1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/kernfs/mount.c - kernfs mount implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10 #include <linux/fs.h>
11 #include <linux/mount.h>
12 #include <linux/init.h>
13 #include <linux/magic.h>
14 #include <linux/slab.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/seq_file.h>
18 #include <linux/exportfs.h>
19 #include <linux/uuid.h>
20 #include <linux/statfs.h>
21
22 #include "kernfs-internal.h"
23
24 struct kmem_cache *kernfs_node_cache __ro_after_init;
25 struct kmem_cache *kernfs_iattrs_cache __ro_after_init;
26 struct kernfs_global_locks *kernfs_locks __ro_after_init;
27
kernfs_sop_show_options(struct seq_file * sf,struct dentry * dentry)28 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
29 {
30 struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
31 struct kernfs_syscall_ops *scops = root->syscall_ops;
32
33 if (scops && scops->show_options)
34 return scops->show_options(sf, root);
35 return 0;
36 }
37
kernfs_sop_show_path(struct seq_file * sf,struct dentry * dentry)38 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
39 {
40 struct kernfs_node *node = kernfs_dentry_node(dentry);
41 struct kernfs_root *root = kernfs_root(node);
42 struct kernfs_syscall_ops *scops = root->syscall_ops;
43
44 if (scops && scops->show_path)
45 return scops->show_path(sf, node, root);
46
47 seq_dentry(sf, dentry, " \t\n\\");
48 return 0;
49 }
50
kernfs_statfs(struct dentry * dentry,struct kstatfs * buf)51 static int kernfs_statfs(struct dentry *dentry, struct kstatfs *buf)
52 {
53 simple_statfs(dentry, buf);
54 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
55 return 0;
56 }
57
58 const struct super_operations kernfs_sops = {
59 .statfs = kernfs_statfs,
60 .drop_inode = generic_delete_inode,
61 .evict_inode = kernfs_evict_inode,
62
63 .show_options = kernfs_sop_show_options,
64 .show_path = kernfs_sop_show_path,
65 };
66
kernfs_encode_fh(struct inode * inode,__u32 * fh,int * max_len,struct inode * parent)67 static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
68 struct inode *parent)
69 {
70 struct kernfs_node *kn = inode->i_private;
71
72 if (*max_len < 2) {
73 *max_len = 2;
74 return FILEID_INVALID;
75 }
76
77 *max_len = 2;
78 *(u64 *)fh = kn->id;
79 return FILEID_KERNFS;
80 }
81
__kernfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,bool get_parent)82 static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
83 struct fid *fid, int fh_len,
84 int fh_type, bool get_parent)
85 {
86 struct kernfs_super_info *info = kernfs_info(sb);
87 struct kernfs_node *kn;
88 struct inode *inode;
89 u64 id;
90
91 if (fh_len < 2)
92 return NULL;
93
94 switch (fh_type) {
95 case FILEID_KERNFS:
96 id = *(u64 *)fid;
97 break;
98 case FILEID_INO32_GEN:
99 case FILEID_INO32_GEN_PARENT:
100 /*
101 * blk_log_action() exposes "LOW32,HIGH32" pair without
102 * type and userland can call us with generic fid
103 * constructed from them. Combine it back to ID. See
104 * blk_log_action().
105 */
106 id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
107 break;
108 default:
109 return NULL;
110 }
111
112 kn = kernfs_find_and_get_node_by_id(info->root, id);
113 if (!kn)
114 return ERR_PTR(-ESTALE);
115
116 if (get_parent) {
117 struct kernfs_node *parent;
118
119 parent = kernfs_get_parent(kn);
120 kernfs_put(kn);
121 kn = parent;
122 if (!kn)
123 return ERR_PTR(-ESTALE);
124 }
125
126 inode = kernfs_get_inode(sb, kn);
127 kernfs_put(kn);
128 return d_obtain_alias(inode);
129 }
130
kernfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)131 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
132 struct fid *fid, int fh_len,
133 int fh_type)
134 {
135 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
136 }
137
kernfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)138 static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
139 struct fid *fid, int fh_len,
140 int fh_type)
141 {
142 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
143 }
144
kernfs_get_parent_dentry(struct dentry * child)145 static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
146 {
147 struct kernfs_node *kn = kernfs_dentry_node(child);
148
149 return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
150 }
151
152 static const struct export_operations kernfs_export_ops = {
153 .encode_fh = kernfs_encode_fh,
154 .fh_to_dentry = kernfs_fh_to_dentry,
155 .fh_to_parent = kernfs_fh_to_parent,
156 .get_parent = kernfs_get_parent_dentry,
157 };
158
159 /**
160 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
161 * @sb: the super_block in question
162 *
163 * Return: the kernfs_root associated with @sb. If @sb is not a kernfs one,
164 * %NULL is returned.
165 */
kernfs_root_from_sb(struct super_block * sb)166 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
167 {
168 if (sb->s_op == &kernfs_sops)
169 return kernfs_info(sb)->root;
170 return NULL;
171 }
172
173 /*
174 * find the next ancestor in the path down to @child, where @parent was the
175 * ancestor whose descendant we want to find.
176 *
177 * Say the path is /a/b/c/d. @child is d, @parent is %NULL. We return the root
178 * node. If @parent is b, then we return the node for c.
179 * Passing in d as @parent is not ok.
180 */
find_next_ancestor(struct kernfs_node * child,struct kernfs_node * parent)181 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
182 struct kernfs_node *parent)
183 {
184 if (child == parent) {
185 pr_crit_once("BUG in find_next_ancestor: called with parent == child");
186 return NULL;
187 }
188
189 while (child->parent != parent) {
190 if (!child->parent)
191 return NULL;
192 child = child->parent;
193 }
194
195 return child;
196 }
197
198 /**
199 * kernfs_node_dentry - get a dentry for the given kernfs_node
200 * @kn: kernfs_node for which a dentry is needed
201 * @sb: the kernfs super_block
202 *
203 * Return: the dentry pointer
204 */
kernfs_node_dentry(struct kernfs_node * kn,struct super_block * sb)205 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
206 struct super_block *sb)
207 {
208 struct dentry *dentry;
209 struct kernfs_node *knparent;
210
211 BUG_ON(sb->s_op != &kernfs_sops);
212
213 dentry = dget(sb->s_root);
214
215 /* Check if this is the root kernfs_node */
216 if (!kn->parent)
217 return dentry;
218
219 knparent = find_next_ancestor(kn, NULL);
220 if (WARN_ON(!knparent)) {
221 dput(dentry);
222 return ERR_PTR(-EINVAL);
223 }
224
225 do {
226 struct dentry *dtmp;
227 struct kernfs_node *kntmp;
228
229 if (kn == knparent)
230 return dentry;
231 kntmp = find_next_ancestor(kn, knparent);
232 if (WARN_ON(!kntmp)) {
233 dput(dentry);
234 return ERR_PTR(-EINVAL);
235 }
236 dtmp = lookup_positive_unlocked(kntmp->name, dentry,
237 strlen(kntmp->name));
238 dput(dentry);
239 if (IS_ERR(dtmp))
240 return dtmp;
241 knparent = kntmp;
242 dentry = dtmp;
243 } while (true);
244 }
245
kernfs_fill_super(struct super_block * sb,struct kernfs_fs_context * kfc)246 static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
247 {
248 struct kernfs_super_info *info = kernfs_info(sb);
249 struct kernfs_root *kf_root = kfc->root;
250 struct inode *inode;
251 struct dentry *root;
252
253 info->sb = sb;
254 /* Userspace would break if executables or devices appear on sysfs */
255 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
256 sb->s_blocksize = PAGE_SIZE;
257 sb->s_blocksize_bits = PAGE_SHIFT;
258 sb->s_magic = kfc->magic;
259 sb->s_op = &kernfs_sops;
260 sb->s_xattr = kernfs_xattr_handlers;
261 if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
262 sb->s_export_op = &kernfs_export_ops;
263 sb->s_time_gran = 1;
264
265 /* sysfs dentries and inodes don't require IO to create */
266 sb->s_shrink->seeks = 0;
267
268 /* get root inode, initialize and unlock it */
269 down_read(&kf_root->kernfs_rwsem);
270 inode = kernfs_get_inode(sb, info->root->kn);
271 up_read(&kf_root->kernfs_rwsem);
272 if (!inode) {
273 pr_debug("kernfs: could not get root inode\n");
274 return -ENOMEM;
275 }
276
277 /* instantiate and link root dentry */
278 root = d_make_root(inode);
279 if (!root) {
280 pr_debug("%s: could not get root dentry!\n", __func__);
281 return -ENOMEM;
282 }
283 sb->s_root = root;
284 sb->s_d_op = &kernfs_dops;
285 return 0;
286 }
287
kernfs_test_super(struct super_block * sb,struct fs_context * fc)288 static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
289 {
290 struct kernfs_super_info *sb_info = kernfs_info(sb);
291 struct kernfs_super_info *info = fc->s_fs_info;
292
293 return sb_info->root == info->root && sb_info->ns == info->ns;
294 }
295
kernfs_set_super(struct super_block * sb,struct fs_context * fc)296 static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
297 {
298 struct kernfs_fs_context *kfc = fc->fs_private;
299
300 kfc->ns_tag = NULL;
301 return set_anon_super_fc(sb, fc);
302 }
303
304 /**
305 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
306 * @sb: super_block of interest
307 *
308 * Return: the namespace tag associated with kernfs super_block @sb.
309 */
kernfs_super_ns(struct super_block * sb)310 const void *kernfs_super_ns(struct super_block *sb)
311 {
312 struct kernfs_super_info *info = kernfs_info(sb);
313
314 return info->ns;
315 }
316
317 /**
318 * kernfs_get_tree - kernfs filesystem access/retrieval helper
319 * @fc: The filesystem context.
320 *
321 * This is to be called from each kernfs user's fs_context->ops->get_tree()
322 * implementation, which should set the specified ->@fs_type and ->@flags, and
323 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
324 * respectively.
325 *
326 * Return: %0 on success, -errno on failure.
327 */
kernfs_get_tree(struct fs_context * fc)328 int kernfs_get_tree(struct fs_context *fc)
329 {
330 struct kernfs_fs_context *kfc = fc->fs_private;
331 struct super_block *sb;
332 struct kernfs_super_info *info;
333 int error;
334
335 info = kzalloc(sizeof(*info), GFP_KERNEL);
336 if (!info)
337 return -ENOMEM;
338
339 info->root = kfc->root;
340 info->ns = kfc->ns_tag;
341 INIT_LIST_HEAD(&info->node);
342
343 fc->s_fs_info = info;
344 sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
345 if (IS_ERR(sb))
346 return PTR_ERR(sb);
347
348 if (!sb->s_root) {
349 struct kernfs_super_info *info = kernfs_info(sb);
350 struct kernfs_root *root = kfc->root;
351
352 kfc->new_sb_created = true;
353
354 error = kernfs_fill_super(sb, kfc);
355 if (error) {
356 deactivate_locked_super(sb);
357 return error;
358 }
359 sb->s_flags |= SB_ACTIVE;
360
361 uuid_t uuid;
362 uuid_gen(&uuid);
363 super_set_uuid(sb, uuid.b, sizeof(uuid));
364
365 down_write(&root->kernfs_supers_rwsem);
366 list_add(&info->node, &info->root->supers);
367 up_write(&root->kernfs_supers_rwsem);
368 }
369
370 fc->root = dget(sb->s_root);
371 return 0;
372 }
373
kernfs_free_fs_context(struct fs_context * fc)374 void kernfs_free_fs_context(struct fs_context *fc)
375 {
376 /* Note that we don't deal with kfc->ns_tag here. */
377 kfree(fc->s_fs_info);
378 fc->s_fs_info = NULL;
379 }
380
381 /**
382 * kernfs_kill_sb - kill_sb for kernfs
383 * @sb: super_block being killed
384 *
385 * This can be used directly for file_system_type->kill_sb(). If a kernfs
386 * user needs extra cleanup, it can implement its own kill_sb() and call
387 * this function at the end.
388 */
kernfs_kill_sb(struct super_block * sb)389 void kernfs_kill_sb(struct super_block *sb)
390 {
391 struct kernfs_super_info *info = kernfs_info(sb);
392 struct kernfs_root *root = info->root;
393
394 down_write(&root->kernfs_supers_rwsem);
395 list_del(&info->node);
396 up_write(&root->kernfs_supers_rwsem);
397
398 /*
399 * Remove the superblock from fs_supers/s_instances
400 * so we can't find it, before freeing kernfs_super_info.
401 */
402 kill_anon_super(sb);
403 kfree(info);
404 }
405
kernfs_mutex_init(void)406 static void __init kernfs_mutex_init(void)
407 {
408 int count;
409
410 for (count = 0; count < NR_KERNFS_LOCKS; count++)
411 mutex_init(&kernfs_locks->open_file_mutex[count]);
412 }
413
kernfs_lock_init(void)414 static void __init kernfs_lock_init(void)
415 {
416 kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL);
417 WARN_ON(!kernfs_locks);
418
419 kernfs_mutex_init();
420 }
421
kernfs_init(void)422 void __init kernfs_init(void)
423 {
424 kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
425 sizeof(struct kernfs_node),
426 0, SLAB_PANIC, NULL);
427
428 /* Creates slab cache for kernfs inode attributes */
429 kernfs_iattrs_cache = kmem_cache_create("kernfs_iattrs_cache",
430 sizeof(struct kernfs_iattrs),
431 0, SLAB_PANIC, NULL);
432
433 kernfs_lock_init();
434 }
435