPORT_SYMBOL(get_tree_nodev);
1302 
get_tree_single(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1303 int get_tree_single(struct fs_context *fc,
1304 		  int (*fill_super)(struct super_block *sb,
1305 				    struct fs_context *fc))
1306 {
1307 	return vfs_get_super(fc, test_single_super, fill_super);
1308 }
1309 EXPORT_SYMBOL(get_tree_single);
1310 
get_tree_keyed(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),void * key)1311 int get_tree_keyed(struct fs_context *fc,
1312 		  int (*fill_super)(struct super_block *sb,
1313 				    struct fs_context *fc),
1314 		void *key)
1315 {
1316 	fc->s_fs_info = key;
1317 	return vfs_get_super(fc, test_keyed_super, fill_super);
1318 }
1319 EXPORT_SYMBOL(get_tree_keyed);
1320 
set_bdev_super(struct super_block * s,void * data)1321 static int set_bdev_super(struct super_block *s, void *data)
1322 {
1323 	s->s_dev = *(dev_t *)data;
1324 	return 0;
1325 }
1326 
super_s_dev_set(struct super_block * s,struct fs_context * fc)1327 static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
1328 {
1329 	return set_bdev_super(s, fc->sget_key);
1330 }
1331 
super_s_dev_test(struct super_block * s,struct fs_context * fc)1332 static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
1333 {
1334 	return !(s->s_iflags & SB_I_RETIRED) &&
1335 		s->s_dev == *(dev_t *)fc->sget_key;
1336 }
1337 
1338 /**
1339  * sget_dev - Find or create a superblock by device number
1340  * @fc: Filesystem context.
1341  * @dev: device number
1342  *
1343  * Find or create a superblock using the provided device number that
1344  * will be stored in fc->sget_key.
1345  *
1346  * If an extant superblock is matched, then that will be returned with
1347  * an elevated reference count that the caller must transfer or discard.
1348  *
1349  * If no match is made, a new superblock will be allocated and basic
1350  * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
1351  * be set). The superblock will be published and it will be returned in
1352  * a partially constructed state with SB_BORN and SB_ACTIVE as yet
1353  * unset.
1354  *
1355  * Return: an existing or newly created superblock on success, an error
1356  *         pointer on failure.
1357  */
sget_dev(struct fs_context * fc,dev_t dev)1358 struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
1359 {
1360 	fc->sget_key = &dev;
1361 	return sget_fc(fc, super_s_dev_test, super_s_dev_set);
1362 }
1363 EXPORT_SYMBOL(sget_dev);
1364 
1365 #ifdef CONFIG_BLOCK
1366 /*
1367  * Lock the superblock that is holder of the bdev. Returns the superblock
1368  * pointer if we successfully locked the superblock and it is alive. Otherwise
1369  * we return NULL and just unlock bdev->bd_holder_lock.
1370  *
1371  * The function must be called with bdev->bd_holder_lock and releases it.
1372  */
bdev_super_lock(struct block_device * bdev,bool excl)1373 static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl)
1374 	__releases(&bdev->bd_holder_lock)
1375 {
1376 	struct super_block *sb = bdev->bd_holder;
1377 	bool locked;
1378 
1379 	lockdep_assert_held(&bdev->bd_holder_lock);
1380 	lockdep_assert_not_held(&sb->s_umount);
1381 	lockdep_assert_not_held(&bdev->bd_disk->open_mutex);
1382 
1383 	/* Make sure sb doesn't go away from under us */
1384 	spin_lock(&sb_lock);
1385 	sb->s_count++;
1386 	spin_unlock(&sb_lock);
1387 
1388 	mutex_unlock(&bdev->bd_holder_lock);
1389 
1390 	locked = super_lock(sb, excl);
1391 
1392 	/*
1393 	 * If the superblock wasn't already SB_DYING then we hold
1394 	 * s_umount and can safely drop our temporary reference.
1395          */
1396 	put_super(sb);
1397 
1398 	if (!locked)
1399 		return NULL;
1400 
1401 	if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1402 		super_unlock(sb, excl);
1403 		return NULL;
1404 	}
1405 
1406 	return sb;
1407 }
1408 
fs_bdev_mark_dead(struct block_device * bdev,bool surprise)1409 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1410 {
1411 	struct super_block *sb;
1412 
1413 	sb = bdev_super_lock(bdev, false);
1414 	if (!sb)
1415 		return;
1416 
1417 	if (!surprise)
1418 		sync_filesystem(sb);
1419 	shrink_dcache_sb(sb);
1420 	invalidate_inodes(sb);
1421 	if (sb->s_op->shutdown)
1422 		sb->s_op->shutdown(sb);
1423 
1424 	super_unlock_shared(sb);
1425 }
1426 
fs_bdev_sync(struct block_device * bdev)1427 static void fs_bdev_sync(struct block_device *bdev)
1428 {
1429 	struct super_block *sb;
1430 
1431 	sb = bdev_super_lock(bdev, false);
1432 	if (!sb)
1433 		return;
1434 
1435 	sync_filesystem(sb);
1436 	super_unlock_shared(sb);
1437 }
1438 
get_bdev_super(struct block_device * bdev)1439 static struct super_block *get_bdev_super(struct block_device *bdev)
1440 {
1441 	bool active = false;
1442 	struct super_block *sb;
1443 
1444 	sb = bdev_super_lock(bdev, true);
1445 	if (sb) {
1446 		active = atomic_inc_not_zero(&sb->s_active);
1447 		super_unlock_excl(sb);
1448 	}
1449 	if (!active)
1450 		return NULL;
1451 	return sb;
1452 }
1453 
1454 /**
1455  * fs_bdev_freeze - freeze owning filesystem of block device
1456  * @bdev: block device
1457  *
1458  * Freeze the filesystem that owns this block device if it is still
1459  * active.
1460  *
1461  * A filesystem that owns multiple block devices may be frozen from each
1462  * block device and won't be unfrozen until all block devices are
1463  * unfrozen. Each block device can only freeze the filesystem once as we
1464  * nest freezes for block devices in the block layer.
1465  *
1466  * Return: If the freeze was successful zero is returned. If the freeze
1467  *         failed a negative error code is returned.
1468  */
fs_bdev_freeze(struct block_device * bdev)1469 static int fs_bdev_freeze(struct block_device *bdev)
1470 {
1471 	struct super_block *sb;
1472 	int error = 0;
1473 
1474 	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1475 
1476 	sb = get_bdev_super(bdev);
1477 	if (!sb)
1478 		return -EINVAL;
1479 
1480 	if (sb->s_op->freeze_super)
1481 		error = sb->s_op->freeze_super(sb,
1482 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1483 	else
1484 		error = freeze_super(sb,
1485 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1486 	if (!error)
1487 		error = sync_blockdev(bdev);
1488 	deactivate_super(sb);
1489 	return error;
1490 }
1491 
1492 /**
1493  * fs_bdev_thaw - thaw owning filesystem of block device
1494  * @bdev: block device
1495  *
1496  * Thaw the filesystem that owns this block device.
1497  *
1498  * A filesystem that owns multiple block devices may be frozen from each
1499  * block device and won't be unfrozen until all block devices are
1500  * unfrozen. Each block device can only freeze the filesystem once as we
1501  * nest freezes for block devices in the block layer.
1502  *
1503  * Return: If the thaw was successful zero is returned. If the thaw
1504  *         failed a negative error code is returned. If this function
1505  *         returns zero it doesn't mean that the filesystem is unfrozen
1506  *         as it may have been frozen multiple times (kernel may hold a
1507  *         freeze or might be frozen from other block devices).
1508  */
fs_bdev_thaw(struct block_device * bdev)1509 static int fs_bdev_thaw(struct block_device *bdev)
1510 {
1511 	struct super_block *sb;
1512 	int error;
1513 
1514 	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1515 
1516 	/*
1517 	 * The block device may have been frozen before it was claimed by a
1518 	 * filesystem. Concurrently another process might try to mount that
1519 	 * frozen block device and has temporarily claimed the block device for
1520 	 * that purpose causing a concurrent fs_bdev_thaw() to end up here. The
1521 	 * mounter is already about to abort mounting because they still saw an
1522 	 * elevanted bdev->bd_fsfreeze_count so get_bdev_super() will return
1523 	 * NULL in that case.
1524 	 */
1525 	sb = get_bdev_super(bdev);
1526 	if (!sb)
1527 		return -EINVAL;
1528 
1529 	if (sb->s_op->thaw_super)
1530 		error = sb->s_op->thaw_super(sb,
1531 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1532 	else
1533 		error = thaw_super(sb,
1534 				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1535 	deactivate_super(sb);
1536 	return error;
1537 }
1538 
1539 const struct blk_holder_ops fs_holder_ops = {
1540 	.mark_dead		= fs_bdev_mark_dead,
1541 	.sync			= fs_bdev_sync,
1542 	.freeze			= fs_bdev_freeze,
1543 	.thaw			= fs_bdev_thaw,
1544 };
1545 EXPORT_SYMBOL_GPL(fs_holder_ops);
1546 
setup_bdev_super(struct super_block * sb,int sb_flags,struct fs_context * fc)1547 int setup_bdev_super(struct super_block *sb, int sb_flags,
1548 		struct fs_context *fc)
1549 {
1550 	blk_mode_t mode = sb_open_mode(sb_flags);
1551 	struct file *bdev_file;
1552 	struct block_device *bdev;
1553 
1554 	bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1555 	if (IS_ERR(bdev_file)) {
1556 		if (fc)
1557 			errorf(fc, "%s: Can't open blockdev", fc->source);
1558 		return PTR_ERR(bdev_file);
1559 	}
1560 	bdev = file_bdev(bdev_file);
1561 
1562 	/*
1563 	 * This really should be in blkdev_get_by_dev, but right now can't due
1564 	 * to legacy issues that require us to allow opening a block device node
1565 	 * writable from userspace even for a read-only block device.
1566 	 */
1567 	if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1568 		bdev_fput(bdev_file);
1569 		return -EACCES;
1570 	}
1571 
1572 	/*
1573 	 * It is enough to check bdev was not frozen before we set
1574 	 * s_bdev as freezing will wait until SB_BORN is set.
1575 	 */
1576 	if (atomic_read(&bdev->bd_fsfreeze_count) > 0) {
1577 		if (fc)
1578 			warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1579 		bdev_fput(bdev_file);
1580 		return -EBUSY;
1581 	}
1582 	spin_lock(&sb_lock);
1583 	sb->s_bdev_file = bdev_file;
1584 	sb->s_bdev = bdev;
1585 	sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1586 	if (bdev_stable_writes(bdev))
1587 		sb->s_iflags |= SB_I_STABLE_WRITES;
1588 	spin_unlock(&sb_lock);
1589 
1590 	snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1591 	shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1592 				sb->s_id);
1593 	sb_set_blocksize(sb, block_size(bdev));
1594 	return 0;
1595 }
1596 EXPORT_SYMBOL_GPL(setup_bdev_super);
1597 
1598 /**
1599  * get_tree_bdev_flags - Get a superblock based on a single block device
1600  * @fc: The filesystem context holding the parameters
1601  * @fill_super: Helper to initialise a new superblock
1602  * @flags: GET_TREE_BDEV_* flags
1603  */
get_tree_bdev_flags(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),unsigned int flags)1604 int get_tree_bdev_flags(struct fs_context *fc,
1605 		int (*fill_super)(struct super_block *sb,
1606 				  struct fs_context *fc), unsigned int flags)
1607 {
1608 	struct super_block *s;
1609 	int error = 0;
1610 	dev_t dev;
1611 
1612 	if (!fc->source)
1613 		return invalf(fc, "No source specified");
1614 
1615 	error = lookup_bdev(fc->source, &dev);
1616 	if (error) {
1617 		if (!(flags & GET_TREE_BDEV_QUIET_LOOKUP))
1618 			errorf(fc, "%s: Can't lookup blockdev", fc->source);
1619 		return error;
1620 	}
1621 	fc->sb_flags |= SB_NOSEC;
1622 	s = sget_dev(fc, dev);
1623 	if (IS_ERR(s))
1624 		return PTR_ERR(s);
1625 
1626 	if (s->s_root) {
1627 		/* Don't summarily change the RO/RW state. */
1628 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1629 			warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1630 			deactivate_locked_super(s);
1631 			return -EBUSY;
1632 		}
1633 	} else {
1634 		error = setup_bdev_super(s, fc->sb_flags, fc);
1635 		if (!error)
1636 			error = fill_super(s, fc);
1637 		if (error) {
1638 			deactivate_locked_super(s);
1639 			return error;
1640 		}
1641 		s->s_flags |= SB_ACTIVE;
1642 	}
1643 
1644 	BUG_ON(fc->root);
1645 	fc->root = dget(s->s_root);
1646 	return 0;
1647 }
1648 EXPORT_SYMBOL_GPL(get_tree_bdev_flags);
1649 
1650 /**
1651  * get_tree_bdev - Get a superblock based on a single block device
1652  * @fc: The filesystem context holding the parameters
1653  * @fill_super: Helper to initialise a new superblock
1654  */
get_tree_bdev(struct fs_context * fc,int (* fill_super)(struct super_block *,struct fs_context *))1655 int get_tree_bdev(struct fs_context *fc,
1656 		int (*fill_super)(struct super_block *,
1657 				  struct fs_context *))
1658 {
1659 	return get_tree_bdev_flags(fc, fill_super, 0);
1660 }
1661 EXPORT_SYMBOL(get_tree_bdev);
1662 
test_bdev_super(struct super_block * s,void * data)1663 static int test_bdev_super(struct super_block *s, void *data)
1664 {
1665 	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1666 }
1667 
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1668 struct dentry *mount_bdev(struct file_system_type *fs_type,
1669 	int flags, const char *dev_name, void *data,
1670 	int (*fill_super)(struct super_block *, void *, int))
1671 {
1672 	struct super_block *s;
1673 	int error;
1674 	dev_t dev;
1675 
1676 	error = lookup_bdev(dev_name, &dev);
1677 	if (error)
1678 		return ERR_PTR(error);
1679 
1680 	flags |= SB_NOSEC;
1681 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
1682 	if (IS_ERR(s))
1683 		return ERR_CAST(s);
1684 
1685 	if (s->s_root) {
1686 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1687 			deactivate_locked_super(s);
1688 			return ERR_PTR(-EBUSY);
1689 		}
1690 	} else {
1691 		error = setup_bdev_super(s, flags, NULL);
1692 		if (!error)
1693 			error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1694 		if (error) {
1695 			deactivate_locked_super(s);
1696 			return ERR_PTR(error);
1697 		}
1698 
1699 		s->s_flags |= SB_ACTIVE;
1700 	}
1701 
1702 	return dget(s->s_root);
1703 }
1704 EXPORT_SYMBOL(mount_bdev);
1705 
kill_block_super(struct super_block * sb)1706 void kill_block_super(struct super_block *sb)
1707 {
1708 	struct block_device *bdev = sb->s_bdev;
1709 
1710 	generic_shutdown_super(sb);
1711 	if (bdev) {
1712 		sync_blockdev(bdev);
1713 		bdev_fput(sb->s_bdev_file);
1714 	}
1715 }
1716 
1717 EXPORT_SYMBOL(kill_block_super);
1718 #endif
1719 
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1720 struct dentry *mount_nodev(struct file_system_type *fs_type,
1721 	int flags, void *data,
1722 	int (*fill_super)(struct super_block *, void *, int))
1723 {
1724 	int error;
1725 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1726 
1727 	if (IS_ERR(s))
1728 		return ERR_CAST(s);
1729 
1730 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1731 	if (error) {
1732 		deactivate_locked_super(s);
1733 		return ERR_PTR(error);
1734 	}
1735 	s->s_flags |= SB_ACTIVE;
1736 	return dget(s->s_root);
1737 }
1738 EXPORT_SYMBOL(mount_nodev);
1739 
reconfigure_single(struct super_block * s,int flags,void * data)1740 int reconfigure_single(struct super_block *s,
1741 		       int flags, void *data)
1742 {
1743 	struct fs_context *fc;
1744 	int ret;
1745 
1746 	/* The caller really need to be passing fc down into mount_single(),
1747 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1748 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1749 	 * mount should be rejected if the parameters are not compatible.
1750 	 */
1751 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1752 	if (IS_ERR(fc))
1753 		return PTR_ERR(fc);
1754 
1755 	ret = parse_monolithic_mount_data(fc, data);
1756 	if (ret < 0)
1757 		goto out;
1758 
1759 	ret = reconfigure_super(fc);
1760 out:
1761 	put_fs_context(fc);
1762 	return ret;
1763 }
1764 
compare_single(struct super_block * s,void * p)1765 static int compare_single(struct super_block *s, void *p)
1766 {
1767 	return 1;
1768 }
1769 
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1770 struct dentry *mount_single(struct file_system_type *fs_type,
1771 	int flags, void *data,
1772 	int (*fill_super)(struct super_block *, void *, int))
1773 {
1774 	struct super_block *s;
1775 	int error;
1776 
1777 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1778 	if (IS_ERR(s))
1779 		return ERR_CAST(s);
1780 	if (!s->s_root) {
1781 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1782 		if (!error)
1783 			s->s_flags |= SB_ACTIVE;
1784 	} else {
1785 		error = reconfigure_single(s, flags, data);
1786 	}
1787 	if (unlikely(error)) {
1788 		deactivate_locked_super(s);
1789 		return ERR_PTR(error);
1790 	}
1791 	return dget(s->s_root);
1792 }
1793 EXPORT_SYMBOL(mount_single);
1794 
1795 /**
1796  * vfs_get_tree - Get the mountable root
1797  * @fc: The superblock configuration context.
1798  *
1799  * The filesystem is invoked to get or create a superblock which can then later
1800  * be used for mounting.  The filesystem places a pointer to the root to be
1801  * used for mounting in @fc->root.
1802  */
vfs_get_tree(struct fs_context * fc)1803 int vfs_get_tree(struct fs_context *fc)
1804 {
1805 	struct super_block *sb;
1806 	int error;
1807 
1808 	if (fc->root)
1809 		return -EBUSY;
1810 
1811 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1812 	 * on the superblock.
1813 	 */
1814 	error = fc->ops->get_tree(fc);
1815 	if (error < 0)
1816 		return error;
1817 
1818 	if (!fc->root) {
1819 		pr_err("Filesystem %s get_tree() didn't set fc->root, returned %i\n",
1820 		       fc->fs_type->name, error);
1821 		/* We don't know what the locking state of the superblock is -
1822 		 * if there is a superblock.
1823 		 */
1824 		BUG();
1825 	}
1826 
1827 	sb = fc->root->d_sb;
1828 	WARN_ON(!sb->s_bdi);
1829 
1830 	/*
1831 	 * super_wake() contains a memory barrier which also care of
1832 	 * ordering for super_cache_count(). We place it before setting
1833 	 * SB_BORN as the data dependency between the two functions is
1834 	 * the superblock structure contents that we just set up, not
1835 	 * the SB_BORN flag.
1836 	 */
1837 	super_wake(sb, SB_BORN);
1838 
1839 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1840 	if (unlikely(error)) {
1841 		fc_drop_locked(fc);
1842 		return error;
1843 	}
1844 
1845 	/*
1846 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1847 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1848 	 * this warning for a little while to try and catch filesystems that
1849 	 * violate this rule.
1850 	 */
1851 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1852 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1853 
1854 	return 0;
1855 }
1856 EXPORT_SYMBOL(vfs_get_tree);
1857 
1858 /*
1859  * Setup private BDI for given superblock. It gets automatically cleaned up
1860  * in generic_shutdown_super().
1861  */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1862 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1863 {
1864 	struct backing_dev_info *bdi;
1865 	int err;
1866 	va_list args;
1867 
1868 	bdi = bdi_alloc(NUMA_NO_NODE);
1869 	if (!bdi)
1870 		return -ENOMEM;
1871 
1872 	va_start(args, fmt);
1873 	err = bdi_register_va(bdi, fmt, args);
1874 	va_end(args);
1875 	if (err) {
1876 		bdi_put(bdi);
1877 		return err;
1878 	}
1879 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1880 	sb->s_bdi = bdi;
1881 	sb->s_iflags |= SB_I_PERSB_BDI;
1882 
1883 	return 0;
1884 }
1885 EXPORT_SYMBOL(super_setup_bdi_name);
1886 
1887 /*
1888  * Setup private BDI for given superblock. I gets automatically cleaned up
1889  * in generic_shutdown_super().
1890  */
super_setup_bdi(struct super_block * sb)1891 int super_setup_bdi(struct super_block *sb)
1892 {
1893 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1894 
1895 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1896 				    atomic_long_inc_return(&bdi_seq));
1897 }
1898 EXPORT_SYMBOL(super_setup_bdi);
1899 
1900 /**
1901  * sb_wait_write - wait until all writers to given file system finish
1902  * @sb: the super for which we wait
1903  * @level: type of writers we wait for (normal vs page fault)
1904  *
1905  * This function waits until there are no writers of given type to given file
1906  * system.
1907  */
sb_wait_write(struct super_block * sb,int level)1908 static void sb_wait_write(struct super_block *sb, int level)
1909 {
1910 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1911 }
1912 
1913 /*
1914  * We are going to return to userspace and forget about these locks, the
1915  * ownership goes to the caller of thaw_super() which does unlock().
1916  */
lockdep_sb_freeze_release(struct super_block * sb)1917 static void lockdep_sb_freeze_release(struct super_block *sb)
1918 {
1919 	int level;
1920 
1921 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1922 		percpu_rwsem_release(sb->s_writers.rw_sem + level, _THIS_IP_);
1923 }
1924 
1925 /*
1926  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1927  */
lockdep_sb_freeze_acquire(struct super_block * sb)1928 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1929 {
1930 	int level;
1931 
1932 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1933 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1934 }
1935 
sb_freeze_unlock(struct super_block * sb,int level)1936 static void sb_freeze_unlock(struct super_block *sb, int level)
1937 {
1938 	for (level--; level >= 0; level--)
1939 		percpu_up_write(sb->s_writers.rw_sem + level);
1940 }
1941 
wait_for_partially_frozen(struct super_block * sb)1942 static int wait_for_partially_frozen(struct super_block *sb)
1943 {
1944 	int ret = 0;
1945 
1946 	do {
1947 		unsigned short old = sb->s_writers.frozen;
1948 
1949 		up_write(&sb->s_umount);
1950 		ret = wait_var_event_killable(&sb->s_writers.frozen,
1951 					       sb->s_writers.frozen != old);
1952 		down_write(&sb->s_umount);
1953 	} while (ret == 0 &&
1954 		 sb->s_writers.frozen != SB_UNFROZEN &&
1955 		 sb->s_writers.frozen != SB_FREEZE_COMPLETE);
1956 
1957 	return ret;
1958 }
1959 
1960 #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE)
1961 #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST)
1962 
freeze_inc(struct super_block * sb,enum freeze_holder who)1963 static inline int freeze_inc(struct super_block *sb, enum freeze_holder who)
1964 {
1965 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1966 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1967 
1968 	if (who & FREEZE_HOLDER_KERNEL)
1969 		++sb->s_writers.freeze_kcount;
1970 	if (who & FREEZE_HOLDER_USERSPACE)
1971 		++sb->s_writers.freeze_ucount;
1972 	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1973 }
1974 
freeze_dec(struct super_block * sb,enum freeze_holder who)1975 static inline int freeze_dec(struct super_block *sb, enum freeze_holder who)
1976 {
1977 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1978 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1979 
1980 	if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount)
1981 		--sb->s_writers.freeze_kcount;
1982 	if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount)
1983 		--sb->s_writers.freeze_ucount;
1984 	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1985 }
1986 
may_freeze(struct super_block * sb,enum freeze_holder who)1987 static inline bool may_freeze(struct super_block *sb, enum freeze_holder who)
1988 {
1989 	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1990 	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1991 
1992 	if (who & FREEZE_HOLDER_KERNEL)
1993 		return (who & FREEZE_MAY_NEST) ||
1994 		       sb->s_writers.freeze_kcount == 0;
1995 	if (who & FREEZE_HOLDER_USERSPACE)
1996 		return (who & FREEZE_MAY_NEST) ||
1997 		       sb->s_writers.freeze_ucount == 0;
1998 	return false;
1999 }
2000 
2001 /**
2002  * freeze_super - lock the filesystem and force it into a consistent state
2003  * @sb: the super to lock
2004  * @who: context that wants to freeze
2005  *
2006  * Syncs the super to make sure the filesystem is consistent and calls the fs's
2007  * freeze_fs.  Subsequent calls to this without first thawing the fs may return
2008  * -EBUSY.
2009  *
2010  * @who should be:
2011  * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
2012  * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
2013  * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed.
2014  *
2015  * The @who argument distinguishes between the kernel and userspace trying to
2016  * freeze the filesystem.  Although there cannot be multiple kernel freezes or
2017  * multiple userspace freezes in effect at any given time, the kernel and
2018  * userspace can both hold a filesystem frozen.  The filesystem remains frozen
2019  * until there are no kernel or userspace freezes in effect.
2020  *
2021  * A filesystem may hold multiple devices and thus a filesystems may be
2022  * frozen through the block layer via multiple block devices. In this
2023  * case the request is marked as being allowed to nest by passing
2024  * FREEZE_MAY_NEST. The filesystem remains frozen until all block
2025  * devices are unfrozen. If multiple freezes are attempted without
2026  * FREEZE_MAY_NEST -EBUSY will be returned.
2027  *
2028  * During this function, sb->s_writers.frozen goes through these values:
2029  *
2030  * SB_UNFROZEN: File system is normal, all writes progress as usual.
2031  *
2032  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
2033  * writes should be blocked, though page faults are still allowed. We wait for
2034  * all writes to complete and then proceed to the next stage.
2035  *
2036  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
2037  * but internal fs threads can still modify the filesystem (although they
2038  * should not dirty new pages or inodes), writeback can run etc. After waiting
2039  * for all running page faults we sync the filesystem which will clean all
2040  * dirty pages and inodes (no new dirty pages or inodes can be created when
2041  * sync is running).
2042  *
2043  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
2044  * modification are blocked (e.g. XFS preallocation truncation on inode
2045  * reclaim). This is usually implemented by blocking new transactions for
2046  * filesystems that have them and need this additional guard. After all
2047  * internal writers are finished we call ->freeze_fs() to finish filesystem
2048  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
2049  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
2050  *
2051  * sb->s_writers.frozen is protected by sb->s_umount.
2052  *
2053  * Return: If the freeze was successful zero is returned. If the freeze
2054  *         failed a negative error code is returned.
2055  */
freeze_super(struct super_block * sb,enum freeze_holder who)2056 int freeze_super(struct super_block *sb, enum freeze_holder who)
2057 {
2058 	int ret;
2059 
2060 	if (!super_lock_excl(sb)) {
2061 		WARN_ON_ONCE("Dying superblock while freezing!");
2062 		return -EINVAL;
2063 	}
2064 	atomic_inc(&sb->s_active);
2065 
2066 retry:
2067 	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
2068 		if (may_freeze(sb, who))
2069 			ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1);
2070 		else
2071 			ret = -EBUSY;
2072 		/* All freezers share a single active reference. */
2073 		deactivate_locked_super(sb);
2074 		return ret;
2075 	}
2076 
2077 	if (sb->s_writers.frozen != SB_UNFROZEN) {
2078 		ret = wait_for_partially_frozen(sb);
2079 		if (ret) {
2080 			deactivate_locked_super(sb);
2081 			return ret;
2082 		}
2083 
2084 		goto retry;
2085 	}
2086 
2087 	if (sb_rdonly(sb)) {
2088 		/* Nothing to do really... */
2089 		WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2090 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2091 		wake_up_var(&sb->s_writers.frozen);
2092 		super_unlock_excl(sb);
2093 		return 0;
2094 	}
2095 
2096 	sb->s_writers.frozen = SB_FREEZE_WRITE;
2097 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
2098 	super_unlock_excl(sb);
2099 	sb_wait_write(sb, SB_FREEZE_WRITE);
2100 	__super_lock_excl(sb);
2101 
2102 	/* Now we go and block page faults... */
2103 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
2104 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
2105 
2106 	/* All writers are done so after syncing there won't be dirty data */
2107 	ret = sync_filesystem(sb);
2108 	if (ret) {
2109 		sb->s_writers.frozen = SB_UNFROZEN;
2110 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
2111 		wake_up_var(&sb->s_writers.frozen);
2112 		deactivate_locked_super(sb);
2113 		return ret;
2114 	}
2115 
2116 	/* Now wait for internal filesystem counter */
2117 	sb->s_writers.frozen = SB_FREEZE_FS;
2118 	sb_wait_write(sb, SB_FREEZE_FS);
2119 
2120 	if (sb->s_op->freeze_fs) {
2121 		ret = sb->s_op->freeze_fs(sb);
2122 		if (ret) {
2123 			printk(KERN_ERR
2124 				"VFS:Filesystem freeze failed\n");
2125 			sb->s_writers.frozen = SB_UNFROZEN;
2126 			sb_freeze_unlock(sb, SB_FREEZE_FS);
2127 			wake_up_var(&sb->s_writers.frozen);
2128 			deactivate_locked_super(sb);
2129 			return ret;
2130 		}
2131 	}
2132 	/*
2133 	 * For debugging purposes so that fs can warn if it sees write activity
2134 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
2135 	 */
2136 	WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2137 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2138 	wake_up_var(&sb->s_writers.frozen);
2139 	lockdep_sb_freeze_release(sb);
2140 	super_unlock_excl(sb);
2141 	return 0;
2142 }
2143 EXPORT_SYMBOL(freeze_super);
2144 
2145 /*
2146  * Undoes the effect of a freeze_super_locked call.  If the filesystem is
2147  * frozen both by userspace and the kernel, a thaw call from either source
2148  * removes that state without releasing the other state or unlocking the
2149  * filesystem.
2150  */
thaw_super_locked(struct super_block * sb,enum freeze_holder who)2151 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
2152 {
2153 	int error = -EINVAL;
2154 
2155 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE)
2156 		goto out_unlock;
2157 
2158 	/*
2159 	 * All freezers share a single active reference.
2160 	 * So just unlock in case there are any left.
2161 	 */
2162 	if (freeze_dec(sb, who))
2163 		goto out_unlock;
2164 
2165 	if (sb_rdonly(sb)) {
2166 		sb->s_writers.frozen = SB_UNFROZEN;
2167 		wake_up_var(&sb->s_writers.frozen);
2168 		goto out_deactivate;
2169 	}
2170 
2171 	lockdep_sb_freeze_acquire(sb);
2172 
2173 	if (sb->s_op->unfreeze_fs) {
2174 		error = sb->s_op->unfreeze_fs(sb);
2175 		if (error) {
2176 			pr_err("VFS: Filesystem thaw failed\n");
2177 			freeze_inc(sb, who);
2178 			lockdep_sb_freeze_release(sb);
2179 			goto out_unlock;
2180 		}
2181 	}
2182 
2183 	sb->s_writers.frozen = SB_UNFROZEN;
2184 	wake_up_var(&sb->s_writers.frozen);
2185 	sb_freeze_unlock(sb, SB_FREEZE_FS);
2186 out_deactivate:
2187 	deactivate_locked_super(sb);
2188 	return 0;
2189 
2190 out_unlock:
2191 	super_unlock_excl(sb);
2192 	return error;
2193 }
2194 
2195 /**
2196  * thaw_super -- unlock filesystem
2197  * @sb: the super to thaw
2198  * @who: context that wants to freeze
2199  *
2200  * Unlocks the filesystem and marks it writeable again after freeze_super()
2201  * if there are no remaining freezes on the filesystem.
2202  *
2203  * @who should be:
2204  * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2205  * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2206  * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed
2207  *
2208  * A filesystem may hold multiple devices and thus a filesystems may
2209  * have been frozen through the block layer via multiple block devices.
2210  * The filesystem remains frozen until all block devices are unfrozen.
2211  */
thaw_super(struct super_block * sb,enum freeze_holder who)2212 int thaw_super(struct super_block *sb, enum freeze_holder who)
2213 {
2214 	if (!super_lock_excl(sb)) {
2215 		WARN_ON_ONCE("Dying superblock while thawing!");
2216 		return -EINVAL;
2217 	}
2218 	return thaw_super_locked(sb, who);
2219 }
2220 EXPORT_SYMBOL(thaw_super);
2221 
2222 /*
2223  * Create workqueue for deferred direct IO completions. We allocate the
2224  * workqueue when it's first needed. This avoids creating workqueue for
2225  * filesystems that don't need it and also allows us to create the workqueue
2226  * late enough so the we can include s_id in the name of the workqueue.
2227  */
sb_init_dio_done_wq(struct super_block * sb)2228 int sb_init_dio_done_wq(struct super_block *sb)
2229 {
2230 	struct workqueue_struct *old;
2231 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
2232 						      WQ_MEM_RECLAIM, 0,
2233 						      sb->s_id);
2234 	if (!wq)
2235 		return -ENOMEM;
2236 	/*
2237 	 * This has to be atomic as more DIOs can race to create the workqueue
2238 	 */
2239 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
2240 	/* Someone created workqueue before us? Free ours... */
2241 	if (old)
2242 		destroy_workqueue(wq);
2243 	return 0;
2244 }
2245 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq);
2246